mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-26 09:39:34 +00:00 
			
		
		
		
	Compare commits
	
		
			2 Commits
		
	
	
		
			ad14a82742
			...
			feature/dw
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | a5645a7efe | ||
|  | 8b3e738269 | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							| @@ -1,54 +0,0 @@ | ||||
| name: Bug report | ||||
| description: Report a bug. | ||||
| title: "<insert title>" | ||||
| labels: [bug] | ||||
|  | ||||
| body: | ||||
|   - type: markdown | ||||
|     attributes: | ||||
|       value: > | ||||
|         Thank you for taking the time to file a bug report. | ||||
|         Please check that the code is pointing to the HEAD of develop | ||||
|         or any commit in master which is tagged with a version number. | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Describe the issue:" | ||||
|       description: > | ||||
|         Describe the issue and any previous attempt to solve it. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Code example:" | ||||
|       description: > | ||||
|         If relevant, show how to reproduce the issue using a minimal working | ||||
|         example. | ||||
|       placeholder: | | ||||
|         << your code here >> | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: false | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Target platform:" | ||||
|       description: > | ||||
|         Give a description of the target platform (CPU, network, compiler). | ||||
|         Please give the full CPU part description, using for example | ||||
|         `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux) | ||||
|         or `sysctl machdep.cpu.brand_string` (macOS) and the full output | ||||
|         the `--version` option of your compiler. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Configure options:" | ||||
|       description: > | ||||
|         Please give the exact configure command used and attach | ||||
|         `config.log`, `grid.config.summary` and the output of `make V=1`. | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: true | ||||
							
								
								
									
										32
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										32
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,7 +1,3 @@ | ||||
| # Doxygen stuff | ||||
| html/* | ||||
| latex/* | ||||
|  | ||||
| # Compiled Object files # | ||||
| ######################### | ||||
| *.slo | ||||
| @@ -87,12 +83,10 @@ ltmain.sh | ||||
| .Trashes | ||||
| ehthumbs.db | ||||
| Thumbs.db | ||||
| .dirstamp | ||||
|  | ||||
| # build directory # | ||||
| ################### | ||||
| build*/* | ||||
| Documentation/_build | ||||
|  | ||||
| # IDE related files # | ||||
| ##################### | ||||
| @@ -103,8 +97,11 @@ build.sh | ||||
|  | ||||
| # Eigen source # | ||||
| ################ | ||||
| Grid/Eigen | ||||
| Eigen/* | ||||
| lib/Eigen/* | ||||
|  | ||||
| # FFTW source # | ||||
| ################ | ||||
| lib/fftw/* | ||||
|  | ||||
| # libtool macros # | ||||
| ################## | ||||
| @@ -115,8 +112,21 @@ m4/libtool.m4 | ||||
| ################ | ||||
| gh-pages/ | ||||
|  | ||||
| # Buck files # | ||||
| ############## | ||||
| .buck* | ||||
| buck-out | ||||
| BUCK | ||||
| make-bin-BUCK.sh | ||||
|  | ||||
| # generated sources # | ||||
| ##################### | ||||
| Grid/qcd/spin/gamma-gen/*.h | ||||
| Grid/qcd/spin/gamma-gen/*.cc | ||||
| Grid/util/Version.h | ||||
| lib/qcd/spin/gamma-gen/*.h | ||||
| lib/qcd/spin/gamma-gen/*.cc | ||||
| lib/version.h | ||||
|  | ||||
| # vs code editor files # | ||||
| ######################## | ||||
| .vscode/ | ||||
| .vscode/settings.json | ||||
| settings.json | ||||
|   | ||||
							
								
								
									
										60
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,60 @@ | ||||
| language: cpp | ||||
|  | ||||
| cache: | ||||
|   directories: | ||||
|     - clang | ||||
|  | ||||
| matrix: | ||||
|   include: | ||||
|     - os:        osx | ||||
|       osx_image: xcode8.3 | ||||
|       compiler: clang | ||||
|        | ||||
| before_install: | ||||
|     - export GRIDDIR=`pwd` | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi | ||||
|      | ||||
| install: | ||||
|     - export CWD=`pwd` | ||||
|     - echo $CWD | ||||
|     - export CC=$CC$VERSION | ||||
|     - export CXX=$CXX$VERSION | ||||
|     - echo $PATH | ||||
|     - which autoconf | ||||
|     - autoconf  --version | ||||
|     - which automake | ||||
|     - automake  --version | ||||
|     - which $CC | ||||
|     - $CC  --version | ||||
|     - which $CXX | ||||
|     - $CXX --version | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi | ||||
|      | ||||
| script: | ||||
|     - ./bootstrap.sh | ||||
|     - mkdir build | ||||
|     - cd build | ||||
|     - mkdir lime | ||||
|     - cd lime | ||||
|     - mkdir build | ||||
|     - cd build | ||||
|     - wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz | ||||
|     - tar xf lime-1.3.2.tar.gz | ||||
|     - cd lime-1.3.2 | ||||
|     - ./configure --prefix=$CWD/build/lime/install | ||||
|     - make -j4 | ||||
|     - make install | ||||
|     - cd $CWD/build | ||||
|     - ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install | ||||
|     - make -j4  | ||||
|     - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals | ||||
|     - echo make clean | ||||
|     - ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install | ||||
|     - make -j4 | ||||
|     - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals | ||||
|     - make check | ||||
|  | ||||
| @@ -1,5 +0,0 @@ | ||||
| Version : 0.8.0 | ||||
|  | ||||
| - Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended | ||||
| - MPI and MPI3 comms optimisations for KNL and OPA finished | ||||
| - Half precision comms | ||||
|   | ||||
| @@ -1,73 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/DisableWarnings.h | ||||
|  | ||||
| Copyright (C) 2016 | ||||
|  | ||||
| Author: Guido Cossu <guido.cossu@ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef DISABLE_WARNINGS_H | ||||
| #define DISABLE_WARNINGS_H | ||||
|  | ||||
|  | ||||
|  | ||||
| #if defined __GNUC__ && __GNUC__>=6 | ||||
| #pragma GCC diagnostic ignored "-Wignored-attributes" | ||||
| #endif | ||||
|  | ||||
|  //disables and intel compiler specific warning (in json.hpp) | ||||
| #ifdef __ICC | ||||
| #pragma warning disable 488   | ||||
| #endif | ||||
|  | ||||
| #ifdef __NVCC__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma clang diagnostic ignored "-Wdeprecated-register" | ||||
|  | ||||
| #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma nv_diag_suppress unsigned_compare_with_zero | ||||
| #pragma nv_diag_suppress cast_to_qualified_type | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma nv_diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma nv_diag_suppress extra_semicolon | ||||
| #else | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma diag_suppress unsigned_compare_with_zero | ||||
| #pragma diag_suppress cast_to_qualified_type | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma diag_suppress extra_semicolon | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| // Disable vectorisation in Eigen on the Power8/9 and PowerPC | ||||
| #ifdef  __ALTIVEC__ | ||||
| #define  EIGEN_DONT_VECTORIZE | ||||
| #endif | ||||
| #ifdef  __VSX__ | ||||
| #define  EIGEN_DONT_VECTORIZE | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
| @@ -1,75 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #pragma once | ||||
| // Force Eigen to use MKL if Grid has been configured with --enable-mkl | ||||
| #ifdef USE_MKL | ||||
| #define EIGEN_USE_MKL_ALL | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic push | ||||
| #pragma GCC diagnostic ignored "-Wdeprecated-declarations" | ||||
| #endif | ||||
|  | ||||
| /* NVCC save and restore compile environment*/ | ||||
| #ifdef __NVCC__ | ||||
| #pragma push | ||||
| #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ | ||||
| #pragma nv_diag_suppress code_is_unreachable | ||||
| #else | ||||
| #pragma diag_suppress code_is_unreachable | ||||
| #endif | ||||
| #pragma push_macro("__CUDA_ARCH__") | ||||
| #pragma push_macro("__NVCC__") | ||||
| #pragma push_macro("__CUDACC__") | ||||
| #undef __CUDA_ARCH__ | ||||
| #undef __NVCC__ | ||||
| #undef __CUDACC__ | ||||
| #define __NVCC__REDEFINE__ | ||||
| #endif  | ||||
|  | ||||
| /* SYCL save and restore compile environment*/ | ||||
| #ifdef GRID_SYCL | ||||
| #pragma push | ||||
| #pragma push_macro("__SYCL_DEVICE_ONLY__") | ||||
| #undef __SYCL_DEVICE_ONLY__ | ||||
| #define EIGEN_DONT_VECTORIZE | ||||
| #undef EIGEN_USE_SYCL | ||||
| #define __SYCL__REDEFINE__ | ||||
| #endif | ||||
|  | ||||
| /* HIP save and restore compile environment*/ | ||||
| #ifdef GRID_HIP | ||||
| #pragma push | ||||
| #pragma push_macro("__HIP_DEVICE_COMPILE__") | ||||
| #endif | ||||
| #define EIGEN_NO_HIP | ||||
|  | ||||
| #include <Grid/Eigen/Dense> | ||||
| #include <Grid/Eigen/unsupported/CXX11/Tensor> | ||||
|  | ||||
| /* NVCC restore */ | ||||
| #ifdef __NVCC__REDEFINE__ | ||||
| #pragma pop_macro("__CUDACC__") | ||||
| #pragma pop_macro("__NVCC__") | ||||
| #pragma pop_macro("__CUDA_ARCH__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| /*SYCL restore*/ | ||||
| #ifdef __SYCL__REDEFINE__ | ||||
| #pragma pop_macro("__SYCL_DEVICE_ONLY__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| /*HIP restore*/ | ||||
| #ifdef __HIP__REDEFINE__ | ||||
| #pragma pop_macro("__HIP_DEVICE_COMPILE__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic pop | ||||
| #endif | ||||
|  | ||||
|  | ||||
| @@ -1 +0,0 @@ | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
| @@ -1,81 +0,0 @@ | ||||
| extra_sources= | ||||
| extra_headers= | ||||
|  | ||||
| if BUILD_COMMS_MPI3 | ||||
|   extra_sources+=communicator/Communicator_mpi3.cc | ||||
|   extra_sources+=communicator/Communicator_base.cc | ||||
|   extra_sources+=communicator/SharedMemoryMPI.cc | ||||
|   extra_sources+=communicator/SharedMemory.cc | ||||
| endif | ||||
|  | ||||
| if BUILD_COMMS_NONE | ||||
|   extra_sources+=communicator/Communicator_none.cc | ||||
|   extra_sources+=communicator/Communicator_base.cc | ||||
|   extra_sources+=communicator/SharedMemoryNone.cc | ||||
|   extra_sources+=communicator/SharedMemory.cc | ||||
| endif | ||||
|  | ||||
| if BUILD_HDF5 | ||||
|   extra_sources+=serialisation/Hdf5IO.cc  | ||||
|   extra_headers+=serialisation/Hdf5IO.h | ||||
|   extra_headers+=serialisation/Hdf5Type.h | ||||
| endif | ||||
|  | ||||
|  | ||||
| all: version-cache Version.h | ||||
|  | ||||
| version-cache: | ||||
| 	@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\ | ||||
| 		a="uncommited changes";\ | ||||
| 	else\ | ||||
| 		a="clean";\ | ||||
| 	fi;\ | ||||
| 	echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d $$a\\"%n" HEAD`" > vertmp;\ | ||||
| 	if [ -e version-cache ]; then\ | ||||
| 		d=`diff vertmp version-cache`;\ | ||||
| 		if [ "$${d}" != "" ]; then\ | ||||
| 			mv vertmp version-cache;\ | ||||
| 			rm -f Version.h;\ | ||||
| 		fi;\ | ||||
| 	else\ | ||||
| 		mv vertmp version-cache;\ | ||||
| 		rm -f Version.h;\ | ||||
| 	fi;\ | ||||
| 	rm -f vertmp | ||||
|  | ||||
| Version.h: version-cache | ||||
| 	cp version-cache Version.h | ||||
|  | ||||
| .PHONY: version-cache | ||||
|  | ||||
| # | ||||
| # Libraries | ||||
| # | ||||
| include Make.inc | ||||
| include Eigen.inc | ||||
|  | ||||
| extra_sources+=$(WILS_FERMION_FILES) | ||||
| extra_sources+=$(STAG_FERMION_FILES) | ||||
| if BUILD_ZMOBIUS | ||||
|   extra_sources+=$(ZWILS_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_GPARITY | ||||
|   extra_sources+=$(GP_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_FERMION_REPS | ||||
|   extra_sources+=$(ADJ_FERMION_FILES) | ||||
|   extra_sources+=$(TWOIND_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_SP | ||||
|     extra_sources+=$(SP_FERMION_FILES) | ||||
|     extra_sources+=$(SP_TWOIND_FERMION_FILES) | ||||
| endif | ||||
|  | ||||
| lib_LIBRARIES = libGrid.a | ||||
|  | ||||
| CCFILES += $(extra_sources) | ||||
| HFILES  += $(extra_headers) Config.h Version.h | ||||
|  | ||||
| libGrid_a_SOURCES              = $(CCFILES) | ||||
| libGrid_adir                   = $(includedir)/Grid | ||||
| nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) $(eigen_unsupp_files) | ||||
| @@ -1,38 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/Namespace.h | ||||
|  | ||||
| Copyright (C) 2016 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <type_traits> | ||||
| #include <cassert> | ||||
|  | ||||
| #define NAMESPACE_BEGIN(A) namespace A { | ||||
| #define NAMESPACE_END(A)   } | ||||
| #define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid) | ||||
| #define GRID_NAMESPACE_END   NAMESPACE_END(Grid) | ||||
| #define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  );  | ||||
| @@ -1,296 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/Cshift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef _GRID_FFT_H_ | ||||
| #define _GRID_FFT_H_ | ||||
|  | ||||
| #ifdef HAVE_FFTW | ||||
| #if defined(USE_MKL) || defined(GRID_SYCL) | ||||
| #include <fftw/fftw3.h> | ||||
| #else | ||||
| #include <fftw3.h> | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class scalar> struct FFTW { }; | ||||
|  | ||||
| #ifdef HAVE_FFTW	 | ||||
| template<> struct FFTW<ComplexD> { | ||||
| public: | ||||
|  | ||||
|   typedef fftw_complex FFTW_scalar; | ||||
|   typedef fftw_plan    FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany, | ||||
| 				      FFTW_scalar *in, const int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, const int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags); | ||||
|   }	   | ||||
|      | ||||
|   static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){ | ||||
|     ::fftw_flops(p,add,mul,fmas); | ||||
|   } | ||||
|  | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) { | ||||
|     ::fftw_execute_dft(p,in,out); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     ::fftw_destroy_plan(p); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<> struct FFTW<ComplexF> { | ||||
| public: | ||||
|  | ||||
|   typedef fftwf_complex FFTW_scalar; | ||||
|   typedef fftwf_plan    FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany, | ||||
| 				      FFTW_scalar *in, const int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, const int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags); | ||||
|   }	   | ||||
|      | ||||
|   static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){ | ||||
|     ::fftwf_flops(p,add,mul,fmas); | ||||
|   } | ||||
|  | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) { | ||||
|     ::fftwf_execute_dft(p,in,out); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     ::fftwf_destroy_plan(p); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #ifndef FFTW_FORWARD | ||||
| #define FFTW_FORWARD (-1) | ||||
| #define FFTW_BACKWARD (+1) | ||||
| #endif | ||||
|  | ||||
| class FFT { | ||||
| private: | ||||
|      | ||||
|   GridCartesian *vgrid; | ||||
|   GridCartesian *sgrid; | ||||
|      | ||||
|   int Nd; | ||||
|   double flops; | ||||
|   double flops_call; | ||||
|   uint64_t usec; | ||||
|      | ||||
|   Coordinate dimensions; | ||||
|   Coordinate processors; | ||||
|   Coordinate processor_coor; | ||||
|      | ||||
| public: | ||||
|      | ||||
|   static const int forward=FFTW_FORWARD; | ||||
|   static const int backward=FFTW_BACKWARD; | ||||
|      | ||||
|   double Flops(void) {return flops;} | ||||
|   double MFlops(void) {return flops/usec;} | ||||
|   double USec(void)   {return (double)usec;}     | ||||
|  | ||||
|   FFT ( GridCartesian * grid ) : | ||||
|     vgrid(grid), | ||||
|     Nd(grid->_ndimension), | ||||
|     dimensions(grid->_fdimensions), | ||||
|     processors(grid->_processors), | ||||
|     processor_coor(grid->_processor_coor) | ||||
|   { | ||||
|     flops=0; | ||||
|     usec =0; | ||||
|     Coordinate layout(Nd,1); | ||||
|     sgrid = new GridCartesian(dimensions,layout,processors,*grid); | ||||
|   }; | ||||
|      | ||||
|   ~FFT ( void)  { | ||||
|     delete sgrid; | ||||
|   } | ||||
|      | ||||
|   template<class vobj> | ||||
|   void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){ | ||||
|  | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|     Lattice<vobj> tmp(vgrid); | ||||
|     tmp = source; | ||||
|     for(int d=0;d<Nd;d++){ | ||||
|       if( mask[d] ) { | ||||
| 	FFT_dim(result,tmp,d,sign); | ||||
| 	tmp=result; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template<class vobj> | ||||
|   void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){ | ||||
|     Coordinate mask(Nd,1); | ||||
|     FFT_dim_mask(result,source,mask,sign); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   template<class vobj> | ||||
|   void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){ | ||||
| #ifndef HAVE_FFTW | ||||
|     assert(0); | ||||
| #else | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|  | ||||
|     int L = vgrid->_ldimensions[dim]; | ||||
|     int G = vgrid->_fdimensions[dim]; | ||||
|        | ||||
|     Coordinate layout(Nd,1); | ||||
|     Coordinate pencil_gd(vgrid->_fdimensions); | ||||
|        | ||||
|     pencil_gd[dim] = G*processors[dim]; | ||||
|        | ||||
|     // Pencil global vol LxLxGxLxL per node | ||||
|     GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid); | ||||
|        | ||||
|     // Construct pencils | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename sobj::scalar_type   scalar; | ||||
|        | ||||
|     Lattice<sobj> pgbuf(&pencil_g); | ||||
|     autoView(pgbuf_v , pgbuf, CpuWrite); | ||||
|  | ||||
|     typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; | ||||
|     typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan; | ||||
|        | ||||
|     int Ncomp = sizeof(sobj)/sizeof(scalar); | ||||
|     int Nlow  = 1; | ||||
|     for(int d=0;d<dim;d++){ | ||||
|       Nlow*=vgrid->_ldimensions[d]; | ||||
|     } | ||||
|        | ||||
|     int rank = 1;  /* 1d transforms */ | ||||
|     int n[] = {G}; /* 1d transforms of length G */ | ||||
|     int howmany = Ncomp; | ||||
|     int odist,idist,istride,ostride; | ||||
|     idist   = odist   = 1;          /* Distance between consecutive FT's */ | ||||
|     istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */ | ||||
|     int *inembed = n, *onembed = n; | ||||
|        | ||||
|     scalar div; | ||||
|     if ( sign == backward ) div = 1.0/G; | ||||
|     else if ( sign == forward ) div = 1.0; | ||||
|     else assert(0); | ||||
|        | ||||
|     FFTW_plan p; | ||||
|     { | ||||
|       FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; | ||||
|       FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0]; | ||||
|       p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany, | ||||
| 					   in,inembed, | ||||
| 					   istride,idist, | ||||
| 					   out,onembed, | ||||
| 					   ostride, odist, | ||||
| 					   sign,FFTW_ESTIMATE); | ||||
|     } | ||||
|        | ||||
|     // Barrel shift and collect global pencil | ||||
|     Coordinate lcoor(Nd), gcoor(Nd); | ||||
|     result = source; | ||||
|     int pc = processor_coor[dim]; | ||||
|     for(int p=0;p<processors[dim];p++) { | ||||
|       { | ||||
| 	autoView(r_v,result,CpuRead); | ||||
| 	autoView(p_v,pgbuf,CpuWrite); | ||||
| 	thread_for(idx, sgrid->lSites(),{ | ||||
|           Coordinate cbuf(Nd); | ||||
|           sobj s; | ||||
| 	  sgrid->LocalIndexToLocalCoor(idx,cbuf); | ||||
| 	  peekLocalSite(s,r_v,cbuf); | ||||
| 	  cbuf[dim]+=((pc+p) % processors[dim])*L; | ||||
| 	  pokeLocalSite(s,p_v,cbuf); | ||||
|         }); | ||||
|       } | ||||
|       if (p != processors[dim] - 1) { | ||||
| 	result = Cshift(result,dim,L); | ||||
|       } | ||||
|     } | ||||
|        | ||||
|     // Loop over orthog coords | ||||
|     int NN=pencil_g.lSites(); | ||||
|     GridStopWatch timer; | ||||
|     timer.Start(); | ||||
|     thread_for( idx,NN,{ | ||||
|         Coordinate cbuf(Nd); | ||||
| 	pencil_g.LocalIndexToLocalCoor(idx, cbuf); | ||||
| 	if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0 | ||||
| 	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx]; | ||||
| 	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx]; | ||||
| 	  FFTW<scalar>::fftw_execute_dft(p,in,out); | ||||
| 	} | ||||
|     }); | ||||
|     timer.Stop(); | ||||
|        | ||||
|     // performance counting | ||||
|     double add,mul,fma; | ||||
|     FFTW<scalar>::fftw_flops(p,&add,&mul,&fma); | ||||
|     flops_call = add+mul+2.0*fma; | ||||
|     usec += timer.useconds(); | ||||
|     flops+= flops_call*NN; | ||||
|        | ||||
|     // writing out result | ||||
|     { | ||||
|       autoView(pgbuf_v,pgbuf,CpuRead); | ||||
|       autoView(result_v,result,CpuWrite); | ||||
|       thread_for(idx,sgrid->lSites(),{ | ||||
| 	Coordinate clbuf(Nd), cgbuf(Nd); | ||||
| 	sobj s; | ||||
| 	sgrid->LocalIndexToLocalCoor(idx,clbuf); | ||||
| 	cgbuf = clbuf; | ||||
| 	cgbuf[dim] = clbuf[dim]+L*pc; | ||||
| 	peekLocalSite(s,pgbuf_v,cgbuf); | ||||
| 	pokeLocalSite(s,result_v,clbuf); | ||||
|       }); | ||||
|     } | ||||
|     result = result*div; | ||||
|        | ||||
|     // destroying plan | ||||
|     FFTW<scalar>::fftw_destroy_plan(p); | ||||
| #endif | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,679 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/LinearOperator.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // LinearOperators Take a something and return a something. | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // | ||||
| // Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real): | ||||
| //SBase | ||||
| //   i)  F(a x + b y) = aF(x) + b F(y). | ||||
| //  ii)  <x|Op|y> = <y|AdjOp|x>^\ast | ||||
| // | ||||
| // Would be fun to have a test linearity & Herm Conj function! | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class LinearOperatorBase { | ||||
| public: | ||||
|   // Support for coarsening to a multigrid | ||||
|   virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base | ||||
|   virtual void OpDir  (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base | ||||
|   virtual void OpDirAll  (const Field &in, std::vector<Field> &out) = 0; // Abstract base | ||||
|  | ||||
|   virtual void Op     (const Field &in, Field &out) = 0; // Abstract base | ||||
|   virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base | ||||
|   virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0; | ||||
|   virtual void HermOp(const Field &in, Field &out)=0; | ||||
|   virtual ~LinearOperatorBase(){}; | ||||
| }; | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code | ||||
| // between RB and non-RB variants. Sparse matrix is like the fermion action def, and then | ||||
| // the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising | ||||
| // replication of code. | ||||
| // | ||||
| // I'm not entirely happy with implementation; to share the Schur code between herm and non-herm | ||||
| // while still having a "OpAndNorm" in the abstract base I had to implement it in both cases | ||||
| // with an assert trap in the non-herm. This isn't right; there must be a better C++ way to | ||||
| // do it, but I fear it required multiple inheritance and mixed in abstract base classes | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Construct herm op from non-herm matrix | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Matrix,class Field> | ||||
| class MdagMLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   MdagMLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     _Mat.MdagM(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MdagM(in,out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Construct herm op and shift it for mgrid smoother | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Matrix,class Field> | ||||
| class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
|   RealD _shift; | ||||
| public: | ||||
|   ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|     assert(0); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|     assert(0); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MdagM(in,out); | ||||
|     out = out + _shift*in; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Create a shifted HermOp | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> { | ||||
|   LinearOperatorBase<Field> &_Mat; | ||||
|   RealD _shift; | ||||
| public: | ||||
|   ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.HermOp(in,out); | ||||
|     out = out + _shift*in; | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Wrap an already herm matrix | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Matrix,class Field> | ||||
| class HermitianLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   HermitianLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot= innerProduct(in,out); n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class Matrix,class Field> | ||||
| class NonHermitianLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     assert(0); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////// | ||||
| // Even Odd Schur decomp operators; there are several | ||||
| // ways to introduce the even odd checkerboarding | ||||
| ////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class Field> | ||||
| class SchurOperatorBase :  public LinearOperatorBase<Field> { | ||||
|  public: | ||||
|   virtual  void Mpc      (const Field &in, Field &out) =0; | ||||
|   virtual  void MpcDag   (const Field &in, Field &out) =0; | ||||
|   virtual  void MpcDagMpc(const Field &in, Field &out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = in.Checkerboard(); | ||||
|     Mpc(in,tmp); | ||||
|     MpcDag(tmp,out); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     MpcDagMpc(in,out); | ||||
|     ComplexD dot= innerProduct(in,out);  | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   virtual void HermOp(const Field &in, Field &out){ | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     MpcDagMpc(in,out); | ||||
|   } | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){  | ||||
|     MpcDag(in,out); | ||||
|   } | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); // must coarsen the unpreconditioned system | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
|   class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> { | ||||
|  public: | ||||
|     Matrix &_Mat; | ||||
|     SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|     virtual  void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       tmp.Checkerboard() = !in.Checkerboard(); | ||||
|        | ||||
|       _Mat.Meooe(in,tmp); | ||||
|       _Mat.MooeeInv(tmp,out); | ||||
|       _Mat.Meooe(out,tmp); | ||||
|       _Mat.Mooee(in,out); | ||||
|       axpy(out,-1.0,tmp,out); | ||||
|     } | ||||
|     virtual void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
| 	 | ||||
|       _Mat.MeooeDag(in,tmp); | ||||
|       _Mat.MooeeInvDag(tmp,out); | ||||
|       _Mat.MeooeDag(out,tmp); | ||||
|       _Mat.MooeeDag(in,out); | ||||
|       axpy(out,-1.0,tmp,out); | ||||
|     } | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
|   class SchurDiagOneOperator :  public SchurOperatorBase<Field> { | ||||
|  protected: | ||||
|     Matrix &_Mat; | ||||
|  public: | ||||
|     SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|      | ||||
|     virtual void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|  | ||||
|       _Mat.Meooe(in,out); | ||||
|       _Mat.MooeeInv(out,tmp); | ||||
|       _Mat.Meooe(tmp,out); | ||||
|       _Mat.MooeeInv(out,tmp); | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|     } | ||||
|     virtual void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|        | ||||
|       _Mat.MooeeInvDag(in,out); | ||||
|       _Mat.MeooeDag(out,tmp); | ||||
|       _Mat.MooeeInvDag(tmp,out); | ||||
|       _Mat.MeooeDag(out,tmp); | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|     } | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
|   class SchurDiagTwoOperator :  public SchurOperatorBase<Field> { | ||||
|  protected: | ||||
|     Matrix &_Mat; | ||||
|  public: | ||||
|     SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|      | ||||
|     virtual void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|        | ||||
|       _Mat.MooeeInv(in,out); | ||||
|       _Mat.Meooe(out,tmp); | ||||
|       _Mat.MooeeInv(tmp,out); | ||||
|       _Mat.Meooe(out,tmp); | ||||
|        | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|     } | ||||
|     virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|  | ||||
|       _Mat.MeooeDag(in,out); | ||||
|       _Mat.MooeeInvDag(out,tmp); | ||||
|       _Mat.MeooeDag(tmp,out); | ||||
|       _Mat.MooeeInvDag(out,tmp); | ||||
|  | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| template<class Field> | ||||
| class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>  | ||||
| { | ||||
|  public: | ||||
|   virtual void  Mpc      (const Field& in, Field& out) = 0; | ||||
|   virtual void  MpcDag   (const Field& in, Field& out) = 0; | ||||
|   virtual void  MpcDagMpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = in.Checkerboard(); | ||||
|     Mpc(in,tmp); | ||||
|     MpcDag(tmp,out); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) { | ||||
|     assert(0); | ||||
|   } | ||||
|   virtual void HermOp(const Field& in, Field& out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void Op(const Field& in, Field& out) { | ||||
|     Mpc(in, out); | ||||
|   } | ||||
|   void AdjOp(const Field& in, Field& out) {  | ||||
|     MpcDag(in, out); | ||||
|   } | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag(const Field& in, Field& out) { | ||||
|     assert(0); // must coarsen the unpreconditioned system | ||||
|   } | ||||
|   void OpDir(const Field& in, Field& out, int dir, int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll(const Field& in, std::vector<Field>& out){ | ||||
|     assert(0); | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template<class Matrix, class Field> | ||||
| class NonHermitianSchurDiagMooeeOperator :  public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  public: | ||||
|   Matrix& _Mat; | ||||
|  NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){}; | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = !in.Checkerboard(); | ||||
|      | ||||
|     _Mat.Meooe(in, tmp); | ||||
|     _Mat.MooeeInv(tmp, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|      | ||||
|     _Mat.Mooee(in, out); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, out); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MeooeDag(in, tmp); | ||||
|     _Mat.MooeeInvDag(tmp, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
| 	   | ||||
|     _Mat.MooeeDag(in, out); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, out); | ||||
|   } | ||||
| }; | ||||
|      | ||||
| template<class Matrix,class Field> | ||||
| class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  protected: | ||||
|   Matrix &_Mat; | ||||
|    | ||||
|  public: | ||||
|   NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){}; | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
| 	   | ||||
|     _Mat.Meooe(in, out); | ||||
|     _Mat.MooeeInv(out, tmp); | ||||
|     _Mat.Meooe(tmp, out); | ||||
|     _Mat.MooeeInv(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MooeeInvDag(in, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
|     _Mat.MooeeInvDag(tmp, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class Matrix, class Field> | ||||
| class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  protected: | ||||
|   Matrix& _Mat; | ||||
|    | ||||
|  public: | ||||
|  NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){}; | ||||
|  | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MooeeInv(in, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|     _Mat.MooeeInv(tmp, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MeooeDag(in, out); | ||||
|     _Mat.MooeeInvDag(out, tmp); | ||||
|     _Mat.MeooeDag(tmp, out); | ||||
|     _Mat.MooeeInvDag(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta | ||||
| // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ; | ||||
| template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ; | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //  Staggered use | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Matrix,class Field> | ||||
| class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|  protected: | ||||
|   Matrix &_Mat; | ||||
|   Field tmp; | ||||
|   RealD mass; | ||||
|  public: | ||||
|   SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())  | ||||
|   {  | ||||
|     assert( _Mat.isTrivialEE() ); | ||||
|     mass = _Mat.Mass(); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     Mpc(in,out); | ||||
|     ComplexD dot= innerProduct(in,out); | ||||
|     n1 = real(dot); | ||||
|     n2 =0.0; | ||||
|   } | ||||
|   virtual void HermOp(const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|     //    _Mat.Meooe(in,out); | ||||
|     //    _Mat.Meooe(out,tmp); | ||||
|     //    axpby(out,-1.0,mass*mass,tmp,in); | ||||
|   } | ||||
|   virtual  void Mpc      (const Field &in, Field &out)  | ||||
|   { | ||||
|     Field tmp(in.Grid()); | ||||
|     Field tmp2(in.Grid()); | ||||
| 	 | ||||
|     //    _Mat.Mooee(in,out); | ||||
|     //    _Mat.Mooee(out,tmp); | ||||
|  | ||||
|     _Mat.Meooe(in,out); | ||||
|     _Mat.Meooe(out,tmp); | ||||
|     axpby(out,-1.0,mass*mass,tmp,in); | ||||
|   } | ||||
|   virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|   } | ||||
|   virtual void MpcDagMpc(const Field &in, Field &out) { | ||||
|     assert(0);// Never need with staggered | ||||
|   } | ||||
| }; | ||||
| template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for functions of operators | ||||
| ///////////////////////////////////////////////////////////// | ||||
| template<class Field> class OperatorFunction { | ||||
| public: | ||||
|   virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0; | ||||
|   virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) { | ||||
|     assert(in.size()==out.size()); | ||||
|     for(int k=0;k<in.size();k++){ | ||||
|       (*this)(Linop,in[k],out[k]); | ||||
|     } | ||||
|   }; | ||||
|   virtual ~OperatorFunction(){}; | ||||
| }; | ||||
|  | ||||
| template<class Field> class LinearFunction { | ||||
| public: | ||||
|   virtual void operator() (const Field &in, Field &out) = 0; | ||||
|  | ||||
|   virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out) | ||||
|   { | ||||
|     assert(in.size() == out.size()); | ||||
|  | ||||
|     for (unsigned int i = 0; i < in.size(); ++i) | ||||
|     { | ||||
|       (*this)(in[i], out[i]); | ||||
|     } | ||||
|   } | ||||
|   virtual ~LinearFunction(){}; | ||||
| }; | ||||
|  | ||||
| template<class Field> class IdentityLinearFunction : public LinearFunction<Field> { | ||||
| public: | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|     out = in; | ||||
|   }; | ||||
| }; | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for Multishift solvers for operators | ||||
| ///////////////////////////////////////////////////////////// | ||||
| template<class Field> class OperatorMultiFunction { | ||||
| public: | ||||
|   virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0; | ||||
| }; | ||||
|  | ||||
| // FIXME : To think about | ||||
|  | ||||
| // Chroma functionality list defining LinearOperator | ||||
| /* | ||||
|   virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0; | ||||
|   virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const | ||||
|   virtual const Subset& subset() const = 0; | ||||
|   virtual unsigned long nFlops() const { return 0; } | ||||
|   virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const | ||||
|   class UnprecLinearOperator : public DiffLinearOperator<T,P,Q> | ||||
|   const Subset& subset() const {return all;} | ||||
|   }; | ||||
| */ | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hermitian operator Linear function and operator function | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| class HermOpOperatorFunction : public OperatorFunction<Field> { | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|     Linop.HermOp(in,out); | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template<typename Field> | ||||
| class PlainHermOp : public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   LinearOperatorBase<Field> &_Linop; | ||||
|        | ||||
|   PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)  | ||||
|   {} | ||||
|        | ||||
|   void operator()(const Field& in, Field& out) { | ||||
|     _Linop.HermOp(in,out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<typename Field> | ||||
| class FunctionHermOp : public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator();  | ||||
|   OperatorFunction<Field>   & _poly; | ||||
|   LinearOperatorBase<Field> &_Linop; | ||||
|        | ||||
|   FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)  | ||||
|     : _poly(poly), _Linop(linop) {}; | ||||
|        | ||||
|   void operator()(const Field& in, Field& out) { | ||||
|     _poly(_Linop,in,out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class Field> | ||||
| class Polynomial : public OperatorFunction<Field> { | ||||
| private: | ||||
|   std::vector<RealD> Coeffs; | ||||
| public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { }; | ||||
|  | ||||
|   // Implement the required interface | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     Field AtoN(in.Grid()); | ||||
|     Field Mtmp(in.Grid()); | ||||
|     AtoN = in; | ||||
|     out = AtoN*Coeffs[0]; | ||||
|     for(int n=1;n<Coeffs.size();n++){ | ||||
|       Mtmp = AtoN; | ||||
|       Linop.HermOp(Mtmp,AtoN); | ||||
|       out=out+AtoN*Coeffs[n]; | ||||
|     } | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,52 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/Preconditioner.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_PRECONDITIONER_H | ||||
| #define GRID_PRECONDITIONER_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> using Preconditioner =  LinearFunction<Field> ; | ||||
|  | ||||
| /* | ||||
| template<class Field> class Preconditioner :  public LinearFunction<Field> { | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field & psi)=0; | ||||
| }; | ||||
| */ | ||||
|  | ||||
| template<class Field> class TrivialPrecon :  public Preconditioner<Field> {  | ||||
| public: | ||||
|   using Preconditioner<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field & psi){ | ||||
|     psi = src; | ||||
|   } | ||||
|   TrivialPrecon(void){}; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,81 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/SparseMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef  GRID_ALGORITHM_SPARSE_MATRIX_H | ||||
| #define  GRID_ALGORITHM_SPARSE_MATRIX_H | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Interface defining what I expect of a general sparse matrix, such as a Fermion action | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class SparseMatrixBase { | ||||
| public: | ||||
|   virtual GridBase *Grid(void) =0; | ||||
|   // Full checkerboar operations | ||||
|   virtual void  M    (const Field &in, Field &out)=0; | ||||
|   virtual void  Mdag (const Field &in, Field &out)=0; | ||||
|   virtual void  MdagM(const Field &in, Field &out) { | ||||
|     Field tmp (in.Grid()); | ||||
|     M(in,tmp); | ||||
|     Mdag(tmp,out); | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out)=0; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0; | ||||
|   virtual ~SparseMatrixBase() {}; | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Interface augmented by a red black sparse matrix, such as a Fermion action | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> { | ||||
| public: | ||||
|   virtual GridBase *RedBlackGrid(void)=0; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Query the even even properties to make algorithmic decisions | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   virtual RealD  Mass(void)        { return 0.0; }; | ||||
|   virtual int    ConstEE(void)     { return 1; }; // Disable assumptions unless overridden | ||||
|   virtual int    isTrivialEE(void) { return 0; }; // by a derived class that knows better | ||||
|  | ||||
|   // half checkerboard operaions | ||||
|   virtual  void Meooe    (const Field &in, Field &out)=0; | ||||
|   virtual  void Mooee    (const Field &in, Field &out)=0; | ||||
|   virtual  void MooeeInv (const Field &in, Field &out)=0; | ||||
|  | ||||
|   virtual  void MeooeDag    (const Field &in, Field &out)=0; | ||||
|   virtual  void MooeeDag    (const Field &in, Field &out)=0; | ||||
|   virtual  void MooeeInvDag (const Field &in, Field &out)=0; | ||||
|   virtual ~CheckerBoardedSparseMatrixBase() {}; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,394 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/Chebyshev.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <clehner@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CHEBYSHEV_H | ||||
| #define GRID_CHEBYSHEV_H | ||||
|  | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| struct ChebyParams : Serializable { | ||||
|   GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams, | ||||
| 				  RealD, alpha,   | ||||
| 				  RealD, beta,    | ||||
| 				  int, Npoly); | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Generic Chebyshev approximations | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| class Chebyshev : public OperatorFunction<Field> { | ||||
| private: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   std::vector<RealD> Coeffs; | ||||
|   int order; | ||||
|   RealD hi; | ||||
|   RealD lo; | ||||
|  | ||||
| public: | ||||
|   void csv(std::ostream &out){ | ||||
|     RealD diff = hi-lo; | ||||
|     RealD delta = diff*1.0e-9; | ||||
|     for (RealD x=lo; x<hi; x+=delta) { | ||||
|       delta*=1.1; | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f<<std::endl; | ||||
|     } | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   // Convenience for plotting the approximation | ||||
|   void   PlotApprox(std::ostream &out) { | ||||
|     out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){ | ||||
|       out <<x<<"\t"<<approx(x)<<std::endl; | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   Chebyshev(){}; | ||||
|   Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);}; | ||||
|   Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);}; | ||||
|   Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);}; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation". | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // CJ: the one we need for Lanczos | ||||
|   void Init(RealD _lo,RealD _hi,int _order) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order,0.0); | ||||
|     Coeffs[order-1] = 1.0; | ||||
|   }; | ||||
|    | ||||
|   // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's. | ||||
|   // Similar kick effect below the threshold as Lanczos filter approach | ||||
|   void InitLowPass(RealD _lo,RealD _hi,int _order) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     for(int j=0;j<order;j++){ | ||||
|       RealD k=(order-1.0); | ||||
|       RealD s=std::cos( j*M_PI*(k+0.5)/order ); | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|      | ||||
|   }; | ||||
|  | ||||
|   void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD)) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     for(int j=0;j<order;j++){ | ||||
|       RealD s=0; | ||||
|       for(int k=0;k<order;k++){ | ||||
| 	RealD y=std::cos(M_PI*(k+0.5)/order); | ||||
| 	RealD x=0.5*(y*(hi-lo)+(hi+lo)); | ||||
| 	RealD f=func(x); | ||||
| 	s=s+f*std::cos( j*M_PI*(k+0.5)/order ); | ||||
|       } | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|      | ||||
|   void JacksonSmooth(void){ | ||||
|     RealD M=order; | ||||
|     RealD alpha = M_PI/(M+2); | ||||
|     RealD lmax = std::cos(alpha); | ||||
|     RealD sumUsq =0; | ||||
|     std::vector<RealD> U(M); | ||||
|     std::vector<RealD> a(M); | ||||
|     std::vector<RealD> g(M); | ||||
|     for(int n=0;n<=M;n++){ | ||||
|       U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax)); | ||||
|       sumUsq += U[n]*U[n]; | ||||
|     }       | ||||
|     sumUsq = std::sqrt(sumUsq); | ||||
|  | ||||
|     for(int i=1;i<=M;i++){ | ||||
|       a[i] = U[i]/sumUsq; | ||||
|     } | ||||
|     g[0] = 1.0; | ||||
|     for(int m=1;m<=M;m++){ | ||||
|       g[m] = 0; | ||||
|       for(int i=0;i<=M-m;i++){ | ||||
| 	g[m]+= a[i]*a[m+i]; | ||||
|       } | ||||
|     } | ||||
|     for(int m=1;m<=M;m++){ | ||||
|       Coeffs[m]*=g[m]; | ||||
|     } | ||||
|   } | ||||
|   RealD approx(RealD x) // Convenience for plotting the approximation | ||||
|   { | ||||
|     RealD Tn; | ||||
|     RealD Tnm; | ||||
|     RealD Tnp; | ||||
|        | ||||
|     RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo)); | ||||
|        | ||||
|     RealD T0=1; | ||||
|     RealD T1=y; | ||||
|        | ||||
|     RealD sum; | ||||
|     sum = 0.5*Coeffs[0]*T0; | ||||
|     sum+= Coeffs[1]*T1; | ||||
|        | ||||
|     Tn =T1; | ||||
|     Tnm=T0; | ||||
|     for(int i=2;i<order;i++){ | ||||
|       Tnp=2*y*Tn-Tnm; | ||||
|       Tnm=Tn; | ||||
|       Tn =Tnp; | ||||
|       sum+= Tn*Coeffs[i]; | ||||
|     } | ||||
|     return sum; | ||||
|   }; | ||||
|  | ||||
|   RealD approxD(RealD x) | ||||
|   { | ||||
|     RealD Un; | ||||
|     RealD Unm; | ||||
|     RealD Unp; | ||||
|        | ||||
|     RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo)); | ||||
|        | ||||
|     RealD U0=1; | ||||
|     RealD U1=2*y; | ||||
|        | ||||
|     RealD sum; | ||||
|     sum = Coeffs[1]*U0; | ||||
|     sum+= Coeffs[2]*U1*2.0; | ||||
|        | ||||
|     Un =U1; | ||||
|     Unm=U0; | ||||
|     for(int i=2;i<order-1;i++){ | ||||
|       Unp=2*y*Un-Unm; | ||||
|       Unm=Un; | ||||
|       Un =Unp; | ||||
|       sum+= Un*Coeffs[i+1]*(i+1.0); | ||||
|     } | ||||
|     return sum/(0.5*(hi-lo)); | ||||
|   }; | ||||
|      | ||||
|   RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) { | ||||
|     RealD x = x0; | ||||
|     RealD eps; | ||||
|        | ||||
|     int i; | ||||
|     for (i=0;i<maxiter;i++) { | ||||
|       eps = approx(x) - z; | ||||
|       if (fabs(eps / z) < resid) | ||||
| 	return x; | ||||
|       x = x - eps / approxD(x); | ||||
|     } | ||||
|        | ||||
|     return std::numeric_limits<double>::quiet_NaN(); | ||||
|   } | ||||
|      | ||||
|   // Implement the required interface | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     GridBase *grid=in.Grid(); | ||||
|  | ||||
|     int vol=grid->gSites(); | ||||
|     typedef typename Field::vector_type vector_type; | ||||
|  | ||||
|     Field T0(grid); T0 = in;   | ||||
|     Field T1(grid);  | ||||
|     Field T2(grid); | ||||
|     Field y(grid); | ||||
|        | ||||
|     Field *Tnm = &T0; | ||||
|     Field *Tn  = &T1; | ||||
|     Field *Tnp = &T2; | ||||
|  | ||||
|     // Tn=T1 = (xscale M + mscale)in | ||||
|     RealD xscale = 2.0/(hi-lo); | ||||
|     RealD mscale = -(hi+lo)/(hi-lo); | ||||
|     Linop.HermOp(T0,y); | ||||
|     axpby(T1,xscale,mscale,y,in); | ||||
|  | ||||
|     // sum = .5 c[0] T0 + c[1] T1 | ||||
|     //    out = ()*T0 + Coeffs[1]*T1; | ||||
|     axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1); | ||||
|     for(int n=2;n<order;n++){ | ||||
|  | ||||
|       Linop.HermOp(*Tn,y); | ||||
|       axpby(y,xscale,mscale,y,(*Tn)); | ||||
|       axpby(*Tnp,2.0,-1.0,y,(*Tnm)); | ||||
|       if ( Coeffs[n] != 0.0) { | ||||
| 	axpy(out,Coeffs[n],*Tnp,out); | ||||
|       } | ||||
|  | ||||
|       // Cycle pointers to avoid copies | ||||
|       Field *swizzle = Tnm; | ||||
|       Tnm    =Tn; | ||||
|       Tn     =Tnp; | ||||
|       Tnp    =swizzle; | ||||
| 	   | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class ChebyshevLanczos : public Chebyshev<Field> { | ||||
| private: | ||||
|   std::vector<RealD> Coeffs; | ||||
|   int order; | ||||
|   RealD alpha; | ||||
|   RealD beta; | ||||
|   RealD mu; | ||||
|  | ||||
| public: | ||||
|   ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) : | ||||
|     alpha(_alpha), | ||||
|     beta(_beta), | ||||
|     mu(_mu) | ||||
|   { | ||||
|     order=_order; | ||||
|     Coeffs.resize(order); | ||||
|     for(int i=0;i<_order;i++){ | ||||
|       Coeffs[i] = 0.0; | ||||
|     } | ||||
|     Coeffs[order-1]=1.0; | ||||
|   }; | ||||
|  | ||||
|   void csv(std::ostream &out){ | ||||
|     for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) { | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f<<std::endl; | ||||
|     } | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   RealD approx(RealD xx) // Convenience for plotting the approximation | ||||
|   { | ||||
|     RealD Tn; | ||||
|     RealD Tnm; | ||||
|     RealD Tnp; | ||||
|     Real aa = alpha * alpha; | ||||
|     Real bb = beta  *  beta; | ||||
|        | ||||
|     RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb); | ||||
|  | ||||
|     RealD y= x; | ||||
|        | ||||
|     RealD T0=1; | ||||
|     RealD T1=y; | ||||
|        | ||||
|     RealD sum; | ||||
|     sum = 0.5*Coeffs[0]*T0; | ||||
|     sum+= Coeffs[1]*T1; | ||||
|        | ||||
|     Tn =T1; | ||||
|     Tnm=T0; | ||||
|     for(int i=2;i<order;i++){ | ||||
|       Tnp=2*y*Tn-Tnm; | ||||
|       Tnm=Tn; | ||||
|       Tn =Tnp; | ||||
|       sum+= Tn*Coeffs[i]; | ||||
|     } | ||||
|     return sum; | ||||
|   }; | ||||
|  | ||||
|   // shift_Multiply in Rudy's code | ||||
|   void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)  | ||||
|   { | ||||
|     GridBase *grid=in.Grid(); | ||||
|     Field tmp(grid); | ||||
|  | ||||
|     RealD aa= alpha*alpha; | ||||
|     RealD bb= beta * beta; | ||||
|  | ||||
|     Linop.HermOp(in,out); | ||||
|     out = out - mu*in; | ||||
|  | ||||
|     Linop.HermOp(out,tmp); | ||||
|     tmp = tmp - mu * out; | ||||
|  | ||||
|     out = (2.0/ (aa-bb) ) * tmp -  ((aa+bb)/(aa-bb))*in; | ||||
|   }; | ||||
|   // Implement the required interface | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     GridBase *grid=in.Grid(); | ||||
|  | ||||
|     int vol=grid->gSites(); | ||||
|  | ||||
|     Field T0(grid); T0 = in;   | ||||
|     Field T1(grid);  | ||||
|     Field T2(grid); | ||||
|     Field  y(grid); | ||||
|        | ||||
|     Field *Tnm = &T0; | ||||
|     Field *Tn  = &T1; | ||||
|     Field *Tnp = &T2; | ||||
|  | ||||
|     // Tn=T1 = (xscale M )*in | ||||
|     AminusMuSq(Linop,T0,T1); | ||||
|  | ||||
|     // sum = .5 c[0] T0 + c[1] T1 | ||||
|     out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1; | ||||
|     for(int n=2;n<order;n++){ | ||||
| 	 | ||||
|       AminusMuSq(Linop,*Tn,y); | ||||
|  | ||||
|       *Tnp=2.0*y-(*Tnm); | ||||
|  | ||||
|       out=out+Coeffs[n]* (*Tnp); | ||||
|  | ||||
|       // Cycle pointers to avoid copies | ||||
|       Field *swizzle = Tnm; | ||||
|       Tnm    =Tn; | ||||
|       Tn     =Tnp; | ||||
|       Tnp    =swizzle; | ||||
| 	   | ||||
|     } | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,152 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/approx/Forecast.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: David Murphy <dmurphy@phys.columbia.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
|  | ||||
| #ifndef INCLUDED_FORECAST_H | ||||
| #define INCLUDED_FORECAST_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Abstract base class. | ||||
| // Takes a matrix (Mat), a source (phi), and a vector of Fields (chi) | ||||
| // and returns a forecasted solution to the system D*psi = phi (psi). | ||||
| template<class Matrix, class Field> | ||||
| class Forecast | ||||
| { | ||||
| public: | ||||
|   virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0; | ||||
| }; | ||||
|  | ||||
| // Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012), | ||||
| // used to forecast solutions across poles of the EOFA heatbath. | ||||
| // | ||||
| // Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C) | ||||
| template<class Matrix, class Field> | ||||
| class ChronoForecast : public Forecast<Matrix,Field> | ||||
| { | ||||
| public: | ||||
|   Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns) | ||||
|   { | ||||
|     int degree = prev_solns.size(); | ||||
|     Field chi(phi); // forecasted solution | ||||
|  | ||||
|     // Trivial cases | ||||
|     if(degree == 0){ chi = Zero(); return chi; } | ||||
|     else if(degree == 1){ return prev_solns[0]; } | ||||
|  | ||||
|     //    RealD dot; | ||||
|     ComplexD xp; | ||||
|     Field r(phi); // residual | ||||
|     Field Mv(phi); | ||||
|     std::vector<Field> v(prev_solns); // orthonormalized previous solutions | ||||
|     std::vector<Field> MdagMv(degree,phi); | ||||
|  | ||||
|     // Array to hold the matrix elements | ||||
|     std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree)); | ||||
|  | ||||
|     // Solution and source vectors | ||||
|     std::vector<ComplexD> a(degree); | ||||
|     std::vector<ComplexD> b(degree); | ||||
|  | ||||
|     // Orthonormalize the vector basis | ||||
|     for(int i=0; i<degree; i++){ | ||||
|       v[i] *= 1.0/std::sqrt(norm2(v[i])); | ||||
|       for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; } | ||||
|     } | ||||
|  | ||||
|     // Perform sparse matrix multiplication and construct rhs | ||||
|     for(int i=0; i<degree; i++){ | ||||
|       b[i] = innerProduct(v[i],phi); | ||||
|       Mat.M(v[i],Mv); | ||||
|       Mat.Mdag(Mv,MdagMv[i]); | ||||
|       G[i][i] = innerProduct(v[i],MdagMv[i]); | ||||
|     } | ||||
|  | ||||
|     // Construct the matrix | ||||
|     for(int j=0; j<degree; j++){ | ||||
|       for(int k=j+1; k<degree; k++){ | ||||
| 	G[j][k] = innerProduct(v[j],MdagMv[k]); | ||||
| 	G[k][j] = conjugate(G[j][k]); | ||||
|       }} | ||||
|  | ||||
|     // Gauss-Jordan elimination with partial pivoting | ||||
|     for(int i=0; i<degree; i++){ | ||||
|  | ||||
|       // Perform partial pivoting | ||||
|       int k = i; | ||||
|       for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } } | ||||
|       if(k != i){ | ||||
| 	xp = b[k]; | ||||
| 	b[k] = b[i]; | ||||
| 	b[i] = xp; | ||||
| 	for(int j=0; j<degree; j++){ | ||||
| 	  xp = G[k][j]; | ||||
| 	  G[k][j] = G[i][j]; | ||||
| 	  G[i][j] = xp; | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       // Convert matrix to upper triangular form | ||||
|       for(int j=i+1; j<degree; j++){ | ||||
| 	xp = G[j][i]/G[i][i]; | ||||
| 	b[j] -= xp * b[i]; | ||||
| 	for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; } | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     // Use Gaussian elimination to solve equations and calculate initial guess | ||||
|     chi = Zero(); | ||||
|     r = phi; | ||||
|     for(int i=degree-1; i>=0; i--){ | ||||
|       a[i] = 0.0; | ||||
|       for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; } | ||||
|       a[i] = (b[i]-a[i])/G[i][i]; | ||||
|       chi += a[i]*v[i]; | ||||
|       r -= a[i]*MdagMv[i]; | ||||
|     } | ||||
|  | ||||
|     RealD true_r(0.0); | ||||
|     ComplexD tmp; | ||||
|     for(int i=0; i<degree; i++){ | ||||
|       tmp = -b[i]; | ||||
|       for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; } | ||||
|       tmp = conjugate(tmp)*tmp; | ||||
|       true_r += std::sqrt(tmp.real()); | ||||
|     } | ||||
|  | ||||
|     RealD error = std::sqrt(norm2(r)/norm2(phi)); | ||||
|     std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl; | ||||
|  | ||||
|     return chi; | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,129 +0,0 @@ | ||||
| #ifndef GRID_JACOBIPOLYNOMIAL_H | ||||
| #define GRID_JACOBIPOLYNOMIAL_H | ||||
|  | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| class JacobiPolynomial : public OperatorFunction<Field> { | ||||
|  private: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   int order; | ||||
|   RealD hi; | ||||
|   RealD lo; | ||||
|   RealD alpha; | ||||
|   RealD beta; | ||||
|  | ||||
|  public: | ||||
|   void csv(std::ostream &out){ | ||||
|     csv(out,lo,hi); | ||||
|   } | ||||
|   void csv(std::ostream &out,RealD llo,RealD hhi){ | ||||
|     RealD diff = hhi-llo; | ||||
|     RealD delta = diff*1.0e-5; | ||||
|     for (RealD x=llo-delta; x<=hhi; x+=delta) { | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f <<std::endl; | ||||
|     } | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   JacobiPolynomial(){}; | ||||
|   JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta) | ||||
|   { | ||||
|       lo=_lo; | ||||
|       hi=_hi; | ||||
|       alpha=_alpha; | ||||
|       beta=_beta; | ||||
|       order=_order; | ||||
|   }; | ||||
|  | ||||
|   RealD approx(RealD x) // Convenience for plotting the approximation                                                        | ||||
|   { | ||||
|     RealD Tn; | ||||
|     RealD Tnm; | ||||
|     RealD Tnp; | ||||
|  | ||||
|     RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo)); | ||||
|  | ||||
|     RealD T0=1.0; | ||||
|     RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y; | ||||
|  | ||||
|     Tn =T1; | ||||
|     Tnm=T0; | ||||
|     for(int n=2;n<=order;n++){ | ||||
|       RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta); | ||||
|       RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta); | ||||
|       RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta); | ||||
|       RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta); | ||||
|       Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp; | ||||
|       Tnm=Tn; | ||||
|       Tn =Tnp; | ||||
|     } | ||||
|     return Tnp; | ||||
|   }; | ||||
|  | ||||
|   // Implement the required interface                                                                                        | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|     GridBase *grid=in.Grid(); | ||||
|  | ||||
|     int vol=grid->gSites(); | ||||
|  | ||||
|     Field T0(grid); | ||||
|     Field T1(grid); | ||||
|     Field T2(grid); | ||||
|     Field y(grid); | ||||
|  | ||||
|  | ||||
|     Field *Tnm = &T0; | ||||
|     Field *Tn  = &T1; | ||||
|     Field *Tnp = &T2; | ||||
|  | ||||
|     //    RealD T0=1.0;                                                                                                      | ||||
|     T0=in; | ||||
|  | ||||
|     //    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));                                                                            | ||||
|     //           = x * 2/(hi-lo) - (hi+lo)/(hi-lo)                                                                           | ||||
|     Linop.HermOp(T0,y); | ||||
|     RealD xscale = 2.0/(hi-lo); | ||||
|     RealD mscale = -(hi+lo)/(hi-lo); | ||||
|     Linop.HermOp(T0,y); | ||||
|     y=y*xscale+in*mscale; | ||||
|  | ||||
|     // RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y; | ||||
|     RealD halfAmB  = (alpha-beta)*0.5; | ||||
|     RealD halfApBp2= (alpha+beta+2.0)*0.5; | ||||
|     T1 = halfAmB * in + halfApBp2*y; | ||||
|  | ||||
|     for(int n=2;n<=order;n++){ | ||||
|  | ||||
|       Linop.HermOp(*Tn,y); | ||||
|       y=xscale*y+mscale*(*Tn); | ||||
|  | ||||
|       RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta); | ||||
|       RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta); | ||||
|       RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta); | ||||
|       RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta); | ||||
|  | ||||
|       //      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;                                                              | ||||
|       cny=cny/cnp; | ||||
|       cn1=cn1/cnp; | ||||
|       cn1=cn1/cnp; | ||||
|       cnm=cnm/cnp; | ||||
|  | ||||
|       *Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm); | ||||
|  | ||||
|       // Cycle pointers to avoid copies                                                                                      | ||||
|       Field *swizzle = Tnm; | ||||
|       Tnm    =Tn; | ||||
|       Tn     =Tnp; | ||||
|       Tnp    =swizzle; | ||||
|     } | ||||
|     out=*Tnp; | ||||
|  | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,473 +0,0 @@ | ||||
| #include<math.h> | ||||
| #include<stdio.h> | ||||
| #include<stdlib.h> | ||||
| #include<string> | ||||
| #include<iostream> | ||||
| #include<iomanip> | ||||
| #include<cassert> | ||||
|  | ||||
| #include<Grid/algorithms/approx/RemezGeneral.h> | ||||
|  | ||||
|  | ||||
| // Constructor | ||||
| AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision, | ||||
| 				 bigfloat (*f)(bigfloat x, void *data), void *data): f(f),  | ||||
| 										     data(data),  | ||||
| 										     prec(precision), | ||||
| 										     apstrt(lower), apend(upper), apwidt(upper - lower), | ||||
| 										     n(0), d(0), pow_n(0), pow_d(0) | ||||
| { | ||||
|   bigfloat::setDefaultPrecision(prec); | ||||
|  | ||||
|   std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n"; | ||||
|   std::cout<<"Precision of arithmetic is "<<precision<<std::endl; | ||||
| } | ||||
|  | ||||
| //Determine the properties of the numerator and denominator polynomials | ||||
| void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){ | ||||
|   pow_n = num_degree; | ||||
|   pow_d = den_degree; | ||||
|  | ||||
|   if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0); | ||||
|  | ||||
|   if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0); | ||||
|  | ||||
|   num_type = num_type_in; | ||||
|   den_type = den_type_in; | ||||
|  | ||||
|   num_pows.resize(pow_n+1); | ||||
|   den_pows.resize(pow_d+1); | ||||
|  | ||||
|   int n_in = 0; | ||||
|   bool odd = num_type == PolyType::Full || num_type == PolyType::Odd; | ||||
|   bool even = num_type == PolyType::Full || num_type == PolyType::Even; | ||||
|   for(int i=0;i<=pow_n;i++){ | ||||
|     num_pows[i] = -1; | ||||
|     if(i % 2 == 0 && even) num_pows[i] = n_in++; | ||||
|     if(i % 2 == 1 && odd) num_pows[i] = n_in++; | ||||
|   } | ||||
|  | ||||
|   std::cout << n_in << " terms in numerator" << std::endl; | ||||
|   --n_in; //power is 1 less than the number of terms, eg  pow=1   a x^1  + b x^0 | ||||
|  | ||||
|   int d_in = 0; | ||||
|   odd = den_type == PolyType::Full || den_type == PolyType::Odd; | ||||
|   even = den_type == PolyType::Full || den_type == PolyType::Even; | ||||
|   for(int i=0;i<=pow_d;i++){ | ||||
|     den_pows[i] = -1; | ||||
|     if(i % 2 == 0 && even) den_pows[i] = d_in++; | ||||
|     if(i % 2 == 1 && odd) den_pows[i] = d_in++; | ||||
|   } | ||||
|  | ||||
|   std::cout << d_in << " terms in denominator" << std::endl; | ||||
|   --d_in; | ||||
|  | ||||
|   n = n_in; | ||||
|   d = d_in; | ||||
| } | ||||
|  | ||||
| //Setup algorithm | ||||
| void AlgRemezGeneral::reinitializeAlgorithm(){ | ||||
|   spread = 1.0e37; | ||||
|   iter = 0; | ||||
|  | ||||
|   neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1 | ||||
|  | ||||
|   param.resize(neq); | ||||
|   yy.resize(neq+1); | ||||
|  | ||||
|   //Initialize linear equation temporaries | ||||
|   A.resize(neq*neq); | ||||
|   B.resize(neq); | ||||
|   IPS.resize(neq); | ||||
|  | ||||
|   //Initialize maximum and minimum errors | ||||
|   xx.resize(neq+2); | ||||
|   mm.resize(neq+1); | ||||
|   initialGuess(); | ||||
|  | ||||
|   //Initialize search steps | ||||
|   step.resize(neq+1); | ||||
|   stpini(); | ||||
| } | ||||
|  | ||||
| double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,  | ||||
| 				       const PolyType num_type_in, const PolyType den_type_in,  | ||||
| 				       const double _tolerance, const int report_freq){ | ||||
|   //Setup the properties of the polynomial | ||||
|   setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in); | ||||
|  | ||||
|   //Setup the algorithm | ||||
|   reinitializeAlgorithm(); | ||||
|  | ||||
|   bigfloat tolerance = _tolerance; | ||||
|  | ||||
|   //Iterate until convergance | ||||
|   while (spread > tolerance) {  | ||||
|     if (iter++ % report_freq==0) | ||||
|       std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;  | ||||
|  | ||||
|     equations(); | ||||
|     if (delta < tolerance) { | ||||
|       std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n"; | ||||
|       assert(0); | ||||
|     };     | ||||
|     assert( delta>= tolerance ); | ||||
|  | ||||
|     search(); | ||||
|   } | ||||
|  | ||||
|   int sign; | ||||
|   double error = (double)getErr(mm[0],&sign); | ||||
|   std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl; | ||||
|  | ||||
|   // Return the maximum error in the approximation | ||||
|   return error; | ||||
| } | ||||
|  | ||||
|  | ||||
| // Initial values of maximal and minimal errors | ||||
| void AlgRemezGeneral::initialGuess(){ | ||||
|   // Supply initial guesses for solution points | ||||
|   long ncheb = neq;			// Degree of Chebyshev error estimate | ||||
|  | ||||
|   // Find ncheb+1 extrema of Chebyshev polynomial | ||||
|   bigfloat a = ncheb; | ||||
|   bigfloat r; | ||||
|  | ||||
|   mm[0] = apstrt; | ||||
|   for (long i = 1; i < ncheb; i++) { | ||||
|     r = 0.5 * (1 - cos((M_PI * i)/(double) a)); | ||||
|     //r *= sqrt_bf(r); | ||||
|     r = (exp((double)r)-1.0)/(exp(1.0)-1.0); | ||||
|     mm[i] = apstrt + r * apwidt; | ||||
|   } | ||||
|   mm[ncheb] = apend; | ||||
|  | ||||
|   a = 2.0 * ncheb; | ||||
|   for (long i = 0; i <= ncheb; i++) { | ||||
|     r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a)); | ||||
|     //r *= sqrt_bf(r); // Squeeze to low end of interval | ||||
|     r = (exp((double)r)-1.0)/(exp(1.0)-1.0); | ||||
|     xx[i] = apstrt + r * apwidt; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Initialise step sizes | ||||
| void AlgRemezGeneral::stpini(){ | ||||
|   xx[neq+1] = apend; | ||||
|   delta = 0.25; | ||||
|   step[0] = xx[0] - apstrt; | ||||
|   for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1]; | ||||
|   step[neq] = step[neq-1]; | ||||
| } | ||||
|  | ||||
| // Search for error maxima and minima | ||||
| void AlgRemezGeneral::search(){ | ||||
|   bigfloat a, q, xm, ym, xn, yn, xx1; | ||||
|   int emsign, ensign, steps; | ||||
|  | ||||
|   int meq = neq + 1; | ||||
|  | ||||
|   bigfloat eclose = 1.0e30; | ||||
|   bigfloat farther = 0l; | ||||
|  | ||||
|   bigfloat xx0 = apstrt; | ||||
|  | ||||
|   for (int i = 0; i < meq; i++) { | ||||
|     steps = 0; | ||||
|     xx1 = xx[i]; // Next zero | ||||
|     if (i == meq-1) xx1 = apend; | ||||
|     xm = mm[i]; | ||||
|     ym = getErr(xm,&emsign); | ||||
|     q = step[i]; | ||||
|     xn = xm + q; | ||||
|     if (xn < xx0 || xn >= xx1) {	// Cannot skip over adjacent boundaries | ||||
|       q = -q; | ||||
|       xn = xm; | ||||
|       yn = ym; | ||||
|       ensign = emsign; | ||||
|     } else { | ||||
|       yn = getErr(xn,&ensign); | ||||
|       if (yn < ym) { | ||||
| 	q = -q; | ||||
| 	xn = xm; | ||||
| 	yn = ym; | ||||
| 	ensign = emsign; | ||||
|       } | ||||
|     } | ||||
|    | ||||
|     while(yn >= ym) {		// March until error becomes smaller. | ||||
|       if (++steps > 10) | ||||
|       	break; | ||||
|        | ||||
|       ym = yn; | ||||
|       xm = xn; | ||||
|       emsign = ensign; | ||||
|       a = xm + q; | ||||
|       if (a == xm || a <= xx0 || a >= xx1) | ||||
| 	break;// Must not skip over the zeros either side.       | ||||
|  | ||||
|       xn = a; | ||||
|       yn = getErr(xn,&ensign); | ||||
|     } | ||||
|  | ||||
|     mm[i] = xm;			// Position of maximum | ||||
|     yy[i] = ym;			// Value of maximum | ||||
|  | ||||
|     if (eclose > ym) eclose = ym; | ||||
|     if (farther < ym) farther = ym; | ||||
|  | ||||
|     xx0 = xx1; // Walk to next zero. | ||||
|   } // end of search loop | ||||
|  | ||||
|   q = (farther - eclose);	// Decrease step size if error spread increased | ||||
|  | ||||
|   if (eclose != 0.0) q /= eclose; // Relative error spread | ||||
|  | ||||
|   if (q >= spread) | ||||
|     delta *= 0.5; // Spread is increasing; decrease step size | ||||
|    | ||||
|   spread = q; | ||||
|  | ||||
|   for (int i = 0; i < neq; i++) { | ||||
|     q = yy[i+1]; | ||||
|     if (q != 0.0) q = yy[i] / q  - (bigfloat)1l; | ||||
|     else q = 0.0625; | ||||
|     if (q > (bigfloat)0.25) q = 0.25; | ||||
|     q *= mm[i+1] - mm[i]; | ||||
|     step[i] = q * delta; | ||||
|   } | ||||
|   step[neq] = step[neq-1]; | ||||
|    | ||||
|   for (int i = 0; i < neq; i++) {	// Insert new locations for the zeros. | ||||
|     xm = xx[i] - step[i]; | ||||
|  | ||||
|     if (xm <= apstrt) | ||||
|       continue; | ||||
|  | ||||
|     if (xm >= apend) | ||||
|       continue; | ||||
|  | ||||
|     if (xm <= mm[i]) | ||||
|       xm = (bigfloat)0.5 * (mm[i] + xx[i]);     | ||||
|  | ||||
|     if (xm >= mm[i+1]) | ||||
|       xm = (bigfloat)0.5 * (mm[i+1] + xx[i]); | ||||
|      | ||||
|     xx[i] = xm; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Solve the equations | ||||
| void AlgRemezGeneral::equations(){ | ||||
|   bigfloat x, y, z; | ||||
|   bigfloat *aa; | ||||
|    | ||||
|   for (int i = 0; i < neq; i++) {	// set up the equations for solution by simq() | ||||
|     int ip = neq * i;		// offset to 1st element of this row of matrix | ||||
|     x = xx[i];			// the guess for this row | ||||
|     y = func(x);		// right-hand-side vector | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     aa = A.data()+ip; | ||||
|     int t = 0; | ||||
|     for (int j = 0; j <= pow_n; j++) { | ||||
|       if(num_pows[j] != -1){ *aa++ = z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == n+1); | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     t = 0; | ||||
|     for (int j = 0; j < pow_d; j++) { | ||||
|       if(den_pows[j] != -1){ *aa++ = -y * z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == d); | ||||
|  | ||||
|     B[i] = y * z;		// Right hand side vector | ||||
|   } | ||||
|  | ||||
|   // Solve the simultaneous linear equations. | ||||
|   if (simq()){ | ||||
