1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 13:57:07 +01:00

Compare commits

..

11 Commits

115 changed files with 3020 additions and 6860 deletions

4
.gitignore vendored
View File

@ -1,7 +1,3 @@
# Doxygen stuff
html/*
latex/*
# Compiled Object files #
#########################
*.slo

View File

@ -34,7 +34,7 @@
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#define EIGEN_DONT_VECTORIZE
#undef EIGEN_USE_SYCL
//#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#define _GRID_FFT_H_
#ifdef HAVE_FFTW
#if defined(USE_MKL) || defined(GRID_SYCL)
#ifdef USE_MKL
#include <fftw/fftw3.h>
#else
#include <fftw3.h>

View File

@ -460,6 +460,53 @@ class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Fi
}
};
template<class Matrix,class Field>
class QuadLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
RealD a0,a1,a2;
QuadLinearOperator(Matrix &Mat): _Mat(Mat),a0(0.),a1(0.),a2(1.) {};
QuadLinearOperator(Matrix &Mat, RealD _a0,RealD _a1,RealD _a2): _Mat(Mat),a0(_a0),a1(_a1),a2(_a2) {};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
_Mat.MdirAll(in,out);
}
void HermOp (const Field &in, Field &out){
// _Mat.M(in,out);
Field tmp1(in.Grid());
// Linop.HermOpAndNorm(psi, mmp, d, b);
_Mat.M(in,tmp1);
_Mat.M(tmp1,out);
out *= a2;
axpy(out, a1, tmp1, out);
axpy(out, a0, in, out);
// d=real(innerProduct(psi,mmp));
// b=norm2(mmp);
}
void AdjOp (const Field &in, Field &out){
assert(0);
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void Op(const Field &in, Field &out){
assert(0);
_Mat.M(in,out);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi

View File

@ -36,11 +36,12 @@ NAMESPACE_BEGIN(Grid);
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
// Changing to operator
template<class LinearOperatorBase, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
virtual Field operator()(LinearOperatorBase &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
@ -54,13 +55,13 @@ public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
std::cout << GridLogMessage << "ChronoForecast: degree= " << degree << std::endl;
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = Zero(); return chi; }
else if(degree == 1){ return prev_solns[0]; }
// RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
@ -83,8 +84,9 @@ public:
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
// Mat.M(v[i],Mv);
// Mat.Mdag(Mv,MdagMv[i]);
Mat.HermOp(v[i],MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}

View File

@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
* type = 1 for the approximation which is infinite at x = 0. */
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
l, invlambda, xi, xisq, *tv, s, opl;
int m, czero, ts;
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
construct_partfrac(d);
construct_contfrac(d);
/* Converting everything to ZOLO_PRECISION for external use only */
/* Converting everything to PRECISION for external use only */
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
zd -> A = (ZOLO_PRECISION) d -> A;
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
zd -> A = (PRECISION) d -> A;
zd -> Delta = (PRECISION) d -> Delta;
zd -> epsilon = (PRECISION) d -> epsilon;
zd -> n = d -> n;
zd -> type = d -> type;
zd -> dn = d -> dn;
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
zd -> deg_num = d -> deg_num;
zd -> deg_denom = d -> deg_denom;
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
free(d -> a);
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
free(d -> ap);
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
free(d -> alpha);
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
free(d -> beta);
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
free(d -> gamma);
free(d);
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
}
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
zolotarev_data* higham(PRECISION epsilon, int n) {
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
int m, czero;
zolotarev_data *zd;
@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
/* Converting everything to PRECISION for external use only */
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
zd -> A = (ZOLO_PRECISION) d -> A;
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
zd -> A = (PRECISION) d -> A;
zd -> Delta = (PRECISION) d -> Delta;
zd -> epsilon = (PRECISION) d -> epsilon;
zd -> n = d -> n;
zd -> type = d -> type;
zd -> dn = d -> dn;
@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
zd -> deg_num = d -> deg_num;
zd -> deg_denom = d -> deg_denom;
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
free(d -> a);
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
free(d -> ap);
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
free(d -> alpha);
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
free(d -> beta);
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
free(d -> gamma);
free(d);
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
#ifdef TEST
#undef ZERO
#define ZERO ((ZOLO_PRECISION) 0)
#define ZERO ((PRECISION) 0)
#undef ONE
#define ONE ((ZOLO_PRECISION) 1)
#define ONE ((PRECISION) 1)
#undef TWO
#define TWO ((ZOLO_PRECISION) 2)
#define TWO ((PRECISION) 2)
/* Evaluate the rational approximation R(x) using the factored form */
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION R;
PRECISION R;
if (rdata -> type == 0) {
R = rdata -> A * x;
@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
/* Evaluate the rational approximation R(x) using the partial fraction form */
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
PRECISION R = rdata -> alpha[rdata -> da - 1];
for (m = 0; m < rdata -> dd; m++)
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
* but with signalling overflow you will get an error message. */
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION R = rdata -> beta[0] * x;
PRECISION R = rdata -> beta[0] * x;
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
return R;
}
/* Evaluate the rational approximation R(x) using Cayley form */
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION T;
PRECISION T;
T = rdata -> type == 0 ? ONE : -ONE;
for (m = 0; m < rdata -> n; m++)
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
int m, n, plotpts = 5000, type = 0;
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
zolotarev_data *rdata;
ZOLO_PRECISION y;
PRECISION y;
FILE *plot_function, *plot_error,
*plot_partfrac, *plot_contfrac, *plot_cayley;
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
}
rdata = type == 2
? higham((ZOLO_PRECISION) eps, n)
: zolotarev((ZOLO_PRECISION) eps, n, type);
? higham((PRECISION) eps, n)
: zolotarev((PRECISION) eps, n, type);
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
"\tPRECISION = " STRINGIFY(PRECISION)
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
"\tDelta = %g (maximum error)\n\n"
"\tA = %g (overall factor)\n",
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
x = 2.4 * (float) m / plotpts - 1.2;
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
/* skip x = 0 for type 1, as R(0) is singular */
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
y = zolotarev_eval((PRECISION) x, rdata);
fprintf(plot_function, "%g %g\n", x, (float) y);
fprintf(plot_error, "%g %g\n",
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta);
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta);
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta);
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
maxypferr = MAX(maxypferr, fabs(ypferr));

View File

@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
#ifndef ZOLOTAREV_INTERNAL
#ifndef ZOLO_PRECISION
#define ZOLO_PRECISION double
#ifndef PRECISION
#define PRECISION double
#endif
#define ZPRECISION ZOLO_PRECISION
#define ZPRECISION PRECISION
#define ZOLOTAREV_DATA zolotarev_data
#endif
@ -77,8 +77,8 @@ typedef struct {
* zolotarev_data structure. The arguments must satisfy the constraints that
* epsilon > 0, n > 0, and type = 0 or 1. */
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
void zolotarev_free(zolotarev_data *zdata);
#endif
@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/algorithms/blas/BatchedBlas.h>
NAMESPACE_BEGIN(Grid);
gridblasHandle_t GridBLAS::gridblasHandle;
int GridBLAS::gridblasInit;
NAMESPACE_END(Grid);

View File

@ -1,727 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifdef GRID_HIP
#include <hipblas/hipblas.h>
#endif
#ifdef GRID_CUDA
#include <cublas_v2.h>
#endif
#ifdef GRID_SYCL
#include <oneapi/mkl.hpp>
#endif
#if 0
#define GRID_ONE_MKL
#endif
#ifdef GRID_ONE_MKL
#include <oneapi/mkl.hpp>
#endif
///////////////////////////////////////////////////////////////////////
// Need to rearrange lattice data to be in the right format for a
// batched multiply. Might as well make these static, dense packed
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
typedef hipblasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_CUDA
typedef cublasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_SYCL
typedef cl::sycl::queue *gridblasHandle_t;
#endif
#ifdef GRID_ONE_MKL
typedef cl::sycl::queue *gridblasHandle_t;
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
typedef int32_t gridblasHandle_t;
#endif
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
class GridBLAS {
public:
static gridblasHandle_t gridblasHandle;
static int gridblasInit;
static void Init(void)
{
if ( ! gridblasInit ) {
#ifdef GRID_CUDA
std::cout << "cublasCreate"<<std::endl;
cublasCreate(&gridblasHandle);
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
#endif
#ifdef GRID_HIP
std::cout << "hipblasCreate"<<std::endl;
hipblasCreate(&gridblasHandle);
#endif
#ifdef GRID_SYCL
gridblasHandle = theGridAccelerator;
#endif
#ifdef GRID_ONE_MKL
cl::sycl::cpu_selector selector;
cl::sycl::device selectedDevice { selector };
gridblasHandle =new sycl::queue (selectedDevice);
#endif
gridblasInit=1;
}
}
// Force construct once
GridBLAS() { Init(); };
~GridBLAS() { };
/////////////////////////////////////////////////////////////////////////////////////
// BLAS GEMM conventions:
/////////////////////////////////////////////////////////////////////////////////////
// - C = alpha A * B + beta C
// Dimensions:
// - C_m.n
// - A_m.k
// - B_k.n
// - Flops = 8 M N K
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
// M=60, N=12
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
/////////////////////////////////////////////////////////////////////////////////////
void synchronise(void)
{
#ifdef GRID_HIP
auto err = hipDeviceSynchronize();
assert(err==hipSuccess);
#endif
#ifdef GRID_CUDA
auto err = cudaDeviceSynchronize();
assert(err==cudaSuccess);
#endif
#ifdef GRID_SYCL
accelerator_barrier();
#endif
#ifdef GRID_ONE_MKL
gridblasHandle->wait();
#endif
}
void gemmBatched(int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond();
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasZgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex **)&Amk[0], lda,
(hipblasDoubleComplex **)&Bkn[0], ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasZgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex **)&Amk[0], lda,
(cuDoubleComplex **)&Bkn[0], ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
// synchronise();
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasComplex *) &alpha_p[0],
(hipblasComplex **)&Amk[0], lda,
(hipblasComplex **)&Bkn[0], ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda,
(cuComplex **)&Bkn[0], ldb,
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
ComplexF alphaf(real(alpha),imag(alpha));
ComplexF betaf(real(beta),imag(beta));
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexF c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasDgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
/*
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t batchCount64=batchCount;
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
onemkl::transpose::N,
onemkl::transpose::N,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
1,&batchCount64);
*/
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Strided case used by benchmark, but generally unused in Grid
// Keep a code example in double complex, but don't generate the single and real variants for now
////////////////////////////////////////////////////////////////////////////////////////////////
void gemmStridedBatched(int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // pointer list to matrices
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn,
int batchCount)
{
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
int sda = m*k;
int sdb = k*n;
int sdc = m*n;
deviceVector<ComplexD> alpha_p(1);
deviceVector<ComplexD> beta_p(1);
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
#ifdef GRID_HIP
auto err = hipblasZgemmStridedBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda, sda,
(hipblasDoubleComplex *) Bkn, ldb, sdb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc, sdc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasZgemmStridedBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda, sda,
(cuDoubleComplex *) Bkn, ldb, sdb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc, sdc,
batchCount);
#endif
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
oneapi::mkl::transpose::N,
oneapi::mkl::transpose::N,
m,n,k,
alpha,
(const ComplexD *)Amk,lda,sda,
(const ComplexD *)Bkn,ldb,sdb,
beta,
(ComplexD *)Cmn,ldc,sdc,
batchCount);
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
}
double benchmark(int M, int N, int K, int BATCH)
{
int32_t N_A = M*K*BATCH;
int32_t N_B = K*N*BATCH;
int32_t N_C = M*N*BATCH;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
RealD flops = 8.0*M*N*K*BATCH;
int ncall=10;
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemmStridedBatched(M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
BATCH);
}
synchronise();
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
flops = 8.0*M*N*K*BATCH*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
};
NAMESPACE_END(Grid);

View File

@ -176,7 +176,6 @@ template<class T> using cshiftAllocator = std::allocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid);

View File

@ -29,27 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table;
extern commVector<std::pair<int,int> > Cshift_table_device;
extern Vector<std::pair<int,int> > Cshift_table;
inline std::pair<int,int> *MapCshiftTable(void)
{
// GPU version
#ifdef ACCELERATOR_CSHIFT
uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz);
}
acceleratorCopyToDevice((void *)&Cshift_table[0],
(void *)&Cshift_table_device[0],
sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0];
#else
return &Cshift_table[0];
#endif
// CPU version use identify map
}
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
@ -93,8 +74,8 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
}
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
@ -244,7 +225,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
@ -316,6 +297,30 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
}
}
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
template <typename T>
T iDivUp(T a, T b) // Round a / b to nearest higher integer value
{ return (a % b != 0) ? (a / b + 1) : (a / b); }
template <typename T>
__global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride)
{
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx >= e1*e2) return;
int n, b, o;
n = idx / e2;
b = idx % e2;
o = n*stride + b;
vector[2*idx + 0] = lo + o;
vector[2*idx + 1] = ro + o;
}
#endif
//////////////////////////////////////////////////////
// local to node block strided copies
//////////////////////////////////////////////////////
@ -340,12 +345,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
int ent=0;
if(cbmask == 0x3 ){
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
ent = e1*e2;
dim3 blockSize(acceleratorThreads());
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
accelerator_barrier();
#else
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
#endif
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
@ -359,7 +372,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
}
{
auto table = MapCshiftTable();
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
@ -396,11 +409,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
int ent=0;
if ( cbmask == 0x3 ) {
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
ent = e1*e2;
dim3 blockSize(acceleratorThreads());
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
accelerator_barrier();
#else
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
#endif
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
@ -411,7 +432,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
}
{
auto table = MapCshiftTable();
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);

View File

@ -52,8 +52,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
RealD t1,t0;
t0=usecond();
if ( !comm_dim ) {
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift);
}
t1=usecond();
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret;
}
@ -130,20 +127,16 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
@ -151,39 +144,26 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
grid->Barrier();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -210,12 +190,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
@ -253,9 +227,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
tgather-=usecond();
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
@ -280,8 +252,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
@ -291,9 +262,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
recv_from_rank,
bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
@ -301,17 +270,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -331,11 +292,6 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
@ -359,9 +315,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
@ -370,9 +324,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
@ -380,8 +332,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
@ -389,24 +340,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
grid->Barrier();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -432,11 +372,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
@ -479,10 +414,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
@ -507,8 +440,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
@ -517,28 +449,17 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
*/
}
#endif
NAMESPACE_END(Grid);

View File

@ -1,5 +1,4 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table;
commVector<std::pair<int,int> > Cshift_table_device;
Vector<std::pair<int,int> > Cshift_table;
NAMESPACE_END(Grid);

View File

@ -35,7 +35,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_transpose.h>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
@ -47,4 +46,5 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/PaddedCell.h>

View File

@ -270,42 +270,5 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L
return axpby_norm_fast(ret,a,b,x,y);
}
/// Trace product
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
-> Lattice<decltype(trace(obj()))>
{
typedef decltype(trace(obj())) robj;
Lattice<robj> ret_i(rhs_1.Grid());
autoView( rhs1 , rhs_1, AcceleratorRead);
autoView( rhs2 , rhs_2, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs_1.Checkerboard();
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
});
return ret_i;
}
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
-> Lattice<decltype(trace(obj1()))>
{
typedef decltype(trace(obj1())) robj;
Lattice<robj> ret_i(rhs_1.Grid());
autoView( rhs1 , rhs_1, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs_1.Checkerboard();
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
});
return ret_i;
}
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
-> Lattice<decltype(trace(obj1()))>
{
return traceProduct(rhs_1,rhs_2);
}
NAMESPACE_END(Grid);
#endif

View File

@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
#if ( (!defined(GRID_CUDA)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region

View File

@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
}
}
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -31,7 +31,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
#if defined(GRID_SYCL)
#include <Grid/lattice/Lattice_reduction_sycl.h>
#endif
#include <Grid/lattice/Lattice_slicesum_core.h>
NAMESPACE_BEGIN(Grid);
@ -281,17 +280,11 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
return nrm;
}
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
uint32_t csum=0;
// Uint32Checksum(left,csum);
ComplexD nrm = rankInnerProduct(left,right);
RealD local = real(nrm);
GridNormLog(real(nrm),csum); // Could log before and after global sum to distinguish local and MPI
grid->GlobalSum(nrm);
GridMPINormLog(local,real(nrm));
return nrm;
}
@ -455,10 +448,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
int ostride=grid->_ostride[orthogdim];
//Reduce Data down to lvSum
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data_v[ss];
}
}
});
// Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd);
@ -502,7 +504,6 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
return result;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{

View File

@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
cudaGetDevice(&device);
#endif
#ifdef GRID_HIP
auto r=hipGetDevice(&device);
hipGetDevice(&device);
#endif
Iterator warpSize = gpu_props[device].warpSize;

View File

@ -152,7 +152,6 @@ public:
#ifdef RNG_FAST_DISCARD
static void Skip(RngEngine &eng,uint64_t site)
{
#if 0
/////////////////////////////////////////////////////////////////////////////////////
// Skip by 2^40 elements between successive lattice sites
// This goes by 10^12.
@ -163,9 +162,9 @@ public:
// tens of seconds per trajectory so this is clean in all reasonable cases,
// and margin of safety is orders of magnitude.
// We could hack Sitmo to skip in the higher order words of state if necessary
//
// Replace with 2^30 ; avoid problem on large volumes
//
//
// Replace with 2^30 ; avoid problem on large volumes
//
/////////////////////////////////////////////////////////////////////////////////////
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
const int shift = 30;
@ -180,9 +179,6 @@ public:
assert((skip >> shift)==site); // check for overflow
eng.discard(skip);
#else
eng.discardhi(site);
#endif
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
}
#endif
@ -411,7 +407,7 @@ public:
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
SeedFixedIntegers(seeds);
}
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
void SeedFixedIntegers(const std::vector<int> &seeds){
// Everyone generates the same seed_seq based on input seeds
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
@ -428,6 +424,7 @@ public:
// MT implementation does not implement fast discard even though
// in principle this is possible
////////////////////////////////////////////////
#if 1
thread_for( lidx, _grid->lSites(), {
int gidx;
@ -448,12 +445,29 @@ public:
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
if ( britney ) {
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
} else {
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
});
#else
// Everybody loops over global volume.
thread_for( gidx, _grid->_gsites, {
// Where is it?
int rank;
int o_idx;
int i_idx;
Coordinate gcoor;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// If this is one of mine we take it
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
}
});
#endif
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient

View File

@ -1,213 +0,0 @@
#pragma once
#include <type_traits>
#if defined(GRID_CUDA)
#include <cub/cub.cuh>
#define gpucub cub
#define gpuError_t cudaError_t
#define gpuSuccess cudaSuccess
#elif defined(GRID_HIP)
#include <hipcub/hipcub.hpp>
#define gpucub hipcub
#define gpuError_t hipError_t
#define gpuSuccess hipSuccess
#endif
NAMESPACE_BEGIN(Grid);
#if defined(GRID_CUDA) || defined(GRID_HIP)
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
size_t subvol_size = e1*e2;
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
vobj zero_init;
zeroit(zero_init);
void *temp_storage_array = NULL;
size_t temp_storage_bytes = 0;
vobj *d_out;
int* d_offsets;
std::vector<int> offsets(rd+1,0);
for (int i = 0; i < offsets.size(); i++) {
offsets[i] = i*subvol_size;
}
//Allocate memory for output and offset arrays on device
d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
if (gpuErr!=gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
//allocate memory for temp_storage_array
temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
//prepare buffer for reduction
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
int n = s / e2;
int b = s % e2;
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
});
//issue segmented reductions in computeStream
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
if (gpuErr!=gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy
accelerator_barrier();
acceleratorFreeDevice(temp_storage_array);
acceleratorFreeDevice(d_out);
acceleratorFreeDevice(d_offsets);
}
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2;
commVector<vector>buffer(osites);
vector *dat = (vector *)Data;
vector *buf = &buffer[0];
Vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r];
}
}
}
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
{
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) {
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
else {
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
}
#endif
#if defined(GRID_SYCL)
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
typedef typename vobj::scalar_object sobj;
size_t subvol_size = e1*e2;
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
vobj vobj_zero;
zeroit(vobj_zero);
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
autoView(Data_v, Data, AcceleratorRead);
//prepare reduction buffer
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
int n = s / e2;
int b = s % e2;
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
});
for (int r = 0; r < rd; r++) {
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
Reduction,
[=](cl::sycl::id<1> item, auto &sum) {
auto s = item[0];
sum += rb_p[r*subvol_size+s];
});
});
theGridAccelerator->wait();
lvSum[r] = mysum[0];
}
free(mysum,*theGridAccelerator);
}
#endif
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
int so=r*ostride; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data_v[ss];
}
}
});
}
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#elif defined(GRID_SYCL)
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif
}
NAMESPACE_END(Grid);

View File

@ -469,13 +469,15 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
vobj zz = Zero();
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
vobj cd = Zero();
vobj cd = zz;
for(int sb=0;sb<blockVol;sb++){

View File

@ -45,7 +45,6 @@ public:
};
// Host only
GridBase * getGrid(void) const { return _grid; };
vobj* getHostPointer(void) const { return _odata; };
};
/////////////////////////////////////////////////////////////////////////////////////////

View File

@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
extern GridLogger GridLogError;
extern GridLogger GridLogWarning;
extern GridLogger GridLogMessage;
extern GridLogger GridLogDebug;
extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogDslash;
extern GridLogger GridLogIterative;
extern GridLogger GridLogIntegrator;
extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;
extern GridLogger GridLogMemory;
extern GridLogger GridLogTracing;
@ -191,41 +191,6 @@ extern Colours GridLogColours;
std::string demangle(const char* name) ;
template<typename... Args>
inline std::string sjoin(Args&&... args) noexcept {
std::ostringstream msg;
(msg << ... << args);
return msg.str();
}
/*! @brief make log messages work like python print */
template <typename... Args>
inline void Grid_log(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << GridLogMessage << msg << std::endl;
}
/*! @brief make warning messages work like python print */
template <typename... Args>
inline void Grid_warn(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
}
/*! @brief make error messages work like python print */
template <typename... Args>
inline void Grid_error(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
}
/*! @brief make pass messages work like python print */
template <typename... Args>
inline void Grid_pass(Args&&... args) {
std::string msg = sjoin(std::forward<Args>(args)...);
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
}
#define _NBACKTRACE (256)
extern void * Grid_backtrace_buffer[_NBACKTRACE];

View File

@ -34,7 +34,7 @@ class GridTracer {
};
inline void tracePush(const char *name) { roctxRangePushA(name); }
inline void tracePop(const char *name) { roctxRangePop(); }
inline int traceStart(const char *name) { return roctxRangeStart(name); }
inline int traceStart(const char *name) { roctxRangeStart(name); }
inline void traceStop(int ID) { roctxRangeStop(ID); }
#endif

View File

@ -129,22 +129,6 @@ public:
virtual ~Action(){}
};
template <class GaugeField >
class EmptyAction : public Action <GaugeField>
{
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
///////////////////////////////
// Logging
///////////////////////////////
virtual std::string action_name() { return std::string("Level Force Log"); };
virtual std::string LogParameters() { return std::string("No parameters");};
};
NAMESPACE_END(Grid);
#endif // ACTION_BASE_H

View File

@ -67,6 +67,7 @@ NAMESPACE_CHECK(Scalar);
#include <Grid/qcd/utils/Metric.h>
NAMESPACE_CHECK(Metric);
#include <Grid/qcd/utils/CovariantLaplacian.h>
#include <Grid/qcd/utils/CovariantLaplacianRat.h>
NAMESPACE_CHECK(CovariantLaplacian);

View File

@ -65,6 +65,19 @@ struct WilsonImplParams {
}
};
struct GaugeImplParams {
// bool overlapCommsCompute;
// AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases;
GaugeImplParams() {
boundary_phases.resize(Nd, 1.0);
// twist_n_2pi_L.resize(Nd, 0.0);
};
GaugeImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi) {
// twist_n_2pi_L.resize(Nd, 0.0);
}
};
struct StaggeredImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;

View File

@ -63,9 +63,7 @@ public:
virtual void MooeeDag(const FermionField &in, FermionField &out) ;
virtual void MooeeInv(const FermionField &in, FermionField &out) ;
virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
virtual void M(const FermionField &in, FermionField &out) ;
virtual void Mdag(const FermionField &in, FermionField &out) ;
private:
RealD mu; // TwistedMass parameter

View File

@ -280,16 +280,20 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
if( interior && exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
if (Opt == OptInlineAsm ) { ASM_CALL(DhopSiteAsm); return;}
#endif
} else if( interior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1); return;}
#endif
} else if( exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1); return;}
#endif
}
assert(0 && " Kernel optimisation case not covered ");
}
@ -318,13 +322,19 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
if( interior && exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0); return;}
#endif
} else if( interior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0); return;}
#endif
} else if( exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0); return;}
#endif
}
}

View File

@ -93,25 +93,5 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou
RealD b = tm /sq;
axpibg5x(out,in,a,b);
}
template<class Impl>
void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
this->Dhop(in, out, DaggerNo);
FermionField tmp(out.Grid());
RealD a = 4.0+this->mass;
RealD b = this->mu;
axpibg5x(tmp,in,a,b);
axpy(out, 1.0, tmp, out);
}
template<class Impl>
void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
this->Dhop(in, out, DaggerYes);
FermionField tmp(out.Grid());
RealD a = 4.0+this->mass;
RealD b = -this->mu;
axpibg5x(tmp,in,a,b);
axpy(out, 1.0, tmp, out);
}
NAMESPACE_END(Grid);

View File

@ -32,7 +32,7 @@ directory
NAMESPACE_BEGIN(Grid);
#define CPS_MD_TIME
#undef CPS_MD_TIME
#ifdef CPS_MD_TIME
#define HMC_MOMENTUM_DENOMINATOR (2.0)