|     std::cout<<"simq failed\n"; | ||||
|     exit(0); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| // Evaluate the rational form P(x)/Q(x) using coefficients | ||||
| // from the solution vector param | ||||
| bigfloat AlgRemezGeneral::approx(const bigfloat x) const{ | ||||
|   // Work backwards toward the constant term. | ||||
|   int c = n; | ||||
|   bigfloat yn = param[c--];		// Highest order numerator coefficient | ||||
|   for (int i = pow_n-1; i >= 0; i--) yn = x * yn  +  (num_pows[i] != -1 ? param[c--] : bigfloat(0l));   | ||||
|  | ||||
|   c = n+d; | ||||
|   bigfloat yd = 1l; //Highest degree coefficient is 1.0 | ||||
|   for (int i = pow_d-1; i >= 0; i--) yd = x * yd  +  (den_pows[i] != -1 ? param[c--] : bigfloat(0l));  | ||||
|  | ||||
|   return(yn/yd); | ||||
| } | ||||
|  | ||||
| // Compute size and sign of the approximation error at x | ||||
| bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{ | ||||
|   bigfloat f = func(x); | ||||
|   bigfloat e = approx(x) - f; | ||||
|   if (f != 0) e /= f; | ||||
|   if (e < (bigfloat)0.0) { | ||||
|     *sign = -1; | ||||
|     e = -e; | ||||
|   } | ||||
|   else *sign = 1; | ||||
|    | ||||
|   return(e); | ||||
| } | ||||
|  | ||||
| // Solve the system AX=B | ||||
| int AlgRemezGeneral::simq(){ | ||||
|  | ||||
|   int ip, ipj, ipk, ipn; | ||||
|   int idxpiv; | ||||
|   int kp, kp1, kpk, kpn; | ||||
|   int nip, nkp; | ||||
|   bigfloat em, q, rownrm, big, size, pivot, sum; | ||||
|   bigfloat *aa; | ||||
|   bigfloat *X = param.data(); | ||||
|  | ||||
|   int n = neq; | ||||
|   int nm1 = n - 1; | ||||
|   // Initialize IPS and X | ||||
|    | ||||
|   int ij = 0; | ||||
|   for (int i = 0; i < n; i++) { | ||||
|     IPS[i] = i; | ||||
|     rownrm = 0.0; | ||||
|     for(int j = 0; j < n; j++) { | ||||
|       q = abs_bf(A[ij]); | ||||
|       if(rownrm < q) rownrm = q; | ||||
|       ++ij; | ||||
|     } | ||||
|     if (rownrm == (bigfloat)0l) { | ||||
|       std::cout<<"simq rownrm=0\n"; | ||||
|       return(1); | ||||
|     } | ||||
|     X[i] = (bigfloat)1.0 / rownrm; | ||||
|   } | ||||
|    | ||||
|   for (int k = 0; k < nm1; k++) { | ||||
|     big = 0.0; | ||||
|     idxpiv = 0; | ||||
|      | ||||
|     for (int i = k; i < n; i++) { | ||||
|       ip = IPS[i]; | ||||
|       ipk = n*ip + k; | ||||
|       size = abs_bf(A[ipk]) * X[ip]; | ||||
|       if (size > big) { | ||||
| 	big = size; | ||||
| 	idxpiv = i; | ||||
|       } | ||||
|     } | ||||
|      | ||||
|     if (big == (bigfloat)0l) { | ||||
|       std::cout<<"simq big=0\n"; | ||||
|       return(2); | ||||
|     } | ||||
|     if (idxpiv != k) { | ||||
|       int j = IPS[k]; | ||||
|       IPS[k] = IPS[idxpiv]; | ||||
|       IPS[idxpiv] = j; | ||||
|     } | ||||
|     kp = IPS[k]; | ||||
|     kpk = n*kp + k; | ||||
|     pivot = A[kpk]; | ||||
|     kp1 = k+1; | ||||
|     for (int i = kp1; i < n; i++) { | ||||
|       ip = IPS[i]; | ||||
|       ipk = n*ip + k; | ||||
|       em = -A[ipk] / pivot; | ||||
|       A[ipk] = -em; | ||||
|       nip = n*ip; | ||||
|       nkp = n*kp; | ||||
|       aa = A.data()+nkp+kp1; | ||||
|       for (int j = kp1; j < n; j++) { | ||||
| 	ipj = nip + j; | ||||
| 	A[ipj] = A[ipj] + em * *aa++; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   kpn = n * IPS[n-1] + n - 1;	// last element of IPS[n] th row | ||||
|   if (A[kpn] == (bigfloat)0l) { | ||||
|     std::cout<<"simq A[kpn]=0\n"; | ||||
|     return(3); | ||||
|   } | ||||
|  | ||||
|    | ||||
|   ip = IPS[0]; | ||||
|   X[0] = B[ip]; | ||||
|   for (int i = 1; i < n; i++) { | ||||
|     ip = IPS[i]; | ||||
|     ipj = n * ip; | ||||
|     sum = 0.0; | ||||
|     for (int j = 0; j < i; j++) { | ||||
|       sum += A[ipj] * X[j]; | ||||
|       ++ipj; | ||||
|     } | ||||
|     X[i] = B[ip] - sum; | ||||
|   } | ||||
|    | ||||
|   ipn = n * IPS[n-1] + n - 1; | ||||
|   X[n-1] = X[n-1] / A[ipn]; | ||||
|    | ||||
|   for (int iback = 1; iback < n; iback++) { | ||||
|     //i goes (n-1),...,1 | ||||
|     int i = nm1 - iback; | ||||
|     ip = IPS[i]; | ||||
|     nip = n*ip; | ||||
|     sum = 0.0; | ||||
|     aa = A.data()+nip+i+1; | ||||
|     for (int j= i + 1; j < n; j++)  | ||||
|       sum += *aa++ * X[j]; | ||||
|     X[i] = (X[i] - sum) / A[nip+i]; | ||||
|   } | ||||
|    | ||||
|   return(0); | ||||
| } | ||||
|  | ||||
| void AlgRemezGeneral::csv(std::ostream & os) const{ | ||||
|   os << "Numerator" << std::endl; | ||||
|   for(int i=0;i<=pow_n;i++){ | ||||
|     os << getCoeffNum(i) << "*x^" << i; | ||||
|     if(i!=pow_n) os << " + "; | ||||
|   } | ||||
|   os << std::endl; | ||||
|  | ||||
|   os << "Denominator" << std::endl; | ||||
|   for(int i=0;i<=pow_d;i++){ | ||||
|     os << getCoeffDen(i) << "*x^" << i; | ||||
|     if(i!=pow_d) os << " + "; | ||||
|   } | ||||
|   os << std::endl; | ||||
|  | ||||
|   //For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc | ||||
|   int sign; | ||||
|   os << "Errors at maxima: coordinate, error, (sign)" << std::endl; | ||||
|   for(int i=0;i<neq+1;i++){  | ||||
|     os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl; | ||||
|   } | ||||
|  | ||||
|   os << "Scan over range:" << std::endl; | ||||
|   int npt = 60; | ||||
|   bigfloat dlt = (apend - apstrt)/bigfloat(npt-1); | ||||
|  | ||||
|   for (bigfloat x=apstrt; x<=apend; x = x + dlt) { | ||||
|     double f = evaluateFunc(x); | ||||
|     double r = evaluateApprox(x); | ||||
|     os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl; | ||||
|   } | ||||
|   return; | ||||
| } | ||||
| @@ -1,170 +0,0 @@ | ||||
| /* | ||||
|   C.Kelly Jan 2020 based on implementation by M. Clark May 2005 | ||||
|  | ||||
|   AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial  | ||||
|   It includes optional restriction to odd/even polynomials for the numerator and/or denominator | ||||
| */ | ||||
|  | ||||
| #ifndef INCLUDED_ALG_REMEZ_GENERAL_H | ||||
| #define INCLUDED_ALG_REMEZ_GENERAL_H | ||||
|  | ||||
| #include <stddef.h> | ||||
| #include <Grid/GridStd.h> | ||||
|  | ||||
| #ifdef HAVE_LIBGMP | ||||
| #include "bigfloat.h" | ||||
| #else | ||||
| #include "bigfloat_double.h" | ||||
| #endif | ||||
|  | ||||
|  | ||||
| class AlgRemezGeneral{ | ||||
|  public: | ||||
|   enum PolyType { Even, Odd, Full }; | ||||
|  | ||||
|  private: | ||||
|  | ||||
|   // In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer | ||||
|   bigfloat (*f)(bigfloat x, void *data); | ||||
|   void *data; | ||||
|  | ||||
|   // The approximation parameters | ||||
|   std::vector<bigfloat> param; | ||||
|   bigfloat norm; | ||||
|  | ||||
|   // The number of non-zero terms in the numerator and denominator | ||||
|   int n, d; | ||||
|   // The numerator and denominator degree (i.e.  the largest power) | ||||
|   int pow_n, pow_d; | ||||
|    | ||||
|   // Specify if the numerator and/or denominator are odd/even polynomials | ||||
|   PolyType num_type; | ||||
|   PolyType den_type; | ||||
|   std::vector<int> num_pows; //contains the mapping, with -1 if not present | ||||
|   std::vector<int> den_pows; | ||||
|  | ||||
|   // The bounds of the approximation | ||||
|   bigfloat apstrt, apwidt, apend; | ||||
|  | ||||
|   // Variables used to calculate the approximation | ||||
|   int nd1, iter; | ||||
|   std::vector<bigfloat> xx; | ||||
|   std::vector<bigfloat> mm; | ||||
|   std::vector<bigfloat> step; | ||||
|  | ||||
|   bigfloat delta, spread; | ||||
|    | ||||
|   // Variables used in search | ||||
|   std::vector<bigfloat> yy; | ||||
|  | ||||
|   // Variables used in solving linear equations | ||||
|   std::vector<bigfloat> A; | ||||
|   std::vector<bigfloat> B; | ||||
|   std::vector<int> IPS; | ||||
|  | ||||
|   // The number of equations we must solve at each iteration (n+d+1) | ||||
|   int neq; | ||||
|  | ||||
|   // The precision of the GNU MP library | ||||
|   long prec; | ||||
|  | ||||
|   // Initialize member variables associated with the polynomial's properties | ||||
|   void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in); | ||||
|  | ||||
|   // Initial values of maximal and minmal errors | ||||
|   void initialGuess(); | ||||
|  | ||||
|   // Initialise step sizes | ||||
|   void stpini(); | ||||
|  | ||||
|   // Initialize the algorithm | ||||
|   void reinitializeAlgorithm(); | ||||
|  | ||||
|   // Solve the equations | ||||
|   void equations(); | ||||
|  | ||||
|   // Search for error maxima and minima | ||||
|   void search();  | ||||
|  | ||||
|   // Calculate function required for the approximation | ||||
|   inline bigfloat func(bigfloat x) const{ | ||||
|     return f(x, data); | ||||
|   } | ||||
|  | ||||
|   // Compute size and sign of the approximation error at x | ||||
|   bigfloat getErr(bigfloat x, int *sign) const; | ||||
|  | ||||
|   // Solve the system AX=B   where X = param | ||||
|   int simq(); | ||||
|  | ||||
|   // Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param | ||||
|   bigfloat approx(bigfloat x) const; | ||||
|  | ||||
|  public: | ||||
|    | ||||
|   AlgRemezGeneral(double lower, double upper, long prec, | ||||
| 		  bigfloat (*f)(bigfloat x, void *data), void *data); | ||||
|  | ||||
|   inline int getDegree(void) const{  | ||||
|     assert(n==d); | ||||
|     return n; | ||||
|   } | ||||
|   // Reset the bounds of the approximation | ||||
|   inline void setBounds(double lower, double upper) { | ||||
|     apstrt = lower; | ||||
|     apend = upper; | ||||
|     apwidt = apend - apstrt; | ||||
|   } | ||||
|  | ||||
|   // Get the bounds of the approximation | ||||
|   inline void getBounds(double &lower, double &upper) const{  | ||||
|     lower=(double)apstrt; | ||||
|     upper=(double)apend; | ||||
|   } | ||||
|  | ||||
|   // Run the algorithm to generate the rational approximation | ||||
|   double generateApprox(int num_degree, int den_degree,  | ||||
| 			PolyType num_type, PolyType den_type, | ||||
| 			const double tolerance = 1e-15, const int report_freq = 1000); | ||||
|    | ||||
|   inline double generateApprox(int num_degree, int den_degree,  | ||||
| 			       const double tolerance = 1e-15, const int report_freq = 1000){ | ||||
|     return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq); | ||||
|   } | ||||
|    | ||||
|   // Evaluate the rational form P(x)/Q(x) using coefficients from the | ||||
|   // solution vector param | ||||
|   inline double evaluateApprox(double x) const{ | ||||
|     return (double)approx((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param | ||||
|   inline double evaluateInverseApprox(double x) const{ | ||||
|     return 1.0/(double)approx((bigfloat)x); | ||||
|   }   | ||||
|  | ||||
|   // Calculate function required for the approximation | ||||
|   inline double evaluateFunc(double x) const{ | ||||
|     return (double)func((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Calculate inverse function required for the approximation | ||||
|   inline double evaluateInverseFunc(double x) const{ | ||||
|     return 1.0/(double)func((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Dump csv of function, approx and error | ||||
|   void csv(std::ostream &os = std::cout) const; | ||||
|  | ||||
|   // Get the coefficient of the term x^i in the numerator | ||||
|   inline double getCoeffNum(const int i) const{     | ||||
|     return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]); | ||||
|   } | ||||
|   // Get the coefficient of the term x^i in the denominator | ||||
|   inline double getCoeffDen(const int i) const{  | ||||
|     if(i == pow_d) return 1.0; | ||||
|     else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);  | ||||
|   } | ||||
| }; | ||||
|  | ||||
| #endif | ||||
| @@ -1,183 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/ZMobius.cc | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
|  | ||||
| //Compute the tanh approximation | ||||
| inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){ | ||||
|   int Ls = w.size(); | ||||
|  | ||||
|   ComplexD fxp = 1., fmp = 1.; | ||||
|   for(int i=0;i<Ls;i++){ | ||||
|     fxp = fxp * ( w[i] + x ); | ||||
|     fmp = fmp * ( w[i] - x ); | ||||
|   } | ||||
|   return ((fxp - fmp)/(fxp + fmp)).real(); | ||||
| } | ||||
| inline double epsilonMobius(const double x, const std::vector<RealD> &w){ | ||||
|   int Ls = w.size(); | ||||
|  | ||||
|   double fxp = 1., fmp = 1.; | ||||
|   for(int i=0;i<Ls;i++){ | ||||
|     fxp = fxp * ( w[i] + x ); | ||||
|     fmp = fmp * ( w[i] - x ); | ||||
|   } | ||||
|   return (fxp - fmp)/(fxp + fmp); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| //Compute the tanh approximation in a form suitable for the Remez | ||||
| bigfloat epsilonMobius(bigfloat x, void* data){ | ||||
|   const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data ); | ||||
|   bigfloat fxp(1.0); | ||||
|   bigfloat fmp(1.0); | ||||
|  | ||||
|   for(int i=0;i<omega.size();i++){ | ||||
|     fxp = fxp * ( bigfloat(omega[i]) + x); | ||||
|     fmp = fmp * ( bigfloat(omega[i]) - x); | ||||
|   } | ||||
|   return (fxp - fmp)/(fxp + fmp); | ||||
| } | ||||
|  | ||||
| //Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound | ||||
| //Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   assert(omega_in.size() == Ls_in); | ||||
|   omega_out.resize(Ls_out); | ||||
|  | ||||
|   //Use the Remez algorithm to generate the appropriate rational polynomial | ||||
|   //For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)   | ||||
|   AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);  | ||||
|   remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100); | ||||
|   remez.csv(std::cout); | ||||
|  | ||||
|   //The rational approximation has the form  [ f(x) - f(-x) ] / [ f(x) + f(-x) ]  where  f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x ) | ||||
|   //cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7  pg 102 | ||||
|   //omega_i are therefore the negative of the complex roots of f(x) | ||||
|  | ||||
|   //We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial | ||||
|   // \rho(\lambda) = det( A - \lambda I )    where I is the unit matrix | ||||
|   //The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n   is the companion matrix  | ||||
|   // A = | 0    1   0    0 0 .... 0 | | ||||
|   //     | 0    0   1    0 0 .... 0 | | ||||
|   //     | :    :   :    : :      : | | ||||
|   //     | 0    0   0    0 0      1 | ||||
|   //     | -a0 -a1 -a2  ...  ... -an| | ||||
|  | ||||
|  | ||||
|   //Note the Remez defines the largest power to have unit coefficient | ||||
|   std::vector<RealD> coeffs(Ls_out+1); | ||||
|   for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers | ||||
|   for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers | ||||
|  | ||||
|   std::vector<std::complex<RealD> > roots(Ls_out); | ||||
|  | ||||
|   //Form the companion matrix | ||||
|   Eigen::MatrixXd compn(Ls_out,Ls_out); | ||||
|   for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.; | ||||
|   compn(Ls_out - 1, 0) = -coeffs[0]; | ||||
|    | ||||
|   for(int j=1;j<Ls_out;j++){ | ||||
|     for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.; | ||||
|     compn(Ls_out - 1, j) = -coeffs[j]; | ||||
|   } | ||||
|  | ||||
|   //Eigensolve | ||||
|   Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false); | ||||
|  | ||||
|   const auto & ev = slv.eigenvalues(); | ||||
|   for(int i=0;i<Ls_out;i++) | ||||
|     omega_out[i] = -ev(i); | ||||
|  | ||||
|   //Sort ascending (smallest at start of vector!) | ||||
|   std::sort(omega_out.begin(), omega_out.end(),  | ||||
| 	    [&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); }); | ||||
|  | ||||
|   //McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension | ||||
|   std::vector<ComplexD> omega_tmp = omega_out; | ||||
|   int s_low=0, s_high=Ls_out-1, ss=0; | ||||
|   for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega | ||||
|     int s_to; | ||||
|     if(ss % 2 == 0){ | ||||
|       s_to = s_low++; | ||||
|     }else{ | ||||
|       s_to = s_high--; | ||||
|     } | ||||
|     omega_out[s_to] = omega_tmp[s_from]; | ||||
|     ++ss; | ||||
|   } | ||||
|    | ||||
|   std::cout << "Resulting omega_i:" << std::endl;   | ||||
|   for(int i=0;i<Ls_out;i++) | ||||
|     std::cout << omega_out[i] << std::endl; | ||||
|  | ||||
|   std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl; | ||||
|   std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n"; | ||||
|    | ||||
|   int npt = 60; | ||||
|   double dlt = lambda_bound/double(npt-1); | ||||
|  | ||||
|   for (int i =0; i<npt; i++){ | ||||
|     double x = i*dlt; | ||||
|     double r = remez.evaluateApprox(x); | ||||
|     double p = epsilonMobius(x, omega_out); | ||||
|     double e = epsilonMobius(x, omega_in); | ||||
|  | ||||
|     std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl; | ||||
|   } | ||||
|  | ||||
| } | ||||
|    | ||||
| //mobius_param = b+c   with b-c=1 | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){ | ||||
|   std::vector<RealD> omega_in(Ls_in, 1./mobius_param); | ||||
|   computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound); | ||||
| } | ||||
|  | ||||
| //ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,  | ||||
| 			 const RealD mobius_param_out, const int Ls_out,  | ||||
| 			 const RealD mobius_param_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound); | ||||
|   for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out; | ||||
| } | ||||
| //Assumes mobius_param_out == mobius_param_in | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){ | ||||
|   computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,57 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/ZMobius.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_ZMOBIUS_APPROX_H | ||||
| #define GRID_ZMOBIUS_APPROX_H | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
|  | ||||
| //Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound | ||||
| //Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound); | ||||
|    | ||||
| //mobius_param = b+c   with b-c=1 | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound); | ||||
|  | ||||
| //ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,  | ||||
| 			 const RealD mobius_param_out, const int Ls_out,  | ||||
| 			 const RealD mobius_param_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound); | ||||
|  | ||||
| //Assumes mobius_param_out == mobius_param_in | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound); | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,34 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| gridblasHandle_t GridBLAS::gridblasHandle; | ||||
| int              GridBLAS::gridblasInit; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,727 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipblas/hipblas.h> | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| #include <cublas_v2.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| #if 0 | ||||
| #define GRID_ONE_MKL | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////	   | ||||
| // Need to rearrange lattice data to be in the right format for a | ||||
| // batched multiply. Might as well make these static, dense packed | ||||
| /////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef GRID_HIP | ||||
|   typedef hipblasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| #endif | ||||
|  | ||||
| enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ; | ||||
|  | ||||
| class GridBLAS { | ||||
| public: | ||||
|  | ||||
|    | ||||
|   static gridblasHandle_t gridblasHandle; | ||||
|   static int            gridblasInit; | ||||
|    | ||||
|   static void Init(void) | ||||
|   { | ||||
|     if ( ! gridblasInit ) { | ||||
| #ifdef GRID_CUDA | ||||
|       std::cout << "cublasCreate"<<std::endl; | ||||
|       cublasCreate(&gridblasHandle); | ||||
|       cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|       std::cout << "hipblasCreate"<<std::endl; | ||||
|       hipblasCreate(&gridblasHandle); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       cl::sycl::cpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // Force construct once | ||||
|   GridBLAS() { Init(); }; | ||||
|   ~GridBLAS() { }; | ||||
|    | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // BLAS GEMM conventions: | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // - C = alpha A * B + beta C | ||||
|   // Dimensions: | ||||
|   // - C_m.n | ||||
|   // - A_m.k | ||||
|   // - B_k.n | ||||
|   // - Flops = 8 M N K | ||||
|   // - Bytes = 2*sizeof(word) * (MN+MK+KN) | ||||
|   // M=60, N=12 | ||||
|   // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   void synchronise(void) | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|     gridblasHandle->wait(); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexD> alpha_p(1); | ||||
|     static deviceVector<ComplexD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     RealD t0=usecond(); | ||||
|     //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasZgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Amk[0], lda, | ||||
| 				   (hipblasDoubleComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasDoubleComplex *) &beta_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasZgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuDoubleComplex *) &alpha_p[0], | ||||
| 				  (cuDoubleComplex **)&Amk[0], lda, | ||||
| 				  (cuDoubleComplex **)&Bkn[0], ldb, | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     //    synchronise(); | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<ComplexF> alpha_p(1); | ||||
|     static deviceVector<ComplexF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasCgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasComplex *) &alpha_p[0], | ||||
| 				   (hipblasComplex **)&Amk[0], lda, | ||||
| 				   (hipblasComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasComplex *) &beta_p[0], | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuComplex *) &alpha_p[0], | ||||
| 				  (cuComplex **)&Amk[0], lda, | ||||
| 				  (cuComplex **)&Bkn[0], ldb, | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     ComplexF alphaf(real(alpha),imag(alpha)); | ||||
|     ComplexF betaf(real(beta),imag(beta)); | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexF c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Single precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<RealF> alpha_p(1); | ||||
|     static deviceVector<RealF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasSgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (float *) &alpha_p[0], | ||||
| 				   (float **)&Amk[0], lda, | ||||
| 				   (float **)&Bkn[0], ldb, | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasSgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (float *) &alpha_p[0], | ||||
| 				  (float **)&Amk[0], lda, | ||||
| 				  (float **)&Bkn[0], ldb, | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<RealD> alpha_p(1); | ||||
|     static deviceVector<RealD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasDgemmBatched(gridblasHandle, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   m,n,k, | ||||
| 				   (double *) &alpha_p[0], | ||||
| 				   (double **)&Amk[0], lda, | ||||
| 				   (double **)&Bkn[0], ldb, | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasDgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (double *) &alpha_p[0], | ||||
| 				  (double **)&Amk[0], lda, | ||||
| 				  (double **)&Bkn[0], ldb, | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     /* | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t batchCount64=batchCount; | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator, | ||||
|       onemkl::transpose::N, | ||||
|       onemkl::transpose::N, | ||||
|       &m64,&n64,&k64, | ||||
|       (double *) &alpha_p[0], | ||||
|       (double **)&Amk[0], lda, | ||||
|       (double **)&Bkn[0], ldb, | ||||
|       (double *) &beta_p[0], | ||||
|       (double **)&Cmn[0], ldc, | ||||
|       1,&batchCount64); | ||||
|      */ | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|  | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Strided case used by benchmark, but generally unused in Grid | ||||
|   // Keep a code example in double complex, but don't generate the single and real variants for now | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   void gemmStridedBatched(int m,int n, int k, | ||||
| 			  ComplexD alpha, | ||||
| 			  ComplexD* Amk,  // pointer list to matrices | ||||
| 			  ComplexD* Bkn, | ||||
| 			  ComplexD beta, | ||||
| 			  ComplexD* Cmn, | ||||
| 			  int batchCount) | ||||
|   { | ||||
|     // Use C-row major storage, so transpose calls | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     int sda = m*k; | ||||
|     int sdb = k*n; | ||||
|     int sdc = m*n; | ||||
|     deviceVector<ComplexD> alpha_p(1); | ||||
|     deviceVector<ComplexD> beta_p(1); | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgemmStridedBatched(gridblasHandle, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  m,n,k, | ||||
| 					  (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 					  (hipblasDoubleComplex *) Amk, lda, sda, | ||||
| 					  (hipblasDoubleComplex *) Bkn, ldb, sdb, | ||||
| 					  (hipblasDoubleComplex *) &beta_p[0], | ||||
| 					  (hipblasDoubleComplex *) Cmn, ldc, sdc, | ||||
| 					  batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasZgemmStridedBatched(gridblasHandle, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      m,n,k, | ||||
| 			      (cuDoubleComplex *) &alpha_p[0], | ||||
| 			      (cuDoubleComplex *) Amk, lda, sda, | ||||
| 			      (cuDoubleComplex *) Bkn, ldb, sdb, | ||||
| 			      (cuDoubleComplex *) &beta_p[0], | ||||
| 			      (cuDoubleComplex *) Cmn, ldc, sdc, | ||||
| 			      batchCount); | ||||
| #endif | ||||
| #if defined(GRID_SYCL) || defined(GRID_ONE_MKL) | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						m,n,k, | ||||
| 						alpha, | ||||
| 						(const ComplexD *)Amk,lda,sda, | ||||
| 						(const ComplexD *)Bkn,ldb,sdb, | ||||
| 						beta, | ||||
| 						(ComplexD *)Cmn,ldc,sdc, | ||||
| 						batchCount); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|      // Need a default/reference implementation | ||||
|      for (int p = 0; p < batchCount; ++p) { | ||||
|        for (int mm = 0; mm < m; ++mm) { | ||||
| 	 for (int nn = 0; nn < n; ++nn) { | ||||
| 	   ComplexD c_mn(0.0); | ||||
| 	   for (int kk = 0; kk < k; ++kk) | ||||
| 	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb]; | ||||
| 	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc]; | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|     int32_t N_A = M*K*BATCH; | ||||
|     int32_t N_B = K*N*BATCH; | ||||
|     int32_t N_C = M*N*BATCH; | ||||
|     deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); | ||||
|     ComplexD alpha(1.0); | ||||
|     ComplexD beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K*BATCH; | ||||
|     int ncall=10; | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemmStridedBatched(M,N,K, | ||||
| 			 alpha, | ||||
| 			 &A[0], // m x k  | ||||
| 			 &B[0], // k x n | ||||
| 			 beta,  | ||||
| 			 &C[0], // m x n | ||||
| 			 BATCH); | ||||
|     } | ||||
|     synchronise(); | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     flops = 8.0*M*N*K*BATCH*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,157 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_DEFLATION_H | ||||
| #define GRID_DEFLATION_H | ||||
|  | ||||
| namespace Grid {  | ||||
|  | ||||
| template<class Field> | ||||
| class ZeroGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|     virtual void operator()(const Field &src, Field &guess) { guess = Zero(); }; | ||||
| }; | ||||
| template<class Field> | ||||
| class DoNothingGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field &guess) {  }; | ||||
| }; | ||||
| template<class Field> | ||||
| class SourceGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field &guess) { guess = src; }; | ||||
| }; | ||||
|  | ||||
| //////////////////////////////// | ||||
| // Fine grid deflation | ||||
| //////////////////////////////// | ||||
| template<class Field> | ||||
| class DeflatedGuesser: public LinearFunction<Field> { | ||||
| private: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
|   const unsigned int       N; | ||||
|  | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|  | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) | ||||
|   : DeflatedGuesser(_evec, _eval, _evec.size()) | ||||
|   {} | ||||
|  | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N) | ||||
|   : evec(_evec), eval(_eval), N(_N) | ||||
|   { | ||||
|     assert(evec.size()==eval.size()); | ||||
|     assert(N <= evec.size()); | ||||
|   }  | ||||
|  | ||||
|   virtual void operator()(const Field &src,Field &guess) { | ||||
|     guess = Zero(); | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess); | ||||
|     } | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class FineField, class CoarseField> | ||||
| class LocalCoherenceDeflatedGuesser: public LinearFunction<FineField> { | ||||
| private: | ||||
|   const std::vector<FineField>   &subspace; | ||||
|   const std::vector<CoarseField> &evec_coarse; | ||||
|   const std::vector<RealD>       &eval_coarse; | ||||
| public: | ||||
|    | ||||
|   using LinearFunction<FineField>::operator(); | ||||
|   LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace, | ||||
| 				const std::vector<CoarseField> &_evec_coarse, | ||||
| 				const std::vector<RealD>       &_eval_coarse) | ||||
|     : subspace(_subspace),  | ||||
|       evec_coarse(_evec_coarse),  | ||||
|       eval_coarse(_eval_coarse)   | ||||
|   { | ||||
|   } | ||||
|    | ||||
|   void operator()(const FineField &src,FineField &guess) {  | ||||
|     int N = (int)evec_coarse.size(); | ||||
|     CoarseField src_coarse(evec_coarse[0].Grid()); | ||||
|     CoarseField guess_coarse(evec_coarse[0].Grid());    guess_coarse = Zero(); | ||||
|     blockProject(src_coarse,src,subspace);     | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const CoarseField & tmp = evec_coarse[i]; | ||||
|       axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse); | ||||
|     } | ||||
|     blockPromote(guess_coarse,guess,subspace); | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|   }; | ||||
|  | ||||
|   void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) { | ||||
|     int Nevec = (int)evec_coarse.size(); | ||||
|     int Nsrc = (int)src.size(); | ||||
|     // make temp variables | ||||
|     std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid()); | ||||
|     std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());     | ||||
|     //Preporcessing | ||||
|     std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     guess_coarse[j] = Zero(); | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockProject(src_coarse[j],src[j],subspace); | ||||
|     } | ||||
|     //deflation set up for eigen vector batchsize 1 and source batch size equal number of sources | ||||
|     std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl; | ||||
|     for (int i=0;i<Nevec;i++) | ||||
|     { | ||||
|       std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl; | ||||
|       const CoarseField & tmp = evec_coarse[i]; | ||||
|       for (int j=0;j<Nsrc;j++) | ||||
|       { | ||||
|         axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]); | ||||
|       } | ||||
|     } | ||||
|     //postprocessing | ||||
|     std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockPromote(guess_coarse[j],guess[j],subspace); | ||||
|     guess[j].Checkerboard() = src[j].Checkerboard(); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   }; | ||||
|  | ||||
|  | ||||
|  | ||||
| } | ||||
| #endif | ||||
| @@ -1,513 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /*  | ||||
|    MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
| //template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| //inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| //			   const VLattice &fineData, | ||||
| //			   const VLattice &Basis) | ||||
| */ | ||||
|  | ||||
| template<class Field> | ||||
| class MultiRHSBlockProject | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|   typedef Field Fermion; | ||||
|  | ||||
|   int nbasis; | ||||
|   GridBase *coarse_grid; | ||||
|   GridBase *fine_grid; | ||||
|   uint64_t block_vol; | ||||
|   uint64_t fine_vol; | ||||
|   uint64_t coarse_vol; | ||||
|   uint64_t words; | ||||
|  | ||||
|   // Row major layout "C" order: | ||||
|   // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|   // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|   // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Vxb = [v1(x)][..][vn(x)] ... x coarse vol | ||||
|    * | ||||
|    * Fxr = [r1(x)][..][rm(x)] ... x coarse vol | ||||
|    * | ||||
|    * Block project: | ||||
|    * C_br = V^dag F x coarse vol | ||||
|    * | ||||
|    * Block promote: | ||||
|    * F_xr = Vxb Cbr x coarse_vol | ||||
|    */   | ||||
|   deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol  | ||||
|   deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs | ||||
|  | ||||
|   RealD blasNorm2(deviceVector<scalar> &blas) | ||||
|   { | ||||
|     scalar ss(0.0); | ||||
|     std::vector<scalar> tmp(blas.size()); | ||||
|     acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar)); | ||||
|     for(int64_t s=0;s<blas.size();s++){ | ||||
|       ss=ss+tmp[s]*adj(tmp[s]); | ||||
|     } | ||||
|     coarse_grid->GlobalSum(ss); | ||||
|     return real(ss); | ||||
|   } | ||||
|    | ||||
|   MultiRHSBlockProject(){}; | ||||
|  ~MultiRHSBlockProject(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nbasis=0; | ||||
|     coarse_grid=nullptr; | ||||
|     fine_grid=nullptr; | ||||
|     fine_vol=0; | ||||
|     block_vol=0; | ||||
|     coarse_vol=0; | ||||
|     words=0; | ||||
|     BLAS_V.resize(0); | ||||
|     BLAS_F.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid) | ||||
|   { | ||||
|     nbasis=_nbasis; | ||||
|  | ||||
|     fine_grid=_fgrid; | ||||
|     coarse_grid=_cgrid; | ||||
|  | ||||
|     fine_vol   = fine_grid->lSites(); | ||||
|     coarse_vol = coarse_grid->lSites(); | ||||
|     block_vol = fine_vol/coarse_vol; | ||||
|      | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|  | ||||
|     BLAS_V.resize (fine_vol * words * nbasis ); | ||||
|   } | ||||
|   void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename Field::vector_object vobj; | ||||
|     //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar)); | ||||
|  | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( fineData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p  = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       //      std::cout << "sz "<<sz<<std::endl; | ||||
|       //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl; | ||||
|       assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words); | ||||
|       uint64_t lwords= words; // local variable for copy in to GPU | ||||
|       accelerator_for(sf,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  // Fine site to fine coor | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc;// coarse site | ||||
| 	  int sb;// block site | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
|           scalar_object data = extractLane(lane,fineData[sf]); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol | ||||
| 	  // coarse oSite x block vole x lanes | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  //	  assert(site*lwords<sz); | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|       //      std::cout << " BlockProjector imported vector"<<v<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     typedef typename Field::vector_object vobj; | ||||
|  | ||||
|     int nvec = vecs.size(); | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|  | ||||
|     //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|  | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       autoView( fineData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p    = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|       uint64_t lwords = words; | ||||
|       //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl; | ||||
|       //      std::cout << " lwords is "<<lwords << std::endl; | ||||
|       //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl; | ||||
|       // loop over fine sites | ||||
|       accelerator_for(sf,osites,vobj::Nsimd(),{ | ||||
|        | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<vobj::Nsimd();lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc; | ||||
| 	  int sb; | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol 	   | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  scalar_object data = *ptr; | ||||
|  | ||||
| 	  insertLane(lane,fineData[sf],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|  | ||||
|     //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
|            // C_br per site | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	     | ||||
| 	    coarse_scalar_object data = extractLane(lane,coarseData[sc]); | ||||
|  | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
|  | ||||
| 	    *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|     //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|      | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| 	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... }); | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
| 	    coarse_scalar_object data = *ptr; | ||||
| 	    insertLane(lane,coarseData[sc],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   void ImportBasis(std::vector < Field > &vecs) | ||||
|   { | ||||
|     //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl; | ||||
|     ImportFineGridVectors(vecs,BLAS_V); | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl; | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources to same data layout | ||||
|     ///////////////////////////////////////////// | ||||
|     //    std::cout << "BlockProject import fine"<<std::endl; | ||||
|     ImportFineGridVectors(fine,BLAS_F); | ||||
|      | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     //    std::cout << "BlockProject pointers"<<std::endl; | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|  | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     //    std::cout << "BlockProject BLAS"<<std::endl; | ||||
|     int64_t vw = block_vol * words; | ||||
|     ///////////////////////////////////////// | ||||
|     // C_br = V^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nbasis,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Vd, | ||||
| 		     Fd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|     ExportCoarseGridVectors(coarse, BLAS_C); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|  | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ImportCoarseGridVectors(coarse, BLAS_C); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // Block promote: | ||||
|     // F_xr = Vxb Cbr (x coarse_vol) | ||||
|     ///////////////////////////////////////// | ||||
|  | ||||
|     int64_t vw = block_vol * words; | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nbasis, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Vd, | ||||
| 		     Cd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Fd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << " blas call done"<<std::endl; | ||||
|      | ||||
|     ExportFineGridVectors(fine, BLAS_F); | ||||
|     //    std::cout << " exported "<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,233 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /* Need helper object for BLAS accelerated mrhs projection | ||||
|  | ||||
|    i) MultiRHS Deflation | ||||
|  | ||||
|    Import Evecs -> nev x vol x internal  | ||||
|    Import vector of Lattice objects -> nrhs x vol x internal | ||||
|    => Cij (nrhs x Nev) via GEMM. | ||||
|    => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM) | ||||
|    Export | ||||
|  | ||||
|     | ||||
|    ii) MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
|    iii)   Alternate interface:  | ||||
|    Import higher dim Lattice object-> vol x nrhs layout | ||||
|     | ||||
| */ | ||||
| template<class Field> | ||||
| class MultiRHSDeflation | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|  | ||||
|   int nev; | ||||
|   std::vector<RealD> eval; | ||||
|   GridBase *grid; | ||||
|   uint64_t vol; | ||||
|   uint64_t words; | ||||
|    | ||||
|   deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda)) | ||||
|   deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources | ||||
|   deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients  | ||||
|    | ||||
|   MultiRHSDeflation(){}; | ||||
|   ~MultiRHSDeflation(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nev=0; | ||||
|     grid=nullptr; | ||||
|     vol=0; | ||||
|     words=0; | ||||
|     BLAS_E.resize(0); | ||||
|     BLAS_R.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|     BLAS_G.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nev,GridBase *_grid) | ||||
|   { | ||||
|     nev=_nev; | ||||
|     grid=_grid; | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     eval.resize(nev); | ||||
|     BLAS_E.resize (vol * words * nev ); | ||||
|     std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl; | ||||
|   } | ||||
|   void ImportEigenVector(Field &evec,RealD &_eval, int ev) | ||||
|   { | ||||
|     //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl; | ||||
|     assert(ev<eval.size()); | ||||
|     eval[ev] = _eval; | ||||
|  | ||||
|     int64_t offset = ev*vol*words; | ||||
|     autoView(v,evec,AcceleratorRead); | ||||
|     acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol); | ||||
|  | ||||
|   } | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval) | ||||
|   { | ||||
|     ImportEigenBasis(evec,_eval,0,evec.size()); | ||||
|   } | ||||
|   // Could use to import a batch of eigenvectors | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev) | ||||
|   { | ||||
|     assert(_ev0+_nev<=evec.size()); | ||||
|  | ||||
|     Allocate(_nev,evec[0].Grid()); | ||||
|      | ||||
|     // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1 | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl; | ||||
|       ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e); | ||||
|     } | ||||
|   } | ||||
|   void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess) | ||||
|   { | ||||
|     int nrhs = source.size(); | ||||
|     assert(source.size()==guess.size()); | ||||
|     assert(grid == guess[0].Grid()); | ||||
|     conformable(guess[0],source[0]); | ||||
|  | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_R.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_G.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nev * nrhs);// cost free if size doesn't change | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     //    for(int r=0;r<nrhs;r++){ | ||||
|     //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl; | ||||
|     //    } | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,source[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Exe = [e1(x)][..][en(x)] | ||||
|    * | ||||
|    * Rxr = [r1(x)][..][rm(x)] | ||||
|    * | ||||
|    * C_er = E^dag R | ||||
|    * C_er = C_er / lambda_e  | ||||
|    * G_xr = Exe Cer | ||||
|    */ | ||||
|     deviceVector<scalar *> Ed(1); | ||||
|     deviceVector<scalar *> Rd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|     deviceVector<scalar *> Gd(1); | ||||
|  | ||||
|     scalar * Eh = & BLAS_E[0]; | ||||
|     scalar * Rh = & BLAS_R[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|     scalar * Gh = & BLAS_G[0]; | ||||
|  | ||||
|     acceleratorPut(Ed[0],Eh); | ||||
|     acceleratorPut(Rd[0],Rh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|     acceleratorPut(Gd[0],Gh); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // C_er = E^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nev,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Ed, | ||||
| 		     Rd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     assert(BLAS_C.size()==nev*nrhs); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|     grid->GlobalSumVector(&HOST_C[0],nev*nrhs); | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       RealD lam(1.0/eval[e]); | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	int off = e+nev*r; | ||||
| 	HOST_C[off]=HOST_C[off] * lam; | ||||
| 	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl; | ||||
|       } | ||||
|     } | ||||
|     acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|  | ||||
|      | ||||
|     ///////////////////////////////////////// | ||||
|     // Guess G_xr = Exe Cer | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
| 		     vw,nrhs,nev, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Ed, // x . nev | ||||
| 		     Cd, // nev . nrhs | ||||
| 		     ComplexD(0.0), | ||||
| 		     Gd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     /////////////////////////////////////// | ||||
|     // Copy out the multirhs | ||||
|     /////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,guess[r],AcceleratorWrite); | ||||
|       acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|     RealD t1 = usecond(); | ||||
|     std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,599 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/AdefGeneric.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG | ||||
| #define GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG | ||||
|  | ||||
|   /* | ||||
|    * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv.  | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCG : public LinearFunction<Field> | ||||
| { | ||||
|  public: | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   GridBase *grid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelCG(RealD tol, | ||||
| 	     Integer maxit, | ||||
| 	     LinearOperatorBase<Field>   &FineLinop, | ||||
| 	     LinearFunction<Field>       &Smoother, | ||||
| 	     GridBase *fine) :  | ||||
|       Tolerance(tol),  | ||||
|       MaxIterations(maxit), | ||||
|       _FineLinop(FineLinop), | ||||
|       _Smoother(Smoother) | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|    | ||||
|   virtual void operator() (const Field &src, Field &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl; | ||||
|     RealD f; | ||||
|     RealD rtzp,rtz,a,d,b; | ||||
|     RealD rptzp; | ||||
|  | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 5; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<Field> mmp(mmax,grid); | ||||
|     std::vector<RealD> pAp(mmax); | ||||
|     Field z(grid); | ||||
|     Field tmp(grid); | ||||
|     Field  mp (grid); | ||||
|     Field  r  (grid); | ||||
|     Field  mu (grid); | ||||
|      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl; | ||||
|     //Initial residual computation & set up | ||||
|     RealD guess   = norm2(x); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl; | ||||
|     RealD src_nrm = norm2(src); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl; | ||||
|      | ||||
|     if ( src_nrm == 0.0 ) { | ||||
|       std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl; | ||||
|       x=Zero(); | ||||
|     } | ||||
|     RealD tn; | ||||
|      | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|      | ||||
|     // r0 = b -A x0 | ||||
|     _FineLinop.HermOp(x,mmp[0]); | ||||
|     axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0 | ||||
|     { | ||||
|       double n1 = norm2(x); | ||||
|       double n2 = norm2(mmp[0]); | ||||
|       double n3 = norm2(r); | ||||
|       std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl; | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     PcgM1(r,z); | ||||
|     rtzp =real(innerProduct(r,z)); | ||||
|      | ||||
|     /////////////////////////////////////// | ||||
|     // Solve for Mss mu = P A z and set p = z-mu | ||||
|     // Def2 p = 1 - Q Az = Pright z | ||||
|     // Other algos M2 is trivial | ||||
|     /////////////////////////////////////// | ||||
|     PcgM2(z,p[0]); | ||||
|  | ||||
|     RealD ssq =  norm2(src); | ||||
|     RealD rsq =  ssq*Tolerance*Tolerance; | ||||
|  | ||||
|     std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n"; | ||||
|  | ||||
|     Field pp(grid); | ||||
|  | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       rtz=rtzp; | ||||
|       d= PcgM3(p[peri_k],mmp[peri_k]); | ||||
|       a = rtz/d; | ||||
|      | ||||
|       // Memorise this | ||||
|       pAp[peri_k] = d; | ||||
|        | ||||
|       axpy(x,a,p[peri_k],x); | ||||
|       RealD rn = axpy_norm(r,-a,mmp[peri_k],r); | ||||
|  | ||||
|       // Compute z = M x | ||||
|       PcgM1(r,z); | ||||
|        | ||||
|       { | ||||
| 	RealD n1,n2; | ||||
| 	n1=norm2(r); | ||||
| 	n2=norm2(z); | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n"; | ||||
|       } | ||||
|       rtzp =real(innerProduct(r,z)); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n"; | ||||
|  | ||||
|       //    PcgM2(z,p[0]); | ||||
|       PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|        | ||||
|       p[peri_kp]=mu; | ||||
|  | ||||
|       // Standard search direction  p -> z + b p     | ||||
|       b = (rtzp)/rtz; | ||||
|        | ||||
|       int northog; | ||||
|       // k=zero  <=> peri_kp=1;        northog = 1 | ||||
|       // k=1     <=> peri_kp=2;        northog = 2 | ||||
|       // ...               ...                  ... | ||||
|       // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1 | ||||
|       // k=mmax-1<=> peri_kp=0;        northog = 1 | ||||
|  | ||||
|       //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm | ||||
|       northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
|      | ||||
|       std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
|       for(int back=0; back < northog; back++){ | ||||
| 	int peri_back = (k-back)%mmax; | ||||
| 	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp])); | ||||
| 	RealD beta = -pbApk/pAp[peri_back]; | ||||
| 	axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]); | ||||
|       } | ||||
|  | ||||
|       RealD rrn=sqrt(rn/ssq); | ||||
|       RealD rtn=sqrt(rtz/ssq); | ||||
|       RealD rtnp=sqrt(rtzp/ssq); | ||||
|  | ||||
|       std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if ( rn <= rsq ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	 | ||||
| 	_FineLinop.HermOp(x,mmp[0]);			   | ||||
| 	axpy(tmp,-1.0,src,mmp[0]); | ||||
| 	 | ||||
| 	RealD  mmpnorm = sqrt(norm2(mmp[0])); | ||||
| 	RealD  xnorm   = sqrt(norm2(x)); | ||||
| 	RealD  srcnorm = sqrt(norm2(src)); | ||||
| 	RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	std::cout<<GridLogMessage | ||||
| 	       <<"HDCG: true residual is "<<true_residual | ||||
| 	       <<" solution "<<xnorm | ||||
| 	       <<" source "<<srcnorm | ||||
| 	       <<" mmp "<<mmpnorm	   | ||||
| 	       <<std::endl; | ||||
|        | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     RealD  xnorm   = sqrt(norm2(x)); | ||||
|     RealD  srcnorm = sqrt(norm2(src)); | ||||
|     std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|      | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       PcgM1(r,z); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl; | ||||
|       grid->Barrier(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	 | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) | ||||
|   { | ||||
|     std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<in.size();rhs++){ | ||||
|       this->PcgM1(in[rhs],out[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void PcgM1(Field & in, Field & out)     =0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     std::cout << "Vstart default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<x.size();rhs++){ | ||||
|       this->Vstart(x[rhs],src[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void Vstart(Field & x,const Field & src)=0; | ||||
|  | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| }; | ||||
|    | ||||
| template<class Field, class CoarseField, class Aggregation> | ||||
| class TwoLevelADEF2 : public TwoLevelCG<Field> | ||||
| { | ||||
|  public: | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Need something that knows how to get from Coarse to fine and back again | ||||
|   //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|   //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *coarsegrid; | ||||
|   Aggregation &_Aggregates;                     | ||||
|   LinearFunction<CoarseField> &_CoarseSolver; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPrecise; | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelADEF2(RealD tol, | ||||
| 		Integer maxit, | ||||
| 		LinearOperatorBase<Field>    &FineLinop, | ||||
| 		LinearFunction<Field>        &Smoother, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolver, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolverPrecise, | ||||
| 		Aggregation &Aggregates | ||||
| 		) : | ||||
|       TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid), | ||||
|       _CoarseSolver(CoarseSolver), | ||||
|       _CoarseSolverPrecise(CoarseSolverPrecise), | ||||
|       _Aggregates(Aggregates) | ||||
|   { | ||||
|     coarsegrid = Aggregates.CoarseGrid; | ||||
|   }; | ||||
|  | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("MultiGridPreconditioner "); | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|  | ||||
|     Field tmp(this->grid); | ||||
|     Field Min(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|  | ||||
|     GridStopWatch SmootherTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     SmootherTimer.Start(); | ||||
|     this->_Smoother(in,Min); | ||||
|     SmootherTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     this->_FineLinop.HermOp(Min,out); | ||||
|     MatrixTimer.Stop(); | ||||
|     axpy(tmp,-1.0,out,in);          // tmp  = in - A Min | ||||
|  | ||||
|     GridStopWatch ProjTimer; | ||||
|     GridStopWatch CoarseTimer; | ||||
|     GridStopWatch PromTimer; | ||||
|     ProjTimer.Start(); | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,tmp);      | ||||
|     ProjTimer.Stop(); | ||||
|     CoarseTimer.Start(); | ||||
|     this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     CoarseTimer.Stop(); | ||||
|     PromTimer.Start(); | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     PromTimer.Stop(); | ||||
|     std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|     axpy(out,1.0,Min,tmp); // Min+tmp | ||||
|   } | ||||
|  | ||||
|   virtual void Vstart(Field & x,const Field & src) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl; | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
|     //                               = [1 - Ass_inv A] Guess + Assinv src | ||||
|     //                               = P^T guess + Assinv src  | ||||
|     //                               = Vstart  [Tang notation] | ||||
|     // This gives: | ||||
|     // W^T (src - A x_0) = src_s - A guess_s - r_s | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     Field r(this->grid); | ||||
|     Field mmp(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|  | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl; | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,src);      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl; | ||||
|     this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl; | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);   | ||||
|  | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|    | ||||
| template<class Field> | ||||
| class TwoLevelADEF1defl : public TwoLevelCG<Field> | ||||
| { | ||||
| public: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
|    | ||||
|   TwoLevelADEF1defl(RealD tol, | ||||
| 		   Integer maxit, | ||||
| 		   LinearOperatorBase<Field>   &FineLinop, | ||||
| 		   LinearFunction<Field>   &Smoother, | ||||
| 		   std::vector<Field> &_evec, | ||||
| 		   std::vector<RealD> &_eval) :  | ||||
|     TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()), | ||||
|     evec(_evec), | ||||
|     eval(_eval) | ||||
|   {}; | ||||
|  | ||||
|   // Can just inherit existing M2 | ||||
|   // Can just inherit existing M3 | ||||
|  | ||||
|   // Simple vstart - do nothing | ||||
|   virtual void Vstart(Field & x,const Field & src){ | ||||
|     x=src; // Could apply Q | ||||
|   }; | ||||
|  | ||||
|   // Override PcgM1 | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("EvecPreconditioner "); | ||||
|     int N=evec.size(); | ||||
|     Field Pin(this->grid); | ||||
|     Field Qin(this->grid); | ||||
|  | ||||
|     //MP  + Q = M(1-AQ) + Q = M | ||||
|     // // If we are eigenvector deflating in coarse space | ||||
|     // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i| | ||||
|     // // A Q = Sum_i |phi_i> <phi_i| | ||||
|     // // M(1-AQ) = M(1-proj) + Q | ||||
|     Qin.Checkerboard()=in.Checkerboard(); | ||||
|     Qin = Zero(); | ||||
|     Pin = in; | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       auto ip = TensorRemove(innerProduct(tmp,in)); | ||||
|       axpy(Qin, ip / eval[i],tmp,Qin); | ||||
|       axpy(Pin, -ip ,tmp,Pin); | ||||
|     } | ||||
|  | ||||
|     this->_Smoother(Pin,out); | ||||
|  | ||||
|     out = out + Qin; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,414 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/AdefGeneric.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
|   /* | ||||
|    * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv.  | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCGmrhs | ||||
| { | ||||
|  public: | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   GridBase *grid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|  | ||||
|   GridStopWatch ProjectTimer; | ||||
|   GridStopWatch PromoteTimer; | ||||
|   GridStopWatch DeflateTimer; | ||||
|   GridStopWatch CoarseTimer; | ||||
|   GridStopWatch FineTimer; | ||||
|   GridStopWatch SmoothTimer; | ||||
|   GridStopWatch InsertTimer; | ||||
|  | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelCGmrhs(RealD tol, | ||||
| 		 Integer maxit, | ||||
| 		 LinearOperatorBase<Field>   &FineLinop, | ||||
| 		 LinearFunction<Field>       &Smoother, | ||||
| 		 GridBase *fine) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     _FineLinop(FineLinop), | ||||
|     _Smoother(Smoother) | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|    | ||||
|   // Vector case | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|  | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|  | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     ProjectTimer.Reset(); | ||||
|     PromoteTimer.Reset(); | ||||
|     DeflateTimer.Reset(); | ||||
|     CoarseTimer.Reset(); | ||||
|     SmoothTimer.Reset(); | ||||
|     FineTimer.Reset(); | ||||
|     InsertTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch M1Timer; | ||||
|     GridStopWatch M2Timer; | ||||
|     GridStopWatch M3Timer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|  | ||||
|     HDCGTimer.Start(); | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	M3Timer.Start(); | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	M3Timer.Stop(); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|  | ||||
| 	LinalgTimer.Start(); | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
| 	LinalgTimer.Stop(); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       M1Timer.Start(); | ||||
|       PcgM1(r,z); | ||||
|       M1Timer.Stop(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       LinalgTimer.Start(); | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0; | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field> | ||||
| { | ||||
| public: | ||||
|   GridBase *coarsegrid; | ||||
|   GridBase *coarsegridmrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverMrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs; | ||||
|   MultiRHSBlockProject<Field>    &_Projector; | ||||
|   MultiRHSDeflation<CoarseField> &_Deflator; | ||||
|  | ||||
|    | ||||
|   TwoLevelADEF2mrhs(RealD tol, | ||||
| 		    Integer maxit, | ||||
| 		    LinearOperatorBase<Field>    &FineLinop, | ||||
| 		    LinearFunction<Field>        &Smoother, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverMrhs, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs, | ||||
| 		    MultiRHSBlockProject<Field>    &Projector, | ||||
| 		    MultiRHSDeflation<CoarseField> &Deflator, | ||||
| 		    GridBase *_coarsemrhsgrid) : | ||||
|     TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid), | ||||
|     _CoarseSolverMrhs(CoarseSolverMrhs), | ||||
|     _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs), | ||||
|     _Projector(Projector), | ||||
|     _Deflator(Deflator) | ||||
|   { | ||||
|     coarsegrid = Projector.coarse_grid; | ||||
|     coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector | ||||
|   }; | ||||
|  | ||||
|   // Override Vstart | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     int nrhs=x.size(); | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
|     //                               = [1 - Ass_inv A] Guess + Assinv src | ||||
|     //                               = P^T guess + Assinv src  | ||||
|     //                               = Vstart  [Tang notation] | ||||
|     // This gives: | ||||
|     // W^T (src - A x_0) = src_s - A guess_s - r_s | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     this->_Projector.blockProject(src,PleftProj); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|      | ||||
|     this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->_Projector.blockPromote(x,PleftMss_proj); | ||||
|   } | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){ | ||||
|  | ||||
|     int nrhs=in.size(); | ||||
|  | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     std::vector<Field> tmp(nrhs,this->grid); | ||||
|     std::vector<Field> Min(nrhs,this->grid); | ||||
|  | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|  | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|  | ||||
|       this->SmoothTimer.Start(); | ||||
|       this->_Smoother(in[rhs],Min[rhs]); | ||||
|       this->SmoothTimer.Stop(); | ||||
|  | ||||
|       this->FineTimer.Start(); | ||||
|       this->_FineLinop.HermOp(Min[rhs],out[rhs]); | ||||
|  | ||||
|       axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min | ||||
|       this->FineTimer.Stop(); | ||||
|  | ||||
|     } | ||||
|  | ||||
|     this->ProjectTimer.Start(); | ||||
|     this->_Projector.blockProject(tmp,PleftProj); | ||||
|     this->ProjectTimer.Stop(); | ||||
|     this->DeflateTimer.Start(); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     this->DeflateTimer.Stop(); | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|  | ||||
|     this->CoarseTimer.Start(); | ||||
|     this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s | ||||
|     this->CoarseTimer.Stop(); | ||||
|  | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|     this->PromoteTimer.Start(); | ||||
|     this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]   | ||||
|     this->PromoteTimer.Stop(); | ||||
|     this->FineTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp | ||||
|     } | ||||
|     this->FineTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
|    | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,234 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/BiCGSTAB.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: juettner <juettner@soton.ac.uk> | ||||
| Author: David Murphy <djmurphy@mit.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef GRID_BICGSTAB_H | ||||
| #define GRID_BICGSTAB_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
| template <class Field> | ||||
| class BiCGSTAB : public OperatorFunction<Field>  | ||||
| { | ||||
|   public: | ||||
|     using OperatorFunction<Field>::operator(); | ||||
|      | ||||
|     bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|                              // Defaults true. | ||||
|     RealD Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|    | ||||
|     BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :  | ||||
|       Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|     void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)  | ||||
|     { | ||||
|       psi.Checkerboard() = src.Checkerboard(); | ||||
|       conformable(psi, src); | ||||
|  | ||||
|       RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1); | ||||
|       RealD a(0), bo(0), b(0), ssq(0); | ||||
|  | ||||
|       Field p(src); | ||||
|       Field r(src); | ||||
|       Field rhat(src); | ||||
|       Field v(src); | ||||
|       Field s(src); | ||||
|       Field t(src); | ||||
|       Field h(src); | ||||
|  | ||||
|       v = Zero(); | ||||
|       p = Zero(); | ||||
|  | ||||
|       // Initial residual computation & set up | ||||
|       RealD guess = norm2(psi); | ||||
|       assert(std::isnan(guess) == 0); | ||||
|      | ||||
|       Linop.Op(psi, v); | ||||
|       b = norm2(v); | ||||
|  | ||||
|       r = src - v; | ||||
|       rhat = r; | ||||
|       a = norm2(r); | ||||
|       ssq = norm2(src); | ||||
|  | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:   src " << ssq << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:    mp " << b << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:     r " << a << std::endl; | ||||
|  | ||||
|       RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|       // Check if guess is really REALLY good :) | ||||
|       if(a <= rsq){ return; } | ||||
|  | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl; | ||||
|  | ||||
|       GridStopWatch LinalgTimer; | ||||
|       GridStopWatch InnerTimer; | ||||
|       GridStopWatch AxpyNormTimer; | ||||
|       GridStopWatch LinearCombTimer; | ||||
|       GridStopWatch MatrixTimer; | ||||
|       GridStopWatch SolverTimer; | ||||
|  | ||||
|       SolverTimer.Start(); | ||||
|       int k; | ||||
|       for (k = 1; k <= MaxIterations; k++)  | ||||
|       { | ||||
|         rho_prev = rho; | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Crho  = innerProduct(rhat,r); | ||||
|         InnerTimer.Stop(); | ||||
|         rho = Crho.real(); | ||||
|  | ||||
|         beta = (rho / rho_prev) * (alpha / omega); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
|         bo = beta * omega; | ||||
| 	{ | ||||
| 	  autoView( p_v , p, AcceleratorWrite); | ||||
| 	  autoView( r_v , r, AcceleratorRead); | ||||
| 	  autoView( v_v , v, AcceleratorRead); | ||||
| 	  accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|         LinearCombTimer.Stop(); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         MatrixTimer.Start(); | ||||
|         Linop.Op(p,v); | ||||
|         MatrixTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Calpha = innerProduct(rhat,v); | ||||
|         InnerTimer.Stop(); | ||||
|         alpha = rho / Calpha.real(); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
| 	{ | ||||
| 	  autoView( p_v , p, AcceleratorRead); | ||||
| 	  autoView( r_v , r, AcceleratorRead); | ||||
| 	  autoView( v_v , v, AcceleratorRead); | ||||
| 	  autoView( psi_v,psi, AcceleratorRead); | ||||
| 	  autoView( h_v  ,  h, AcceleratorWrite); | ||||
| 	  autoView( s_v  ,  s, AcceleratorWrite); | ||||
| 	  accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss)); | ||||
| 	    }); | ||||
| 	  accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss)); | ||||
|  	  }); | ||||
|         } | ||||
|         LinearCombTimer.Stop(); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         MatrixTimer.Start(); | ||||
|         Linop.Op(s,t); | ||||
|         MatrixTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Comega = innerProduct(t,s); | ||||
|         InnerTimer.Stop(); | ||||
|         omega = Comega.real() / norm2(t); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
| 	{ | ||||
| 	  autoView( psi_v,psi, AcceleratorWrite); | ||||
| 	  autoView( r_v , r, AcceleratorWrite); | ||||
| 	  autoView( h_v , h, AcceleratorRead); | ||||
| 	  autoView( s_v , s, AcceleratorRead); | ||||
| 	  autoView( t_v , t, AcceleratorRead); | ||||
| 	  accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss)); | ||||
| 	      coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|         LinearCombTimer.Stop(); | ||||
| 	 | ||||
|         cp = norm2(r); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|  | ||||
|         // Stopping condition | ||||
|         if(cp <= rsq)  | ||||
|         { | ||||
|           SolverTimer.Stop(); | ||||
|           Linop.Op(psi, v); | ||||
|           p = v - src; | ||||
|  | ||||
|           RealD srcnorm = sqrt(norm2(src)); | ||||
|           RealD resnorm = sqrt(norm2(p)); | ||||
|           RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|           std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl; | ||||
|           std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl; | ||||
|           std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl; | ||||
|           std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|           std::cout << GridLogMessage << "Time breakdown " << std::endl; | ||||
|           std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl; | ||||
|  | ||||
|           if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); } | ||||
|  | ||||
|           IterationsToComplete = k;	 | ||||
|  | ||||
|           return; | ||||
|         } | ||||
|       } | ||||
|        | ||||
|       std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl; | ||||
|  | ||||
|       if(ErrorOnNoConverge){ assert(0); } | ||||
|       IterationsToComplete = k; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,159 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| Author: David Murphy <djmurphy@mit.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef GRID_BICGSTAB_MIXED_PREC_H | ||||
| #define GRID_BICGSTAB_MIXED_PREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Mixed precision restarted defect correction BiCGSTAB | ||||
| template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>  | ||||
| { | ||||
|   public: | ||||
|     using LinearFunction<FieldD>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
|     Integer MaxOuterIterations; | ||||
|     GridBase* SinglePrecGrid; // Grid for single-precision fields | ||||
|     RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|     LinearOperatorBase<FieldF> &Linop_f; | ||||
|     LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|     Integer TotalInnerIterations; //Number of inner CG iterations | ||||
|     Integer TotalOuterIterations; //Number of restarts | ||||
|     Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step | ||||
|  | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
|      | ||||
|     MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,  | ||||
|         LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :  | ||||
|       Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),  | ||||
|       MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {}; | ||||
|  | ||||
|     void useGuesser(LinearFunction<FieldF>& g){ | ||||
|       guesser = &g; | ||||
|     } | ||||
|    | ||||
|     void operator() (const FieldD& src_d_in, FieldD& sol_d) | ||||
|     { | ||||
|       TotalInnerIterations = 0; | ||||
|      | ||||
|       GridStopWatch TotalTimer; | ||||
|       TotalTimer.Start(); | ||||
|        | ||||
|       int cb = src_d_in.Checkerboard(); | ||||
|       sol_d.Checkerboard() = cb; | ||||
|        | ||||
|       RealD src_norm = norm2(src_d_in); | ||||
|       RealD stop = src_norm * Tolerance*Tolerance; | ||||
|  | ||||
|       GridBase* DoublePrecGrid = src_d_in.Grid(); | ||||
|       FieldD tmp_d(DoublePrecGrid); | ||||
|       tmp_d.Checkerboard() = cb; | ||||
|        | ||||
|       FieldD tmp2_d(DoublePrecGrid); | ||||
|       tmp2_d.Checkerboard() = cb; | ||||
|        | ||||
|       FieldD src_d(DoublePrecGrid); | ||||
|       src_d = src_d_in; //source for next inner iteration, computed from residual during operation | ||||
|        | ||||
|       RealD inner_tol = InnerTolerance; | ||||
|        | ||||
|       FieldF src_f(SinglePrecGrid); | ||||
|       src_f.Checkerboard() = cb; | ||||
|        | ||||
|       FieldF sol_f(SinglePrecGrid); | ||||
|       sol_f.Checkerboard() = cb; | ||||
|        | ||||
|       BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|       CG_f.ErrorOnNoConverge = false; | ||||
|  | ||||
|       GridStopWatch InnerCGtimer; | ||||
|  | ||||
|       GridStopWatch PrecChangeTimer; | ||||
|        | ||||
|       Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|          | ||||
|       for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++) | ||||
|       { | ||||
|         // Compute double precision rsd and also new RHS vector. | ||||
|         Linop_d.Op(sol_d, tmp_d); | ||||
|         RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector | ||||
|          | ||||
|         std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl; | ||||
|  | ||||
|         if(norm < OuterLoopNormMult * stop){ | ||||
|           std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl; | ||||
|           break; | ||||
|         } | ||||
|         while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(src_f, src_d); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         sol_f = Zero(); | ||||
|  | ||||
|         //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|         if(guesser != NULL){ (*guesser)(src_f, sol_f); } | ||||
|  | ||||
|         //Inner CG | ||||
|         CG_f.Tolerance = inner_tol; | ||||
|         InnerCGtimer.Start(); | ||||
|         CG_f(Linop_f, src_f, sol_f); | ||||
|         InnerCGtimer.Stop(); | ||||
|         TotalInnerIterations += CG_f.IterationsToComplete; | ||||
|          | ||||
|         //Convert sol back to double and add to double prec solution | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(tmp_d, sol_f); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         axpy(sol_d, 1.0, tmp_d, sol_d); | ||||
|       } | ||||
|        | ||||
|       //Final trial CG | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl; | ||||
|        | ||||
|       BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations); | ||||
|       CG_d(Linop_d, src_d_in, sol_d); | ||||
|       TotalFinalStepIterations = CG_d.IterationsToComplete; | ||||
|  | ||||
|       TotalTimer.Stop(); | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,248 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the CAGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   CommunicationAvoidingGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                   Integer maxit, | ||||
|                                                   Integer restart_length, | ||||
|                                                   bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl; | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // this should probably be made a class member so that it is only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     ComplexD scale = 1.0/gamma[0]; | ||||
|     v[0] = scale * r; | ||||
|  | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(v, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) { | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(v[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu     = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &v, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + v[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -1,170 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrec.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|   //Mixed precision restarted defect correction CG | ||||
|   template<class FieldD,class FieldF,  | ||||
|     typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
|     typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> { | ||||
|   public: | ||||
|     using LinearFunction<FieldD>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
|     Integer MaxOuterIterations; | ||||
|     GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|     RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|     LinearOperatorBase<FieldF> &Linop_f; | ||||
|     LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|     Integer TotalInnerIterations; //Number of inner CG iterations | ||||
|     Integer TotalOuterIterations; //Number of restarts | ||||
|     Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step | ||||
|     RealD TrueResidual; | ||||
|  | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
|      | ||||
|     MixedPrecisionConjugateGradient(RealD tol,  | ||||
| 				    Integer maxinnerit,  | ||||
| 				    Integer maxouterit,  | ||||
| 				    GridBase* _sp_grid,  | ||||
| 				    LinearOperatorBase<FieldF> &_Linop_f,  | ||||
| 				    LinearOperatorBase<FieldD> &_Linop_d) : | ||||
|       Linop_f(_Linop_f), Linop_d(_Linop_d), | ||||
|       Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), | ||||
|       OuterLoopNormMult(100.), guesser(NULL){ }; | ||||
|  | ||||
|     void useGuesser(LinearFunction<FieldF> &g){ | ||||
|       guesser = &g; | ||||
|     } | ||||
|    | ||||
|   void operator() (const FieldD &src_d_in, FieldD &sol_d){ | ||||
|     std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl; | ||||
|     TotalInnerIterations = 0; | ||||
| 	 | ||||
|     GridStopWatch TotalTimer; | ||||
|     TotalTimer.Start(); | ||||
|      | ||||
|     int cb = src_d_in.Checkerboard(); | ||||
|     sol_d.Checkerboard() = cb; | ||||
|      | ||||
|     RealD src_norm = norm2(src_d_in); | ||||
|     RealD stop = src_norm * Tolerance*Tolerance; | ||||
|  | ||||
|     GridBase* DoublePrecGrid = src_d_in.Grid(); | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     tmp_d.Checkerboard() = cb; | ||||
|      | ||||
|     FieldD tmp2_d(DoublePrecGrid); | ||||
|     tmp2_d.Checkerboard() = cb; | ||||
|      | ||||
|     FieldD src_d(DoublePrecGrid); | ||||
|     src_d = src_d_in; //source for next inner iteration, computed from residual during operation | ||||
|      | ||||
|     RealD inner_tol = InnerTolerance; | ||||
|      | ||||
|     FieldF src_f(SinglePrecGrid); | ||||
|     src_f.Checkerboard() = cb; | ||||
|      | ||||
|     FieldF sol_f(SinglePrecGrid); | ||||
|     sol_f.Checkerboard() = cb; | ||||
|      | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl; | ||||
|     ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|     CG_f.ErrorOnNoConverge = false; | ||||
|  | ||||
|     GridStopWatch InnerCGtimer; | ||||
|  | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|      | ||||
|     Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|  | ||||
|     precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid); | ||||
|      | ||||
|     for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ | ||||
|       //Compute double precision rsd and also new RHS vector. | ||||
|       Linop_d.HermOp(sol_d, tmp_d); | ||||
|       RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector | ||||
|        | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl; | ||||
|  | ||||
|       if(norm < OuterLoopNormMult * stop){ | ||||
| 	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl; | ||||
| 	break; | ||||
|       } | ||||
|       while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(src_f, src_d, pc_wk_dp_to_sp); | ||||
|       PrecChangeTimer.Stop(); | ||||
|        | ||||
|       sol_f = Zero(); | ||||
|  | ||||
|       //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|       if(guesser != NULL) | ||||
| 	(*guesser)(src_f, sol_f); | ||||
|  | ||||
|       //Inner CG | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl; | ||||
|       CG_f.Tolerance = inner_tol; | ||||
|       InnerCGtimer.Start(); | ||||
|       CG_f(Linop_f, src_f, sol_f); | ||||
|       InnerCGtimer.Stop(); | ||||
|       TotalInnerIterations += CG_f.IterationsToComplete; | ||||
|        | ||||
|       //Convert sol back to double and add to double prec solution | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp); | ||||
|       PrecChangeTimer.Stop(); | ||||
|        | ||||
|       axpy(sol_d, 1.0, tmp_d, sol_d); | ||||
|     } | ||||
|      | ||||
|     //Final trial CG | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl; | ||||
|      | ||||
|     ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations); | ||||
|     CG_d(Linop_d, src_d_in, sol_d); | ||||
|     TotalFinalStepIterations = CG_d.IterationsToComplete; | ||||
|     TrueResidual = CG_d.TrueResidual; | ||||
|  | ||||
|     TotalTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,213 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Mixed precision restarted defect correction CG | ||||
| template<class FieldD,class FieldF,  | ||||
|   typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
|   typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> { | ||||
| public: | ||||
|   using LinearFunction<FieldD>::operator(); | ||||
|   RealD   Tolerance; | ||||
|   RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|   Integer MaxInnerIterations; | ||||
|   Integer MaxOuterIterations; | ||||
|   Integer MaxPatchupIterations; | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|   LinearOperatorBase<FieldF> &Linop_f; | ||||
|   LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|   //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|   LinearFunction<FieldF> *guesser; | ||||
|   bool updateResidual; | ||||
|    | ||||
|   MixedPrecisionConjugateGradientBatched(RealD tol,  | ||||
|           Integer maxinnerit,  | ||||
|           Integer maxouterit,  | ||||
|           Integer maxpatchit, | ||||
|           GridBase* _sp_grid,  | ||||
|           LinearOperatorBase<FieldF> &_Linop_f,  | ||||
|           LinearOperatorBase<FieldD> &_Linop_d, | ||||
|           bool _updateResidual=true) : | ||||
|     Linop_f(_Linop_f), Linop_d(_Linop_d), | ||||
|     Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid), | ||||
|     OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { }; | ||||
|  | ||||
|   void useGuesser(LinearFunction<FieldF> &g){ | ||||
|     guesser = &g; | ||||
|   } | ||||
|    | ||||
|   void operator() (const FieldD &src_d_in, FieldD &sol_d){ | ||||
|     std::vector<FieldD> srcs_d_in{src_d_in}; | ||||
|     std::vector<FieldD> sols_d{sol_d}; | ||||
|  | ||||
|     (*this)(srcs_d_in,sols_d); | ||||
|  | ||||
|     sol_d = sols_d[0]; | ||||
|   } | ||||
|  | ||||
|   void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){ | ||||
|     assert(src_d_in.size() == sol_d.size()); | ||||
|     int NBatch = src_d_in.size(); | ||||
|  | ||||
|     std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl; | ||||
|  | ||||
|     Integer TotalOuterIterations = 0; //Number of restarts | ||||
|     std::vector<Integer> TotalInnerIterations(NBatch,0);     //Number of inner CG iterations | ||||
|     std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step | ||||
|    | ||||
|     GridStopWatch TotalTimer; | ||||
|     TotalTimer.Start(); | ||||
|  | ||||
|     GridStopWatch InnerCGtimer; | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|      | ||||
|     int cb = src_d_in[0].Checkerboard(); | ||||
|      | ||||
|     std::vector<RealD> src_norm; | ||||
|     std::vector<RealD> norm; | ||||
|     std::vector<RealD> stop; | ||||
|      | ||||
|     GridBase* DoublePrecGrid = src_d_in[0].Grid(); | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     tmp_d.Checkerboard() = cb; | ||||
|      | ||||
|     FieldD tmp2_d(DoublePrecGrid); | ||||
|     tmp2_d.Checkerboard() = cb; | ||||
|  | ||||
|     std::vector<FieldD> src_d; | ||||
|     std::vector<FieldF> src_f; | ||||
|     std::vector<FieldF> sol_f; | ||||
|  | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       sol_d[i].Checkerboard() = cb; | ||||
|  | ||||
|       src_norm.push_back(norm2(src_d_in[i])); | ||||
|       norm.push_back(0.); | ||||
|       stop.push_back(src_norm[i] * Tolerance*Tolerance); | ||||
|  | ||||
|       src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation | ||||
|  | ||||
|       src_f.push_back(SinglePrecGrid); | ||||
|       src_f[i].Checkerboard() = cb; | ||||
|  | ||||
|       sol_f.push_back(SinglePrecGrid); | ||||
|       sol_f[i].Checkerboard() = cb; | ||||
|     } | ||||
|      | ||||
|     RealD inner_tol = InnerTolerance; | ||||
|      | ||||
|     ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|     CG_f.ErrorOnNoConverge = false; | ||||
|      | ||||
|     Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|        | ||||
|     for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ | ||||
|       std::cout << GridLogMessage << std::endl; | ||||
|       std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl; | ||||
|        | ||||
|       bool allConverged = true; | ||||
|        | ||||
|       for (int i=0; i<NBatch; i++) { | ||||
|         //Compute double precision rsd and also new RHS vector. | ||||
|         Linop_d.HermOp(sol_d[i], tmp_d); | ||||
|         norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector | ||||
|          | ||||
|         std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl; | ||||
|  | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(src_f[i], src_d[i]); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         sol_f[i] = Zero(); | ||||
|        | ||||
|         if(norm[i] > OuterLoopNormMult * stop[i]) { | ||||
|           allConverged = false; | ||||
|         } | ||||
|       } | ||||
|       if (allConverged) break; | ||||
|  | ||||
|       if (updateResidual) { | ||||
|         RealD normMax = *std::max_element(std::begin(norm), std::end(norm)); | ||||
|         RealD stopMax = *std::max_element(std::begin(stop), std::end(stop)); | ||||
|         while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|         CG_f.Tolerance = inner_tol; | ||||
|       } | ||||
|  | ||||
|       //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|       if(guesser != NULL) { | ||||
|         (*guesser)(src_f, sol_f); | ||||
|       } | ||||
|  | ||||
|       for (int i=0; i<NBatch; i++) { | ||||
|         //Inner CG | ||||
|         InnerCGtimer.Start(); | ||||
|         CG_f(Linop_f, src_f[i], sol_f[i]); | ||||
|         InnerCGtimer.Stop(); | ||||
|         TotalInnerIterations[i] += CG_f.IterationsToComplete; | ||||
|          | ||||
|         //Convert sol back to double and add to double prec solution | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(tmp_d, sol_f[i]); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         axpy(sol_d[i], 1.0, tmp_d, sol_d[i]); | ||||
|       } | ||||
|  | ||||
|     } | ||||
|      | ||||
|     //Final trial CG | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl; | ||||
|      | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations); | ||||
|       CG_d(Linop_d, src_d_in[i], sol_d[i]); | ||||
|       TotalFinalStepIterations[i] += CG_d.IterationsToComplete; | ||||
|     } | ||||
|  | ||||
|     TotalTimer.Stop(); | ||||
|  | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl; | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|      | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,346 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H | ||||
| #define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class Field>  | ||||
| class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>, | ||||
| 				    public OperatorFunction<Field> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   //  RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :  | ||||
|     MaxIterations(maxit), | ||||
|     shifts(_shifts) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<Field> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi) | ||||
|   { | ||||
|     GRID_TRACE("ConjugateGradientMultiShift"); | ||||
|    | ||||
|     GridBase *grid = src.Grid(); | ||||
|    | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|     std::vector<Field>   ps(nshift,grid);// Search directions | ||||
|  | ||||
|     assert(psi.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     Field r(grid); | ||||
|     Field p(grid); | ||||
|     Field tmp(grid); | ||||
|     Field mmp(grid); | ||||
|    | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s | ||||
| 	       <<" target resid^2 "<<rsq[s]<<std::endl; | ||||
|       ps[s] = src; | ||||
|     } | ||||
|     // r and p for primary | ||||
|     r=src; | ||||
|     p=src; | ||||
|    | ||||
|     //MdagM+m[0] | ||||
|     Linop.HermOpAndNorm(p,mmp,d,qq); | ||||
|     axpy(mmp,mass[0],p,mmp); | ||||
|     RealD rn = norm2(p); | ||||
|     d += rn*mass[0]; | ||||
|    | ||||
|     // have verified that inner product of  | ||||
|     // p and mmp is equal to d after this since | ||||
|     // the d computation is tricky | ||||
|     //  qq = real(innerProduct(p,mmp)); | ||||
|     //  std::cout<<GridLogMessage << "debug equal ?  qq "<<qq<<" d "<< d<<std::endl; | ||||
|    | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r,b,mmp,r); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi[s],0.,-bs[s]*alpha[s],src,src); | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl; | ||||
|      | ||||
|    | ||||
|   /////////////////////////////////////// | ||||
|   // Timers | ||||
|   /////////////////////////////////////// | ||||
|   GridStopWatch AXPYTimer; | ||||
|   GridStopWatch ShiftTimer; | ||||
|   GridStopWatch QRTimer; | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch SolverTimer; | ||||
|   SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterations;k++){ | ||||
|      | ||||
|       a = c /cp; | ||||
|     AXPYTimer.Start(); | ||||
|       axpy(p,a,p,r); | ||||
|     AXPYTimer.Stop(); | ||||
|      | ||||
|       // Note to self - direction ps is iterated seperately | ||||
|       // for each shift. Does not appear to have any scope | ||||
|       // for avoiding linear algebra in "single" case. | ||||
|       //  | ||||
|       // However SAME r is used. Could load "r" and update | ||||
|       // ALL ps[s]. 2/3 Bandwidth saving | ||||
|       // New Kernel: Load r, vector of coeffs, vector of pointers ps | ||||
|     AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps[s],a,ps[s],r); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps[s],z[s][iz],as,r,ps[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|     AXPYTimer.Stop(); | ||||
|      | ||||
|       cp=c; | ||||
|     MatrixTimer.Start();   | ||||
|     //Linop.HermOpAndNorm(p,mmp,d,qq); // d is used | ||||
|     // The below is faster on KNL | ||||
|     Linop.HermOp(p,mmp);  | ||||
|     d=real(innerProduct(p,mmp)); | ||||
|      | ||||
|     MatrixTimer.Stop();   | ||||
|  | ||||
|     AXPYTimer.Start(); | ||||
|       axpy(mmp,mass[0],p,mmp); | ||||
|     AXPYTimer.Stop(); | ||||
|       RealD rn = norm2(p); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|      | ||||
|     AXPYTimer.Start(); | ||||
|       c=axpy_norm(r,b,mmp,r); | ||||
|     AXPYTimer.Stop(); | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|     ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|     ShiftTimer.Stop(); | ||||
|      | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	// Scope for optimisation here in case of "single". | ||||
| 	// Could load psi[0] and pull all ps[s] in. | ||||
| 	//      if ( single ) ss=primary; | ||||
| 	// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving | ||||
| 	// Pipelined CG gain: | ||||
| 	// | ||||
| 	// New Kernel: Load r, vector of coeffs, vector of pointers ps | ||||
| 	// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps | ||||
| 	// If can predict the coefficient bs then we can fuse these and avoid write reread cyce | ||||
| 	//  on ps[s]. | ||||
| 	// Before:  3 x npole  + 3 x npole | ||||
| 	// After :  2 x npole (ps[s])        => 3x speed up of multishift CG. | ||||
|        | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]); | ||||
| 	} | ||||
|       } | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsq[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|      | ||||
|       if ( all_converged ){ | ||||
|  | ||||
|     SolverTimer.Stop(); | ||||
|  | ||||
|  | ||||
| 	std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl; | ||||
|        | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop.HermOpAndNorm(psi[s],mmp,d,qq); | ||||
| 	  axpy(tmp,mass[s],psi[s],mmp); | ||||
| 	  axpy(r,-alpha[s],src,tmp); | ||||
| 	  RealD rn = norm2(r); | ||||
| 	  RealD cn = norm2(src); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl; | ||||
| 	} | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tAXPY     " << AXPYTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
|  | ||||
|       IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     | ||||
|     } | ||||
|     // ugly hack | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     //  assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,373 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christopher Kelly <ckelly@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.  | ||||
| //The residual is stored in single precision, but the search directions and solution are stored in double precision.  | ||||
| //Every update_freq iterations the residual is corrected in double precision.  | ||||
| //For safety the a final regular CG is applied to clean up if necessary | ||||
|  | ||||
| //PB Pure single, then double fixup | ||||
|  | ||||
| template<class FieldD, class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>, | ||||
| 					     public OperatorFunction<FieldD> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterationsMshift; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   int ReliableUpdateFreq; //number of iterations between reliable updates | ||||
|  | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   LinearOperatorBase<FieldF> &Linop_f; //single precision | ||||
|  | ||||
|   ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts, | ||||
| 				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, | ||||
| 				       int _ReliableUpdateFreq) :  | ||||
|     MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq), | ||||
|     MaxIterations(20000) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<FieldD> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d) | ||||
|   {  | ||||
|     GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup"); | ||||
|     GridBase *DoublePrecGrid = src_d.Grid(); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|  | ||||
|     //Double precision search directions | ||||
|     FieldD p_d(DoublePrecGrid); | ||||
|     std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision) | ||||
|     std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision) | ||||
|  | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldF r_f(SinglePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     FieldF p_f(SinglePrecGrid); | ||||
|     FieldF mmp_f(SinglePrecGrid); | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src_d); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi_d[s] = Zero(); | ||||
| 	psi_f[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       //      ps_d[s] = src_d; | ||||
|       precisionChange(ps_f[s],src_d); | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChange(p_f,p_d); | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChange(tmp_d,mmp_f); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     //    assert(norm2(tmp_d)< 1.0e-4); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|     d += rn*mass[0]; | ||||
|  | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r_d,b,mmp_d,r_d); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|       precisionChange(psi_f[s],psi_d[s]); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
|     // Timers | ||||
|     /////////////////////////////////////// | ||||
|     GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterationsMshift;k++){     | ||||
|  | ||||
|       a = c /cp; | ||||
|       AXPYTimer.Start(); | ||||
|       axpy(p_d,a,p_d,r_d);  | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(r_f, r_d); | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps_f[s],a,ps_f[s],r_f); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       cp=c; | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(p_f, p_d); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(mmp_d, mmp_f); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
|       axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|       RealD rn = norm2(p_d); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|       ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|       ShiftTimer.Stop(); | ||||
|  | ||||
|       //Update single precision solutions | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]); | ||||
| 	} | ||||
|       } | ||||
|       c = axpy_norm(r_d,b,mmp_d,r_d); | ||||
|       AXPYTimer.Stop(); | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsqf[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( all_converged || k == MaxIterationsMshift-1){ | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	for(int s=0;s<nshift;s++){ | ||||
| 	  precisionChange(psi_d[s],psi_f[s]); | ||||
| 	} | ||||
|  | ||||
| 	 | ||||
| 	if ( all_converged ){ | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl; | ||||
| 	} | ||||
| 	 | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq); | ||||
| 	  axpy(tmp_d,mass[s],psi_d[s],mmp_d); | ||||
| 	  axpy(r_d,-alpha[s],src_d,tmp_d); | ||||
| 	  RealD rn = norm2(r_d); | ||||
| 	  RealD cn = norm2(src_d); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl; | ||||
|  | ||||
| 	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup | ||||
| 	  if(rn >= rsq[s]){ | ||||
| 	    CleanupTimer.Start(); | ||||
| 	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl; | ||||
|  | ||||
| 	    //Setup linear operators for final cleanup | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]); | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]); | ||||
| 					        | ||||
| 	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);  | ||||
| 	    cg(src_d, psi_d[s]); | ||||
| 	     | ||||
| 	    TrueResidualShift[s] = cg.TrueResidual; | ||||
| 	    CleanupTimer.Stop(); | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl; | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,416 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christopher Kelly <ckelly@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.  | ||||
| //The residual is stored in single precision, but the search directions and solution are stored in double precision.  | ||||
| //Every update_freq iterations the residual is corrected in double precision.  | ||||
|      | ||||
| //For safety the a final regular CG is applied to clean up if necessary | ||||
|  | ||||
| //Linop to add shift to input linop, used in cleanup CG | ||||
| namespace ConjugateGradientMultiShiftMixedPrecSupport{ | ||||
| template<typename Field> | ||||
| class ShiftedLinop: public LinearOperatorBase<Field>{ | ||||
| public: | ||||
|   LinearOperatorBase<Field> &linop_base; | ||||
|   RealD shift; | ||||
|  | ||||
|   ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){} | ||||
|  | ||||
|   void OpDiag (const Field &in, Field &out){ assert(0); } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } | ||||
|    | ||||
|   void Op     (const Field &in, Field &out){ assert(0); } | ||||
|   void AdjOp  (const Field &in, Field &out){ assert(0); } | ||||
|  | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     linop_base.HermOp(in, out); | ||||
|     axpy(out, shift, in, out); | ||||
|   }     | ||||
|  | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
| }; | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class FieldD, class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>, | ||||
| 					     public OperatorFunction<FieldD> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterationsMshift; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   int ReliableUpdateFreq; //number of iterations between reliable updates | ||||
|  | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   LinearOperatorBase<FieldF> &Linop_f; //single precision | ||||
|  | ||||
|   ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts, | ||||
| 				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, | ||||
| 				       int _ReliableUpdateFreq) :  | ||||
|     MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq), | ||||
|     MaxIterations(20000) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<FieldD> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d) | ||||
|   {  | ||||
|     GRID_TRACE("ConjugateGradientMultiShiftMixedPrec"); | ||||
|     GridBase *DoublePrecGrid = src_d.Grid(); | ||||
|  | ||||
|     precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid); | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|  | ||||
|     //Double precision search directions | ||||
|     FieldD p_d(DoublePrecGrid); | ||||
|     std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision) | ||||
|  | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     FieldF p_f(SinglePrecGrid); | ||||
|     FieldF mmp_f(SinglePrecGrid); | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src_d); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi_d[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       ps_d[s] = src_d; | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChange(p_f, p_d, pc_wk_d_to_s); | ||||
|  | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChange(tmp_d, mmp_f, pc_wk_s_to_d); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     assert(norm2(tmp_d)< 1.0); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|     d += rn*mass[0]; | ||||
|  | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r_d,b,mmp_d,r_d); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
|     // Timers | ||||
|     /////////////////////////////////////// | ||||
|     GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterationsMshift;k++){     | ||||
|  | ||||
|       a = c /cp; | ||||
|       AXPYTimer.Start(); | ||||
|       axpy(p_d,a,p_d,r_d);  | ||||
|  | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps_d[s],a,ps_d[s],r_d); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       cp=c; | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
|       axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|       AXPYTimer.Stop(); | ||||
|       RealD rn = norm2(p_d); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|       ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|       ShiftTimer.Stop(); | ||||
|  | ||||
|       //Update double precision solutions | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]); | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       //Perform reliable update if necessary; otherwise update residual from single-prec mmp | ||||
|       c = axpy_norm(r_d,b,mmp_d,r_d); | ||||
|  | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       if(k % ReliableUpdateFreq == 0){ | ||||
| 	RealD c_old = c; | ||||
| 	//Replace r with true residual | ||||
| 	MatrixTimer.Start();   | ||||
| 	Linop_d.HermOp(psi_d[0],mmp_d);  | ||||
| 	MatrixTimer.Stop();   | ||||
|  | ||||
| 	AXPYTimer.Start(); | ||||
| 	axpy(mmp_d,mass[0],psi_d[0],mmp_d); | ||||
|  | ||||
| 	c = axpy_norm(r_d, -1.0, mmp_d, src_d); | ||||
| 	AXPYTimer.Stop(); | ||||
|  | ||||
| 	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl; | ||||
|       } | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsqf[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( all_converged || k == MaxIterationsMshift-1){ | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	if ( all_converged ){ | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl; | ||||
| 	} | ||||
| 	 | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq); | ||||
| 	  axpy(tmp_d,mass[s],psi_d[s],mmp_d); | ||||
| 	  axpy(r_d,-alpha[s],src_d,tmp_d); | ||||
| 	  RealD rn = norm2(r_d); | ||||
| 	  RealD cn = norm2(src_d); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl; | ||||
|  | ||||
| 	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup | ||||
| 	  if(rn >= rsq[s]){ | ||||
| 	    CleanupTimer.Start(); | ||||
| 	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl; | ||||
|  | ||||
| 	    //Setup linear operators for final cleanup | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]); | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]); | ||||
| 					        | ||||
| 	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);  | ||||
| 	    cg(src_d, psi_d[s]); | ||||
| 	     | ||||
| 	    TrueResidualShift[s] = cg.TrueResidual; | ||||
| 	    CleanupTimer.Stop(); | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl; | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,277 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H | ||||
| #define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class FieldD,class FieldF,  | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> { | ||||
| public: | ||||
|   bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|   // Defaults true. | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   Integer ReliableUpdatesPerformed; | ||||
|  | ||||
|   bool DoFinalCleanup; //Final DP cleanup, defaults to true | ||||
|   Integer IterationsToCleanup; //Final DP cleanup step iterations | ||||
|      | ||||
|   LinearOperatorBase<FieldF> &Linop_f; | ||||
|   LinearOperatorBase<FieldD> &Linop_d; | ||||
|   GridBase* SinglePrecGrid; | ||||
|   RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update | ||||
|  | ||||
|   //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single | ||||
|   LinearOperatorBase<FieldF> *Linop_fallback; | ||||
|   RealD fallback_transition_tol; | ||||
|  | ||||
|      | ||||
|   ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), | ||||
|       MaxIterations(maxit), | ||||
|       Delta(_delta), | ||||
|       Linop_f(_Linop_f), | ||||
|       Linop_d(_Linop_d), | ||||
|       SinglePrecGrid(_sp_grid), | ||||
|       ErrorOnNoConverge(err_on_no_conv), | ||||
|       DoFinalCleanup(true), | ||||
|       Linop_fallback(NULL) | ||||
|   { | ||||
|     assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1"); | ||||
|   }; | ||||
|  | ||||
|   void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){ | ||||
|     Linop_fallback = &_Linop_fallback; | ||||
|     fallback_transition_tol = _fallback_transition_tol;       | ||||
|   } | ||||
|      | ||||
|   void operator()(const FieldD &src, FieldD &psi) { | ||||
|     GRID_TRACE("ConjugateGradientReliableUpdate"); | ||||
|     LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f; | ||||
|     bool using_fallback = false; | ||||
|        | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD cp, c, a, d, b, ssq, qq, b_pred; | ||||
|  | ||||
|     FieldD p(src); | ||||
|     FieldD mmp(src); | ||||
|     FieldD r(src); | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|      | ||||
|     Linop_d.HermOpAndNorm(psi, mmp, d, b); | ||||
|      | ||||
|     r = src - mmp; | ||||
|     p = r; | ||||
|  | ||||
|     a = norm2(p); | ||||
|     cp = a; | ||||
|     ssq = norm2(src); | ||||
|  | ||||
|     std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   src " << ssq << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:    mp " << d << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   mmp " << b << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:  cp,r " << cp << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:     p " << a << std::endl; | ||||
|  | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     // Check if guess is really REALLY good :) | ||||
|     if (cp <= rsq) { | ||||
|       std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n"; | ||||
|       std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl; | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     //Single prec initialization | ||||
|     precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid()); | ||||
|      | ||||
|     FieldF r_f(SinglePrecGrid); | ||||
|     r_f.Checkerboard() = r.Checkerboard(); | ||||
|     precisionChange(r_f, r, pc_wk_dp_to_sp); | ||||
|  | ||||
|     FieldF psi_f(r_f); | ||||
|     psi_f = Zero(); | ||||
|  | ||||
|     FieldF p_f(r_f); | ||||
|     FieldF mmp_f(r_f); | ||||
|  | ||||
|     RealD MaxResidSinceLastRelUp = cp; //initial residual     | ||||
|      | ||||
|     std::cout << GridLogIterative << std::setprecision(4) | ||||
| 	      << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     GridStopWatch SolverTimer; | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|      | ||||
|     SolverTimer.Start(); | ||||
|     int k = 0; | ||||
|     int l = 0; | ||||
|      | ||||
|     for (k = 1; k <= MaxIterations; k++) { | ||||
|       c = cp; | ||||
|  | ||||
|       MatrixTimer.Start(); | ||||
|       Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq); | ||||
|       MatrixTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       a = c / d; | ||||
|       b_pred = a * (a * qq - d) / c; | ||||
|  | ||||
|       cp = axpy_norm(r_f, -a, mmp_f, r_f); | ||||
|       b = cp / c; | ||||
|  | ||||
|       // Fuse these loops ; should be really easy | ||||
|       psi_f = a * p_f + psi_f; | ||||
|       //p_f = p_f * b + r_f; | ||||
|  | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k | ||||
| 		<< " residual " << cp << " target " << rsq << std::endl; | ||||
|       std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << "  b = "<< b << std::endl; | ||||
|       std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << "  c = "<< c << std::endl; | ||||
|  | ||||
|       if(cp > MaxResidSinceLastRelUp){ | ||||
| 	std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl; | ||||
| 	MaxResidSinceLastRelUp = cp; | ||||
|       } | ||||
| 	   | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
| 	//Although not written in the paper, I assume that I have to add on the final solution | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(mmp, psi_f, pc_wk_sp_to_dp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	psi = psi + mmp; | ||||
| 	 | ||||
| 	 | ||||
| 	SolverTimer.Stop(); | ||||
| 	Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	p = mmp - src; | ||||
|  | ||||
| 	RealD srcnorm = std::sqrt(norm2(src)); | ||||
| 	RealD resnorm = std::sqrt(norm2(p)); | ||||
| 	RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl; | ||||
| 	std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
| 	std::cout << GridLogMessage << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl; | ||||
|  | ||||
| 	 | ||||
| 	IterationsToComplete = k;	 | ||||
| 	ReliableUpdatesPerformed = l; | ||||
| 	   | ||||
| 	if(DoFinalCleanup){ | ||||
| 	  //Do a final CG to cleanup | ||||
| 	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n"; | ||||
| 	  ConjugateGradient<FieldD> CG(Tolerance,MaxIterations); | ||||
| 	  CG.ErrorOnNoConverge = ErrorOnNoConverge; | ||||
| 	  CG(Linop_d,src,psi); | ||||
| 	  IterationsToCleanup = CG.IterationsToComplete; | ||||
| 	} | ||||
| 	else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n"; | ||||
| 	return; | ||||
|       } | ||||
|       else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate " | ||||
| 		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n"; | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(mmp, psi_f, pc_wk_sp_to_dp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	psi = psi + mmp; | ||||
|  | ||||
| 	MatrixTimer.Start(); | ||||
| 	Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	MatrixTimer.Stop(); | ||||
| 	 | ||||
| 	r = src - mmp; | ||||
|  | ||||
| 	psi_f = Zero(); | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(r_f, r, pc_wk_dp_to_sp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	cp = norm2(r); | ||||
| 	MaxResidSinceLastRelUp = cp; | ||||
|  | ||||
| 	b = cp/c; | ||||
| 	   | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl; | ||||
| 	   | ||||
| 	l = l+1; | ||||
|       } | ||||
|  | ||||
|       p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence | ||||
|  | ||||
|       if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){ | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl; | ||||
| 	Linop_f_use = Linop_fallback; | ||||
| 	using_fallback = true; | ||||
|       } | ||||
|  | ||||
| 	 | ||||
|     } | ||||
|     std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge" | ||||
| 	      << std::endl; | ||||
|        | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     IterationsToComplete = k; | ||||
|     ReliableUpdatesPerformed = l;       | ||||
|   }     | ||||
| }; | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|  | ||||
| #endif | ||||
| @@ -1,113 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateResidual.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_RESIDUAL_H | ||||
| #define GRID_CONJUGATE_RESIDUAL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class Field>  | ||||
| class ConjugateResidual : public OperatorFunction<Field> { | ||||
| public:                                                 | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|  | ||||
|   ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {  | ||||
|     verbose=0; | ||||
|   }; | ||||
|  | ||||
|   void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){ | ||||
|  | ||||
|     RealD a, b; // c, d; | ||||
|     RealD cp, ssq,rsq; | ||||
|        | ||||
|     RealD rAr, rAAr, rArp; | ||||
|     RealD pAp, pAAp; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|     psi=Zero(); | ||||
|     Field r(grid),  p(grid), Ap(grid), Ar(grid); | ||||
|        | ||||
|     r=src; | ||||
|     p=src; | ||||
|  | ||||
|     Linop.HermOpAndNorm(p,Ap,pAp,pAAp); | ||||
|     Linop.HermOpAndNorm(r,Ar,rAr,rAAr); | ||||
|  | ||||
|     cp =norm2(r); | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|  | ||||
|     if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl; | ||||
|  | ||||
|     for(int k=1;k<MaxIterations;k++){ | ||||
|  | ||||
|       a = rAr/pAAp; | ||||
|  | ||||
|       axpy(psi,a,p,psi); | ||||
|  | ||||
|       cp = axpy_norm(r,-a,Ap,r); | ||||
|  | ||||
|       rArp=rAr; | ||||
|  | ||||
|       Linop.HermOpAndNorm(r,Ar,rAr,rAAr); | ||||
|  | ||||
|       b   =rAr/rArp; | ||||
|   | ||||
|       axpy(p,b,p,r); | ||||
|       pAAp=axpy_norm(Ap,b,Ap,Ar); | ||||
| 	 | ||||
|       if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl; | ||||
|  | ||||
|       if(cp<rsq) { | ||||
| 	Linop.HermOp(psi,Ap); | ||||
| 	axpy(r,-1.0,src,Ap); | ||||
| 	RealD true_resid = norm2(r)/ssq; | ||||
| 	std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k | ||||
| 		 << " computed residual "<<std::sqrt(cp/ssq) | ||||
| 		 << " true residual "<<std::sqrt(true_resid) | ||||
| 		 << " target "       <<Tolerance <<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|     std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,258 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the FCAGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
|   FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                           Integer maxit, | ||||
|                                                           LinearFunction<Field> &Prec, | ||||
|                                                           Integer restart_length, | ||||
|                                                           bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) | ||||
|       , Preconditioner(Prec) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl; | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, z, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(z, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) { | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(v[iter], z[iter]); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(z[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &z, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + z[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -1,256 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the FGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
|   FlexibleGeneralisedMinimalResidual(RealD   tol, | ||||
|                                      Integer maxit, | ||||
|                                      LinearFunction<Field> &Prec, | ||||
|                                      Integer restart_length, | ||||
|                                      bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) | ||||
|       , Preconditioner(Prec) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, z, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(z, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) { | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(v[iter], z[iter]); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(z[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &z, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + z[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -1,244 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the GMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   GeneralisedMinimalResidual(RealD   tol, | ||||
|                              Integer maxit, | ||||
|                              Integer restart_length, | ||||
|                              bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "GeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // this should probably be made a class member so that it is only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(v, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) { | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(v[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &v, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + v[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,157 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/MinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_MINIMAL_RESIDUAL_H | ||||
| #define GRID_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // throw an assert when the MR fails to converge. | ||||
|                           // Defaults true. | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   RealD   overRelaxParam; | ||||
|   Integer IterationsToComplete; // Number of iterations the MR took to finish. | ||||
|                                 // Filled in upon completion | ||||
|  | ||||
|   MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     ComplexD a, c; | ||||
|     RealD    d; | ||||
|  | ||||
|     Field Mr(src); | ||||
|     Field r(src); | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Linop.Op(psi, Mr); | ||||
|  | ||||
|     r = src - Mr; | ||||
|  | ||||
|     RealD cp = norm2(r); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:   src " << ssq << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:  cp,r " << cp << std::endl; | ||||
|  | ||||
|     if (cp <= rsq) { | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     GridStopWatch SolverTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|     int k; | ||||
|     for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
|       MatrixTimer.Start(); | ||||
|       Linop.Op(r, Mr); | ||||
|       MatrixTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       c = innerProduct(Mr, r); | ||||
|  | ||||
|       d = norm2(Mr); | ||||
|  | ||||
|       a = c / d; | ||||
|  | ||||
|       a = a * overRelaxParam; | ||||
|  | ||||
|       psi = psi + r * a; | ||||
|  | ||||
|       r = r - Mr * a; | ||||
|  | ||||
|       cp = norm2(r); | ||||
|  | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       std::cout << GridLogIterative << "MinimalResidual: Iteration " << k | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|       std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         Linop.Op(psi, Mr); | ||||
|         r = src - Mr; | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "MinimalResidual Converged on iteration " << k | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Total   " << SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Matrix  " << MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) | ||||
|           assert(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
|         IterationsToComplete = k; | ||||
|  | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "MinimalResidual did NOT converge" | ||||
|               << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|  | ||||
|     IterationsToComplete = k; | ||||
|   } | ||||
| }; | ||||
| } // namespace Grid | ||||
| #endif | ||||
| @@ -1,276 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> | ||||
| class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> { | ||||
|  public: | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the MPFGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|   GridStopWatch ChangePrecTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   GridBase* SinglePrecGrid; | ||||
|  | ||||
|   LinearFunction<FieldF> &Preconditioner; | ||||
|  | ||||
|   MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                    Integer maxit, | ||||
|                                                    GridBase * sp_grid, | ||||
|                                                    LinearFunction<FieldF> &Prec, | ||||
|                                                    Integer restart_length, | ||||
|                                                    bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) | ||||
|       , SinglePrecGrid(sp_grid) | ||||
|       , Preconditioner(Prec) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     FieldD r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "MPFGMRES:   src " << ssq   << std::endl; | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|     ChangePrecTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "MPFGMRES: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total      " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon     " <<         PrecTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix     " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg     " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR         " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol    " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " <<   ChangePrecTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     FieldD w(src.Grid()); | ||||
|     FieldD r(src.Grid()); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, z, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(z, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) { | ||||
|  | ||||
|     FieldF v_f(SinglePrecGrid); | ||||
|     FieldF z_f(SinglePrecGrid); | ||||
|  | ||||
|     ChangePrecTimer.Start(); | ||||
|     precisionChange(v_f, v[iter]); | ||||
|     precisionChange(z_f, z[iter]); | ||||
|     ChangePrecTimer.Stop(); | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(v_f, z_f); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     ChangePrecTimer.Start(); | ||||
|     precisionChange(z[iter], z_f); | ||||
|     ChangePrecTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(z[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + z[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -1,112 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/NormalEquations.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_NORMAL_EQUATIONS_H | ||||
| #define GRID_NORMAL_EQUATIONS_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Take a matrix and form an NE solver calling a Herm solver | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class NormalEquations : public LinearFunction<Field>{ | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 		 LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     Field src(in.Grid()); | ||||
|     Field tmp(in.Grid()); | ||||
|  | ||||
|     MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix); | ||||
|     _Matrix.Mdag(in,src); | ||||
|     _Guess(src,out); | ||||
|     _HermitianSolver(MdagMOp,src,out);  // Mdag M out = Mdag in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class HPDSolver : public LinearFunction<Field> { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  HPDSolver(LinearOperatorBase<Field> &Matrix, | ||||
| 	   OperatorFunction<Field> &HermitianSolver, | ||||
| 	   LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     _Guess(in,out); | ||||
|     _HermitianSolver(_Matrix,in,out);  //M out = in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> class MdagMSolver : public LinearFunction<Field> { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 	     LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix); | ||||
|     _Guess(in,out); | ||||
|  | ||||
|     _HermitianSolver(MdagMOp,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,47 +0,0 @@ | ||||
| #pragma once | ||||
| namespace Grid { | ||||
| template<class Field> class PowerMethod   | ||||
| {  | ||||
|  public:  | ||||
|  | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
|  | ||||
|   RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)  | ||||
|   {  | ||||
|     GridBase *grid = src.Grid();  | ||||
|      | ||||
|     // quickly get an idea of the largest eigenvalue to more properly normalize the residuum  | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 100;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
|       normalise(src_n);  | ||||
|       HermOp.HermOp(src_n,tmp);  | ||||
|       RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.  | ||||
|       RealD vden = norm2(src_n);  | ||||
|       RealD na = vnum/vden;  | ||||
|  | ||||
|       std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|        | ||||
|       if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
|  	evalMaxApprox = na;  | ||||
| 	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|  	return evalMaxApprox;  | ||||
|       }  | ||||
|       evalMaxApprox = na;  | ||||
|       src_n = tmp; | ||||
|     } | ||||
|     assert(0); | ||||
|     return 0; | ||||
|   } | ||||
| }; | ||||
| } | ||||
| @@ -1,119 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/PrecConjugateResidual.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_PREC_CONJUGATE_RESIDUAL_H | ||||
| #define GRID_PREC_CONJUGATE_RESIDUAL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class Field>  | ||||
| class PrecConjugateResidual : public OperatorFunction<Field> { | ||||
| public:                                                 | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
|   PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit),      Preconditioner(Prec) | ||||
|   {  | ||||
|     verbose=1; | ||||
|   }; | ||||
|  | ||||
|   void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){ | ||||
|  | ||||
|     RealD a, b, c, d; | ||||
|     RealD cp, ssq,rsq; | ||||
|        | ||||
|     RealD rAr, rAAr, rArp; | ||||
|     RealD pAp, pAAp; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|     Field r(grid),  p(grid), Ap(grid), Ar(grid), z(grid); | ||||
|        | ||||
|     psi=zero; | ||||
|     r  = src; | ||||
|     Preconditioner(r,p); | ||||
|  | ||||
|        | ||||
|  | ||||
|     Linop.HermOpAndNorm(p,Ap,pAp,pAAp); | ||||
|     Ar=Ap; | ||||
|     rAr=pAp; | ||||
|     rAAr=pAAp; | ||||
|  | ||||
|     cp =norm2(r); | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|  | ||||
|     if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl; | ||||
|  | ||||
|     for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|  | ||||
|       Preconditioner(Ap,z); | ||||
|       RealD rq= real(innerProduct(Ap,z));  | ||||
|  | ||||
|       a = rAr/rq; | ||||
|  | ||||
|       axpy(psi,a,p,psi); | ||||
|       cp = axpy_norm(r,-a,z,r); | ||||
|  | ||||
|       rArp=rAr; | ||||
|  | ||||
|       Linop.HermOpAndNorm(r,Ar,rAr,rAAr); | ||||
|  | ||||
|       b   =rAr/rArp; | ||||
|   | ||||
|       axpy(p,b,p,r); | ||||
|       pAAp=axpy_norm(Ap,b,Ap,Ar); | ||||
| 	 | ||||
|       if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl; | ||||
|  | ||||
|       if(cp<rsq) { | ||||
| 	Linop.HermOp(psi,Ap); | ||||
| 	axpy(r,-1.0,src,Ap); | ||||
| 	RealD true_resid = norm2(r)/ssq; | ||||
| 	std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k | ||||
| 		 << " computed residual "<<sqrt(cp/ssq) | ||||
| 		 << " true residual "<<sqrt(true_resid) | ||||
| 		 << " target "       <<Tolerance <<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|     std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,239 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_PREC_GCR_H | ||||
| #define GRID_PREC_GCR_H | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //VPGCR Abe and Zhang, 2005. | ||||
| //INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING | ||||
| //Computing and Information Volume 2, Number 2, Pages 147-161 | ||||
| //NB. Likely not original reference since they are focussing on a preconditioner variant. | ||||
| //    but VPGCR was nicely written up in their paper | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "  | ||||
|  | ||||
| template<class Field> | ||||
| class PrecGeneralisedConjugateResidual : public LinearFunction<Field> { | ||||
| public:                                                 | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|   int mmax; | ||||
|   int nstep; | ||||
|   int steps; | ||||
|   int level; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch MatTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|  | ||||
|   LinearFunction<Field>     &Preconditioner; | ||||
|   LinearOperatorBase<Field> &Linop; | ||||
|  | ||||
|   void Level(int lv) { level=lv; }; | ||||
|  | ||||
|   PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     Linop(_Linop), | ||||
|     Preconditioner(Prec), | ||||
|     mmax(_mmax), | ||||
|     nstep(_nstep) | ||||
|   {  | ||||
|     level=1; | ||||
|     verbose=1; | ||||
|   }; | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|     RealD cp, ssq,rsq; | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|        | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     steps=0; | ||||
|     for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|       cp=GCRnStep(src,psi,rsq); | ||||
|  | ||||
|       GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl; | ||||
|  | ||||
|       if(cp<rsq) { | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	Linop.HermOp(psi,r); | ||||
| 	axpy(r,-1.0,src,r); | ||||
| 	RealD tr = norm2(r); | ||||
| 	GCRLogLevel<<"PGCR: Converged on iteration " <<steps | ||||
| 		 << " computed residual "<<sqrt(cp/ssq) | ||||
| 		 << " true residual "    <<sqrt(tr/ssq) | ||||
| 		 << " target "           <<Tolerance <<std::endl; | ||||
|  | ||||
| 	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	/* | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl; | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl; | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl; | ||||
| 	*/ | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD a, b; | ||||
|     RealD zAz, zAAz; | ||||
|     RealD rq; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|  | ||||
|     Field r(grid); | ||||
|     Field z(grid); | ||||
|     Field tmp(grid); | ||||
|     Field ttmp(grid); | ||||
|     Field Az(grid); | ||||
|  | ||||
|     //////////////////////////////// | ||||
|     // history for flexible orthog | ||||
|     //////////////////////////////// | ||||
|     std::vector<Field> q(mmax,grid); | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<RealD> qq(mmax); | ||||
|        | ||||
|     GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl; | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // initial guess x0 is taken as nonzero. | ||||
|     // r0=src-A x0 = src | ||||
|     ////////////////////////////////// | ||||
|     MatTimer.Start(); | ||||
|     Linop.HermOpAndNorm(psi,Az,zAz,zAAz);  | ||||
|     MatTimer.Stop(); | ||||
|      | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r=src-Az; | ||||
|     LinalgTimer.Stop(); | ||||
|     GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl; | ||||
|      | ||||
|     ///////////////////// | ||||
|     // p = Prec(r) | ||||
|     ///////////////////// | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(r,z); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatTimer.Start(); | ||||
|     Linop.HermOpAndNorm(z,Az,zAz,zAAz);  | ||||
|     MatTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|  | ||||
|     //p[0],q[0],qq[0]  | ||||
|     p[0]= z; | ||||
|     q[0]= Az; | ||||
|     qq[0]= zAAz; | ||||
|      | ||||
|     cp =norm2(r); | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for(int k=0;k<nstep;k++){ | ||||
|  | ||||
|       steps++; | ||||
|  | ||||
|       int kp     = k+1; | ||||
|       int peri_k = k %mmax; | ||||
|       int peri_kp= kp%mmax; | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|       rq= real(innerProduct(r,q[peri_k])); // what if rAr not real? | ||||
|       a = rq/qq[peri_k]; | ||||
|  | ||||
|       axpy(psi,a,p[peri_k],psi);          | ||||
|  | ||||
|       cp = axpy_norm(r,-a,q[peri_k],r); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl;  | ||||
|  | ||||
|       if((k==nstep-1)||(cp<rsq)){ | ||||
| 	return cp; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       PrecTimer.Start(); | ||||
|       Preconditioner(r,z);// solve Az = r | ||||
|       PrecTimer.Stop(); | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.HermOpAndNorm(z,Az,zAz,zAAz); | ||||
|       MatTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       q[peri_kp]=Az; | ||||
|       p[peri_kp]=z; | ||||
|  | ||||
|       int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history. | ||||
|       for(int back=0;back<northog;back++){ | ||||
|  | ||||
| 	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0); | ||||
|  | ||||
| 	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back]; | ||||
| 	p[peri_kp]=p[peri_kp]+b*p[peri_back]; | ||||
| 	q[peri_kp]=q[peri_kp]+b*q[peri_back]; | ||||
|  | ||||
|       } | ||||
|       qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|     } | ||||
|     assert(0); // never reached | ||||
|     return cp; | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,242 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_PREC_GCR_NON_HERM_H | ||||
| #define GRID_PREC_GCR_NON_HERM_H | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //VPGCR Abe and Zhang, 2005. | ||||
| //INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING | ||||
| //Computing and Information Volume 2, Number 2, Pages 147-161 | ||||
| //NB. Likely not original reference since they are focussing on a preconditioner variant. | ||||
| //    but VPGCR was nicely written up in their paper | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "  | ||||
|  | ||||
| template<class Field> | ||||
| class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> { | ||||
| public:                                                 | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|   int mmax; | ||||
|   int nstep; | ||||
|   int steps; | ||||
|   int level; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch MatTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|  | ||||
|   LinearFunction<Field>     &Preconditioner; | ||||
|   LinearOperatorBase<Field> &Linop; | ||||
|  | ||||
|   void Level(int lv) { level=lv; }; | ||||
|  | ||||
|   PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     Linop(_Linop), | ||||
|     Preconditioner(Prec), | ||||
|     mmax(_mmax), | ||||
|     nstep(_nstep) | ||||
|   {  | ||||
|     level=1; | ||||
|     verbose=1; | ||||
|   }; | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|     RealD cp, ssq,rsq; | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|        | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     steps=0; | ||||
|     for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|       cp=GCRnStep(src,psi,rsq); | ||||
|  | ||||
|       GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl; | ||||
|  | ||||
|       if(cp<rsq) { | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	Linop.Op(psi,r); | ||||
| 	axpy(r,-1.0,src,r); | ||||
| 	RealD tr = norm2(r); | ||||
| 	GCRLogLevel<<"PGCR: Converged on iteration " <<steps | ||||
| 		 << " computed residual "<<sqrt(cp/ssq) | ||||
| 		 << " true residual "    <<sqrt(tr/ssq) | ||||
| 		 << " target "           <<Tolerance <<std::endl; | ||||
|  | ||||
| 	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|     RealD cp; | ||||
|     ComplexD a, b; | ||||
|     //    ComplexD zAz; | ||||
|     RealD zAAz; | ||||
|     ComplexD rq; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|  | ||||
|     Field r(grid); | ||||
|     Field z(grid); | ||||
|     Field tmp(grid); | ||||
|     Field ttmp(grid); | ||||
|     Field Az(grid); | ||||
|  | ||||
|     //////////////////////////////// | ||||
|     // history for flexible orthog | ||||
|     //////////////////////////////// | ||||
|     std::vector<Field> q(mmax,grid); | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<RealD> qq(mmax); | ||||
|        | ||||
|     GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl; | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // initial guess x0 is taken as nonzero. | ||||
|     // r0=src-A x0 = src | ||||
|     ////////////////////////////////// | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(psi,Az); | ||||
|     //    zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|     MatTimer.Stop(); | ||||
|      | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r=src-Az; | ||||
|     LinalgTimer.Stop(); | ||||
|     GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl; | ||||
|      | ||||
|     ///////////////////// | ||||
|     // p = Prec(r) | ||||
|     ///////////////////// | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(r,z); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(z,Az); | ||||
|     MatTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|  | ||||
|     //    zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|  | ||||
|     //p[0],q[0],qq[0]  | ||||
|     p[0]= z; | ||||
|     q[0]= Az; | ||||
|     qq[0]= zAAz; | ||||
|      | ||||
|     cp =norm2(r); | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for(int k=0;k<nstep;k++){ | ||||
|  | ||||
|       steps++; | ||||
|  | ||||
|       int kp     = k+1; | ||||
|       int peri_k = k %mmax; | ||||
|       int peri_kp= kp%mmax; | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|       rq= innerProduct(q[peri_k],r); // what if rAr not real? | ||||
|       a = rq/qq[peri_k]; | ||||
|  | ||||
|       axpy(psi,a,p[peri_k],psi);          | ||||
|  | ||||
|       cp = axpy_norm(r,-a,q[peri_k],r); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl;  | ||||
|  | ||||
|       if((k==nstep-1)||(cp<rsq)){ | ||||
| 	return cp; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       PrecTimer.Start(); | ||||
|       Preconditioner(r,z);// solve Az = r | ||||
|       PrecTimer.Stop(); | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.Op(z,Az); | ||||
|       MatTimer.Stop(); | ||||
|       //      zAz = innerProduct(Az,psi); | ||||
|       zAAz= norm2(Az); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       q[peri_kp]=Az; | ||||
|       p[peri_kp]=z; | ||||
|  | ||||
|       int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history. | ||||
|       for(int back=0;back<northog;back++){ | ||||
|  | ||||
| 	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0); | ||||
|  | ||||
| 	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back]; | ||||
| 	p[peri_kp]=p[peri_kp]+b*p[peri_back]; | ||||
| 	q[peri_kp]=q[peri_kp]+b*q[peri_back]; | ||||
|  | ||||
|       } | ||||
|       qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|     } | ||||
|     assert(0); // never reached | ||||
|     return cp; | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,371 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field>  | ||||
| RealD innerG5ProductReal(Field &l, Field &r) | ||||
| { | ||||
|   Gamma G5(Gamma::Algebra::Gamma5); | ||||
|   Field tmp(l.Grid()); | ||||
|   //  tmp = G5*r; | ||||
|   G5R5(tmp,r); | ||||
|   ComplexD ip =innerProduct(l,tmp); | ||||
|   std::cout << "innerProductRealG5R5 "<<ip<<std::endl; | ||||
|   return ip.real(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge;  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationCount; | ||||
|  | ||||