View File

@ -42,9 +42,13 @@ template <class Gimpl>
class WilsonGaugeAction : public Action<typename Gimpl::GaugeField> {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef GaugeImplParams ImplParams;
ImplParams Params;
/////////////////////////// constructors
explicit WilsonGaugeAction(RealD beta_):beta(beta_){};
explicit WilsonGaugeAction(RealD beta_,
const ImplParams &p = ImplParams()
):beta(beta_),Params(p){};
virtual std::string action_name() {return "WilsonGaugeAction";}
@ -56,14 +60,53 @@ public:
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG){}; // noop as no pseudoferms
// Umu<->U maximally confusing
virtual void boundary(const GaugeField &Umu, GaugeField &Ub){
typedef typename Simd::scalar_type scalar_type;
assert(Params.boundary_phases.size() == Nd);
GridBase *GaugeGrid=Umu.Grid();
GaugeLinkField U(GaugeGrid);
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) {
////////// boundary phase /////////////
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
std::cout<< GridLogIterative << "[WilsonGaugeAction] boundary "<<mu<<" "<<phase<< std::endl;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
tmp = where(coor == Lmu, phase * U, U);
PokeIndex<LorentzIndex>(Ub, tmp, mu);
// PokeIndex<LorentzIndex>(Ub, U, mu);
// PokeIndex<LorentzIndex>(Umu, tmp, mu);
}
};
virtual RealD S(const GaugeField &U) {
RealD plaq = WilsonLoops<Gimpl>::avgPlaquette(U);
RealD vol = U.Grid()->gSites();
GaugeField Ub(U.Grid());
this->boundary(U,Ub);
static RealD lastG=0.;
RealD plaq = WilsonLoops<Gimpl>::avgPlaquette(Ub);
RealD vol = Ub.Grid()->gSites();
RealD action = beta * (1.0 - plaq) * (Nd * (Nd - 1.0)) * vol * 0.5;
std::cout << GridLogMessage << "[WilsonGaugeAction] dH: " << action-lastG << std::endl;
RealD plaq_o = WilsonLoops<Gimpl>::avgPlaquette(U);
RealD action_o = beta * (1.0 - plaq_o) * (Nd * (Nd - 1.0)) * vol * 0.5;
std::cout << GridLogMessage << "[WilsonGaugeAction] U: " << action_o <<" Ub: "<< action << std::endl;
lastG=action;
return action;
};
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
GaugeField Ub(U.Grid());
this->boundary(U,Ub);
// not optimal implementation FIXME
// extend Ta to include Lorentz indexes
@ -73,10 +116,9 @@ public:
GaugeLinkField dSdU_mu(U.Grid());
for (int mu = 0; mu < Nd; mu++) {
Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = PeekIndex<LorentzIndex>(Ub, mu);
// Staple in direction mu
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
WilsonLoops<Gimpl>::Staple(dSdU_mu, Ub, mu);
dSdU_mu = Ta(Umu * dSdU_mu) * factor;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);

View File

@ -86,13 +86,8 @@ public:
assert(ForceE.Checkerboard()==Even);
assert(ForceO.Checkerboard()==Odd);
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorSetCheckerboard(Force,ForceE);
acceleratorSetCheckerboard(Force,ForceO);
#else
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
#endif
Force=-Force;
delete forcecb;
@ -135,13 +130,8 @@ public:
assert(ForceE.Checkerboard()==Even);
assert(ForceO.Checkerboard()==Odd);
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorSetCheckerboard(Force,ForceE);
acceleratorSetCheckerboard(Force,ForceO);
#else
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
#endif
Force=-Force;
delete forcecb;

View File

@ -178,7 +178,10 @@ NAMESPACE_BEGIN(Grid);
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
MdagMLinearOperator<AbstractEOFAFermion<Impl> ,FermionField> MdagML(Lop);
MdagMLinearOperator<AbstractEOFAFermion<Impl> ,FermionField> MdagMR(Rop);
// ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
ChronoForecast<MdagMLinearOperator<AbstractEOFAFermion<Impl>, FermionField> , FermionField> Forecast;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
@ -198,7 +201,7 @@ NAMESPACE_BEGIN(Grid);
heatbathRefreshShiftCoefficients(0, -gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
CG_soln = Forecast(MdagML, Forecast_src, prev_solns);
SolverHBL(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
@ -225,7 +228,7 @@ NAMESPACE_BEGIN(Grid);
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
CG_soln = Forecast(MdagMR, Forecast_src, prev_solns);
SolverHBR(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {

View File

@ -1,6 +1,6 @@
#pragma once
#define CPS_MD_TIME
#undef CPS_MD_TIME
#ifdef CPS_MD_TIME
#define HMC_MOMENTUM_DENOMINATOR (2.0)

View File

@ -121,12 +121,19 @@ public:
template <class SmearingPolicy>
void Run(SmearingPolicy &S) {
Runner(S);
TrivialMetric<typename Implementation::Field> Mtr;
Runner(S,Mtr);
}
template <class SmearingPolicy, class Metric>
void Run(SmearingPolicy &S, Metric &Mtr) {
Runner(S,Mtr);
}
void Run(){
NoSmearing<Implementation> S;
Runner(S);
TrivialMetric<typename Implementation::Field> Mtr;
Runner(S,Mtr);
}
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
@ -176,15 +183,15 @@ public:
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
template <class SmearingPolicy, class Metric>
void Runner(SmearingPolicy &Smearing, Metric &Mtr) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing,Mtr);
// Sets the momentum filter
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));

View File

@ -55,6 +55,8 @@ struct HMCparameters: Serializable {
Integer, NoMetropolisUntil,
bool, PerformRandomShift, /* @brief Randomly shift the gauge configuration at the start of a trajectory */
std::string, StartingType,
Integer, SW,
RealD, Kappa,
IntegratorParameters, MD)
HMCparameters() {
@ -110,6 +112,8 @@ private:
IntegratorType &TheIntegrator;
ObsListType Observables;
int traj_num;
/////////////////////////////////////////////////////////
// Metropolis step
/////////////////////////////////////////////////////////
@ -200,14 +204,14 @@ private:
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
TheIntegrator.integrate(U);
TheIntegrator.integrate(U,traj_num);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute final action";
std::cout << GridLogMessage << "Compute final action" <<std::endl;
RealD H1 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
@ -242,7 +246,7 @@ public:
HybridMonteCarlo(HMCparameters _Pams, IntegratorType &_Int,
GridSerialRNG &_sRNG, GridParallelRNG &_pRNG,
ObsListType _Obs, Field &_U)
: Params(_Pams), TheIntegrator(_Int), sRNG(_sRNG), pRNG(_pRNG), Observables(_Obs), Ucur(_U) {}
: Params(_Pams), TheIntegrator(_Int), sRNG(_sRNG), pRNG(_pRNG), Observables(_Obs), Ucur(_U),traj_num(0) {}
~HybridMonteCarlo(){};
void evolve(void) {
@ -257,9 +261,10 @@ public:
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
traj_num=traj;
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}

View File

@ -9,6 +9,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <cossu@post.kek.jp>
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,6 +34,7 @@ directory
#define INTEGRATOR_INCLUDED
#include <memory>
#include <Grid/parallelIO/NerscIO.h>
NAMESPACE_BEGIN(Grid);
@ -41,10 +43,19 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(IntegratorParameters,
std::string, name, // name of the integrator
unsigned int, MDsteps, // number of outer steps
RealD, RMHMCTol,
RealD, RMHMCCGTol,
RealD, lambda0,
RealD, lambda1,
RealD, lambda2,
RealD, trajL) // trajectory length
IntegratorParameters(int MDsteps_ = 10, RealD trajL_ = 1.0)
: MDsteps(MDsteps_),
lambda0(0.1931833275037836),
lambda1(0.1931833275037836),
lambda2(0.1931833275037836),
RMHMCTol(1e-8),RMHMCCGTol(1e-8),
trajL(trajL_) {};
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
@ -75,11 +86,14 @@ public:
double t_U; // Track time passing on each level and for U and for P
std::vector<double> t_P;
MomentaField P;
// MomentaField P;
GeneralisedMomenta<FieldImplementation > P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
RealD Saux,Smom,Sg;
//Filters allow the user to manipulate the conjugate momentum, for example to freeze links in DDHMC
//It is applied whenever the momentum is updated / refreshed
//The default filter does nothing
@ -87,8 +101,6 @@ public:
const ActionSet<Field, RepresentationPolicy> as;
ActionSet<Field,RepresentationPolicy> LevelForces;
//Get a pointer to a shared static instance of the "do-nothing" momentum filter to serve as a default
static MomentumFilterBase<MomentaField> const* getDefaultMomFilter(){
static MomentumFilterNone<MomentaField> filter;
@ -98,7 +110,16 @@ public:
void update_P(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P(P, U, level, ep);
update_P(P.Mom, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
void update_P2(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P2(P.Mom, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
@ -121,78 +142,174 @@ public:
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
assert(as.size()==LevelForces.size());
Field level_force(U.Grid()); level_force =Zero();
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Smearer, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
auto name = as[level].actions.at(a)->action_name();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<< std::endl;
// track the total
level_force = level_force+force;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] dt : " << ep <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
{
// total force
Real force_abs = std::sqrt(norm2(level_force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(level_force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
LevelForces[level].actions.at(0)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void update_P2(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
std::cout << GridLogIntegrator << "U before update_P2: " << std::sqrt(norm2(U)) << std::endl;
// Generalised momenta
// Derivative of the kinetic term must be computed before
// Mom is the momenta and gets updated by the
// actions derivatives
MomentaField MomDer(P.Mom.Grid());
P.M.ImportGauge(U);
P.DerivativeU(P.Mom, MomDer);
std::cout << GridLogIntegrator << "MomDer update_P2: " << std::sqrt(norm2(MomDer)) << std::endl;
// Mom -= MomDer * ep;
Mom -= MomDer * ep * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "Mom update_P2: " << std::sqrt(norm2(Mom)) << std::endl;
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5 );
P.AuxiliaryFieldsDerivative(MomDer);
std::cout << GridLogIntegrator << "MomDer(Aux) update_P2: " << std::sqrt(norm2(Mom)) << std::endl;
// Mom -= MomDer * ep;
Mom -= MomDer * ep * HMC_MOMENTUM_DENOMINATOR;
P.update_auxiliary_momenta(ep*0.5 );
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void implicit_update_P(Field& U, int level, double ep, double ep1, bool intermediate = false) {
t_P[level] += ep;
double ep2= ep-ep1;
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
std::cout << GridLogIntegrator << "U before implicit_update_P: " << std::sqrt(norm2(U)) << std::endl;
// Fundamental updates, include smearing
MomentaField Msum(P.Mom.Grid());
Msum = Zero();
for (int a = 0; a < as[level].actions.size(); ++a) {
// Compute the force terms for the lagrangian part
// We need to compute the derivative of the actions
// only once
Field force(U.Grid());
conformable(U.Grid(), P.Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| site average: " << force_abs
<< std::endl;
Msum += force;
}
MomentaField NewMom = P.Mom;
MomentaField OldMom = P.Mom;
double threshold = Params.RMHMCTol;
P.M.ImportGauge(U);
MomentaField MomDer(P.Mom.Grid());
MomentaField MomDer1(P.Mom.Grid());
MomentaField AuxDer(P.Mom.Grid());
MomDer1 = Zero();
MomentaField diff(P.Mom.Grid());
double factor = 2.0;
if (intermediate){
P.DerivativeU(P.Mom, MomDer1);
factor = 1.0;
}
// std::cout << GridLogIntegrator << "MomDer1 implicit_update_P: " << std::sqrt(norm2(MomDer1)) << std::endl;
// Auxiliary fields
P.update_auxiliary_momenta(ep1);
P.AuxiliaryFieldsDerivative(AuxDer);
Msum += AuxDer;
// Here run recursively
int counter = 1;
RealD RelativeError;
do {
std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl;
// Compute the derivative of the kinetic term
// with respect to the gauge field
P.DerivativeU(NewMom, MomDer);
Real force_abs = std::sqrt(norm2(MomDer) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs
<< std::endl;
// NewMom = P.Mom - ep* 0.5 * HMC_MOMENTUM_DENOMINATOR * (2.0*Msum + factor*MomDer + MomDer1);// simplify
NewMom = P.Mom - HMC_MOMENTUM_DENOMINATOR * (ep*Msum + ep1* factor*MomDer + ep2* MomDer1);// simplify
diff = NewMom - OldMom;
counter++;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom));
std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl;
OldMom = NewMom;
} while (RelativeError > threshold);
P.Mom = NewMom;
std::cout << GridLogIntegrator << "NewMom implicit_update_P: " << std::sqrt(norm2(NewMom)) << std::endl;
// update the auxiliary fields momenta
P.update_auxiliary_momenta(ep2);
}
void implicit_update_P(Field& U, int level, double ep, bool intermediate = false) {
implicit_update_P( U, level, ep, ep*0.5, intermediate );
}
void update_U(Field& U, double ep)
{
update_U(P, U, ep);
update_U(P.Mom, U, ep);
t_U += ep;
int fl = levels - 1;
@ -201,12 +318,8 @@ public:
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(MomFiltered, U, ep);
FieldImplementation::update_field(Mom, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
@ -215,18 +328,74 @@ public:
Representations.update(U); // void functions if fundamental representation
}
void implicit_update_U(Field&U, double ep, double ep1 ){
double ep2=ep-ep1;
t_U += ep;
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
std::cout << GridLogIntegrator << "U before implicit_update_U: " << std::sqrt(norm2(U)) << std::endl;
MomentaField Mom1(P.Mom.Grid());
MomentaField Mom2(P.Mom.Grid());
RealD RelativeError;
Field diff(U.Grid());
Real threshold = Params.RMHMCTol;
int counter = 1;
int MaxCounter = 100;
Field OldU = U;
Field NewU = U;
P.M.ImportGauge(U);
P.DerivativeP(Mom1); // first term in the derivative
std::cout << GridLogIntegrator << "implicit_update_U: Mom1: " << std::sqrt(norm2(Mom1)) << std::endl;
P.update_auxiliary_fields(ep1);
MomentaField sum=Mom1;
do {
std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl;
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
std::cout << GridLogIntegrator << "implicit_update_U: Mom1: " << std::sqrt(norm2(Mom1)) << std::endl;
sum = (Mom1*ep1 + Mom2*ep2);
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
auto Pmu = PeekIndex<LorentzIndex>(sum, mu);
Umu = expMat(Pmu, 1, 12) * Umu;
PokeIndex<LorentzIndex>(NewU, ProjectOnGroup(Umu), mu);
}
diff = NewU - OldU;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU));
std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl;
P.M.ImportGauge(NewU);
OldU = NewU; // some redundancy to be eliminated
counter++;
} while (RelativeError > threshold && counter < MaxCounter);
U = NewU;
std::cout << GridLogIntegrator << "NewU implicit_update_U: " << std::sqrt(norm2(U)) << std::endl;
P.update_auxiliary_fields(ep2);
}
virtual void step(Field& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<MomentaField>& M)
: Params(Par),
as(Aset),
P(grid),
P(grid, M),
levels(Aset.size()),
Smearer(Sm),
Representations(grid)
Representations(grid),
Saux(0.),Smom(0.),Sg(0.)
{
t_P.resize(levels, 0.0);
t_U = 0.0;
@ -234,16 +403,6 @@ public:
//Default the momentum filter to "do-nothing"
MomFilter = getDefaultMomFilter();
for (int level = 0; level < as.size(); ++level) {
int multiplier = as.at(level).multiplier;
ActionLevel<Field, RepresentationPolicy> * Level = new ActionLevel<Field, RepresentationPolicy>(multiplier);
Level->push_back(new EmptyAction<Field>);
LevelForces.push_back(*Level);
// does it copy by value or reference??
// - answer it copies by value, BUT the action level contains a reference that is NOT updated.
// Unsafe code in Guido's area
}
};
virtual ~Integrator() {}
@ -261,14 +420,10 @@ public:
void reset_timer(void)
{
assert(as.size()==LevelForces.size());
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
as[level].actions.at(actionID)->reset_timer();
}
int actionID=0;
assert(LevelForces.at(level).actions.size()==1);
LevelForces.at(level).actions.at(actionID)->reset_timer();
}
}
void print_timer(void)
@ -330,16 +485,6 @@ public:
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}
int actionID=0;
std::cout << GridLogMessage
<< LevelForces[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] :\n\t\t "
<<" force max " << LevelForces[level].actions.at(actionID)->deriv_max_average()
<<" norm " << LevelForces[level].actions.at(actionID)->deriv_norm_average()
<<" Fdt max " << LevelForces[level].actions.at(actionID)->Fdt_max_average()
<<" Fdt norm " << LevelForces[level].actions.at(actionID)->Fdt_norm_average()
<<" calls " << LevelForces[level].actions.at(actionID)->deriv_num
<< std::endl;
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
@ -361,19 +506,13 @@ public:
std::cout << as[level].actions.at(actionID)->LogParameters();
}
}
std::cout << " [Integrator] Total Force loggers: "<< LevelForces.size() <<std::endl;
for (int level = 0; level < LevelForces.size(); ++level) {
std::cout << GridLogMessage << "[Integrator] ---- Level: "<< level << std::endl;
for (int actionID = 0; actionID < LevelForces[level].actions.size(); ++actionID) {
std::cout << GridLogMessage << "["<< LevelForces[level].actions.at(actionID)->action_name() << "] ID: " << actionID << std::endl;
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void reverse_momenta()
{
P *= -1.0;
P.Mom *= -1.0;
P.AuxMom *= -1.0;
}
// to be used by the actionlevel class to iterate
@ -392,11 +531,14 @@ public:
// Initialization of momenta and actions
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
assert(P.Mom.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG);
// FieldImplementation::generate_momenta(P.Mom, sRNG, pRNG);
P.M.ImportGauge(U);
P.MomentaDistribution(sRNG,pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
@ -449,12 +591,24 @@ public:
RealD S(Field& U)
{ // here also U not used
assert(as.size()==LevelForces.size());
std::cout << GridLogIntegrator << "Integrator action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD Hterm;
// static RealD Saux=0.,Smom=0.,Sg=0.;
RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
std::cout << GridLogMessage << "S:FieldSquareNorm H_p = " << H << "\n";
std::cout << GridLogMessage << "S:dSField = " << H-Smom << "\n";
Smom=H;
P.M.ImportGauge(U);
RealD Hterm = - P.MomentaAction();
std::cout << GridLogMessage << "S:Momentum action H_p = " << Hterm << "\n";
std::cout << GridLogMessage << "S:dSMom = " << Hterm-Saux << "\n";
Saux=Hterm;
H = Hterm;
RealD Hterm;
// Actions
for (int level = 0; level < as.size(); ++level) {
@ -496,9 +650,18 @@ public:
std::cout << GridLogIntegrator << "Integrator initial action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
RealD Hterm;
// RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD Hterm;
RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
std::cout << GridLogMessage << "S:FieldSquareNorm H_p = " << H << "\n";
std::cout << GridLogMessage << "S:dSField = " << H-Smom << "\n";
Smom=H;
P.M.ImportGauge(U);
RealD Hterm = - P.MomentaAction();
std::cout << GridLogMessage << "S:Momentum action H_p = " << Hterm << "\n";
std::cout << GridLogMessage << "S:dSMom = " << Hterm-Saux << "\n";
Saux=Hterm;
H = Hterm;
// Actions
for (int level = 0; level < as.size(); ++level) {
@ -521,7 +684,7 @@ public:
}
void integrate(Field& U)
void integrate(Field& U, int traj=-1 )
{
// reset the clocks
t_U = 0;
@ -533,6 +696,12 @@ public:
int first_step = (stp == 0);
int last_step = (stp == Params.MDsteps - 1);
this->step(U, 0, first_step, last_step);
if (traj>=0){
std::string file("./config."+std::to_string(traj)+"_"+std::to_string(stp+1) );
int precision32 = 0;
int tworow = 0;
NerscIO::writeConfiguration(U,file,tworow,precision32);
}
}
// Check the clocks all match on all levels
@ -542,7 +711,6 @@ public:
}
FieldImplementation::Project(U);
// and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6);

View File

@ -102,8 +102,8 @@ public:
std::string integrator_name(){return "LeapFrog";}
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
@ -140,14 +140,14 @@ template <class FieldImplementation_, class SmearingPolicy, class Representation
class MinimumNorm2 : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy>
{
private:
const RealD lambda = 0.1931833275037836;
// const RealD lambda = 0.1931833275037836;
public:
typedef FieldImplementation_ FieldImplementation;
INHERIT_FIELD_TYPES(FieldImplementation);
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
std::string integrator_name(){return "MininumNorm2";}
@ -155,6 +155,11 @@ public:
// level : current level
// fl : final level
// eps : current step size
assert(level<3);
RealD lambda= this->Params.lambda0;
if (level>0) lambda= this->Params.lambda1;
if (level>1) lambda= this->Params.lambda2;
std::cout << GridLogMessage << "level: "<<level<< "lambda: "<<lambda<<std::endl;
int fl = this->as.size() - 1;
@ -210,9 +215,9 @@ public:
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
ForceGradient(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm){};
grid, Par, Aset, Sm,M){};
std::string integrator_name(){return "ForceGradient";}
@ -275,6 +280,255 @@ public:
}
};
////////////////////////////////
// Riemannian Manifold HMC
// Girolami et al
////////////////////////////////
// correct
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
public:
typedef ImplicitLeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
Algorithm;
INHERIT_FIELD_TYPES(FieldImplementation);
// Riemannian manifold metric operator
// Hermitian operator Fisher
std::string integrator_name(){return "ImplicitLeapFrog";}
ImplicitLeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
// level : current level
// fl : final level
// eps : current step size
// Get current level step size
RealD eps = this->Params.trajL/this->Params.MDsteps;
for (int l = 0; l <= level; ++l) eps /= this->as[l].multiplier;
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) {
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, eps / 2.0);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, eps,eps/2.);
} else { // recursive function call
this->step(U, level + 1, first_step, last_step);
}
//int mm = last_step ? 1 : 2;
if (last_step){
this->update_P2(U, level, eps / 2.0);
} else {
this->implicit_update_P(U, level, eps, true);// works intermediate step
}
}
}
};
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitMinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
// const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitMininumNorm2";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
// assert(Params.lambda.size()>level);
// RealD lambda= Params.lambda[level];
assert(level<3);
RealD lambda= this->Params.lambda0;
if (level>0) lambda= this->Params.lambda1;
if (level>1) lambda= this->Params.lambda2;
std::cout << GridLogMessage << "level: "<<level<< "lambda: "<<lambda<<std::endl;
if(level<fl){
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->update_P(U, level, lambda * eps);
}
this->step(U, level + 1, first_step, 0);
this->update_P(U, level, (1.0 - 2.0 * lambda) * eps);
this->step(U, level + 1, 0, last_step);
int mm = (last_step) ? 1 : 2;
this->update_P(U, level, lambda * eps * mm);
}
}
else
{ // last level
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, lambda * eps);
}
this->implicit_update_U(U, 0.5 * eps,lambda*eps);
this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps, true);
this->implicit_update_U(U, 0.5 * eps, (0.5-lambda)*eps);
if (last_step) {
this->update_P2(U, level, eps * lambda);
} else {
this->implicit_update_P(U, level, lambda * eps*2.0, true);
}
}
}
}
};
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitCampostrini : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
// const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitCampostrini(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitCampostrini";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
// assert(Params.lambda.size()>level);
// RealD lambda= Params.lambda[level];
assert(level<3);
RealD lambda= this->Params.lambda0;
if (level>0) lambda= this->Params.lambda1;
if (level>1) lambda= this->Params.lambda2;
std::cout << GridLogMessage << "level: "<<level<< "lambda: "<<lambda<<std::endl;
RealD sigma=pow(2.0,1./3.);
if(level<fl){
//Still Omelyan. Needs to change step() to accept variable stepsize
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->update_P(U, level, lambda * eps);
}
this->step(U, level + 1, first_step, 0);
this->update_P(U, level, (1.0 - 2.0 * lambda) * eps);
this->step(U, level + 1, 0, last_step);
int mm = (last_step) ? 1 : 2;
this->update_P(U, level, lambda * eps * mm);
}
}
else
{ // last level
RealD dt = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) dt /= 2.0 * this->as[l].multiplier;
RealD epsilon = dt/(2.0 - sigma);
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
// initial half step
if (first_step) { this->implicit_update_P(U, level, epsilon*0.5); }
this->implicit_update_U(U, epsilon,epsilon*0.5);
this->implicit_update_P(U, level, (1.0 - sigma) * epsilon *0.5, epsilon*0.5, true);
this->implicit_update_U(U, -epsilon*sigma, -epsilon*sigma*0.5);
this->implicit_update_P(U, level, (1.0 - sigma) * epsilon *0.5, -epsilon*sigma*0.5, true);
this->implicit_update_U(U, epsilon,epsilon*0.5);
if (last_step) { this->update_P2(U, level, epsilon*0.5 ); }
else
this->implicit_update_P(U, level, epsilon,epsilon*0.5);
}
}
}
};
NAMESPACE_END(Grid);
#endif // INTEGRATOR_INCLUDED

View File

@ -1,4 +1,3 @@
/*!
@file GaugeConfiguration.h
@brief Declares the GaugeConfiguration class
@ -7,15 +6,6 @@
NAMESPACE_BEGIN(Grid);
template<class T> void Dump(const Lattice<T> & lat,
std::string s,
Coordinate site = Coordinate({0,0,0,0}))
{
typename T::scalar_object tmp;
peekSite(tmp,lat,site);
std::cout << " Dump "<<s<<" "<<tmp<<std::endl;
}
/*!
@brief Smeared configuration masked container
Modified for a multi-subset smearing (aka Luscher Flowed HMC)
@ -38,101 +28,6 @@ private:
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
typedef typename SU3Adjoint::LatticeAdjVector AdjVectorField;
void BaseSmearDerivative(GaugeField& SigmaTerm,
const GaugeField& iLambda,
const GaugeField& U,
int mmu, RealD rho)
{
// Reference
// Morningstar, Peardon, Phys.Rev.D69,054501(2004)
// Equation 75
// Computing Sigma_mu, derivative of S[fat links] with respect to the thin links
// Output SigmaTerm
GridBase *grid = U.Grid();
WilsonLoops<Gimpl> WL;
GaugeLinkField staple(grid), u_tmp(grid);
GaugeLinkField iLambda_mu(grid), iLambda_nu(grid);
GaugeLinkField U_mu(grid), U_nu(grid);
GaugeLinkField sh_field(grid), temp_Sigma(grid);
Real rho_munu, rho_numu;
rho_munu = rho;
rho_numu = rho;
for(int mu = 0; mu < Nd; ++mu){
U_mu = peekLorentz( U, mu);
iLambda_mu = peekLorentz(iLambda, mu);
for(int nu = 0; nu < Nd; ++nu){
if(nu==mu) continue;
U_nu = peekLorentz( U, nu);
// Nd(nd-1) = 12 staples normally.
// We must compute 6 of these
// in FTHMC case
if ( (mu==mmu)||(nu==mmu) )
WL.StapleUpper(staple, U, mu, nu);
if(nu==mmu) {
iLambda_nu = peekLorentz(iLambda, nu);
temp_Sigma = -rho_numu*staple*iLambda_nu; //ok
//-r_numu*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)*Lambda_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
sh_field = Cshift(iLambda_nu, mu, 1);// general also for Gparity?
temp_Sigma = rho_numu*sh_field*staple; //ok
//r_numu*Lambda_nu(mu)*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
}
if ( mu == mmu ) {
sh_field = Cshift(iLambda_mu, nu, 1);
temp_Sigma = -rho_munu*staple*U_nu*sh_field*adj(U_nu); //ok
//-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
}
// staple = Zero();
sh_field = Cshift(U_nu, mu, 1);
temp_Sigma = Zero();
if ( mu == mmu )
temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu;
if ( nu == mmu ) {
temp_Sigma += rho_numu*adj(sh_field)*adj(U_mu)*iLambda_nu*U_nu;
u_tmp = adj(U_nu)*iLambda_nu;
sh_field = Cshift(u_tmp, mu, 1);
temp_Sigma += -rho_numu*sh_field*adj(U_mu)*U_nu;
}
sh_field = Cshift(temp_Sigma, nu, -1);
Gimpl::AddLink(SigmaTerm, sh_field, mu);
}
}
}
void BaseSmear(GaugeLinkField& Cup, const GaugeField& U,int mu,RealD rho) {
GridBase *grid = U.Grid();
GaugeLinkField tmp_stpl(grid);
WilsonLoops<Gimpl> WL;
Cup = Zero();
for(int nu=0; nu<Nd; ++nu){
if (nu != mu) {
// get the staple in direction mu, nu
WL.Staple(tmp_stpl, U, mu, nu); //nb staple conventions of IroIro and Grid differ by a dagger
Cup += adj(tmp_stpl*rho);
}
}
}
// Adjoint vector to GaugeField force
void InsertForce(GaugeField &Fdet,AdjVectorField &Fdet_nu,int nu)
{
@ -152,54 +47,27 @@ private:
GaugeLinkField UtaU(PlaqL.Grid());
GaugeLinkField D(PlaqL.Grid());
AdjMatrixField Dbc(PlaqL.Grid());
AdjMatrixField Dbc_opt(PlaqL.Grid());
LatticeComplex tmp(PlaqL.Grid());
const int Ngen = SU3Adjoint::Dimension;
Complex ci(0,1);
ColourMatrix ta,tb,tc;
RealD t=0;
RealD tp=0;
RealD tta=0;
RealD tpk=0;
t-=usecond();
for(int a=0;a<Ngen;a++) {
tta-=usecond();
SU3::generator(a, ta);
ta = 2.0 * ci * ta;
// Qlat Tb = 2i Tb^Grid
UtaU= adj(PlaqL)*ta*PlaqR; // 6ms
tta+=usecond();
////////////////////////////////////////////
// Could add this entire C-loop to a projection routine
// for performance. Could also pick checkerboard on UtaU
// and set checkerboard on result for 2x perf
////////////////////////////////////////////
UtaU= 2.0*ci*adj(PlaqL)*ta*PlaqR;
for(int c=0;c<Ngen;c++) {
SU3::generator(c, tc);
tc = 2.0*ci*tc;
tp-=usecond();
D = Ta( tc *UtaU); // 2ms
#if 1
SU3::LieAlgebraProject(Dbc_opt,D,c); // 5.5ms
#else
D = Ta( (2.0)*ci*tc *UtaU);
for(int b=0;b<Ngen;b++){
SU3::generator(b, tb);
tmp =-trace(ci*tb*D);
PokeIndex<ColourIndex>(Dbc,tmp,b,c); // Adjoint rep
}
#endif
tp+=usecond();
}
// Dump(Dbc_opt,"Dbc_opt");
// Dump(Dbc,"Dbc");
tpk-=usecond();
tmp = trace(MpInvJx * Dbc_opt);
tmp = trace(MpInvJx * Dbc);
PokeIndex<ColourIndex>(Fdet2,tmp,a);
tpk+=usecond();
}
t+=usecond();
std::cout << GridLogPerformance << " Compute_MpInvJx_dNxxdSy " << t/1e3 << " ms proj "<<tp/1e3<< " ms"
<< " ta "<<tta/1e3<<" ms" << " poke "<<tpk/1e3<< " ms"<<std::endl;
}
void ComputeNxy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR,AdjMatrixField &NxAd)
@ -211,17 +79,12 @@ private:
ColourMatrix tc;
for(int b=0;b<Ngen;b++) {
SU3::generator(b, tb);
tb = 2.0 * ci * tb;
Nx = Ta( adj(PlaqL)*tb * PlaqR );
#if 1
SU3::LieAlgebraProject(NxAd,Nx,b);
#else
Nx = (2.0)*Ta( adj(PlaqL)*ci*tb * PlaqR );
for(int c=0;c<Ngen;c++) {
SU3::generator(c, tc);
auto tmp =closure( -trace(ci*tc*Nx));
PokeIndex<ColourIndex>(NxAd,tmp,c,b);
}
#endif
}
}
void ApplyMask(GaugeField &U,int smr)
@ -301,7 +164,8 @@ public:
// Computes ALL the staples -- could compute one only and do it here
RealD time;
time=-usecond();
BaseSmear(Cmu, U,mu,rho);
this->StoutSmearing->BaseSmear(C, U);
Cmu = peekLorentz(C, mu);
//////////////////////////////////////////////////////////////////
// Assemble Luscher exp diff map J matrix
@ -345,36 +209,6 @@ public:
// dJ(x)/dxe
//////////////////////////////////////
time=-usecond();
#if 1
std::vector<AdjMatrixField> dJdX; dJdX.resize(8,grid);
std::vector<AdjMatrix> TRb_s; TRb_s.resize(8);
AdjMatrixField tbXn(grid);
AdjMatrixField sumXtbX(grid);
AdjMatrixField t2(grid);
AdjMatrixField dt2(grid);
AdjMatrixField t3(grid);
AdjMatrixField dt3(grid);
AdjMatrixField aunit(grid);
for(int b=0;b<8;b++){
SU3Adjoint::generator(b, TRb_s[b]);
dJdX[b] = TRb_s[b];
}
aunit = ComplexD(1.0);
// Could put into an accelerator_for
X = (-1.0)*ZxAd;
t2 = X;
for (int j = 12; j > 1; --j) {
t3 = t2*(1.0 / (j + 1)) + aunit;
t2 = X * t3;
for(int b=0;b<8;b++){
dJdX[b]= TRb_s[b] * t3 + X * dJdX[b]*(1.0 / (j + 1));
}
}
for(int b=0;b<8;b++){
dJdX[b] = -dJdX[b];
}
#else
std::vector<AdjMatrixField> dJdX; dJdX.resize(8,grid);
AdjMatrixField tbXn(grid);
AdjMatrixField sumXtbX(grid);
@ -390,15 +224,14 @@ public:
X = (-1.0)*ZxAd;
t2 = X;
dt2 = TRb;
for (int j = 12; j > 1; --j) {
t3 = t2*(1.0 / (j + 1)) + aunit;
for (int j = 20; j > 1; --j) {
t3 = t2*(1.0 / (j + 1)) + aunit;
dt3 = dt2*(1.0 / (j + 1));
t2 = X * t3;
dt2 = TRb * t3 + X * dt3;
}
dJdX[b] = -dt2;
}
#endif
time+=usecond();
std::cout << GridLogMessage << "dJx took "<<time<< " us"<<std::endl;
/////////////////////////////////////////////////////////////////
@ -448,8 +281,8 @@ public:
for(int e =0 ; e<8 ; e++){
LatticeComplexD tr(grid);
// ColourMatrix te;
// SU3::generator(e, te);
ColourMatrix te;
SU3::generator(e, te);
tr = trace(dJdX[e] * nMpInv);
pokeColour(dJdXe_nMpInv,tr,e);
}
@ -660,25 +493,20 @@ public:
//////////////////////////////////////////////////////////////////
// Assemble the N matrix
//////////////////////////////////////////////////////////////////
double rho=this->StoutSmearing->SmearRho[1];
BaseSmear(Cmu, U,mu,rho);
// Computes ALL the staples -- could compute one only here
this->StoutSmearing->BaseSmear(C, U);
Cmu = peekLorentz(C, mu);
Umu = peekLorentz(U, mu);
Complex ci(0,1);
for(int b=0;b<Ngen;b++) {
SU3::generator(b, Tb);
// Qlat Tb = 2i Tb^Grid
Nb = (2.0)*Ta( ci*Tb * Umu * adj(Cmu));
// FIXME -- replace this with LieAlgebraProject
#if 0
SU3::LieAlgebraProject(Ncb,tmp,b);
#else
for(int c=0;c<Ngen;c++) {
SU3::generator(c, Tc);
auto tmp = -trace(ci*Tc*Nb); // Luchang's norm: (2Tc) (2Td) N^db = -2 delta cd N^db // - was important
PokeIndex<ColourIndex>(Ncb,tmp,c,b);
}
#endif
}
//////////////////////////////////////////////////////////////////
@ -865,19 +693,15 @@ private:
const GaugeField& GaugeK,int level)
{
GridBase* grid = GaugeK.Grid();
GaugeField SigmaK(grid), iLambda(grid);
GaugeField C(grid), SigmaK(grid), iLambda(grid);
GaugeField SigmaKPrimeA(grid);
GaugeField SigmaKPrimeB(grid);
GaugeLinkField iLambda_mu(grid);
GaugeLinkField iQ(grid), e_iQ(grid);
GaugeLinkField SigmaKPrime_mu(grid);
GaugeLinkField GaugeKmu(grid), Cmu(grid);
int mmu= (level/2) %Nd;
int cb= (level%2);
double rho=this->StoutSmearing->SmearRho[1];
// Can override this to do one direction only.
this->StoutSmearing->BaseSmear(C, GaugeK);
SigmaK = Zero();
iLambda = Zero();
@ -888,38 +712,18 @@ private:
// Could get away with computing only one polarisation here
// int mu= (smr/2) %Nd;
// SigmaKprime_A has only one component
#if 0
BaseSmear(Cmu, GaugeK,mu,rho);
GaugeKmu = peekLorentz(GaugeK, mu);
SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
iQ = Ta(Cmu * adj(GaugeKmu));
this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
pokeLorentz(iLambda, iLambda_mu, mu);
BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho); // derivative of SmearBase
#else
// GaugeField C(grid);
// this->StoutSmearing->BaseSmear(C, GaugeK);
// for (int mu = 0; mu < Nd; mu++)
int mu =mmu;
BaseSmear(Cmu, GaugeK,mu,rho);
for (int mu = 0; mu < Nd; mu++)
{
// Cmu = peekLorentz(C, mu);
Cmu = peekLorentz(C, mu);
GaugeKmu = peekLorentz(GaugeK, mu);
SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
iQ = Ta(Cmu * adj(GaugeKmu));
this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
pokeLorentz(iLambda, iLambda_mu, mu);
std::cout << " mu "<<mu<<" SigmaKPrime_mu"<<norm2(SigmaKPrime_mu)<< " iLambda_mu " <<norm2(iLambda_mu)<<std::endl;
}
// GaugeField SigmaKcopy(grid);
// SigmaKcopy = SigmaK;
BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho); // derivative of SmearBase
// this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK); // derivative of SmearBase
// SigmaKcopy = SigmaKcopy - SigmaK;
// std::cout << " BaseSmearDerivative fast path error" <<norm2(SigmaKcopy)<<std::endl;
#endif
this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK); // derivative of SmearBase
////////////////////////////////////////////////////////////////////////////////////
// propagate the rest of the force as identity map, just add back
////////////////////////////////////////////////////////////////////////////////////

View File

@ -1,389 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/smearing/HISQSmearing.h
Copyright (C) 2023
Author: D. A. Clarke <clarke.davida@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/*
@file HISQSmearing.h
@brief Declares classes related to HISQ smearing
*/
#pragma once
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// TODO: find a way to fold this into the stencil header. need to access grid to get
// Nd, since you don't want to inherit from QCD.h
/*! @brief append arbitrary shift path to shifts */
template<typename... Args>
void appendShift(std::vector<Coordinate>& shifts, int dir, Args... args) {
Coordinate shift(Nd,0);
generalShift(shift, dir, args...);
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift);
}
/*! @brief figure out the stencil index from mu and nu */
accelerator_inline int stencilIndex(int mu, int nu) {
// Nshifts depends on how you built the stencil
int Nshifts = 6;
return Nshifts*nu + Nd*Nshifts*mu;
}
/*! @brief structure holding the link treatment */
struct SmearingParameters{
SmearingParameters(){}
Real c_1; // 1 link
Real c_naik; // Naik term
Real c_3; // 3 link
Real c_5; // 5 link
Real c_7; // 7 link
Real c_lp; // 5 link Lepage
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
: c_1(c1),
c_naik(cnaik),
c_3(c3),
c_5(c5),
c_7(c7),
c_lp(clp){}
};
/*! @brief create fat links from link variables */
template<class Gimpl>
class Smear_HISQ : public Gimpl {
private:
GridCartesian* const _grid;
SmearingParameters _linkTreatment;
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeField GF;
typedef typename Gimpl::GaugeLinkField LF;
typedef typename Gimpl::ComplexField CF;
// Don't allow default values here.
Smear_HISQ(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
: _grid(grid),
_linkTreatment(c1,cnaik,c3,c5,c7,clp) {
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
}
// Allow to pass a pointer to a C-style, double array for MILC convenience
Smear_HISQ(GridCartesian* grid, double* coeff)
: _grid(grid),
_linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) {
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
}
~Smear_HISQ() {}
// Intent: OUT--u_smr, u_naik
// IN--u_thin
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
SmearingParameters lt = this->_linkTreatment;
auto grid = this->_grid;
// Create a padded cell of extra padding depth=1 and fill the padding.
int depth = 1;
PaddedCell Ghost(depth,grid);
GF Ughost = Ghost.Exchange(u_thin);
// This is where auxiliary N-link fields and the final smear will be stored.
GF Ughost_fat(Ughost.Grid());
GF Ughost_3link(Ughost.Grid());
GF Ughost_5linkA(Ughost.Grid());
GF Ughost_5linkB(Ughost.Grid());
// mu-nu plane stencil. We allow mu==nu to make indexing the stencil easier,
// but these entries will not be used.
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++)
for(int nu=0;nu<Nd;nu++) {
appendShift(shifts,mu);
appendShift(shifts,nu);
appendShift(shifts,shiftSignal::NO_SHIFT);
appendShift(shifts,mu,Back(nu));
appendShift(shifts,Back(nu));
appendShift(shifts,Back(mu));
}
// A GeneralLocalStencil has two indices: a site and stencil index
GeneralLocalStencil gStencil(Ughost.Grid(),shifts);
// This is where contributions from the smearing get added together
Ughost_fat=Zero();
// This loop handles 3-, 5-, and 7-link constructs, minus Lepage and Naik.
for(int mu=0;mu<Nd;mu++) {
// TODO: This approach is slightly memory inefficient. It uses 25% extra memory
Ughost_3link =Zero();
Ughost_5linkA=Zero();
Ughost_5linkB=Zero();
// Create the accessors
autoView(U_v , Ughost , AcceleratorRead);
autoView(U_fat_v , Ughost_fat , AcceleratorWrite);
autoView(U_3link_v , Ughost_3link , AcceleratorWrite);
autoView(U_5linkA_v, Ughost_5linkA, AcceleratorWrite);
autoView(U_5linkB_v, Ughost_5linkB, AcceleratorWrite);
// We infer some types that will be needed in the calculation.
typedef decltype(gStencil.GetEntry(0,0)) stencilElement;
typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix;
int Nsites = U_v.size();
auto gStencil_v = gStencil.View();
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
U3matrix U0, U1, U2, U3, U4, U5, W;
for(int nu=0;nu<Nd;nu++) {
if(nu==mu) continue;
int s = stencilIndex(mu,nu);
// The stencil gives us support points in the mu-nu plane that we will use to
// grab the links we need.
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
SE5 = gStencil_v.GetEntry(s+5,site); int x_m_mu = SE5->_offset;
// When you're deciding whether to take an adjoint, the question is: how is the
// stored link oriented compared to the one you want? If I imagine myself travelling
// with the to-be-updated link, I have two possible, alternative 3-link paths I can
// take, one starting by going to the left, the other starting by going to the right.
U0 = coalescedReadGeneralPermute(U_v[x_p_mu ](nu),SE0->_permute,Nd);
U1 = coalescedReadGeneralPermute(U_v[x_p_nu ](mu),SE1->_permute,Nd);
U2 = coalescedReadGeneralPermute(U_v[x ](nu),SE2->_permute,Nd);
U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
U4 = coalescedReadGeneralPermute(U_v[x_m_nu ](mu),SE4->_permute,Nd);
U5 = coalescedReadGeneralPermute(U_v[x_m_nu ](nu),SE4->_permute,Nd);
// "left" "right"
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
// Save 3-link construct for later and add to smeared field.
coalescedWrite(U_3link_v[x](nu), W);
// The index operator (x) returns the coalesced read on GPU. The view [] index returns
// a reference to the vector object. The [x](mu) returns a reference to the densely
// packed (contiguous in memory) mu-th element of the vector object. On CPU,
// coalescedRead/Write is the identity mapping assigning vector object to vector object.
// But on GPU it's non-trivial and maps scalar object to vector object and vice versa.
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_3*W);
}
})
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
U3matrix U0, U1, U2, U3, U4, U5, W;
int sigmaIndex = 0;
for(int nu=0;nu<Nd;nu++) {
if(nu==mu) continue;
int s = stencilIndex(mu,nu);
for(int rho=0;rho<Nd;rho++) {
if (rho == mu || rho == nu) continue;
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
U0 = coalescedReadGeneralPermute( U_v[x_p_mu ](nu ),SE0->_permute,Nd);
U1 = coalescedReadGeneralPermute(U_3link_v[x_p_nu ](rho),SE1->_permute,Nd);
U2 = coalescedReadGeneralPermute( U_v[x ](nu ),SE2->_permute,Nd);
U3 = coalescedReadGeneralPermute( U_v[x_p_mu_m_nu](nu ),SE3->_permute,Nd);
U4 = coalescedReadGeneralPermute(U_3link_v[x_m_nu ](rho),SE4->_permute,Nd);
U5 = coalescedReadGeneralPermute( U_v[x_m_nu ](nu ),SE4->_permute,Nd);
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
if(sigmaIndex<3) {
coalescedWrite(U_5linkA_v[x](rho), W);
} else {
coalescedWrite(U_5linkB_v[x](rho), W);
}
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_5*W);
sigmaIndex++;
}
}
})
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
U3matrix U0, U1, U2, U3, U4, U5, W;
int sigmaIndex = 0;
for(int nu=0;nu<Nd;nu++) {
if(nu==mu) continue;
int s = stencilIndex(mu,nu);
for(int rho=0;rho<Nd;rho++) {
if (rho == mu || rho == nu) continue;
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
U0 = coalescedReadGeneralPermute(U_v[x_p_mu](nu),SE0->_permute,Nd);
if(sigmaIndex<3) {
U1 = coalescedReadGeneralPermute(U_5linkB_v[x_p_nu](rho),SE1->_permute,Nd);
} else {
U1 = coalescedReadGeneralPermute(U_5linkA_v[x_p_nu](rho),SE1->_permute,Nd);
}
U2 = coalescedReadGeneralPermute(U_v[x](nu),SE2->_permute,Nd);
U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
if(sigmaIndex<3) {
U4 = coalescedReadGeneralPermute(U_5linkB_v[x_m_nu](rho),SE4->_permute,Nd);
} else {
U4 = coalescedReadGeneralPermute(U_5linkA_v[x_m_nu](rho),SE4->_permute,Nd);
}
U5 = coalescedReadGeneralPermute(U_v[x_m_nu](nu),SE4->_permute,Nd);
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_7*W);
sigmaIndex++;
}
}
})
} // end mu loop
// c1, c3, c5, c7 construct contributions
u_smr = Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
// Load up U and V std::vectors to access thin and smeared links.
std::vector<LF> U(Nd, grid);
std::vector<LF> V(Nd, grid);
std::vector<LF> Vnaik(Nd, grid);
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(u_thin, mu);
V[mu] = PeekIndex<LorentzIndex>(u_smr, mu);
}
for(int mu=0;mu<Nd;mu++) {
// Naik
Vnaik[mu] = lt.c_naik*Gimpl::CovShiftForward(U[mu],mu,
Gimpl::CovShiftForward(U[mu],mu,
Gimpl::CovShiftIdentityForward(U[mu],mu)));
// LePage
for (int nu_h=1;nu_h<Nd;nu_h++) {
int nu=(mu+nu_h)%Nd;
// nu, nu, mu, Back(nu), Back(nu)
V[mu] = V[mu] + lt.c_lp*Gimpl::CovShiftForward(U[nu],nu,
Gimpl::CovShiftForward(U[nu],nu,
Gimpl::CovShiftForward(U[mu],mu,
Gimpl::CovShiftBackward(U[nu],nu,
Gimpl::CovShiftIdentityBackward(U[nu],nu)))))
// Back(nu), Back(nu), mu, nu, nu
+ lt.c_lp*Gimpl::CovShiftBackward(U[nu],nu,
Gimpl::CovShiftBackward(U[nu],nu,
Gimpl::CovShiftForward(U[mu],mu,
Gimpl::CovShiftForward(U[nu],nu,
Gimpl::CovShiftIdentityForward(U[nu],nu)))));
}
}
// Put V back into u_smr.
for (int mu = 0; mu < Nd; mu++) {
PokeIndex<LorentzIndex>(u_smr , V[mu] , mu);
PokeIndex<LorentzIndex>(u_naik, Vnaik[mu], mu);
}
};
// Intent: OUT--u_proj
// IN--u_mu
void projectU3(GF& u_proj, GF& u_mu) const {
auto grid = this->_grid;
LF V(grid), Q(grid), sqrtQinv(grid), id_3(grid), diff(grid);
CF c0(grid), c1(grid), c2(grid), g0(grid), g1(grid), g2(grid), S(grid), R(grid), theta(grid),
u(grid), v(grid), w(grid), den(grid), f0(grid), f1(grid), f2(grid);
// Follow MILC 10.1103/PhysRevD.82.074501, eqs (B2-B3) and (C1-C8)
for (int mu = 0; mu < Nd; mu++) {
V = PeekIndex<LorentzIndex>(u_mu, mu);
Q = adj(V)*V;
c0 = real(trace(Q));
c1 = (1/2.)*real(trace(Q*Q));
c2 = (1/3.)*real(trace(Q*Q*Q));
S = (1/3.)*c1-(1/18.)*c0*c0;
if (norm2(S)<1e-28) {
g0 = (1/3.)*c0; g1 = g0; g2 = g1;
} else {
R = (1/2.)*c2-(1/3. )*c0*c1+(1/27.)*c0*c0*c0;
theta = acos(R*pow(S,-1.5));
g0 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta-2*M_PI/3.);
g1 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta );
g2 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta+2*M_PI/3.);
}
// if (fabs(Q.determinant()/(g0*g1*g2)-1.0) > 1e-5) { SVD }
u = sqrt(g0) + sqrt(g1) + sqrt(g2);
v = sqrt(g0*g1) + sqrt(g0*g2) + sqrt(g1*g2);
w = sqrt(g0*g1*g2);
den = w*(u*v-w);
f0 = (-w*(u*u+v)+u*v*v)/den;
f1 = (-w-u*u*u+2.*u*v)/den;
f2 = u/den;
id_3 = 1.;
sqrtQinv = f0*id_3 + f1*Q + f2*Q*Q;
PokeIndex<LorentzIndex>(u_proj, V*sqrtQinv, mu);
}
};
// void derivative(const GaugeField& Gauge) const {
// };
};
NAMESPACE_END(Grid);

View File

@ -5,5 +5,4 @@
#include <Grid/qcd/smearing/StoutSmearing.h>
#include <Grid/qcd/smearing/GaugeConfiguration.h>
#include <Grid/qcd/smearing/WilsonFlow.h>
#include <Grid/qcd/smearing/HISQSmearing.h>

View File

@ -69,7 +69,7 @@ public:
/*! Construct stout smearing object from explicitly specified rho matrix */
Smear_Stout(const std::vector<double>& rho_)
: OwnedBase{new Smear_APE<Gimpl>(rho_)}, SmearBase{OwnedBase.get()} {
std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl;
std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl
assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3");
}