|   QuasiMinimalResidual(RealD   tol, | ||||
| 		       Integer maxit, | ||||
| 		       bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , ErrorOnNoConverge(err_on_no_conv)  | ||||
|   {}; | ||||
|  | ||||
| #if 1 | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     RealD resid; | ||||
|     IterationCount=0; | ||||
|  | ||||
|     RealD  rho, rho_1, xi, gamma, gamma_1, theta, theta_1; | ||||
|     RealD  eta, delta, ep, beta;  | ||||
|  | ||||
|     GridBase *Grid = b.Grid(); | ||||
|     Field r(Grid), d(Grid), s(Grid); | ||||
|     Field v(Grid), w(Grid), y(Grid),  z(Grid); | ||||
|     Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid); | ||||
|     Field p(Grid), q(Grid), p_tld(Grid); | ||||
|  | ||||
|     Real normb = norm2(b); | ||||
|  | ||||
|     LinOp.Op(x,r); r = b - r; | ||||
|  | ||||
|     assert(normb> 0.0); | ||||
|  | ||||
|     resid = norm2(r)/normb; | ||||
|     if (resid <= Tolerance) { | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     v_tld = r; | ||||
|     y = v_tld; | ||||
|     rho = norm2(y); | ||||
|  | ||||
|     // Take Gamma5 conjugate | ||||
|     //    Gamma G5(Gamma::Algebra::Gamma5); | ||||
|     //    G5R5(w_tld,r); | ||||
|     //    w_tld = G5* v_tld; | ||||
|     w_tld=v_tld; | ||||
|     z = w_tld; | ||||
|     xi = norm2(z); | ||||
|  | ||||
|     gamma = 1.0; | ||||
|     eta   = -1.0; | ||||
|     theta = 0.0; | ||||
|  | ||||
|     for (int i = 1; i <= MaxIterations; i++) { | ||||
|  | ||||
|       // Breakdown tests | ||||
|       assert( rho != 0.0); | ||||
|       assert( xi  != 0.0); | ||||
|  | ||||
|       v = (1. / rho) * v_tld; | ||||
|       y = (1. / rho) * y; | ||||
|  | ||||
|       w = (1. / xi) * w_tld; | ||||
|       z = (1. / xi) * z; | ||||
|  | ||||
|       ComplexD Zdelta = innerProduct(z, y); // Complex? | ||||
|       std::cout << "Zdelta "<<Zdelta<<std::endl; | ||||
|       delta = Zdelta.real(); | ||||
|  | ||||
|       y_tld = y;  | ||||
|       z_tld = z; | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	p = y_tld - (xi  * delta / ep) * p; | ||||
| 	q = z_tld - (rho * delta / ep) * q; | ||||
|       } else { | ||||
| 	p = y_tld; | ||||
| 	q = z_tld; | ||||
|       } | ||||
|  | ||||
|       LinOp.Op(p,p_tld);      //     p_tld = A * p; | ||||
|       ComplexD Zep = innerProduct(q, p_tld); | ||||
|       ep=Zep.real(); | ||||
|       std::cout << "Zep "<<Zep <<std::endl; | ||||
|       // Complex Audit | ||||
|       assert(abs(ep)>0); | ||||
|  | ||||
|       beta = ep / delta; | ||||
|       assert(abs(beta)>0); | ||||
|  | ||||
|       v_tld = p_tld - beta * v; | ||||
|       y = v_tld; | ||||
|  | ||||
|       rho_1 = rho; | ||||
|       rho   = norm2(y); | ||||
|       LinOp.AdjOp(q,w_tld); | ||||
|       w_tld = w_tld - beta * w; | ||||
|       z = w_tld; | ||||
|  | ||||
|       xi = norm2(z); | ||||
|  | ||||
|       gamma_1 = gamma; | ||||
|       theta_1 = theta; | ||||
|  | ||||
|       theta   = rho / (gamma_1 * beta); | ||||
|       gamma   = 1.0 / sqrt(1.0 + theta * theta); | ||||
|       std::cout << "theta "<<theta<<std::endl; | ||||
|       std::cout << "gamma "<<gamma<<std::endl; | ||||
|  | ||||
|       assert(abs(gamma)> 0.0); | ||||
|  | ||||
|       eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1); | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d; | ||||
| 	s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s; | ||||
|       } else { | ||||
| 	d = eta * p; | ||||
| 	s = eta * p_tld; | ||||
|       } | ||||
|  | ||||
|       x =x+d;                            // update approximation vector | ||||
|       r =r-s;                            // compute residual | ||||
|  | ||||
|       if ((resid = norm2(r) / normb) <= Tolerance) { | ||||
| 	return; | ||||
|       } | ||||
|       std::cout << "Iteration "<<i<<" resid " << resid<<std::endl; | ||||
|     } | ||||
|     assert(0); | ||||
|     return;                            // no convergence | ||||
|   } | ||||
| #else | ||||
|   // QMRg5 SMP thesis | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     // Real scalars | ||||
|     GridBase *grid = b.Grid(); | ||||
|  | ||||
|     Field    r(grid); | ||||
|     Field    p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid); | ||||
|     Field    v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid); | ||||
|     Field    tmp(grid); | ||||
|  | ||||
|     RealD    w; | ||||
|     RealD    z1, z2; | ||||
|     RealD    delta_m, delta_m_minus_1; | ||||
|     RealD    c_m_plus_1, c_m, c_m_minus_1; | ||||
|     RealD    s_m_plus_1, s_m, s_m_minus_1; | ||||
|     RealD    alpha, beta, gamma, epsilon; | ||||
|     RealD    mu, nu, rho, theta, xi, chi; | ||||
|     RealD    mod2r, mod2b; | ||||
|     RealD    tau2, target2; | ||||
|  | ||||
|     mod2b=norm2(b); | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial residual | ||||
|     ///////////////////////// | ||||
|     LinOp.Op(x,tmp); | ||||
|     r = b - tmp; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // \mu = \rho = |r_0| | ||||
|     ///////////////////////// | ||||
|     mod2r = norm2(r); | ||||
|     rho = sqrt( mod2r); | ||||
|     mu=rho; | ||||
|      | ||||
|     std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|     ///////////////////////// | ||||
|     // Zero negative history | ||||
|     ///////////////////////// | ||||
|     v_m_plus_1  = Zero(); | ||||
|     v_m_minus_1 = Zero(); | ||||
|     p_m_minus_1 = Zero(); | ||||
|     p_m_minus_2 = Zero(); | ||||
|  | ||||
|     // v0 | ||||
|     v_m = (1.0/rho)*r; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial coeffs | ||||
|     ///////////////////////// | ||||
|     delta_m_minus_1 = 1.0; | ||||
|     c_m_minus_1     = 1.0; | ||||
|     c_m             = 1.0; | ||||
|     s_m_minus_1     = 0.0; | ||||
|     s_m             = 0.0; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Set up convergence check | ||||
|     ///////////////////////// | ||||
|     tau2    = mod2r; | ||||
|     target2 = mod2b * Tolerance*Tolerance; | ||||
|   | ||||
|     for(int iter = 0 ; iter < MaxIterations; iter++){ | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \delta_m = (v_m, \gamma_5 v_m)  | ||||
|       ///////////////////////// | ||||
|       delta_m = innerG5ProductReal(v_m,v_m); | ||||
|       std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // tmp = A v_m | ||||
|       ///////////////////////// | ||||
|       LinOp.Op(v_m,tmp); | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \alpha = (v_m, \gamma_5 temp) / \delta_m  | ||||
|       ///////////////////////// | ||||
|       alpha = innerG5ProductReal(v_m,tmp); | ||||
|       alpha = alpha/delta_m ; | ||||
|       std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \beta = \rho \delta_m / \delta_{m-1} | ||||
|       ///////////////////////// | ||||
|       beta = rho * delta_m / delta_m_minus_1; | ||||
|       std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1} | ||||
|       ///////////////////////// | ||||
|       v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       // \rho = || \tilde{v}_{m+1} || | ||||
|       /////////////////////////////// | ||||
|       rho = sqrt( norm2(v_m_plus_1) ); | ||||
|       std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       //      v_{m+1} = \tilde{v}_{m+1} | ||||
|       /////////////////////////////// | ||||
|       v_m_plus_1 = (1.0 / rho) * v_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       // QMR recurrence coefficients. | ||||
|       //////////////////////////////// | ||||
|       theta      = s_m_minus_1 * beta; | ||||
|       gamma      = c_m_minus_1 * beta; | ||||
|       epsilon    =  c_m * gamma + s_m * alpha; | ||||
|       xi         = -s_m * gamma + c_m * alpha; | ||||
|       nu         = sqrt( xi*xi + rho*rho ); | ||||
|       c_m_plus_1 = fabs(xi) / nu; | ||||
|       if ( xi == 0.0 ) { | ||||
| 	s_m_plus_1 = 1.0; | ||||
|       } else { | ||||
| 	s_m_plus_1 = c_m_plus_1 * rho / xi; | ||||
|       } | ||||
|       chi = c_m_plus_1 * xi + s_m_plus_1 * rho; | ||||
|  | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl; | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< chi   <<std::endl; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       //p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi | ||||
|       //////////////////////////////// | ||||
|       p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2; | ||||
|  | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       //      \psi = \psi + c_{m+1} \mu p_m	 | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       x = x + ( c_m_plus_1 * mu ) * p_m; | ||||
|  | ||||
|       //////////////////////////////////////// | ||||
|       // | ||||
|       //////////////////////////////////////// | ||||
|       mu              = -s_m_plus_1 * mu; | ||||
|       delta_m_minus_1 = delta_m; | ||||
|       c_m_minus_1     = c_m; | ||||
|       c_m             = c_m_plus_1; | ||||
|       s_m_minus_1     = s_m; | ||||
|       s_m             = s_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////////// | ||||
|       // Could use pointer swizzle games. | ||||
|       //////////////////////////////////// | ||||
|       v_m_minus_1 = v_m; | ||||
|       v_m         = v_m_plus_1; | ||||
|       p_m_minus_2 = p_m_minus_1; | ||||
|       p_m_minus_1 = p_m; | ||||
|  | ||||
|  | ||||
|       ///////////////////////////////////// | ||||
|       // Convergence checks | ||||
|       ///////////////////////////////////// | ||||
|       z1 = RealD(iter+1.0); | ||||
|       z2 = z1 + 1.0; | ||||
|       tau2 = tau2 *( z2 / z1 ) * s_m * s_m; | ||||
|       std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl; | ||||
|       std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl; | ||||
|  | ||||
|       // Compute true residual | ||||
|       mod2r = tau2; | ||||
|       if ( 1 || (tau2 < (100.0 * target2)) ) { | ||||
| 	LinOp.Op(x,tmp); | ||||
| 	r = b - tmp; | ||||
| 	mod2r = norm2(r); | ||||
| 	std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       if ( mod2r < target2 ) {  | ||||
|  | ||||
| 	std::cout << " QuasiMinimumResidual has converged"<<std::endl; | ||||
| 	return; | ||||
|  | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|  | ||||
|   } | ||||
| #endif | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,651 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/SchurRedBlack.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_SCHUR_RED_BLACK_H | ||||
| #define GRID_SCHUR_RED_BLACK_H | ||||
|  | ||||
|  | ||||
|   /* | ||||
|    * Red black Schur decomposition | ||||
|    * | ||||
|    *  M = (Mee Meo) =  (1             0 )   (Mee   0               )  (1 Mee^{-1} Meo) | ||||
|    *      (Moe Moo)    (Moe Mee^-1    1 )   (0   Moo-Moe Mee^-1 Meo)  (0   1         ) | ||||
|    *                =         L                     D                     U | ||||
|    * | ||||
|    * L^-1 = (1              0 ) | ||||
|    *        (-MoeMee^{-1}   1 )    | ||||
|    * L^{dag} = ( 1       Mee^{-dag} Moe^{dag} ) | ||||
|    *           ( 0       1                    ) | ||||
|    * L^{-d}  = ( 1      -Mee^{-dag} Moe^{dag} ) | ||||
|    *           ( 0       1                    ) | ||||
|    * | ||||
|    * U^-1 = (1   -Mee^{-1} Meo) | ||||
|    *        (0    1           ) | ||||
|    * U^{dag} = ( 1                 0) | ||||
|    *           (Meo^dag Mee^{-dag} 1) | ||||
|    * U^{-dag} = (  1                 0) | ||||
|    *            (-Meo^dag Mee^{-dag} 1) | ||||
|    *********************** | ||||
|    *     M psi = eta | ||||
|    *********************** | ||||
|    *Odd | ||||
|    * i)                 D_oo psi_o =  L^{-1}  eta_o | ||||
|    *                        eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e) | ||||
|    * | ||||
|    * Wilson: | ||||
|    *      (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o | ||||
|    * Stag: | ||||
|    *      D_oo psi_o = L^{-1}  eta =    (eta_o - Moe Mee^{-1} eta_e) | ||||
|    * | ||||
|    * L^-1 eta_o= (1              0 ) (e | ||||
|    *             (-MoeMee^{-1}   1 )    | ||||
|    * | ||||
|    *Even | ||||
|    * ii)  Mee psi_e + Meo psi_o = src_e | ||||
|    * | ||||
|    *   => sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|    * | ||||
|    *  | ||||
|    * TODO: Other options: | ||||
|    *  | ||||
|    * a) change checkerboards for Schur e<->o | ||||
|    * | ||||
|    * Left precon by Moo^-1 | ||||
|    * b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 =  (D_oo)^dag M_oo^-dag Moo^-1 L^{-1}  eta_o | ||||
|    *                              eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e) | ||||
|    * | ||||
|    * Right precon by Moo^-1 | ||||
|    * c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1}  eta_o | ||||
|    *                              eta_o'     = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e) | ||||
|    *                              psi_o = M_oo^-1 phi_o | ||||
|    * TODO: Deflation  | ||||
|    */ | ||||
| namespace Grid { | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Use base class to share code | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Take a matrix and form a Red Black solver calling a Herm solver | ||||
|   // Use of RB info prevents making SchurRedBlackSolve conform to standard interface | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackBase { | ||||
|   protected: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|     OperatorFunction<Field> & _HermitianRBSolver; | ||||
|     int CBfactorise; | ||||
|     bool subGuess; | ||||
|     bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver | ||||
|   public: | ||||
|  | ||||
|     SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)  : | ||||
|     _HermitianRBSolver(HermitianRBSolver), | ||||
|     useSolnAsInitGuess(_solnAsInitGuess) | ||||
|     {  | ||||
|       CBfactorise = 0; | ||||
|       subtractGuess(initSubGuess); | ||||
|     }; | ||||
|     void subtractGuess(const bool initSubGuess) | ||||
|     { | ||||
|       subGuess = initSubGuess; | ||||
|     } | ||||
|     bool isSubtractGuess(void) | ||||
|     { | ||||
|       return subGuess; | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Shared code | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out){ | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|     void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)  | ||||
|     { | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|  | ||||
|     void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)  | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       Field tmp(grid); | ||||
|       int nblock = in.size(); | ||||
|       for(int b=0;b<nblock;b++){ | ||||
| 	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
|       } | ||||
|     } | ||||
|     // James can write his own deflated guesser | ||||
|     // with optimised code for the inner products | ||||
|     //    RedBlackSolveSplitGrid(); | ||||
|     //    RedBlackSolve(_Matrix,src_o,sol_o);  | ||||
|  | ||||
|     void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       Field tmp(grid); | ||||
|       int nblock = in.size(); | ||||
|       for(int b=0;b<nblock;b++) { | ||||
| 	pickCheckerboard(Even,tmp,in[b]); | ||||
| 	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     template<class Guesser> | ||||
|     void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)  | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|       int nblock = in.size(); | ||||
|  | ||||
|       std::vector<Field> src_o(nblock,grid); | ||||
|       std::vector<Field> sol_o(nblock,grid); | ||||
|        | ||||
|       std::vector<Field> guess_save; | ||||
|  | ||||
|       Field resid(fgrid); | ||||
|       Field tmp(grid); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // Prepare RedBlack source | ||||
|       //////////////////////////////////////////////// | ||||
|       RedBlackSource(_Matrix,in,src_o); | ||||
| 	//      for(int b=0;b<nblock;b++){ | ||||
| 	//	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
| 	//      } | ||||
|        | ||||
|       //////////////////////////////////////////////// | ||||
|       // Make the guesses | ||||
|       //////////////////////////////////////////////// | ||||
|       if ( subGuess ) guess_save.resize(nblock,grid); | ||||
|  | ||||
|        | ||||
|       if(useSolnAsInitGuess) { | ||||
|         for(int b=0;b<nblock;b++){ | ||||
|           pickCheckerboard(Odd, sol_o[b], out[b]); | ||||
|         } | ||||
|       } else { | ||||
|         guess(src_o, sol_o);  | ||||
|       } | ||||
|  | ||||
| 	    if ( subGuess ) {  | ||||
|         for(int b=0;b<nblock;b++){ | ||||
|           guess_save[b] = sol_o[b]; | ||||
|         } | ||||
|       } | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the block solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl; | ||||
|       RedBlackSolve(_Matrix,src_o,sol_o); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // A2A boolean behavioural control & reconstruct other checkerboard | ||||
|       //////////////////////////////////////////////// | ||||
|       for(int b=0;b<nblock;b++) { | ||||
|  | ||||
| 	if (subGuess)   sol_o[b] = sol_o[b] - guess_save[b]; | ||||
|  | ||||
| 	///////// Needs even source ////////////// | ||||
| 	pickCheckerboard(Even,tmp,in[b]); | ||||
| 	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]); | ||||
|  | ||||
| 	///////////////////////////////////////////////// | ||||
| 	// Check unprec residual if possible | ||||
| 	///////////////////////////////////////////////// | ||||
| 	if ( ! subGuess ) { | ||||
| 	  _Matrix.M(out[b],resid);  | ||||
| 	  resid = resid-in[b]; | ||||
| 	  RealD ns = norm2(in[b]); | ||||
| 	  RealD nr = norm2(resid); | ||||
| 	 | ||||
| 	  std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl; | ||||
| 	} | ||||
|  | ||||
|       } | ||||
|     } | ||||
|     template<class Guesser> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){ | ||||
|  | ||||
|       // FIXME CGdiagonalMee not implemented virtual function | ||||
|       // FIXME use CBfactorise to control schur decomp | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field resid(fgrid); | ||||
|       Field src_o(grid); | ||||
|       Field src_e(grid); | ||||
|       Field sol_o(grid); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // RedBlack source | ||||
|       //////////////////////////////////////////////// | ||||
|       RedBlackSource(_Matrix,in,src_e,src_o); | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       // Construct the guess | ||||
|       //////////////////////////////// | ||||
|       if(useSolnAsInitGuess) { | ||||
|         pickCheckerboard(Odd, sol_o, out); | ||||
|       } else { | ||||
|         guess(src_o,sol_o); | ||||
|       } | ||||
|  | ||||
|       Field  guess_save(grid); | ||||
|       guess_save = sol_o; | ||||
|  | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the red-black solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       RedBlackSolve(_Matrix,src_o,sol_o); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // Fionn A2A boolean behavioural control | ||||
|       //////////////////////////////////////////////// | ||||
|       if (subGuess)      sol_o= sol_o-guess_save; | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // RedBlack solution needs the even source | ||||
|       /////////////////////////////////////////////////// | ||||
|       RedBlackSolution(_Matrix,sol_o,src_e,out); | ||||
|  | ||||
|       // Verify the unprec residual | ||||
|       if ( ! subGuess ) { | ||||
|         _Matrix.M(out,resid);  | ||||
|         resid = resid-in; | ||||
|         RealD ns = norm2(in); | ||||
|         RealD nr = norm2(resid); | ||||
|  | ||||
|         std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl; | ||||
|       } else { | ||||
|         std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl; | ||||
|       } | ||||
|     }      | ||||
|      | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Override in derived.  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource  (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)                =0; | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)          =0; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)                           =0; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)=0; | ||||
|  | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)  | ||||
|       :    SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)  | ||||
|     { | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
|     // Override RedBlack specialisation | ||||
|     ////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|  | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm. | ||||
|     } | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field   sol_e(grid); | ||||
|       Field   src_e(grid); | ||||
|  | ||||
|       src_e = src_e_c; // Const correctness | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|   template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal has Mooee on it. | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|  | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
|     // Override RedBlack specialisation | ||||
|     ////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|  | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|  | ||||
|     } | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field  sol_e(grid); | ||||
|       Field  src_e_i(grid); | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>  | ||||
|   { | ||||
|     public: | ||||
|       typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|       NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false, | ||||
|           const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {}; | ||||
|  | ||||
|       ////////////////////////////////////////////////////// | ||||
|       // Override RedBlack specialisation | ||||
|       ////////////////////////////////////////////////////// | ||||
|       virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field  tmp(grid); | ||||
|         Field Mtmp(grid); | ||||
|  | ||||
|         pickCheckerboard(Even, src_e, src); | ||||
|         pickCheckerboard(Odd , src_o, src); | ||||
|  | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
|       } | ||||
|        | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field     tmp(grid); | ||||
|         Field   sol_e(grid); | ||||
|         Field src_e_i(grid); | ||||
|          | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even ); | ||||
|         src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  ); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  | ||||
|       } | ||||
|   }; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal is identity, right preconditioned by Mee^inv | ||||
|   // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta | ||||
|   //=> psi = MeeInv phi | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|       const bool _solnAsInitGuess = false)   | ||||
|     : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|  | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|        | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|      | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|     } | ||||
|  | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   sol_o_i(grid); | ||||
|       Field   tmp(grid); | ||||
|       Field   sol_e(grid); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // MooeeInv due to pecond | ||||
|       //////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(sol_o,tmp); | ||||
|       sol_o_i = tmp; | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd ); | ||||
|     }; | ||||
|  | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>  | ||||
|   { | ||||
|     public: | ||||
|       typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Wrap the usual normal equations Schur trick | ||||
|       ///////////////////////////////////////////////////// | ||||
|       NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false, | ||||
|           const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {}; | ||||
|  | ||||
|       virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field  tmp(grid); | ||||
|         Field Mtmp(grid); | ||||
|  | ||||
|         pickCheckerboard(Even, src_e, src); | ||||
|         pickCheckerboard(Odd , src_o, src); | ||||
|        | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field sol_o_i(grid); | ||||
|         Field     tmp(grid); | ||||
|         Field   sol_e(grid); | ||||
|  | ||||
|         //////////////////////////////////////////////// | ||||
|         // MooeeInv due to pecond | ||||
|         //////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(sol_o, tmp); | ||||
|         sol_o_i = tmp; | ||||
|  | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even ); | ||||
|         tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  ); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o,  std::vector<Field>& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  | ||||
|       } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| #endif | ||||
| @@ -1,478 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/Aggregates.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| inline RealD AggregatePowerLaw(RealD x) | ||||
| { | ||||
|   //  return std::pow(x,-4); | ||||
|   //  return std::pow(x,-3); | ||||
|   return std::pow(x,-5); | ||||
| } | ||||
|  | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation { | ||||
| public: | ||||
|   constexpr int Nbasis(void) { return nbasis; }; | ||||
|    | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|  | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) { | ||||
|     int nn=nbasis; | ||||
|     RealD scale; | ||||
|     FineField noise(FineGrid); | ||||
|     for(int b=0;b<nn;b++){ | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|       subspace[b] = noise; | ||||
|     } | ||||
|   } | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<1;i++){ | ||||
|  | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
|  | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min " | ||||
| 	      <<ordermin<<" step "<<orderstep | ||||
| 	      <<" lo"<<filterlo<<std::endl; | ||||
|  | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
|  | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
|  | ||||
|       // Tn=T1 = (xscale M + mscale)in | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
|  | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
|  | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_for(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
|  | ||||
| 	// Possible more fine grained control is needed than a linear sweep, | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // Refine | ||||
|       Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw); | ||||
|       noise = Mn; | ||||
|       PowerLaw(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // normalise | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					       int nn, | ||||
| 					       double hi, | ||||
| 					       int orderfilter | ||||
| 					       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					  double hi | ||||
| 					  ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500) | ||||
|       /*266 | ||||
|       Chebyshev<FineField> Cheb1(3.0,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(1.0,hi,50); | ||||
|       Chebyshev<FineField> Cheb3(0.5,hi,300); | ||||
|       Chebyshev<FineField> Cheb4(0.05,hi,500); | ||||
|       Chebyshev<FineField> Cheb5(0.01,hi,2000); | ||||
|       */ | ||||
|       /* 242 */ | ||||
|       /* | ||||
|       Chebyshev<FineField> Cheb3(0.1,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(0.02,hi,1000); | ||||
|       Chebyshev<FineField> Cheb1(0.003,hi,2000); | ||||
|       8? | ||||
|       */ | ||||
|       /* How many?? | ||||
|       */ | ||||
|       Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine | ||||
|       Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|  | ||||
|       //      Chebyshev<FineField> Cheb2(0.001,hi,1500); | ||||
|       //      Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|       Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|       hermop.Op(subspace[b],tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					double Lo,double tol,int maxit) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl; | ||||
|  | ||||
|     // Filter | ||||
|     // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ] | ||||
|     // | ||||
|     // 1/(x+Lo)  - 1/(x+2 Lo) | ||||
|     double epsilon      = Lo/3; | ||||
|     std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0}); | ||||
|     std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon}); | ||||
|     std::vector<RealD> tols({tol,tol,tol,tol}); | ||||
|     std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl; | ||||
|  | ||||
|     MultiShiftFunction msf(4,0.0,95.0); | ||||
|     std::cout << "msf constructed "<<std::endl; | ||||
|     msf.poles=shifts; | ||||
|     msf.residues=alpha; | ||||
|     msf.tolerances=tols; | ||||
|     msf.norm=0.0; | ||||
|     msf.order=alpha.size(); | ||||
|     ConjugateGradientMultiShift<FineField> MSCG(maxit,msf); | ||||
|      | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       MSCG(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop, | ||||
| 			      double Lo,double tol,int maxit) | ||||
|   { | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       ConjugateGradient<FineField>  CGsloppy(tol,maxit,false); | ||||
|       ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo); | ||||
|       tmp=Zero(); | ||||
|       CGsloppy(hermop,subspace[b],tmp); | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b]=tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop, | ||||
| 				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG, | ||||
| 				  int nrhs) | ||||
|   { | ||||
|     std::vector<FineField> src_mrhs(nrhs,FineGrid); | ||||
|     std::vector<FineField> res_mrhs(nrhs,FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b+=nrhs) | ||||
|     { | ||||
|       tmp = subspace[b]; | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b] =tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	src_mrhs[r] = subspace[b+r]; | ||||
|       } | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	res_mrhs[r] = Zero(); | ||||
|       } | ||||
|       theHDCG(src_mrhs,res_mrhs); | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	tmp = res_mrhs[r]; | ||||
| 	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale; | ||||
| 	subspace[b+r]=tmp; | ||||
|       } | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|    | ||||
|    | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,814 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/CoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
| #define  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
|  | ||||
| #include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No) | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj,class CComplex> | ||||
| inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner, | ||||
| 				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask, | ||||
| 				    const Lattice<vobj> &fineX, | ||||
| 				    const Lattice<vobj> &fineY) | ||||
| { | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) dotp; | ||||
|  | ||||
|   GridBase *coarse(CoarseInner.Grid()); | ||||
|   GridBase *fine  (fineX.Grid()); | ||||
|  | ||||
|   Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard(); | ||||
|   Lattice<dotp> fine_inner_msk(fine); | ||||
|  | ||||
|   // Multiply could be fused with innerProduct | ||||
|   // Single block sum kernel could do both masks. | ||||
|   fine_inner = localInnerProduct(fineX,fineY); | ||||
|   mult(fine_inner_msk, fine_inner,FineMask); | ||||
|   blockSum(CoarseInner,fine_inner_msk); | ||||
| } | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|      | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef Lattice<CComplex >                  CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef CoarseVector FermionField; | ||||
|  | ||||
|   // enrich interface, use default implementation as in FermionOperator /////// | ||||
|   void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; } | ||||
|   void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; } | ||||
|   void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; } | ||||
|   void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; } | ||||
|   void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; }; | ||||
|   void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; }; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   Geometry         geom; | ||||
|   GridBase *       _grid;  | ||||
|   GridBase*        _cbgrid; | ||||
|   int hermitian; | ||||
|  | ||||
|   CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;  | ||||
|   CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven; | ||||
|   CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd; | ||||
|  | ||||
|   std::vector<CoarseMatrix> A; | ||||
|   std::vector<CoarseMatrix> Aeven; | ||||
|   std::vector<CoarseMatrix> Aodd; | ||||
|  | ||||
|   CoarseMatrix AselfInv; | ||||
|   CoarseMatrix AselfInvEven; | ||||
|   CoarseMatrix AselfInvOdd; | ||||
|  | ||||
|   Vector<RealD> dag_factor; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know | ||||
|   GridBase * RedBlackGrid()     { return _cbgrid; }; | ||||
|  | ||||
|   int ConstEE() { return 0; } | ||||
|  | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|     autoView( in_v , in, AcceleratorRead); | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|        | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       for(int point=0;point<npoint;point++){ | ||||
|  | ||||
| 	SE=Stencil_v.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
| 	if(SE->_is_local) {  | ||||
| 	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
| 	} else { | ||||
| 	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); | ||||
| 	} | ||||
| 	acceleratorSynchronise(); | ||||
|  | ||||
| 	for(int bb=0;bb<nbasis;bb++) { | ||||
| 	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
| 	} | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   }; | ||||
|  | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     if(hermitian) { | ||||
|       // corresponds to Petrov-Galerkin coarsening | ||||
|       return M(in,out); | ||||
|     } else { | ||||
|       // corresponds to Galerkin coarsening | ||||
|       return MdagNonHermitian(in, out); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   void MdagNonHermitian(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|     autoView( in_v , in, AcceleratorRead); | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     Vector<int> points(geom.npoint, 0); | ||||
|     for(int p=0; p<geom.npoint; p++) | ||||
|       points[p] = geom.points_dagger[p]; | ||||
|  | ||||
|     auto points_p = &points[0]; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       for(int p=0;p<npoint;p++){ | ||||
|         int point = points_p[p]; | ||||
|  | ||||
| 	SE=Stencil_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
| 	if(SE->_is_local) { | ||||
| 	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
| 	} else { | ||||
| 	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); | ||||
| 	} | ||||
| 	acceleratorSynchronise(); | ||||
|  | ||||
| 	for(int bb=0;bb<nbasis;bb++) { | ||||
| 	  res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
| 	} | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|  | ||||
|   void MdirComms(const CoarseVector &in) | ||||
|   { | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|   } | ||||
|   void MdirCalc(const CoarseVector &in, CoarseVector &out, int point) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(_grid,out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( in_v  , in, AcceleratorRead); | ||||
|     autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       SE=Stencil_v.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
|       if(SE->_is_local) {  | ||||
| 	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|       } else { | ||||
| 	nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); | ||||
|       } | ||||
|       acceleratorSynchronise(); | ||||
|  | ||||
|       for(int bb=0;bb<nbasis;bb++) { | ||||
| 	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|     }); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|   void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) | ||||
|   { | ||||
|     this->MdirComms(in); | ||||
|     int ndir=geom.npoint-1; | ||||
|     if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {  | ||||
|       std::cout <<"MdirAll out size "<< out.size()<<std::endl; | ||||
|       std::cout <<"MdirAll ndir "<< ndir<<std::endl; | ||||
|       assert(0); | ||||
|     } | ||||
|     for(int p=0;p<ndir;p++){ | ||||
|       MdirCalc(in,out[p],p); | ||||
|     } | ||||
|   }; | ||||
|   void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){ | ||||
|  | ||||
|     this->MdirComms(in); | ||||
|  | ||||
|     MdirCalc(in,out,geom.point(dir,disp)); | ||||
|   }; | ||||
|  | ||||
|   void Mdiag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     int point=geom.npoint-1; | ||||
|     MdirCalc(in, out, point); // No comms | ||||
|   }; | ||||
|  | ||||
|   void Mooee(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerNo, InverseNo); | ||||
|   } | ||||
|  | ||||
|   void MooeeInv(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerNo, InverseYes); | ||||
|   } | ||||
|  | ||||
|   void MooeeDag(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerYes, InverseNo); | ||||
|   } | ||||
|  | ||||
|   void MooeeInvDag(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerYes, InverseYes); | ||||
|   } | ||||
|  | ||||
|   void Meooe(const CoarseVector &in, CoarseVector &out) { | ||||
|     if(in.Checkerboard() == Odd) { | ||||
|       DhopEO(in, out, DaggerNo); | ||||
|     } else { | ||||
|       DhopOE(in, out, DaggerNo); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void MeooeDag(const CoarseVector &in, CoarseVector &out) { | ||||
|     if(in.Checkerboard() == Odd) { | ||||
|       DhopEO(in, out, DaggerYes); | ||||
|     } else { | ||||
|       DhopOE(in, out, DaggerYes); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void Dhop(const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     conformable(in.Grid(), _grid); // verifies full grid | ||||
|     conformable(in.Grid(), out.Grid()); | ||||
|  | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     DhopInternal(Stencil, A, in, out, dag); | ||||
|   } | ||||
|  | ||||
|   void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     conformable(in.Grid(), _cbgrid);    // verifies half grid | ||||
|     conformable(in.Grid(), out.Grid()); // drops the cb check | ||||
|  | ||||
|     assert(in.Checkerboard() == Even); | ||||
|     out.Checkerboard() = Odd; | ||||
|  | ||||
|     DhopInternal(StencilEven, Aodd, in, out, dag); | ||||
|   } | ||||
|  | ||||
|   void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     conformable(in.Grid(), _cbgrid);    // verifies half grid | ||||
|     conformable(in.Grid(), out.Grid()); // drops the cb check | ||||
|  | ||||
|     assert(in.Checkerboard() == Odd); | ||||
|     out.Checkerboard() = Even; | ||||
|  | ||||
|     DhopInternal(StencilOdd, Aeven, in, out, dag); | ||||
|   } | ||||
|  | ||||
|   void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) { | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     assert(in.Checkerboard() == Odd || in.Checkerboard() == Even); | ||||
|  | ||||
|     CoarseMatrix *Aself = nullptr; | ||||
|     if(in.Grid()->_isCheckerBoarded) { | ||||
|       if(in.Checkerboard() == Odd) { | ||||
|         Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1]; | ||||
|         DselfInternal(StencilOdd, *Aself, in, out, dag); | ||||
|       } else { | ||||
|         Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1]; | ||||
|         DselfInternal(StencilEven, *Aself, in, out, dag); | ||||
|       } | ||||
|     } else { | ||||
|       Aself = (inv) ? &AselfInv : &A[geom.npoint-1]; | ||||
|       DselfInternal(Stencil, *Aself, in, out, dag); | ||||
|     } | ||||
|     assert(Aself != nullptr); | ||||
|   } | ||||
|  | ||||
|   void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a, | ||||
|                        const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     int point = geom.npoint-1; | ||||
|     autoView( out_v, out, AcceleratorWrite); | ||||
|     autoView( in_v,  in,  AcceleratorRead); | ||||
|     autoView( st_v,  st,  AcceleratorRead); | ||||
|     autoView( a_v,   a,   AcceleratorRead); | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
|  | ||||
|     if(dag) { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|         if(SE->_is_local) { | ||||
|           nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|         } else { | ||||
|           nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|         } | ||||
|         acceleratorSynchronise(); | ||||
|  | ||||
|         for(int bb=0;bb<nbasis;bb++) { | ||||
|           res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb); | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } else { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|         if(SE->_is_local) { | ||||
|           nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|         } else { | ||||
|           nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|         } | ||||
|         acceleratorSynchronise(); | ||||
|  | ||||
|         for(int bb=0;bb<nbasis;bb++) { | ||||
|           res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb); | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a, | ||||
|                     const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     st.HaloExchange(in,compressor); | ||||
|     autoView( in_v,  in,  AcceleratorRead); | ||||
|     autoView( out_v, out, AcceleratorWrite); | ||||
|     autoView( st_v , st,  AcceleratorRead); | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|  | ||||
|     // determine in what order we need the points | ||||
|     int npoint = geom.npoint-1; | ||||
|     Vector<int> points(npoint, 0); | ||||
|     for(int p=0; p<npoint; p++) | ||||
|       points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p; | ||||
|  | ||||
|     auto points_p = &points[0]; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
|  | ||||
|     if(dag) { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         for(int p=0;p<npoint;p++){ | ||||
|           int point = points_p[p]; | ||||
|           SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|           if(SE->_is_local) { | ||||
|             nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|           } else { | ||||
|             nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|           } | ||||
|           acceleratorSynchronise(); | ||||
|  | ||||
|           for(int bb=0;bb<nbasis;bb++) { | ||||
|             res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|           } | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } else { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         for(int p=0;p<npoint;p++){ | ||||
|           int point = points_p[p]; | ||||
|           SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|           if(SE->_is_local) { | ||||
|             nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|           } else { | ||||
|             nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|           } | ||||
|           acceleratorSynchronise(); | ||||
|  | ||||
|           for(int bb=0;bb<nbasis;bb++) { | ||||
|             res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|           } | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|    | ||||
|   CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	: | ||||
|     _grid(&CoarseGrid), | ||||
|     _cbgrid(new GridRedBlackCartesian(&CoarseGrid)), | ||||
|     geom(CoarseGrid._ndimension), | ||||
|     hermitian(hermitian_), | ||||
|     Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements), | ||||
|     A(geom.npoint,&CoarseGrid), | ||||
|     Aeven(geom.npoint,_cbgrid), | ||||
|     Aodd(geom.npoint,_cbgrid), | ||||
|     AselfInv(&CoarseGrid), | ||||
|     AselfInvEven(_cbgrid), | ||||
|     AselfInvOdd(_cbgrid), | ||||
|     dag_factor(nbasis*nbasis) | ||||
|   { | ||||
|     fillFactor(); | ||||
|   }; | ||||
|  | ||||
|   CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) 	: | ||||
|  | ||||
|     _grid(&CoarseGrid), | ||||
|     _cbgrid(&CoarseRBGrid), | ||||
|     geom(CoarseGrid._ndimension), | ||||
|     hermitian(hermitian_), | ||||
|     Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements), | ||||
|     A(geom.npoint,&CoarseGrid), | ||||
|     Aeven(geom.npoint,&CoarseRBGrid), | ||||
|     Aodd(geom.npoint,&CoarseRBGrid), | ||||
|     AselfInv(&CoarseGrid), | ||||
|     AselfInvEven(&CoarseRBGrid), | ||||
|     AselfInvOdd(&CoarseRBGrid), | ||||
|     dag_factor(nbasis*nbasis) | ||||
|   { | ||||
|     fillFactor(); | ||||
|   }; | ||||
|  | ||||
|   void fillFactor() { | ||||
|     Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis); | ||||
|     if(!hermitian) { | ||||
|       const int nb = nbasis/2; | ||||
|       dag_factor_eigen.block(0,nb,nb,nb) *= -1.0; | ||||
|       dag_factor_eigen.block(nb,0,nb,nb) *= -1.0; | ||||
|     } | ||||
|  | ||||
|     // GPU readable prefactor | ||||
|     thread_for(i, nbasis*nbasis, { | ||||
|       int j = i/nbasis; | ||||
|       int k = i%nbasis; | ||||
|       dag_factor[i] = dag_factor_eigen(j, k); | ||||
|     }); | ||||
|   } | ||||
|  | ||||
|   void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     typedef Lattice<typename Fobj::tensor_reduced> FineComplexField; | ||||
|     typedef typename Fobj::scalar_type scalar_type; | ||||
|  | ||||
|     std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl; | ||||
|  | ||||
|     FineComplexField one(FineGrid); one=scalar_type(1.0,0.0); | ||||
|     FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0); | ||||
|  | ||||
|     std::vector<FineComplexField> masks(geom.npoint,FineGrid); | ||||
|     FineComplexField imask(FineGrid); // contributions from within this block | ||||
|     FineComplexField omask(FineGrid); // contributions from outwith this block | ||||
|  | ||||
|     FineComplexField evenmask(FineGrid); | ||||
|     FineComplexField oddmask(FineGrid);  | ||||
|  | ||||
|     FineField     phi(FineGrid); | ||||
|     FineField     tmp(FineGrid); | ||||
|     FineField     zz(FineGrid); zz=Zero(); | ||||
|     FineField    Mphi(FineGrid); | ||||
|     FineField    Mphie(FineGrid); | ||||
|     FineField    Mphio(FineGrid); | ||||
|     std::vector<FineField>     Mphi_p(geom.npoint,FineGrid); | ||||
|  | ||||
|     Lattice<iScalar<vInteger> > coor (FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcoor(FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero(); | ||||
|  | ||||
|     CoarseVector iProj(Grid());  | ||||
|     CoarseVector oProj(Grid());  | ||||
|     CoarseVector SelfProj(Grid());  | ||||
|     CoarseComplexField iZProj(Grid());  | ||||
|     CoarseComplexField oZProj(Grid());  | ||||
|  | ||||
|     CoarseScalar InnerProd(Grid());  | ||||
|  | ||||
|     std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl; | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     // Compute the matrix elements of linop between this orthonormal | ||||
|     // set of vectors. | ||||
|     std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl; | ||||
|     int self_stencil=-1; | ||||
|     for(int p=0;p<geom.npoint;p++) | ||||
|     {  | ||||
|       int dir   = geom.directions[p]; | ||||
|       int disp  = geom.displacements[p]; | ||||
|       A[p]=Zero(); | ||||
|       if( geom.displacements[p]==0){ | ||||
| 	self_stencil=p; | ||||
|       } | ||||
|  | ||||
|       Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]); | ||||
|  | ||||
|       LatticeCoordinate(coor,dir); | ||||
|  | ||||
|       /////////////////////////////////////////////////////// | ||||
|       // Work out even and odd block checkerboarding for fast diagonal term | ||||
|       /////////////////////////////////////////////////////// | ||||
|       if ( disp==1 ) { | ||||
| 	bcb   = bcb + div(coor,block); | ||||
|       } | ||||
| 	 | ||||
|       if ( disp==0 ) { | ||||
| 	  masks[p]= Zero(); | ||||
|       } else if ( disp==1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(block-1),one,zero); | ||||
|       } else if ( disp==-1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(Integer)0,one,zero); | ||||
|       } | ||||
|     } | ||||
|     evenmask = where(mod(bcb,2)==(Integer)0,one,zero); | ||||
|     oddmask  = one-evenmask; | ||||
|  | ||||
|     assert(self_stencil!=-1); | ||||
|  | ||||
|     for(int i=0;i<nbasis;i++){ | ||||
|  | ||||
|       phi=Subspace.subspace[i]; | ||||
|  | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl; | ||||
|       linop.OpDirAll(phi,Mphi_p); | ||||
|       linop.OpDiag  (phi,Mphi_p[geom.npoint-1]); | ||||
|  | ||||
|       for(int p=0;p<geom.npoint;p++){  | ||||
|  | ||||
| 	Mphi = Mphi_p[p]; | ||||
|  | ||||
| 	int dir   = geom.directions[p]; | ||||
| 	int disp  = geom.displacements[p]; | ||||
|  | ||||
| 	if ( (disp==-1) || (!hermitian ) ) { | ||||
|  | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  // Pick out contributions coming from this cell and neighbour cell | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  omask = masks[p]; | ||||
| 	  imask = one-omask; | ||||
| 	 | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	     | ||||
| 	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi); | ||||
| 	     | ||||
| 	    autoView( iZProj_v , iZProj, AcceleratorRead) ; | ||||
| 	    autoView( oZProj_v , oZProj, AcceleratorRead) ; | ||||
| 	    autoView( A_p     ,  A[p], AcceleratorWrite); | ||||
| 	    autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); }); | ||||
| 	    if ( hermitian && (disp==-1) ) { | ||||
| 	      for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>* | ||||
| 		int dirp   = geom.directions[pp]; | ||||
| 		int dispp  = geom.displacements[pp]; | ||||
| 		if ( (dirp==dir) && (dispp==1) ){ | ||||
| 		  auto sft = conjugate(Cshift(oZProj,dir,1)); | ||||
| 		  autoView( sft_v    ,  sft  , AcceleratorWrite); | ||||
| 		  autoView( A_pp     ,  A[pp], AcceleratorWrite); | ||||
| 		  accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); }); | ||||
| 		} | ||||
| 	      } | ||||
| 	    } | ||||
|  | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       /////////////////////////////////////////// | ||||
|       // Faster alternate self coupling.. use hermiticity to save 2x | ||||
|       /////////////////////////////////////////// | ||||
|       { | ||||
| 	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie); | ||||
| 	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio); | ||||
|  | ||||
| 	{ | ||||
| 	  autoView( tmp_      , tmp, AcceleratorWrite); | ||||
| 	  autoView( evenmask_ , evenmask, AcceleratorRead); | ||||
| 	  autoView( oddmask_  ,  oddmask, AcceleratorRead); | ||||
| 	  autoView( Mphie_    ,  Mphie, AcceleratorRead); | ||||
| 	  autoView( Mphio_    ,  Mphio, AcceleratorRead); | ||||
| 	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{  | ||||
| 	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|  | ||||
| 	blockProject(SelfProj,tmp,Subspace.subspace); | ||||
|  | ||||
| 	autoView( SelfProj_ , SelfProj, AcceleratorRead); | ||||
| 	autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j)); | ||||
| 	  } | ||||
| 	}); | ||||
|  | ||||
|       } | ||||
|     } | ||||
|     if(hermitian) { | ||||
|       std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl; | ||||
|     } | ||||
|  | ||||
|     InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl; | ||||
|     FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl; | ||||
|   } | ||||
|  | ||||
|   void InvertSelfStencilLink() { | ||||
|     std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl; | ||||
|     int localVolume = Grid()->lSites(); | ||||
|  | ||||
|     typedef typename Cobj::scalar_object scalar_object; | ||||
|  | ||||
|     autoView(Aself_v,    A[geom.npoint-1], CpuRead); | ||||
|     autoView(AselfInv_v, AselfInv,         CpuWrite); | ||||
|     thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke | ||||
|       Eigen::MatrixXcd selfLinkEigen    = Eigen::MatrixXcd::Zero(nbasis, nbasis); | ||||
|       Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis); | ||||
|  | ||||
|       scalar_object selfLink    = Zero(); | ||||
|       scalar_object selfLinkInv = Zero(); | ||||
|  | ||||
|       Coordinate lcoor; | ||||
|  | ||||
|       Grid()->LocalIndexToLocalCoor(site, lcoor); | ||||
|       peekLocalSite(selfLink, Aself_v, lcoor); | ||||
|  | ||||
|       for (int i = 0; i < nbasis; ++i) | ||||
|         for (int j = 0; j < nbasis; ++j) | ||||
|           selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j))); | ||||
|  | ||||
|       selfLinkInvEigen = selfLinkEigen.inverse(); | ||||
|  | ||||
|       for(int i = 0; i < nbasis; ++i) | ||||
|         for(int j = 0; j < nbasis; ++j) | ||||
|           selfLinkInv(i, j) = selfLinkInvEigen(i, j); | ||||
|  | ||||
|       pokeLocalSite(selfLinkInv, AselfInv_v, lcoor); | ||||
|     }); | ||||
|   } | ||||
|  | ||||
|   void FillHalfCbs() { | ||||
|     std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl; | ||||
|     for(int p = 0; p < geom.npoint; ++p) { | ||||
|       pickCheckerboard(Even, Aeven[p], A[p]); | ||||
|       pickCheckerboard(Odd, Aodd[p], A[p]); | ||||
|     } | ||||
|     pickCheckerboard(Even, AselfInvEven, AselfInv); | ||||
|     pickCheckerboard(Odd, AselfInvOdd, AselfInv); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,619 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No) | ||||
|  | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
| #include <Grid/stencil/GeneralLocalStencil.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|  | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   int hermitian; | ||||
|   GridBase      *       _FineGrid;  | ||||
|   GridCartesian *       _CoarseGrid;  | ||||
|   NonLocalStencilGeometry &geom; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|    | ||||
|   std::vector<CoarseMatrix> _A; | ||||
|   std::vector<CoarseMatrix> _Adag; | ||||
|   std::vector<CoarseVector> MultTemporaries; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|   GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   /*  void ShiftMatrix(RealD shift) | ||||
|   { | ||||
|     int Nd=_FineGrid->Nd();  | ||||
|     Coordinate zero_shift(Nd,0); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       if ( zero_shift==geom.shifts[p] ) { | ||||
| 	_A[p] = _A[p]+shift; | ||||
| 	//	_Adag[p] = _Adag[p]+shift; | ||||
|       } | ||||
|     }     | ||||
|   } | ||||
|   void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe) | ||||
|   { | ||||
|     int nfound=0; | ||||
|     std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int pp=0;pp<CopyMe.geom.npoint;pp++){ | ||||
|  	// Search for the same relative shift | ||||
| 	// Avoids brutal handling of Grid pointers | ||||
| 	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) { | ||||
| 	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]); | ||||
| 	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]); | ||||
| 	  nfound++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     assert(nfound==geom.npoint); | ||||
|     ExchangeCoarseLinks(); | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid) | ||||
|     : geom(_geom), | ||||
|       _FineGrid(FineGrid), | ||||
|       _CoarseGrid(CoarseGrid), | ||||
|       hermitian(1), | ||||
|       Cell(_geom.Depth(),_CoarseGrid), | ||||
|       Stencil(Cell.grids.back(),geom.shifts) | ||||
|   { | ||||
|     { | ||||
|       int npoint = _geom.npoint; | ||||
|     } | ||||
|     _A.resize(geom.npoint,CoarseGrid); | ||||
|     //    _Adag.resize(geom.npoint,CoarseGrid); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     Mult(_A,in,out); | ||||
|   } | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     assert(hermitian); | ||||
|     Mult(_A,in,out); | ||||
|     //    if ( hermitian ) M(in,out); | ||||
|     //    else Mult(_Adag,in,out); | ||||
|   } | ||||
|   void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0; | ||||
|     RealD tmult2=0; | ||||
|  | ||||
|     ttot=-usecond(); | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     CoarseVector tin=in; | ||||
|  | ||||
|     texch-=usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); | ||||
|     texch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|      | ||||
|     int64_t osites=pin.Grid()->oSites(); | ||||
|  | ||||
|     RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint | ||||
|                 + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|        | ||||
|     { | ||||
|       tviews-=usecond(); | ||||
|       autoView( in_v , pin, AcceleratorRead); | ||||
|       autoView( out_v , pout, AcceleratorWriteDiscard); | ||||
|       autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       // Static and prereserve to keep UVM region live and not resized across multiple calls | ||||
|       ttemps-=usecond(); | ||||
|       MultTemporaries.resize(npoint,pin.Grid());        | ||||
|       ttemps+=usecond(); | ||||
|       std::vector<Aview> AcceleratorViewContainer_h; | ||||
|       std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|  | ||||
|       tviews-=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead)); | ||||
| 	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite)); | ||||
|       } | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint); | ||||
|       static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);  | ||||
|        | ||||
|       auto Aview_p = &AcceleratorViewContainer[0]; | ||||
|       auto Vview_p = &AcceleratorVecViewContainer[0]; | ||||
|       tcopy-=usecond(); | ||||
|       acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview)); | ||||
|       acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview)); | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|       tmult-=usecond(); | ||||
|       accelerator_for(spb, osites*nbasis*npoint, Nsimd, { | ||||
| 	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
| 	  int32_t ss   = spb/(nbasis*npoint); | ||||
| 	  int32_t bp   = spb%(nbasis*npoint); | ||||
| 	  int32_t point= bp/nbasis; | ||||
| 	  int32_t b    = bp%nbasis; | ||||
| 	  auto SE  = Stencil_v.GetEntry(point,ss); | ||||
| 	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd); | ||||
| 	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0); | ||||
| 	  for(int bb=1;bb<nbasis;bb++) { | ||||
| 	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb); | ||||
| 	  } | ||||
| 	  coalescedWrite(Vview_p[point][ss](b),res); | ||||
|       }); | ||||
|       tmult2-=usecond(); | ||||
|       accelerator_for(sb, osites*nbasis, Nsimd, { | ||||
| 	  int ss = sb/nbasis; | ||||
| 	  int b  = sb%nbasis; | ||||
| 	  auto res = coalescedRead(Vview_p[0][ss](b)); | ||||
| 	  for(int point=1;point<npoint;point++){ | ||||
| 	    res = res + coalescedRead(Vview_p[point][ss](b)); | ||||
| 	  } | ||||
| 	  coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|       tmult2+=usecond(); | ||||
|       tmult+=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h[p].ViewClose(); | ||||
| 	AcceleratorVecViewContainer_h[p].ViewClose(); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     text-=usecond(); | ||||
|     out = Cell.Extract(pout); | ||||
|     text+=usecond(); | ||||
|     ttot+=usecond(); | ||||
|      | ||||
|     std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl; | ||||
|     //    std::cout << GridLogPerformance<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   void PopulateAdag(void) | ||||
|   { | ||||
|     for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){ | ||||
|       Coordinate bcoor; | ||||
|       CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor); | ||||
|        | ||||
|       for(int p=0;p<geom.npoint;p++){ | ||||
| 	Coordinate scoor = bcoor; | ||||
| 	for(int mu=0;mu<bcoor.size();mu++){ | ||||
| 	  int L = CoarseGrid()->GlobalDimensions()[mu]; | ||||
| 	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic | ||||
| 	} | ||||
| 	// Flip to poke/peekLocalSite and not too bad | ||||
| 	auto link = peekSite(_A[p],scoor); | ||||
| 	int pp = geom.Reverse(p); | ||||
| 	pokeSite(adj(link),_Adag[pp],bcoor); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   //  | ||||
|   // A) Only reduced flops option is to use a padded cell of depth 4 | ||||
|   // and apply MpcDagMpc in the padded cell. | ||||
|   // | ||||
|   // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80. | ||||
|   // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio | ||||
|   // Cost is 81x more, same as stencil size. | ||||
|   // | ||||
|   // But: can eliminate comms and do as local dirichlet. | ||||
|   // | ||||
|   // Local exchange gauge field once. | ||||
|   // Apply to all vectors, local only computation. | ||||
|   // Must exchange ghost subcells in reverse process of PaddedCell to take inner products | ||||
|   // | ||||
|   // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4) | ||||
|   //                     pad by 2, apply Doe | ||||
|   //                     pad by 3, apply Deo | ||||
|   //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector | ||||
|   // | ||||
|   // => almost factor of 10 in setup cost, excluding data rearrangement | ||||
|   // | ||||
|   // Intermediates -- ignore the corner terms, leave approximate and force Hermitian | ||||
|   // Intermediates -- pad by 2 and apply 1+8+24 = 33 times. | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // BFM HDCG style approach: Solve a system of equations to get Aij | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     /* | ||||
|      *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM. | ||||
|      * | ||||
|      *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >  | ||||
|      *                                                 =  \sum_ball e^{iqk.delta} A_ji | ||||
|      * | ||||
|      *     Must invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|      * | ||||
|      *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|      */ | ||||
| #if 0 | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	// Stick a phase on every block | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	tphase-=usecond(); | ||||
| 	CoarseComplexField coor(CoarseGrid()); | ||||
| 	CoarseComplexField pha(CoarseGrid());	pha=Zero(); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  LatticeCoordinate(coor,mu); | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
| 	} | ||||
| 	pha  =exp(pha*ci); | ||||
| 	phaV=Zero(); | ||||
| 	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV); | ||||
| 	tphase+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #else | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     //    for(int s=0;s<Subspace.subspace.size();s++){ | ||||
|       //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl; | ||||
|     //    } | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid()); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     tphase=-usecond(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid()); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci); | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|        | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|      | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	tphaseBZ-=usecond(); | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
| 	tphaseBZ+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl; | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl; | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #endif   | ||||
|   void ExchangeCoarseLinks(void){ | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       _A[p] = Cell.ExchangePeriodic(_A[p]); | ||||
|       //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]); | ||||
|     } | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|  | ||||
|  | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,729 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|   typedef typename CComplex::scalar_object SComplex; | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp; | ||||
|  | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef iVector<SComplex,nbasis >           calcVector; | ||||
|   typedef iMatrix<SComplex,nbasis >           calcMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   GridCartesian *       _CoarseGridMulti;  | ||||
|   NonLocalStencilGeometry geom; | ||||
|   NonLocalStencilGeometry geom_srhs; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|  | ||||
|   deviceVector<calcVector> BLAS_B; | ||||
|   deviceVector<calcVector> BLAS_C; | ||||
|   std::vector<deviceVector<calcMatrix> > BLAS_A; | ||||
|  | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_AP; | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_BP; | ||||
|   deviceVector<ComplexD *>               BLAS_CP; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   // Can be used to do I/O on the operator matrices externally | ||||
|   void SetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     GridtoBLAS(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void GetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     BLAStoGrid(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void CopyMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       //Unpadded | ||||
|       GridtoBLAS(Aup,BLAS_A[p]); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   void CheckMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     std::cout <<"************* Checking the little direc operator mRHS"<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       //Unpadded | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       auto Ack = Aup; | ||||
|       BLAStoGrid(Ack,BLAS_A[p]); | ||||
|       std::cout << p<<" Ack "<<norm2(Ack)<<std::endl; | ||||
|       std::cout << p<<" Aup "<<norm2(Aup)<<std::endl; | ||||
|     } | ||||
|     std::cout <<"************* "<<std::endl; | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) : | ||||
|     _CoarseGridMulti(CoarseGridMulti), | ||||
|     geom_srhs(_geom), | ||||
|     geom(_CoarseGridMulti,_geom.hops,_geom.skip+1), | ||||
|     Cell(geom.Depth(),_CoarseGridMulti), | ||||
|     Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil | ||||
|   { | ||||
|     int32_t padded_sites   = Cell.grids.back()->lSites(); | ||||
|     int32_t unpadded_sites = CoarseGridMulti->lSites(); | ||||
|      | ||||
|     int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS | ||||
|     int32_t orhs  = nrhs/CComplex::Nsimd(); | ||||
|  | ||||
|     padded_sites   = padded_sites/nrhs; | ||||
|     unpadded_sites = unpadded_sites/nrhs; | ||||
|      | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Device data vector storage | ||||
|     ///////////////////////////////////////////////// | ||||
|     BLAS_A.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements | ||||
|     } | ||||
|      | ||||
|     BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone | ||||
|     BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone | ||||
|     BLAS_AP.resize(geom.npoint); | ||||
|     BLAS_BP.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_AP[p].resize(unpadded_sites); | ||||
|       BLAS_BP[p].resize(unpadded_sites); | ||||
|     } | ||||
|     BLAS_CP.resize(unpadded_sites); | ||||
|  | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Pointers to data | ||||
|     ///////////////////////////////////////////////// | ||||
|  | ||||
|     // Site identity mapping for A | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int ss=0;ss<unpadded_sites;ss++){ | ||||
| 	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss]; | ||||
| 	acceleratorPut(BLAS_AP[p][ss],ptr); | ||||
|       } | ||||
|     } | ||||
|     // Site identity mapping for C | ||||
|     for(int ss=0;ss<unpadded_sites;ss++){ | ||||
|       ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs]; | ||||
|       acceleratorPut(BLAS_CP[ss],ptr); | ||||
|     } | ||||
|  | ||||
|     // Neighbour table is more complicated | ||||
|     int32_t j=0; // Interior point counter (unpadded) | ||||
|     for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded | ||||
|       int ghost_zone=0; | ||||
|       for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	int i=s*orhs*geom.npoint+point; | ||||
| 	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor | ||||
| 	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1 | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if( ghost_zone==0) { | ||||
| 	for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	  int i=s*orhs*geom.npoint+point; | ||||
|  	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite | ||||
| 	  assert(nbr<BLAS_B.size()); | ||||
| 	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr]; | ||||
| 	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume | ||||
| 	} | ||||
| 	j++; | ||||
|       } | ||||
|     } | ||||
|     assert(j==unpadded_sites); | ||||
|   } | ||||
|   template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Fg = from.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   int nd = Fg->_ndimension; | ||||
|  | ||||
|   to.resize(Fg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Fg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|  | ||||
|   autoView(from_v,from,AcceleratorRead); | ||||
|   auto to_v = &to[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate from_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i]; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       scalar_type* to = (scalar_type *)&to_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	to[w] = stmp; | ||||
|       } | ||||
|     }); | ||||
|   }     | ||||
|   template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Tg = grid.Grid(); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int nd = Tg->_ndimension; | ||||