View File

@ -54,7 +54,361 @@ struct LaplacianParams : Serializable {
precision(precision){};
};
#define LEG_LOAD(Dir) \
SE = st.GetEntry(ptype, Dir, ss); \
if (SE->_is_local ) { \
int perm= SE->_permute; \
chi = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise();
const std::vector<int> directions4D ({Xdir,Ydir,Zdir,Tdir,Xdir,Ydir,Zdir,Tdir});
const std::vector<int> displacements4D({1,1,1,1,-1,-1,-1,-1});
template<class Gimpl,class Field> class CovariantAdjointLaplacianStencil : public SparseMatrixBase<Field>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
// RealD kappa;
typedef typename Field::vector_object siteObject;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nc> >, Nds>;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef CartesianStencil<siteObject, siteObject, DefaultImplParams> StencilImpl;
GridBase *grid;
StencilImpl Stencil;
SimpleCompressor<siteObject> Compressor;
DoubledGaugeField Uds;
CovariantAdjointLaplacianStencil( GridBase *_grid)
: grid(_grid),
Stencil (grid,8,Even,directions4D,displacements4D),
Uds(grid){}
CovariantAdjointLaplacianStencil(GaugeField &Umu)
:
grid(Umu.Grid()),
Stencil (grid,8,Even,directions4D,displacements4D),
Uds(grid)
{ GaugeImport(Umu); }
void GaugeImport (const GaugeField &Umu)
{
assert(grid == Umu.Grid());
for (int mu = 0; mu < Nd; mu++) {
auto U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Uds, U, mu );
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
}
};
virtual GridBase *Grid(void) { return grid; };
//broken
#if 0
virtual void MDeriv(const Field &_left, Field &_right,Field &_der, int mu)
{
///////////////////////////////////////////////
// Halo exchange for this geometry of stencil
///////////////////////////////////////////////
Stencil.HaloExchange(_lef, Compressor);
///////////////////////////////////
// Arithmetic expressions
///////////////////////////////////
autoView( st , Stencil , AcceleratorRead);
auto buf = st.CommBuf();
autoView( in , _left , AcceleratorRead);
autoView( right , _right , AcceleratorRead);
autoView( der , _der , AcceleratorWrite);
autoView( U , Uds , AcceleratorRead);
typedef typename Field::vector_object vobj;
typedef decltype(coalescedRead(left[0])) calcObj;
typedef decltype(coalescedRead(U[0](0))) calcLink;
const int Nsimd = vobj::Nsimd();
const uint64_t NN = grid->oSites();
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj phi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
res = coalescedRead(def[ss]);
phi = coalescedRead(right[ss]);
#define LEG_LOAD_MULT_LINK(leg,polarisation) \
UU = coalescedRead(U[ss](polarisation)); \
Udag = adj(UU); \
LEG_LOAD(leg); \
mult(&Utmp(), &UU, &chi()); \
Utmp2 = adj(Utmp); \
mult(&Utmp(), &UU, &Utmp2()); \
Utmp2 = adj(Utmp); \
mult(&Uchi(), &phi(), &Utmp2()); \
res = res + Uchi;
LEG_LOAD_MULT_LINK(0,Xp);
LEG_LOAD_MULT_LINK(1,Yp);
LEG_LOAD_MULT_LINK(2,Zp);
LEG_LOAD_MULT_LINK(3,Tp);
coalescedWrite(der[ss], res,lane);
});
};
#endif
virtual void Morig(const Field &_in, Field &_out)
{
///////////////////////////////////////////////
// Halo exchange for this geometry of stencil
///////////////////////////////////////////////
Stencil.HaloExchange(_in, Compressor);
///////////////////////////////////
// Arithmetic expressions
///////////////////////////////////
// auto st = Stencil.View(AcceleratorRead);
autoView( st , Stencil , AcceleratorRead);
auto buf = st.CommBuf();
autoView( in , _in , AcceleratorRead);
autoView( out , _out , AcceleratorWrite);
autoView( U , Uds , AcceleratorRead);
typedef typename Field::vector_object vobj;
typedef decltype(coalescedRead(in[0])) calcObj;
typedef decltype(coalescedRead(U[0](0))) calcLink;
const int Nsimd = vobj::Nsimd();
const uint64_t NN = grid->oSites();
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
res = coalescedRead(in[ss])*(-8.0);
#define LEG_LOAD_MULT(leg,polarisation) \
UU = coalescedRead(U[ss](polarisation)); \
Udag = adj(UU); \
LEG_LOAD(leg); \
mult(&Utmp(), &UU, &chi()); \
Utmp2 = adj(Utmp); \
mult(&Utmp(), &UU, &Utmp2()); \
Uchi = adj(Utmp); \
res = res + Uchi;
LEG_LOAD_MULT(0,Xp);
LEG_LOAD_MULT(1,Yp);
LEG_LOAD_MULT(2,Zp);
LEG_LOAD_MULT(3,Tp);
LEG_LOAD_MULT(4,Xm);
LEG_LOAD_MULT(5,Ym);
LEG_LOAD_MULT(6,Zm);
LEG_LOAD_MULT(7,Tm);
coalescedWrite(out[ss], res,lane);
});
};
virtual void Mnew (const Field &_in, Field &_out)
{
///////////////////////////////////////////////
// Halo exchange for this geometry of stencil
///////////////////////////////////////////////
// Stencil.HaloExchange(_in, Compressor);
std::vector<std::vector<CommsRequest_t> > requests;
Stencil.Prepare();
{
GRID_TRACE("Laplace Gather");
Stencil.HaloGather(_in,Compressor);
}
tracePush("Laplace Communication");
Stencil.CommunicateBegin(requests);
{
GRID_TRACE("MergeSHM");
Stencil.CommsMergeSHM(Compressor);
}
///////////////////////////////////
// Arithmetic expressions
///////////////////////////////////
// auto st = Stencil.View(AcceleratorRead);
autoView( st , Stencil , AcceleratorRead);
auto buf = st.CommBuf();
autoView( in , _in , AcceleratorRead);
autoView( out , _out , AcceleratorWrite);
autoView( U , Uds , AcceleratorRead);
typedef typename Field::vector_object vobj;
typedef decltype(coalescedRead(in[0])) calcObj;
typedef decltype(coalescedRead(U[0](0))) calcLink;
const int Nsimd = vobj::Nsimd();
const uint64_t NN = grid->oSites();
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
res = coalescedRead(in[ss])*(-8.0);
SE = st.GetEntry(ptype, 0, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(0,Xp);
}
SE = st.GetEntry(ptype, 1, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(1,Yp);
}
SE = st.GetEntry(ptype, 2, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(2,Zp);
}
SE = st.GetEntry(ptype, 3, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(3,Tp);
}
SE = st.GetEntry(ptype, 4, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(4,Xm);
}
SE = st.GetEntry(ptype, 5, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(5,Ym);
}
SE = st.GetEntry(ptype, 6, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(6,Zm);
}
SE = st.GetEntry(ptype, 7, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(7,Tm);
}
coalescedWrite(out[ss], res,lane);
});
Stencil.CommunicateComplete(requests);
tracePop("Communication");
{
GRID_TRACE("Merge");
Stencil.CommsMerge(Compressor);
}
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
// res = coalescedRead(in[ss])*(-8.0);
res = coalescedRead(out[ss]);
SE = st.GetEntry(ptype, 0, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(0,Xp);
}
SE = st.GetEntry(ptype, 1, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(1,Yp);
}
SE = st.GetEntry(ptype, 2, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(2,Zp);
}
SE = st.GetEntry(ptype, 3, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(3,Tp);
}
SE = st.GetEntry(ptype, 4, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(4,Xm);
}
SE = st.GetEntry(ptype, 5, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(5,Ym);
}
SE = st.GetEntry(ptype, 6, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(6,Zm);
}
SE = st.GetEntry(ptype, 7, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(7,Tm);
}
coalescedWrite(out[ss], res,lane);
});
};
virtual void M(const Field &in, Field &out) {Mnew(in,out);};
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
};
#undef LEG_LOAD_MULT
#undef LEG_LOAD_MULT_LINK
#undef LEG_LOAD
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
@ -76,29 +430,40 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
LaplacianParams param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerInvHalf;
//template<class Gimpl,class Field> class CovariantAdjointLaplacianStencil : public SparseMatrixBase<Field>
CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField> LapStencil;
public:
INHERIT_GIMPL_TYPES(Impl);
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
: U(Nd, grid), Solver(S), param(p), kappa(k){
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0, bool if_remez=true)
: U(Nd, grid), Solver(S), param(p), kappa(k)
,LapStencil(grid){
AlgRemez remez(param.lo,param.hi,param.precision);
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
if(if_remez){
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerInvHalf.Init(remez,param.tolerance,true);
}
this->triv=0;
};
LaplacianAdjointField(){this->triv=0; printf("triv=%d\n",this->Trivial());}
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void MdirAll(const GaugeField&, std::vector<GaugeField> &){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
RealD total=0.;
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
total += norm2(U[mu]);
}
LapStencil.GaugeImport (_U);
std::cout << GridLogDebug <<"ImportGauge:norm2(U _U) = "<<total<<std::endl;
}
void M(const GaugeField& in, GaugeField& out) {
@ -106,10 +471,12 @@ public:
// test
//GaugeField herm = in + adj(in);
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
// std::cout << GridLogDebug <<"M:Kappa = "<<kappa<<std::endl;
GaugeLinkField sum(in.Grid());
#if 0
GaugeLinkField tmp(in.Grid());
GaugeLinkField tmp2(in.Grid());
GaugeLinkField sum(in.Grid());
for (int nu = 0; nu < Nd; nu++) {
sum = Zero();
@ -123,10 +490,22 @@ public:
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
#else
for (int nu = 0; nu < Nd; nu++) {
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out.Grid());
LapStencil.M(in_nu,sum);
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
#endif
// std::cout << GridLogDebug <<"M:norm2(out) = "<<norm2(out)<<std::endl;
}
void MDeriv(const GaugeField& in, GaugeField& der) {
// in is anti-hermitian
// std::cout << GridLogDebug <<"MDeriv:Kappa = "<<kappa<<std::endl;
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++){
@ -140,6 +519,7 @@ public:
// adjoint in the last multiplication
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
}
std::cout << GridLogDebug <<"MDeriv: Kappa= "<< kappa << " norm2(der) = "<<norm2(der)<<std::endl;
}
// separating this temporarily
@ -159,11 +539,22 @@ public:
}
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
std::cout << GridLogDebug <<"MDeriv: Kappa= "<< kappa << " norm2(der) = "<<norm2(der)<<std::endl;
}
void Minv(const GaugeField& in, GaugeField& inverted){
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
Solver(HermOp, in, inverted);
std::cout << GridLogDebug <<"Minv:norm2(inverted) = "<<norm2(inverted)<<std::endl;
}
void MinvDeriv(const GaugeField& in, GaugeField& der) {
GaugeField X(in.Grid());
Minv(in,X);
MDeriv(X,der);
der *=-1.0;
std::cout << GridLogDebug <<"MinvDeriv:norm2(der) = "<<norm2(der)<<std::endl;
}
void MSquareRoot(GaugeField& P){
@ -172,6 +563,7 @@ public:
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
msCG(HermOp,P,Gp);
P = Gp;
std::cout << GridLogDebug <<"MSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}
void MInvSquareRoot(GaugeField& P){
@ -180,6 +572,7 @@ public:
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
msCG(HermOp,P,Gp);
P = Gp;
std::cout << GridLogDebug <<"MInvSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}

View File

@ -0,0 +1,403 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacianRat.h
Copyright (C) 2021
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#define MIXED_CG
//enable/disable push_back
#undef USE_CHRONO
//#include <roctracer/roctx.h>
NAMESPACE_BEGIN(Grid);
struct LaplacianRatParams {
RealD offset;
int order;
std::vector<RealD> a0;
std::vector<RealD> a1;
std::vector<RealD> b0;
std::vector<RealD> b1;
RealD b2; //for debugging
int MaxIter;
RealD tolerance;
int precision;
// constructor
LaplacianRatParams(int ord = 1,
int maxit = 1000,
RealD tol = 1.0e-8,
int precision = 64)
: offset(1.), order(ord),b2(1.),
MaxIter(maxit),
tolerance(tol),
precision(precision){
a0.resize(ord,0.);
a1.resize(ord,0.);
b0.resize(ord,0.);
b1.resize(ord,0.);
};
};
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
template <class Impl, class ImplF>
class LaplacianAdjointRat: public Metric<typename Impl::Field> {
OperatorFunction<typename Impl::Field> &Solver;
LaplacianRatParams Gparam;
LaplacianRatParams Mparam;
GridBase *grid;
GridBase *grid_f;
CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField> LapStencil;
CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField> LapStencilF;
public:
INHERIT_GIMPL_TYPES(Impl);
// typedef typename GImpl::LinkField GaugeLinkField; \
// typedef typename GImpl::Field GaugeField;
typedef typename ImplF::Field GaugeFieldF;
typedef typename ImplF::LinkField GaugeLinkFieldF; \
GaugeField Usav;
GaugeFieldF UsavF;
std::vector< std::vector<GaugeLinkField> > prev_solnsM;
std::vector< std::vector<GaugeLinkField> > prev_solnsMinv;
std::vector< std::vector<GaugeLinkField> > prev_solnsMDeriv;
std::vector< std::vector<GaugeLinkField> > prev_solnsMinvDeriv;
LaplacianAdjointRat(GridBase* _grid, GridBase* _grid_f, OperatorFunction<GaugeField>& S, LaplacianRatParams& gpar, LaplacianRatParams& mpar)
: grid(_grid),grid_f(_grid_f), LapStencil(_grid), LapStencilF(_grid_f), U(Nd, _grid), Solver(S), Gparam(gpar), Mparam(mpar),Usav(_grid), UsavF(_grid_f),
prev_solnsM(4),prev_solnsMinv(4),prev_solnsMDeriv(4),prev_solnsMinvDeriv(4) {
// std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
this->triv=0;
};
LaplacianAdjointRat(){this->triv=0; printf("triv=%d\n",this->Trivial());}
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void MdirAll(const GaugeField&, std::vector<GaugeField> &){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
RealD total=0.;
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
total += norm2(U[mu]);
}
Usav = _U;
precisionChange(UsavF,Usav);
std::cout <<GridLogDebug << "ImportGauge:norm2(_U) = "<<" "<<total<<std::endl;
}
void MDerivLink(const GaugeLinkField& left, const GaugeLinkField& right,
GaugeField& der) {
std::cout<<GridLogMessage << "MDerivLink start "<< std::endl;
RealD factor = -1. / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(der.Grid());
der_mu = Zero();
// for (int nu = 0; nu < Nd; nu++) {
// GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
// GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
der_mu += U[mu] * Cshift(left, mu, 1) * adj(U[mu]) * right;
der_mu += U[mu] * Cshift(right, mu, 1) * adj(U[mu]) * left;
// }
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
// std::cout << GridLogDebug <<"MDerivLink: norm2(der) = "<<norm2(der)<<std::endl;
std::cout<<GridLogMessage << "MDerivLink end "<< std::endl;
}
void MDerivLink(const GaugeLinkField& left, const GaugeLinkField& right,
std::vector<GaugeLinkField> & der) {
// std::cout<<GridLogMessage << "MDerivLink "<< std::endl;
RealD factor = -1. / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(left.Grid());
der_mu = Zero();
der_mu += U[mu] * Cshift(left, mu, 1) * adj(U[mu]) * right;
der_mu += U[mu] * Cshift(right, mu, 1) * adj(U[mu]) * left;
// PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
der[mu] = -factor*der_mu;
// std::cout << GridLogDebug <<"MDerivLink: norm2(der) = "<<norm2(der[mu])<<std::endl;
}
// std::cout<<GridLogMessage << "MDerivLink end "<< std::endl;
}
void MDerivInt(LaplacianRatParams &par, const GaugeField& left, const GaugeField& right,
GaugeField& der , std::vector< std::vector<GaugeLinkField> >& prev_solns ) {
// get rid of this please
std::cout<<GridLogMessage << "LaplaceStart " <<std::endl;
RealD fac = - 1. / (double(4 * Nd)) ;
RealD coef=0.5;
LapStencil.GaugeImport(Usav);
LapStencilF.GaugeImport(UsavF);
for (int nu=0;nu<Nd;nu++){
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
GaugeLinkField LMinvMom(left.Grid());
GaugeLinkField GMom(left.Grid());
GaugeLinkField LMinvGMom(left.Grid());
GaugeLinkField AGMom(left.Grid());
GaugeLinkField MinvAGMom(left.Grid());
GaugeLinkField LMinvAGMom(left.Grid());
GaugeLinkField AMinvMom(left.Grid());
GaugeLinkField LMinvAMom(left.Grid());
GaugeLinkField temp(left.Grid());
GaugeLinkField temp2(left.Grid());
std::vector<GaugeLinkField> MinvMom(par.order,left.Grid());
GaugeLinkField MinvGMom(left.Grid());
GaugeLinkField Gtemp(left.Grid());
GaugeLinkField Gtemp2(left.Grid());
ConjugateGradient<GaugeLinkField> CG(par.tolerance,10000,false);
// ConjugateGradient<GaugeFieldF> CG_f(par.tolerance,10000,false);
LaplacianParams LapPar(0.0001, 1.0, 10000, 1e-8, 12, 64);
ChronoForecast< QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,GaugeLinkField>,GaugeLinkField> , GaugeLinkField> Forecast;
GMom = par.offset * right_nu;
for(int i =0;i<par.order;i++){
QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> QuadOp(LapStencil,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
#if USE_CHRONO
MinvMom[i] = Forecast(QuadOp, right_nu, prev_solns[nu]);
#endif
#ifndef MIXED_CG
CG(QuadOp,right_nu,MinvMom[i]);
#else
QuadLinearOperator<CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
// QuadLinearOperator<LaplacianAdjointField<ImplF>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],par.b1[i],par.b2);
MixedPrecisionConjugateGradient<GaugeLinkField,GaugeLinkFieldF> MixedCG(par.tolerance,10000,10000,grid_f,QuadOpF,QuadOp);
MixedCG.InnerTolerance=par.tolerance;
MixedCG(right_nu,MinvMom[i]);
#endif
#if USE_CHRONO
prev_solns[nu].push_back(MinvMom[i]);
#endif
GMom += par.a0[i]*MinvMom[i];
LapStencil.M(MinvMom[i],Gtemp2);
GMom += par.a1[i]*fac*Gtemp2;
}
for(int i =0;i<par.order;i++){
QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> QuadOp(LapStencil,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
MinvGMom = Forecast(QuadOp, GMom, prev_solns[nu]);
#ifndef MIXED_CG
CG(QuadOp,GMom,MinvGMom);
LapStencil.M(MinvGMom, Gtemp2); LMinvGMom=fac*Gtemp2;
CG(QuadOp,right_nu,MinvMom[i]);
#else
QuadLinearOperator<CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
// QuadLinearOperator<LaplacianAdjointField<ImplF>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],par.b1[i],par.b2);
MixedPrecisionConjugateGradient<GaugeLinkField,GaugeLinkFieldF> MixedCG(par.tolerance,10000,10000,grid_f,QuadOpF,QuadOp);
MixedCG.InnerTolerance=par.tolerance;
MixedCG(GMom,MinvGMom);
LapStencil.M(MinvGMom, Gtemp2); LMinvGMom=fac*Gtemp2;
// Laplacian.M(MinvGMom, LMinvGMom);
MixedCG(right_nu,MinvMom[i]);
#endif
#if USE_CHRONO
prev_solns[nu].push_back(MinvGMom);
#endif
LapStencil.M(MinvMom[i], Gtemp2); LMinvMom=fac*Gtemp2;
AMinvMom = par.a1[i]*LMinvMom;
AMinvMom += par.a0[i]*MinvMom[i];
LapStencil.M(AMinvMom, Gtemp2); LMinvAMom=fac*Gtemp2;
LapStencil.M(MinvGMom, Gtemp2); temp=fac*Gtemp2;
MinvAGMom = par.a1[i]*temp;
MinvAGMom += par.a0[i]*MinvGMom;
LapStencil.M(MinvAGMom, Gtemp2); LMinvAGMom=fac*Gtemp2;
GaugeField tempDer(left.Grid());
std::vector<GaugeLinkField> DerLink(Nd,left.Grid());
std::vector<GaugeLinkField> tempDerLink(Nd,left.Grid());
std::cout<<GridLogMessage << "force contraction "<< i <<std::endl;
// roctxRangePushA("RMHMC force contraction");
#if 0
MDerivLink(GMom,MinvMom[i],tempDer); der += coef*2*par.a1[i]*tempDer;
MDerivLink(left_nu,MinvGMom,tempDer); der += coef*2*par.a1[i]*tempDer;
MDerivLink(LMinvAGMom,MinvMom[i],tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(LMinvAMom,MinvGMom,tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(MinvAGMom,LMinvMom,tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(AMinvMom,LMinvGMom,tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(MinvAGMom,MinvMom[i],tempDer); der += coef*-2.*par.b1[i]*tempDer;
MDerivLink(AMinvMom,MinvGMom,tempDer); der += coef*-2.*par.b1[i]*tempDer;
#else
for (int mu=0;mu<Nd;mu++) DerLink[mu]=Zero();
MDerivLink(GMom,MinvMom[i],tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*2*par.a1[i]*tempDerLink[mu];
MDerivLink(left_nu,MinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*2*par.a1[i]*tempDerLink[mu];
MDerivLink(LMinvAGMom,MinvMom[i],tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(LMinvAMom,MinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(MinvAGMom,LMinvMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(AMinvMom,LMinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(MinvAGMom,MinvMom[i],tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b1[i]*tempDerLink[mu];
MDerivLink(AMinvMom,MinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b1[i]*tempDerLink[mu];
// PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
for (int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(tempDer, tempDerLink[mu], mu);
der += tempDer;
#endif
std::cout<<GridLogMessage << "coef = force contraction "<< i << "done "<< coef <<std::endl;
// roctxRangePop();
}
}
std::cout<<GridLogMessage << "LaplaceEnd " <<std::endl;
// exit(-42);
}
void MDeriv(const GaugeField& in, GaugeField& der) {
MDeriv(in,in, der);
}
void MDeriv(const GaugeField& left, const GaugeField& right,
GaugeField& der) {
der=Zero();
MDerivInt(Mparam, left, right, der,prev_solnsMDeriv );
std::cout <<GridLogDebug << "MDeriv:norm2(der) = "<<norm2(der)<<std::endl;
}
void MinvDeriv(const GaugeField& in, GaugeField& der) {
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
der=Zero();
MDerivInt(Gparam, in, in, der,prev_solnsMinvDeriv);
std::cout <<GridLogDebug << "MinvDeriv:norm2(der) = "<<norm2(der)<<std::endl;
}
void MSquareRootInt(LaplacianRatParams &par, GaugeField& P, std::vector< std::vector<GaugeLinkField> > & prev_solns ){
std::cout<<GridLogMessage << "LaplaceStart " <<std::endl;
RealD fac = -1. / (double(4 * Nd));
LapStencil.GaugeImport(Usav);
LapStencilF.GaugeImport(UsavF);
for(int nu=0; nu<Nd;nu++){
GaugeLinkField P_nu = PeekIndex<LorentzIndex>(P, nu);
GaugeLinkField Gp(P.Grid());
Gp = par.offset * P_nu;
ConjugateGradient<GaugeLinkField> CG(par.tolerance,10000);
// ConjugateGradient<GaugeLinkFieldF> CG_f(1.0e-8,10000);
ChronoForecast< QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> , GaugeLinkField> Forecast;
GaugeLinkField Gtemp(P.Grid());
GaugeLinkField Gtemp2(P.Grid());
for(int i =0;i<par.order;i++){
QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> QuadOp(LapStencil,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
Gtemp = Forecast(QuadOp, P_nu, prev_solns[nu]);
#ifndef MIXED_CG
CG(QuadOp,P_nu,Gtemp);
#else
QuadLinearOperator<CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
// QuadLinearOperator<LaplacianAdjointField<ImplF>,GaugeFieldF> QuadOpF(LapStencilF,par.b0[i],par.b1[i],par.b2);
MixedPrecisionConjugateGradient<GaugeLinkField,GaugeLinkFieldF> MixedCG(par.tolerance,10000,10000,grid_f,QuadOpF,QuadOp);
MixedCG.InnerTolerance=par.tolerance;
MixedCG(P_nu,Gtemp);
#endif
#if USE_CHRONO
prev_solns[nu].push_back(Gtemp);
#endif
Gp += par.a0[i]*Gtemp;
LapStencil.M(Gtemp,Gtemp2);
Gp += par.a1[i]*fac*Gtemp2;
}
PokeIndex<LorentzIndex>(P, Gp, nu);
}
std::cout<<GridLogMessage << "LaplaceEnd " <<std::endl;
}
void MSquareRoot(GaugeField& P){
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Mparam,P,prev_solns);
std::cout <<GridLogDebug << "MSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}
void MInvSquareRoot(GaugeField& P){
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Gparam,P,prev_solns);
std::cout <<GridLogDebug << "MInvSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}
void M(const GaugeField& in, GaugeField& out) {
out = in;
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Mparam,out,prev_solns);
MSquareRootInt(Mparam,out,prev_solns);
std::cout <<GridLogDebug << "M:norm2(out) = "<<norm2(out)<<std::endl;
}
void Minv(const GaugeField& in, GaugeField& inverted){
inverted = in;
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Gparam,inverted,prev_solns);
MSquareRootInt(Gparam,inverted,prev_solns);
std::cout <<GridLogDebug << "Minv:norm2(inverted) = "<<norm2(inverted)<<std::endl;
}
private:
std::vector<GaugeLinkField> U;
};
#undef MIXED_CG
NAMESPACE_END(Grid);

View File

@ -100,9 +100,6 @@ class GaugeGroup {
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
template <typename vtype>
using iSUnAlgebraMatrix =
iScalar<iScalar<iMatrix<vtype, AdjointDimension> > >;
static int su2subgroups(void) { return su2subgroups(group_name()); }
//////////////////////////////////////////////////////////////////////////////////////////////////
@ -131,19 +128,10 @@ class GaugeGroup {
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSUnAlgebraMatrix<vComplex> vAlgebraMatrix;
typedef iSUnAlgebraMatrix<vComplexF> vAlgebraMatrixF;
typedef iSUnAlgebraMatrix<vComplexD> vAlgebraMatrixD;
typedef Lattice<vAlgebraMatrix> LatticeAlgebraMatrix;
typedef Lattice<vAlgebraMatrixF> LatticeAlgebraMatrixF;
typedef Lattice<vAlgebraMatrixD> LatticeAlgebraMatrixD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
@ -172,7 +160,7 @@ class GaugeGroup {
return generator(lieIndex, ta, group_name());
}
static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
return su2SubGroupIndex(i1, i2, su2_index, group_name());
}
@ -401,52 +389,6 @@ class GaugeGroup {
}
}
// Ta are hermitian (?)
// Anti herm is i Ta basis
static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in, int b)
{
conformable(in, out);
GridBase *grid = out.Grid();
LatticeComplex tmp(grid);
Matrix ta;
// Using Luchang's projection convention
// 2 Tr{Ta Tb} A_b= 2/2 delta ab A_b = A_a
autoView(out_v,out,AcceleratorWrite);
autoView(in_v,in,AcceleratorRead);
int N = ncolour;
int NNm1 = N * (N - 1);
int hNNm1= NNm1/2;
RealD sqrt_2 = sqrt(2.0);
Complex ci(0.0,1.0);
for(int su2Index=0;su2Index<hNNm1;su2Index++){
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
int ax = su2Index*2;
int ay = su2Index*2+1;
accelerator_for(ss,grid->oSites(),1,{
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
// trace( Ta x Ci in)
// Bet I need to move to real part with mult by -i
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
});
}
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
int k = diagIndex + 1; // diagIndex starts from 0
int a = NNm1+diagIndex;
RealD scale = 1.0/sqrt(2.0*k*(k+1));
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
auto tmp = in_v[ss]()()(0,0);
for(int i=1;i<k;i++){
tmp=tmp+in_v[ss]()()(i,i);
}
tmp = tmp - in_v[ss]()()(k,k)*k;
out_v[ss]()()(a,b) =imag(tmp) * scale;
});
}
}
};
template <int ncolour>