|    | ||||
|   assert(in.size()==Tg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Tg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|  | ||||
|   autoView(to_v,grid,AcceleratorWrite); | ||||
|   auto from_v = &in[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	to_coor[i] = base[i]; | ||||
|       } | ||||
|       int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|       scalar_type* from = (scalar_type *)&from_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp=from[w]; | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|   } | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace, | ||||
| 		       GridBase *CoarseGrid) | ||||
|   { | ||||
| #if 0 | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|  | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	linop.Op(phaV,MphaV); | ||||
|  | ||||
| 	// Fixme, could use batched block projector here | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
|  | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|       for(int k=0;k<npoint;k++){ | ||||
|  | ||||
| 	FT = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|  | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     /* | ||||
| Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us | ||||
| Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us | ||||
| Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us | ||||
| Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us | ||||
| Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us | ||||
| Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us | ||||
| Takes 600s to compute matrix elements, DOMINATED by the block project. | ||||
| Easy to speed up with the batched block project. | ||||
| Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster. | ||||
|  | ||||
| // Block project below taks to 240s | ||||
| Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us | ||||
| Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us | ||||
| Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us | ||||
| //Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed | ||||
| //Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion | ||||
|      */ | ||||
| #else | ||||
|     RealD tproj=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|  | ||||
|     MultiRHSBlockProject<Lattice<Fobj> >    Projector; | ||||
|     Projector.Allocate(nbasis,grid,CoarseGrid); | ||||
|     Projector.ImportBasis(Subspace.subspace); | ||||
|      | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     tphase=-usecond(); | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     // Count use small chunks than npoint == 81 and save memory | ||||
|     int batch = 9; | ||||
|     std::vector<FineField>    _MphaV(batch,grid); | ||||
|     std::vector<CoarseVector> TmpProj(batch,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|  | ||||
|       //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl; | ||||
|       // Fixme : do this in batches | ||||
|       for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint | ||||
|  | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  tphaseBZ-=usecond(); | ||||
| 	  phaV = phaF[p+b]*Subspace.subspace[i]; | ||||
| 	  tphaseBZ+=usecond(); | ||||
|  | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Multiple phased subspace vector by matrix and project to subspace | ||||
| 	  // Remove local bulk phase to leave relative phases | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Memory footprint was an issue | ||||
| 	  tmat-=usecond(); | ||||
| 	  linop.Op(phaV,MphaV); | ||||
| 	  _MphaV[b] = MphaV; | ||||
| 	  tmat+=usecond(); | ||||
| 	}       | ||||
|  | ||||
| 	//	std::cout << GridLogMessage << " Calling block project "<<std::endl; | ||||
| 	tproj-=usecond(); | ||||
| 	Projector.blockProject(_MphaV,TmpProj); | ||||
| 	tproj+=usecond(); | ||||
| 	 | ||||
| 	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl; | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b]; | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|        | ||||
|       // std::cout << GridLogMessage << " Starting FT inv "<<std::endl; | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT = Zero(); | ||||
| 	// 81 kernel calls as many ComputeProj vectors | ||||
| 	// Could fuse with a vector of views, but ugly | ||||
| 	// Could unroll the expression and run fewer kernels -- much more attractive | ||||
| 	// Could also do non blocking. | ||||
| #if 0	 | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #else | ||||
| 	const int radix = 9; | ||||
| 	int ll; | ||||
| 	for(ll=0;ll+radix-1<npoint;ll+=radix){ | ||||
| 	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all. | ||||
| 	  FT = FT  | ||||
| 	    + invMkl(ll+0,k)*ComputeProj[ll+0] | ||||
| 	    + invMkl(ll+1,k)*ComputeProj[ll+1] | ||||
| 	    + invMkl(ll+2,k)*ComputeProj[ll+2] | ||||
| 	    + invMkl(ll+3,k)*ComputeProj[ll+3] | ||||
| 	    + invMkl(ll+4,k)*ComputeProj[ll+4] | ||||
| 	    + invMkl(ll+5,k)*ComputeProj[ll+5] | ||||
| 	    + invMkl(ll+6,k)*ComputeProj[ll+6] | ||||
| 	    + invMkl(ll+7,k)*ComputeProj[ll+7] | ||||
| 	    + invMkl(ll+8,k)*ComputeProj[ll+8]; | ||||
| 	} | ||||
| 	for(int l=ll;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #endif | ||||
|        | ||||
| 	// 1 kernel call -- must be cheaper | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|     //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl; | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
| #endif | ||||
|   } | ||||
|   void Mdag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     this->M(in,out); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl; | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     RealD t_tot; | ||||
|     RealD t_exch; | ||||
|     RealD t_GtoB; | ||||
|     RealD t_BtoG; | ||||
|     RealD t_mult; | ||||
|  | ||||
|     t_tot=-usecond(); | ||||
|     CoarseVector tin=in; | ||||
|     t_exch=-usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input | ||||
|     t_exch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef calcMatrix* Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|  | ||||
|     int64_t nrhs  =pin.Grid()->GlobalDimensions()[0]; | ||||
|     assert(nrhs>=1); | ||||
|  | ||||
|     RealD flops,bytes; | ||||
|     int64_t osites=in.Grid()->oSites(); // unpadded | ||||
|     int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs; | ||||
|      | ||||
|     flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0] | ||||
|           + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|      | ||||
|  | ||||
|     t_GtoB=-usecond(); | ||||
|     GridtoBLAS(pin,BLAS_B); | ||||
|     t_GtoB+=usecond(); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     t_mult=-usecond(); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       RealD c = 1.0; | ||||
|       if (p==0) c = 0.0; | ||||
|       ComplexD beta(c); | ||||
|  | ||||
|       BLAS.gemmBatched(nbasis,nrhs,nbasis, | ||||
| 		       ComplexD(1.0), | ||||
| 		       BLAS_AP[p],  | ||||
| 		       BLAS_BP[p],  | ||||
| 		       ComplexD(c),  | ||||
| 		       BLAS_CP); | ||||
|     } | ||||
|     BLAS.synchronise(); | ||||
|     t_mult+=usecond(); | ||||
|  | ||||
|     t_BtoG=-usecond(); | ||||
|     BLAStoGrid(out,BLAS_C); | ||||
|     t_BtoG+=usecond(); | ||||
|     t_tot+=usecond(); | ||||
|     /* | ||||
|     std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl; | ||||
|     */ | ||||
|     //    std::cout << GridLogMessage<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|   }; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,238 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   int base; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|   std::vector<int> points_dagger; | ||||
|  | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     base = (_d==5) ? 1:0; | ||||
|  | ||||
|     // make coarse grid stencil for 4d , not 5d | ||||
|     if ( _d==5 ) _d=4; | ||||
|  | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     points_dagger.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|       points_dagger[d   ] = d+_d; | ||||
|       points_dagger[d+_d] = d; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|     points_dagger[2*_d]=2*_d; | ||||
|   } | ||||
|  | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
|  | ||||
|     // directions faster index = new indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  1  2  3  0  1  2  3  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  2  3  4  1  2  3  4  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|  | ||||
|     // displacements faster index = old indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  0  1  1  2  2  3  3  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  1  2  2  3  3  4  4  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|  | ||||
|     if(dir == 0 and disp == 0) | ||||
|       return 8; | ||||
|     else // New indexing | ||||
|       return (1 - disp) / 2 * 4 + dir - base; | ||||
|     // else // Old indexing | ||||
|     //   return (4 * (dir - base) + 1 - disp) / 2; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Less local equivalent of Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| class NonLocalStencilGeometry { | ||||
| public: | ||||
|   //  int depth; | ||||
|   int skip; | ||||
|   int hops; | ||||
|   int npoint; | ||||
|   std::vector<Coordinate> shifts; | ||||
|   Coordinate stencil_size; | ||||
|   Coordinate stencil_lo; | ||||
|   Coordinate stencil_hi; | ||||
|   GridCartesian *grid; | ||||
|   GridCartesian *Grid() {return grid;}; | ||||
|   int Depth(void){return 1;};   // Ghost zone depth | ||||
|   int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil | ||||
|   int DimSkip(void){return skip;}; | ||||
|  | ||||
|   virtual ~NonLocalStencilGeometry() {}; | ||||
|  | ||||
|   int  Reverse(int point) | ||||
|   { | ||||
|     int Nd = Grid()->Nd(); | ||||
|     Coordinate shft = shifts[point]; | ||||
|     Coordinate rev(Nd); | ||||
|     for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu]; | ||||
|     for(int p=0;p<npoint;p++){ | ||||
|       if(rev==shifts[p]){ | ||||
| 	return p; | ||||
|       } | ||||
|     } | ||||
|     assert(0); | ||||
|     return -1; | ||||
|   } | ||||
|   void BuildShifts(void) | ||||
|   { | ||||
|     this->shifts.resize(0); | ||||
|     int Nd = this->grid->Nd(); | ||||
|  | ||||
|     int dd = this->DimSkip(); | ||||
|     for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){ | ||||
|     for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){ | ||||
|     for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){ | ||||
|     for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){ | ||||
|       Coordinate sft(Nd,0); | ||||
|       sft[dd+0] = s0; | ||||
|       sft[dd+1] = s1; | ||||
|       sft[dd+2] = s2; | ||||
|       sft[dd+3] = s3; | ||||
|       int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3); | ||||
|       if(nhops<=this->hops) this->shifts.push_back(sft); | ||||
|     }}}} | ||||
|     this->npoint = this->shifts.size(); | ||||
|     std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl; | ||||
|   } | ||||
|    | ||||
|   NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip) | ||||
|   { | ||||
|     Coordinate latt = grid->GlobalDimensions(); | ||||
|     stencil_size.resize(grid->Nd()); | ||||
|     stencil_lo.resize(grid->Nd()); | ||||
|     stencil_hi.resize(grid->Nd()); | ||||
|     for(int d=0;d<grid->Nd();d++){ | ||||
|      if ( latt[d] == 1 ) { | ||||
|       stencil_lo[d] = 0; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 1; | ||||
|      } else if ( latt[d] == 2 ) { | ||||
|       stencil_lo[d] = -1; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 2; | ||||
|      } else if ( latt[d] > 2 ) { | ||||
|        stencil_lo[d] = -1; | ||||
|        stencil_hi[d] =  1; | ||||
|        stencil_size[d]= 3; | ||||
|      } | ||||
|     } | ||||
|     this->BuildShifts(); | ||||
|   }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| // Need to worry about red-black now | ||||
| class NonLocalStencilGeometry4D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 0;}; | ||||
|   NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { }; | ||||
|   virtual ~NonLocalStencilGeometry4D() {}; | ||||
| }; | ||||
| class NonLocalStencilGeometry5D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 1; };  | ||||
|   NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { }; | ||||
|   virtual ~NonLocalStencilGeometry5D() {}; | ||||
| }; | ||||
| /* | ||||
|  * Bunch of different options classes | ||||
|  */ | ||||
| class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,231 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/AlignedAllocator.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<typename _Tp> | ||||
| class alignedAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
|   typedef _Tp*       pointer; | ||||
|   typedef const _Tp* const_pointer; | ||||
|   typedef _Tp&       reference; | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef alignedAllocator<_Tp1> other; }; | ||||
|   alignedAllocator() throw() { } | ||||
|   alignedAllocator(const alignedAllocator&) throw() { } | ||||
|   template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { } | ||||
|   ~alignedAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
|   pointer allocate(size_type __n, const void* _p= 0) | ||||
|   {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|     size_type bytes = __n * sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::CpuFree((void *)__p,bytes); | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop | ||||
|   void construct(pointer __p, const _Tp& __val) { assert(0);}; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Unified virtual memory | ||||
| ////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename _Tp> | ||||
| class uvmAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
|   typedef _Tp*       pointer; | ||||
|   typedef const _Tp* const_pointer; | ||||
|   typedef _Tp&       reference; | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef uvmAllocator<_Tp1> other; }; | ||||
|   uvmAllocator() throw() { } | ||||
|   uvmAllocator(const uvmAllocator&) throw() { } | ||||
|   template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { } | ||||
|   ~uvmAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
|   pointer allocate(size_type __n, const void* _p= 0) | ||||
|   {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|     size_type bytes = __n * sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::SharedFree((void *)__p,bytes); | ||||
|   } | ||||
|  | ||||
|   void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Device memory | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename _Tp> | ||||
| class devAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
|   typedef _Tp*       pointer; | ||||
|   typedef const _Tp* const_pointer; | ||||
|   typedef _Tp&       reference; | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef devAllocator<_Tp1> other; }; | ||||
|   devAllocator() throw() { } | ||||
|   devAllocator(const devAllocator&) throw() { } | ||||
|   template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { } | ||||
|   ~devAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
|   pointer allocate(size_type __n, const void* _p= 0) | ||||
|   {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|     size_type bytes = __n * sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::AcceleratorFree((void *)__p,bytes); | ||||
|   } | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Template typedefs | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
| // Cshift on device | ||||
| template<class T> using cshiftAllocator = devAllocator<T>; | ||||
| #else | ||||
| // Cshift on host | ||||
| template<class T> using cshiftAllocator = std::allocator<T>; | ||||
| #endif | ||||
|  | ||||
| template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector    = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector  = std::vector<T,cshiftAllocator<T> >; | ||||
|  | ||||
| /* | ||||
| template<class T> class vecView | ||||
| { | ||||
|  protected: | ||||
|   T * data; | ||||
|   uint64_t size; | ||||
|   ViewMode mode; | ||||
|   void * cpu_ptr; | ||||
|  public: | ||||
|   accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; | ||||
|   vecView(std::vector<T> &refer_to_me,ViewMode _mode) | ||||
|   { | ||||
|     cpu_ptr = &refer_to_me[0]; | ||||
|     size = refer_to_me.size(); | ||||
|     mode = _mode; | ||||
|     data =(T *) MemoryManager::ViewOpen(cpu_ptr, | ||||
| 					size*sizeof(T), | ||||
| 					mode, | ||||
| 					AdviseDefault); | ||||
|   } | ||||
|   void ViewClose(void) | ||||
|   { // Inform the manager | ||||
|     MemoryManager::ViewClose(this->cpu_ptr,this->mode);     | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode) | ||||
| { | ||||
|   vecView<T> ret(vec,_mode); // does the open | ||||
|   return ret;                // must be closed | ||||
| } | ||||
|  | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class VectorViewCloser | ||||
| { | ||||
|   View v;  // Take a copy of view and call view close when I go out of scope automatically | ||||
|  public: | ||||
|   VectorViewCloser(View &_v) : v(_v) {}; | ||||
|   ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);} | ||||
| }; | ||||
|  | ||||
| #define autoVecView(v_v,v,mode)					\ | ||||
|   auto v_v = VectorView(v,mode);				\ | ||||
|   ViewCloser<decltype(v_v)> _autoView##v_v(v_v); | ||||
| */ | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,4 +0,0 @@ | ||||
| #pragma once | ||||
| #include <Grid/allocator/MemoryStats.h> | ||||
| #include <Grid/allocator/MemoryManager.h> | ||||
| #include <Grid/allocator/AlignedAllocator.h> | ||||
| @@ -1,324 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /*Allocation types, saying which pointer cache should be used*/ | ||||
| #define Cpu      (0) | ||||
| #define CpuHuge  (1) | ||||
| #define CpuSmall (2) | ||||
| #define Acc      (3) | ||||
| #define AccHuge  (4) | ||||
| #define AccSmall (5) | ||||
| #define Shared   (6) | ||||
| #define SharedHuge  (7) | ||||
| #define SharedSmall (8) | ||||
| #undef GRID_MM_VERBOSE  | ||||
| uint64_t total_shared; | ||||
| uint64_t total_device; | ||||
| uint64_t total_host;; | ||||
| void MemoryManager::PrintBytes(void) | ||||
| { | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
|   std::cout << " MemoryManager : PrintBytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared      Mbytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_host>>20)  <<" cpu         Mbytes "<<std::endl; | ||||
|   uint64_t cacheBytes; | ||||
|   cacheBytes = CacheBytes[Cpu]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl; | ||||
|   cacheBytes = CacheBytes[Acc]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl; | ||||
|   cacheBytes = CacheBytes[Shared]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl; | ||||
|    | ||||
| #ifdef GRID_CUDA | ||||
|   cuda_mem(); | ||||
| #endif | ||||
|    | ||||
| } | ||||
|  | ||||
| uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; } | ||||
| uint64_t MemoryManager::HostCacheBytes()   { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Data tables for recently freed pooiniter caches | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax]; | ||||
| int MemoryManager::Victim[MemoryManager::NallocType]; | ||||
| int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 }; | ||||
| uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType]; | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Actual allocation and deallocation utils | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| void *MemoryManager::AcceleratorAllocate(size_t bytes) | ||||
| { | ||||
|   total_device+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Acc); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocDevice(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"AcceleratorAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   total_device-=bytes; | ||||
|   void *__freeme = Insert(ptr,bytes,Acc); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeDevice(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"AcceleratorFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| void *MemoryManager::SharedAllocate(size_t bytes) | ||||
| { | ||||
|   total_shared+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Shared); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"SharedAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::SharedFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   total_shared-=bytes; | ||||
|   void *__freeme = Insert(ptr,bytes,Shared); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeShared(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"SharedFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #ifdef GRID_UVM | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   total_host+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   total_host-=bytes; | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeShared(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #else | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   total_host+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocCpu(bytes); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   total_host-=bytes; | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeCpu(__freeme); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #endif | ||||
|  | ||||
| ////////////////////////////////////////// | ||||
| // call only once | ||||
| ////////////////////////////////////////// | ||||
| void MemoryManager::Init(void) | ||||
| { | ||||
|  | ||||
|   char * str; | ||||
|   int Nc; | ||||
|    | ||||
|   str= getenv("GRID_ALLOC_NCACHE_LARGE"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[Cpu]=Nc; | ||||
|       Ncache[Acc]=Nc; | ||||
|       Ncache[Shared]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_HUGE"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[CpuHuge]=Nc; | ||||
|       Ncache[AccHuge]=Nc; | ||||
|       Ncache[SharedHuge]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_SMALL"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[CpuSmall]=Nc; | ||||
|       Ncache[AccSmall]=Nc; | ||||
|       Ncache[SharedSmall]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
| } | ||||
|  | ||||
| void MemoryManager::InitMessage(void) { | ||||
|  | ||||
| #ifndef GRID_UVM | ||||
|   std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl; | ||||
| #endif | ||||
|    | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl; | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host   allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl; | ||||
| #endif | ||||
|    | ||||
| #ifdef GRID_UVM | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl; | ||||
| #ifdef GRID_CUDA | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl; | ||||
| #endif | ||||
| #else | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl; | ||||
| #ifdef GRID_CUDA | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl; | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,int type)  | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   int cache; | ||||
|   if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; | ||||
|   else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; | ||||
|   else                                     cache = type; | ||||
|  | ||||
|   return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);   | ||||
| #else | ||||
|   return ptr; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)  | ||||
| { | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   if (ncache == 0) return ptr; | ||||
|  | ||||
|   void * ret = NULL; | ||||
|   int v = -1; | ||||
|  | ||||
|   for(int e=0;e<ncache;e++) { | ||||
|     if ( entries[e].valid==0 ) { | ||||
|       v=e;  | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   if ( v==-1 ) { | ||||
|     v=victim; | ||||
|     victim = (victim+1)%ncache; | ||||
|   } | ||||
|  | ||||
|   if ( entries[v].valid ) { | ||||
|     ret = entries[v].address; | ||||
|     cacheBytes -= entries[v].bytes; | ||||
|     entries[v].valid = 0; | ||||
|     entries[v].address = NULL; | ||||
|     entries[v].bytes = 0; | ||||
|   } | ||||
|  | ||||
|   entries[v].address=ptr; | ||||
|   entries[v].bytes  =bytes; | ||||
|   entries[v].valid  =1; | ||||
|   cacheBytes += bytes; | ||||
|  | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,int type) | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   int cache; | ||||
|   if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; | ||||
|   else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; | ||||
|   else                                     cache = type; | ||||
|  | ||||
|   return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]); | ||||
| #else | ||||
|   return NULL; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)  | ||||
| { | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|   for(int e=0;e<ncache;e++){ | ||||
|     if ( entries[e].valid && ( entries[e].bytes == bytes ) ) { | ||||
|       entries[e].valid = 0; | ||||
|       cacheBytes -= entries[e].bytes; | ||||
|       return entries[e].address; | ||||
|     } | ||||
|   } | ||||
|   return NULL; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,226 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/MemoryManager.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
| #include <list>  | ||||
| #include <unordered_map>   | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Move control to configure.ac and Config.h? | ||||
|  | ||||
| #define GRID_ALLOC_SMALL_LIMIT (4096) | ||||
| #define GRID_ALLOC_HUGE_LIMIT  (2147483648) | ||||
|  | ||||
| #define STRINGIFY(x) #x | ||||
| #define TOSTRING(x) STRINGIFY(x) | ||||
| #define FILE_LINE __FILE__ ":" TOSTRING(__LINE__) | ||||
| #define AUDIT(a) MemoryManager::Audit(FILE_LINE) | ||||
|  | ||||
| /*Pinning pages is costly*/ | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // Advise the LatticeAccelerator class | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| enum ViewAdvise { | ||||
|  AdviseDefault       = 0x0,    // Regular data | ||||
|  AdviseInfrequentUse = 0x1     // Advise that the data is used infrequently.  This can | ||||
|                                // significantly influence performance of bulk storage. | ||||
|   | ||||
|  // AdviseTransient      = 0x2,   // Data will mostly be read.  On some architectures | ||||
|                                // enables read-only copies of memory to be kept on | ||||
|                                // host and device. | ||||
|  | ||||
|  // AdviseAcceleratorWriteDiscard = 0x4  // Field will be written in entirety on device | ||||
|  | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // View Access Mode | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| enum ViewMode { | ||||
|   AcceleratorRead  = 0x01, | ||||
|   AcceleratorWrite = 0x02, | ||||
|   AcceleratorWriteDiscard = 0x04, | ||||
|   CpuRead  = 0x08, | ||||
|   CpuWrite = 0x10, | ||||
|   CpuWriteDiscard = 0x10 // same for now | ||||
| }; | ||||
|  | ||||
| struct MemoryStatus { | ||||
|   uint64_t     DeviceBytes; | ||||
|   uint64_t     DeviceLRUBytes; | ||||
|   uint64_t     DeviceMaxBytes; | ||||
|   uint64_t     HostToDeviceBytes; | ||||
|   uint64_t     DeviceToHostBytes; | ||||
|   uint64_t     HostToDeviceXfer; | ||||
|   uint64_t     DeviceToHostXfer; | ||||
|   uint64_t     DeviceEvictions; | ||||
|   uint64_t     DeviceDestroy; | ||||
|   uint64_t     DeviceAllocCacheBytes; | ||||
|   uint64_t     HostAllocCacheBytes; | ||||
| }; | ||||
|  | ||||
|  | ||||
| class MemoryManager { | ||||
| private: | ||||
|  | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // For caching recently freed allocations | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   typedef struct {  | ||||
|     void *address; | ||||
|     size_t bytes; | ||||
|     int valid; | ||||
|   } AllocationCacheEntry; | ||||
|  | ||||
|   static const int NallocCacheMax=128;  | ||||
|   static const int NallocType=9; | ||||
|   static AllocationCacheEntry Entries[NallocType][NallocCacheMax]; | ||||
|   static int Victim[NallocType]; | ||||
|   static int Ncache[NallocType]; | ||||
|   static uint64_t CacheBytes[NallocType]; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Free pool | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void *Insert(void *ptr,size_t bytes,int type) ; | ||||
|   static void *Lookup(size_t bytes,int type) ; | ||||
|   static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ; | ||||
|   static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ; | ||||
|  | ||||
|  public: | ||||
|   static void PrintBytes(void); | ||||
|   static void Audit(std::string s); | ||||
|   static void Init(void); | ||||
|   static void InitMessage(void); | ||||
|   static void *AcceleratorAllocate(size_t bytes); | ||||
|   static void  AcceleratorFree    (void *ptr,size_t bytes); | ||||
|   static void *SharedAllocate(size_t bytes); | ||||
|   static void  SharedFree    (void *ptr,size_t bytes); | ||||
|   static void *CpuAllocate(size_t bytes); | ||||
|   static void  CpuFree    (void *ptr,size_t bytes); | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Footprint tracking | ||||
|   //////////////////////////////////////////////////////// | ||||
|   static uint64_t     DeviceBytes; | ||||
|   static uint64_t     DeviceLRUBytes; | ||||
|   static uint64_t     DeviceMaxBytes; | ||||
|   static uint64_t     HostToDeviceBytes; | ||||
|   static uint64_t     DeviceToHostBytes; | ||||
|   static uint64_t     HostToDeviceXfer; | ||||
|   static uint64_t     DeviceToHostXfer; | ||||
|   static uint64_t     DeviceEvictions; | ||||
|   static uint64_t     DeviceDestroy; | ||||
|    | ||||
|   static uint64_t     DeviceCacheBytes(); | ||||
|   static uint64_t     HostCacheBytes(); | ||||
|  | ||||
|   static MemoryStatus GetFootprint(void) { | ||||
|     MemoryStatus stat; | ||||
|     stat.DeviceBytes       = DeviceBytes; | ||||
|     stat.DeviceLRUBytes    = DeviceLRUBytes; | ||||
|     stat.DeviceMaxBytes    = DeviceMaxBytes; | ||||
|     stat.HostToDeviceBytes = HostToDeviceBytes; | ||||
|     stat.DeviceToHostBytes = DeviceToHostBytes; | ||||
|     stat.HostToDeviceXfer  = HostToDeviceXfer; | ||||
|     stat.DeviceToHostXfer  = DeviceToHostXfer; | ||||
|     stat.DeviceEvictions   = DeviceEvictions; | ||||
|     stat.DeviceDestroy     = DeviceDestroy; | ||||
|     stat.DeviceAllocCacheBytes = DeviceCacheBytes(); | ||||
|     stat.HostAllocCacheBytes   = HostCacheBytes(); | ||||
|     return stat; | ||||
|   }; | ||||
|    | ||||
|  private: | ||||
| #ifndef GRID_UVM | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Data tables for ViewCache | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   typedef std::list<uint64_t> LRU_t; | ||||
|   typedef typename LRU_t::iterator LRUiterator; | ||||
|   typedef struct {  | ||||
|     int        LRU_valid; | ||||
|     LRUiterator LRU_entry; | ||||
|     uint64_t CpuPtr; | ||||
|     uint64_t AccPtr; | ||||
|     size_t   bytes; | ||||
|     uint32_t transient; | ||||
|     uint32_t state; | ||||
|     uint32_t accLock; | ||||
|     uint32_t cpuLock; | ||||
|   } AcceleratorViewEntry; | ||||
|    | ||||
|   typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t; | ||||
|   typedef typename AccViewTable_t::iterator AccViewTableIterator ; | ||||
|  | ||||
|   static AccViewTable_t AccViewTable; | ||||
|   static LRU_t LRU; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Device motion | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void  Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void  EvictVictims(uint64_t bytes); // Frees up <bytes> | ||||
|   static void  Evict(AcceleratorViewEntry &AccCache); | ||||
|   static void  Flush(AcceleratorViewEntry &AccCache); | ||||
|   static void  Clone(AcceleratorViewEntry &AccCache); | ||||
|   static void  AccDiscard(AcceleratorViewEntry &AccCache); | ||||
|   static void  CpuDiscard(AcceleratorViewEntry &AccCache); | ||||
|  | ||||
|   //  static void  LRUupdate(AcceleratorViewEntry &AccCache); | ||||
|   static void  LRUinsert(AcceleratorViewEntry &AccCache); | ||||
|   static void  LRUremove(AcceleratorViewEntry &AccCache); | ||||
|    | ||||
|   // manage entries in the table | ||||
|   static int                  EntryPresent(uint64_t CpuPtr); | ||||
|   static void                 EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void                 EntryErase (uint64_t CpuPtr); | ||||
|   static AccViewTableIterator EntryLookup(uint64_t CpuPtr); | ||||
|   static void                 EntrySet   (uint64_t CpuPtr,AcceleratorViewEntry &entry); | ||||
|  | ||||
|   static void     AcceleratorViewClose(uint64_t AccPtr); | ||||
|   static uint64_t AcceleratorViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void     CpuViewClose(uint64_t Ptr); | ||||
|   static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
| #endif | ||||
|  | ||||
|  public: | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|   static void Print(void); | ||||
|   static void PrintAll(void); | ||||
|   static void PrintState( void* CpuPtr); | ||||
|   static int   isOpen   (void* CpuPtr); | ||||
|   static void  ViewClose(void* CpuPtr,ViewMode mode); | ||||
|   static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,602 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifndef GRID_UVM | ||||
|  | ||||
| #warning "Using explicit device memory copies" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define MAXLINE 512 | ||||
| static char print_buffer [ MAXLINE ]; | ||||
|  | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer; | ||||
| //#define dprintf(...)  | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////// | ||||
| // For caching copies of data on device | ||||
| //////////////////////////////////////////////////////////// | ||||
| MemoryManager::AccViewTable_t MemoryManager::AccViewTable; | ||||
| MemoryManager::LRU_t MemoryManager::LRU; | ||||
|    | ||||
| //////////////////////////////////////////////////////// | ||||
| // Footprint tracking | ||||
| //////////////////////////////////////////////////////// | ||||
| uint64_t  MemoryManager::DeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceLRUBytes; | ||||
| uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128; | ||||
| uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
| uint64_t  MemoryManager::DeviceEvictions; | ||||
| uint64_t  MemoryManager::DeviceDestroy; | ||||
|  | ||||
| //////////////////////////////////// | ||||
| // Priority ordering for unlocked entries | ||||
| //  Empty | ||||
| //  CpuDirty  | ||||
| //  Consistent | ||||
| //  AccDirty | ||||
| //////////////////////////////////// | ||||
| #define Empty         (0x0)  /*Entry unoccupied  */ | ||||
| #define CpuDirty      (0x1)  /*CPU copy is golden, Acc buffer MAY not be allocated*/ | ||||
| #define Consistent    (0x2)  /*ACC copy AND CPU copy are valid */ | ||||
| #define AccDirty      (0x4)  /*ACC copy is golden */ | ||||
| #define EvictNext     (0x8)  /*Priority for eviction*/ | ||||
|  | ||||
| ///////////////////////////////////////////////// | ||||
| // Mechanics of data table maintenance | ||||
| ///////////////////////////////////////////////// | ||||
| int   MemoryManager::EntryPresent(uint64_t CpuPtr) | ||||
| { | ||||
|   if(AccViewTable.empty()) return 0; | ||||
|  | ||||
|   auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1)); | ||||
|   return count; | ||||
| } | ||||
| void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   assert(!EntryPresent(CpuPtr)); | ||||
|   AcceleratorViewEntry AccCache; | ||||
|   AccCache.CpuPtr = CpuPtr; | ||||
|   AccCache.AccPtr = (uint64_t)NULL; | ||||
|   AccCache.bytes  = bytes; | ||||
|   AccCache.state  = CpuDirty; | ||||
|   AccCache.LRU_valid=0; | ||||
|   AccCache.transient=0; | ||||
|   AccCache.accLock=0; | ||||
|   AccCache.cpuLock=0; | ||||
|   AccViewTable[CpuPtr] = AccCache; | ||||
| } | ||||
| MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr) | ||||
| { | ||||
|   assert(EntryPresent(CpuPtr)); | ||||
|   auto AccCacheIterator = AccViewTable.find(CpuPtr); | ||||
|   assert(AccCacheIterator!=AccViewTable.end()); | ||||
|   return AccCacheIterator; | ||||
| } | ||||
| void MemoryManager::EntryErase(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCache = EntryLookup(CpuPtr); | ||||
|   AccViewTable.erase(CpuPtr); | ||||
| } | ||||
| void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==0); | ||||
|   if (AccCache.transient) {  | ||||
|     LRU.push_back(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = --LRU.end(); | ||||
|   } else { | ||||
|     LRU.push_front(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = LRU.begin(); | ||||
|   } | ||||
|   AccCache.LRU_valid = 1; | ||||
|   DeviceLRUBytes+=AccCache.bytes; | ||||
| } | ||||
| void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==1); | ||||
|   LRU.erase(AccCache.LRU_entry); | ||||
|   AccCache.LRU_valid = 0; | ||||
|   DeviceLRUBytes-=AccCache.bytes; | ||||
| } | ||||
| ///////////////////////////////////////////////// | ||||
| // Accelerator cache motion & consistency logic | ||||
| ///////////////////////////////////////////////// | ||||
| void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // Remove from Accelerator, remove entry, without flush | ||||
|   // Cannot be locked. If allocated Must be in LRU pool. | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     DeviceDestroy++; | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t) NULL; | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| } | ||||
|  | ||||
| void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry | ||||
|   // Cannot be acclocked. If allocated must be in LRU pool. | ||||
|   // | ||||
|   // Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock. | ||||
|   //                          and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen | ||||
|   //                          but there is a weakness where CpuLock entries are attempted for erase | ||||
|   //                          Take these OUT LRU queue when CPU locked? | ||||
|   //                          Cannot take out the table as cpuLock data is important. | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n", | ||||
| 	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, | ||||
| 	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);  | ||||
|   if (AccCache.accLock!=0) return; | ||||
|   if (AccCache.cpuLock!=0) return; | ||||
|   if(AccCache.state==AccDirty) { | ||||
|     Flush(AccCache); | ||||
|   } | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t)NULL; | ||||
|     AccCache.state=CpuDirty; // CPU primary now | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   //  uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   DeviceEvictions++; | ||||
|   //  EntryErase(CpuPtr); | ||||
| } | ||||
| void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==AccDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
| void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==CpuDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
|  | ||||
| void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state!=Empty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   AccCache.state=AccDirty; | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| void MemoryManager::ViewClose(void* Ptr,ViewMode mode) | ||||
| { | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr); | ||||
|     AcceleratorViewClose((uint64_t)Ptr); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     CpuViewClose((uint64_t)Ptr); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|   } | ||||
| } | ||||
| void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr); | ||||
|     return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|     return NULL; | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::EvictVictims(uint64_t bytes) | ||||
| { | ||||
|   assert(bytes<DeviceMaxBytes); | ||||
|   while(bytes+DeviceLRUBytes > DeviceMaxBytes){ | ||||
|     if ( DeviceLRUBytes > 0){ | ||||
|       assert(LRU.size()>0); | ||||
|       uint64_t victim = LRU.back(); // From the LRU | ||||
|       auto AccCacheIterator = EntryLookup(victim); | ||||
|       auto & AccCache = AccCacheIterator->second; | ||||
|       Evict(AccCache); | ||||
|     } else { | ||||
|       return; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EntryCreate(CpuPtr,bytes,mode,hint); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|   if (!AccCache.AccPtr) { | ||||
|     EvictVictims(bytes);  | ||||
|   }  | ||||
|   assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); | ||||
|  | ||||
|   assert(AccCache.cpuLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n", | ||||
| 		    (uint64_t)AccCache.CpuPtr, | ||||
| 		    (uint64_t)CpuPtr, | ||||
| 		    (uint64_t)AccCache.bytes, | ||||
| 	            (uint64_t)bytes, | ||||
| 		    (uint64_t)AccCache.accLock); | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes  ==bytes); | ||||
|   } | ||||
| /* | ||||
|  *  State transitions and actions | ||||
|  * | ||||
|  *  Action  State   StateNext         Flush    Clone | ||||
|  * | ||||
|  *  AccRead  Empty   Consistent        -        Y | ||||
|  *  AccWrite Empty   AccDirty          -        Y | ||||
|  *  AccRead  CpuDirty Consistent       -        Y | ||||
|  *  AccWrite CpuDirty AccDirty         -        Y | ||||
|  *  AccRead  Consistent Consistent     -        -  | ||||
|  *  AccWrite Consistent AccDirty       -        -  | ||||
|  *  AccRead  AccDirty   AccDirty       -        -  | ||||
|  *  AccWrite AccDirty   AccDirty       -        -  | ||||
|  */ | ||||
|   if(AccCache.state==Empty) { | ||||
|     assert(AccCache.LRU_valid==0); | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
|     AccCache.state  = CpuDirty;   // Cpu starts primary | ||||
|     if(mode==AcceleratorWriteDiscard){ | ||||
|       CpuDiscard(AccCache); | ||||
|       AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty | ||||
|     } else if(mode==AcceleratorWrite){ | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty | ||||
|     } else { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = Consistent; // Empty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock= 1; | ||||
|     dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     if(mode==AcceleratorWriteDiscard) { | ||||
|       CpuDiscard(AccCache); | ||||
|       AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty | ||||
|     } else if(mode==AcceleratorWrite) { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty | ||||
|     } else { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock++; | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = Consistent; // Consistent + AccRead => Consistent | ||||
|     AccCache.accLock++; | ||||
|     dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty | ||||
|     AccCache.accLock++; | ||||
|     dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|   assert(AccCache.accLock>0); | ||||
|   // If view is opened on device must remove from LRU | ||||
|   if(AccCache.LRU_valid==1){ | ||||
|     // must possibly remove from LRU as now locked on GPU | ||||
|     dprintf("AccCache entry removed from LRU \n"); | ||||
|     LRUremove(AccCache); | ||||
|   } | ||||
|  | ||||
|   int transient =hint; | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
|  | ||||
|   return AccCache.AccPtr; | ||||
| } | ||||
| //////////////////////////////////// | ||||
| // look up & decrement lock count | ||||
| //////////////////////////////////// | ||||
| void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock>0); | ||||
|  | ||||
|   AccCache.accLock--; | ||||
|   // Move to LRU queue if not locked and close on device | ||||
|   if(AccCache.accLock==0) { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     LRUinsert(AccCache); | ||||
|   } else { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|   } | ||||
| } | ||||
| void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock>0); | ||||
|   assert(AccCache.accLock==0); | ||||
|  | ||||
|   AccCache.cpuLock--; | ||||
| } | ||||
| /* | ||||
|  *  Action  State   StateNext         Flush    Clone | ||||
|  * | ||||
|  *  CpuRead  Empty   CpuDirty          -        - | ||||
|  *  CpuWrite Empty   CpuDirty          -        - | ||||
|  *  CpuRead  CpuDirty CpuDirty         -        - | ||||
|  *  CpuWrite CpuDirty CpuDirty         -        -  | ||||
|  *  CpuRead  Consistent Consistent     -        -  | ||||
|  *  CpuWrite Consistent CpuDirty       -        -  | ||||
|  *  CpuRead  AccDirty   Consistent     Y        - | ||||
|  *  CpuWrite AccDirty   CpuDirty       Y        - | ||||
|  */ | ||||
| uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EntryCreate(CpuPtr,bytes,mode,transient); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   // CPU doesn't need to free space | ||||
|   //  if (!AccCache.AccPtr) { | ||||
|   //    EvictVictims(bytes); | ||||
|   //  } | ||||
|  | ||||
|   assert((mode==CpuRead)||(mode==CpuWrite)); | ||||
|   assert(AccCache.accLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes==bytes); | ||||
|   } | ||||
|  | ||||
|   if(AccCache.state==Empty) { | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
|     AccCache.state  = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.accLock= 0; | ||||
|     AccCache.cpuLock= 1; | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     // AccPtr dont care, deferred allocate | ||||
|     AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     if(mode==CpuWrite) | ||||
|       AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty | ||||
|     else  | ||||
|       AccCache.state = Consistent; // Consistent +CpuRead  => Consistent | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     Flush(AccCache); | ||||
|     if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush | ||||
|     else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush | ||||
|     AccCache.cpuLock++; | ||||
|   } else { | ||||
|     assert(0); // should be unreachable | ||||
|   } | ||||
|  | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
|  | ||||
|   return AccCache.CpuPtr; | ||||
| } | ||||
| void  MemoryManager::NotifyDeletion(void *_ptr) | ||||
| { | ||||
|   // Look up in ViewCache | ||||
|   uint64_t ptr = (uint64_t)_ptr; | ||||
|   if(EntryPresent(ptr)) { | ||||
|     auto e = EntryLookup(ptr); | ||||
|     AccDiscard(e->second); | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::Print(void) | ||||
| { | ||||
|   PrintBytes(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << "Memory Manager                             " << std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceBytes   << " bytes allocated on device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device       " << std::endl; | ||||
|   std::cout << GridLogMessage << HostToDeviceXfer << " transfers        to   device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceToHostXfer << " transfers        from device " << std::endl; | ||||
|   std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to   device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl; | ||||
|   std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   acceleratorMem(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
| } | ||||
| void  MemoryManager::PrintAll(void) | ||||
| { | ||||
|   Print(); | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 	      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 	      << "\t" << AccCache.cpuLock | ||||
| 	      << "\t" << AccCache.accLock | ||||
| 	      << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|   } | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|  | ||||
| }; | ||||
| int   MemoryManager::isOpen   (void* _CpuPtr)  | ||||
| {  | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if ( EntryPresent(CpuPtr) ){ | ||||
|     auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     return AccCache.cpuLock+AccCache.accLock; | ||||
|   } else {  | ||||
|     return 0; | ||||
|   } | ||||
| } | ||||
| void MemoryManager::Audit(std::string s) | ||||
| { | ||||
|   uint64_t CpuBytes=0; | ||||
|   uint64_t AccBytes=0; | ||||
|   uint64_t LruBytes1=0; | ||||
|   uint64_t LruBytes2=0; | ||||
|   uint64_t LruCnt=0; | ||||
|    | ||||
|   std::cout << " Memory Manager::Audit() from "<<s<<std::endl; | ||||
|   for(auto it=LRU.begin();it!=LRU.end();it++){ | ||||
|     uint64_t cpuPtr = *it; | ||||
|     assert(EntryPresent(cpuPtr)); | ||||
|     auto AccCacheIterator = EntryLookup(cpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     LruBytes2+=AccCache.bytes; | ||||
|     assert(AccCache.LRU_valid==1); | ||||
|     assert(AccCache.LRU_entry==it); | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl; | ||||
|  | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     CpuBytes+=AccCache.bytes; | ||||
|     if( AccCache.AccPtr )    AccBytes+=AccCache.bytes; | ||||
|     if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes; | ||||
|     if( AccCache.LRU_valid ) LruCnt++; | ||||
|      | ||||
|     if ( AccCache.cpuLock || AccCache.accLock ) { | ||||
|       assert(AccCache.LRU_valid==0); | ||||
|  | ||||
|       std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 		<< "\t cpuLock  " << AccCache.cpuLock | ||||
| 		<< "\t accLock  " << AccCache.accLock | ||||
| 		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl; | ||||
|     } | ||||
|  | ||||
|     assert( AccCache.cpuLock== 0 ) ; | ||||
|     assert( AccCache.accLock== 0 ) ; | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl; | ||||
|   assert(LruBytes1==LruBytes2); | ||||
|   assert(LruBytes1==DeviceLRUBytes); | ||||
|   std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl; | ||||
|   assert(AccBytes==DeviceBytes); | ||||
|   std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl; | ||||
|   assert(LruCnt == LRU.size()); | ||||
|   std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl; | ||||
|  | ||||
| } | ||||
|  | ||||
| void MemoryManager::PrintState(void* _CpuPtr) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|  | ||||
|   if ( EntryPresent(CpuPtr) ){ | ||||
|     auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|     if ( AccCache.state==EvictNext) str = std::string("EvictNext"); | ||||
|  | ||||
|     std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|     std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
|     << "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
|     << "\t" << AccCache.cpuLock | ||||
|     << "\t" << AccCache.accLock | ||||
|     << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|  | ||||
|   } else { | ||||
|     std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;  | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,31 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifdef GRID_UVM | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management is 1:1 address space mapping | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| uint64_t  MemoryManager::DeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceLRUBytes; | ||||
| uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128; | ||||
| uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
| uint64_t  MemoryManager::DeviceEvictions; | ||||
| uint64_t  MemoryManager::DeviceDestroy; | ||||
|  | ||||
| void  MemoryManager::Audit(std::string s){}; | ||||
| void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; | ||||
| void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; | ||||
| int   MemoryManager::isOpen   (void* CpuPtr) { return 0;} | ||||
| void  MemoryManager::PrintState(void* CpuPtr) | ||||
| { | ||||
| std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl; | ||||
| }; | ||||
| void  MemoryManager::Print(void){}; | ||||
| void  MemoryManager::PrintAll(void){}; | ||||
| void  MemoryManager::NotifyDeletion(void *ptr){}; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,95 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/MemoryStats.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| std::string sizeString(size_t bytes); | ||||
|  | ||||
| struct MemoryStats | ||||
| { | ||||
|   size_t totalAllocated{0}, maxAllocated{0},  | ||||
|     currentlyAllocated{0}, totalFreed{0}; | ||||
| }; | ||||
|      | ||||
| class MemoryProfiler | ||||
| { | ||||
| public: | ||||
|   static MemoryStats *stats; | ||||
|   static bool        debug; | ||||
| }; | ||||
|  | ||||
| #define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")" | ||||
| #define profilerDebugPrint						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \ | ||||
|       std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \ | ||||
| 		<< std::endl;						\ | ||||
|     } | ||||
|  | ||||
| #define profilerAllocate(bytes)						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       s->totalAllocated     += (bytes);					\ | ||||
|       s->currentlyAllocated += (bytes);					\ | ||||
|       s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated); \ | ||||
|     }									\ | ||||
|   if (MemoryProfiler::debug)						\ | ||||
|     {									\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \ | ||||
|       profilerDebugPrint;						\ | ||||
|     } | ||||
|  | ||||
| #define profilerFree(bytes)						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       s->totalFreed         += (bytes);					\ | ||||
|       s->currentlyAllocated -= (bytes);					\ | ||||
|     }									\ | ||||
|   if (MemoryProfiler::debug)						\ | ||||
|     {									\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \ | ||||
|       profilerDebugPrint;						\ | ||||
|     } | ||||
|  | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES); | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,291 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/cartesian/Cartesian_base.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: Guido Cossu <guido.cossu@ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CARTESIAN_BASE_H | ||||
| #define GRID_CARTESIAN_BASE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Commicator provides information on the processor grid | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| //    unsigned long _ndimension; | ||||
| //    Coordinate _processors; // processor grid | ||||
| //    int              _processor;  // linear processor rank | ||||
| //    Coordinate _processor_coor;  // linear processor rank | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| class GridBase : public CartesianCommunicator , public GridThread { | ||||
|  | ||||
| public: | ||||
|   int dummy; | ||||
|   // Give Lattice access | ||||
|   template<class object> friend class Lattice; | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};  | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid, | ||||
| 	   const CartesianCommunicator &parent, | ||||
| 	   int &split_rank)  | ||||
|     : CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;}; | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid, | ||||
| 	   const CartesianCommunicator &parent)  | ||||
|     : CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;}; | ||||
|  | ||||
|   virtual ~GridBase() = default; | ||||
|  | ||||
|   // Physics Grid information. | ||||
|   Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes. | ||||
|   Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal | ||||
|   Coordinate _gdimensions;// Global dimensions of array after cb removal | ||||
|   Coordinate _ldimensions;// local dimensions of array with processor images removed | ||||
|   Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed  | ||||
|   Coordinate _ostride;    // Outer stride for each dimension | ||||
|   Coordinate _istride;    // Inner stride i.e. within simd lane | ||||
|   int _osites;                  // _isites*_osites = product(dimensions). | ||||
|   int _isites; | ||||
|   int64_t _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int64_t _gsites; | ||||
|   Coordinate _slice_block;// subslice information | ||||
|   Coordinate _slice_stride; | ||||
|   Coordinate _slice_nblock; | ||||
|  | ||||
|   Coordinate _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d] | ||||
|   Coordinate _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1 | ||||
|  | ||||
|   bool _isCheckerBoarded;  | ||||
|   int        LocallyPeriodic; | ||||
|   Coordinate _checker_dim_mask; | ||||
|  | ||||
| public: | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Checkerboarding interface is virtual and overridden by  | ||||
|   // GridCartesian / GridRedBlackCartesian | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   virtual int CheckerBoarded(int dim)=0; | ||||
|   virtual int CheckerBoard(const Coordinate &site)=0; | ||||
|   virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0; | ||||
|   virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0; | ||||
|   virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0; | ||||
|   virtual int CheckerBoardFromOindex (int Oindex)=0; | ||||
|   virtual int CheckerBoardFromOindexTable (int Oindex)=0; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Local layout calculations | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // These routines are key. Subdivide the linearised cartesian index into | ||||
|   //      "inner" index identifying which simd lane of object<vFcomplex> is associated with coord | ||||
|   //      "outer" index identifying which element of _odata in class "Lattice" is associated with coord. | ||||
|   // | ||||
|   // Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer | ||||
|   // stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional | ||||
|   // coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all | ||||
|   // lanes are operated upon simultaneously. | ||||
|    | ||||
|   virtual int oIndex(Coordinate &coor) | ||||
|   { | ||||
|     int idx=0; | ||||
|     // Works with either global or local coordinates | ||||
|     for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]); | ||||
|     return idx; | ||||
|   } | ||||
|   virtual int iIndex(Coordinate &lcoor) | ||||
|   { | ||||
|     int idx=0; | ||||
|     for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]); | ||||
|     return idx; | ||||
|   } | ||||
|   inline int oIndexReduced(Coordinate &ocoor) | ||||
|   { | ||||
|     int idx=0;  | ||||
|     // ocoor is already reduced so can eliminate the modulo operation | ||||
|     // for fast indexing and inline the routine | ||||
|     for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d]; | ||||
|     return idx; | ||||
|   } | ||||
|   inline void oCoorFromOindex (Coordinate& coor,int Oindex){ | ||||
|     Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions); | ||||
|   } | ||||
|  | ||||
|   inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) { | ||||
|     lcoor.resize(_ndimension); | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d]; | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////// | ||||
|   // SIMD lane addressing | ||||
|   ////////////////////////////////////////////////////////// | ||||
|   inline void iCoorFromIindex(Coordinate &coor,int lane) | ||||
|   { | ||||
|     Lexicographic::CoorFromIndex(coor,lane,_simd_layout); | ||||
|   } | ||||
|  | ||||
|   inline int PermuteDim(int dimension){ | ||||
|     return _simd_layout[dimension]>1; | ||||
|   } | ||||
|   inline int PermuteType(int dimension){ | ||||
|     int permute_type=0; | ||||
|     // | ||||
|     // Best way to encode this would be to present a mask  | ||||
|     // for which simd dimensions are rotated, and the rotation | ||||
|     // size. If there is only one simd dimension rotated, this is just  | ||||
|     // a permute.  | ||||
|     // | ||||
|     // Cases: PermuteType == 1,2,4,8 | ||||
|     // Distance should be either 0,1,2.. | ||||
|     // | ||||
|     if ( _simd_layout[dimension] > 2 ) {  | ||||
|       for(int d=0;d<_ndimension;d++){ | ||||
| 	if ( d != dimension ) assert ( (_simd_layout[d]==1)  ); | ||||
|       } | ||||
|       permute_type = RotateBit; // How to specify distance; this is not just direction. | ||||
|       return permute_type; | ||||
|     } | ||||
|  | ||||
|     for(int d=_ndimension-1;d>dimension;d--){ | ||||
|       if (_simd_layout[d]>1 ) permute_type++; | ||||
|     } | ||||
|     return permute_type; | ||||
|   } | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Array sizing queries | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   inline int iSites(void) const { return _isites; }; | ||||
|   inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites | ||||
|   inline int oSites(void) const { return _osites; }; | ||||
|   inline int lSites(void) const { return _isites*_osites; };  | ||||
|   inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };  | ||||
|   inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
|   inline const Coordinate &FullDimensions(void)         { return _fdimensions;}; | ||||
|   inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;}; | ||||
|   inline const Coordinate &LocalDimensions(void)        { return _ldimensions;}; | ||||
|   inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;}; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Utility to print the full decomposition details  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void show_decomposition(){ | ||||
|     std::cout << GridLogMessage << "\tFull Dimensions    : " << _fdimensions << std::endl; | ||||
|     std::cout << GridLogMessage << "\tSIMD layout        : " << _simd_layout << std::endl; | ||||
|     std::cout << GridLogMessage << "\tGlobal Dimensions  : " << _gdimensions << std::endl; | ||||
|     std::cout << GridLogMessage << "\tLocal Dimensions   : " << _ldimensions << std::endl; | ||||
|     std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl; | ||||
|     std::cout << GridLogMessage << "\tOuter strides      : " << _ostride << std::endl; | ||||
|     std::cout << GridLogMessage << "\tInner strides      : " << _istride << std::endl; | ||||
|     std::cout << GridLogMessage << "\tiSites             : " << _isites << std::endl; | ||||
|     std::cout << GridLogMessage << "\toSites             : " << _osites << std::endl; | ||||
|     std::cout << GridLogMessage << "\tlSites             : " << lSites() << std::endl;         | ||||
|     std::cout << GridLogMessage << "\tgSites             : " << gSites() << std::endl; | ||||
|     std::cout << GridLogMessage << "\tNd                 : " << _ndimension << std::endl;              | ||||
|   }  | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Global addressing | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){ | ||||
|     assert(gidx< gSites()); | ||||
|     Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|   } | ||||
|   void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){ | ||||
|     assert(lidx<lSites()); | ||||
|     Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|   } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){ | ||||
|     gidx=0; | ||||
|     int mult=1; | ||||
|     for(int mu=0;mu<_ndimension;mu++) { | ||||
|       gidx+=mult*gcoor[mu]; | ||||
|       mult*=_gdimensions[mu]; | ||||
|     } | ||||
|   } | ||||
|   void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor) | ||||
|   { | ||||
|     pcoor.resize(_ndimension); | ||||
|     lcoor.resize(_ndimension); | ||||
|     for(int mu=0;mu<_ndimension;mu++){ | ||||
|       int _fld  = _fdimensions[mu]/_processors[mu]; | ||||
|       pcoor[mu] = gcoor[mu]/_fld; | ||||
|       lcoor[mu] = gcoor[mu]%_fld; | ||||
|     } | ||||
|   } | ||||
|   void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor) | ||||
|   { | ||||
|     Coordinate pcoor; | ||||
|     Coordinate lcoor; | ||||
|     GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor); | ||||
|     rank = RankFromProcessorCoor(pcoor); | ||||
|     /* | ||||
|       Coordinate cblcoor(lcoor); | ||||
|       for(int d=0;d<cblcoor.size();d++){ | ||||
|       if( this->CheckerBoarded(d) ) { | ||||
|       cblcoor[d] = lcoor[d]/2; | ||||
|       } | ||||
|       } | ||||
|     */ | ||||
|     i_idx= iIndex(lcoor); | ||||
|     o_idx= oIndex(lcoor); | ||||
|   } | ||||
|  | ||||
|   void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor) | ||||
|   { | ||||
|     gcoor.resize(_ndimension); | ||||
|     Coordinate coor(_ndimension); | ||||
|  | ||||
|     ProcessorCoorFromRank(rank,coor); | ||||
|     for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu]; | ||||
|  | ||||
|     iCoorFromIindex(coor,i_idx); | ||||
|     for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu]; | ||||
|  | ||||
|     oCoorFromOindex (coor,o_idx); | ||||
|     for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu]; | ||||
|        | ||||
|   } | ||||
|   void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor) | ||||
|   { | ||||
|     RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor); | ||||
|     if(CheckerBoarded(0)){ | ||||
|       fcoor[0] = fcoor[0]*2+cb; | ||||
|     } | ||||
|   } | ||||
|   void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor) | ||||
|   { | ||||
|     gcoor.resize(_ndimension); | ||||
|     for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu]; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,178 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/cartesian/Cartesian_full.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CARTESIAN_FULL_H | ||||
| #define GRID_CARTESIAN_FULL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|      | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Grid Support. | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class GridCartesian: public GridBase { | ||||
|  | ||||
| public: | ||||
|   int dummy; | ||||
|   Coordinate _checker_dim_mask; | ||||
|   virtual int  CheckerBoardFromOindexTable (int Oindex) { | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int  CheckerBoardFromOindex (int Oindex) | ||||
|   { | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoarded(int dim){ | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoardDestination(int cb,int shift,int dim){ | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){ | ||||
|     return shift; | ||||
|   } | ||||
|   virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){ | ||||
|     return shift; | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////////////////// | ||||
|   // Constructor takes a parent grid and possibly subdivides communicator. | ||||
|   ///////////////////////////////////////////////////////////////////////// | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid, | ||||
| 		const GridCartesian &parent) : GridBase(processor_grid,parent,dummy) | ||||
|   { | ||||
|     Init(dimensions,simd_layout,processor_grid); | ||||
|   } | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid, | ||||
| 		const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank) | ||||
|   { | ||||
|     Init(dimensions,simd_layout,processor_grid); | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////////////////// | ||||
|   // Construct from comm world | ||||
|   ///////////////////////////////////////////////////////////////////////// | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid) : GridBase(processor_grid) | ||||
|   { | ||||
|     Init(dimensions,simd_layout,processor_grid); | ||||
|   } | ||||
|  | ||||
|   virtual ~GridCartesian() = default; | ||||
|  | ||||
|   void Init(const Coordinate &dimensions, | ||||
| 	    const Coordinate &simd_layout, | ||||
| 	    const Coordinate &processor_grid) | ||||
|   { | ||||
|     /////////////////////// | ||||
|     // Grid information | ||||
|     /////////////////////// | ||||
|       _isCheckerBoarded = false; | ||||
|     _ndimension = dimensions.size(); | ||||
|  | ||||
|     _fdimensions.resize(_ndimension); | ||||
|     _gdimensions.resize(_ndimension); | ||||
|     _ldimensions.resize(_ndimension); | ||||
|     _rdimensions.resize(_ndimension); | ||||
|     _simd_layout.resize(_ndimension); | ||||
|     _checker_dim_mask.resize(_ndimension);; | ||||
|     _lstart.resize(_ndimension); | ||||
|     _lend.resize(_ndimension); | ||||
|  | ||||
|     _ostride.resize(_ndimension); | ||||
|     _istride.resize(_ndimension); | ||||
|  | ||||
|     _fsites = _gsites = _osites = _isites = 1; | ||||
|  | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
| 	_checker_dim_mask[d]=0; | ||||
|  | ||||
|         _fdimensions[d] = dimensions[d];   // Global dimensions | ||||
|         _gdimensions[d] = _fdimensions[d]; // Global dimensions | ||||
|         _simd_layout[d] = simd_layout[d]; | ||||
|         _fsites = _fsites * _fdimensions[d]; | ||||
|         _gsites = _gsites * _gdimensions[d]; | ||||
|  | ||||
|         // Use a reduced simd grid | ||||
|         _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions | ||||
|         //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl; | ||||
|         assert(_ldimensions[d] * _processors[d] == _gdimensions[d]); | ||||
|  | ||||
|         _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition | ||||
|         assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); | ||||
|  | ||||
|         _lstart[d] = _processor_coor[d] * _ldimensions[d]; | ||||
|         _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1; | ||||
|         _osites *= _rdimensions[d]; | ||||
|         _isites *= _simd_layout[d]; | ||||
|  | ||||
|         // Addressing support | ||||
|         if (d == 0) | ||||
| 	  { | ||||
| 	    _ostride[d] = 1; | ||||
| 	    _istride[d] = 1; | ||||
| 	  } | ||||
|         else | ||||
| 	  { | ||||
| 	    _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1]; | ||||
| 	    _istride[d] = _istride[d - 1] * _simd_layout[d - 1]; | ||||
| 	  } | ||||
|       } | ||||
|  | ||||
|     /////////////////////// | ||||
|     // subplane information | ||||
|     /////////////////////// | ||||
|     _slice_block.resize(_ndimension); | ||||
|     _slice_stride.resize(_ndimension); | ||||
|     _slice_nblock.resize(_ndimension); | ||||
|  | ||||
|     int block = 1; | ||||
|     int nblock = 1; | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       nblock *= _rdimensions[d]; | ||||
|  | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
|         nblock /= _rdimensions[d]; | ||||
|         _slice_block[d] = block; | ||||
|         _slice_stride[d] = _ostride[d] * _rdimensions[d]; | ||||
|         _slice_nblock[d] = nblock; | ||||
|         block = block * _rdimensions[d]; | ||||
|       } | ||||
|   }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,305 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/cartesian/Cartesian_red_black.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CARTESIAN_RED_BLACK_H | ||||
| #define GRID_CARTESIAN_RED_BLACK_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| static const int CbRed  =0; | ||||
| static const int CbBlack=1; | ||||
| static const int Even   =CbRed; | ||||
| static const int Odd    =CbBlack; | ||||
|  | ||||
| accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk) | ||||
| { | ||||
|   int nd=rdim.size(); | ||||
|   Coordinate coor(nd); | ||||
|  | ||||
|   Lexicographic::CoorFromIndex(coor,oindex,rdim); | ||||
|  | ||||
|   int linear=0; | ||||
|   for(int d=0;d<nd;d++){ | ||||
|     if(chk_dim_msk[d]) | ||||
|       linear=linear+coor[d]; | ||||
|   } | ||||
|   return (linear&0x1); | ||||
| } | ||||
|  | ||||
|      | ||||
| // Specialise this for red black grids storing half the data like a chess board. | ||||
| class GridRedBlackCartesian : public GridBase | ||||
| { | ||||
| public: | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|   int              _checker_dim; | ||||
|   std::vector<int> _checker_board; | ||||
|  | ||||
|   virtual int CheckerBoarded(int dim){ | ||||
|     if( dim==_checker_dim) return 1; | ||||
|     else return 0; | ||||
|   } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     int linear=0; | ||||
|     assert(site.size()==_ndimension); | ||||
|     for(int d=0;d<_ndimension;d++){  | ||||
|       if(_checker_dim_mask[d]) | ||||
| 	linear=linear+site[d]; | ||||
|     } | ||||
|     return (linear&0x1); | ||||
|   } | ||||
|  | ||||
|   // Depending on the cb of site, we toggle source cb. | ||||
|   // for block #b, element #e = (b, e) | ||||
|   // we need  | ||||
|   virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){ | ||||
|     if(dim != _checker_dim) return shift; | ||||
|  | ||||
|     int fulldim =_fdimensions[dim]; | ||||
|     shift = (shift+fulldim)%fulldim; | ||||
|  | ||||
|     // Probably faster with table lookup; | ||||
|     // or by looping over x,y,z and multiply rather than computing checkerboard. | ||||
| 	   | ||||
|     if ( (source_cb+ocb)&1 ) { | ||||
|       return (shift)/2; | ||||
|     } else { | ||||
|       return (shift+1)/2; | ||||
|     } | ||||
|   } | ||||
|   virtual int  CheckerBoardFromOindexTable (int Oindex) { | ||||
|     return _checker_board[Oindex]; | ||||
|   } | ||||
|   virtual int  CheckerBoardFromOindex (int Oindex) | ||||
|   { | ||||
|     Coordinate ocoor; | ||||
|     oCoorFromOindex(ocoor,Oindex); | ||||
|     return CheckerBoard(ocoor); | ||||
|   } | ||||
|   virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){ | ||||
|  | ||||
|     if(dim != _checker_dim) return shift; | ||||
|  | ||||
|     int ocb=CheckerBoardFromOindex(osite); | ||||
|        | ||||
|     return CheckerBoardShiftForCB(source_cb,dim,shift,ocb); | ||||
|   } | ||||
|      | ||||
|   virtual int CheckerBoardDestination(int source_cb,int shift,int dim){ | ||||
|     if ( _checker_dim_mask[dim]  ) { | ||||
|       // If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims | ||||
|       // does NOT cause a parity hop. | ||||
|       int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim]; | ||||
|       if ( (shift+add) &0x1) { | ||||
| 	return 1-source_cb; | ||||
|       } else { | ||||
| 	return source_cb; | ||||
|       } | ||||
|     } else { | ||||
|       return source_cb; | ||||
|  | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Create Redblack from original grid; require full grid pointer ? | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base) | ||||
|   { | ||||
|     int dims = base->_ndimension; | ||||
|     Coordinate checker_dim_mask(dims,1); | ||||
|     int checker_dim = 0; | ||||
|     Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim); | ||||
|   }; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Create redblack from original grid, with non-trivial checker dim mask | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   GridRedBlackCartesian(const GridBase *base, | ||||
| 			const Coordinate &checker_dim_mask, | ||||
| 			int checker_dim | ||||
| 			) :  GridBase(base->_processors,*base)  | ||||
|   { | ||||
|     Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim)  ; | ||||
|   } | ||||
|  | ||||
|   virtual ~GridRedBlackCartesian() = default; | ||||
|  | ||||
|   void Init(const Coordinate &dimensions, | ||||
| 	    const Coordinate &simd_layout, | ||||
| 	    const Coordinate &processor_grid, | ||||
| 	    const Coordinate &checker_dim_mask, | ||||
| 	    int checker_dim) | ||||
|   { | ||||
|  | ||||
|       _isCheckerBoarded = true; | ||||
|     _checker_dim = checker_dim; | ||||
|     assert(checker_dim_mask[checker_dim] == 1); | ||||
|     _ndimension = dimensions.size(); | ||||
|     assert(checker_dim_mask.size() == _ndimension); | ||||
|     assert(processor_grid.size() == _ndimension); | ||||
|     assert(simd_layout.size() == _ndimension); | ||||
|  | ||||
|     _fdimensions.resize(_ndimension); | ||||
|     _gdimensions.resize(_ndimension); | ||||
|     _ldimensions.resize(_ndimension); | ||||
|     _rdimensions.resize(_ndimension); | ||||
|     _simd_layout.resize(_ndimension); | ||||
|     _lstart.resize(_ndimension); | ||||
|     _lend.resize(_ndimension); | ||||
|  | ||||
|     _ostride.resize(_ndimension); | ||||
|     _istride.resize(_ndimension); | ||||
|  | ||||
|     _fsites = _gsites = _osites = _isites = 1; | ||||
|  | ||||
|     _checker_dim_mask = checker_dim_mask; | ||||
|  | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
|         _fdimensions[d] = dimensions[d]; | ||||
|         _gdimensions[d] = _fdimensions[d]; | ||||
|         _fsites = _fsites * _fdimensions[d]; | ||||
|         _gsites = _gsites * _gdimensions[d]; | ||||
|  | ||||
|         if (d == _checker_dim) | ||||
| 	  { | ||||
| 	    assert((_gdimensions[d] & 0x1) == 0); | ||||
| 	    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard | ||||
| 	    _gsites /= 2; | ||||
| 	  } | ||||
|         _ldimensions[d] = _gdimensions[d] / _processors[d]; | ||||
|         assert(_ldimensions[d] * _processors[d] == _gdimensions[d]); | ||||
|         _lstart[d] = _processor_coor[d] * _ldimensions[d]; | ||||
|         _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1; | ||||
|  | ||||
|         // Use a reduced simd grid | ||||
|         _simd_layout[d] = simd_layout[d]; | ||||
|         _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer | ||||
|         assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); | ||||
|         assert(_rdimensions[d] > 0); | ||||
|  | ||||
|         // all elements of a simd vector must have same checkerboard. | ||||
|         // If Ls vectorised, this must still be the case; e.g. dwf rb5d | ||||
|         if (_simd_layout[d] > 1) | ||||
| 	  { | ||||
| 	    if (checker_dim_mask[d]) | ||||
| 	      { | ||||
| 		assert((_rdimensions[d] & 0x1) == 0); | ||||
| 	      } | ||||
| 	  } | ||||
|  | ||||
|         _osites *= _rdimensions[d]; | ||||
|         _isites *= _simd_layout[d]; | ||||
|  | ||||
|         // Addressing support | ||||
|         if (d == 0) | ||||
| 	  { | ||||
| 	    _ostride[d] = 1; | ||||
| 	    _istride[d] = 1; | ||||
| 	  } | ||||
|         else | ||||
| 	  { | ||||
| 	    _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1]; | ||||
| 	    _istride[d] = _istride[d - 1] * _simd_layout[d - 1]; | ||||
| 	  } | ||||
|       } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // subplane information | ||||
|     //////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     _slice_block.resize(_ndimension); | ||||
|     _slice_stride.resize(_ndimension); | ||||
|     _slice_nblock.resize(_ndimension); | ||||
|  | ||||
|     int block = 1; | ||||
|     int nblock = 1; | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       nblock *= _rdimensions[d]; | ||||
|  | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
|         nblock /= _rdimensions[d]; | ||||
|         _slice_block[d] = block; | ||||
|         _slice_stride[d] = _ostride[d] * _rdimensions[d]; | ||||
|         _slice_nblock[d] = nblock; | ||||
|         block = block * _rdimensions[d]; | ||||
|       } | ||||
|  | ||||
|     //////////////////////////////////////////////// | ||||
|     // Create a checkerboard lookup table | ||||
|     //////////////////////////////////////////////// | ||||
|     int rvol = 1; | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
|         rvol = rvol * _rdimensions[d]; | ||||
|       } | ||||
|     _checker_board.resize(rvol); | ||||
|     for (int osite = 0; osite < _osites; osite++) | ||||
|       { | ||||
|         _checker_board[osite] = CheckerBoardFromOindex(osite); | ||||
|       } | ||||
|   }; | ||||
|  | ||||
| protected: | ||||
|   virtual int oIndex(Coordinate &coor) | ||||
|   { | ||||
|     int idx = 0; | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
|         if (d == _checker_dim) | ||||
| 	  { | ||||
| 	    idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]); | ||||
| 	  } | ||||
|         else | ||||
| 	  { | ||||
| 	    idx += _ostride[d] * (coor[d] % _rdimensions[d]); | ||||
| 	  } | ||||
|       } | ||||
|     return idx; | ||||
|   }; | ||||
|  | ||||
|   virtual int iIndex(Coordinate &lcoor) | ||||
|   { | ||||
|     int idx = 0; | ||||
|     for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
|         if (d == _checker_dim) | ||||
| 	  { | ||||
| 	    idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d])); | ||||
| 	  } | ||||
|         else | ||||
| 	  { | ||||
| 	    idx += _istride[d] * (lcoor[d] / _rdimensions[d]); | ||||
| 	  } | ||||
|       } | ||||
|     return idx; | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,172 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/communicator/SharedMemory.cc | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| // static data | ||||
|  | ||||
| int                 GlobalSharedMemory::HPEhypercube = 1; | ||||
| uint64_t            GlobalSharedMemory::MAX_MPI_SHM_BYTES   = 1024LL*1024LL*1024LL;  | ||||
| int                 GlobalSharedMemory::Hugepages = 0; | ||||
| int                 GlobalSharedMemory::_ShmSetup; | ||||
| int                 GlobalSharedMemory::_ShmAlloc; | ||||
| uint64_t            GlobalSharedMemory::_ShmAllocBytes; | ||||
|  | ||||
| std::vector<void *> GlobalSharedMemory::WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void * GlobalSharedMemory::HostCommBuf; | ||||
| #endif | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm; | ||||
| int                 GlobalSharedMemory::WorldShmRank; | ||||
| int                 GlobalSharedMemory::WorldShmSize; | ||||
| std::vector<int>    GlobalSharedMemory::WorldShmRanks; | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldComm; | ||||
| int                 GlobalSharedMemory::WorldSize; | ||||
| int                 GlobalSharedMemory::WorldRank; | ||||
|  | ||||
| int                 GlobalSharedMemory::WorldNodes; | ||||
| int                 GlobalSharedMemory::WorldNode; | ||||
|  | ||||
| void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| { | ||||
|   assert(_ShmAlloc); | ||||
|   assert(_ShmAllocBytes>0); | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|     munmap(WorldShmCommBufs[r],_ShmAllocBytes); | ||||
|   } | ||||
|   _ShmAlloc = 0; | ||||
|   _ShmAllocBytes = 0; | ||||
| } | ||||
| ///////////////////////////////// | ||||
| // Alloc, free shmem region | ||||
| ///////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|   void *ptr = (void *)host_heap_top; | ||||
|   host_heap_top  += bytes; | ||||
|   host_heap_bytes+= bytes; | ||||
|   if (host_heap_bytes >= host_heap_size) { | ||||
|     std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::HostBufferFreeAll(void) {  | ||||
|   host_heap_top  =(size_t)HostCommBuf; | ||||
|   host_heap_bytes=0; | ||||
| } | ||||
| #endif | ||||
| void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes | ||||
|   void *ptr = (void *)heap_top; | ||||
|   heap_top  += bytes; | ||||
|   heap_bytes+= bytes; | ||||
|   if (heap_bytes >= heap_size) { | ||||
|     std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(heap_bytes<heap_size); | ||||
|   } | ||||
|   //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl; | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::ShmBufferFreeAll(void) {  | ||||
|   heap_top  =(size_t)ShmBufferSelf(); | ||||
|   heap_bytes=0; | ||||
| } | ||||
| void *SharedMemory::ShmBufferSelf(void) | ||||
| { | ||||
|   //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl; | ||||
|   return ShmCommBufs[ShmRank]; | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Allow user to configure through environment variable | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str()); | ||||
|   if ( str ) { | ||||
|     std::vector<int> IntShmDims; | ||||
|     GridCmdOptionIntVector(std::string(str),IntShmDims); | ||||
|     assert(IntShmDims.size() == WorldDims.size()); | ||||
|     long ShmSize = 1; | ||||
|     for (int dim=0;dim<WorldDims.size();dim++) { | ||||
|       ShmSize *= (ShmDims[dim] = IntShmDims[dim]); | ||||
|       assert(divides(ShmDims[dim],WorldDims[dim])); | ||||
|     } | ||||
|     assert(ShmSize == WorldShmSize); | ||||
|     return; | ||||
|   } | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
|   AutoShmSize*=prime; | ||||
|   ShmDims[dim]*=prime; | ||||
|   last_dim = dim; | ||||
|   break; | ||||
|       } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| @@ -1,515 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/cshift/Cshift_common.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
|   } | ||||
|   acceleratorCopyToDevice((void *)&Cshift_table[0], | ||||
| 			  (void *)&Cshift_table_device[0], | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     cbmask = 0x3; | ||||
|   } | ||||
|    | ||||
|   int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int ent = 0; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|  | ||||
|   int stride=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask == 0x3 ) {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o  = n*stride; | ||||
| 	int bo = n*e2; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|      int bo=0; | ||||
|      for(int n=0;n<e1;n++){ | ||||
|        for(int b=0;b<e2;b++){ | ||||
| 	 int o  = n*stride; | ||||
| 	 int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
| 	 if ( ocb &cbmask ) { | ||||
| 	   Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b); | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
|   } | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for(i,ent,{ | ||||
|       buffer_p[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there *is* need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 		     ExtractPointerArray<typename vobj::scalar_object> pointers, | ||||
| 		     int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     cbmask = 0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int n1=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask ==0x3){ | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #endif | ||||
|   } else {  | ||||
|     Coordinate rdim=rhs.Grid()->_rdimensions; | ||||
|     Coordinate cdm =rhs.Grid()->_checker_dim_mask; | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there is no need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|      | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int stride=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|  | ||||
|   int ent    =0; | ||||
|  | ||||
|   if ( cbmask ==0x3 ) { | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o   =n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int bo  =n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|   } else {  | ||||
|     int bo=0; | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o   =n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       rhs_v[table[i].first]=buffer_p[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there *is* need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|      | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|  | ||||
|   if(cbmask ==0x3 ) { | ||||
|     int _slice_stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|     int _slice_block = rhs.Grid()->_slice_block[dimension]; | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v , rhs, AcceleratorWrite); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView( rhs_v , rhs, CpuWrite); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|     }); | ||||
| #endif | ||||
|   } else {  | ||||
|  | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl; | ||||
|     assert(0); // This will fail if hit on GPU | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o      = n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
| 	if ( ocb&cbmask ) { | ||||
| 	  merge(rhs_v[so+o+b],pointers,offset); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // local to node block strided copies | ||||
| ////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|  | ||||
|   int ent=0; | ||||
|  | ||||
|   if(cbmask == 0x3 ){ | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
|         int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o); | ||||
|         if ( ocb&cbmask ) { | ||||
| 	  Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
|       coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     autoView(lhs_v , lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       lhs_v[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block [dimension]; | ||||
|   int stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|  | ||||
|   int ent=0; | ||||
|  | ||||
|   if ( cbmask == 0x3 ) { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
|   } else { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
|       if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuRead); | ||||
|     autoView( lhs_v, lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Local to node Cshift | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|  | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     Cshift_local(ret,rhs,dimension,shift,0x3); | ||||
|   } else { | ||||
|     Cshift_local(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes | ||||
|     Cshift_local(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid = rhs.Grid(); | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int gd = grid->_gdimensions[dimension]; | ||||
|   int ly = grid->_simd_layout[dimension]; | ||||
|  | ||||
|   // Map to always positive shift modulo global full dimension. | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   // the permute type | ||||
|   ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   int permute_dim =grid->PermuteDim(dimension); | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|   int permute_type_dist; | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     //    int o   = 0; | ||||
|     int bo  = x * grid->_ostride[dimension]; | ||||
|     int cb= (cbmask==0x2)? Odd : Even; | ||||
|  | ||||
|     int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|     int sx     = (x+sshift)%rd; | ||||
|      | ||||
|     // wrap is whether sshift > rd. | ||||
|     //  num is sshift mod rd. | ||||
|     //  | ||||
|     //  shift 7 | ||||
|     // | ||||
|     //  XoXo YcYc  | ||||
|     //  oXoX cYcY | ||||
|     //  XoXo YcYc | ||||
|     //  oXoX cYcY | ||||
|     // | ||||
|     //  sshift --  | ||||
|     // | ||||
|     //  XX YY ; 3 | ||||
|     //  XX YY ; 0 | ||||
|     //  XX YY ; 3 | ||||
|     //  XX YY ; 0 | ||||
|     // | ||||
|     int permute_slice=0; | ||||
|     if(permute_dim){ | ||||
|       int wrap = sshift/rd; wrap=wrap % ly; | ||||
|       int  num = sshift%rd; | ||||
|  | ||||
|       if ( x< rd-num ) permute_slice=wrap; | ||||
|       else permute_slice = (wrap+1)%ly; | ||||
|  | ||||
|       if ( (ly>2) && (permute_slice) ) { | ||||
| 	assert(permute_type & RotateBit); | ||||
| 	permute_type_dist = permute_type|permute_slice; | ||||
|       } else { | ||||
| 	permute_type_dist = permute_type; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type_dist); | ||||
|     else                 Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|    | ||||
|   } | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,546 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/cshift/Cshift_mpi.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef _GRID_CSHIFT_MPI_H_ | ||||
| #define _GRID_CSHIFT_MPI_H_ | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   Lattice<vobj> ret(rhs.Grid());  | ||||
|    | ||||
|   int fd = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
|   // Map to always positive shift modulo global full dimension. | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|          | ||||
|   // the permute type | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); | ||||
|  | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|   if ( !comm_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
|   } else if ( splice_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift); | ||||
|   } else { | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|  | ||||
|   //  std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     //    std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift,0x3); | ||||
|   } else { | ||||
|     //    std::cout << "Two pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes | ||||
|     Cshift_comms(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     //std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x3); | ||||
|   } else { | ||||
|     //std::cout << "Two pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
| #define ACCELERATOR_CSHIFT_NO_COPY | ||||
| #ifdef ACCELERATOR_CSHIFT_NO_COPY | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|        | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|     | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int pd = grid->_processors[dimension]; | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     // FIXME call local permute copy if none are offnode. | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     tgather-=usecond(); | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
|       int inner_bit = (Nsimd>>(permute_type+1)); | ||||
|       int ic= (i&inner_bit)? 1:0; | ||||
|  | ||||
|       int my_coor          = rd*ic + x; | ||||
|       int nbr_coor         = my_coor+sshift; | ||||
|       int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors | ||||
|  | ||||
|       int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer | ||||
|       int nbr_ox   = (nbr_coor%rd);       // outer coord of peer | ||||
|       int nbr_lane = (i&(~inner_bit)); | ||||
|  | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
|  | ||||
| 	xbytes+=bytes; | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size); | ||||
|   vobj *send_buf; | ||||
|   vobj *recv_buf; | ||||
|   { | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     size_t bytes = buffer_size*sizeof(vobj); | ||||
|     send_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|     | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int pd = grid->_processors[dimension]; | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   { | ||||
|     size_t bytes = sizeof(scalar_object)*buffer_size; | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     // FIXME call local permute copy if none are offnode. | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
|       int inner_bit = (Nsimd>>(permute_type+1)); | ||||
|       int ic= (i&inner_bit)? 1:0; | ||||
|  | ||||
|       int my_coor          = rd*ic + x; | ||||
|       int nbr_coor         = my_coor+sshift; | ||||
|       int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors | ||||
|  | ||||
|       int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer | ||||
|       int nbr_ox   = (nbr_coor%rd);       // outer coord of peer | ||||
|       int nbr_lane = (i&(~inner_bit)); | ||||
|  | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
|  | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #endif | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| #endif | ||||
| @@ -1,5 +0,0 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										22091
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										22091
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,534 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/lattice/Lattice_ET.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
| Author: Christoph Lehner <christoph@lhnr.de | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_ET_H | ||||
| #define GRID_LATTICE_ET_H | ||||
|  | ||||
| #include <iostream> | ||||
| #include <tuple> | ||||
| #include <typeinfo> | ||||
| #include <vector> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //////////////////////////////////////////////////// | ||||
| // Predicated where support | ||||
| //////////////////////////////////////////////////// | ||||
| #ifdef GRID_SIMT | ||||
| // drop to scalar in SIMT; cleaner in fact | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate,  | ||||
| 					const vobj &iftrue,  | ||||
| 					const robj &iffalse)  | ||||
| { | ||||
|   Integer mask = TensorRemove(predicate); | ||||
|   typename std::remove_const<vobj>::type ret= iffalse; | ||||
|   if (mask) ret=iftrue; | ||||
|   return ret; | ||||
| } | ||||
| #else | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate,  | ||||
| 					const vobj &iftrue,  | ||||
| 					const robj &iffalse)  | ||||
| { | ||||
|   typename std::remove_const<vobj>::type ret; | ||||
|  | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   //  typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   ExtractBuffer<scalar_object> truevals(Nsimd); | ||||
|   ExtractBuffer<scalar_object> falsevals(Nsimd); | ||||
|  | ||||
|   extract(iftrue, truevals); | ||||
|   extract(iffalse, falsevals); | ||||
|   extract<vInteger, Integer>(TensorRemove(predicate), mask); | ||||
|  | ||||
|   for (int s = 0; s < Nsimd; s++) { | ||||
|     if (mask[s]) falsevals[s] = truevals[s]; | ||||
|   } | ||||
|  | ||||
|   merge(ret, falsevals); | ||||
|   return ret; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////// | ||||
| //Specialization of getVectorType for lattices | ||||
| ///////////////////////////////////////////////////// | ||||
| template<typename T> | ||||
| struct getVectorType<Lattice<T> >{ | ||||
|   typedef typename Lattice<T>::vector_object type; | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // handle leaves of syntax tree | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj, | ||||
|   typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>  | ||||
| accelerator_inline  | ||||
| sobj eval(const uint64_t ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
| template <class lobj> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss)) | ||||
| { | ||||
|   return arg(ss); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // whole vector return, used only for expression return type inference | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj> accelerator_inline  | ||||
| sobj vecEval(const uint64_t ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
| template <class lobj> accelerator_inline  | ||||
| const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)  | ||||
| { | ||||
|   return arg[ss]; | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand | ||||
| // vecEval needed (but never called as all expressions offloaded) to infer the return type | ||||
| // in SIMT contexts of closure. | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
|   -> decltype(expr.op.func( vecEval(ss, expr.arg1))) | ||||
| { | ||||
|   return expr.op.func( vecEval(ss, expr.arg1) ); | ||||
| } | ||||
| // vecEval two operands | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) ); | ||||
| } | ||||
| // vecEval three operands | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3))) | ||||
| { | ||||
|   return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)); | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand coalesced | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss, expr.arg1))) | ||||
| { | ||||
|   return expr.op.func( eval(ss, expr.arg1) ); | ||||
| } | ||||
| // eval two operands | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) ); | ||||
| } | ||||
| // eval three operands | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(eval(ss, expr.arg1),  | ||||
| 			   eval(ss, expr.arg2),  | ||||
| 			   eval(ss, expr.arg3))) | ||||
| { | ||||
| #ifdef GRID_SIMT | ||||
|   // Handles Nsimd (vInteger) != Nsimd(ComplexD) | ||||
|   typedef decltype(vecEval(ss, expr.arg2)) rvobj; | ||||
|   typedef typename std::remove_reference<rvobj>::type vobj; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|  | ||||
|   auto vpred = vecEval(ss,expr.arg1); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   extract<vInteger, Integer>(TensorRemove(vpred), mask); | ||||
|  | ||||
|   int s = acceleratorSIMTlane(Nsimd); | ||||
|   return expr.op.func(mask[s], | ||||
| 		      eval(ss, expr.arg2),  | ||||
| 		      eval(ss, expr.arg3)); | ||||
| #else | ||||
|   return expr.op.func(eval(ss, expr.arg1), | ||||
| 		      eval(ss, expr.arg2),  | ||||
| 		      eval(ss, expr.arg3)); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Obtain the grid from an expression, ensuring conformable. This must follow a | ||||
| // tree recursion; must retain grid pointer in the LatticeView class which sucks | ||||
| // Use a different method, and make it void *. | ||||
| // Perhaps a conformable method. | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.Conformable(grid); | ||||
| } | ||||
|  | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid,const T1 ¬lat)  // non-lattice leaf | ||||
| {} | ||||
|  | ||||
| template <typename Op, typename T1> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
|   GridFromExpression(grid, expr.arg2); | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
|   GridFromExpression(grid, expr.arg2);  // recurse | ||||
|   GridFromExpression(grid, expr.arg3);  // recurse | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Obtain the CB from an expression, ensuring conformable. This must follow a | ||||
| // tree recursion | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   if ((cb == Odd) || (cb == Even)) { | ||||
|     assert(cb == lat.Checkerboard()); | ||||
|   } | ||||
|   cb = lat.Checkerboard(); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 ¬lat) {} // non-lattice leaf | ||||
| template <typename Op, typename T1> inline  | ||||
| void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg2);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg2);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // ViewOpen | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewOpen(T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.ViewOpen(AcceleratorRead); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
|   inline void ExpressionViewOpen(T1 ¬lat) {} | ||||
|  | ||||
| template <typename Op, typename T1> inline  | ||||
| void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)  | ||||
| {   | ||||
|   ExpressionViewOpen(expr.arg1); // recurse AST | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // rrecurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // ViewClose | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewClose( T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.ViewClose(); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewClose(T1 ¬lat) {} | ||||
|  | ||||
| template <typename Op, typename T1> inline  | ||||
| void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)  | ||||
| {   | ||||
|   ExpressionViewClose(expr.arg1); // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewClose(expr.arg1);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg2);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   ExpressionViewClose(expr.arg1);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg2);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Unary operators and funcs | ||||
| //////////////////////////////////////////// | ||||
| #define GridUnopClass(name, ret)					\ | ||||
|   struct name {								\ | ||||
|     template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \ | ||||
|   }; | ||||
|  | ||||
| GridUnopClass(UnarySub, -a); | ||||
| GridUnopClass(UnaryNot, Not(a)); | ||||
| GridUnopClass(UnaryTrace, trace(a)); | ||||
| GridUnopClass(UnaryTranspose, transpose(a)); | ||||
| GridUnopClass(UnaryTa, Ta(a)); | ||||
| GridUnopClass(UnarySpTa, SpTa(a)); | ||||
| GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a)); | ||||
| GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a)); | ||||
| GridUnopClass(UnaryTimesI, timesI(a)); | ||||
| GridUnopClass(UnaryTimesMinusI, timesMinusI(a)); | ||||
| GridUnopClass(UnaryAbs, abs(a)); | ||||
| GridUnopClass(UnarySqrt, sqrt(a)); | ||||
| GridUnopClass(UnarySin, sin(a)); | ||||
| GridUnopClass(UnaryCos, cos(a)); | ||||
| GridUnopClass(UnaryAsin, asin(a)); | ||||
| GridUnopClass(UnaryAcos, acos(a)); | ||||
| GridUnopClass(UnaryLog, log(a)); | ||||
| GridUnopClass(UnaryExp, exp(a)); | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Binary operators | ||||
| //////////////////////////////////////////// | ||||
| #define GridBinOpClass(name, combination)			\ | ||||
|   struct name {							\ | ||||
|     template <class _left, class _right>			\ | ||||
|     static auto accelerator_inline				\ | ||||
|     func(const _left &lhs, const _right &rhs)			\ | ||||
|       -> decltype(combination) const				\ | ||||
|     {								\ | ||||
|       return combination;					\ | ||||
|     }								\ | ||||
|   }; | ||||
|  | ||||
| GridBinOpClass(BinaryAdd, lhs + rhs); | ||||
| GridBinOpClass(BinarySub, lhs - rhs); | ||||
| GridBinOpClass(BinaryMul, lhs *rhs); | ||||
| GridBinOpClass(BinaryDiv, lhs /rhs); | ||||
| GridBinOpClass(BinaryAnd, lhs &rhs); | ||||
| GridBinOpClass(BinaryOr, lhs | rhs); | ||||
| GridBinOpClass(BinaryAndAnd, lhs &&rhs); | ||||
| GridBinOpClass(BinaryOrOr, lhs || rhs); | ||||
|  | ||||
| //////////////////////////////////////////////////// | ||||
| // Trinary conditional op | ||||
| //////////////////////////////////////////////////// | ||||
| #define GridTrinOpClass(name, combination)				\ | ||||
|   struct name {								\ | ||||
|     template <class _predicate,class _left, class _right>		\ | ||||
|     static auto accelerator_inline					\ | ||||
|     func(const _predicate &pred, const _left &lhs, const _right &rhs)	\ | ||||
|       -> decltype(combination) const					\ | ||||
|     {									\ | ||||
|       return combination;						\ | ||||
|     }									\ | ||||
|   }; | ||||
|  | ||||
| GridTrinOpClass(TrinaryWhere, | ||||
| 		(predicatedWhere< | ||||
| 		 typename std::remove_reference<_predicate>::type,  | ||||
| 		 typename std::remove_reference<_left>::type, | ||||
| 		 typename std::remove_reference<_right>::type>(pred, lhs,rhs))); | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Operator syntactical glue | ||||
| //////////////////////////////////////////// | ||||
| #define GRID_UNOP(name)   name | ||||
| #define GRID_BINOP(name)  name | ||||
| #define GRID_TRINOP(name) name | ||||
|  | ||||
| #define GRID_DEF_UNOP(op, name)						\ | ||||
|   template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
|   inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \ | ||||
|   {									\ | ||||
|     return     LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \ | ||||
|   } | ||||
|  | ||||
| #define GRID_BINOP_LEFT(op, name)					\ | ||||
|   template <typename T1, typename T2,					\ | ||||
|             typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
|   inline auto op(const T1 &lhs, const T2 &rhs)				\ | ||||
|     ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \ | ||||
|   {									\ | ||||
|     return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\ | ||||
|   } | ||||
|  | ||||
| #define GRID_BINOP_RIGHT(op, name)					\ | ||||
|   template <typename T1, typename T2,					\ | ||||
|             typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \ | ||||
|             typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \ | ||||
|   inline auto op(const T1 &lhs, const T2 &rhs)				\ | ||||
|     ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \ | ||||
|   {									\ | ||||
|     return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \ | ||||
|   } | ||||
|  | ||||
| #define GRID_DEF_BINOP(op, name)		\ | ||||
|   GRID_BINOP_LEFT(op, name);			\ | ||||
|   GRID_BINOP_RIGHT(op, name); | ||||
|  | ||||
| #define GRID_DEF_TRINOP(op, name)					\ | ||||
|   template <typename T1, typename T2, typename T3>			\ | ||||
|   inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs)		\ | ||||
|     ->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \ | ||||
|   {									\ | ||||
|     return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \ | ||||
|   } | ||||
|  | ||||
| //////////////////////// | ||||
| // Operator definitions | ||||
| //////////////////////// | ||||
| GRID_DEF_UNOP(operator-, UnarySub); | ||||
| GRID_DEF_UNOP(Not, UnaryNot); | ||||
| GRID_DEF_UNOP(operator!, UnaryNot); | ||||
| //GRID_DEF_UNOP(adj, UnaryAdj); | ||||
| //GRID_DEF_UNOP(conjugate, UnaryConj); | ||||
| GRID_DEF_UNOP(trace, UnaryTrace); | ||||
| GRID_DEF_UNOP(transpose, UnaryTranspose); | ||||
| GRID_DEF_UNOP(Ta, UnaryTa); | ||||
| GRID_DEF_UNOP(SpTa, UnarySpTa); | ||||
| GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup); | ||||
| GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup); | ||||
| GRID_DEF_UNOP(timesI, UnaryTimesI); | ||||
| GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI); | ||||
| GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the | ||||
|                                // abs-fabs-dabs-labs thing | ||||
| GRID_DEF_UNOP(sqrt, UnarySqrt); | ||||
| GRID_DEF_UNOP(sin, UnarySin); | ||||
| GRID_DEF_UNOP(cos, UnaryCos); | ||||
| GRID_DEF_UNOP(asin, UnaryAsin); | ||||
| GRID_DEF_UNOP(acos, UnaryAcos); | ||||
| GRID_DEF_UNOP(log, UnaryLog); | ||||
| GRID_DEF_UNOP(exp, UnaryExp); | ||||
|  | ||||
| GRID_DEF_BINOP(operator+, BinaryAdd); | ||||
| GRID_DEF_BINOP(operator-, BinarySub); | ||||
| GRID_DEF_BINOP(operator*, BinaryMul); | ||||
| GRID_DEF_BINOP(operator/, BinaryDiv); | ||||
|  | ||||
| GRID_DEF_BINOP(operator&, BinaryAnd); | ||||
| GRID_DEF_BINOP(operator|, BinaryOr); | ||||
| GRID_DEF_BINOP(operator&&, BinaryAndAnd); | ||||
| GRID_DEF_BINOP(operator||, BinaryOrOr); | ||||
|  | ||||
| GRID_DEF_TRINOP(where, TrinaryWhere); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Closure convenience to force expression to evaluate | ||||
| ///////////////////////////////////////////////////////////// | ||||
| template <class Op, class T1> | ||||
| auto closure(const LatticeUnaryExpression<Op, T1> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >  | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2> | ||||
| auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2, class T3> | ||||
| auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), | ||||
| 				   vecEval(0, expr.arg2), | ||||
| 				   vecEval(0, expr.arg3)))>::type > | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), | ||||
| 				vecEval(0, expr.arg2), | ||||
| 			        vecEval(0, expr.arg3)))>::type >  ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| #define EXPRESSION_CLOSURE(function)					\ | ||||
|   template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \ | ||||
|     auto function(Expression &expr) -> decltype(function(closure(expr))) \ | ||||
|   {									\ | ||||
|     return function(closure(expr));					\ | ||||
|   } | ||||
|  | ||||
|  | ||||
| #undef GRID_UNOP | ||||
| #undef GRID_BINOP | ||||
| #undef GRID_TRINOP | ||||
|  | ||||
| #undef GRID_DEF_UNOP | ||||
| #undef GRID_DEF_BINOP | ||||
| #undef GRID_DEF_TRINOP | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,311 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_arith.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_ARITH_H | ||||
| #define GRID_LATTICE_ARITH_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //  avoid copy back routines for mult, mac, sub, add | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t = lhs_v(ss); | ||||
|     auto rhs_t = rhs_v(ss); | ||||
|     mult(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     auto tmp  =ret_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     sub(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     add(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //  avoid copy back routines for mult, mac, sub, add | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     mult(&tmp,&lhs_v(ss),&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto tmp  =ret_v(ss); | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     sub(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     add(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //  avoid copy back routines for mult, mac, sub, add | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mult(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto tmp  =ret_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mac(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     sub(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     add(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|    | ||||
| template<class sobj,class vobj> inline | ||||
| void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   GRID_TRACE("axpy"); | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|   conformable(ret,x); | ||||
|   conformable(x,y); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
| template<class sobj,class vobj> inline | ||||
| void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   GRID_TRACE("axpby"); | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|   conformable(ret,x); | ||||
|   conformable(x,y); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpy_norm"); | ||||
|     return axpy_norm_fast(ret,a,x,y); | ||||
| } | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpby_norm"); | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
| } | ||||
|  | ||||
| /// Trace product | ||||
| template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2) | ||||
|   -> Lattice<decltype(trace(obj()))> | ||||
| { | ||||
|   typedef decltype(trace(obj())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( rhs2 , rhs_2, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss))); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   typedef decltype(trace(obj1())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
| template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   return traceProduct(rhs_1,rhs_2); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,385 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/lattice/Lattice_base.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
|  | ||||
| #pragma once  | ||||
|  | ||||
| #define STREAMING_STORES | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern int GridCshiftPermuteMap[4][16]; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // The real lattice class, with normal copy and assignment semantics. | ||||
| // This contains extra (host resident) grid pointer data that may be accessed by host code | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| class Lattice : public LatticeAccelerator<vobj> | ||||
| { | ||||
| public: | ||||
|   GridBase *Grid(void) const { return this->_grid; } | ||||
|   /////////////////////////////////////////////////// | ||||
|   // Member types | ||||
|   /////////////////////////////////////////////////// | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef vobj vector_object; | ||||
|  | ||||
| private: | ||||
|   void dealloc(void) | ||||
|   { | ||||
|     if( this->_odata_size ) { | ||||
|       alignedAllocator<vobj> alloc; | ||||
|       alloc.deallocate(this->_odata,this->_odata_size); | ||||
|       this->_odata=nullptr; | ||||
|       this->_odata_size=0; | ||||
|     } | ||||
|   } | ||||
|   void resize(uint64_t size) | ||||
|   { | ||||
|     if ( this->_odata_size != size ) { | ||||
|       alignedAllocator<vobj> alloc; | ||||
|  | ||||
|       dealloc(); | ||||
|        | ||||
|       this->_odata_size = size; | ||||
|       if ( size ) | ||||
| 	this->_odata      = alloc.allocate(this->_odata_size); | ||||
|       else  | ||||
| 	this->_odata      = nullptr; | ||||
|     } | ||||
|   } | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   void SetViewMode(ViewMode mode) { | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     accessor.ViewClose(); | ||||
|   } | ||||
|  | ||||
|   // Helper function to print the state of this object in the AccCache | ||||
|   void PrintCacheState(void) | ||||
|   { | ||||
|     MemoryManager::PrintState(this->_odata); | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Return a view object that may be dereferenced in site loops. | ||||
|   // The view is trivially copy constructible and may be copied to an accelerator device | ||||
|   // in device lambdas | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   LatticeView<vobj> View (ViewMode mode) const  | ||||
|   { | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     return accessor; | ||||
|   } | ||||
|  | ||||
|   ~Lattice() {  | ||||
|     if ( this->_odata_size ) { | ||||
|       dealloc(); | ||||
|     } | ||||
|    } | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   // Expression Template closure support | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|      | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     return *this; | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     return *this; | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     return *this; | ||||
|   } | ||||
|   //GridFromExpression is tricky to do | ||||
|   template<class Op,class T1> | ||||
|   Lattice(const LatticeUnaryExpression<Op,T1> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|   } | ||||
|   template<class Op,class T1, class T2> | ||||
|   Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|   } | ||||
|   template<class Op,class T1, class T2, class T3> | ||||
|   Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|   } | ||||
|  | ||||
|   template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     vobj vtmp; | ||||
|     vtmp = r; | ||||
|     auto me  = View(AcceleratorWrite); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
| 	auto stmp=coalescedRead(vtmp); | ||||
| 	coalescedWrite(me[ss],stmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   // Follow rule of five, with Constructor requires "grid" passed | ||||
|   // to user defined constructor | ||||
|   /////////////////////////////////////////// | ||||
|   // user defined constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {  | ||||
|     this->_grid = grid; | ||||
|     resize(this->_grid->oSites()); | ||||
|     assert((((uint64_t)&this->_odata[0])&0xF) ==0); | ||||
|     this->checkerboard=0; | ||||
|     SetViewMode(mode); | ||||
|   } | ||||
|    | ||||
|   //  virtual ~Lattice(void) = default; | ||||
|      | ||||
|   void reset(GridBase* grid) { | ||||
|     if (this->_grid != grid) { | ||||
|       this->_grid = grid; | ||||
|       this->resize(grid->oSites()); | ||||
|       this->checkerboard = 0; | ||||
|     } | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // copy constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(const Lattice& r){  | ||||
|     this->_grid = r.Grid(); | ||||
|     resize(this->_grid->oSites()); | ||||
|     *this = r; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // move constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(Lattice && r){  | ||||
|     this->_grid = r.Grid(); | ||||
|     this->_odata      = r._odata; | ||||
|     this->_odata_size = r._odata_size; | ||||
|     this->checkerboard= r.Checkerboard(); | ||||
|     r._odata      = nullptr; | ||||
|     r._odata_size = 0; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // assignment template | ||||
|   /////////////////////////////////////////// | ||||
|   template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){ | ||||
|     typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0; | ||||
|     conformable(*this,r); | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
|     me.ViewClose();    him.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Copy assignment  | ||||
|   /////////////////////////////////////////// | ||||
|   inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     conformable(*this,r); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
|     me.ViewClose();    him.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // Move assignment possible if same type | ||||
|   /////////////////////////////////////////// | ||||
|   inline Lattice<vobj> & operator = (Lattice<vobj> && r){ | ||||
|  | ||||
|     resize(0); // deletes if appropriate | ||||
|     this->_grid       = r.Grid(); | ||||
|     this->_odata      = r._odata; | ||||
|     this->_odata_size = r._odata_size; | ||||
|     this->checkerboard= r.Checkerboard(); | ||||
|  | ||||
|     r._odata      = nullptr; | ||||
|     r._odata_size = 0; | ||||
|      | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
|   // *=,+=,-= operators inherit behvour from correspond */+/- operation | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
|   template<class T> inline Lattice<vobj> &operator *=(const T &r) { | ||||
|     *this = (*this)*r; | ||||
|     return *this; | ||||
|   } | ||||
|    | ||||
|   template<class T> inline Lattice<vobj> &operator -=(const T &r) { | ||||
|     *this = (*this)-r; | ||||
|     return *this; | ||||
|   } | ||||
|   template<class T> inline Lattice<vobj> &operator +=(const T &r) { | ||||
|     *this = (*this)+r; | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   friend inline void swap(Lattice &l, Lattice &r) {  | ||||
|     conformable(l,r); | ||||
|     LatticeAccelerator<vobj> tmp; | ||||
|     LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l; | ||||
|     LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r; | ||||
|     tmp = *lp;    *lp=*rp;    *rp=tmp; | ||||
|   } | ||||
|  | ||||
| }; // class Lattice | ||||
|  | ||||
| template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){ | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   for(int64_t g=0;g<o.Grid()->_gsites;g++){ | ||||
|  | ||||
|     Coordinate gcoor; | ||||
|     o.Grid()->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|  | ||||
|     sobj ss; | ||||
|     peekSite(ss,o,gcoor); | ||||
|     stream<<"["; | ||||
|     for(int d=0;d<gcoor.size();d++){ | ||||
|       stream<<gcoor[d]; | ||||
|       if(d!=gcoor.size()-1) stream<<","; | ||||
|     } | ||||
|     stream<<"]\t"; | ||||
|     stream<<ss<<std::endl; | ||||
|   } | ||||
|   return stream; | ||||
| } | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,248 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/lattice/Lattice_basis.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)  | ||||
| { | ||||
|   // If assume basis[j] are already orthonormal, | ||||
|   // can take all inner products in parallel saving 2x bandwidth | ||||
|   // Save 3x bandwidth on the second line of loop. | ||||
|   // perhaps 2.5x speed up. | ||||
|   // 2x overall in Multigrid Lanczos   | ||||
|   for(int j=0; j<k; ++j){ | ||||
|     auto ip = innerProduct(basis[j],w); | ||||
|     w = w - ip*basis[j]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class VField, class Matrix> | ||||
| void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef decltype(basis[0]) Field; | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|   typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|        | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|     { | ||||
|       vobj* B = &Bt[Nm * thread_num()]; | ||||
|       thread_for_in_region(ss, grid->oSites(),{ | ||||
| 	  for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|        | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    for(int k=k0; k<k1; ++k){ | ||||
| 	      B[j] +=Qt(j,k) * basis_v[k][ss]; | ||||
| 	    } | ||||
| 	  } | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    basis_v[j][ss] = B[j]; | ||||
| 	  } | ||||
| 	}); | ||||
|     } | ||||
| #else | ||||
|   View *basis_vp = &basis_v[0]; | ||||
|  | ||||
|   int nrot = j1-j0; | ||||
|   if (!nrot) // edge case not handled gracefully by Cuda | ||||
|     return; | ||||
|  | ||||
|   uint64_t oSites   =grid->oSites(); | ||||
|   uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead | ||||
|  | ||||
|   Vector <vobj> Bt(siteBlock * nrot);  | ||||
|   auto Bp=&Bt[0]; | ||||
|  | ||||
|   // GPU readable copy of matrix | ||||
|   Vector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   Coeff_t *Qt_p = & Qt_jv[0]; | ||||
|   thread_for(i,Nm*Nm,{ | ||||
|       int j = i/Nm; | ||||
|       int k = i%Nm; | ||||
|       Qt_p[i]=Qt(j,k); | ||||
|   }); | ||||
|  | ||||
|   // Block the loop to keep storage footprint down | ||||
|   for(uint64_t s=0;s<oSites;s+=siteBlock){ | ||||
|  | ||||
|     // remaining work in this block | ||||
|     int ssites=MIN(siteBlock,oSites-s); | ||||
|  | ||||
|     // zero out the accumulators | ||||
|     accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{ | ||||
| 	decltype(coalescedRead(Bp[ss])) z; | ||||
| 	z=Zero(); | ||||
| 	coalescedWrite(Bp[ss],z); | ||||
|       }); | ||||
|  | ||||
|     accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{ | ||||
| 	 | ||||
| 	int j =sj%nrot; | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
|  | ||||
| 	for(int k=k0; k<k1; ++k){ | ||||
| 	  auto tmp = coalescedRead(Bp[ss*nrot+j]); | ||||
| 	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss])); | ||||
| 	} | ||||
|       }); | ||||
|  | ||||
|     accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{ | ||||
| 	int j =sj%nrot; | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
| 	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
|       }); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| template<class Field> | ||||
| void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|  | ||||
|   result.Checkerboard() = basis[0].Checkerboard(); | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorRead)); | ||||
|   } | ||||
|   vobj zz=Zero(); | ||||
|   Vector<double> Qt_jv(Nm); | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); | ||||
|  | ||||
|   auto basis_vp=& basis_v[0]; | ||||
|   autoView(result_v,result,AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ | ||||
|     vobj zzz=Zero(); | ||||
|     auto B=coalescedRead(zzz); | ||||
|     for(int k=k0; k<k1; ++k){ | ||||
|       B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]); | ||||
|     } | ||||
|     coalescedWrite(result_v[ss], B); | ||||
|   }); | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)  | ||||
| { | ||||
|   int vlen = idx.size(); | ||||
|  | ||||
|   assert(vlen>=1); | ||||
|   assert(vlen<=sort_vals.size()); | ||||
|   assert(vlen<=_v.size()); | ||||
|  | ||||
|   for (size_t i=0;i<vlen;i++) { | ||||
|  | ||||
|     if (idx[i] != i) { | ||||
|  | ||||
|       ////////////////////////////////////// | ||||
|       // idx[i] is a table of desired sources giving a permutation. | ||||
|       // Swap v[i] with v[idx[i]]. | ||||
|       // Find  j>i for which _vnew[j] = _vold[i], | ||||
|       // track the move idx[j] => idx[i] | ||||
|       // track the move idx[i] => i | ||||
|       ////////////////////////////////////// | ||||
|       size_t j; | ||||
|       for (j=i;j<idx.size();j++) | ||||
| 	if (idx[j]==i) | ||||
| 	  break; | ||||
|  | ||||
|       assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i); | ||||
|  | ||||
|       swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy | ||||
|       std::swap(sort_vals[i],sort_vals[idx[i]]); | ||||
|  | ||||
|       idx[j] = idx[i]; | ||||
|       idx[i] = i; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)  | ||||
| { | ||||
|   std::vector<int> idx(sort_vals.size()); | ||||
|   std::iota(idx.begin(), idx.end(), 0); | ||||
|  | ||||
|   // sort indexes based on comparing values in v | ||||
|   std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) { | ||||
|     return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]); | ||||
|   }); | ||||
|   return idx; | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)  | ||||
| { | ||||
|   std::vector<int> idx = basisSortGetIndex(sort_vals); | ||||
|   if (reverse) | ||||
|     std::reverse(idx.begin(), idx.end()); | ||||
|    | ||||
|   basisReorderInPlace(_v,sort_vals,idx); | ||||
| } | ||||
|  | ||||
| // PAB: faster to compute the inner products first then fuse loops. | ||||
| // If performance critical can improve. | ||||
| template<class Field> | ||||
| void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) { | ||||
|   result = Zero(); | ||||
|   assert(_v.size()==eval.size()); | ||||
|   int N = (int)_v.size(); | ||||
|   for (int i=0;i<N;i++) { | ||||
|     Field& tmp = _v[i]; | ||||
|     axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result); | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,179 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_comparison.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_COMPARISON_H | ||||
| #define GRID_LATTICE_COMPARISON_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // relational operators | ||||
| //  | ||||
| // Support <,>,<=,>=,==,!= | ||||
| // | ||||
| //Query supporting bitwise &, |, ^, ! | ||||
| //Query supporting logical &&, ||,  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| typedef iScalar<vInteger> vPredicate ; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // compare lattice to lattice | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vfunctor,class lobj,class robj>   | ||||
| inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs) | ||||
| { | ||||
|   Lattice<vPredicate> ret(rhs.Grid()); | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, rhs_v.size(), { | ||||
|       ret_v[ss]=op(lhs_v[ss],rhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // compare lattice to scalar | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template<class vfunctor,class lobj,class robj>  | ||||
| inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs) | ||||
| { | ||||
|   Lattice<vPredicate> ret(lhs.Grid()); | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, lhs_v.size(), { | ||||
|     ret_v[ss]=op(lhs_v[ss],rhs); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // compare scalar to lattice | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template<class vfunctor,class lobj,class robj>  | ||||
| inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs) | ||||
| { | ||||
|   Lattice<vPredicate> ret(rhs.Grid()); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, rhs_v.size(), { | ||||
|     ret_v[ss]=op(lhs,rhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|    | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Map to functors | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Less than | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|   return LLComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|   return LSComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|   return SLComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
|    | ||||
| // Less than equal | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|   return LLComparison(vle<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|   return LSComparison(vle<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|   return SLComparison(vle<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
|    | ||||
| // Greater than  | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|   return LLComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|   return LSComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|   return SLComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
|    | ||||
|    | ||||
| // Greater than equal | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|   return LLComparison(vge<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|   return LSComparison(vge<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|   return SLComparison(vge<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
|     | ||||
| // equal | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|   return LLComparison(veq<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|   return LSComparison(veq<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|   return SLComparison(veq<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
|     | ||||
|     | ||||
| // not equal | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|   return LLComparison(vne<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|   return LSComparison(vne<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|   return SLComparison(vne<lobj,robj>(),lhs,rhs); | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,55 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_coordinate.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu) | ||||
| { | ||||
|   typedef typename iobj::scalar_type scalar_type; | ||||
|   typedef typename iobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = l.Grid(); | ||||
|   int Nsimd = grid->iSites(); | ||||
|  | ||||
|   autoView(l_v, l, CpuWrite); | ||||
|   thread_for( o, grid->oSites(), { | ||||
|     vector_type vI; | ||||
|     Coordinate gcoor; | ||||
|     ExtractBuffer<scalar_type> mergebuf(Nsimd); | ||||
|     for(int i=0;i<grid->iSites();i++){ | ||||
|       grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor); | ||||
|       mergebuf[i]=(Integer)gcoor[mu]; | ||||
|     } | ||||
|     merge<vector_type,scalar_type>(vI,mergebuf); | ||||
|     l_v[o]=vI; | ||||
|   }); | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,55 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_crc.h | ||||
|  | ||||
|     Copyright (C) 2021 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1) | ||||
| { | ||||
|   auto ff = localNorm2(f); | ||||
|   if ( mu==-1 ) mu = f.Grid()->Nd()-1; | ||||
|   typedef typename vobj::tensor_reduced normtype; | ||||
|   typedef typename normtype::scalar_object scalar; | ||||
|   std::vector<scalar> sff; | ||||
|   sliceSum(ff,sff,mu); | ||||
|   for(int t=0;t<sff.size();t++){ | ||||
|     std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> uint32_t crc(const Lattice<vobj> & buf) | ||||
| { | ||||
|   autoView( buf_v , buf, CpuRead); | ||||
|   return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites()); | ||||
| } | ||||
|  | ||||
| #define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,87 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_local.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_LOCALREDUCTION_H | ||||
| #define GRID_LATTICE_LOCALREDUCTION_H | ||||
|  | ||||
| /////////////////////////////////////////////// | ||||
| // localInner, localNorm, outerProduct | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////// | ||||
| // Non site, reduced locally reduced routines | ||||
| ///////////////////////////////////////////////////// | ||||
|    | ||||
| // localNorm2, | ||||
| template<class vobj> | ||||
| inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced> | ||||
| { | ||||
|   Lattice<typename vobj::tensor_reduced> ret(rhs.Grid()); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|    | ||||
| // localInnerProduct | ||||
| template<class vobj> | ||||
| inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced> | ||||
| { | ||||
|   Lattice<typename vobj::tensor_reduced> ret(rhs.Grid()); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|    | ||||
| // outerProduct Scalar x Scalar -> Scalar | ||||
| //              Vector x Vector -> Matrix | ||||
| template<class ll,class rr> | ||||
| inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))> | ||||
| { | ||||
|   typedef decltype(coalescedRead(ll())) sll; | ||||
|   typedef decltype(coalescedRead(rr())) srr; | ||||
|   Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid()); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),1,{ | ||||
|     // FIXME had issues with scalar version of outer  | ||||
|     // Use vector [] operator and don't read coalesce this loop | ||||
|     ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,199 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|     Source file: ./lib/lattice/Lattice_reduction.h | ||||
|     Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once  | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
|  | ||||
| #ifdef GRID_WARN_SUBOPTIMAL | ||||
| #warning "Optimisation alert all these reduction loops are NOT threaded " | ||||
| #endif      | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|   autoView( X_v , X, CpuRead); | ||||
|   autoView( Y_v , Y, CpuRead); | ||||
|   autoView( R_v , R, CpuWrite); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|     thread_loop_collapse2( (int n=0;n<nblock;n++),{ | ||||
|       for(int b=0;b<block;b++){ | ||||
| 	int o  = n*stride + b; | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  s_x[i] = X_v[o+i*ostride]; | ||||
| 	} | ||||
|  | ||||
| 	vobj dot; | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  dot = Y_v[o+i*ostride]; | ||||
| 	  for(int j=0;j<Nblock;j++){ | ||||
| 	    dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	  } | ||||
| 	  R_v[o+i*ostride]=dot; | ||||
| 	} | ||||
|       }}); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   autoView( X_v , X, CpuRead); | ||||
|   autoView( R_v , R, CpuWrite); | ||||
|  | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|      | ||||
|     thread_loop_collapse2( (int n=0;n<nblock;n++),{ | ||||
|       for(int b=0;b<block;b++){ | ||||
| 	int o  = n*stride + b; | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  s_x[i] = X_v[o+i*ostride]; | ||||
| 	} | ||||
|  | ||||
| 	vobj dot; | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  dot = s_x[0]*(scale*aa(0,i)); | ||||
| 	  for(int j=1;j<Nblock;j++){ | ||||
| 	    dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	  } | ||||
| 	  R_v[o+i*ostride]=dot; | ||||
| 	} | ||||
|     }}); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|    | ||||
|   int Nblock = FullGrid->GlobalDimensions()[Orthog]; | ||||
|    | ||||
|   //  Lattice<vobj> Lslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|    | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_typeD; | ||||
|   autoView( lhs_v , lhs, CpuRead); | ||||
|   autoView( rhs_v , rhs, CpuRead); | ||||
|   thread_region { | ||||
|     std::vector<vobj> Left(Nblock); | ||||
|     std::vector<vobj> Right(Nblock); | ||||
|     Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|     thread_loop_collapse2((int n=0;n<nblock;n++),{ | ||||
|       for(int b=0;b<block;b++){ | ||||
|  | ||||
| 	int o  = n*stride + b; | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  Left [i] = lhs_v[o+i*ostride]; | ||||
| 	  Right[i] = rhs_v[o+i*ostride]; | ||||
| 	} | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  for(int j=0;j<Nblock;j++){ | ||||
| 	    auto tmp = innerProduct(Left[i],Right[j]); | ||||
| 	    auto rtmp = TensorRemove(tmp); | ||||
| 	    ComplexD z = Reduce(rtmp); | ||||
| 	    mat_thread(i,j) += std::complex<double>(real(z),imag(z)); | ||||
| 	  }} | ||||
|     }}); | ||||
|     thread_critical { | ||||
|       mat += mat_thread; | ||||
|     }   | ||||
|   } | ||||
|  | ||||
|   for(int i=0;i<Nblock;i++){ | ||||
|     for(int j=0;j<Nblock;j++){ | ||||
|       ComplexD sum = mat(i,j); | ||||
|       FullGrid->GlobalSum(sum); | ||||
|       mat(i,j)=sum; | ||||
|     }} | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -1,231 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_peekpoke.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_PEEK_H | ||||
| #define GRID_LATTICE_PEEK_H | ||||
|  | ||||
| /////////////////////////////////////////////// | ||||
| // Peeking and poking around | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| // FIXME accelerator_loop and accelerator_inline these | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Peek internal indices of a Lattice object | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<int Index,class vobj>  | ||||
| auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))> | ||||
| { | ||||
|   Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid()); | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = peekIndex<Index>(lhs_v[ss],i); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| template<int Index,class vobj>  | ||||
| auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))> | ||||
| { | ||||
|   Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid()); | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Poke internal indices of a Lattice object | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<int Index,class vobj>   | ||||
| void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i) | ||||
| { | ||||
|   autoView( rhs_v, rhs, AcceleratorRead); | ||||
|   autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i); | ||||
|   }); | ||||
| } | ||||
| template<int Index,class vobj>  | ||||
| void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j) | ||||
| { | ||||
|   autoView( rhs_v, rhs, AcceleratorRead); | ||||
|   autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j); | ||||
|   }); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Poke a scalar object into the SIMD array | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj,class sobj>  | ||||
| void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
|  | ||||
|   GridBase *grid=l.Grid(); | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== l.Grid()->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   int rank,odx,idx; | ||||
|   // Optional to broadcast from node 0. | ||||
|   grid->GlobalCoorToRankIndex(rank,odx,idx,site); | ||||