View File

@ -7,6 +7,7 @@ Source file: ./lib/qcd/hmc/integrators/Integrator.h
Copyright (C) 2015
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,7 +34,12 @@ NAMESPACE_BEGIN(Grid);
template <typename Field>
class Metric{
protected:
int triv;
public:
Metric(){this->triv=1;}
int Trivial(){ return triv;}
//printf("Metric::Trivial=%d\n",triv); ;
virtual void ImportGauge(const Field&) = 0;
virtual void M(const Field&, Field&) = 0;
virtual void Minv(const Field&, Field&) = 0;
@ -41,6 +47,8 @@ public:
virtual void MInvSquareRoot(Field&) = 0;
virtual void MDeriv(const Field&, Field&) = 0;
virtual void MDeriv(const Field&, const Field&, Field&) = 0;
virtual void MinvDeriv(const Field&, Field&) = 0;
// virtual void MinvDeriv(const Field&, const Field&, Field&) = 0;
};
@ -48,23 +56,36 @@ public:
template <typename Field>
class TrivialMetric : public Metric<Field>{
public:
// TrivialMetric(){this->triv=1;printf("TrivialMetric::triv=%d\n",this->Trivial());}
virtual void ImportGauge(const Field&){};
virtual void M(const Field& in, Field& out){
// printf("M:norm=%0.15e\n",norm2(in));
std::cout << GridLogIntegrator << " M:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = in;
}
virtual void Minv(const Field& in, Field& out){
std::cout << GridLogIntegrator << " Minv:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = in;
}
virtual void MSquareRoot(Field& P){
std::cout << GridLogIntegrator << " MSquareRoot:norm(P)= " << std::sqrt(norm2(P)) << std::endl;
// do nothing
}
virtual void MInvSquareRoot(Field& P){
std::cout << GridLogIntegrator << " MInvSquareRoot:norm(P)= " << std::sqrt(norm2(P)) << std::endl;
// do nothing
}
virtual void MDeriv(const Field& in, Field& out){
std::cout << GridLogIntegrator << " MDeriv:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = Zero();
}
virtual void MinvDeriv(const Field& in, Field& out){
std::cout << GridLogIntegrator << " MinvDeriv:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = Zero();
}
virtual void MDeriv(const Field& left, const Field& right, Field& out){
std::cout << GridLogIntegrator << " MDeriv:norm(left)= " << std::sqrt(norm2(left)) << std::endl;
std::cout << GridLogIntegrator << " MDeriv:norm(right)= " << std::sqrt(norm2(right)) << std::endl;
out = Zero();
}
@ -101,14 +122,15 @@ public:
// Generate gaussian momenta
Implementation::generate_momenta(Mom, sRNG, pRNG);
// Modify the distribution with the metric
// if(M.Trivial()) return;
M.MSquareRoot(Mom);
if (1) {
// Auxiliary momenta
// do nothing if trivial, so hide in the metric
MomentaField AuxMomTemp(Mom.Grid());
Implementation::generate_momenta(AuxMom, sRNG, pRNG);
Implementation::generate_momenta(AuxField, sRNG, pRNG);
Implementation::generate_momenta(AuxMom, sRNG,pRNG);
Implementation::generate_momenta(AuxField, sRNG,pRNG);
// Modify the distribution with the metric
// Aux^dag M Aux
M.MInvSquareRoot(AuxMom); // AuxMom = M^{-1/2} AuxMomTemp
@ -117,11 +139,12 @@ public:
// Correct
RealD MomentaAction(){
static RealD Saux=0.,Smom=0.;
MomentaField inv(Mom.Grid());
inv = Zero();
M.Minv(Mom, inv);
LatticeComplex Hloc(Mom.Grid());
Hloc = Zero();
LatticeComplex Hloc(Mom.Grid()); Hloc = Zero();
LatticeComplex Hloc2(Mom.Grid()); Hloc2 = Zero();
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the metric
@ -129,8 +152,15 @@ public:
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
Hloc += trace(Mom_mu * inv_mu);
}
auto Htmp1 = TensorRemove(sum(Hloc));
std::cout << GridLogMessage << "S:dSmom = " << Htmp1.real()-Smom << "\n";
Smom=Htmp1.real()/HMC_MOMENTUM_DENOMINATOR;
if (1) {
// if(!M.Trivial())
{
// Auxiliary Fields
// hide in the metric
M.M(AuxMom, inv);
@ -140,13 +170,18 @@ public:
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
auto am_mu = PeekIndex<LorentzIndex>(AuxMom, mu);
auto af_mu = PeekIndex<LorentzIndex>(AuxField, mu);
Hloc += trace(am_mu * inv_mu);// p M p
Hloc += trace(af_mu * af_mu);
Hloc += trace(am_mu * inv_mu);
Hloc2 += trace(af_mu * af_mu);
}
}
auto Htmp2 = TensorRemove(sum(Hloc))-Htmp1;
std::cout << GridLogMessage << "S:dSaux = " << Htmp2.real()-Saux << "\n";
Saux=Htmp2.real();
auto Hsum = TensorRemove(sum(Hloc));
return Hsum.real();
auto Hsum = TensorRemove(sum(Hloc))/HMC_MOMENTUM_DENOMINATOR;
auto Hsum2 = TensorRemove(sum(Hloc2));
std::cout << GridLogIntegrator << "MomentaAction: " << Hsum.real()+Hsum2.real() << std::endl;
return Hsum.real()+Hsum2.real();
}
// Correct
@ -157,15 +192,17 @@ public:
MomentaField MDer(in.Grid());
MomentaField X(in.Grid());
X = Zero();
M.Minv(in, X); // X = G in
M.MDeriv(X, MDer); // MDer = U * dS/dU
der = Implementation::projectForce(MDer); // Ta if gauge fields
M.MinvDeriv(in, MDer); // MDer = U * dS/dU
der = -1.0* Implementation::projectForce(MDer); // Ta if gauge fields
// std::cout << GridLogIntegrator << " DerivativeU: norm(in)= " << std::sqrt(norm2(in)) << std::endl;
// std::cout << GridLogIntegrator << " DerivativeU: norm(der)= " << std::sqrt(norm2(der)) << std::endl;
}
void AuxiliaryFieldsDerivative(MomentaField& der){
der = Zero();
if (1){
// if(!M.Trivial())
{
// Auxiliary fields
MomentaField der_temp(der.Grid());
MomentaField X(der.Grid());
@ -173,6 +210,7 @@ public:
//M.M(AuxMom, X); // X = M Aux
// Two derivative terms
// the Mderiv need separation of left and right terms
std::cout << GridLogIntegrator << " AuxiliaryFieldsDerivative:norm(AuxMom)= " << std::sqrt(norm2(AuxMom)) << std::endl;
M.MDeriv(AuxMom, der);
@ -180,6 +218,7 @@ public:
//M.MDeriv(X, AuxMom, der_temp); der += der_temp;
der = -1.0*Implementation::projectForce(der);
std::cout << GridLogIntegrator << " AuxiliaryFieldsDerivative:norm(der)= " << std::sqrt(norm2(der)) << std::endl;
}
}
@ -189,22 +228,28 @@ public:
// is the projection necessary here?
// no for fields in the algebra
der = Implementation::projectForce(der);
std::cout << GridLogIntegrator << " DerivativeP:norm(der)= " << std::sqrt(norm2(der)) << std::endl;
}
void update_auxiliary_momenta(RealD ep){
if(1){
AuxMom -= ep * AuxField;
std::cout << GridLogIntegrator << "AuxMom update_auxiliary_fields: " << std::sqrt(norm2(AuxMom)) << std::endl;
std::cout << GridLogIntegrator << "AuxField update_auxiliary_fields: " << std::sqrt(norm2(AuxField)) << std::endl;
{
AuxMom -= ep * AuxField * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "AuxMom update_auxiliary_fields: " << std::sqrt(norm2(AuxMom)) << std::endl;
}
}
void update_auxiliary_fields(RealD ep){
if (1) {
// if(!M.Trivial())
{
MomentaField tmp(AuxMom.Grid());
MomentaField tmp2(AuxMom.Grid());
M.M(AuxMom, tmp);
// M.M(tmp, tmp2);
AuxField += ep * tmp; // M^2 AuxMom
// factor of 2?
std::cout << GridLogIntegrator << "AuxField update_auxiliary_fields: " << std::sqrt(norm2(AuxField)) << std::endl;
}
}

View File

@ -10,7 +10,6 @@
// doesn't get found by the scripts/filelist during bootstrapping.
private:
template <ONLY_IF_SU>
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
////////////////////////////////////////////////////////////////////////
@ -577,4 +576,3 @@ static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeFie
LieRandomize(pRNG,g,1.0);
GaugeTransform<Gimpl>(Umu,g);
}

View File

@ -1133,13 +1133,4 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
NAMESPACE_END(Grid);
#ifdef GRID_SYCL
template<> struct sycl::is_device_copyable<Grid::vComplexF> : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vComplexD> : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vRealF > : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vRealD > : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vInteger > : public std::true_type {};
#endif
#endif

View File

@ -218,10 +218,6 @@ public:
// -------------------------------------------------
// misc
// -------------------------------------------------
void discardhi(uint64_t z) {
_s[3] += z;
encrypt_counter();
}
// req: 26.5.1.4 Random number engine requirements, p.908 table 117, row 9
// Advances es state ei to ei+z by any means equivalent to z
@ -391,4 +387,4 @@ private:
#undef MIXK
#undef MIX2
#endif
#endif

View File

@ -137,55 +137,5 @@ public:
};
////////////////////////////////////////////////
// Some machinery to streamline making a stencil
////////////////////////////////////////////////
class shiftSignal {
public:
enum {
BACKWARD_CONST = 16,
NO_SHIFT = -1
};
};
// TODO: put a check somewhere that BACKWARD_CONST > Nd!
/*! @brief signals that you want to go backwards in direction dir */
inline int Back(const int dir) {
// generalShift will use BACKWARD_CONST to determine whether we step forward or
// backward. Trick inspired by SIMULATeQCD.
return dir + shiftSignal::BACKWARD_CONST;
}
/*! @brief shift one unit in direction dir */
template<typename... Args>
void generalShift(Coordinate& shift, int dir) {
if (dir >= shiftSignal::BACKWARD_CONST) {
dir -= shiftSignal::BACKWARD_CONST;
shift[dir]+=-1;
} else if (dir == shiftSignal::NO_SHIFT) {
; // do nothing
} else {
shift[dir]+=1;
}
}
/*! @brief follow a path of directions, shifting one unit in each direction */
template<typename... Args>
void generalShift(Coordinate& shift, int dir, Args... args) {
if (dir >= shiftSignal::BACKWARD_CONST) {
dir -= shiftSignal::BACKWARD_CONST;
shift[dir]+=-1;
} else if (dir == shiftSignal::NO_SHIFT) {
; // do nothing
} else {
shift[dir]+=1;
}
generalShift(shift, args...);
}
NAMESPACE_END(Grid);

View File

@ -706,7 +706,7 @@ public:
}
}
}
//std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
std::cout << GridLogDebug << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)
@ -761,8 +761,7 @@ public:
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p=Parameters(),
bool preserve_shm=false)
Parameters p=Parameters())
{
face_table_computed=0;
_grid = grid;
@ -856,9 +855,7 @@ public:
/////////////////////////////////////////////////////////////////////////////////
const int Nsimd = grid->Nsimd();
// Allow for multiple stencils to exist simultaneously
if (!preserve_shm)
_grid->ShmBufferFreeAll();
_grid->ShmBufferFreeAll();
int maxl=2;
u_simd_send_buf.resize(maxl);

View File

@ -69,35 +69,6 @@ accelerator_inline auto trace(const iVector<vtype,N> &arg) -> iVector<decltype(t
}
return ret;
}
////////////////////////////
// Fast path traceProduct
////////////////////////////
template<class S1 , class S2, IfNotGridTensor<S1> = 0, IfNotGridTensor<S2> = 0>
accelerator_inline auto traceProduct( const S1 &arg1,const S2 &arg2)
-> decltype(arg1*arg2)
{
return arg1*arg2;
}
template<class vtype,class rtype,int N >
accelerator_inline auto traceProduct(const iMatrix<vtype,N> &arg1,const iMatrix<rtype,N> &arg2) -> iScalar<decltype(trace(arg1._internal[0][0]*arg2._internal[0][0]))>
{
iScalar<decltype( trace(arg1._internal[0][0]*arg2._internal[0][0] )) > ret;
zeroit(ret._internal);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
ret._internal=ret._internal+traceProduct(arg1._internal[i][j],arg2._internal[j][i]);
}}
return ret;
}
template<class vtype,class rtype >
accelerator_inline auto traceProduct(const iScalar<vtype> &arg1,const iScalar<rtype> &arg2) -> iScalar<decltype(trace(arg1._internal*arg2._internal))>
{
iScalar<decltype(trace(arg1._internal*arg2._internal))> ret;
ret._internal=traceProduct(arg1._internal,arg2._internal);
return ret;
}
NAMESPACE_END(Grid);

View File

@ -34,12 +34,9 @@ NAMESPACE_BEGIN(Grid);
// These are the Grid tensors
template<typename T> struct isGridTensor : public std::false_type { static constexpr bool notvalue = true; };
template<class T> struct isGridTensor<iScalar<T> > : public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iVector<T, N> >: public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iMatrix<T, N> >: public std::true_type { static constexpr bool notvalue = false; };
template <typename T> using IfGridTensor = Invoke<std::enable_if<isGridTensor<T>::value, int> >;
template <typename T> using IfNotGridTensor = Invoke<std::enable_if<!isGridTensor<T>::value, int> >;
template<class T> struct isGridTensor<iScalar<T>> : public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iVector<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iMatrix<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
// Traits to identify scalars
template<typename T> struct isGridScalar : public std::false_type { static constexpr bool notvalue = true; };
@ -404,12 +401,3 @@ NAMESPACE_BEGIN(Grid);
};
NAMESPACE_END(Grid);
#ifdef GRID_SYCL
template<typename T> struct
sycl::is_device_copyable<T, typename std::enable_if<
Grid::isGridTensor<T>::value && (!std::is_trivially_copyable<T>::value),
void>::type>
: public std::true_type {};
#endif

View File

@ -7,8 +7,6 @@ uint32_t accelerator_threads=2;
uint32_t acceleratorThreads(void) {return accelerator_threads;};
void acceleratorThreads(uint32_t t) {accelerator_threads = t;};
#define ENV_LOCAL_RANK_PALS "PALS_LOCAL_RANKID"
#define ENV_RANK_PALS "PALS_RANKID"
#define ENV_LOCAL_RANK_OMPI "OMPI_COMM_WORLD_LOCAL_RANK"
#define ENV_RANK_OMPI "OMPI_COMM_WORLD_RANK"
#define ENV_LOCAL_RANK_SLURM "SLURM_LOCALID"
@ -149,7 +147,7 @@ void acceleratorInit(void)
#define GPU_PROP_FMT(canMapHostMemory,FMT) printf("AcceleratorHipInit: " #canMapHostMemory ": " FMT" \n",prop.canMapHostMemory);
#define GPU_PROP(canMapHostMemory) GPU_PROP_FMT(canMapHostMemory,"%d");
auto r=hipGetDeviceProperties(&gpu_props[i], i);
hipGetDeviceProperties(&gpu_props[i], i);
hipDeviceProp_t prop;
prop = gpu_props[i];
totalDeviceMem = prop.totalGlobalMem;
@ -230,17 +228,8 @@ void acceleratorInit(void)
{
rank = atoi(localRankStr);
}
if ((localRankStr = getenv(ENV_LOCAL_RANK_PALS)) != NULL)
{
rank = atoi(localRankStr);
}
if ((localRankStr = getenv(ENV_RANK_OMPI )) != NULL) { world_rank = atoi(localRankStr);}
if ((localRankStr = getenv(ENV_RANK_MVAPICH)) != NULL) { world_rank = atoi(localRankStr);}
if ((localRankStr = getenv(ENV_RANK_PALS )) != NULL) { world_rank = atoi(localRankStr);}
char hostname[HOST_NAME_MAX+1];
gethostname(hostname, HOST_NAME_MAX+1);
if ( rank==0 ) printf(" acceleratorInit world_rank %d is host %s \n",world_rank,hostname);
auto devices = cl::sycl::device::get_devices();
for(int d = 0;d<devices.size();d++){
@ -252,10 +241,9 @@ void acceleratorInit(void)
printf("AcceleratorSyclInit: " #prop ": " FMT" \n",devices[d].get_info<cl::sycl::info::device::prop>());
#define GPU_PROP(prop) GPU_PROP_FMT(prop,"%ld");
if ( world_rank == 0) {
GPU_PROP_STR(vendor);
GPU_PROP_STR(version);
GPU_PROP_STR(vendor);
GPU_PROP_STR(version);
// GPU_PROP_STR(device_type);
/*
GPU_PROP(max_compute_units);
@ -271,8 +259,7 @@ void acceleratorInit(void)
GPU_PROP(single_fp_config);
*/
// GPU_PROP(double_fp_config);
GPU_PROP(global_mem_size);
}
GPU_PROP(global_mem_size);
}
if ( world_rank == 0 ) {

View File

@ -225,8 +225,6 @@ inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyHostToDevice, stream);}
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToHost, stream);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
@ -255,13 +253,17 @@ inline int acceleratorIsCommunicable(void *ptr)
#define GRID_SYCL_LEVEL_ZERO_IPC
NAMESPACE_END(Grid);
// Force deterministic reductions
#define SYCL_REDUCTION_DETERMINISTIC
#if 0
#include <CL/sycl.hpp>
#include <CL/sycl/usm.hpp>
#include <level_zero/ze_api.h>
#include <CL/sycl/backend/level_zero.hpp>
#else
#include <sycl/CL/sycl.hpp>
#include <sycl/usm.hpp>
#include <level_zero/ze_api.h>
#include <sycl/ext/oneapi/backend/level_zero.hpp>
#endif
NAMESPACE_BEGIN(Grid);
@ -285,24 +287,23 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { \
unsigned long nt=acceleratorThreads(); \
if(nt < 8)nt=8; \
unsigned long unum1 = num1; \
unsigned long unum2 = num2; \
unsigned long unum1_divisible_by_nt = ((unum1 + nt - 1) / nt) * nt; \
cl::sycl::range<3> local {nt,1,nsimd}; \
cl::sycl::range<3> global{unum1_divisible_by_nt,unum2,nsimd}; \
cgh.parallel_for( \
cl::sycl::nd_range<3>(global,local), \
[=] (cl::sycl::nd_item<3> item) /*mutable*/ \
[[intel::reqd_sub_group_size(16)]] \
{ \
auto iter1 = item.get_global_id(0); \
auto iter2 = item.get_global_id(1); \
auto lane = item.get_global_id(2); \
{ if (iter1 < unum1){ __VA_ARGS__ } }; \
}); \
});
unsigned long nt=acceleratorThreads(); \
unsigned long unum1 = num1; \
unsigned long unum2 = num2; \
if(nt < 8)nt=8; \
cl::sycl::range<3> local {nt,1,nsimd}; \
cl::sycl::range<3> global{unum1,unum2,nsimd}; \
cgh.parallel_for( \
cl::sycl::nd_range<3>(global,local), \
[=] (cl::sycl::nd_item<3> item) /*mutable*/ \
[[intel::reqd_sub_group_size(16)]] \
{ \
auto iter1 = item.get_global_id(0); \
auto iter2 = item.get_global_id(1); \
auto lane = item.get_global_id(2); \
{ __VA_ARGS__ }; \
}); \
});
#define accelerator_barrier(dummy) { theGridAccelerator->wait(); }
@ -404,7 +405,7 @@ void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
#define accelerator_barrier(dummy) \
{ \
auto r=hipStreamSynchronize(computeStream); \
hipStreamSynchronize(computeStream); \
auto err = hipGetLastError(); \
if ( err != hipSuccess ) { \
printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
@ -437,21 +438,19 @@ inline void *acceleratorAllocDevice(size_t bytes)
return ptr;
};
inline void acceleratorFreeShared(void *ptr){ auto r=hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ auto r=hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto r=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto r=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) { auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyHostToDevice, stream);}
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) { auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToHost, stream);}
inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
//inline void acceleratorCopySynchronise(void) { }
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto r=hipMemset(base,value,bytes);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
auto r=hipMemcpyDtoDAsync(to,from,bytes, copyStream);
hipMemcpyDtoDAsync(to,from,bytes, copyStream);
}
inline void acceleratorCopySynchronise(void) { auto r=hipStreamSynchronize(copyStream); };
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
#endif
@ -576,11 +575,4 @@ accelerator_inline void acceleratorFence(void)
return;
}
inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes)
{
acceleratorCopyDeviceToDeviceAsynch(from,to,bytes);
acceleratorCopySynchronise();
}
NAMESPACE_END(Grid);

View File

@ -77,10 +77,6 @@ feenableexcept (unsigned int excepts)
}
#endif
#ifndef HOST_NAME_MAX
#define HOST_NAME_MAX _POSIX_HOST_NAME_MAX
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////
@ -90,139 +86,11 @@ NAMESPACE_BEGIN(Grid);
static Coordinate Grid_default_latt;
static Coordinate Grid_default_mpi;
///////////////////////////////////////////////////////
// Grid Norm logging for repro testing
///////////////////////////////////////////////////////
int GridNormLoggingMode;
int32_t GridNormLoggingCounter;
int32_t GridMPINormLoggingCounter;
std::vector<double> GridNormLogVector;
std::vector<double> GridMPINormLogVector;
std::vector<uint32_t> GridCsumLogVector;
void SetGridNormLoggingMode(GridNormLoggingMode_t mode)
{
switch ( mode ) {
case GridNormLoggingModePrint:
SetGridNormLoggingModePrint();
break;
case GridNormLoggingModeRecord:
SetGridNormLoggingModeRecord();
break;
case GridNormLoggingModeVerify:
SetGridNormLoggingModeVerify();
break;
case GridNormLoggingModeNone:
GridNormLoggingMode = mode;
GridNormLoggingCounter=0;
GridMPINormLoggingCounter=0;
GridNormLogVector.resize(0);
GridCsumLogVector.resize(0);
GridMPINormLogVector.resize(0);
break;
default:
assert(0);
}
}
void SetGridNormLoggingModePrint(void)
{
std::cout << " GridNormLogging Reproducibility logging set to print output " <<std::endl;
GridNormLoggingCounter = 0;
GridMPINormLoggingCounter=0;
GridNormLogVector.resize(0);
GridCsumLogVector.resize(0);
GridMPINormLogVector.resize(0);
GridNormLoggingMode = GridNormLoggingModePrint;
}
void SetGridNormLoggingModeRecord(void)
{
std::cout << " GridNormLogging Reproducibility logging set to RECORD " <<std::endl;
GridNormLoggingCounter = 0;
GridMPINormLoggingCounter=0;
GridNormLogVector.resize(0);
GridCsumLogVector.resize(0);
GridMPINormLogVector.resize(0);
GridNormLoggingMode = GridNormLoggingModeRecord;
}
void SetGridNormLoggingModeVerify(void)
{
std::cout << " GridNormLogging Reproducibility logging set to VERIFY " << GridNormLogVector.size()<< " log entries "<<std::endl;
GridNormLoggingCounter = 0;
GridMPINormLoggingCounter=0;
GridNormLoggingMode = GridNormLoggingModeVerify;
}
void GridNormLog(double value,uint32_t csum)
{
if(GridNormLoggingMode == GridNormLoggingModePrint) {
std::cerr<<"GridNormLog : "<< GridNormLoggingCounter <<" " << std::hexfloat << value << " csum " <<std::hex<<csum<<std::dec <<std::endl;
GridNormLoggingCounter++;
}
if(GridNormLoggingMode == GridNormLoggingModeRecord) {
GridNormLogVector.push_back(value);
GridCsumLogVector.push_back(csum);
GridNormLoggingCounter++;
}
if(GridNormLoggingMode == GridNormLoggingModeVerify) {
assert(GridNormLoggingCounter < GridNormLogVector.size());
if ( (value != GridNormLogVector[GridNormLoggingCounter])
|| (csum!=GridCsumLogVector[GridNormLoggingCounter]) ) {
std::cerr << " Oops got norm "<< std::hexfloat<<value<<" expect "<<GridNormLogVector[GridNormLoggingCounter] <<std::endl;
std::cerr << " Oops got csum "<< std::hex<<csum<<" expect "<<GridCsumLogVector[GridNormLoggingCounter] <<std::endl;
fprintf(stderr,"%s:%d Oops, I did it again! Reproduce failure for norm %d/%zu %.16e %.16e %x %x\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
GridNormLoggingCounter,GridNormLogVector.size(),
value, GridNormLogVector[GridNormLoggingCounter],
csum, GridCsumLogVector[GridNormLoggingCounter]); fflush(stderr);
assert(0); // Force takedown of job
}
if ( GridNormLogVector.size()==GridNormLoggingCounter ) {
std::cout << " GridNormLogging : Verified entire sequence of "<<GridNormLoggingCounter<<" norms "<<std::endl;
}
GridNormLoggingCounter++;
}
}
void GridMPINormLog(double local,double result)
{
if(GridNormLoggingMode == GridNormLoggingModePrint) {
std::cerr<<"GridMPINormLog : "<< GridMPINormLoggingCounter <<" " << std::hexfloat << local << " -> " <<result <<std::endl;
GridMPINormLoggingCounter++;
}
if(GridNormLoggingMode == GridNormLoggingModeRecord) {
std::cerr<<"GridMPINormLog RECORDING : "<< GridMPINormLoggingCounter <<" " << std::hexfloat << local << "-> "<< result <<std::endl;
GridMPINormLogVector.push_back(result);
GridMPINormLoggingCounter++;
}
if(GridNormLoggingMode == GridNormLoggingModeVerify) {
std::cerr<<"GridMPINormLog : "<< GridMPINormLoggingCounter <<" " << std::hexfloat << local << "-> "<< result <<std::endl;
assert(GridMPINormLoggingCounter < GridMPINormLogVector.size());
if ( result != GridMPINormLogVector[GridMPINormLoggingCounter] ) {
fprintf(stderr,"%s:%d MPI_Allreduce did it again! Reproduce failure for norm %d/%zu glb %.16e lcl %.16e hist %.16e\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
GridMPINormLoggingCounter,GridMPINormLogVector.size(),
result, local, GridMPINormLogVector[GridMPINormLoggingCounter]); fflush(stderr);
assert(0); // Force takedown of job
}
if ( GridMPINormLogVector.size()==GridMPINormLoggingCounter ) {
std::cout << " GridMPINormLogging : Verified entire sequence of "<<GridMPINormLoggingCounter<<" norms "<<std::endl;
}
GridMPINormLoggingCounter++;
}
}
int GridThread::_threads =1;
int GridThread::_hyperthreads=1;
int GridThread::_cores=1;
char hostname[HOST_NAME_MAX+1];
char *GridHostname(void)
{
return hostname;
}
const Coordinate &GridDefaultLatt(void) {return Grid_default_latt;};
const Coordinate &GridDefaultMpi(void) {return Grid_default_mpi;};
const Coordinate GridDefaultSimd(int dims,int nsimd)
@ -525,8 +393,6 @@ void Grid_init(int *argc,char ***argv)
std::cout << GridLogMessage << "MPI is initialised and logging filters activated "<<std::endl;
std::cout << GridLogMessage << "================================================ "<<std::endl;
gethostname(hostname, HOST_NAME_MAX+1);
std::cout << GridLogMessage << "This rank is running on host "<< hostname<<std::endl;
/////////////////////////////////////////////////////////
// Reporting

View File

@ -34,8 +34,6 @@ NAMESPACE_BEGIN(Grid);
void Grid_init(int *argc,char ***argv);
void Grid_finalize(void);
char * GridHostname(void);
// internal, controled with --handle
void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr);
void Grid_debug_handler_init(void);
@ -70,21 +68,5 @@ void GridParseLayout(char **argv,int argc,
void printHash(void);
enum GridNormLoggingMode_t {
GridNormLoggingModeNone,
GridNormLoggingModePrint,
GridNormLoggingModeRecord,
GridNormLoggingModeVerify
};
//extern int GridNormLoggingMode;
//extern int32_t GridNormLoggingCounter;
//extern std::vector<double> GridNormLogVector;
void SetGridNormLoggingModePrint(void);
void SetGridNormLoggingModeRecord(void);
void SetGridNormLoggingModeVerify(void);
void SetGridNormLoggingMode(GridNormLoggingMode_t mode);
void GridNormLog(double value,uint32_t csum);
void GridMPINormLog(double lcl, double glbl);
NAMESPACE_END(Grid);