|   grid->Broadcast(grid->BossRank(),s); | ||||
|  | ||||
|   // extract-modify-merge cycle is easiest way and this is not perf critical | ||||
|   ExtractBuffer<sobj> buf(Nsimd); | ||||
|   autoView( l_v , l, CpuWrite); | ||||
|   if ( rank == grid->ThisRank() ) { | ||||
|     extract(l_v[odx],buf); | ||||
|     buf[idx] = s; | ||||
|     merge(l_v[odx],buf); | ||||
|   } | ||||
|  | ||||
|   return; | ||||
| }; | ||||
|  | ||||
|  | ||||
| ////////////////////////////////////////////////////////// | ||||
| // Peek a scalar object from the SIMD array | ||||
| ////////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){ | ||||
|   typename vobj::scalar_object s; | ||||
|   peekSite(s,l,site); | ||||
|   return s; | ||||
| }         | ||||
| template<class vobj,class sobj> | ||||
| void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){ | ||||
|          | ||||
|   GridBase *grid=l.Grid(); | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard() == l.Grid()->CheckerBoard(site)); | ||||
|  | ||||
|   int rank,odx,idx; | ||||
|   grid->GlobalCoorToRankIndex(rank,odx,idx,site); | ||||
|  | ||||
|   ExtractBuffer<sobj> buf(Nsimd); | ||||
|   autoView( l_v , l, CpuWrite); | ||||
|   extract(l_v[odx],buf); | ||||
|  | ||||
|   s = buf[idx]; | ||||
|  | ||||
|   grid->Broadcast(rank,s); | ||||
|  | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////// | ||||
| // Peek a scalar object from the SIMD array | ||||
| ////////////////////////////////////////////////////////// | ||||
| // Must be CPU read view | ||||
| template<class vobj,class sobj> | ||||
| inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   GridBase *grid = l.getGrid(); | ||||
|   assert(l.mode==CpuRead); | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   int odx,idx; | ||||
|   idx= grid->iIndex(site); | ||||
|   odx= grid->oIndex(site); | ||||
|    | ||||
|   const vector_type *vp = (const vector_type *) &l[odx]; | ||||
|   scalar_type * pt = (scalar_type *)&s; | ||||
|        | ||||
|   for(int w=0;w<words;w++){ | ||||
|     pt[w] = getlane(vp[w],idx); | ||||
|   } | ||||
|        | ||||
|   return; | ||||
| }; | ||||
| template<class vobj,class sobj> | ||||
| inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   autoView(lv,l,CpuRead); | ||||
|   peekLocalSite(s,lv,site); | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| // Must be CPU write view | ||||
| template<class vobj,class sobj> | ||||
| inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   GridBase *grid=l.getGrid(); | ||||
|   assert(l.mode==CpuWrite); | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   int odx,idx; | ||||
|   idx= grid->iIndex(site); | ||||
|   odx= grid->oIndex(site); | ||||
|  | ||||
|   vector_type * vp = (vector_type *)&l[odx]; | ||||
|   scalar_type * pt = (scalar_type *)&s; | ||||
|   for(int w=0;w<words;w++){ | ||||
|     putlane(vp[w],pt[w],idx); | ||||
|   } | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| template<class vobj,class sobj> | ||||
| inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   autoView(lv,l,CpuWrite); | ||||
|   pokeLocalSite(s,lv,site); | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
| @@ -1,79 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_reality.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_REAL_IMAG_H | ||||
| #define GRID_LATTICE_REAL_IMAG_H | ||||
|  | ||||
|  | ||||
| // FIXME .. this is the sector of the code  | ||||
| // I am most worried about the directions | ||||
| // The choice of burying complex in the SIMD | ||||
| // is making the use of "real" and "imag" very cumbersome | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] =real(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] =imag(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
|   auto real(const Expression &expr) -> decltype(real(closure(expr)))		 | ||||
| {									 | ||||
|   return real(closure(expr));					 | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
|   auto imag(const Expression &expr) -> decltype(imag(closure(expr)))		 | ||||
| {									 | ||||
|   return imag(closure(expr));					 | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,116 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_reality.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_REALITY_H | ||||
| #define GRID_LATTICE_REALITY_H | ||||
|  | ||||
|  | ||||
| // FIXME .. this is the sector of the code  | ||||
| // I am most worried about the directions | ||||
| // The choice of burying complex in the SIMD | ||||
| // is making the use of "real" and "imag" very cumbersome | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|      ret_v[ss] = adj(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), { | ||||
|     coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){ | ||||
|   Lattice<typename vobj::Complexified> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = toComplex(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){ | ||||
|   Lattice<typename vobj::Realified> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = toReal(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto toComplex(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return toComplex(closure(expr)); | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto toReal(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return toReal(closure(expr)); | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto adj(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return adj(closure(expr)); | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto conjugate(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return conjugate(closure(expr)); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,892 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|     Source file: ./lib/lattice/Lattice_reduction.h | ||||
|     Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
| #include <Grid/lattice/Lattice_reduction_gpu.h> | ||||
| #endif | ||||
| #if defined(GRID_SYCL) | ||||
| #include <Grid/lattice/Lattice_reduction_sycl.h> | ||||
| #endif | ||||
| #include <Grid/lattice/Lattice_slicesum_core.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // FIXME this should promote to double and accumulate | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_object  sobj; | ||||
|  | ||||
|   //  const int Nsimd = vobj::Nsimd(); | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
|    | ||||
|   thread_for(thr,nthread, { | ||||
|     int nwork, mywork, myoff; | ||||
|     nwork = osites; | ||||
|     GridThread::GetWork(nwork,thr,mywork,myoff); | ||||
|     vobj vvsum=Zero(); | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vvsum = vvsum + arg[ss]; | ||||
|     } | ||||
|     sumarray[thr]=Reduce(vvsum); | ||||
|   }); | ||||
|    | ||||
|   sobj ssum=Zero();  // sum across threads | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     ssum = ssum+sumarray[i]; | ||||
|   }  | ||||
|   return ssum; | ||||
| } | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD  sobj; | ||||
|  | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
|    | ||||
|   thread_for(thr,nthread, { | ||||
|     int nwork, mywork, myoff; | ||||
|     nwork = osites; | ||||
|     GridThread::GetWork(nwork,thr,mywork,myoff); | ||||
|     vobj vvsum=Zero(); | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vvsum = vvsum + arg[ss]; | ||||
|     } | ||||
|     sumarray[thr]=Reduce(vvsum); | ||||
|   }); | ||||
|    | ||||
|   sobj ssum=Zero();  // sum across threads | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     ssum = ssum+sumarray[i]; | ||||
|   }  | ||||
|   return ssum; | ||||
| } | ||||
| /* | ||||
| Threaded max, don't use for now | ||||
| template<class Double> | ||||
| inline Double max(const Double *arg, Integer osites) | ||||
| { | ||||
|   //  const int Nsimd = vobj::Nsimd(); | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   std::vector<Double> maxarray(nthread); | ||||
|    | ||||
|   thread_for(thr,nthread, { | ||||
|     int nwork, mywork, myoff; | ||||
|     nwork = osites; | ||||
|     GridThread::GetWork(nwork,thr,mywork,myoff); | ||||
|     Double max=arg[0]; | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       if( arg[ss] > max ) max = arg[ss]; | ||||
|     } | ||||
|     maxarray[thr]=max; | ||||
|   }); | ||||
|    | ||||
|   Double tmax=maxarray[0]; | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     if (maxarray[i]>tmax) tmax = maxarray[i]; | ||||
|   }  | ||||
|   return tmax; | ||||
| } | ||||
| */ | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   return sum_gpu(arg,osites); | ||||
| #else | ||||
|   return sum_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   return sumD_gpu(arg,osites); | ||||
| #else | ||||
|   return sumD_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   return sumD_gpu_large(arg,osites); | ||||
| #else | ||||
|   return sumD_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg) | ||||
| { | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   autoView( arg_v, arg, AcceleratorRead); | ||||
|   return sum_gpu(&arg_v[0],osites); | ||||
| #else | ||||
|   autoView(arg_v, arg, CpuRead); | ||||
|   return sum_cpu(&arg_v[0],osites); | ||||
| #endif   | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) | ||||
| { | ||||
|   auto ssum = rankSum(arg); | ||||
|   arg.Grid()->GlobalSum(ssum); | ||||
|   return ssum; | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   autoView( arg_v, arg, AcceleratorRead); | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
|   return sum_gpu_large(&arg_v[0],osites); | ||||
| #else | ||||
|   autoView(arg_v, arg, CpuRead); | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
|   return sum_cpu(&arg_v[0],osites); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg) | ||||
| { | ||||
|   auto ssum = rankSumLarge(arg); | ||||
|   arg.Grid()->GlobalSum(ssum); | ||||
|   return ssum; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Deterministic Reduction operations | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){ | ||||
|   ComplexD nrm = innerProduct(arg,arg); | ||||
|   return real(nrm);  | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1> | ||||
| inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1,class T2> | ||||
| inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1,class T2,class T3> | ||||
| inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| //The global maximum of the site norm2 | ||||
| template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg) | ||||
| { | ||||
|   typedef typename vobj::tensor_reduced vscalar;  //iScalar<iScalar<.... <vPODtype> > > | ||||
|   typedef typename vscalar::scalar_object  scalar;   //iScalar<iScalar<.... <PODtype> > > | ||||
|  | ||||
|   Lattice<vscalar> inner = localNorm2(arg); | ||||
|  | ||||
|   auto grid = arg.Grid(); | ||||
|  | ||||
|   RealD max; | ||||
|   for(int l=0;l<grid->lSites();l++){ | ||||
|     Coordinate coor; | ||||
|     scalar val; | ||||
|     RealD r; | ||||
|     grid->LocalIndexToLocalCoor(l,coor); | ||||
|     peekLocalSite(val,inner,coor); | ||||
|     r=real(TensorRemove(val)); | ||||
|     if( (l==0) || (r>max)){ | ||||
|       max=r; | ||||
|     } | ||||
|   } | ||||
|   grid->GlobalMax(max); | ||||
|   return max; | ||||
| } | ||||
|  | ||||
| // Double inner product | ||||
| template<class vobj> | ||||
| inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) | ||||
| { | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   ComplexD  nrm; | ||||
|    | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
|   const uint64_t nsimd = grid->Nsimd(); | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|    | ||||
|   // Might make all code paths go this way. | ||||
| #if 0 | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   { | ||||
|     autoView( left_v , left, AcceleratorRead); | ||||
|     autoView( right_v,right, AcceleratorRead); | ||||
|     // This code could read coalesce | ||||
|     // GPU - SIMT lane compliance... | ||||
|     accelerator_for( ss, sites, nsimd,{ | ||||
| 	auto x_l = left_v(ss); | ||||
| 	auto y_l = right_v(ss); | ||||
| 	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l)); | ||||
|     }); | ||||
|   } | ||||
| #else | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|      | ||||
|   { | ||||
|     autoView( left_v , left, AcceleratorRead); | ||||
|     autoView( right_v,right, AcceleratorRead); | ||||
|  | ||||
|     // GPU - SIMT lane compliance... | ||||
|     accelerator_for( ss, sites, nsimd,{ | ||||
| 	auto x_l = left_v(ss); | ||||
| 	auto y_l = right_v(ss); | ||||
| 	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l)); | ||||
|     }); | ||||
|   } | ||||
| #endif | ||||
|   // This is in single precision and fails some tests | ||||
|   auto anrm = sumD(inner_tmp_v,sites);   | ||||
|   nrm = anrm; | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // Hack | ||||
|     // Fast integer xor checksum. Can also be used in comms now. | ||||
|     autoView(l_v,left,AcceleratorRead); | ||||
|     Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|     uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|     csum=svm_xor(base,words); | ||||
|   } | ||||
|   FlightRecorder::CsumLog(csum); | ||||
| #endif | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   RealD local = real(nrm); | ||||
|   FlightRecorder::NormLog(real(nrm));  | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::ReductionLog(local,real(nrm));  | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
|  | ||||
| ///////////////////////// | ||||
| // Fast axpby_norm | ||||
| // z = a x + b y | ||||
| // return norm z | ||||
| ///////////////////////// | ||||
| template<class sobj,class vobj> strong_inline RealD  | ||||
| axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)  | ||||
| { | ||||
|   sobj one(1.0); | ||||
|   return axpby_norm_fast(z,a,one,x,y); | ||||
| } | ||||
|  | ||||
| template<class sobj,class vobj> strong_inline RealD  | ||||
| axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)  | ||||
| { | ||||
|   z.Checkerboard() = x.Checkerboard(); | ||||
|   conformable(z,x); | ||||
|   conformable(x,y); | ||||
|  | ||||
|   //  typedef typename vobj::vector_typeD vector_type; | ||||
|   RealD  nrm; | ||||
|    | ||||
|   GridBase *grid = x.Grid(); | ||||
|  | ||||
|   const uint64_t nsimd = grid->Nsimd(); | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|    | ||||
|   // GPU | ||||
|   autoView( x_v, x, AcceleratorRead); | ||||
|   autoView( y_v, y, AcceleratorRead); | ||||
|   autoView( z_v, z, AcceleratorWrite); | ||||
| #if 0 | ||||
|   typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
|       auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sum(inner_tmp_v,sites))); | ||||
| #else | ||||
|   typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
|       auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sumD(inner_tmp_v,sites))); | ||||
| #endif | ||||
|   grid->GlobalSum(nrm); | ||||
|   return nrm;  | ||||
| } | ||||
|   | ||||
| template<class vobj> strong_inline void | ||||
| innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right) | ||||
| { | ||||
|   conformable(left,right); | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   Vector<ComplexD> tmp(2); | ||||
|  | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
|   const uint64_t nsimd = grid->Nsimd(); | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|  | ||||
|   // GPU | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) norm_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   Vector<norm_t>  norm_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   auto norm_tmp_v = &norm_tmp[0]; | ||||
|   { | ||||
|     autoView(left_v,left, AcceleratorRead); | ||||
|     autoView(right_v,right,AcceleratorRead); | ||||
|     accelerator_for( ss, sites, 1,{ | ||||
| 	auto left_tmp = left_v[ss]; | ||||
| 	inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]); | ||||
|         norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp); | ||||
|       }); | ||||
|   } | ||||
|  | ||||
|   tmp[0] = TensorRemove(sum(inner_tmp_v,sites)); | ||||
|   tmp[1] = TensorRemove(sum(norm_tmp_v,sites)); | ||||
|  | ||||
|   grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector | ||||
|   ip = tmp[0]; | ||||
|   nrm = real(tmp[1]); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1> | ||||
| inline auto sum(const LatticeUnaryExpression<Op,T1> & expr) | ||||
|   ->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object | ||||
| { | ||||
|   return sum(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1,class T2> | ||||
| inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr) | ||||
|       ->typename decltype(expr.op.func(eval(0,expr.arg1),eval(0,expr.arg2)))::scalar_object | ||||
| { | ||||
|   return sum(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1,class T2,class T3> | ||||
| inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) | ||||
|   ->typename decltype(expr.op.func(eval(0,expr.arg1), | ||||
| 				      eval(0,expr.arg2), | ||||
| 				      eval(0,expr.arg3) | ||||
| 				      ))::scalar_object | ||||
| { | ||||
|   return sum(closure(expr)); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc... | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim) | ||||
| { | ||||
|   /////////////////////////////////////////////////////// | ||||
|   // FIXME precision promoted summation | ||||
|   // may be important for correlation functions | ||||
|   // But easily avoided by using double precision fields | ||||
|   /////////////////////////////////////////////////////// | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_object::scalar_type scalar_type; | ||||
|   GridBase  *grid = Data.Grid(); | ||||
|   assert(grid!=NULL); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert(orthogdim >= 0); | ||||
|   assert(orthogdim < Nd); | ||||
|  | ||||
|   int fd=grid->_fdimensions[orthogdim]; | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   Vector<vobj> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars | ||||
|   ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node  | ||||
|   for(int r=0;r<rd;r++){ | ||||
|     lvSum[r]=Zero(); | ||||
|   } | ||||
|  | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|   int ostride=grid->_ostride[orthogdim]; | ||||
|    | ||||
|   //Reduce Data down to lvSum | ||||
|   sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd); | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
|  | ||||
|   for(int rt=0;rt<rd;rt++){ | ||||
|  | ||||
|     extract(lvSum[rt],extracted); | ||||
|  | ||||
|     for(int idx=0;idx<Nsimd;idx++){ | ||||
|  | ||||
|       grid->iCoorFromIindex(icoor,idx); | ||||
|  | ||||
|       int ldx =rt+icoor[orthogdim]*rd; | ||||
|  | ||||
|       lsSum[ldx]=lsSum[ldx]+extracted[idx]; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // sum over nodes. | ||||
|   for(int t=0;t<fd;t++){ | ||||
|     int pt = t/ld; // processor plane | ||||
|     int lt = t%ld; | ||||
|     if ( pt == grid->_processor_coor[orthogdim] ) { | ||||
|       result[t]=lsSum[lt]; | ||||
|     } else { | ||||
|       result[t]=Zero(); | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   scalar_type * ptr = (scalar_type *) &result[0]; | ||||
|   int words = fd*sizeof(sobj)/sizeof(scalar_type); | ||||
|   grid->GlobalSumVector(ptr, words); | ||||
| } | ||||
| template<class vobj> inline | ||||
| std::vector<typename vobj::scalar_object>  | ||||
| sliceSum(const Lattice<vobj> &Data,int orthogdim) | ||||
| { | ||||
|   std::vector<typename vobj::scalar_object> result; | ||||
|   sliceSum(Data,result,orthogdim); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| { | ||||
|   typedef typename vobj::vector_type   vector_type; | ||||
|   typedef typename vobj::scalar_type   scalar_type; | ||||
|   GridBase  *grid = lhs.Grid(); | ||||
|   assert(grid!=NULL); | ||||
|   conformable(grid,rhs.Grid()); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert(orthogdim >= 0); | ||||
|   assert(orthogdim < Nd); | ||||
|  | ||||
|   int fd=grid->_fdimensions[orthogdim]; | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   Vector<vector_type> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD   | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node for IO to file | ||||
|   for(int r=0;r<rd;r++){ | ||||
|     lvSum[r]=Zero(); | ||||
|   } | ||||
|  | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|  | ||||
|   autoView( lhv, lhs, CpuRead); | ||||
|   autoView( rhv, rhs, CpuRead); | ||||
|   thread_for( r,rd,{ | ||||
|  | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	vector_type vv = TensorRemove(innerProduct(lhv[ss],rhv[ss])); | ||||
| 	lvSum[r]=lvSum[r]+vv; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
|   for(int rt=0;rt<rd;rt++){ | ||||
|  | ||||
|     iScalar<vector_type> temp;  | ||||
|     temp._internal = lvSum[rt]; | ||||
|     extract(temp,extracted); | ||||
|  | ||||
|     for(int idx=0;idx<Nsimd;idx++){ | ||||
|  | ||||
|       grid->iCoorFromIindex(icoor,idx); | ||||
|  | ||||
|       int ldx =rt+icoor[orthogdim]*rd; | ||||
|  | ||||
|       lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // sum over nodes. | ||||
|   scalar_type gsum; | ||||
|   for(int t=0;t<fd;t++){ | ||||
|     int pt = t/ld; // processor plane | ||||
|     int lt = t%ld; | ||||
|     if ( pt == grid->_processor_coor[orthogdim] ) { | ||||
|       gsum=lsSum[lt]; | ||||
|     } else { | ||||
|       gsum=scalar_type(0.0); | ||||
|     } | ||||
|  | ||||
|     grid->GlobalSum(gsum); | ||||
|  | ||||
|     result[t]=gsum; | ||||
|   } | ||||
| } | ||||
| template<class vobj> | ||||
| static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   int Nblock = rhs.Grid()->GlobalDimensions()[Orthog]; | ||||
|   std::vector<ComplexD> ip(Nblock); | ||||
|   sn.resize(Nblock); | ||||
|    | ||||
|   sliceInnerProductVector(ip,rhs,rhs,Orthog); | ||||
|   for(int ss=0;ss<Nblock;ss++){ | ||||
|     sn[ss] = real(ip[ss]); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y, | ||||
| 			    int orthogdim,RealD scale=1.0)  | ||||
| { | ||||
|   // perhaps easier to just promote A to a field and use regular madd | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::tensor_reduced tensor_reduced; | ||||
|    | ||||
|   scalar_type zscale(scale); | ||||
|  | ||||
|   GridBase *grid  = X.Grid(); | ||||
|  | ||||
|   int Nsimd  =grid->Nsimd(); | ||||
|   int Nblock =grid->GlobalDimensions()[orthogdim]; | ||||
|  | ||||
|   int fd     =grid->_fdimensions[orthogdim]; | ||||
|   int ld     =grid->_ldimensions[orthogdim]; | ||||
|   int rd     =grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   int e1     =grid->_slice_nblock[orthogdim]; | ||||
|   int e2     =grid->_slice_block [orthogdim]; | ||||
|   int stride =grid->_slice_stride[orthogdim]; | ||||
|  | ||||
|   Coordinate icoor; | ||||
|   for(int r=0;r<rd;r++){ | ||||
|  | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|  | ||||
|     vector_type    av; | ||||
|  | ||||
|     for(int l=0;l<Nsimd;l++){ | ||||
|       grid->iCoorFromIindex(icoor,l); | ||||
|       int ldx =r+icoor[orthogdim]*rd; | ||||
|       av.putlane(scalar_type(a[ldx])*zscale,l); | ||||
|     } | ||||
|  | ||||
|     tensor_reduced at; at=av; | ||||
|  | ||||
|     autoView( Rv, R, CpuWrite); | ||||
|     autoView( Xv, X, CpuRead); | ||||
|     autoView( Yv, Y, CpuRead); | ||||
|     thread_for2d( n, e1, b,e2, { | ||||
| 	int ss= so+n*stride+b; | ||||
| 	Rv[ss] = at*Xv[ss]+Yv[ss]; | ||||
|     }); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| /* | ||||
| inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog) | ||||
| { | ||||
|   int NN    = BlockSolverGrid->_ndimension; | ||||
|   int nsimd = BlockSolverGrid->Nsimd(); | ||||
|    | ||||
|   std::vector<int> latt_phys(0); | ||||
|   std::vector<int> simd_phys(0); | ||||
|   std::vector<int>  mpi_phys(0); | ||||
|    | ||||
|   for(int d=0;d<NN;d++){ | ||||
|     if( d!=Orthog ) {  | ||||
|       latt_phys.push_back(BlockSolverGrid->_fdimensions[d]); | ||||
|       simd_phys.push_back(BlockSolverGrid->_simd_layout[d]); | ||||
|       mpi_phys.push_back(BlockSolverGrid->_processors[d]); | ||||
|     } | ||||
|   } | ||||
|   return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);  | ||||
| } | ||||
| */ | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   autoView( Y_v, Y, CpuRead); | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   thread_region | ||||
|   { | ||||
|     Vector<vobj> s_x(Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region(2, n,nblock, { | ||||
|      for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = Y_v[o+i*ostride]; | ||||
| 	for(int j=0;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl=1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   // thread_for2d_in_region | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|  | ||||
|     thread_for_collapse_in_region( 2 ,n,nblock,{ | ||||
|     for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = s_x[0]*(scale*aa(0,i)); | ||||
| 	for(int j=1;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|    | ||||
|   int Nblock = FullGrid->GlobalDimensions()[Orthog]; | ||||
|    | ||||
|   //  Lattice<vobj> Lslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|    | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_typeD; | ||||
|  | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> Left(Nblock); | ||||
|     std::vector<vobj> Right(Nblock); | ||||
|     Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region( 2, n,nblock,{ | ||||
|     for(int b=0;b<block;b++){ | ||||
|  | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	Left [i] = lhs_v[o+i*ostride]; | ||||
| 	Right[i] = rhs_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
|       for(int j=0;j<Nblock;j++){ | ||||
| 	auto tmp = innerProduct(Left[i],Right[j]); | ||||
| 	auto rtmp = TensorRemove(tmp); | ||||
| 	auto red  =  Reduce(rtmp); | ||||
| 	mat_thread(i,j) += std::complex<double>(real(red),imag(red)); | ||||
|       }} | ||||
|     }}); | ||||
|     thread_critical | ||||
|     { | ||||
|       mat += mat_thread; | ||||
|     }   | ||||
|   } | ||||
|  | ||||
|   for(int i=0;i<Nblock;i++){ | ||||
|   for(int j=0;j<Nblock;j++){ | ||||
|     ComplexD sum = mat(i,j); | ||||
|     FullGrid->GlobalSum(sum); | ||||
|     mat(i,j)=sum; | ||||
|   }} | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -1,302 +0,0 @@ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| extern hipDeviceProp_t *gpu_props; | ||||
| #define WARP_SIZE 64 | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| extern cudaDeviceProp *gpu_props; | ||||
| #define WARP_SIZE 32 | ||||
| #endif | ||||
|  | ||||
| __device__ unsigned int retirementCount = 0; | ||||
|  | ||||
| template <class Iterator> | ||||
| unsigned int nextPow2(Iterator x) { | ||||
|   --x; | ||||
|   x |= x >> 1; | ||||
|   x |= x >> 2; | ||||
|   x |= x >> 4; | ||||
|   x |= x >> 8; | ||||
|   x |= x >> 16; | ||||
|   return ++x; | ||||
| } | ||||
|  | ||||
| template <class Iterator> | ||||
| int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { | ||||
|    | ||||
|   int device; | ||||
| #ifdef GRID_CUDA | ||||
|   cudaGetDevice(&device); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   auto r=hipGetDevice(&device); | ||||
| #endif | ||||
|    | ||||
|   Iterator warpSize            = gpu_props[device].warpSize; | ||||
|   Iterator sharedMemPerBlock   = gpu_props[device].sharedMemPerBlock; | ||||
|   Iterator maxThreadsPerBlock  = gpu_props[device].maxThreadsPerBlock; | ||||
|   Iterator multiProcessorCount = gpu_props[device].multiProcessorCount; | ||||
|   /*   | ||||
|   std::cout << GridLogDebug << "GPU has:" << std::endl; | ||||
|   std::cout << GridLogDebug << "\twarpSize            = " << warpSize << std::endl; | ||||
|   std::cout << GridLogDebug << "\tsharedMemPerBlock   = " << sharedMemPerBlock << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << maxThreadsPerBlock << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl; | ||||
|   */   | ||||
|   if (warpSize != WARP_SIZE) { | ||||
|     std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   // let the number of threads in a block be a multiple of 2, starting from warpSize | ||||
|   threads = warpSize; | ||||
|   if ( threads*sizeofsobj > sharedMemPerBlock ) { | ||||
|     std::cout << GridLogError << "The object is too large for the shared memory." << std::endl; | ||||
|     return 0; | ||||
|   } | ||||
|   while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2; | ||||
|   // keep all the streaming multiprocessors busy | ||||
|   blocks = nextPow2(multiProcessorCount); | ||||
|   return 1; | ||||
| } | ||||
|  | ||||
| template <class sobj, class Iterator> | ||||
| __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) { | ||||
|    | ||||
|   Iterator blockSize = blockDim.x; | ||||
|    | ||||
|   // cannot use overloaded operators for sobj as they are not volatile-qualified | ||||
|   memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj)); | ||||
|   acceleratorSynchronise(); | ||||
|    | ||||
|   const Iterator VEC = WARP_SIZE; | ||||
|   const Iterator vid = tid & (VEC-1); | ||||
|    | ||||
|   sobj beta, temp; | ||||
|   memcpy((void *)&beta, (void *)&mySum, sizeof(sobj)); | ||||
|    | ||||
|   for (int i = VEC/2; i > 0; i>>=1) { | ||||
|     if (vid < i) { | ||||
|       memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj)); | ||||
|       beta += temp; | ||||
|       memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj)); | ||||
|     } | ||||
|     acceleratorSynchronise(); | ||||
|   } | ||||
|   acceleratorSynchroniseAll(); | ||||
|    | ||||
|   if (threadIdx.x == 0) { | ||||
|     beta  = Zero(); | ||||
|     for (Iterator i = 0; i < blockSize; i += VEC) { | ||||
|       memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj)); | ||||
|       beta  += temp; | ||||
|     } | ||||
|     memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj)); | ||||
|   } | ||||
|   acceleratorSynchroniseAll(); | ||||
| } | ||||
|  | ||||
|  | ||||
| template <class vobj, class sobj, class Iterator> | ||||
| __device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n)  | ||||
| { | ||||
|   constexpr Iterator nsimd = vobj::Nsimd(); | ||||
|    | ||||
|   Iterator blockSize = blockDim.x; | ||||
|    | ||||
|   // force shared memory alignment | ||||
|   extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[]; | ||||
|   // it's not possible to have two extern __shared__ arrays with same name | ||||
|   // but different types in different scopes -- need to cast each time | ||||
|   sobj *sdata = (sobj *)shmem_pointer; | ||||
|    | ||||
|   // first level of reduction, | ||||
|   // each thread writes result in mySum | ||||
|   Iterator tid = threadIdx.x; | ||||
|   Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x; | ||||
|   Iterator gridSize = blockSize*2*gridDim.x; | ||||
|   sobj mySum = Zero(); | ||||
|    | ||||
|   while (i < n) { | ||||
|     Iterator lane = i % nsimd; | ||||
|     Iterator ss   = i / nsimd; | ||||
|     auto tmp = extractLane(lane,g_idata[ss]); | ||||
|     sobj tmpD; | ||||
|     tmpD=tmp; | ||||
|     mySum   +=tmpD; | ||||
|      | ||||
|     if (i + blockSize < n) { | ||||
|       lane = (i+blockSize) % nsimd; | ||||
|       ss   = (i+blockSize) / nsimd; | ||||
|       tmp = extractLane(lane,g_idata[ss]); | ||||
|       tmpD = tmp; | ||||
|       mySum += tmpD; | ||||
|     } | ||||
|     i += gridSize; | ||||
|   } | ||||
|    | ||||
|   // copy mySum to shared memory and perform | ||||
|   // reduction for all threads in this block | ||||
|   reduceBlock(sdata, mySum, tid); | ||||
|   if (tid == 0) g_odata[blockIdx.x] = sdata[0]; | ||||
| } | ||||
|  | ||||
| template <class vobj, class sobj,class Iterator> | ||||
| __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) { | ||||
|    | ||||
|   Iterator blockSize = blockDim.x; | ||||
|    | ||||
|   // perform reduction for this block and | ||||
|   // write result to global memory buffer | ||||
|   reduceBlocks(lat, buffer, n); | ||||
|    | ||||
|   if (gridDim.x > 1) { | ||||
|      | ||||
|     const Iterator tid = threadIdx.x; | ||||
|     __shared__ bool amLast; | ||||
|     // force shared memory alignment | ||||
|     extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[]; | ||||
|     // it's not possible to have two extern __shared__ arrays with same name | ||||
|     // but different types in different scopes -- need to cast each time | ||||
|     sobj *smem = (sobj *)shmem_pointer; | ||||
|      | ||||
|     // wait until all outstanding memory instructions in this thread are finished | ||||
|     acceleratorFence(); | ||||
|      | ||||
|     if (tid==0) { | ||||
|       unsigned int ticket = atomicInc(&retirementCount, gridDim.x); | ||||
|       // true if this block is the last block to be done | ||||
|       amLast = (ticket == gridDim.x-1); | ||||
|     } | ||||
|      | ||||
|     // each thread must read the correct value of amLast | ||||
|     acceleratorSynchroniseAll(); | ||||
|  | ||||
|     if (amLast) { | ||||
|       // reduce buffer[0], ..., buffer[gridDim.x-1] | ||||
|       Iterator i = tid; | ||||
|       sobj mySum = Zero(); | ||||
|        | ||||
|       while (i < gridDim.x) { | ||||
|         mySum += buffer[i]; | ||||
|         i += blockSize; | ||||
|       } | ||||
|        | ||||
|       reduceBlock(smem, mySum, tid); | ||||
|        | ||||
|       if (tid==0) { | ||||
|         buffer[0] = smem[0]; | ||||
|         // reset count variable | ||||
|         retirementCount = 0; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   typedef decltype(lat) Iterator; | ||||
|    | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|   Integer size = osites*nsimd; | ||||
|  | ||||
|   Integer numThreads, numBlocks; | ||||
|   int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|   assert(ok); | ||||
|  | ||||
|   Integer smemSize = numThreads * sizeof(sobj); | ||||
|   // Move out of UVM | ||||
|   // Turns out I had messed up the synchronise after move to compute stream | ||||
|   // as running this on the default stream fools the synchronise | ||||
| #undef UVM_BLOCK_BUFFER   | ||||
| #ifndef UVM_BLOCK_BUFFER   | ||||
|   commVector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   acceleratorCopyFromDevice(buffer_v,&result,sizeof(result)); | ||||
| #else | ||||
|   Vector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   result = *buffer_v; | ||||
| #endif | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::vector_type  vector; | ||||
|   typedef typename vobj::scalar_typeD scalarD; | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   sobj ret; | ||||
|   scalarD *ret_p = (scalarD *)&ret; | ||||
|    | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<vector> buffer(osites); | ||||
|   vector *dat = (vector *)lat; | ||||
|   vector *buf = &buffer[0]; | ||||
|   iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0]; | ||||
|   for(int w=0;w<words;w++) { | ||||
|  | ||||
|     accelerator_for(ss,osites,1,{ | ||||
| 	buf[ss] = dat[ss*words+w]; | ||||
|       }); | ||||
|        | ||||
|     ret_p[w] = sumD_gpu_small(tbuf,osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   sobj ret; | ||||
|    | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|   Integer size = osites*nsimd; | ||||
|   Integer numThreads, numBlocks; | ||||
|   int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|    | ||||
|   if ( ok ) { | ||||
|     ret = sumD_gpu_small(lat,osites); | ||||
|   } else { | ||||
|     ret = sumD_gpu_large(lat,osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Return as same precision as input performing reduction in double precision though | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu_large(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,126 +0,0 @@ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|   sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator); | ||||
|   sobj identity; zeroit(identity); | ||||
|   sobj ret ;  | ||||
|  | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|    | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|      auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>()); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{osites}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> item, auto &sum) { | ||||
|       auto osite   = item[0]; | ||||
|       sum +=Reduce(lat[osite]); | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   ret = mysum[0]; | ||||
|   free(mysum,*theGridAccelerator); | ||||
|   sobjD dret; convertType(dret,ret); | ||||
|   return dret; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   return sumD_gpu_tensor(lat,osites); | ||||
| } | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites) | ||||
| { | ||||
|   return sumD_gpu_large(lat,osites); | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) | ||||
| { | ||||
|   return sumD_gpu_large(lat,osites); | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Return as same precision as input performing reduction in double precision though | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu_large(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Word> Word svm_xor(Word *vec,uint64_t L) | ||||
| { | ||||
|   Word xorResult; xorResult = 0; | ||||
|   Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator); | ||||
|   Word identity;  identity=0; | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|      auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>()); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{L}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> index, auto &sum) { | ||||
| 	 sum ^=vec[index]; | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   Word ret = d_sum[0]; | ||||
|   free(d_sum,*theGridAccelerator); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::vector_type  vector; | ||||
|   typedef typename vobj::scalar_type  scalar; | ||||
|  | ||||
|   typedef typename vobj::scalar_typeD scalarD; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|  | ||||
|   sobjD ret; | ||||
|   scalarD *ret_p = (scalarD *)&ret; | ||||
|    | ||||
|   const int nsimd = vobj::Nsimd(); | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<scalar> buffer(osites*nsimd); | ||||
|   scalar *buf = &buffer[0]; | ||||
|   vector *dat = (vector *)lat; | ||||
|  | ||||
|   for(int w=0;w<words;w++) { | ||||
|  | ||||
|     accelerator_for(ss,osites,nsimd,{ | ||||
| 	int lane = acceleratorSIMTlane(nsimd); | ||||
| 	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane); | ||||
|     }); | ||||
|     //Precision change at this point is to late to gain precision | ||||
|     ret_p[w] = svm_reduce(buf,nsimd*osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
| */ | ||||
| @@ -1,541 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_rng.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: Guido Cossu <guido.cossu@ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_RNG_H | ||||
| #define GRID_LATTICE_RNG_H | ||||
|  | ||||
| #include <random> | ||||
|  | ||||
| #ifdef RNG_SITMO | ||||
| #include <Grid/sitmo_rng/sitmo_prng_engine.hpp> | ||||
| #endif  | ||||
|  | ||||
| #if defined(RNG_SITMO) | ||||
| #define RNG_FAST_DISCARD | ||||
| #else  | ||||
| #undef  RNG_FAST_DISCARD | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////////////// | ||||
| // Allow the RNG state to be less dense than the fine grid | ||||
| ////////////////////////////////////////////////////////////// | ||||
| inline int RNGfillable(GridBase *coarse,GridBase *fine) | ||||
| { | ||||
|  | ||||
|   int rngdims = coarse->_ndimension; | ||||
|  | ||||
|   // trivially extended in higher dims, with locality guaranteeing RNG state is local to node | ||||
|   int lowerdims   = fine->_ndimension - coarse->_ndimension; | ||||
|   assert(lowerdims >= 0); | ||||
|   for(int d=0;d<lowerdims;d++){ | ||||
|     assert(fine->_simd_layout[d]==1); | ||||
|     assert(fine->_processors[d]==1); | ||||
|   } | ||||
|  | ||||
|   int multiplicity=1; | ||||
|   for(int d=0;d<lowerdims;d++){ | ||||
|     multiplicity=multiplicity*fine->_rdimensions[d]; | ||||
|   } | ||||
|   // local and global volumes subdivide cleanly after SIMDization | ||||
|   for(int d=0;d<rngdims;d++){ | ||||
|     int fd= d+lowerdims; | ||||
|     assert(coarse->_processors[d]  == fine->_processors[fd]); | ||||
|     assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]); | ||||
|     assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);  | ||||
|  | ||||
|     multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];  | ||||
|   } | ||||
|   return multiplicity; | ||||
| } | ||||
|  | ||||
|    | ||||
| // merge of April 11 2017 | ||||
| // this function is necessary for the LS vectorised field | ||||
| inline int RNGfillable_general(GridBase *coarse,GridBase *fine) | ||||
| { | ||||
|   int rngdims = coarse->_ndimension; | ||||
|      | ||||
|   // trivially extended in higher dims, with locality guaranteeing RNG state is local to node | ||||
|   int lowerdims   = fine->_ndimension - coarse->_ndimension;  assert(lowerdims >= 0); | ||||
|   // assumes that the higher dimensions are not using more processors | ||||
|   // all further divisions are local | ||||
|   for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1); | ||||
|   for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]); | ||||
|  | ||||
|   // then divide the number of local sites | ||||
|   // check that the total number of sims agree, meanse the iSites are the same | ||||
|   assert(fine->Nsimd() == coarse->Nsimd()); | ||||
|  | ||||
|   // check that the two grids divide cleanly | ||||
|   assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() ); | ||||
|  | ||||
|   return fine->lSites() / coarse->lSites(); | ||||
| } | ||||
|    | ||||
| // real scalars are one component | ||||
| template<class scalar,class distribution,class generator>  | ||||
| void fillScalar(scalar &s,distribution &dist,generator & gen) | ||||
| { | ||||
|   s=dist(gen); | ||||
| } | ||||
| template<class distribution,class generator>  | ||||
| void fillScalar(ComplexF &s,distribution &dist, generator &gen) | ||||
| { | ||||
|   //  s=ComplexF(dist(gen),dist(gen)); | ||||
|   s.real(dist(gen)); | ||||
|   s.imag(dist(gen)); | ||||
| } | ||||
| template<class distribution,class generator>  | ||||
| void fillScalar(ComplexD &s,distribution &dist,generator &gen) | ||||
| { | ||||
|   //  s=ComplexD(dist(gen),dist(gen)); | ||||
|   s.real(dist(gen)); | ||||
|   s.imag(dist(gen)); | ||||
| } | ||||
|    | ||||
| class GridRNGbase { | ||||
| public: | ||||
|   // One generator per site. | ||||
|   // Uniform and Gaussian distributions from these generators. | ||||
| #ifdef RNG_RANLUX | ||||
|   typedef std::ranlux48 RngEngine; | ||||
|   typedef uint64_t      RngStateType; | ||||
|   static const int RngStateCount = 15; | ||||
| #endif  | ||||
| #ifdef RNG_MT19937  | ||||
|   typedef std::mt19937 RngEngine; | ||||
|   typedef uint32_t     RngStateType; | ||||
|   static const int     RngStateCount = std::mt19937::state_size; | ||||
| #endif | ||||
| #ifdef RNG_SITMO | ||||
|   typedef sitmo::prng_engine 	RngEngine; | ||||
|   typedef uint64_t    	RngStateType; | ||||
|   static const int    	RngStateCount = 13; | ||||
| #endif | ||||
|  | ||||
|   std::vector<RngEngine>                             _generators; | ||||
|   std::vector<std::uniform_real_distribution<RealD> > _uniform; | ||||
|   std::vector<std::normal_distribution<RealD> >       _gaussian; | ||||
|   std::vector<std::discrete_distribution<int32_t> >   _bernoulli; | ||||
|   std::vector<std::uniform_int_distribution<uint32_t> > _uid; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // support for parallel init | ||||
|   /////////////////////// | ||||
| #ifdef RNG_FAST_DISCARD | ||||
|   static void Skip(RngEngine &eng,uint64_t site) | ||||
|   { | ||||
| #if 0 | ||||
|     ///////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Skip by 2^40 elements between successive lattice sites | ||||
|     // This goes by 10^12. | ||||
|     // Consider quenched updating; likely never exceeding rate of 1000 sweeps | ||||
|     // per second on any machine. This gives us of order 10^9 seconds, or 100 years | ||||
|     // skip ahead. | ||||
|     // For HMC unlikely to go at faster than a solve per second, and  | ||||
|     // tens of seconds per trajectory so this is clean in all reasonable cases, | ||||
|     // and margin of safety is orders of magnitude. | ||||
|     // We could hack Sitmo to skip in the higher order words of state if necessary | ||||
|     // | ||||
|     // Replace with 2^30 ; avoid problem on large volumes | ||||
|     // | ||||
|     ///////////////////////////////////////////////////////////////////////////////////// | ||||
|     //      uint64_t skip = site+1;  //   Old init Skipped then drew.  Checked compat with faster init | ||||
|     const int shift = 30; | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     // Weird compiler bug in Intel 2018.1 under O3 was generating 32bit and not 64 bit left shift. | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     volatile uint64_t skip = site; | ||||
|  | ||||
|     skip = skip<<shift; | ||||
|  | ||||
|     assert((skip >> shift)==site); // check for overflow | ||||
|  | ||||
|     eng.discard(skip); | ||||
| #else | ||||
|     eng.discardhi(site); | ||||
| #endif | ||||
|     //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl; | ||||
|   }  | ||||
| #endif | ||||
|   static RngEngine Reseed(RngEngine &eng) | ||||
|   { | ||||
|     std::vector<uint32_t> newseed; | ||||
|     std::uniform_int_distribution<uint32_t> uid; | ||||
|     return Reseed(eng,newseed,uid); | ||||
|   } | ||||
|   static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed, | ||||
| 			  std::uniform_int_distribution<uint32_t> &uid) | ||||
|   { | ||||
|     const int reseeds=4; | ||||
|        | ||||
|     newseed.resize(reseeds); | ||||
|     for(int i=0;i<reseeds;i++){ | ||||
|       newseed[i] = uid(eng); | ||||
|     } | ||||
|     std::seed_seq sseq(newseed.begin(),newseed.end()); | ||||
|     return RngEngine(sseq); | ||||
|   }     | ||||
|  | ||||
|   void GetState(std::vector<RngStateType> & saved,RngEngine &eng) { | ||||
|     saved.resize(RngStateCount); | ||||
|     std::stringstream ss; | ||||
|     ss<<eng; | ||||
|     ss.seekg(0,ss.beg); | ||||
|     for(int i=0;i<RngStateCount;i++){ | ||||
|       ss>>saved[i]; | ||||
|     } | ||||
|   } | ||||
|   void GetState(std::vector<RngStateType> & saved,int gen) { | ||||
|     GetState(saved,_generators[gen]); | ||||
|   } | ||||
|   void SetState(std::vector<RngStateType> & saved,RngEngine &eng){ | ||||
|     assert(saved.size()==RngStateCount); | ||||
|     std::stringstream ss; | ||||
|     for(int i=0;i<RngStateCount;i++){ | ||||
|       ss<< saved[i]<<" "; | ||||
|     } | ||||
|     ss.seekg(0,ss.beg); | ||||
|     ss>>eng; | ||||
|   } | ||||
|   void SetState(std::vector<RngStateType> & saved,int gen){ | ||||
|     SetState(saved,_generators[gen]); | ||||
|   } | ||||
|   void SetEngine(RngEngine &Eng, int gen){ | ||||
|     _generators[gen]=Eng; | ||||
|   } | ||||
|   void GetEngine(RngEngine &Eng, int gen){ | ||||
|     Eng=_generators[gen]; | ||||
|   } | ||||
|   template<class source> void Seed(source &src, int gen) | ||||
|   { | ||||
|     _generators[gen] = RngEngine(src); | ||||
|   }     | ||||
| }; | ||||
|  | ||||
| class GridSerialRNG : public GridRNGbase { | ||||
| public: | ||||
|  | ||||
|   GridSerialRNG() : GridRNGbase() { | ||||
|     _generators.resize(1); | ||||
|     _uniform.resize(1,std::uniform_real_distribution<RealD>{0,1}); | ||||
|     _gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) ); | ||||
|     _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1}); | ||||
|     _uid.resize(1,std::uniform_int_distribution<uint32_t>() ); | ||||
|   } | ||||
|  | ||||
|   template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){ | ||||
|  | ||||
|     typedef typename sobj::scalar_type scalar_type; | ||||
|   | ||||
|     int words = sizeof(sobj)/sizeof(scalar_type); | ||||
|  | ||||
|     scalar_type *buf = (scalar_type *) & l; | ||||
|  | ||||
|     dist[0].reset(); | ||||
|     for(int idx=0;idx<words;idx++){ | ||||
|       fillScalar(buf[idx],dist[0],_generators[0]); | ||||
|     } | ||||
|  | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|  | ||||
|   } | ||||
|  | ||||
|   template <class distribution>  inline void fill(ComplexF &l,std::vector<distribution> &dist){ | ||||
|     dist[0].reset(); | ||||
|     fillScalar(l,dist[0],_generators[0]); | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   template <class distribution>  inline void fill(ComplexD &l,std::vector<distribution> &dist){ | ||||
|     dist[0].reset(); | ||||
|     fillScalar(l,dist[0],_generators[0]); | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   template <class distribution>  inline void fill(RealF &l,std::vector<distribution> &dist){ | ||||
|     dist[0].reset(); | ||||
|     fillScalar(l,dist[0],_generators[0]); | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   template <class distribution>  inline void fill(RealD &l,std::vector<distribution> &dist){ | ||||
|     dist[0].reset(); | ||||
|     fillScalar(l,dist[0],_generators[0]); | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   // vector fill | ||||
|   template <class distribution>  inline void fill(vComplexF &l,std::vector<distribution> &dist){ | ||||
|     RealF *pointer=(RealF *)&l; | ||||
|     dist[0].reset(); | ||||
|     for(int i=0;i<2*vComplexF::Nsimd();i++){ | ||||
|       fillScalar(pointer[i],dist[0],_generators[0]); | ||||
|     } | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   template <class distribution>  inline void fill(vComplexD &l,std::vector<distribution> &dist){ | ||||
|     RealD *pointer=(RealD *)&l; | ||||
|     dist[0].reset(); | ||||
|     for(int i=0;i<2*vComplexD::Nsimd();i++){ | ||||
|       fillScalar(pointer[i],dist[0],_generators[0]); | ||||
|     } | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   template <class distribution>  inline void fill(vRealF &l,std::vector<distribution> &dist){ | ||||
|     RealF *pointer=(RealF *)&l; | ||||
|     dist[0].reset(); | ||||
|     for(int i=0;i<vRealF::Nsimd();i++){ | ||||
|       fillScalar(pointer[i],dist[0],_generators[0]); | ||||
|     } | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|   template <class distribution>  inline void fill(vRealD &l,std::vector<distribution> &dist){ | ||||
|     RealD *pointer=(RealD *)&l; | ||||
|     dist[0].reset(); | ||||
|     for(int i=0;i<vRealD::Nsimd();i++){ | ||||
|       fillScalar(pointer[i],dist[0],_generators[0]); | ||||
|     } | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|   } | ||||
|      | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds){ | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size()); | ||||
|     std::seed_seq src(seeds.begin(),seeds.end()); | ||||
|     Seed(src,0); | ||||
|   } | ||||
|  | ||||
|     void SeedUniqueString(const std::string &s){ | ||||
|       std::vector<int> seeds; | ||||
|       std::stringstream sha; | ||||
|       seeds = GridChecksum::sha256_seeds(s); | ||||
|       for(int i=0;i<seeds.size();i++) {  | ||||
|         sha << std::hex << seeds[i]; | ||||
|       } | ||||
|       std::cout << GridLogMessage << "Intialising serial RNG with unique string '"  | ||||
|                 << s << "'" << std::endl; | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl; | ||||
|       SeedFixedIntegers(seeds); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| class GridParallelRNG : public GridRNGbase { | ||||
| private: | ||||
|   double _time_counter; | ||||
|   GridBase *_grid; | ||||
|   unsigned int _vol; | ||||
|  | ||||
| public: | ||||
|   GridBase *Grid(void) const { return _grid; } | ||||
|   int generator_idx(int os,int is) { | ||||
|     return is*_grid->oSites()+os; | ||||
|   } | ||||
|  | ||||
|   GridParallelRNG(GridBase *grid) : GridRNGbase() { | ||||
|     _grid = grid; | ||||
|     _vol  =_grid->iSites()*_grid->oSites(); | ||||
|  | ||||
|     _generators.resize(_vol); | ||||
|     _uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1}); | ||||
|     _gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) ); | ||||
|     _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1}); | ||||
|     _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() ); | ||||
|   } | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist) | ||||
|   { | ||||
|     if ( l.Grid()->_isCheckerBoarded ) { | ||||
|       Lattice<vobj> tmp(_grid); | ||||
|       fill(tmp,dist); | ||||
|       pickCheckerboard(l.Checkerboard(),l,tmp); | ||||
|       return; | ||||
|     } | ||||
|     typedef typename vobj::scalar_object scalar_object; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|     double inner_time_counter = usecond(); | ||||
|  | ||||
|     int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid | ||||
|     int Nsimd  = _grid->Nsimd();  // guaranteed to be the same for l.Grid() too | ||||
|     int osites = _grid->oSites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity | ||||
|     int words  = sizeof(scalar_object) / sizeof(scalar_type); | ||||
|  | ||||
|     autoView(l_v, l, CpuWrite); | ||||
|     thread_for( ss, osites, { | ||||
|       ExtractBuffer<scalar_object> buf(Nsimd); | ||||
|       for (int m = 0; m < multiplicity; m++) {  // Draw from same generator multiplicity times | ||||
|  | ||||
| 	int sm = multiplicity * ss + m;  // Maps the generator site to the fine site | ||||
|  | ||||
| 	for (int si = 0; si < Nsimd; si++) { | ||||
|              | ||||
| 	  int gdx = generator_idx(ss, si);  // index of generator state | ||||
| 	  scalar_type *pointer = (scalar_type *)&buf[si]; | ||||
| 	  dist[gdx].reset(); | ||||
| 	  for (int idx = 0; idx < words; idx++)  | ||||
| 	    fillScalar(pointer[idx], dist[gdx], _generators[gdx]); | ||||
| 	} | ||||
| 	// merge into SIMD lanes, FIXME suboptimal implementation | ||||
| 	merge(l_v[sm], buf); | ||||
|       } | ||||
|       }); | ||||
|     //    }); | ||||
|  | ||||
|     _time_counter += usecond()- inner_time_counter; | ||||
|   } | ||||
|  | ||||
|     void SeedUniqueString(const std::string &s){ | ||||
|       std::vector<int> seeds; | ||||
|       seeds = GridChecksum::sha256_seeds(s); | ||||
|       std::cout << GridLogMessage << "Intialising parallel RNG with unique string '"  | ||||
|                 << s << "'" << std::endl; | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl; | ||||
|       SeedFixedIntegers(seeds); | ||||
|     } | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){ | ||||
|  | ||||
|     // Everyone generates the same seed_seq based on input seeds | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size()); | ||||
|  | ||||
|     std::seed_seq source(seeds.begin(),seeds.end()); | ||||
|  | ||||
|     RngEngine master_engine(source); | ||||
|  | ||||
| #ifdef RNG_FAST_DISCARD | ||||
|     //////////////////////////////////////////////// | ||||
|     // Skip ahead through a single stream. | ||||
|     // Applicable to SITMO and other has based/crypto RNGs | ||||
|     // Should be applicable to Mersenne Twister, but the C++11 | ||||
|     // MT implementation does not implement fast discard even though | ||||
|     // in principle this is possible | ||||
|     //////////////////////////////////////////////// | ||||
|     thread_for( lidx, _grid->lSites(), { | ||||
|  | ||||
| 	int64_t gidx; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
| 	int rank; | ||||
| 	Coordinate pcoor; | ||||
| 	Coordinate lcoor; | ||||
| 	Coordinate gcoor; | ||||
| 	_grid->LocalIndexToLocalCoor(lidx,lcoor); | ||||
| 	pcoor=_grid->ThisProcessorCoor(); | ||||
| 	_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor); | ||||
| 	_grid->GlobalCoorToGlobalIndex(gcoor,gidx); | ||||
|  | ||||
| 	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
|  | ||||
| 	assert(rank == _grid->ThisRank() ); | ||||
| 	 | ||||
| 	int l_idx=generator_idx(o_idx,i_idx); | ||||
| 	_generators[l_idx] = master_engine; | ||||
| 	if ( britney ) {  | ||||
| 	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence | ||||
| 	} else { 	 | ||||
| 	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
| 	} | ||||
|     }); | ||||
| #else  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Machine and thread decomposition dependent seeding is efficient | ||||
|     // and maximally parallel; but NOT reproducible from machine to machine.  | ||||
|     // Not ideal, but fastest way to reseed all nodes. | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     { | ||||
|       // Obtain one Reseed per processor | ||||
|       int Nproc = _grid->ProcessorCount(); | ||||
|       std::vector<RngEngine> seeders(Nproc); | ||||
|       int me= _grid->ThisRank(); | ||||
|       for(int p=0;p<Nproc;p++){ | ||||
| 	seeders[p] = Reseed(master_engine); | ||||
|       } | ||||
|       master_engine = seeders[me]; | ||||
|     } | ||||
|  | ||||
|     { | ||||
|       // Obtain one reseeded generator per thread       | ||||
|       int Nthread = 32; // Hardwire a good level or parallelism | ||||
|       std::vector<RngEngine> seeders(Nthread); | ||||
|       for(int t=0;t<Nthread;t++){ | ||||
| 	seeders[t] = Reseed(master_engine); | ||||
|       } | ||||
|  | ||||
|       thread_for( t, Nthread, { | ||||
| 	// set up one per local site in threaded fashion | ||||
| 	std::vector<uint32_t> newseeds; | ||||
| 	std::uniform_int_distribution<uint32_t> uid;	 | ||||
| 	for(int l=0;l<_grid->lSites();l++) { | ||||
| 	  if ( (l%Nthread)==t ) { | ||||
| 	    _generators[l] = Reseed(seeders[t],newseeds,uid); | ||||
| 	  } | ||||
| 	} | ||||
|       }); | ||||
|     } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   void Report(){ | ||||
|     std::cout << GridLogMessage << "Time spent in the fill() routine by GridParallelRNG: "<< _time_counter/1e3 << " ms" << std::endl; | ||||
|   } | ||||
|  | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   // Support for rigorous test of RNG's | ||||
|   // Return uniform random uint32_t from requested site generator | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   uint32_t GlobalU01(int gsite){ | ||||
|  | ||||
|     uint32_t the_number; | ||||
|     // who | ||||
|     int rank,o_idx,i_idx; | ||||
|     Coordinate gcoor; | ||||
|     _grid->GlobalIndexToGlobalCoor(gsite,gcoor); | ||||
|     _grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
|  | ||||
|     // draw | ||||
|     int l_idx=generator_idx(o_idx,i_idx); | ||||
|     if( rank == _grid->ThisRank() ){ | ||||
|       the_number = _uid[l_idx](_generators[l_idx]); | ||||
|     } | ||||
|        | ||||
|     // share & return | ||||
|     _grid->Broadcast(rank,(void *)&the_number,sizeof(the_number)); | ||||
|     return the_number; | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l)   { rng.fill(l,rng._uniform);  } | ||||
| template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); } | ||||
| template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);} | ||||
|  | ||||
| template <class sobj> inline void random(GridSerialRNG &rng,sobj &l)   { rng.fill(l,rng._uniform  ); } | ||||
| template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); } | ||||
| template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,213 +0,0 @@ | ||||
| #pragma once | ||||
| #include <type_traits> | ||||
| #if defined(GRID_CUDA) | ||||
|  | ||||
| #include <cub/cub.cuh> | ||||
| #define gpucub cub | ||||
| #define gpuError_t cudaError_t | ||||
| #define gpuSuccess cudaSuccess | ||||
|  | ||||
| #elif defined(GRID_HIP) | ||||
|  | ||||
| #include <hipcub/hipcub.hpp> | ||||
| #define gpucub hipcub | ||||
| #define gpuError_t hipError_t | ||||
| #define gpuSuccess hipSuccess | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
| template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   size_t subvol_size = e1*e2; | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|   vobj zero_init; | ||||
|   zeroit(zero_init); | ||||
|  | ||||
|    | ||||
|   void *temp_storage_array = NULL; | ||||
|   size_t temp_storage_bytes = 0; | ||||
|   vobj *d_out; | ||||
|   int* d_offsets; | ||||
|  | ||||
|   std::vector<int> offsets(rd+1,0); | ||||
|  | ||||
|   for (int i = 0; i < offsets.size(); i++) { | ||||
|     offsets[i] = i*subvol_size; | ||||
|   } | ||||
|    | ||||
|   //Allocate memory for output and offset arrays on device | ||||
|   d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj))); | ||||
|    | ||||
|   d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); | ||||
|    | ||||
|   //copy offsets to device | ||||
|   acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|    | ||||
|    | ||||
|   gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|  | ||||
|   //allocate memory for temp_storage_array   | ||||
|   temp_storage_array = acceleratorAllocDevice(temp_storage_bytes); | ||||
|    | ||||
|   //prepare buffer for reduction | ||||
|   //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream) | ||||
|   //use 2d accelerator_for to avoid launch latencies found when serially looping over rd  | ||||
|   accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{  | ||||
|    | ||||
|     int n = s / e2; | ||||
|     int b = s % e2; | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     int ss= so+n*stride+b; | ||||
|  | ||||
|     coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss])); | ||||
|  | ||||
|   }); | ||||
|    | ||||
|   //issue segmented reductions in computeStream | ||||
|   gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|    | ||||
|   //sync after copy | ||||
|   accelerator_barrier(); | ||||
|   | ||||
|   acceleratorFreeDevice(temp_storage_array); | ||||
|   acceleratorFreeDevice(d_out); | ||||
|   acceleratorFreeDevice(d_offsets); | ||||
|    | ||||
|  | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   typedef typename vobj::vector_type vector; | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|   const int osites = rd*e1*e2; | ||||
|   commVector<vector>buffer(osites); | ||||
|   vector *dat = (vector *)Data; | ||||
|   vector *buf = &buffer[0]; | ||||
|   Vector<vector> lvSum_small(rd); | ||||
|   vector *lvSum_ptr = (vector *)&lvSum[0]; | ||||
|  | ||||
|   for (int w = 0; w < words; w++) { | ||||
|     accelerator_for(ss,osites,1,{ | ||||
| 	    buf[ss] = dat[ss*words+w]; | ||||
|     }); | ||||
|  | ||||
|     sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd); | ||||
|        | ||||
|     for (int r = 0; r < rd; r++) { | ||||
|       lvSum_ptr[w+words*r]=lvSum_small[r]; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|    | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) | ||||
| { | ||||
|   autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case. | ||||
|     if constexpr (sizeof(vobj) <= 256) {  | ||||
|       sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|     } | ||||
|     else { | ||||
|       sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|     } | ||||
| } | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #if defined(GRID_SYCL) | ||||
| template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   size_t subvol_size = e1*e2; | ||||
|  | ||||
|   vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator); | ||||
|   vobj vobj_zero; | ||||
|   zeroit(vobj_zero); | ||||
|      | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|  | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|  | ||||
|   autoView(Data_v, Data, AcceleratorRead); | ||||
|  | ||||
|   //prepare reduction buffer  | ||||
|   accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{  | ||||
|    | ||||
|       int n = s / e2; | ||||
|       int b = s % e2; | ||||
|       int so=r*ostride; // base offset for start of plane  | ||||
|       int ss= so+n*stride+b; | ||||
|  | ||||
|       coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss])); | ||||
|  | ||||
|   }); | ||||
|  | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|       mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable | ||||
|       theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|           auto Reduction = cl::sycl::reduction(mysum,std::plus<>()); | ||||
|           cgh.parallel_for(cl::sycl::range<1>{subvol_size}, | ||||
|           Reduction, | ||||
|           [=](cl::sycl::id<1> item, auto &sum) { | ||||
|               auto s = item[0]; | ||||
|               sum += rb_p[r*subvol_size+s]; | ||||
|           }); | ||||
|       }); | ||||
|       theGridAccelerator->wait(); | ||||
|       lvSum[r] = mysum[0]; | ||||
|   } | ||||
|    | ||||
|   free(mysum,*theGridAccelerator); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int ss= so+n*stride+b; | ||||
|         lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)  | ||||
| { | ||||
|   #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|    | ||||
|   sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #elif defined(GRID_SYCL) | ||||
|    | ||||
|   sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #else | ||||
|   sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|  | ||||
|   #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,130 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_trace.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_TRACE_H | ||||
| #define GRID_LATTICE_TRACE_H | ||||
|  | ||||
| /////////////////////////////////////////////// | ||||
| // Tracing, transposing, peeking, poking | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Trace | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| /* | ||||
| template<class vobj> | ||||
| inline auto trace(const Lattice<vobj> &lhs)  -> Lattice<decltype(trace(vobj()))> | ||||
| { | ||||
|   Lattice<decltype(trace(vobj()))> ret(lhs.Grid()); | ||||
|   autoView(ret_v , ret, AcceleratorWrite); | ||||
|   autoView(lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), { | ||||
|     coalescedWrite(ret_v[ss], trace(lhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| */ | ||||
|      | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Trace Index level dependent operation | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<int Index,class vobj> | ||||
| inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))> | ||||
| { | ||||
|   Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid()); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), { | ||||
|     coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<int N, class Vec> | ||||
| Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid); | ||||
|   typedef typename Vec::scalar_type scalar; | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<scalar, N> > > Us; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	scalar tmp= Us()()(i,j); | ||||
| 	ComplexD ztmp(real(tmp),imag(tmp)); | ||||
| 	EigenU(i,j)=ztmp; | ||||
|       }} | ||||
|     ComplexD detD  = EigenU.determinant(); | ||||
|     typename Vec::scalar_type det(detD.real(),detD.imag()); | ||||
|     pokeLocalSite(det,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<int N> | ||||
| Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid); | ||||
|    | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Us; | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Ui; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	EigenU(i,j) = Us()()(i,j); | ||||
|       }} | ||||
|     Eigen::MatrixXcd EigenUinv = EigenU.inverse(); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	Ui()()(i,j) = EigenUinv(i,j); | ||||
|       }} | ||||
|     pokeLocalSite(Ui,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,70 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_transpose.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_TRANSPOSE_H | ||||
| #define GRID_LATTICE_TRANSPOSE_H | ||||
|  | ||||
| /////////////////////////////////////////////// | ||||
| // Transpose | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Transpose | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| /* | ||||
| template<class vobj> | ||||
| inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss], transpose(lhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| */     | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Index level dependent transpose | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<int Index,class vobj> | ||||
| inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))> | ||||
| { | ||||
|   Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid()); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,80 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_unary.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_UNARY_H | ||||
| #define GRID_LATTICE_UNARY_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){ | ||||
|   Lattice<obj> ret_i(rhs_i.Grid()); | ||||
|   autoView( rhs, rhs_i, AcceleratorRead); | ||||
|   autoView( ret, ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   accelerator_for(ss,rhs.size(),1,{ | ||||
|       ret[ss]=pow(rhs[ss],y); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
| template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){ | ||||
|   Lattice<obj> ret_i(rhs_i.Grid()); | ||||
|   autoView( rhs , rhs_i, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   accelerator_for(ss,rhs.size(),obj::Nsimd(),{ | ||||
|     coalescedWrite(ret[ss],mod(rhs(ss),y)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){ | ||||
|   Lattice<obj> ret_i(rhs_i.Grid()); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   autoView( rhs , rhs_i, AcceleratorRead); | ||||
|   ret.Checkerboard() = rhs_i.Checkerboard(); | ||||
|   accelerator_for(ss,rhs.size(),obj::Nsimd(),{ | ||||
|     coalescedWrite(ret[ss],div(rhs(ss),y)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){ | ||||
|   Lattice<obj> ret_i(rhs_i.Grid()); | ||||
|   autoView( rhs , rhs_i, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   accelerator_for(ss,rhs.size(),obj::Nsimd(),{ | ||||
|     coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,174 +0,0 @@ | ||||
| #pragma once | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Base class which can be used by traits to pick up behaviour | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| class LatticeBase {}; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Conformable checks; same instance of Grid required | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| void accelerator_inline conformable(GridBase *lhs,GridBase *rhs) | ||||