View File

@ -54,16 +54,15 @@ int main(int argc, char **argv)
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 24;
MD.MDsteps = 12;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 104;
HMCparams.StartTrajectory = 0;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 20;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("HotStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.StartingType =std::string("HotStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
@ -88,7 +87,6 @@ int main(int argc, char **argv)
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
@ -136,6 +134,7 @@ int main(int argc, char **argv)
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(2);
ActionLevel<HMCWrapper::Field> Level3(4);
////////////////////////////////////
// Strange action
@ -192,7 +191,7 @@ int main(int argc, char **argv)
Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
SmearedConfigurationMasked<HMCWrapper::ImplPolicy> SmearingPolicy(GridPtr, Nstep, Stout);
JacobianAction<HMCWrapper::ImplPolicy> Jacobian(&SmearingPolicy);
if( ApplySmearing ) Level1.push_back(&Jacobian);
if( ApplySmearing ) Level2.push_back(&Jacobian);
std::cout << GridLogMessage << " Built the Jacobian "<< std::endl;
@ -201,7 +200,7 @@ int main(int argc, char **argv)
/////////////////////////////////////////////////////////////
// GaugeAction.is_smeared = ApplySmearing;
GaugeAction.is_smeared = true;
Level2.push_back(&GaugeAction);
Level3.push_back(&GaugeAction);
std::cout << GridLogMessage << " ************************************************"<< std::endl;
std::cout << GridLogMessage << " Action complete -- NO FERMIONS FOR NOW -- FIXME"<< std::endl;
@ -211,11 +210,10 @@ int main(int argc, char **argv)
std::cout << GridLogMessage << " Running the FT HMC "<< std::endl;
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
TheHMC.TheAction.push_back(Level3);
TheHMC.Run(SmearingPolicy); // for smearing

View File

@ -1,226 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Copyright (C) 2023
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
#include <Grid/qcd/smearing/JacobianAction.h>
using namespace Grid;
int main(int argc, char **argv)
{
std::cout << std::setprecision(12);
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 24;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 0;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 20;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("HotStart");
HMCparams.StartingType =std::string("ColdStart");
// HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EODWF_lat";
CPparams.smeared_prefix = "ckpoint_EODWF_lat_smr";
CPparams.rng_prefix = "ckpoint_EODWF_rng";
CPparams.saveInterval = 1;
CPparams.saveSmeared = true;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
Real beta = 2.37;
Real light_mass = 0.0047;
Real strange_mass = 0.0186;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0; // Scale factor one, Shamir
RealD c = 0.0;
OneFlavourRationalParams OFRp;
OFRp.lo = 1.0e-2;
OFRp.hi = 64;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-10;
OFRp.degree = 14;
OFRp.precision= 40;
std::vector<Real> hasenbusch({ 0.05, 0.1, 0.25, 0.5 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeField Uhot(GridPtr);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
double StoppingCondition = 1e-10;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
bool ApplySmearing = true;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(2);
////////////////////////////////////
// Strange action
////////////////////////////////////
MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
CG,
CG, CG,
CG, CG,
OFRp, false);
EOFA.is_smeared = ApplySmearing;
Level1.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
}
for(int h=0;h<n_hasenbusch+1;h++){
Quotients[h]->is_smeared = ApplySmearing;
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// lnDetJacobianAction
/////////////////////////////////////////////////////////////
double rho = 0.1; // smearing parameter
int Nsmear = 1; // number of smearing levels - must be multiple of 2Nd
int Nstep = 8*Nsmear; // number of smearing levels - must be multiple of 2Nd
Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
SmearedConfigurationMasked<HMCWrapper::ImplPolicy> SmearingPolicy(GridPtr, Nstep, Stout);
JacobianAction<HMCWrapper::ImplPolicy> Jacobian(&SmearingPolicy);
if( ApplySmearing ) Level1.push_back(&Jacobian);
std::cout << GridLogMessage << " Built the Jacobian "<< std::endl;
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
GaugeAction.is_smeared = ApplySmearing;
Level2.push_back(&GaugeAction);
std::cout << GridLogMessage << " ************************************************"<< std::endl;
std::cout << GridLogMessage << " Action complete -- NO FERMIONS FOR NOW -- FIXME"<< std::endl;
std::cout << GridLogMessage << " ************************************************"<< std::endl;
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << " Running the FT HMC "<< std::endl;
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
} // main

View File

@ -1,226 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Copyright (C) 2023
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
#include <Grid/qcd/smearing/JacobianAction.h>
using namespace Grid;
int main(int argc, char **argv)
{
std::cout << std::setprecision(12);
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 24;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 0;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 20;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("HotStart");
HMCparams.StartingType =std::string("ColdStart");
// HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EODWF_lat";
CPparams.smeared_prefix = "ckpoint_EODWF_lat_smr";
CPparams.rng_prefix = "ckpoint_EODWF_rng";
CPparams.saveInterval = 1;
CPparams.saveSmeared = true;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
Real beta = 2.37;
Real light_mass = 0.0047;
Real strange_mass = 0.0186;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0; // Scale factor one, Shamir
RealD c = 0.0;
OneFlavourRationalParams OFRp;
OFRp.lo = 1.0e-2;
OFRp.hi = 64;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-10;
OFRp.degree = 14;
OFRp.precision= 40;
std::vector<Real> hasenbusch({ 0.05, 0.1, 0.25, 0.5 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeField Uhot(GridPtr);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
double StoppingCondition = 1e-10;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
bool ApplySmearing = false;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(2);
////////////////////////////////////
// Strange action
////////////////////////////////////
MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
CG,
CG, CG,
CG, CG,
OFRp, false);
EOFA.is_smeared = ApplySmearing;
Level1.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
}
for(int h=0;h<n_hasenbusch+1;h++){
Quotients[h]->is_smeared = ApplySmearing;
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// lnDetJacobianAction
/////////////////////////////////////////////////////////////
double rho = 0.1; // smearing parameter
int Nsmear = 1; // number of smearing levels - must be multiple of 2Nd
int Nstep = 8*Nsmear; // number of smearing levels - must be multiple of 2Nd
Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
SmearedConfigurationMasked<HMCWrapper::ImplPolicy> SmearingPolicy(GridPtr, Nstep, Stout);
JacobianAction<HMCWrapper::ImplPolicy> Jacobian(&SmearingPolicy);
if( ApplySmearing ) Level1.push_back(&Jacobian);
std::cout << GridLogMessage << " Built the Jacobian "<< std::endl;
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
GaugeAction.is_smeared = ApplySmearing;
Level2.push_back(&GaugeAction);
std::cout << GridLogMessage << " ************************************************"<< std::endl;
std::cout << GridLogMessage << " Action complete -- NO FERMIONS FOR NOW -- FIXME"<< std::endl;
std::cout << GridLogMessage << " ************************************************"<< std::endl;
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << " Running the FT HMC "<< std::endl;
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
} // main

View File

@ -1,350 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
CartesianCommunicator::BarrierWorld();
std::cout << GridLogMessage << " Clock skew check" <<std::endl;
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
typedef WilsonImplD FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef MobiusEOFAFermionD FermionEOFAAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
MD.name = std::string("Force Gradient");
//typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
// MD.name = std::string("MinimumNorm2");
// TrajL = 2
// 4/2 => 0.6 dH
// 3/3 => 0.8 dH .. depth 3, slower
//MD.MDsteps = 4;
MD.MDsteps = 3;
MD.trajL = 0.5;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 1077;
HMCparams.Trajectories = 1;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_DDHMC_lat";
CPparams.rng_prefix = "ckpoint_DDHMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
std::cout << "loaded NERSC checpointer"<<std::endl;
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
Real beta = 2.13;
// Real light_mass = 5.4e-4;
Real light_mass = 7.8e-4;
Real light_mass_dir = 0.01;
Real strange_mass = 0.0362;
Real pv_mass = 1.0;
std::vector<Real> hasenbusch({ 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// std::vector<Real> hasenbusch({ light_mass, 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// std::vector<Real> hasenbusch({ light_mass, 0.005, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // Updated
// std::vector<Real> hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , 0.75 , pv_mass });
int SP_iters=9000;
RationalActionParams OFRp; // Up/down
OFRp.lo = 6.0e-5;
OFRp.hi = 90.0;
OFRp.inv_pow = 2;
OFRp.MaxIter = SP_iters; // get most shifts by 2000, stop sharing space
OFRp.action_tolerance= 1.0e-8;
OFRp.action_degree = 18;
OFRp.md_tolerance= 1.0e-7;
OFRp.md_degree = 14;
// OFRp.degree = 20; converges
// OFRp.degree = 16;
OFRp.precision= 80;
OFRp.BoundsCheckFreq=0;
std::vector<RealD> ActionTolByPole({
// 1.0e-8,1.0e-8,1.0e-8,1.0e-8,
3.0e-7,1.0e-7,1.0e-8,1.0e-8,
1.0e-8,1.0e-8,1.0e-8,1.0e-8,
1.0e-8,1.0e-8,1.0e-8,1.0e-8,
1.0e-8,1.0e-8,1.0e-8,1.0e-8,
1.0e-8,1.0e-8
});
std::vector<RealD> MDTolByPole({
// 1.6e-5,5.0e-6,1.0e-6,3.0e-7, // soften convergence more more
// 1.0e-6,3.0e-7,1.0e-7,1.0e-7,
1.0e-5,1.0e-6,1.0e-7,1.0e-7, // soften convergence
1.0e-8,1.0e-8,1.0e-8,1.0e-8,
1.0e-8,1.0e-8,1.0e-8,1.0e-8,
1.0e-8,1.0e-8
});
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
////////////////////////////////////////////////////////////////
// Domain decomposed
////////////////////////////////////////////////////////////////
Coordinate latt4 = GridPtr->GlobalDimensions();
Coordinate mpi = GridPtr->ProcessorGrid();
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
Coordinate CommDim(Nd);
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Coordinate NonDirichlet(Nd+1,0);
Coordinate Dirichlet(Nd+1,0);
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
//Dirichlet[1] = 0;
//Dirichlet[2] = 0;
//Dirichlet[3] = 0;
//
Coordinate Block4(Nd);
Block4[0] = Dirichlet[1];
Block4[1] = Dirichlet[2];
Block4[2] = Dirichlet[3];
Block4[3] = Dirichlet[4];
int Width=4;
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplD::Field>(Block4,Width));
//////////////////////////
// Fermion Grids
//////////////////////////
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD U(GridPtr); U=Zero();
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
std::cout << "loaded NERSC gauge field"<<std::endl;
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
FermionAction::ImplParams ParamsDir(boundary);
Params.dirichlet=NonDirichlet;
ParamsDir.dirichlet=Dirichlet;
ParamsDir.partialDirichlet=0;
std::cout << GridLogMessage<< "Partial Dirichlet depth is "<<dwf_compressor_depth<<std::endl;
// double StoppingCondition = 1e-14;
// double MDStoppingCondition = 1e-9;
double StoppingCondition = 1e-8;
double MDStoppingCondition = 1e-8;
double MDStoppingConditionLoose = 1e-8;
double MDStoppingConditionStrange = 1e-8;
double MaxCGIterations = 300000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> MDCG(MDStoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(3);
ActionLevel<HMCWrapper::Field> Level3(15);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
// Probably dominates the force - back to EOFA.
OneFlavourRationalParams SFRp;
SFRp.lo = 0.1;
SFRp.hi = 25.0;
SFRp.MaxIter = 10000;
SFRp.tolerance= 1.0e-8;
SFRp.mdtolerance= 2.0e-6;
SFRp.degree = 12;
SFRp.precision= 50;
MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ConjugateGradient<FermionField> ActionCG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(MDStoppingCondition,MaxCGIterations);
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
SFRp, true);
Level2.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
std::vector<int> dirichlet_den;
std::vector<int> dirichlet_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass); dirichlet_den.push_back(0);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]); dirichlet_den.push_back(1);
}
for(int h=0;h<n_hasenbusch;h++){
light_num.push_back(hasenbusch[h]); dirichlet_num.push_back(1);
}
light_num.push_back(pv_mass); dirichlet_num.push_back(0);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> *> Bdys;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
std::vector<LinearOperatorD *> LinOpD;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage
<< " 2f quotient Action ";
std::cout << "det D("<<light_den[h]<<")";
if ( dirichlet_den[h] ) std::cout << "^dirichlet ";
std::cout << "/ det D("<<light_num[h]<<")";
if ( dirichlet_num[h] ) std::cout << "^dirichlet ";
std::cout << std::endl;
FermionAction::ImplParams ParamsNum(boundary);
FermionAction::ImplParams ParamsDen(boundary);
if ( dirichlet_num[h]==1) ParamsNum.dirichlet = Dirichlet;
else ParamsNum.dirichlet = NonDirichlet;
if ( dirichlet_den[h]==1) ParamsDen.dirichlet = Dirichlet;
else ParamsDen.dirichlet = NonDirichlet;
if ( dirichlet_num[h]==1) ParamsNum.partialDirichlet = 1;
else ParamsNum.partialDirichlet = 0;
if ( dirichlet_den[h]==1) ParamsDen.partialDirichlet = 1;
else ParamsDen.partialDirichlet = 0;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, ParamsNum));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, ParamsDen));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
double conv = MDStoppingCondition;
if (h<3) conv= MDStoppingConditionLoose; // Relax on first two hasenbusch factors
if(h!=0) {
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],MDCG,CG));
} else {
Bdys.push_back( new GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
Bdys.push_back( new GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
}
}
for(int h=0;h<Bdys.size();h++){
Bdys[h]->SetTolerances(ActionTolByPole,MDTolByPole);
}
int nquo=Quotients.size();
Level1.push_back(Bdys[0]);
Level1.push_back(Bdys[1]);
Level2.push_back(Quotients[0]);
for(int h=1;h<nquo-1;h++){
Level2.push_back(Quotients[h]);
}
Level2.push_back(Quotients[nquo-1]);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@ -343,7 +343,7 @@ int main(int argc, char **argv) {
// Probably dominates the force - back to EOFA.
OneFlavourRationalParams SFRp;
SFRp.lo = 0.1;
SFRp.hi = 30.0;
SFRp.hi = 25.0;
SFRp.MaxIter = 10000;
SFRp.tolerance= 1.0e-5;
SFRp.mdtolerance= 2.0e-4;

View File

@ -128,7 +128,7 @@ template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, c
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
#if 0
#if 1
RealD delta=1.e-4;
std::cout << GridLogMessage << "Calling reliable update Conjugate Gradient" <<std::endl;
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations*MaxOuterIterations,delta,SinglePrecGrid5,LinOpF,LinOpD);
@ -180,7 +180,7 @@ int main(int argc, char **argv) {
// 4/2 => 0.6 dH
// 3/3 => 0.8 dH .. depth 3, slower
//MD.MDsteps = 4;
MD.MDsteps = 12;
MD.MDsteps = 14;
MD.trajL = 0.5;
HMCparameters HMCparams;
@ -204,7 +204,7 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
std::cout << "loaded NERSC checpointer"<<std::endl;
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5 6 7 8 9 10";
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
@ -218,14 +218,15 @@ int main(int argc, char **argv) {
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
RealD beta = 2.13;
Real beta = 2.13;
// Real light_mass = 5.4e-4;
Real light_mass = 7.8e-4;
// Real light_mass = 7.8e-3;
Real strange_mass = 0.0362;
Real pv_mass = 1.0;
std::vector<Real> hasenbusch({ 0.005, 0.0145, 0.045, 0.108, 0.25, 0.35 , 0.51, 0.6, 0.8 }); // Updated
//std::vector<Real> hasenbusch({ 0.0145, 0.045, 0.108, 0.25, 0.35 , 0.51, 0.6, 0.8 }); // Updated
// std::vector<Real> hasenbusch({ 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// std::vector<Real> hasenbusch({ light_mass, 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass });
std::vector<Real> hasenbusch({ 0.005, 0.0145, 0.045, 0.108, 0.25, 0.51 }); // Updated
// std::vector<Real> hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , 0.75 , pv_mass });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
@ -276,20 +277,20 @@ int main(int argc, char **argv) {
// double StoppingCondition = 1e-14;
// double MDStoppingCondition = 1e-9;
double StoppingCondition = 1e-14;
double MDStoppingCondition = 1e-9;
double MDStoppingConditionLoose = 1e-9;
double MDStoppingConditionStrange = 1e-9;
double MaxCGIterations = 50000;
double StoppingCondition = 1e-9;
double MDStoppingCondition = 1e-8;
double MDStoppingConditionLoose = 1e-8;
double MDStoppingConditionStrange = 1e-8;
double MaxCGIterations = 300000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> MDCG(MDStoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(2);
ActionLevel<HMCWrapper::Field> Level3(4);
// ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(1);
ActionLevel<HMCWrapper::Field> Level3(15);
////////////////////////////////////
// Strange action
@ -299,11 +300,11 @@ int main(int argc, char **argv) {
// Probably dominates the force - back to EOFA.
OneFlavourRationalParams SFRp;
SFRp.lo = 0.8;
SFRp.lo = 0.1;
SFRp.hi = 30.0;
SFRp.MaxIter = 10000;
SFRp.tolerance= 1.0e-12;
SFRp.mdtolerance= 1.0e-9;
SFRp.tolerance= 1.0e-8;
SFRp.mdtolerance= 2.0e-6;
SFRp.degree = 10;
SFRp.precision= 50;
@ -354,10 +355,8 @@ int main(int argc, char **argv) {
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
// ActionCGL, ActionCGR,
// DerivativeCGL, DerivativeCGR,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
SFRp, true);
Level2.push_back(&EOFA);
@ -444,14 +443,13 @@ int main(int argc, char **argv) {
}
int nquo=Quotients.size();
for(int h=0;h<nquo;h++){
Level1.push_back(Quotients[h]);
Level2.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;

View File

@ -1,268 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
std::cout << " Grid Initialise "<<std::endl;
Grid_init(&argc, &argv);
CartesianCommunicator::BarrierWorld();
std::cout << GridLogMessage << " Clock skew check" <<std::endl;
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
typedef WilsonImplD FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef MobiusEOFAFermionD FermionEOFAAction;
typedef typename FermionAction::FermionField FermionField;
typedef WilsonImplF FermionImplPolicyF;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
MD.name = std::string("Force Gradient");
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
// MD.name = std::string("MinimumNorm2");
// TrajL = 2
// 4/2 => 0.6 dH
// 3/3 => 0.8 dH .. depth 3, slower
//MD.MDsteps = 4;
MD.MDsteps = 8;
MD.trajL = 0.5;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 1077;
HMCparams.Trajectories = 20;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
HMCparams.StartingType =std::string("ColdStart");
// HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_HMC_lat";
CPparams.rng_prefix = "ckpoint_HMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
std::cout << "loaded NERSC checpointer"<<std::endl;
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5 6 7 8 9 10";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
RealD beta = 2.13;
// Real light_mass = 5.4e-4;
Real light_mass = 7.8e-4;
// Real light_mass = 7.8e-3;
Real strange_mass = 0.0362;
Real pv_mass = 1.0;
std::vector<Real> hasenbusch({ 0.005, 0.0145, 0.045, 0.108, 0.25, 0.35 , 0.51, 0.6, 0.8 }); // Updated
//std::vector<Real> hasenbusch({ 0.0145, 0.045, 0.108, 0.25, 0.35 , 0.51, 0.6, 0.8 }); // Updated
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
////////////////////////////////////////////////////////////////
// Domain decomposed
////////////////////////////////////////////////////////////////
Coordinate latt4 = GridPtr->GlobalDimensions();
Coordinate mpi = GridPtr->ProcessorGrid();
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
//////////////////////////
// Fermion Grids
//////////////////////////
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD U(GridPtr); U=Zero();
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
std::cout << "loaded NERSC gauge field"<<std::endl;
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
// double StoppingCondition = 1e-14;
// double MDStoppingCondition = 1e-9;
double StoppingCondition = 1e-14;
double MDStoppingCondition = 1e-9;
double MDStoppingConditionLoose = 1e-9;
double MDStoppingConditionStrange = 1e-9;
double MaxCGIterations = 50000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> MDCG(MDStoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(2);
ActionLevel<HMCWrapper::Field> Level3(4);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
// Probably dominates the force - back to EOFA.
OneFlavourRationalParams SFRp;
SFRp.lo = 0.8;
SFRp.hi = 30.0;
SFRp.MaxIter = 10000;
SFRp.tolerance= 1.0e-12;
SFRp.mdtolerance= 1.0e-9;
SFRp.degree = 10;
SFRp.precision= 50;
MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ConjugateGradient<FermionField> ActionCG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(MDStoppingCondition,MaxCGIterations);
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
SFRp, true);
Level2.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
}
for(int h=0;h<n_hasenbusch;h++){
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> *> Bdys;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
std::vector<LinearOperatorD *> LinOpD;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage
<< " 2f quotient Action ";
std::cout << "det D("<<light_den[h]<<")";
std::cout << "/ det D("<<light_num[h]<<")";
std::cout << std::endl;
FermionAction::ImplParams ParamsNum(boundary);
FermionAction::ImplParams ParamsDen(boundary);
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, ParamsNum));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, ParamsDen));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
double conv = MDStoppingCondition;
if (h<3) conv= MDStoppingConditionLoose; // Relax on first two hasenbusch factors
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],MDCG,CG,CG));
}
int nquo=Quotients.size();
for(int h=0;h<nquo;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@ -0,0 +1,637 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu
Author: David Murphy
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
// second level EOFA
#undef EOFA_H
#undef USE_OBC
#define DO_IMPLICIT
NAMESPACE_BEGIN(Grid);
/*
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
* -- Store the single prec action operator.
* -- Clone the gauge field from the operator function argument.
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
*/
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
/* Debugging instances of objects; references are stored
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
*/
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Must snarf a single precision copy of the gauge field in Linop_d argument
////////////////////////////////////////////////////////////////////////////////////
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
GridBase * GridPtrF = SinglePrecGrid4;
GridBase * GridPtrD = FermOpD.Umu.Grid();
GaugeFieldF U_f (GridPtrF);
GaugeLinkFieldF Umu_f(GridPtrF);
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
GaugeLinkFieldD Umu_d(GridPtrD);
for(int mu=0;mu<Nd*2;mu++){
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
precisionChange(Umu_f,Umu_d);
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
}
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionD FermionEOFAAction;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
HMCparameters HMCparams;
#if 1
{
XmlReader HMCrd("HMCparameters.xml");
read(HMCrd,"HMCparameters",HMCparams);
}
#else
{
// HMCparameters HMCparams;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.StartTrajectory =7;
HMCparams.SW =4;
HMCparams.Trajectories =1000;
HMCparams.NoMetropolisUntil=0;
HMCparams.MD.name =std::string("Force Gradient");
HMCparams.MD.MDsteps = 10;
HMCparams.MD.trajL = 1.0;
}
#endif
#ifdef DO_IMPLICIT
// typedef GenericHMCRunner<ImplicitLeapFrog> HMCWrapper;
typedef GenericHMCRunner<ImplicitMinimumNorm2> HMCWrapper;
HMCparams.MD.name =std::string("ImplicitMinimumNorm2");
#else
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
HMCparams.MD.name =std::string("ForceGradient");
#endif
std::cout << GridLogMessage<< HMCparams <<std::endl;
HMCWrapper TheHMC(HMCparams);
TheHMC.ReadCommandLine(argc, argv);
{
XmlWriter HMCwr("HMCparameters.xml.out");
write(HMCwr,"HMCparameters",TheHMC.Parameters);
}
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
Real beta = 5.983;
std::cout << GridLogMessage << " beta "<< beta << std::endl;
Real light_mass = 0.00049;
Real strange_mass = 0.0158;
Real charm_mass = 0.191;
Real pv_mass = 1.0;
RealD M5 = 1.4;
RealD b = 2.0;
RealD c = 1.0;
// Copied from paper
// std::vector<Real> hasenbusch({ 0.045 }); // Paper values from F1 incorrect run
std::vector<Real> hasenbusch({ 0.0038, 0.0145, 0.045, 0.108 , 0.25, 0.51 }); // Paper values from F1 incorrect run
std::vector<Real> hasenbusch2({ 0.4 }); // Paper values from F1 incorrect run
// RealD eofa_mass=0.05 ;
///////////////////////////////////////////////////////////////////////////////////////////////
//Bad choices with large dH. Equalising force L2 norm was not wise.
///////////////////////////////////////////////////////////////////////////////////////////////
//std::vector<Real> hasenbusch({ 0.03, 0.2, 0.3, 0.5, 0.8 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
// auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto UGrid_f = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_f);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_f);
#ifndef USE_OBC
// IwasakiGaugeActionR GaugeAction(beta);
WilsonGaugeActionR GaugeAction(beta);
#else
std::vector<Complex> boundaryG = {1,1,1,0};
WilsonGaugeActionR::ImplParams ParamsG(boundaryG);
WilsonGaugeActionR GaugeAction(beta,ParamsG);
#endif
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(UGrid_f);
// These lines are unecessary if BC are all periodic
#ifndef USE_OBC
std::vector<Complex> boundary = {1,1,1,-1};
#else
std::vector<Complex> boundary = {1,1,1,0};
#endif
FermionAction::ImplParams Params(boundary);
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-8;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 100000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(HMCparams.SW);
////////////////////////////////////
// Strange action
////////////////////////////////////
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
// DJM: setup for EOFA ratio (Mobius)
OneFlavourRationalParams OFRp;
OFRp.lo = 0.99; // How do I know this on F1?
OFRp.hi = 20;
OFRp.MaxIter = 100000;
OFRp.tolerance= 1.0e-12;
OFRp.degree = 12;
OFRp.precision= 50;
MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, charm_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, strange_mass, strange_mass, charm_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , charm_mass, strange_mass, charm_mass, -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, charm_mass, strange_mass, charm_mass, -1.0, 1, M5, b, c);
#ifdef EOFA_H
MobiusEOFAFermionD Strange2_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , eofa_mass, eofa_mass, charm_mass , 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange2_Op_LF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, eofa_mass, eofa_mass, charm_mass , 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange2_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , charm_mass , eofa_mass, charm_mass , -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange2_Op_RF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, charm_mass , eofa_mass, charm_mass , -1.0, 1, M5, b, c);
#endif
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 50000;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
#ifdef EOFA_H
// Mixed precision EOFA
LinearOperatorEOFAD Strange2_LinOp_L (Strange2_Op_L);
LinearOperatorEOFAD Strange2_LinOp_R (Strange2_Op_R);
LinearOperatorEOFAF Strange2_LinOp_LF(Strange2_Op_LF);
LinearOperatorEOFAF Strange2_LinOp_RF(Strange2_Op_RF);
#endif
MxPCG_EOFA ActionCGL(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
#ifdef EOFA_H
MxPCG_EOFA ActionCGL2(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_LF,Strange2_Op_L,
Strange2_LinOp_LF,Strange2_LinOp_L);
#endif
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
#ifdef EOFA_H
MxPCG_EOFA DerivativeCGL2(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_LF,Strange2_Op_L,
Strange2_LinOp_LF,Strange2_LinOp_L);
#endif
MxPCG_EOFA ActionCGR(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
#ifdef EOFA_H
MxPCG_EOFA ActionCGR2(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_RF,Strange2_Op_R,
Strange2_LinOp_RF,Strange2_LinOp_R);
#endif
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
#ifdef EOFA_H
MxPCG_EOFA DerivativeCGR2(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_RF,Strange2_Op_R,
Strange2_LinOp_RF,Strange2_LinOp_R);
#endif
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
OFRp, true);
#ifdef EOFA_H
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA2(Strange2_Op_L, Strange2_Op_R,
ActionCG,
ActionCGL2, ActionCGR2,
DerivativeCGL2, DerivativeCGR2,
OFRp, true);
#endif
Level1.push_back(&EOFA);
#ifdef EOFA_H
Level1.push_back(&EOFA2);
#endif
#else
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
ActionCG, ActionCG,
// DerivativeCG, DerivativeCG,
OFRp, true);
Level1.push_back(&EOFA);
#endif
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
int n_hasenbusch2 = hasenbusch2.size();
light_den.push_back(charm_mass);
for(int h=0;h<n_hasenbusch2;h++){
light_den.push_back(hasenbusch2[h]);
light_num.push_back(hasenbusch2[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<FermionActionF *> DenominatorsF;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
for(int h=0;h<light_den.size();h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
#ifdef MIXED_PRECISION
////////////////////////////////////////////////////////////////////////////
// Mixed precision CG for 2f force
////////////////////////////////////////////////////////////////////////////
double DerivativeStoppingConditionLoose = 1e-8;
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*UGrid_f,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
double conv = DerivativeStoppingCondition;
if (h<3) conv= DerivativeStoppingConditionLoose; // Relax on first two hasenbusch factors
MPCG.push_back(new MxPCG(conv,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
#else
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
#endif
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
NoSmearing<HMCWrapper::ImplPolicy> S;
#ifndef DO_IMPLICIT
TrivialMetric<HMCWrapper::ImplPolicy::Field> Mtr;
#else
LaplacianRatParams gpar(2),mpar(2);
gpar.offset = 1.;
gpar.a0[0] = 500.;
gpar.a1[0] = 0.;
gpar.b0[0] = 0.25;
gpar.b1[0] = 1.;
gpar.a0[1] = -500.;
gpar.a1[1] = 0.;
gpar.b0[1] = 0.36;
gpar.b1[1] = 1.2;
gpar.b2=1.;
mpar.offset = 1.;
mpar.a0[0] = -0.850891906532;
mpar.a1[0] = -1.54707654538;
mpar. b0[0] = 2.85557166137;
mpar. b1[0] = 5.74194794773;
mpar.a0[1] = -13.5120056831218384729709214298;
mpar.a1[1] = 1.54707654538396877086370295729;
mpar.b0[1] = 19.2921090880640520026645390317;
mpar.b1[1] = -3.54194794773029020262811172870;
mpar.b2=1.;
for(int i=0;i<2;i++){
gpar.a1[i] *=16.;
gpar.b1[i] *=16.;
mpar.a1[i] *=16.;
mpar.b1[i] *=16.;
}
gpar.b2 *= 16.*16.;
mpar.b2 *= 16.*16.;
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
LaplacianParams LapPar(0.0001, 1.0, 10000, 1e-8, 12, 64);
std::cout << GridLogMessage << "LaplacianRat " << std::endl;
gpar.tolerance=HMCparams.MD.RMHMCCGTol;
mpar.tolerance=HMCparams.MD.RMHMCCGTol;
std::cout << GridLogMessage << "gpar offset= " << gpar.offset <<std::endl;
std::cout << GridLogMessage << " a0= " << gpar.a0 <<std::endl;
std::cout << GridLogMessage << " a1= " << gpar.a1 <<std::endl;
std::cout << GridLogMessage << " b0= " << gpar.b0 <<std::endl;
std::cout << GridLogMessage << " b1= " << gpar.b1 <<std::endl;
std::cout << GridLogMessage << " b2= " << gpar.b2 <<std::endl ;;
std::cout << GridLogMessage << "mpar offset= " << mpar.offset <<std::endl;
std::cout << GridLogMessage << " a0= " << mpar.a0 <<std::endl;
std::cout << GridLogMessage << " a1= " << mpar.a1 <<std::endl;
std::cout << GridLogMessage << " b0= " << mpar.b0 <<std::endl;
std::cout << GridLogMessage << " b1= " << mpar.b1 <<std::endl;
std::cout << GridLogMessage << " b2= " << mpar.b2 <<std::endl;
// Assumes PeriodicGimplR or D at the moment
auto UGrid = TheHMC.Resources.GetCartesian("gauge");
// auto UGrid_f = GridPtrF;
// auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
// std::cout << GridLogMessage << " UGrid= " << UGrid <<std::endl;
// std::cout << GridLogMessage << " UGrid_f= " << UGrid_f <<std::endl;
LaplacianAdjointRat<HMCWrapper::ImplPolicy, PeriodicGimplF> Mtr(UGrid, UGrid_f ,CG, gpar, mpar);
#endif
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(S,Mtr); // no smearing
Grid_finalize();
} // main