| { | ||||
|   assert(lhs == rhs); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // Minimal base class containing only data valid to access from accelerator | ||||
| // _odata will be a managed pointer in CUDA | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // Force access to lattice through a view object. | ||||
| // prevents writing of code that will not offload to GPU, but perhaps annoyingly | ||||
| // strict since host could could in principle direct access through the lattice object | ||||
| // Need to decide programming model. | ||||
| #define LATTICE_VIEW_STRICT | ||||
| template<class vobj> class LatticeAccelerator : public LatticeBase | ||||
| { | ||||
| protected: | ||||
|   //public: | ||||
|   GridBase *_grid; | ||||
|   int checkerboard; | ||||
|   vobj     *_odata;    // A managed pointer | ||||
|   uint64_t _odata_size;     | ||||
|   ViewAdvise advise; | ||||
| public: | ||||
|   accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr), advise(AdviseDefault) { };  | ||||
|   accelerator_inline uint64_t oSites(void) const { return _odata_size; }; | ||||
|   accelerator_inline int  Checkerboard(void) const { return checkerboard; }; | ||||
|   accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view | ||||
|   accelerator_inline ViewAdvise Advise(void) const { return advise; }; | ||||
|   accelerator_inline ViewAdvise &Advise(void) { return this->advise; }; // can assign advise on a container, not a view | ||||
|   accelerator_inline void Conformable(GridBase * &grid) const | ||||
|   {  | ||||
|     if (grid) conformable(grid, _grid); | ||||
|     else      grid = _grid; | ||||
|   }; | ||||
|   // Host only | ||||
|   GridBase * getGrid(void) const { return _grid; }; | ||||
|   vobj* getHostPointer(void) const { return _odata; }; | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // A View class which provides accessor to the data. | ||||
| // This will be safe to call from accelerator_for and is trivially copy constructible | ||||
| // The copy constructor for this will need to be used by device lambda functions | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class vobj>  | ||||
| class LatticeView : public LatticeAccelerator<vobj> | ||||
| { | ||||
| public: | ||||
|   // Rvalue | ||||
|   ViewMode mode; | ||||
|   void * cpu_ptr; | ||||
| #ifdef GRID_SIMT | ||||
|   accelerator_inline const typename vobj::scalar_object operator()(size_t i) const {  | ||||
|     return coalescedRead(this->_odata[i]);  | ||||
|   } | ||||
| #else  | ||||
|   accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; } | ||||
| #endif | ||||
|  | ||||
| #if 1 | ||||
|   //  accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; }; | ||||
|   accelerator_inline vobj       & operator[](size_t i) const { return this->_odata[i]; }; | ||||
| #else | ||||
|   accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; }; | ||||
|   accelerator_inline vobj       & operator[](size_t i)       { return this->_odata[i]; }; | ||||
| #endif | ||||
|    | ||||
|   accelerator_inline uint64_t begin(void) const { return 0;}; | ||||
|   accelerator_inline uint64_t end(void)   const { return this->_odata_size; }; | ||||
|   accelerator_inline uint64_t size(void)  const { return this->_odata_size; }; | ||||
|  | ||||
|   LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me){} | ||||
|   LatticeView(const LatticeView<vobj> &refer_to_me) = default; // Trivially copyable | ||||
|   LatticeView(const LatticeAccelerator<vobj> &refer_to_me,ViewMode mode) : LatticeAccelerator<vobj> (refer_to_me) | ||||
|   { | ||||
|     this->ViewOpen(mode); | ||||
|   } | ||||
|  | ||||
|   // Host functions | ||||
|   void ViewOpen(ViewMode mode) | ||||
|   { // Translate the pointer, could save a copy. Could use a "Handle" and not save _odata originally in base | ||||
|     //    std::cout << "View Open"<<std::hex<<this->_odata<<std::dec <<std::endl; | ||||
|     this->cpu_ptr = (void *)this->_odata; | ||||
|     this->mode    = mode; | ||||
|     this->_odata  =(vobj *) | ||||
|       MemoryManager::ViewOpen(this->cpu_ptr, | ||||
| 				this->_odata_size*sizeof(vobj), | ||||
| 				mode, | ||||
| 				this->advise);     | ||||
|   } | ||||
|   void ViewClose(void) | ||||
|   { // Inform the manager | ||||
|     //    std::cout << "View Close"<<std::hex<<this->cpu_ptr<<std::dec <<std::endl; | ||||
|     MemoryManager::ViewClose(this->cpu_ptr,this->mode);     | ||||
|   } | ||||
|  | ||||
| }; | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class ViewCloser | ||||
| { | ||||
|   View v;  // Take a copy of view and call view close when I go out of scope automatically | ||||
|  public: | ||||
|   ViewCloser(View &_v) : v(_v) {}; | ||||
|   ~ViewCloser() { v.ViewClose(); } | ||||
| }; | ||||
|  | ||||
| #define autoView(l_v,l,mode)				\ | ||||
| 	  auto l_v = l.View(mode);			\ | ||||
| 	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Lattice expression types used by ET to assemble the AST | ||||
| //  | ||||
| // Need to be able to detect code paths according to the whether a lattice object or not | ||||
| // so introduce some trait type things | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class LatticeExpressionBase {}; | ||||
|  | ||||
| template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>; | ||||
| template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >; | ||||
|  | ||||
| template<class T, bool isLattice> struct ViewMapBase { typedef T Type; }; | ||||
| template<class T>                 struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; }; | ||||
| template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >; | ||||
|  | ||||
| template <typename Op, typename _T1>                            | ||||
| class LatticeUnaryExpression : public  LatticeExpressionBase  | ||||
| { | ||||
| public: | ||||
|   typedef typename ViewMap<_T1>::Type T1; | ||||
|   Op op; | ||||
|   T1 arg1; | ||||
|   LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {}; | ||||
| }; | ||||
|  | ||||
| template <typename Op, typename _T1, typename _T2>               | ||||
| class LatticeBinaryExpression : public LatticeExpressionBase  | ||||
| { | ||||
| public: | ||||
|   typedef typename ViewMap<_T1>::Type T1; | ||||
|   typedef typename ViewMap<_T2>::Type T2; | ||||
|   Op op; | ||||
|   T1 arg1; | ||||
|   T2 arg2; | ||||
|   LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {}; | ||||
| }; | ||||
|  | ||||
| template <typename Op, typename _T1, typename _T2, typename _T3>  | ||||
| class LatticeTrinaryExpression : public LatticeExpressionBase  | ||||
| { | ||||
| public: | ||||
|   typedef typename ViewMap<_T1>::Type T1; | ||||
|   typedef typename ViewMap<_T2>::Type T2; | ||||
|   typedef typename ViewMap<_T3>::Type T3; | ||||
|   Op op; | ||||
|   T1 arg1; | ||||
|   T2 arg2; | ||||
|   T3 arg3; | ||||
|   LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {}; | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,571 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/PaddedCell.h | ||||
|  | ||||
|     Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle pboyle@bnl.gov | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include<Grid/cshift/Cshift.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions | ||||
| template<typename vobj> | ||||
| struct CshiftImplBase{ | ||||
|   virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0; | ||||
|   virtual ~CshiftImplBase(){} | ||||
| }; | ||||
| template<typename vobj> | ||||
| struct CshiftImplDefault: public CshiftImplBase<vobj>{ | ||||
|   Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); } | ||||
| }; | ||||
| template<typename Gimpl> | ||||
| struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{ | ||||
|   typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); } | ||||
| };   | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * | ||||
|  * TODO:  | ||||
|  *  -- address elementsof vobj via thread block in Scatter/Gather | ||||
|  *  -- overlap comms with motion in Face_exchange | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, | ||||
| 					      Lattice<vobj> &lat, | ||||
| 					      int x, | ||||
| 					      int dim, | ||||
| 					      int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|   int rNsimda= Nsimd/simd[dim]; // should be equal | ||||
|   assert(rNsimda==rNsimd); | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   // FIXME -- can put internal indices into thread loop | ||||
|   auto buf_p = & buf[0]; | ||||
|   autoView(lat_v, lat, AcceleratorWrite); | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
|  | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Transfer into lattice - will coalesce | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(blane,buf_p[ss+offset]); | ||||
| 	//	insertLane(lane,lat_v[osite],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * from = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * to   = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], blane); | ||||
| 	  putlane(to[w], stmp, lane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf, | ||||
| 					     const Lattice<vobj> &lat, | ||||
| 					     int x, | ||||
| 					     int dim, | ||||
| 					     int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   autoView(lat_v, lat, AcceleratorRead); | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|    | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   //For CPU perhaps just run a loop over Nsimd | ||||
|   auto buf_p = & buf[0]; | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// osite | ||||
| 	//////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
|  | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Take out of lattice | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(lane,lat_v[osite]); | ||||
| 	//	insertLane(blane,buf_p[ss+offset],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * to    = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * from  = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], lane); | ||||
| 	  putlane(to[w], stmp, blane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| class PaddedCell { | ||||
| public: | ||||
|   GridCartesian * unpadded_grid; | ||||
|   int dims; | ||||
|   int depth; | ||||
|   std::vector<GridCartesian *> grids; | ||||
|  | ||||
|   ~PaddedCell() | ||||
|   { | ||||
|     DeleteGrids(); | ||||
|   } | ||||
|   PaddedCell(int _depth,GridCartesian *_grid) | ||||
|   { | ||||
|     unpadded_grid = _grid; | ||||
|     depth=_depth; | ||||
|     dims=_grid->Nd(); | ||||
|     AllocateGrids(); | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate procs     =unpadded_grid->ProcessorGrid(); | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if ( procs[d] > 1 ) assert(local[d]>=depth); | ||||
|     } | ||||
|   } | ||||
|   void DeleteGrids(void) | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     for(int d=0;d<grids.size();d++){ | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	delete grids[d]; | ||||
|       } | ||||
|     } | ||||
|     grids.resize(0); | ||||
|   }; | ||||
|   void AllocateGrids(void) | ||||
|   { | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate simd      =unpadded_grid->_simd_layout; | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     Coordinate plocal    =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate global(dims); | ||||
|     GridCartesian *old_grid = unpadded_grid; | ||||
|     // expand up one dim at a time | ||||
|     for(int d=0;d<dims;d++){ | ||||
|  | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	plocal[d] += 2*depth;  | ||||
|        | ||||
| 	for(int d=0;d<dims;d++){ | ||||
| 	  global[d] = plocal[d]*processors[d]; | ||||
| 	} | ||||
|  | ||||
| 	old_grid = new GridCartesian(global,simd,processors); | ||||
|       } | ||||
|       grids.push_back(old_grid); | ||||
|     } | ||||
|   }; | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Extract(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|  | ||||
|     Lattice<vobj> out(unpadded_grid); | ||||
|  | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     // depends on the MPI spread       | ||||
|     Coordinate fll(dims,depth); | ||||
|     Coordinate tll(dims,0); // depends on the MPI spread | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if( processors[d]==1 ) fll[d]=0; | ||||
|     } | ||||
|     localCopyRegion(in,out,fll,tll,local); | ||||
|     return out; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = Expand(d,tmp,cshift); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = ExpandPeriodic(d,tmp); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   // expand up one dim at a time | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|  | ||||
|       // replace with a copy and maybe grid swizzle | ||||
|       // return in;?? | ||||
|       double t = usecond(); | ||||
|       padded = in; | ||||
|       tins += usecond() - t; | ||||
|        | ||||
|     } else { | ||||
|  | ||||
|       ////////////////////////////////////////////// | ||||
|       // Replace sequence with | ||||
|       // --------------------- | ||||
|       // (i) Gather high face(s); start comms | ||||
|       // (ii) Gather low  face(s); start comms | ||||
|       // (iii) Copy middle bit with localCopyRegion | ||||
|       // (iv) Complete high face(s), insert slice(s) | ||||
|       // (iv) Complete low  face(s), insert slice(s) | ||||
|       ////////////////////////////////////////////// | ||||
|       // Middle bit | ||||
|       double t = usecond(); | ||||
|       for(int x=0;x<local[dim];x++){ | ||||
| 	InsertSliceLocal(in,padded,x,depth+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // High bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,depth); | ||||
|       tshift += usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // Low bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,-depth); | ||||
|       tshift += usecond() - t; | ||||
|      | ||||
|       t = usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,x,x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|  | ||||
|     } | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl; | ||||
|      | ||||
|     return padded; | ||||
|   } | ||||
|  | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     //    Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl; | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|       padded=in; // slightly different interface could avoid a copy operation | ||||
|     } else { | ||||
|       Face_exchange(in,padded,dim,depth); | ||||
|       return padded; | ||||
|     } | ||||
|     return padded; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void Face_exchange(const Lattice<vobj> &from, | ||||
| 		     Lattice<vobj> &to, | ||||
| 		     int dimension,int depth) const | ||||
|   { | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     RealD t_gather=0.0; | ||||
|     RealD t_scatter=0.0; | ||||
|     RealD t_comms=0.0; | ||||
|     RealD t_copy=0.0; | ||||
|      | ||||
|     //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl; | ||||
|     //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension); | ||||
|     GridBase *grid=from.Grid(); | ||||
|     GridBase *new_grid=to.Grid(); | ||||
|  | ||||
|     Coordinate lds = from.Grid()->_ldimensions; | ||||
|     Coordinate nlds=   to.Grid()->_ldimensions; | ||||
|     Coordinate simd= from.Grid()->_simd_layout; | ||||
|     int ld    = lds[dimension]; | ||||
|     int nld   = to.Grid()->_ldimensions[dimension]; | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|  | ||||
|     assert(depth<=lds[dimension]); // A must be on neighbouring node | ||||
|     assert(depth>0);   // A caller bug if zero | ||||
|     assert(ld+2*depth==nld); | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Face size and byte calculations | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int buffer_size = 1; | ||||
|     for(int d=0;d<lds.size();d++){ | ||||
|       if ( d!= dimension) buffer_size=buffer_size*lds[d]; | ||||
|     } | ||||
|     buffer_size = buffer_size  / Nsimd; | ||||
|     int rNsimd = Nsimd / simd[dimension]; | ||||
|     assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); | ||||
|  | ||||
|     static cshiftVector<vobj> send_buf;  | ||||
|     static cshiftVector<vobj> recv_buf; | ||||
|     send_buf.resize(buffer_size*2*depth);     | ||||
|     recv_buf.resize(buffer_size*2*depth); | ||||
|  | ||||
|     std::vector<CommsRequest_t> fwd_req;    | ||||
|     std::vector<CommsRequest_t> bwd_req;    | ||||
|  | ||||
|     int words = buffer_size; | ||||
|     int bytes = words * sizeof(vobj); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Communication coords | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int comm_proc = 1; | ||||
|     int xmit_to_rank; | ||||
|     int recv_from_rank; | ||||
|     grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Gather all surface terms up to depth "d" | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     RealD t; | ||||
|     RealD t_tot=-usecond(); | ||||
|     int plane=0; | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+0; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+=usecond()-t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&send_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
|       t_comms+=usecond()-t; | ||||
|      } | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+1; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+= usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
|       t_comms+=usecond()-t; | ||||
|     } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Copy interior -- overlap this with comms | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int Nd = new_grid->Nd(); | ||||
|     Coordinate LL(Nd,0); | ||||
|     Coordinate sz = grid->_ldimensions; | ||||
|     Coordinate toLL(Nd,0); | ||||
|     toLL[dimension]=depth; | ||||
|     t=usecond(); | ||||
|     localCopyRegion(from,to,LL,toLL,sz); | ||||
|     t_copy= usecond() - t; | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Scatter all faces | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     plane=0; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(fwd_req); | ||||
|     t_comms+= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(bwd_req); | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter+= usecond() - t; | ||||
|     t_tot+=usecond(); | ||||
|  | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl; | ||||
|   } | ||||
|    | ||||
| }; | ||||
|   | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,4 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| int                    Grid::BinaryIO::latticeWriteMaxRetry = -1; | ||||
| Grid::BinaryIO::IoPerf Grid::BinaryIO::lastPerf; | ||||
| @@ -1,345 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/parallelIO/NerscIO.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: Jamie Hudspith <renwick.james.hudspth@gmail.com> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #include <algorithm> | ||||
| #include <iostream> | ||||
| #include <iomanip> | ||||
| #include <fstream> | ||||
| #include <map> | ||||
| #include <unistd.h> | ||||
| #include <sys/utsname.h> | ||||
| #include <pwd.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /////////////////////////////////////////////////////// | ||||
| // Precision mapping | ||||
| /////////////////////////////////////////////////////// | ||||
| template<class vobj> static std::string getFormatString (void) | ||||
| { | ||||
|   std::string format; | ||||
|   typedef typename getPrecision<vobj>::real_scalar_type stype; | ||||
|   if ( sizeof(stype) == sizeof(float) ) { | ||||
|     format = std::string("IEEE32BIG"); | ||||
|   } | ||||
|   if ( sizeof(stype) == sizeof(double) ) { | ||||
|     format = std::string("IEEE64BIG"); | ||||
|   } | ||||
|   return format; | ||||
| }; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   // header specification/interpretation | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|     class FieldNormMetaData : Serializable { | ||||
|     public: | ||||
|       GRID_SERIALIZABLE_CLASS_MEMBERS(FieldNormMetaData, double, norm2); | ||||
|     }; | ||||
|     class FieldMetaData : Serializable { | ||||
|     public: | ||||
|  | ||||
|       GRID_SERIALIZABLE_CLASS_MEMBERS(FieldMetaData, | ||||
| 				      int, nd, | ||||
| 				      std::vector<int>, dimension, | ||||
| 				      std::vector<std::string>, boundary, | ||||
| 				      int, data_start, | ||||
| 				      std::string, hdr_version, | ||||
| 				      std::string, storage_format, | ||||
| 				      double, link_trace, | ||||
| 				      double, plaquette, | ||||
| 				      uint32_t, checksum, | ||||
| 				      uint32_t, scidac_checksuma, | ||||
| 				      uint32_t, scidac_checksumb, | ||||
| 				      unsigned int, sequence_number, | ||||
| 				      std::string, data_type, | ||||
| 				      std::string, ensemble_id, | ||||
| 				      std::string, ensemble_label, | ||||
| 				      std::string, ildg_lfn, | ||||
| 				      std::string, creator, | ||||
| 				      std::string, creator_hardware, | ||||
| 				      std::string, creation_date, | ||||
| 				      std::string, archive_date, | ||||
| 				      std::string, floating_point); | ||||
|       // WARNING: non-initialised values might lead to twisted parallel IO | ||||
|       // issues, std::string are fine because they initliase to size 0 | ||||
|       // as per C++ standard. | ||||
|       FieldMetaData(void)  | ||||
|       : nd(4), dimension(4,0), boundary(4, ""), data_start(0), | ||||
|       link_trace(0.), plaquette(0.), checksum(0), | ||||
|       scidac_checksuma(0), scidac_checksumb(0), sequence_number(0) | ||||
|       {} | ||||
|   }; | ||||
|  | ||||
| // PB disable using namespace - this is a header and forces namesapce visibility for all  | ||||
| // including files | ||||
| //using namespace Grid; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Bit and Physical Checksumming and QA of data | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| inline void GridMetaData(GridBase *grid,FieldMetaData &header) | ||||
| { | ||||
|   int nd = grid->_ndimension; | ||||
|   header.nd = nd; | ||||
|   header.dimension.resize(nd); | ||||
|   header.boundary.resize(nd); | ||||
|   header.data_start = 0; | ||||
|   for(int d=0;d<nd;d++) { | ||||
|     header.dimension[d] = grid->_fdimensions[d]; | ||||
|   } | ||||
|   for(int d=0;d<nd;d++) { | ||||
|     header.boundary[d] = std::string("PERIODIC"); | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline void MachineCharacteristics(FieldMetaData &header) | ||||
| { | ||||
|   // Who | ||||
|   struct passwd *pw = getpwuid (getuid()); | ||||
|   if (pw) header.creator = std::string(pw->pw_name);  | ||||
|  | ||||
|   // When | ||||
|   std::time_t t = std::time(nullptr); | ||||
|   std::tm tm_ = *std::localtime(&t); | ||||
|   std::ostringstream oss;  | ||||
|   oss << std::put_time(&tm_, "%c %Z"); | ||||
|   header.creation_date = oss.str(); | ||||
|   header.archive_date  = header.creation_date; | ||||
|  | ||||
|   // What | ||||
|   struct utsname name;  uname(&name); | ||||
|   header.creator_hardware = std::string(name.nodename)+"-"; | ||||
|   header.creator_hardware+= std::string(name.machine)+"-"; | ||||
|   header.creator_hardware+= std::string(name.sysname)+"-"; | ||||
|   header.creator_hardware+= std::string(name.release); | ||||
| } | ||||
|  | ||||
| #define dump_meta_data(field, s)					\ | ||||
|   s << "BEGIN_HEADER"      << std::endl;				\ | ||||
|   s << "HDR_VERSION = "    << field.hdr_version    << std::endl;	\ | ||||
|   s << "DATATYPE = "       << field.data_type      << std::endl;	\ | ||||
|   s << "STORAGE_FORMAT = " << field.storage_format << std::endl;	\ | ||||
|   for(int i=0;i<4;i++){							\ | ||||
|     s << "DIMENSION_" << i+1 << " = " << field.dimension[i] << std::endl ; \ | ||||
|   }									\ | ||||
|   s << "LINK_TRACE = " << std::setprecision(10) << field.link_trace << std::endl; \ | ||||
|   s << "PLAQUETTE  = " << std::setprecision(10) << field.plaquette  << std::endl; \ | ||||
|   for(int i=0;i<4;i++){							\ | ||||
|     s << "BOUNDARY_"<<i+1<<" = " << field.boundary[i] << std::endl;	\ | ||||
|   }									\ | ||||
| 									\ | ||||
|   s << "CHECKSUM = "<< std::hex << std::setw(10) << field.checksum << std::dec<<std::endl; \ | ||||
|   s << "SCIDAC_CHECKSUMA = "<< std::hex << std::setw(10) << field.scidac_checksuma << std::dec<<std::endl; \ | ||||
|   s << "SCIDAC_CHECKSUMB = "<< std::hex << std::setw(10) << field.scidac_checksumb << std::dec<<std::endl; \ | ||||
|   s << "ENSEMBLE_ID = "     << field.ensemble_id      << std::endl;	\ | ||||
|   s << "ENSEMBLE_LABEL = "  << field.ensemble_label   << std::endl;	\ | ||||
|   s << "SEQUENCE_NUMBER = " << field.sequence_number  << std::endl;	\ | ||||
|   s << "CREATOR = "         << field.creator          << std::endl;	\ | ||||
|   s << "CREATOR_HARDWARE = "<< field.creator_hardware << std::endl;	\ | ||||
|   s << "CREATION_DATE = "   << field.creation_date    << std::endl;	\ | ||||
|   s << "ARCHIVE_DATE = "    << field.archive_date     << std::endl;	\ | ||||
|   s << "FLOATING_POINT = "  << field.floating_point   << std::endl;	\ | ||||
|   s << "END_HEADER"         << std::endl; | ||||
|  | ||||
| template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMetaData &header) | ||||
| { | ||||
|   GridBase *grid = field.Grid(); | ||||
|   std::string format = getFormatString<vobj>(); | ||||
|   header.floating_point = format; | ||||
|   header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac | ||||
|   GridMetaData(grid,header);  | ||||
|   MachineCharacteristics(header); | ||||
| } | ||||
| template<class Impl> | ||||
| class GaugeStatistics | ||||
| { | ||||
| public: | ||||
|   void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header) | ||||
|   { | ||||
|     header.link_trace = WilsonLoops<Impl>::linkTrace(data); | ||||
|     header.plaquette  = WilsonLoops<Impl>::avgPlaquette(data); | ||||
|   } | ||||
| }; | ||||
| typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics; | ||||
| typedef GaugeStatistics<ConjugateGimplD> ConjugateGaugeStatistics; | ||||
| template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header) | ||||
| { | ||||
|   GridBase *grid = field.Grid(); | ||||
|   std::string format = getFormatString<vLorentzColourMatrixD>(); | ||||
|   header.floating_point = format; | ||||
|   header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac | ||||
|   GridMetaData(grid,header);  | ||||
|   MachineCharacteristics(header); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Utilities ; these are QCD aware | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| inline void reconstruct3(LorentzColourMatrix & cm) | ||||
| { | ||||
|   assert( Nc < 4 && Nc > 1 ) ; | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     #if Nc == 2 | ||||
|       cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ; | ||||
|       cm(mu)()(1,1) =  adj(cm(mu)()(0,x)) ; | ||||
|     #else | ||||
|       const int x=0 , y=1 , z=2 ; // a little disinenuous labelling | ||||
|       cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy | ||||
|       cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz | ||||
|       cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx | ||||
|     #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Some data types for intermediate storage | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >; | ||||
|  | ||||
| typedef iLorentzColour2x3<Complex>  LorentzColour2x3; | ||||
| typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F; | ||||
| typedef iLorentzColour2x3<ComplexD> LorentzColour2x3D; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // Simple classes for precision conversion | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| template <class fobj, class sobj> | ||||
| struct BinarySimpleUnmunger { | ||||
|   typedef typename getPrecision<fobj>::real_scalar_type fobj_stype; | ||||
|   typedef typename getPrecision<sobj>::real_scalar_type sobj_stype; | ||||
|    | ||||
|   void operator()(sobj &in, fobj &out) { | ||||
|     // take word by word and transform accoding to the status | ||||
|     fobj_stype *out_buffer = (fobj_stype *)&out; | ||||
|     sobj_stype *in_buffer = (sobj_stype *)∈ | ||||
|     size_t fobj_words = sizeof(out) / sizeof(fobj_stype); | ||||
|     size_t sobj_words = sizeof(in) / sizeof(sobj_stype); | ||||
|     assert(fobj_words == sobj_words); | ||||
|      | ||||
|     for (unsigned int word = 0; word < sobj_words; word++) | ||||
|       out_buffer[word] = in_buffer[word];  // type conversion on the fly | ||||
|      | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template <class fobj, class sobj> | ||||
| struct BinarySimpleMunger { | ||||
|   typedef typename getPrecision<fobj>::real_scalar_type fobj_stype; | ||||
|   typedef typename getPrecision<sobj>::real_scalar_type sobj_stype; | ||||
|  | ||||
|   void operator()(fobj &in, sobj &out) { | ||||
|     // take word by word and transform accoding to the status | ||||
|     fobj_stype *in_buffer = (fobj_stype *)∈ | ||||
|     sobj_stype *out_buffer = (sobj_stype *)&out; | ||||
|     size_t fobj_words = sizeof(in) / sizeof(fobj_stype); | ||||
|     size_t sobj_words = sizeof(out) / sizeof(sobj_stype); | ||||
|     assert(fobj_words == sobj_words); | ||||
|      | ||||
|     for (unsigned int word = 0; word < sobj_words; word++) | ||||
|       out_buffer[word] = in_buffer[word];  // type conversion on the fly | ||||
|      | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class fobj,class sobj> | ||||
| struct GaugeSimpleMunger{ | ||||
|   void operator()(fobj &in, sobj &out) { | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       for (int i = 0; i < Nc; i++) { | ||||
| 	for (int j = 0; j < Nc; j++) { | ||||
| 	  out(mu)()(i, j) = in(mu)()(i, j); | ||||
| 	}} | ||||
|     } | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template <class fobj, class sobj> | ||||
| struct GaugeSimpleUnmunger { | ||||
|   void operator()(sobj &in, fobj &out) { | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       for (int i = 0; i < Nc; i++) { | ||||
| 	for (int j = 0; j < Nc; j++) { | ||||
| 	  out(mu)()(i, j) = in(mu)()(i, j); | ||||
| 	}} | ||||
|     } | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template<class fobj,class sobj> | ||||
| struct GaugeDoubleStoredMunger{ | ||||
|   void operator()(fobj &in, sobj &out) { | ||||
|     for (int mu = 0; mu < Nds; mu++) { | ||||
|       for (int i = 0; i < Nc; i++) { | ||||
|         for (int j = 0; j < Nc; j++) { | ||||
|           out(mu)()(i, j) = in(mu)()(i, j); | ||||
|         }} | ||||
|     } | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template <class fobj, class sobj> | ||||
| struct GaugeDoubleStoredUnmunger { | ||||
|   void operator()(sobj &in, fobj &out) { | ||||
|     for (int mu = 0; mu < Nds; mu++) { | ||||
|       for (int i = 0; i < Nc; i++) { | ||||
|         for (int j = 0; j < Nc; j++) { | ||||
|           out(mu)()(i, j) = in(mu)()(i, j); | ||||
|         }} | ||||
|     } | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template<class fobj,class sobj> | ||||
| struct Gauge3x2munger{ | ||||
|   void operator() (fobj &in,sobj &out){ | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       for(int i=0;i<Nc-1;i++){ | ||||
| 	for(int j=0;j<Nc;j++){ | ||||
| 	  out(mu)()(i,j) = in(mu)(i)(j); | ||||
| 	}} | ||||
|     } | ||||
|     reconstruct3(out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class fobj,class sobj> | ||||
| struct Gauge3x2unmunger{ | ||||
|   void operator() (sobj &in,fobj &out){ | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       for(int i=0;i<Nc-1;i++){ | ||||
| 	for(int j=0;j<Nc;j++){ | ||||
| 	  out(mu)(i)(j) = in(mu)()(i,j); | ||||
| 	}} | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,387 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/parallelIO/NerscIO.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Matt Spraggs <matthew.spraggs@gmail.com> | ||||
|     Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: Jamie Hudspith <renwick.james.hudspth@gmail.com> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_NERSC_IO_H | ||||
| #define GRID_NERSC_IO_H | ||||
|  | ||||
| #include <string> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| using namespace Grid; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Write and read from fstream; comput header offset for payload | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| class NerscIO : public BinaryIO {  | ||||
| public: | ||||
|   typedef Lattice<vLorentzColourMatrixD> GaugeField; | ||||
|  | ||||
|   // Enable/disable exiting if the plaquette in the header does not match the value computed (default true) | ||||
|   static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; } | ||||
|  | ||||
|   static inline void truncate(std::string file){ | ||||
|     std::ofstream fout(file,std::ios::out); | ||||
|   } | ||||
|    | ||||
|   static inline unsigned int writeHeader(FieldMetaData &field,std::string file) | ||||
|   { | ||||
|     std::ofstream fout(file,std::ios::out|std::ios::in); | ||||
|     fout.seekp(0,std::ios::beg); | ||||
|     dump_meta_data(field, fout); | ||||
|     field.data_start = fout.tellp(); | ||||
|     return field.data_start; | ||||
|   } | ||||
|  | ||||
|   // for the header-reader | ||||
|   static inline int readHeader(std::string file,GridBase *grid,  FieldMetaData &field) | ||||
|   { | ||||
|     std::map<std::string,std::string> header; | ||||
|     std::string line; | ||||
|  | ||||
|     ////////////////////////////////////////////////// | ||||
|     // read the header | ||||
|     ////////////////////////////////////////////////// | ||||
|     std::ifstream fin(file); | ||||
|  | ||||
|     getline(fin,line); // read one line and insist is  | ||||
|  | ||||
|     removeWhitespace(line); | ||||
|     std::cout << GridLogMessage << "* " << line << std::endl; | ||||
|  | ||||
|     assert(line==std::string("BEGIN_HEADER")); | ||||
|  | ||||
|     do { | ||||
|       getline(fin,line); // read one line | ||||
|       std::cout << GridLogMessage << "* "<<line<< std::endl; | ||||
|       int eq = line.find("="); | ||||
|       if(eq >0) { | ||||
| 	std::string key=line.substr(0,eq); | ||||
| 	std::string val=line.substr(eq+1); | ||||
| 	removeWhitespace(key); | ||||
| 	removeWhitespace(val); | ||||
|        | ||||
| 	header[key] = val; | ||||
|       } | ||||
|     } while( line.find("END_HEADER") == std::string::npos ); | ||||
|  | ||||
|     field.data_start = fin.tellg(); | ||||
|  | ||||
|     ////////////////////////////////////////////////// | ||||
|     // chomp the values | ||||
|     ////////////////////////////////////////////////// | ||||
|     field.hdr_version    = header["HDR_VERSION"]; | ||||
|     field.data_type      = header["DATATYPE"]; | ||||
|     field.storage_format = header["STORAGE_FORMAT"]; | ||||
|    | ||||
|     field.dimension[0] = std::stol(header["DIMENSION_1"]); | ||||
|     field.dimension[1] = std::stol(header["DIMENSION_2"]); | ||||
|     field.dimension[2] = std::stol(header["DIMENSION_3"]); | ||||
|     field.dimension[3] = std::stol(header["DIMENSION_4"]); | ||||
|  | ||||
|     assert(grid->_ndimension == 4); | ||||
|     for(int d=0;d<4;d++){ | ||||
|       assert(grid->_fdimensions[d]==field.dimension[d]); | ||||
|     } | ||||
|  | ||||
|     field.link_trace = std::stod(header["LINK_TRACE"]); | ||||
|     field.plaquette  = std::stod(header["PLAQUETTE"]); | ||||
|  | ||||
|     field.boundary[0] = header["BOUNDARY_1"]; | ||||
|     field.boundary[1] = header["BOUNDARY_2"]; | ||||
|     field.boundary[2] = header["BOUNDARY_3"]; | ||||
|     field.boundary[3] = header["BOUNDARY_4"]; | ||||
|  | ||||
|     field.checksum = std::stoul(header["CHECKSUM"],0,16); | ||||
|     field.ensemble_id      = header["ENSEMBLE_ID"]; | ||||
|     field.ensemble_label   = header["ENSEMBLE_LABEL"]; | ||||
|     field.sequence_number  = std::stol(header["SEQUENCE_NUMBER"]); | ||||
|     field.creator          = header["CREATOR"]; | ||||
|     field.creator_hardware = header["CREATOR_HARDWARE"]; | ||||
|     field.creation_date    = header["CREATION_DATE"]; | ||||
|     field.archive_date     = header["ARCHIVE_DATE"]; | ||||
|     field.floating_point   = header["FLOATING_POINT"]; | ||||
|  | ||||
|     return field.data_start; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Now the meat: the object readers | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   template<class GaugeStats=PeriodicGaugeStatistics> | ||||
|   static inline void readConfiguration(GaugeField &Umu, | ||||
| 				       FieldMetaData& header, | ||||
| 				       std::string file, | ||||
| 				       GaugeStats GaugeStatisticsCalculator=GaugeStats()) | ||||
|   { | ||||
|  | ||||
|     GridBase *grid = Umu.Grid(); | ||||
|     uint64_t offset = readHeader(file,Umu.Grid(),header); | ||||
|  | ||||
|     FieldMetaData clone(header); | ||||
|  | ||||
|     std::string format(header.floating_point); | ||||
|  | ||||
|     const int ieee32big = (format == std::string("IEEE32BIG")); | ||||
|     const int ieee32    = (format == std::string("IEEE32")); | ||||
|     const int ieee64big = (format == std::string("IEEE64BIG")); | ||||
|     const int ieee64    = (format == std::string("IEEE64") || \ | ||||
| 			   format == std::string("IEEE64LITTLE")); | ||||
|  | ||||
|     uint32_t nersc_csum,scidac_csuma,scidac_csumb; | ||||
|     // depending on datatype, set up munger; | ||||
|     // munger is a function of <floating point, Real, data_type> | ||||
|     const std::string stNC = std::to_string( Nc ) ; | ||||
|     if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) { | ||||
|       if ( ieee32 || ieee32big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>  | ||||
| 	  (Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|       if ( ieee64 || ieee64big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3D>  | ||||
| 	  (Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|     } else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) { | ||||
|       if ( ieee32 || ieee32big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF> | ||||
| 	  (Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|       if ( ieee64 || ieee64big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixD> | ||||
| 	  (Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|     } else { | ||||
|       assert(0); | ||||
|     } | ||||
|  | ||||
|     GaugeStats Stats; Stats(Umu,clone); | ||||
|  | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec | ||||
| 	     <<" header   "<<std::hex<<header.checksum<<std::dec <<std::endl; | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette | ||||
| 	     <<" header    "<<header.plaquette<<std::endl; | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace | ||||
| 	     <<" header    "<<header.link_trace<<std::endl; | ||||
|  | ||||
|     if ( fabs(clone.plaquette -header.plaquette ) >=  1.0e-5 ) {  | ||||
|       std::cout << " Plaquette mismatch "<<std::endl; | ||||
|     } | ||||
|     if ( nersc_csum != header.checksum ) {  | ||||
|       std::cerr << " checksum mismatch " << std::endl; | ||||
|       std::cerr << " plaqs " << clone.plaquette << " " << header.plaquette << std::endl; | ||||
|       std::cerr << " trace " << clone.link_trace<< " " << header.link_trace<< std::endl; | ||||
|       std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl; | ||||
|       exit(0); | ||||
|     } | ||||
|     if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); | ||||
|     assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 ); | ||||
|     assert(nersc_csum == header.checksum ); | ||||
|        | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl; | ||||
|   } | ||||
|  | ||||
|   // Preferred interface | ||||
|   template<class GaugeStats=PeriodicGaugeStatistics> | ||||
|   static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, | ||||
| 					std::string file,  | ||||
| 					std::string ens_label = std::string("DWF"), | ||||
| 					std::string ens_id = std::string("UKQCD"), | ||||
| 					unsigned int sequence_number = 1) | ||||
|   { | ||||
|     writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number); | ||||
|   } | ||||
|   template<class GaugeStats=PeriodicGaugeStatistics> | ||||
|   static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, | ||||
| 					std::string file,  | ||||
| 					int two_row, | ||||
| 					int bits32, | ||||
| 					std::string ens_label = std::string("DWF"), | ||||
| 					std::string ens_id = std::string("UKQCD"), | ||||
| 					unsigned int sequence_number = 1) | ||||
|   { | ||||
|     typedef vLorentzColourMatrixD vobj; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     FieldMetaData header; | ||||
|     header.sequence_number = sequence_number; | ||||
|     header.ensemble_id     = ens_id; | ||||
|     header.ensemble_label  = ens_label; | ||||
|     header.hdr_version     = "1.0" ; | ||||
|  | ||||
|     typedef LorentzColourMatrixD fobj3D; | ||||
|     typedef LorentzColour2x3D    fobj2D; | ||||
|    | ||||
|     GridBase *grid = Umu.Grid(); | ||||
|  | ||||
|     GridMetaData(grid,header); | ||||
|     assert(header.nd==4); | ||||
|     GaugeStats Stats; Stats(Umu,header); | ||||
|     MachineCharacteristics(header); | ||||
|  | ||||
|     uint64_t offset; | ||||
|  | ||||
|     // Sod it -- always write NcxNc double | ||||
|     header.floating_point  = std::string("IEEE64BIG"); | ||||
|     const std::string stNC = std::to_string( Nc ) ; | ||||
|     if( two_row ) { | ||||
|       header.data_type = std::string("4D_SU" + stNC + "_GAUGE" ); | ||||
|     } else { | ||||
|       header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC ); | ||||
|     } | ||||
|     if ( grid->IsBoss() ) {  | ||||
|       truncate(file); | ||||
|       offset = writeHeader(header,file); | ||||
|     } | ||||
|     grid->Broadcast(0,(void *)&offset,sizeof(offset)); | ||||
|  | ||||
|     uint32_t nersc_csum,scidac_csuma,scidac_csumb; | ||||
|     if( two_row ) { | ||||
|       Gauge3x2unmunger<fobj2D,sobj> munge; | ||||
|       BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point, | ||||
| 						nersc_csum,scidac_csuma,scidac_csumb); | ||||
|     } else { | ||||
|       GaugeSimpleUnmunger<fobj3D,sobj> munge; | ||||
|       BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point, | ||||
| 						nersc_csum,scidac_csuma,scidac_csumb); | ||||
|     } | ||||
|     header.checksum = nersc_csum; | ||||
|     if ( grid->IsBoss() ) {  | ||||
|       writeHeader(header,file); | ||||
|     } | ||||
|  | ||||
|     std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum " | ||||
| 	     <<std::hex<<header.checksum | ||||
| 	     <<std::dec<<" plaq "<< header.plaquette <<std::endl; | ||||
|  | ||||
|   } | ||||
|   /////////////////////////////// | ||||
|   // RNG state | ||||
|   /////////////////////////////// | ||||
|   static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG ¶llel,std::string file) | ||||
|   { | ||||
|     typedef typename GridParallelRNG::RngStateType RngStateType; | ||||
|  | ||||
|     // Following should become arguments | ||||
|     FieldMetaData header; | ||||
|     header.sequence_number = 1; | ||||
|     header.ensemble_id     = "UKQCD"; | ||||
|     header.ensemble_label  = "DWF"; | ||||
|  | ||||
|     GridBase *grid = parallel.Grid(); | ||||
|  | ||||
|     GridMetaData(grid,header); | ||||
|     assert(header.nd==4); | ||||
|     header.link_trace=0.0; | ||||
|     header.plaquette=0.0; | ||||
|     MachineCharacteristics(header); | ||||
|  | ||||
|     uint64_t offset; | ||||
| #ifdef RNG_RANLUX | ||||
|     header.floating_point = std::string("UINT64"); | ||||
|     header.data_type      = std::string("RANLUX48"); | ||||
| #endif | ||||
| #ifdef RNG_MT19937 | ||||
|     header.floating_point = std::string("UINT32"); | ||||
|     header.data_type      = std::string("MT19937"); | ||||
| #endif | ||||
| #ifdef RNG_SITMO | ||||
|     header.floating_point = std::string("UINT64"); | ||||
|     header.data_type      = std::string("SITMO"); | ||||
| #endif | ||||
|  | ||||
| 	if ( grid->IsBoss() ) {  | ||||
|     truncate(file); | ||||
|     offset = writeHeader(header,file); | ||||
| 	} | ||||
| 	grid->Broadcast(0,(void *)&offset,sizeof(offset)); | ||||
| 	 | ||||
|     uint32_t nersc_csum,scidac_csuma,scidac_csumb; | ||||
|     BinaryIO::writeRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb); | ||||
|     header.checksum = nersc_csum; | ||||
| 	if ( grid->IsBoss() ) {  | ||||
|     offset = writeHeader(header,file); | ||||
| 	} | ||||
|  | ||||
|     std::cout<<GridLogMessage  | ||||
| 	     <<"Written NERSC RNG STATE "<<file<< " checksum " | ||||
| 	     <<std::hex<<header.checksum | ||||
| 	     <<std::dec<<std::endl; | ||||
|  | ||||
|   } | ||||
|      | ||||
|   static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,FieldMetaData& header,std::string file) | ||||
|   { | ||||
|     typedef typename GridParallelRNG::RngStateType RngStateType; | ||||
|  | ||||
|     GridBase *grid = parallel.Grid(); | ||||
|  | ||||
|     uint64_t offset = readHeader(file,grid,header); | ||||
|  | ||||
|     FieldMetaData clone(header); | ||||
|  | ||||
|     std::string format(header.floating_point); | ||||
|     std::string data_type(header.data_type); | ||||
|  | ||||
| #ifdef RNG_RANLUX | ||||
|     assert(format == std::string("UINT64")); | ||||
|     assert(data_type == std::string("RANLUX48")); | ||||
| #endif | ||||
| #ifdef RNG_MT19937 | ||||
|     assert(format == std::string("UINT32")); | ||||
|     assert(data_type == std::string("MT19937")); | ||||
| #endif | ||||
| #ifdef RNG_SITMO | ||||
|     assert(format == std::string("UINT64")); | ||||
|     assert(data_type == std::string("SITMO")); | ||||
| #endif | ||||
|  | ||||
|     // depending on datatype, set up munger; | ||||
|     // munger is a function of <floating point, Real, data_type> | ||||
|     uint32_t nersc_csum,scidac_csuma,scidac_csumb; | ||||
|     BinaryIO::readRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     if ( nersc_csum != header.checksum ) {  | ||||
|       std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl; | ||||
|       exit(0); | ||||
|     } | ||||
|     assert(nersc_csum == header.checksum ); | ||||
|  | ||||
|     std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,224 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/parallelIO/OpenQcdIO.h | ||||
|  | ||||
| Copyright (C) 2015 - 2020 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| struct OpenQcdHeader : Serializable { | ||||
|   GRID_SERIALIZABLE_CLASS_MEMBERS(OpenQcdHeader, | ||||
|                                   int,    Nt, | ||||
|                                   int,    Nx, | ||||
|                                   int,    Ny, | ||||
|                                   int,    Nz, | ||||
|                                   double, plaq); | ||||
| }; | ||||
|  | ||||
| class OpenQcdIO : public BinaryIO { | ||||
| public: | ||||
|   static constexpr double normalisationFactor = Nc; // normalisation difference: grid 18, openqcd 6 | ||||
|  | ||||
|   static inline int readHeader(std::string file, GridBase* grid, FieldMetaData& field) { | ||||
|     OpenQcdHeader header; | ||||
|  | ||||
|     { | ||||
|       std::ifstream fin(file, std::ios::in | std::ios::binary); | ||||
|       fin.read(reinterpret_cast<char*>(&header), sizeof(OpenQcdHeader)); | ||||
|       assert(!fin.fail()); | ||||
|       field.data_start = fin.tellg(); | ||||
|       fin.close(); | ||||
|     } | ||||
|  | ||||
|     header.plaq /= normalisationFactor; | ||||
|  | ||||
|     // sanity check (should trigger on endian issues) | ||||
|     assert(0 < header.Nt && header.Nt <= 1024); | ||||
|     assert(0 < header.Nx && header.Nx <= 1024); | ||||
|     assert(0 < header.Ny && header.Ny <= 1024); | ||||
|     assert(0 < header.Nz && header.Nz <= 1024); | ||||
|  | ||||
|     field.dimension[0] = header.Nx; | ||||
|     field.dimension[1] = header.Ny; | ||||
|     field.dimension[2] = header.Nz; | ||||
|     field.dimension[3] = header.Nt; | ||||
|  | ||||
|     std::cout << GridLogDebug << "header: " << header << std::endl; | ||||
|     std::cout << GridLogDebug << "grid dimensions: " << grid->_fdimensions << std::endl; | ||||
|     std::cout << GridLogDebug << "file dimensions: " << field.dimension << std::endl; | ||||
|  | ||||
|     assert(grid->_ndimension == Nd); | ||||
|     for(int d = 0; d < Nd; d++) | ||||
|       assert(grid->_fdimensions[d] == field.dimension[d]); | ||||
|  | ||||
|     field.plaquette = header.plaq; | ||||
|  | ||||
|     return field.data_start; | ||||
|   } | ||||
|  | ||||
|   template<class vsimd> | ||||
|   static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd>>& Umu, | ||||
|                                        FieldMetaData&                        header, | ||||
|                                        std::string                           file) { | ||||
|     typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubleStoredGaugeField; | ||||
|  | ||||
|     assert(Ns == 4 and Nd == 4 and Nc == 3); | ||||
|  | ||||
|     auto grid = dynamic_cast<GridCartesian*>(Umu.Grid()); | ||||
|     assert(grid != nullptr); assert(grid->_ndimension == Nd); | ||||
|  | ||||
|     uint64_t offset = readHeader(file, Umu.Grid(), header); | ||||
|  | ||||
|     FieldMetaData clone(header); | ||||
|  | ||||
|     std::string format("IEEE64"); // they always store little endian double precsision | ||||
|     uint32_t    nersc_csum, scidac_csuma, scidac_csumb; | ||||
|  | ||||
|     GridCartesian*         grid_openqcd = createOpenQcdGrid(grid); | ||||
|     GridRedBlackCartesian* grid_rb      = SpaceTimeGrid::makeFourDimRedBlackGrid(grid); | ||||
|  | ||||
|     typedef DoubleStoredColourMatrixD                                              fobj; | ||||
|     typedef typename DoubleStoredGaugeField::vector_object::scalar_object          sobj; | ||||
|     typedef typename DoubleStoredGaugeField::vector_object::Realified::scalar_type word; | ||||
|  | ||||
|     word w = 0; | ||||
|  | ||||
|     std::vector<fobj> iodata(grid_openqcd->lSites()); // Munge, checksum, byte order in here | ||||
|     std::vector<sobj> scalardata(grid->lSites()); | ||||
|  | ||||
|     IOobject(w, grid_openqcd, iodata, file, offset, format, BINARYIO_READ | BINARYIO_LEXICOGRAPHIC, | ||||
|              nersc_csum, scidac_csuma, scidac_csumb); | ||||
|  | ||||
|     GridStopWatch timer; | ||||
|     timer.Start(); | ||||
|  | ||||
|     DoubleStoredGaugeField Umu_ds(grid); | ||||
|  | ||||
|     auto munge = GaugeDoubleStoredMunger<DoubleStoredColourMatrixD, DoubleStoredColourMatrix>(); | ||||
|  | ||||
|     Coordinate ldim = grid->LocalDimensions(); | ||||
|     thread_for(idx_g, grid->lSites(), { | ||||
|         Coordinate coor; | ||||
|         grid->LocalIndexToLocalCoor(idx_g, coor); | ||||
|  | ||||
|         bool isOdd = grid_rb->CheckerBoard(coor) == Odd; | ||||
|  | ||||
|         if(!isOdd) continue; | ||||
|  | ||||
|         int idx_o = (coor[Tdir] * ldim[Xdir] * ldim[Ydir] * ldim[Zdir] | ||||
|                   +  coor[Xdir] * ldim[Ydir] * ldim[Zdir] | ||||
|                   +  coor[Ydir] * ldim[Zdir] | ||||
|                   +  coor[Zdir])/2; | ||||
|  | ||||
|         munge(iodata[idx_o], scalardata[idx_g]); | ||||
|     }); | ||||
|  | ||||
|     grid->Barrier(); timer.Stop(); | ||||
|     std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: munge overhead " << timer.Elapsed() << std::endl; | ||||
|  | ||||
|     timer.Reset(); timer.Start(); | ||||
|  | ||||
|     vectorizeFromLexOrdArray(scalardata, Umu_ds); | ||||
|  | ||||
|     grid->Barrier(); timer.Stop(); | ||||
|     std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: vectorize overhead " << timer.Elapsed() << std::endl; | ||||
|  | ||||
|     timer.Reset(); timer.Start(); | ||||
|  | ||||
|     undoDoubleStore(Umu, Umu_ds); | ||||
|  | ||||
|     grid->Barrier(); timer.Stop(); | ||||
|     std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl; | ||||
|  | ||||
|     PeriodicGaugeStatistics Stats; Stats(Umu, clone); | ||||
|  | ||||
|     RealD plaq_diff = fabs(clone.plaquette - header.plaquette); | ||||
|  | ||||
|     // clang-format off | ||||
|     std::cout << GridLogMessage << "OpenQcd Configuration " << file | ||||
|               << " plaquette " << clone.plaquette | ||||
|               << " header " << header.plaquette | ||||
|               << " difference " << plaq_diff | ||||
|               << std::endl; | ||||
|     // clang-format on | ||||
|  | ||||
|     RealD precTol = (getPrecision<vsimd>::value == 1) ? 2e-7 : 2e-15; | ||||
|     RealD tol     = precTol * std::sqrt(grid->_Nprocessors); // taken from RQCD chroma code | ||||
|  | ||||
|     if(plaq_diff >= tol) | ||||
|       std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl; | ||||
|     assert(plaq_diff < tol); | ||||
|  | ||||
|     std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl; | ||||
|   } | ||||
|  | ||||
|   template<class vsimd> | ||||
|   static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd>>& Umu, | ||||
|                                         std::string                           file) { | ||||
|     std::cout << GridLogError << "Writing to openQCD file format is not implemented" << std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|  | ||||
| private: | ||||
|   static inline GridCartesian* createOpenQcdGrid(GridCartesian* grid) { | ||||
|     // exploit GridCartesian to be able to still use IOobject | ||||
|     Coordinate gdim  = grid->GlobalDimensions(); | ||||
|     Coordinate ldim  = grid->LocalDimensions(); | ||||
|     Coordinate pcoor = grid->ThisProcessorCoor(); | ||||
|  | ||||
|     // openqcd does rb on the z direction | ||||
|     gdim[Zdir] /= 2; | ||||
|     ldim[Zdir] /= 2; | ||||
|  | ||||
|     // and has the order T X Y Z (from slowest to fastest) | ||||
|     std::swap(gdim[Xdir], gdim[Zdir]); | ||||
|     std::swap(ldim[Xdir], ldim[Zdir]); | ||||
|     std::swap(pcoor[Xdir], pcoor[Zdir]); | ||||
|  | ||||
|     GridCartesian* ret   = SpaceTimeGrid::makeFourDimGrid(gdim, grid->_simd_layout, grid->ProcessorGrid()); | ||||
|     ret->_ldimensions    = ldim; | ||||
|     ret->_processor_coor = pcoor; | ||||
|     return ret; | ||||
|   } | ||||
|  | ||||
|   template<class vsimd> | ||||
|   static inline void undoDoubleStore(Lattice<iLorentzColourMatrix<vsimd>>&            Umu, | ||||
|                                      Lattice<iDoubleStoredColourMatrix<vsimd>> const& Umu_ds) { | ||||
|     conformable(Umu.Grid(), Umu_ds.Grid()); | ||||
|     Lattice<iColourMatrix<vsimd>> U(Umu.Grid()); | ||||
|  | ||||
|     // they store T+, T-, X+, X-, Y+, Y-, Z+, Z- | ||||
|     for(int mu_g = 0; mu_g < Nd; ++mu_g) { | ||||
|       int mu_o = (mu_g + 1) % Nd; | ||||
|       U        = PeekIndex<LorentzIndex>(Umu_ds, 2 * mu_o) | ||||
|                + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 2 * mu_o + 1), mu_g, +1); | ||||
|       PokeIndex<LorentzIndex>(Umu, U, mu_g); | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,281 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/parallelIO/OpenQcdIOChromaReference.h | ||||
|  | ||||
| Copyright (C) 2015 - 2020 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <ios> | ||||
| #include <iostream> | ||||
| #include <limits> | ||||
| #include <iomanip> | ||||
| #include <mpi.h> | ||||
| #include <ostream> | ||||
| #include <string> | ||||
|  | ||||
| #define CHECK {std::cerr << __FILE__ << " @l " << __LINE__ << ": CHECK" << grid->ThisRank() << std::endl;} | ||||
| #define CHECK_VAR(a)   { std::cerr << __FILE__ << "@l" << __LINE__ << " on "<< grid->ThisRank() << ": " << __func__ << " " << #a << "=" << (a) << std::endl; } | ||||
| // #undef CHECK | ||||
| // #define CHECK | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| class ParRdr { | ||||
| private: | ||||
|   bool const swap; | ||||
|  | ||||
|   MPI_Status status; | ||||
|   MPI_File   fp; | ||||
|  | ||||
|   int err; | ||||
|  | ||||
|   MPI_Datatype oddSiteType; | ||||
|   MPI_Datatype fileViewType; | ||||
|  | ||||
|   GridBase* grid; | ||||
|  | ||||
| public: | ||||
|   ParRdr(MPI_Comm comm, std::string const& filename, GridBase* gridPtr) | ||||
|     : swap(false) | ||||
|     , grid(gridPtr) { | ||||
|     err = MPI_File_open(comm, const_cast<char*>(filename.c_str()), MPI_MODE_RDONLY, MPI_INFO_NULL, &fp); | ||||
|     assert(err == MPI_SUCCESS); | ||||
|   } | ||||
|  | ||||
|   virtual ~ParRdr() { MPI_File_close(&fp); } | ||||
|  | ||||
|   inline void errInfo(int const err, std::string const& func) { | ||||
|     static char estring[MPI_MAX_ERROR_STRING]; | ||||
|     int         eclass = -1, len = 0; | ||||
|     MPI_Error_class(err, &eclass); | ||||
|     MPI_Error_string(err, estring, &len); | ||||
|     std::cerr << func << " - Error " << eclass << ": " << estring << std::endl; | ||||
|   } | ||||
|  | ||||
|   int readHeader(FieldMetaData& field) { | ||||
|     assert((grid->_ndimension == Nd) && (Nd == 4)); | ||||
|     assert(Nc == 3); | ||||
|  | ||||
|     OpenQcdHeader header; | ||||
|  | ||||
|     readBlock(reinterpret_cast<char*>(&header), 0, sizeof(OpenQcdHeader), MPI_CHAR); | ||||
|  | ||||
|     header.plaq /= 3.; // TODO change this into normalizationfactor | ||||
|  | ||||
|     // sanity check (should trigger on endian issues) TODO remove? | ||||
|     assert(0 < header.Nt && header.Nt <= 1024); | ||||
|     assert(0 < header.Nx && header.Nx <= 1024); | ||||
|     assert(0 < header.Ny && header.Ny <= 1024); | ||||
|     assert(0 < header.Nz && header.Nz <= 1024); | ||||
|  | ||||
|     field.dimension[0] = header.Nx; | ||||
|     field.dimension[1] = header.Ny; | ||||
|     field.dimension[2] = header.Nz; | ||||
|     field.dimension[3] = header.Nt; | ||||
|  | ||||
|     for(int d = 0; d < Nd; d++) | ||||
|       assert(grid->FullDimensions()[d] == field.dimension[d]); | ||||
|  | ||||
|     field.plaquette = header.plaq; | ||||
|  | ||||
|     field.data_start = sizeof(OpenQcdHeader); | ||||
|  | ||||
|     return field.data_start; | ||||
|   } | ||||
|  | ||||
|   void readBlock(void* const dest, uint64_t const pos, uint64_t const nbytes, MPI_Datatype const datatype) { | ||||
|     err = MPI_File_read_at_all(fp, pos, dest, nbytes, datatype, &status); | ||||
|     errInfo(err, "MPI_File_read_at_all"); | ||||
|     // CHECK_VAR(err) | ||||
|  | ||||
|     int read = -1; | ||||
|     MPI_Get_count(&status, datatype, &read); | ||||
|     // CHECK_VAR(read) | ||||
|     assert(nbytes == (uint64_t)read); | ||||
|     assert(err == MPI_SUCCESS); | ||||
|   } | ||||
|  | ||||
|   void createTypes() { | ||||
|     constexpr int elem_size = Nd * 2 * 2 * Nc * Nc * sizeof(double); // 2_complex 2_fwdbwd | ||||
|  | ||||
|     err = MPI_Type_contiguous(elem_size, MPI_BYTE, &oddSiteType); assert(err == MPI_SUCCESS); | ||||
|     err = MPI_Type_commit(&oddSiteType); assert(err == MPI_SUCCESS); | ||||
|  | ||||
|     Coordinate const L = grid->GlobalDimensions(); | ||||
|     Coordinate const l = grid->LocalDimensions(); | ||||
|     Coordinate const i = grid->ThisProcessorCoor(); | ||||
|  | ||||
|     Coordinate sizes({L[2] / 2, L[1], L[0], L[3]}); | ||||
|     Coordinate subsizes({l[2] / 2, l[1], l[0], l[3]}); | ||||
|     Coordinate starts({i[2] * l[2] / 2, i[1] * l[1], i[0] * l[0], i[3] * l[3]}); | ||||
|  | ||||
|     err = MPI_Type_create_subarray(grid->_ndimension, &sizes[0], &subsizes[0], &starts[0], MPI_ORDER_FORTRAN, oddSiteType, &fileViewType); assert(err == MPI_SUCCESS); | ||||
|     err = MPI_Type_commit(&fileViewType); assert(err == MPI_SUCCESS); | ||||
|   } | ||||
|  | ||||
|   void freeTypes() { | ||||
|     err = MPI_Type_free(&fileViewType); assert(err == MPI_SUCCESS); | ||||
|     err = MPI_Type_free(&oddSiteType); assert(err == MPI_SUCCESS); | ||||
|   } | ||||
|  | ||||
|   bool readGauge(std::vector<ColourMatrixD>& domain_buff, FieldMetaData& meta) { | ||||
|     auto hdr_offset = readHeader(meta); | ||||
|     CHECK | ||||
|     createTypes(); | ||||
|     err = MPI_File_set_view(fp, hdr_offset, oddSiteType, fileViewType, "native", MPI_INFO_NULL); errInfo(err, "MPI_File_set_view0"); assert(err == MPI_SUCCESS); | ||||
|     CHECK | ||||
|     int const domainSites = grid->lSites(); | ||||
|     domain_buff.resize(Nd * domainSites); // 2_fwdbwd * 4_Nd * domainSites / 2_onlyodd | ||||
|  | ||||
|     // the actual READ | ||||
|     constexpr uint64_t cm_size   = 2 * Nc * Nc * sizeof(double);    // 2_complex | ||||
|     constexpr uint64_t os_size   = Nd * 2 * cm_size;                // 2_fwdbwd | ||||
|     constexpr uint64_t max_elems = std::numeric_limits<int>::max(); // int adressable elems: floor is fine | ||||
|     uint64_t const     n_os      = domainSites / 2; | ||||
|  | ||||
|     for(uint64_t os_idx = 0; os_idx < n_os;) { | ||||
|       uint64_t const read_os = os_idx + max_elems <= n_os ? max_elems : n_os - os_idx; | ||||
|       uint64_t const cm      = os_idx * Nd * 2; | ||||
|       readBlock(&(domain_buff[cm]), os_idx, read_os, oddSiteType); | ||||
|       os_idx += read_os; | ||||
|     } | ||||
|  | ||||
|     CHECK | ||||
|     err = MPI_File_set_view(fp, 0, MPI_BYTE, MPI_BYTE, "native", MPI_INFO_NULL); | ||||
|   errInfo(err, "MPI_File_set_view1"); | ||||
|     assert(err == MPI_SUCCESS); | ||||
|     freeTypes(); | ||||
|  | ||||
|     std::cout << GridLogMessage << "read sum: " << n_os * os_size << " bytes" << std::endl; | ||||
|     return true; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| class OpenQcdIOChromaReference : public BinaryIO { | ||||
| public: | ||||
|   template<class vsimd> | ||||
|   static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd>>& Umu, | ||||
|                                        Grid::FieldMetaData&                  header, | ||||
|                                        std::string                           file) { | ||||
|     typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubledGaugeField; | ||||
|  | ||||
|     assert(Ns == 4 and Nd == 4 and Nc == 3); | ||||
|  | ||||
|     auto grid = Umu.Grid(); | ||||
|  | ||||
|     typedef ColourMatrixD fobj; | ||||
|  | ||||
|     std::vector<fobj> iodata( | ||||
|       Nd * grid->lSites()); // actual size = 2*Nd*lsites but have only lsites/2 sites in file | ||||
|  | ||||
|     { | ||||
|       ParRdr rdr(MPI_COMM_WORLD, file, grid); | ||||
|       rdr.readGauge(iodata, header); | ||||
|     } // equivalent to using binaryio | ||||
|  | ||||
|     std::vector<iDoubleStoredColourMatrix<typename vsimd::scalar_type>> Umu_ds_scalar(grid->lSites()); | ||||
|  | ||||
|     copyToLatticeObject(Umu_ds_scalar, iodata, grid); // equivalent to munging | ||||
|  | ||||
|     DoubledGaugeField Umu_ds(grid); | ||||
|  | ||||
|     vectorizeFromLexOrdArray(Umu_ds_scalar, Umu_ds); | ||||
|  | ||||
|     redistribute(Umu, Umu_ds); // equivalent to undoDoublestore | ||||
|  | ||||
|     FieldMetaData clone(header); | ||||
|  | ||||
|     PeriodicGaugeStatistics Stats; Stats(Umu, clone); | ||||
|  | ||||
|     RealD plaq_diff = fabs(clone.plaquette - header.plaquette); | ||||
|  | ||||
|     // clang-format off | ||||
|     std::cout << GridLogMessage << "OpenQcd Configuration " << file | ||||
|               << " plaquette " << clone.plaquette | ||||
|               << " header " << header.plaquette | ||||
|               << " difference " << plaq_diff | ||||
|               << std::endl; | ||||
|     // clang-format on | ||||
|  | ||||
|     RealD precTol = (getPrecision<vsimd>::value == 1) ? 2e-7 : 2e-15; | ||||
|     RealD tol     = precTol * std::sqrt(grid->_Nprocessors); // taken from RQCD chroma code | ||||
|  | ||||
|     if(plaq_diff >= tol) | ||||
|       std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl; | ||||
|     assert(plaq_diff < tol); | ||||
|  | ||||
|     std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl; | ||||
|   } | ||||
|  | ||||
| private: | ||||
|   template<class vsimd> | ||||
|   static inline void redistribute(Lattice<iLorentzColourMatrix<vsimd>>&            Umu, | ||||
|                                   Lattice<iDoubleStoredColourMatrix<vsimd>> const& Umu_ds) { | ||||
|     Grid::conformable(Umu.Grid(), Umu_ds.Grid()); | ||||
|     Lattice<iColourMatrix<vsimd>> U(Umu.Grid()); | ||||
|  | ||||
|     U = PeekIndex<LorentzIndex>(Umu_ds, 2) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 3), 0, +1); PokeIndex<LorentzIndex>(Umu, U, 0); | ||||
|     U = PeekIndex<LorentzIndex>(Umu_ds, 4) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 5), 1, +1); PokeIndex<LorentzIndex>(Umu, U, 1); | ||||
|     U = PeekIndex<LorentzIndex>(Umu_ds, 6) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 7), 2, +1); PokeIndex<LorentzIndex>(Umu, U, 2); | ||||
|     U = PeekIndex<LorentzIndex>(Umu_ds, 0) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 1), 3, +1); PokeIndex<LorentzIndex>(Umu, U, 3); | ||||
|   } | ||||
|  | ||||
|   static inline void copyToLatticeObject(std::vector<DoubleStoredColourMatrix>& u_fb, | ||||
|                                          std::vector<ColourMatrixD> const&      node_buff, | ||||
|                                          GridBase*                              grid) { | ||||
|     assert(node_buff.size() == Nd * grid->lSites()); | ||||
|  | ||||
|     Coordinate const& l = grid->LocalDimensions(); | ||||
|  | ||||
|     Coordinate coord(Nd); | ||||
|     int&       x = coord[0]; | ||||
|     int&       y = coord[1]; | ||||
|     int&       z = coord[2]; | ||||
|     int&       t = coord[3]; | ||||
|  | ||||
|     int buff_idx = 0; | ||||
|     for(t = 0; t < l[3]; ++t) // IMPORTANT: openQCD file ordering | ||||
|       for(x = 0; x < l[0]; ++x) | ||||
|         for(y = 0; y < l[1]; ++y) | ||||
|           for(z = 0; z < l[2]; ++z) { | ||||
|             if((t + z + y + x) % 2 == 0) continue; | ||||
|  | ||||
|             int local_idx; | ||||
|             Lexicographic::IndexFromCoor(coord, local_idx, grid->LocalDimensions()); | ||||
|             for(int mu = 0; mu < 2 * Nd; ++mu) | ||||
|               for(int c1 = 0; c1 < Nc; ++c1) { | ||||
|                 for(int c2 = 0; c2 < Nc; ++c2) { | ||||
|                   u_fb[local_idx](mu)()(c1,c2) = node_buff[mu+buff_idx]()()(c1,c2); | ||||
|                 } | ||||
|               } | ||||
|             buff_idx += 2 * Nd; | ||||
|           } | ||||
|  | ||||
|     assert(node_buff.size() == buff_idx); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,105 +0,0 @@ | ||||
| #ifndef _GRID_STAT_H | ||||
| #define _GRID_STAT_H | ||||
|  | ||||
| #ifdef AVX512 | ||||
| #define _KNIGHTS_LANDING_ROOTONLY | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////// | ||||
| // Extra KNL counters from MCDRAM | ||||
| /////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef _KNIGHTS_LANDING_ | ||||
| #define NMC 6 | ||||
| #define NEDC 8 | ||||
| struct ctrs | ||||
| { | ||||
|   uint64_t mcrd[NMC]; | ||||
|   uint64_t mcwr[NMC]; | ||||
|   uint64_t edcrd[NEDC];  | ||||
|   uint64_t edcwr[NEDC]; | ||||
|   uint64_t edchite[NEDC]; | ||||
|   uint64_t edchitm[NEDC]; | ||||
|   uint64_t edcmisse[NEDC]; | ||||
|   uint64_t edcmissm[NEDC]; | ||||
| }; | ||||
| // Peter/Azusa: | ||||
| // Our modification of a code provided by Larry Meadows from Intel | ||||
| // Verified by email exchange non-NDA, ok for github. Should be as uses /sys/devices/ FS | ||||
| // so is already public and in the linux kernel for KNL. | ||||
| struct knl_gbl_ | ||||
| { | ||||
|   int mc_rd[NMC]; | ||||
|   int mc_wr[NMC]; | ||||
|   int edc_rd[NEDC]; | ||||
|   int edc_wr[NEDC]; | ||||
|   int edc_hite[NEDC]; | ||||
|   int edc_hitm[NEDC]; | ||||
|   int edc_misse[NEDC]; | ||||
|   int edc_missm[NEDC]; | ||||
| }; | ||||
| #endif | ||||
| /////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class PmuStat | ||||
| { | ||||
|   uint64_t counters[8][256]; | ||||
| #ifdef _KNIGHTS_LANDING_ | ||||
|   static struct knl_gbl_ gbl; | ||||
| #endif | ||||
|   const char *name; | ||||
|  | ||||
|   uint64_t reads;     // memory reads | ||||
|   uint64_t writes;    // memory writes | ||||
|   uint64_t mrstart;   // memory read counter at start of parallel region | ||||
|   uint64_t mrend;     // memory read counter at end of parallel region | ||||
|   uint64_t mwstart;   // memory write counter at start of parallel region | ||||
|   uint64_t mwend;     // memory write counter at end of parallel region | ||||
|  | ||||
|   // cumulative counters | ||||
|   uint64_t count;     // number of invocations | ||||
|   uint64_t tregion;   // total time in parallel region (from thread 0) | ||||
|   uint64_t tcycles;   // total cycles inside parallel region | ||||
|   uint64_t inst, ref, cyc;   // fixed counters | ||||
|   uint64_t pmc0, pmc1;// pmu | ||||
|   // add memory counters here | ||||
|   // temp variables | ||||
|   uint64_t tstart;    // tsc at start of parallel region | ||||
|   uint64_t tend;      // tsc at end of parallel region | ||||
|   // map for ctrs values | ||||
|   // 0 pmc0 start | ||||
|   // 1 pmc0 end | ||||
|   // 2 pmc1 start | ||||
|   // 3 pmc1 end | ||||
|   // 4 tsc start | ||||
|   // 5 tsc end | ||||
|   static bool pmu_initialized; | ||||
| public: | ||||
|   static bool is_init(void){ return pmu_initialized;} | ||||
|   static void pmu_init(void); | ||||
|   static void pmu_fini(void); | ||||
|   static void pmu_start(void); | ||||
|   static void pmu_stop(void); | ||||
|   void accum(int nthreads); | ||||
|   static void xmemctrs(uint64_t *mr, uint64_t *mw); | ||||
|   void start(void); | ||||
|   void enter(int t); | ||||
|   void exit(int t); | ||||
|   void print(void); | ||||
|   void init(const char *regname); | ||||
|   void clear(void); | ||||
| #ifdef _KNIGHTS_LANDING_ | ||||
|   static void     KNLsetup(void); | ||||
|   static uint64_t KNLreadctr(int fd); | ||||
|   static void     KNLreadctrs(ctrs &c); | ||||
|   static void     KNLevsetup(const char *ename, int &fd, int event, int umask); | ||||
| #endif | ||||
|      | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user