View File

@ -1,22 +0,0 @@
#!/bin/bash
#PBS -q EarlyAppAccess
#PBS -l select=2
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
export TZ='/usr/share/zoneinfo/US/Central'
export OMP_PROC_BIND=spread
export OMP_NUM_THREADS=3
unset OMP_PLACES
cd $PBS_O_WORKDIR
NNODES=`wc -l < $PBS_NODEFILE`
NRANKS=12 # Number of MPI ranks per node
NDEPTH=4 # Number of hardware threads per rank, spacing between MPI ranks on a node
NTHREADS=$OMP_NUM_THREADS # Number of OMP threads per rank, given to OMP_NUM_THREADS
NTOTRANKS=$(( NNODES * NRANKS ))
CMD="mpiexec -np 2 -ppn 1 -envall ./gpu_tile_compact.sh ./halo_mpi --mpi 2.1.1.1"
$CMD

View File

@ -1 +0,0 @@
mpicxx -fsycl halo_mpi.cc -o halo_mpi

View File

@ -1,30 +0,0 @@
#!/bin/bash
export NUMA_PMAP=(2 2 2 3 3 3 2 2 2 3 3 3 )
export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
export PNUMA=${NUMA_PMAP[$PALS_LOCAL_RANKID]}
export NUMA=${NUMA_MAP[$PALS_LOCAL_RANKID]}
export gpu_id=${GPU_MAP[$PALS_LOCAL_RANKID]}
export tile_id=${TILE_MAP[$PALS_LOCAL_RANKID]}
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
export ONEAPI_DEVICE_FILTER=gpu,level_zero
#unset EnableWalkerPartition
#export EnableImplicitScaling=0
#export GRID_MPICH_NIC_BIND=$NIC
#export ONEAPI_DEVICE_SELECTOR=level_zero:$gpu_id.$tile_id
#export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
#export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
numactl -m $PNUMA -N $NUMA "$@"

View File

@ -1,333 +0,0 @@
#include <cassert>
#include <complex>
#include <memory>
#include <vector>
#include <algorithm>
#include <array>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <ctime>
#include <sys/time.h>
#include <mpi.h>
/**************************************************************
* GPU - GPU memory cartesian halo exchange benchmark
* Config: what is the target
**************************************************************
*/
#undef ACC_CUDA
#undef ACC_HIP
#define ACC_SYCL
#undef ACC_NONE
/**************************************************************
* Some MPI globals
**************************************************************
*/
MPI_Comm WorldComm;
MPI_Comm WorldShmComm;
int WorldSize;
int WorldRank;
int WorldShmSize;
int WorldShmRank;
/**************************************************************
* Allocate buffers on the GPU, SYCL needs an init call and context
**************************************************************
*/
#ifdef ACC_CUDA
#include <cuda.h>
void acceleratorInit(void){}
void *acceleratorAllocDevice(size_t bytes)
{
void *ptr=NULL;
auto err = cudaMalloc((void **)&ptr,bytes);
assert(err==cudaSuccess);
return ptr;
}
void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);}
#endif
#ifdef ACC_HIP
#include <hip/hip_runtime.h>
void acceleratorInit(void){}
inline void *acceleratorAllocDevice(size_t bytes)
{
void *ptr=NULL;
auto err = hipMalloc((void **)&ptr,bytes);
if( err != hipSuccess ) {
ptr = (void *) NULL;
printf(" hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err));
}
return ptr;
};
inline void acceleratorFreeDevice(void *ptr){ auto r=hipFree(ptr);};
#endif
#ifdef ACC_SYCL
#include <sycl/CL/sycl.hpp>
#include <sycl/usm.hpp>
cl::sycl::queue *theAccelerator;
void acceleratorInit(void)
{
int nDevices = 1;
#if 1
cl::sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector };
theAccelerator = new sycl::queue (selectedDevice);
#else
cl::sycl::device selectedDevice {cl::sycl::gpu_selector_v };
theAccelerator = new sycl::queue (selectedDevice);
#endif
auto name = theAccelerator->get_device().get_info<sycl::info::device::name>();
printf("AcceleratorSyclInit: Selected device is %s\n",name.c_str()); fflush(stdout);
}
inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theAccelerator);};
inline void acceleratorFreeDevice(void *ptr){free(ptr,*theAccelerator);};
#endif
#ifdef ACC_NONE
void acceleratorInit(void){}
inline void *acceleratorAllocDevice(size_t bytes){ return malloc(bytes);};
inline void acceleratorFreeDevice(void *ptr){free(ptr);};
#endif
/**************************************************************
* Microsecond timer
**************************************************************
*/
inline double usecond(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return 1.0e6*tv.tv_sec + 1.0*tv.tv_usec;
}
/**************************************************************
* Main benchmark routine
**************************************************************
*/
void Benchmark(int64_t L,std::vector<int> cart_geom,bool use_device,int ncall)
{
int64_t words = 3*4*2;
int64_t face,vol;
int Nd=cart_geom.size();
/**************************************************************
* L^Nd volume, L^(Nd-1) faces, 12 complex per site
* Allocate memory for these
**************************************************************
*/
face=1; for( int d=0;d<Nd-1;d++) face = face*L;
vol=1; for( int d=0;d<Nd;d++) vol = vol*L;
std::vector<void *> send_bufs;
std::vector<void *> recv_bufs;
size_t vw = face*words;
size_t bytes = face*words*sizeof(double);
if ( use_device ) {
for(int d=0;d<2*Nd;d++){
send_bufs.push_back(acceleratorAllocDevice(bytes));
recv_bufs.push_back(acceleratorAllocDevice(bytes));
}
} else {
for(int d=0;d<2*Nd;d++){
send_bufs.push_back(malloc(bytes));
recv_bufs.push_back(malloc(bytes));
}
}
/*********************************************************
* Build cartesian communicator
*********************************************************
*/
int ierr;
int rank;
std::vector<int> coor(Nd);
MPI_Comm communicator;
std::vector<int> periodic(Nd,1);
MPI_Cart_create(WorldComm,Nd,&cart_geom[0],&periodic[0],0,&communicator);
MPI_Comm_rank(communicator,&rank);
MPI_Cart_coords(communicator,rank,Nd,&coor[0]);
static int reported;
if ( ! reported ) {
printf("World Rank %d Shm Rank %d CartCoor %d %d %d %d\n",WorldRank,WorldShmRank,
coor[0],coor[1],coor[2],coor[3]); fflush(stdout);
reported =1 ;
}
/*********************************************************
* Perform halo exchanges
*********************************************************
*/
for(int d=0;d<Nd;d++){
if ( cart_geom[d]>1 ) {
double t0=usecond();
int from,to;
MPI_Barrier(communicator);
for(int n=0;n<ncall;n++){
void *xmit = (void *)send_bufs[d];
void *recv = (void *)recv_bufs[d];
ierr=MPI_Cart_shift(communicator,d,1,&from,&to);
assert(ierr==0);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,to,rank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
xmit = (void *)send_bufs[Nd+d];
recv = (void *)recv_bufs[Nd+d];
ierr=MPI_Cart_shift(communicator,d,-1,&from,&to);
assert(ierr==0);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,to,rank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
MPI_Barrier(communicator);
double t1=usecond();
double dbytes = bytes*WorldShmSize;
double xbytes = dbytes*2.0*ncall;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
if ( ! WorldRank ) {
printf("\t%12ld\t %12ld %16.0lf\n",L,bytes,bidibytes/(t1-t0)); fflush(stdout);
}
}
}
/*********************************************************
* Free memory
*********************************************************
*/
if ( use_device ) {
for(int d=0;d<2*Nd;d++){
acceleratorFreeDevice(send_bufs[d]);
acceleratorFreeDevice(recv_bufs[d]);
}
} else {
for(int d=0;d<2*Nd;d++){
free(send_bufs[d]);
free(recv_bufs[d]);
}
}
}
/**************************************
* Command line junk
**************************************/
std::string CmdOptionPayload(char ** begin, char ** end, const std::string & option)
{
char ** itr = std::find(begin, end, option);
if (itr != end && ++itr != end) {
std::string payload(*itr);
return payload;
}
return std::string("");
}
bool CmdOptionExists(char** begin, char** end, const std::string& option)
{
return std::find(begin, end, option) != end;
}
void CmdOptionIntVector(const std::string &str,std::vector<int> & vec)
{
vec.resize(0);
std::stringstream ss(str);
int i;
while (ss >> i){
vec.push_back(i);
if(std::ispunct(ss.peek()))
ss.ignore();
}
return;
}
/**************************************
* Command line junk
**************************************/
int main(int argc, char **argv)
{
std::string arg;
acceleratorInit();
MPI_Init(&argc,&argv);
WorldComm = MPI_COMM_WORLD;
MPI_Comm_split_type(WorldComm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
MPI_Comm_rank(WorldComm ,&WorldRank);
MPI_Comm_size(WorldComm ,&WorldSize);
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
if ( WorldSize/WorldShmSize > 2) {
printf("This benchmark is meant to run on at most two nodes only\n");
}
auto mpi =std::vector<int>({1,1,1,1});
if( CmdOptionExists(argv,argv+argc,"--mpi") ){
arg = CmdOptionPayload(argv,argv+argc,"--mpi");
CmdOptionIntVector(arg,mpi);
} else {
printf("Must specify --mpi <n1.n2.n3.n4> command line argument\n");
exit(0);
}
if( !WorldRank ) {
printf("***********************************\n");
printf("%d ranks\n",WorldSize);
printf("%d ranks-per-node\n",WorldShmSize);
printf("%d nodes\n",WorldSize/WorldShmSize);fflush(stdout);
printf("Cartesian layout: ");
for(int d=0;d<mpi.size();d++){
printf("%d ",mpi[d]);
}
printf("\n");fflush(stdout);
printf("***********************************\n");
}
if( !WorldRank ) {
printf("=========================================================\n");
printf("= Benchmarking HOST memory MPI performance \n");
printf("=========================================================\n");fflush(stdout);
printf("= L\t pkt bytes\t MB/s \n");
printf("=========================================================\n");fflush(stdout);
}
for(int L=16;L<=64;L+=4){
Benchmark(L,mpi,false,100);
}
if( !WorldRank ) {
printf("=========================================================\n");
printf("= Benchmarking DEVICE memory MPI performance \n");
printf("=========================================================\n");fflush(stdout);
}
for(int L=16;L<=64;L+=4){
Benchmark(L,mpi,true,100);
}
if( !WorldRank ) {
printf("=========================================================\n");
printf("= DONE \n");
printf("=========================================================\n");
}
MPI_Finalize();
}

View File

@ -365,9 +365,15 @@ public:
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
#if 1
typedef DomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
#else
typedef GparityDomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
#endif
///////// Source preparation ////////////
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
@ -635,6 +641,170 @@ public:
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
static double Laplace(int L)
{
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark Laplace on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
// typedef ImprovedStaggeredFermionF Action;
// typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
// typename Action::ImplParams params;
// Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
// PeriodicGimplF
typedef typename PeriodicGimplF::LinkField GaugeLinkFieldF;
///////// Source preparation ////////////
GaugeLinkFieldF src (FGrid); random(RNG4,src);
// GaugeLinkFieldF src_e (FrbGrid);
// GaugeLinkFieldF src_o (FrbGrid);
// GaugeLinkFieldF r_e (FrbGrid);
// GaugeLinkFieldF r_o (FrbGrid);
GaugeLinkFieldF r_eo (FGrid);
{
// pickCheckerboard(Even,src_e,src);
// pickCheckerboard(Odd,src_o,src);
const int num_cases = 1;
std::string fmt("G/O/C ");
controls Cases [] = {
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
};
for(int c=0;c<num_cases;c++) {
CovariantAdjointLaplacianStencil<PeriodicGimplF,typename PeriodicGimplF::LinkField> LapStencilF(FGrid);
QuadLinearOperator<CovariantAdjointLaplacianStencil<PeriodicGimplF,typename PeriodicGimplF::LinkField>,PeriodicGimplF::LinkField> QuadOpF(LapStencilF,c2,c1,1.);
LapStencilF.GaugeImport(Umu);
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
StaggeredKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using Stencil Nc Laplace" <<std::endl;
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
// Ds.DhopEO(src_o,r_e,DaggerNo);
QuadOpF.HermOp(src,r_eo);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
// Ds.DhopEO(src_o,r_e,DaggerNo);
QuadOpF.HermOp(src,r_eo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
// double flops=(1146.0*volume)/2;
double flops=(2*2*8*216.0*volume);
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Quad mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Quad mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Quad mflop/s per node "<< mflops/NN<<std::endl;
FGrid->Barrier();
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 Quad Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Quad Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
FGrid->Barrier();
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
};
@ -662,6 +832,7 @@ int main (int argc, char ** argv)
std::vector<double> wilson;
std::vector<double> dwf4;
std::vector<double> staggered;
std::vector<double> lap;
int Ls=1;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -688,12 +859,20 @@ int main (int argc, char ** argv)
staggered.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Laplace QuadOp 4D " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::Laplace(L_list[l]) ;
lap.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered" <<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered \t\t Quad Laplace" <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<< " \t\t "<< lap[l]<< std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;

View File

@ -90,11 +90,11 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
// Dirichlet[0] = 0;
// Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
// Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
// Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
// Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Dirichlet[0] = 0;
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Benchmark(Ls,Dirichlet);
@ -105,11 +105,11 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
for(int d=0;d<Nd;d++) CommDim[d]= mpi[d]>1 ? 1 : 0;
// Dirichlet[0] = 0;
// Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0];
// Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1];
// Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2];
// Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3];
Dirichlet[0] = 0;
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3];
Benchmark(Ls,Dirichlet);
@ -185,7 +185,6 @@ void Benchmark(int Ls, Coordinate Dirichlet)
GaugeField Umu(UGrid);
GaugeField UmuCopy(UGrid);
SU<Nc>::HotConfiguration(RNG4,Umu);
// SU<Nc>::ColdConfiguration(Umu);
UmuCopy=Umu;
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
@ -308,14 +307,6 @@ void Benchmark(int Ls, Coordinate Dirichlet)
if(( n2e>1.0e-4) ) {
std::cout<<GridLogMessage << "WRONG RESULT" << std::endl;
FGrid->Barrier();
std::cout<<GridLogMessage << "RESULT" << std::endl;
// std::cout << result<<std::endl;
std::cout << norm2(result)<<std::endl;
std::cout<<GridLogMessage << "REF" << std::endl;
std::cout << norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "ERR" << std::endl;
std::cout << norm2(err)<<std::endl;
FGrid->Barrier();
exit(-1);
}
assert (n2e< 1.0e-4 );

View File

@ -1,968 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_usqcd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/blas/BatchedBlas.h>
using namespace Grid;
std::vector<int> L_list;
std::vector<int> Ls_list;
std::vector<double> mflop_list;
double mflop_ref;
double mflop_ref_err;
int NN_global;
FILE * FP;
struct time_statistics{
double mean;
double err;
double min;
double max;
void statistics(std::vector<double> v){
double sum = std::accumulate(v.begin(), v.end(), 0.0);
mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
auto result = std::minmax_element(v.begin(), v.end());
min = *result.first;
max = *result.second;
}
};
void comms_header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
<<"bytes\t MB/s uni \t\t MB/s bidi "<<std::endl;
};
struct controls {
int Opt;
int CommsOverlap;
Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
};
class Benchmark {
public:
static void Decomposition (void ) {
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
std::cout<<GridLogMessage<<"\tMPI tasks : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
std::cout<<GridLogMessage<<"\tvReal : "<<sizeof(vReal )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vReal::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealF : "<<sizeof(vRealF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealD : "<<sizeof(vRealD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplex : "<<sizeof(vComplex )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplex::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexF : "<<sizeof(vComplexF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexD : "<<sizeof(vComplexD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
static void Comms(void)
{
int Nloop=200;
int nmu=0;
int maxlat=32;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
comms_header();
fprintf(FP,"Communications\n\n");
fprintf(FP,"Packet bytes, direction, GB/s per node\n");
for(int lat=16;lat<=maxlat;lat+=8){
// for(int Ls=8;Ls<=8;Ls*=2){
{ int Ls=12;
Coordinate latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
//Grid.ShmBufferFreeAll();
uint64_t bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
// bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
// bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
// int ncomm;
double dbytes;
for(int dir=0;dir<8;dir++) {
int mu =dir % 4;
if (mpi_layout[mu]>1 ) {
std::vector<double> times(Nloop);
for(int i=0;i<Nloop;i++){
dbytes=0;
double start=usecond();
int xmit_to_rank;
int recv_from_rank;
if ( dir == mu ) {
int comm_proc=1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
} else {
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank,
bytes);
dbytes+=bytes;
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "
<<xbytes/timestat.mean
<< "\t\t"
<< bidibytes/timestat.mean<< std::endl;
fprintf(FP,"%ld, %d, %f\n",(long)bytes,dir,bidibytes/timestat.mean/1000.);
}
}
for(int d=0;d<8;d++){
acceleratorFreeDevice(xbuf[d]);
acceleratorFreeDevice(rbuf[d]);
}
}
}
fprintf(FP,"\n\n");
return;
}
static void Memory(void)
{
const int Nvec=8;
typedef Lattice< iVector< vReal,Nvec> > LatticeVec;
typedef iVector<vReal,Nvec> Vec;
Coordinate simd_layout = GridDefaultSimd(Nd,vReal::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
fprintf(FP,"Memory Bandwidth\n\n");
fprintf(FP,"Bytes, GB/s per node\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
// uint64_t NP;
uint64_t NN;
uint64_t lmax=40;
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// NP= Grid.RankCount();
NN =Grid.NodeCount();
Vec rn ; random(sRNG,rn);
LatticeVec z(&Grid); z=Zero();
LatticeVec x(&Grid); x=Zero();
LatticeVec y(&Grid); y=Zero();
double a=2.0;
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=a*x-y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
fprintf(FP,"%ld, %f\n",(long)bytes,bytes/time/NN);
}
fprintf(FP,"\n\n");
};
static void BLAS(void)
{
//int nbasis, int nrhs, int coarseVol
int basis[] = { 16,32,64 };
int rhs[] = { 8,16,32 };
int vol = 4*4*4*4;
GridBLAS blas;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=basis[b];
int N=rhs[r];
int K=basis[b];
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block project)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=basis[b];
int N=rhs[r];
int K=vol;
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block promote)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=rhs[r];
int N=vol;
int K=basis[b];
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
fprintf(FP,"\n\n\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
};
static void SU4(void)
{
const int Nc4=4;
typedef Lattice< iMatrix< vComplexF,Nc4> > LatticeSU4;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking z = y*x SU(4) bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t NN;
uint64_t lmax=32;
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
NN =Grid.NodeCount();
LatticeSU4 z(&Grid); z=Zero();
LatticeSU4 x(&Grid); x=Zero();
LatticeSU4 y(&Grid); y=Zero();
// double a=2.0;
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=x*y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nc4*Nc4*(6+(Nc4-1)*8);// mul,add
double bytes=3.0*vol*Nc4*Nc4*2*sizeof(RealF);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
}
};
static double DWF(int Ls,int L)
{
RealD mass=0.1;
RealD M5 =1.8;
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Nc : "<<Nc<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
typedef DomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
///////// Source preparation ////////////
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
Fermion src (FGrid); random(RNG5,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
Fermion r_e (FrbGrid);
Fermion r_o (FrbGrid);
Fermion r_eo (FGrid);
Action Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
#ifdef AVX512
const int num_cases = 3;
#else
const int num_cases = 2;
#endif
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases [] = {
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ WilsonKernelsStatic::OptHandUnroll, WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ WilsonKernelsStatic::OptInlineAsm , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent }
};
for(int c=0;c<num_cases;c++) {
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using ASM WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Dw.DhopEO(src_o,r_e,DaggerNo);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dw.DhopEO(src_o,r_e,DaggerNo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
// Nc=3 gives
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
// double flops=(1344.0*volume)/2;
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + 2*Nd*Nc*Ns + 2*Nd*Nc*Ns*2;
double flops=(fps*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage<< "Deo FlopsPerSite is "<<fps<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
return mflops_best;
}
static double Staggered(int L)
{
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark ImprovedStaggered on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
typedef ImprovedStaggeredFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
typename Action::ImplParams params;
Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
///////// Source preparation ////////////
Fermion src (FGrid); random(RNG4,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
Fermion r_e (FrbGrid);
Fermion r_o (FrbGrid);
Fermion r_eo (FGrid);
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
const int num_cases = 2;
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases [] = {
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ StaggeredKernelsStatic::OptHandUnroll, StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ StaggeredKernelsStatic::OptInlineAsm , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent }
};
for(int c=0;c<num_cases;c++) {
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
StaggeredKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc StaggeredKernels" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Ds.DhopEO(src_o,r_e,DaggerNo);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Ds.DhopEO(src_o,r_e,DaggerNo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1146.0*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
static double Clover(int L)
{
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark Clover on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass=0.1;
RealD csw=1.0;
typedef WilsonCloverFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
Action Dc(Umu,*FGrid,*FrbGrid,mass,csw,csw);
///////// Source preparation ////////////
Fermion src (FGrid); random(RNG4,src);
Fermion r (FGrid);
{
const int num_cases = 1;
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases [] = {
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
};
for(int c=0;c<num_cases;c++) {
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Dc.M(src,r);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dc.M(src,r);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344+ 24+6*6*8*2)*volume;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per node "<< mflops/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
if (GlobalSharedMemory::WorldRank==0) {
FP = fopen("Benchmark_usqcd.csv","w");
} else {
FP = fopen("/dev/null","w");
}
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
Benchmark::Decomposition();
int do_su4=0;
int do_memory=1;
int do_comms =1;
int do_blas =1;
int sel=4;
std::vector<int> L_list({8,12,16,24,32});
int selm1=sel-1;
std::vector<double> clover;
std::vector<double> dwf4;
std::vector<double> staggered;
int Ls=1;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Clover dslash 4D vectorised (temporarily Wilson)" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
clover.push_back(Benchmark::DWF(1,L_list[l]));
}
Ls=12;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::DWF(Ls,L_list[l]) ;
dwf4.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Improved Staggered dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::Staggered(L_list[l]) ;
staggered.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Clover \t\t DWF4 \t\t Staggered" <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int NN=NN_global;
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Memory();
}
if ( do_blas ) {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::BLAS();
#endif
}
if ( do_su4 ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::SU4();
}
if ( do_comms ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Comms();
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
fprintf(FP,"Per node summary table\n");
fprintf(FP,"\n");
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
fprintf(FP,"\n");
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
}
fprintf(FP,"\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Grid_finalize();
fclose(FP);
}

View File

@ -1,12 +1,12 @@
#!/usr/bin/env bash
set -e
EIGEN_URL='https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.bz2'
EIGEN_SHA256SUM='b4c198460eba6f28d34894e3a5710998818515104d6e74e5cc331ce31e46e626'
EIGEN_URL='https://gitlab.com/libeigen/eigen/-/archive/3.3.7/eigen-3.3.7.tar.bz2'
EIGEN_SHA256SUM='685adf14bd8e9c015b78097c1dc22f2f01343756f196acdc76a678e1ae352e11'
echo "-- deploying Eigen source..."
ARC=$(basename ${EIGEN_URL})
ARC=`basename ${EIGEN_URL}`
wget ${EIGEN_URL} --no-check-certificate
if command -v sha256sum; then
echo "$EIGEN_SHA256SUM $(basename "$EIGEN_URL")" \
@ -14,8 +14,13 @@ if command -v sha256sum; then
else
echo "WARNING: could not verify checksum, please install sha256sum" >&2
fi
./scripts/update_eigen.sh "${ARC}"
rm "${ARC}"
./scripts/update_eigen.sh ${ARC}
rm ${ARC}
# patch for non-portable includes in Eigen 3.3.5
# apparently already fixed in Eigen HEAD so it should not be
# a problem in the future (A.P.)
patch Eigen/unsupported/Eigen/CXX11/Tensor scripts/eigen-3.3.5.Tensor.patch
echo '-- generating Make.inc files...'
./scripts/filelist
echo '-- generating configure script...'

View File

@ -1,183 +0,0 @@
/*
* Example_plaquette.cc
*
* D. Clarke
*
* Here I just want to create an incredibly simple main to get started with GRID and get used
* to its syntax. If the reader is like me, they vaguely understand something about lattice coding,
* they don't know a ton of C++, don't know much of the fine details, and certainly know nothing about GRID.
*
* Once you've made a new executable, like this one, you can bootstrap.sh again. At this point,
* the code should be able to find your new executable. You can tell that bootstrap.sh worked by
* having a look at Make.inc. You should see your executable inside there.
*
* Warning: This code illustrative only, not well tested, and not meant for production use. The best
* way to read this code is to start at the main.
*
*/
// All your mains should have this
#include <Grid/Grid.h>
using namespace Grid;
// This copies what already exists in WilsonLoops.h. The point here is to be pedagogical and explain in
// detail what everything does so we can see how GRID works.
template <class Gimpl> class WLoops : public Gimpl {
public:
// Gimpl seems to be an arbitrary class. Within this class, it is expected that certain types are
// already defined, things like Scalar and Field. This macro includes a bunch of #typedefs that
// implement this equivalence at compile time.
INHERIT_GIMPL_TYPES(Gimpl);
// Some example Gimpls can be found in GaugeImplementations.h, at the bottom. These are in turn built
// out of GaugeImplTypes, which can be found in GaugeImplTypes.h. The GaugeImplTypes contain the base
// field/vector/link/whatever types. These inherit from iScalar, iVector, and iMatrix objects, which
// are sort of the building blocks for gerenal math objects. The "i" at the beginning of these names
// indicates that they should be for internal use only. It seems like these base types have the
// acceleration, e.g. SIMD or GPU or what-have-you, abstracted away. How you accelerate these things
// appears to be controlled through a template parameter called vtype.
// The general math/physics objects, such as a color matrix, are built up by nesting these objects.
// For instance a general color matrix has two color indices, so it's built up like
// iScalar<iScalar<iMatrix<vtype ...
// where the levels going from the inside out are color, spin, then Lorentz indices. Scalars have
// no indices, so it's what we use when such an index isn't needed. Lattice objects are made by one
// higher level of indexing using iVector.
// These types will be used for U and U_mu objects, respectively.
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
// U_mu_nu(x)
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu) {
// Calls like CovShiftForward and CovShiftBackward have 3 arguments, and they multiply together
// the first and last argument. (Second arg gives the shift direction.) The CovShiftIdentityBackward
// has meanwhile only two arguments; it just returns the shifted (adjoint since backward) link.
plaq = Gimpl::CovShiftForward(U[mu],mu,
// Means Link*Cshift(field,mu,1), arguments are Link, mu, field in that order.
Gimpl::CovShiftForward(U[nu],nu,
Gimpl::CovShiftBackward(U[mu],mu,
// This means Cshift(adj(Link), mu, -1)
Gimpl::CovShiftIdentityBackward(U[nu], nu))));
}
// tr U_mu_nu(x)
static void traceDirPlaquette(ComplexField &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu) {
// This .Grid() syntax seems to get the pointer to the GridBase. Apparently this is needed as argument
// to instantiate a Lattice object.
GaugeMat sp(U[0].Grid());
dirPlaquette(sp, U, mu, nu);
plaq = trace(sp);
}
// sum_mu_nu tr U_mu_nu(x)
static void sitePlaquette(ComplexField &Plaq, const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
// Nd=4 and Nc=3 are set as global constants in QCD.h
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
// sum_mu_nu_x Re tr U_mu_nu(x)
static RealD sumPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
for (int mu = 0; mu < Nd; mu++) {
// Umu is a GaugeLorentz object, and as such has a non-trivial Lorentz index. We can
// access the element in the mu Lorentz index with this PeekIndex syntax.
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
sitePlaquette(Plaq, U);
// I guess this should be the line that sums over all space-time sites.
auto Tp = sum(Plaq);
// Until now, we have been working with objects inside the tensor nest. This TensorRemove gets
// rid of the tensor nest to return whatever is inside.
auto p = TensorRemove(Tp);
return p.real();
}
// < Re tr U_mu_nu(x) >
static RealD avgPlaquette(const GaugeLorentz &Umu) {
// Real double type
RealD sumplaq = sumPlaquette(Umu);
// gSites() is the number of global sites. there is also lSites() for local sites.
double vol = Umu.Grid()->gSites();
// The number of orientations. 4*3/2=6 for Nd=4, as known.
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
return sumplaq / vol / faces / Nc;
}
};
// Next we show an example of how to construct an input parameter class. We first inherit
// from Serializable. Then all class data members have to be defined using the
// GRID_SERIALIZABLE_CLASS_MEMBERS macro. This variadic macro allows for arbitrarily many
// class data members. In the below case, we make a parameter file holding the configuration
// name. Here, it expects the name to be labeled with "conf_name" in the configuration file.
struct ConfParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(
ConfParameters,
std::string, conf_name);
template <class ReaderClass>
ConfParameters(Reader<ReaderClass>& Reader){
// If we are reading an XML file, it should be structured like:
// <grid>
// <parameters>
// <conf_name>l20t20b06498a_nersc.302500</conf_name>
// </parameters>
// </grid>
read(Reader, "parameters", *this);
}
};
// This syntax lets you pass command line arguments to main. An asterisk means that what follows is
// a pointer. Two asterisks means what follows is a pointer to an array.
int main (int argc, char **argv)
{
// This initializes Grid. Some command line options include
// --mpi n.n.n.n
// --threads n
// --grid n.n.n.n
Grid_init(&argc, &argv);
// This is where you would specify a custom lattice size, if not from the command line. Here
// Nd is a global quantity that is currently set to 4.
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
Coordinate latt_size = GridDefaultLatt();
// Instantiate the spacetime Grid on which everything will be built.
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
// The PeriodicGimplD type is what you want for gauge matrices. There is also a LatticeGaugeFieldD
// type that you can use, which will work perfectly with what follows.
PeriodicGimplD::Field U(&GRID);
// Here we read in the parameter file params.json to get conf_name. The last argument is what the
// top organizational level is called in the param file.
XmlReader Reader("Example_plaquette.xml",false, "grid");
ConfParameters param(Reader);
// Load a lattice from SIMULATeQCD into U. SIMULATeQCD finds plaquette = 0.6381995717
FieldMetaData header;
NerscIO::readConfiguration(U, header, param.conf_name);
// Let's see what we find.
RealD plaq = WLoops<PeriodicGimplD>::avgPlaquette(U);
// This is how you make log messages.
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1) << "Plaquette = " << plaq << std::endl;
// To wrap things up.
Grid_finalize();
}

View File

@ -0,0 +1,19 @@
--- ./Eigen/unsupported/Eigen/CXX11/Tensor 2018-07-23 10:33:42.000000000 +0100
+++ Tensor 2018-08-28 16:15:56.000000000 +0100
@@ -25,7 +25,7 @@
#include <utility>
#endif
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
+#include "../../../Eigen/src/Core/util/DisableStupidWarnings.h"
#include "../SpecialFunctions"
#include "src/util/CXX11Meta.h"
@@ -147,6 +147,6 @@
#include "src/Tensor/TensorIO.h"
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
+#include "../../../Eigen/src/Core/util/ReenableStupidWarnings.h"
//#endif // EIGEN_CXX11_TENSOR_MODULE

View File

@ -1,60 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=1024
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
export FI_CXI_CQ_FILL_PERCENT=10
export FI_CXI_DEFAULT_CQ_SIZE=262144
#export FI_CXI_DEFAULT_CQ_SIZE=131072
#export FI_CXI_CQ_FILL_PERCENT=20
# 12 ppn, 32 nodes, 384 ranks
#
CMD="mpiexec -np 12288 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 8.6.16.16 --grid 64.48.64.284 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 12288 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 8.8.8.24 --grid 128.128.128.384 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1024node.dwf.small.cq
CMD="mpiexec -np 12288 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 16.8.8.12 --grid 256.256.256.384 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1024node.dwf.cq

View File

@ -1,60 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=2
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 2.3.2.2 --grid 32.24.32.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.3.2.2 --grid 64.96.64.64 --comms-overlap \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD

View File

@ -1,56 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=2048
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 32 nodes, 384 ranks
#
CMD="mpiexec -np 24576 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 8.12.16.16 --grid 64.48.64.284 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 24576 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 16.8.8.24 --grid 128.128.128.384 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2048node.dwf.small
CMD="mpiexec -np 24576 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 16.8.8.24 --grid 256.256.256.768 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2048node.dwf

View File

@ -1,48 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=256
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 32 nodes, 384 ranks
#
CMD="mpiexec -np 3072 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 8.6.8.8 --grid 32.24.32.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 3072 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 8.8.4.12 --grid 128.128.128.768 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 256node.dwf.large

View File

@ -1,48 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=512
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 32 nodes, 384 ranks
#
CMD="mpiexec -np 6144 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 8.6.8.16 --grid 32.24.32.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 6144 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 8.8.8.12 --grid 256.128.128.768 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 512node.dwf.large

View File

@ -1,80 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=32
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 32 nodes, 384 ranks
#
CMD="mpiexec -np 384 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 4.6.4.4 --grid 32.24.32.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 1.2.2.3 --grid 16.64.64.96 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1node.dwf
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.64.64.96 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2node.dwf
CMD="mpiexec -np 48 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.6 --grid 32.64.64.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 4node.dwf
CMD="mpiexec -np 96 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.4.6 --grid 32.64.128.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 8node.dwf
CMD="mpiexec -np 192 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.4.4.6 --grid 32.128.128.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 16node.dwf
CMD="mpiexec -np 384 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 4.4.4.6 --grid 64.128.128.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 32node.dwf

View File

@ -1,33 +0,0 @@
#!/bin/bash
export NUMA_MAP=(2 2 2 3 3 3 2 2 2 3 3 3 )
#export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export NUMA_PMAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export NIC_MAP=(0 1 2 4 5 6 0 1 2 4 5 6 )
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
export NUMA=${NUMA_MAP[$PALS_LOCAL_RANKID]}
export NUMAP=${NUMA_PMAP[$PALS_LOCAL_RANKID]}
export NIC=${NIC_MAP[$PALS_LOCAL_RANKID]}
export gpu_id=${GPU_MAP[$PALS_LOCAL_RANKID]}
export tile_id=${TILE_MAP[$PALS_LOCAL_RANKID]}
#export GRID_MPICH_NIC_BIND=$NIC
#export ONEAPI_DEVICE_SELECTOR=level_zero:$gpu_id.$tile_id
unset EnableWalkerPartition
export EnableImplicitScaling=0
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
export ONEAPI_DEVICE_FILTER=gpu,level_zero
#export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
#export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
#echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
numactl -m $NUMA -N $NUMAP "$@"

View File

@ -1,29 +0,0 @@
#!/bin/bash
export NUMA_MAP=(2 2 3 3 2 2 3 3 )
export PROC_MAP=(0 0 1 1 0 0 1 1 )
export NIC_MAP=(0 0 4 4 1 1 5 5 )
export GPU_MAP=(0 1 3 4 0 1 3 4 )
export TILE_MAP=(0 0 0 0 1 1 1 1 )
export NUMA=${NUMA_MAP[$PALS_LOCAL_RANKID]}
export NIC=${NIC_MAP[$PALS_LOCAL_RANKID]}
export gpu_id=${GPU_MAP[$PALS_LOCAL_RANKID]}
export tile_id=${TILE_MAP[$PALS_LOCAL_RANKID]}
#export GRID_MPICH_NIC_BIND=$NIC
unset EnableWalkerPartition
export EnableImplicitScaling=0
export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
#export ONEAPI_DEVICE_SELECTOR=level_zero:$gpu_id.$tile_id
export ONEAPI_DEVICE_FILTER=gpu,level_zero
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NIC $GRID_MPICH_NIC_BIND ; NUMA domain $NUMA"
numactl -m $NUMA -N $PROC_MAP "$@"

View File

@ -1,16 +0,0 @@
TOOLS=$HOME/tools
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-accelerator-cshift \
--disable-gparity \
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$TOOLS/lib64/ -L${MKLROOT}/lib -qmkl=parallel " \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -I$TOOLS/include -qmkl=parallel"

View File

@ -1,9 +0,0 @@
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
git config --global http.proxy http://proxy.alcf.anl.gov:3128
module use /soft/modulefiles
module load intel_compute_runtime/release/agama-devel-682.22

View File

@ -1,26 +0,0 @@
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
module use /soft/modulefiles
module load intel_compute_runtime/release/agama-devel-682.22
export FI_CXI_DEFAULT_CQ_SIZE=131072
export FI_CXI_CQ_FILL_PERCENT=20
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
#
# -ftarget-register-alloc-mode=pvc:default
# -ftarget-register-alloc-mode=pvc:small
# -ftarget-register-alloc-mode=pvc:large
# -ftarget-register-alloc-mode=pvc:auto
#
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
git config --global http.proxy http://proxy.alcf.anl.gov:3128
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -1,41 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=128
#PBS -l walltime=02:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 16 nodes, 192 ranks
# 12 ppn, 128 nodes, 1536 ranks
CMD="mpiexec -np 1536 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Test_dwf_mixedcg_prec --mpi 4.4.4.24 --grid 128.128.128.384 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 7000 --comms-overlap "
$CMD

View File

@ -1,61 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=01:00:00
#PBS -N dwf
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
#source ../sourceme.sh
cat $PBS_NODEFILE
#export MPICH_COLL_SYNC=1
#export MPICH_ENV_DISPLAY=1
export MPICH_
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
#export LD_LIBRARY_PATH=/soft/restricted/CNDA/updates/2023.05.15.001/oneapi/compiler/eng-20230512/compiler/linux/lib/:$LD_LIBRARY_PATH
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
DIR=repro.$PBS_JOBID
mkdir $DIR
cd $DIR
CMD="mpiexec -np 192 -ppn 12 -envall \
../gpu_tile_compact.sh \
../Test_dwf_mixedcg_prec --mpi 2.4.4.6 --grid 64.128.128.192 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 3000 --debug-stdout --log Message,Iterative"
#--comms-overlap
$CMD
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*

View File

@ -1,81 +0,0 @@
#!/bin/bash
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N repro1gpu
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE
echo $NN nodes in node file
for n in `eval echo {1..$NN}`
do
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
echo Node $n is $THIS_NODE
for g in {0..11}
do
export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
export numa=${NUMA_MAP[$g]}
export gpu_id=${GPU_MAP[$g]}
export tile_id=${TILE_MAP[$g]}
export gpu=$gpu_id.$tile_id
cd $PBS_O_WORKDIR
DIR=repro.1gpu.$PBS_JOBID/node-$n-$THIS_NODE-GPU-$gpu
mkdir -p $DIR
cd $DIR
echo $THIS_NODE > nodefile
echo $gpu > gpu
export ZE_AFFINITY_MASK=$gpu
export ONEAPI_DEVICE_FILTER=gpu,level_zero
CMD="mpiexec -np 1 -ppn 1 -envall --hostfile nodefile \
numactl -N $numa -m $numa ../../Test_dwf_mixedcg_prec --mpi 1.1.1.1 --grid 16.16.32.32 \
--shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message"
echo $CMD
$CMD &
done
done
wait

View File

@ -1,78 +0,0 @@
#!/bin/bash
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N reproN
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE
echo $NN nodes in node file
for n in `eval echo {1..$NN}`
do
cd $PBS_O_WORKDIR
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
echo Node $n is $THIS_NODE
DIR=repro.$PBS_JOBID/node-$n-$THIS_NODE
mkdir -p $DIR
cd $DIR
echo $THIS_NODE > nodefile
CMD="mpiexec -np 12 -ppn 12 -envall --hostfile nodefile \
../../gpu_tile_compact.sh \
../../Test_dwf_mixedcg_prec --mpi 1.2.2.3 --grid 32.64.64.96 \
--shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message --comms-overlap"
$CMD &
done
wait
for n in ` eval echo {1..$NN} `
do
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
DIR=repro.$PBS_JOBID/node-$n-$THIS_NODE
cd $DIR
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*
done

View File

@ -1,40 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=16
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 16 nodes, 192 ranks
CMD="mpiexec -np 192 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Test_staggered_cg_prec --mpi 2.4.4.6 --grid 128.128.128.192 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 3000 --comms-overlap"
$CMD

View File

@ -1,70 +0,0 @@
Memory Bandwidth
Bytes, GB/s per node
3145728, 225.900365
50331648, 2858.859504
254803968, 4145.556367
805306368, 4905.772480
1966080000, 4978.312557
GEMM
M, N, K, BATCH, GF/s per rank
16, 8, 16, 256, 1.713639
16, 16, 16, 256, 288.268316
16, 32, 16, 256, 597.053950
32, 8, 32, 256, 557.382591
32, 16, 32, 256, 1100.145311
32, 32, 32, 256, 1885.080449
64, 8, 64, 256, 1725.163599
64, 16, 64, 256, 3389.336566
64, 32, 64, 256, 4168.252422
16, 8, 256, 256, 1326.262134
16, 16, 256, 256, 2318.095475
16, 32, 256, 256, 3555.436503
32, 8, 256, 256, 1920.139170
32, 16, 256, 256, 3486.174753
32, 32, 256, 256, 5320.821724
64, 8, 256, 256, 2539.597502
64, 16, 256, 256, 5003.456775
64, 32, 256, 256, 7837.531562
8, 256, 16, 256, 1427.848170
16, 256, 16, 256, 2222.147815
32, 256, 16, 256, 2877.121715
8, 256, 32, 256, 1922.890086
16, 256, 32, 256, 3199.469082
32, 256, 32, 256, 4845.405343
8, 256, 64, 256, 2639.483343
16, 256, 64, 256, 5012.800299
32, 256, 64, 256, 7216.006882
Communications
Packet bytes, direction, GB/s per node
4718592, 2, 206.570734
4718592, 3, 207.501847
4718592, 6, 189.730277
4718592, 7, 204.301218
15925248, 2, 307.882997
15925248, 3, 287.901076
15925248, 6, 295.603109
15925248, 7, 300.682033
37748736, 2, 331.740364
37748736, 3, 338.610627
37748736, 6, 332.580657
37748736, 7, 336.336579
Per node summary table
L , Wilson, DWF4, Staggered, GF/s per node
8 , 16, 1165, 10
12 , 473, 4901, 163
16 , 1436, 8464, 442
24 , 4133, 10139, 1530
32 , 5726, 11487, 2518
1 Memory Bandwidth
2 Bytes, GB/s per node
3 3145728, 225.900365
4 50331648, 2858.859504
5 254803968, 4145.556367
6 805306368, 4905.772480
7 1966080000, 4978.312557
8 GEMM
9 M, N, K, BATCH, GF/s per rank
10 16, 8, 16, 256, 1.713639
11 16, 16, 16, 256, 288.268316
12 16, 32, 16, 256, 597.053950
13 32, 8, 32, 256, 557.382591
14 32, 16, 32, 256, 1100.145311
15 32, 32, 32, 256, 1885.080449
16 64, 8, 64, 256, 1725.163599
17 64, 16, 64, 256, 3389.336566
18 64, 32, 64, 256, 4168.252422
19 16, 8, 256, 256, 1326.262134
20 16, 16, 256, 256, 2318.095475
21 16, 32, 256, 256, 3555.436503
22 32, 8, 256, 256, 1920.139170
23 32, 16, 256, 256, 3486.174753
24 32, 32, 256, 256, 5320.821724
25 64, 8, 256, 256, 2539.597502
26 64, 16, 256, 256, 5003.456775
27 64, 32, 256, 256, 7837.531562
28 8, 256, 16, 256, 1427.848170
29 16, 256, 16, 256, 2222.147815
30 32, 256, 16, 256, 2877.121715
31 8, 256, 32, 256, 1922.890086
32 16, 256, 32, 256, 3199.469082
33 32, 256, 32, 256, 4845.405343
34 8, 256, 64, 256, 2639.483343
35 16, 256, 64, 256, 5012.800299
36 32, 256, 64, 256, 7216.006882
37 Communications
38 Packet bytes, direction, GB/s per node
39 4718592, 2, 206.570734
40 4718592, 3, 207.501847
41 4718592, 6, 189.730277
42 4718592, 7, 204.301218
43 15925248, 2, 307.882997
44 15925248, 3, 287.901076
45 15925248, 6, 295.603109
46 15925248, 7, 300.682033
47 37748736, 2, 331.740364
48 37748736, 3, 338.610627
49 37748736, 6, 332.580657
50 37748736, 7, 336.336579
51 Per node summary table
52 L , Wilson, DWF4, Staggered, GF/s per node
53 8 , 16, 1165, 10
54 12 , 473, 4901, 163
55 16 , 1436, 8464, 442
56 24 , 4133, 10139, 1530
57 32 , 5726, 11487, 2518

View File

@ -5,12 +5,10 @@ LIME=/p/home/jusers/boyle2/juwels/gm2dwf/boyle/
--enable-gen-simd-width=64 \
--enable-shm=nvlink \
--enable-accelerator=cuda \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$LIME \
--enable-accelerator-cshift \
--disable-accelerator-cshift \
--disable-unified \
CXX=nvcc \
LDFLAGS="-cudart shared " \
CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++17 -cudart shared -lcublas"
CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++14 -cudart shared"

View File

@ -1,5 +1,5 @@
module load GCC
module load GMP
module load MPFR
module load OpenMPI
module load CUDA
module load GCC/9.3.0
module load GMP/6.2.0
module load MPFR/4.1.0
module load OpenMPI/4.1.0rc1
module load CUDA/11.3

View File

@ -1,23 +0,0 @@
CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
../../configure --enable-comms=mpi-auto \
--with-lime=$CLIME \
--enable-unified=no \
--enable-shm=nvlink \
--enable-tracing=timer \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--disable-gparity \
--disable-fermion-reps \
--enable-simd=GPU \
--enable-accelerator-cshift \
--with-gmp=$OLCF_GMP_ROOT \
--with-fftw=$FFTW_DIR/.. \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
--disable-fermion-reps \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -fgpu-sanitize" \
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas"

View File

@ -1,13 +0,0 @@
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
spack load c-lime
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/sw/crusher/spack-envs/base/opt/cray-sles15-zen3/gcc-11.2.0/gperftools-2.9.1-72ubwtuc5wcz2meqltbfdb76epufgzo2/lib
module load emacs
module load PrgEnv-gnu
module load rocm
module load cray-mpich/8.1.23
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx90a
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
#Hack for lib
#export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH

View File

@ -1,57 +0,0 @@
#!/bin/bash -l
#SBATCH --job-name=fthmc3ge
#SBATCH --partition=small-g
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
##SBATCH --cpus-per-task=8
#SBATCH --gpus-per-node=8
#SBATCH --time=2:00:00
#SBATCH --account=project_465000546
#SBATCH --gpu-bind=none
#SBATCH --exclusive
#SBATCH --mem=0
#sbatch --dependency=afterany:$SLURM_JOBID fthmc3gev.slurm
CPU_BIND="map_ldom:3,3,1,1,0,0,2,2"
MEM_BIND="map_mem:3,3,1,1,0,0,2,2"
echo $CPU_BIND
cat << EOF > ./select_gpu
#!/bin/bash
export GPU_MAP=(0 1 2 3 4 5 6 7)
export NUMA_MAP=(3 3 1 1 0 0 2 2)
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
export NUM=\${NUMA_MAP[\$SLURM_LOCALID]}
#export HIP_VISIBLE_DEVICES=\$GPU
export ROCR_VISIBLE_DEVICES=\$GPU
echo RANK \$SLURM_LOCALID using GPU \$GPU
echo NUMA \$SLURM_LOCALID using NUMA \${NUM}
echo numactl -m \$NUM -N \$NUM \$*
exec numactl -m \$NUM -N \$NUM \$*
EOF
cat ./select_gpu
chmod +x ./select_gpu
root=/scratch/project_465000546/boylepet/Grid/systems/Lumi
source ${root}/sourceme.sh
export OMP_NUM_THREADS=7
export MPICH_SMP_SINGLE_COPY_MODE=CMA
export MPICH_GPU_SUPPORT_ENABLED=1
#cfg=`ls -rt ckpoint_*lat* | tail -n 1 `
#traj="${cfg#*.}"
#cfg=`ls -rt ckpoint_*lat* | tail -n 1 `
traj=0
vol=32.32.32.64
mpi=1.2.2.2
PARAMS="--mpi $mpi --accelerator-threads 16 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol"
#HMCPARAMS="--StartingType CheckpointStart --StartingTrajectory $traj --Trajectories 200"
HMCPARAMS="--StartingType ColdStart --StartingTrajectory $traj --Trajectories 20"
srun ./select_gpu ../FTHMC2p1f_3GeV $HMCPARAMS $PARAMS

View File

@ -23,7 +23,7 @@ echo mpfr X$MPFR
--disable-fermion-reps \
--disable-gparity \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC --offload-arch=gfx90a -I/opt/rocm/include/ -std=c++17 -I/opt/cray/pe/mpich/8.1.23/ofi/gnu/9.1/include" \
CXXFLAGS="-fPIC --offload-arch=gfx90a -I/opt/rocm/include/ -std=c++14 -I/opt/cray/pe/mpich/8.1.23/ofi/gnu/9.1/include" \
LDFLAGS="-L/opt/cray/pe/mpich/8.1.23/ofi/gnu/9.1/lib -lmpi -L/opt/cray/pe/mpich/8.1.23/gtl/lib -lmpi_gtl_hsa -lamdhip64 -fopenmp"

Some files were not shown because too many files have changed in this diff Show More