1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 05:07:05 +01:00

Compare commits

..

181 Commits

Author SHA1 Message Date
cfa0576ffd Getting rid of one more non-auto View, comms overlap in Laplace operator 2024-02-25 22:37:48 -05:00
fe98e9f555 Fixing Laplace flopcount Minor cleanup 2024-02-13 12:06:08 -05:00
948d16fb06 Laplace benchmark added 2024-02-12 21:23:36 -05:00
58fbcaa399 Checking in before cleaning up 2024-02-12 21:10:21 -05:00
9ad6836b0f Mixed precision for Laplace. Main program with Metric 2024-02-08 17:13:10 -05:00
026eb8a695 Wilson RMHMC main program 2023-12-12 15:34:03 -05:00
076580c232 Recovering mixed precision CG for Laplace
Checking in to move to aurora
2023-12-12 15:32:00 -05:00
7af6022a2a Added midMD checkpointing (for lattice only for now) 2023-12-04 20:05:41 -05:00
982a60536c Checking in before forking 2023-11-22 16:33:15 -05:00
dc36d272ce Gauge RMHMC conserving dH 2023-11-21 13:48:51 -05:00
515ff6bf62 Added Laplacian metric, Gauge OpenBC 2023-11-09 21:42:46 -05:00
6d0c2de399 Deprecate teh PVC directory and make a PVC-OEM generic PVC target with
no queueing system dependency -- just interactive scripts
2023-10-03 17:04:20 +00:00
7786ea9921 Bug fix in script 2023-10-03 09:58:44 -07:00
d93eac7b1c Performance regressed and is OK in icpx 2023.2 2023-10-03 15:53:14 +00:00
afc316f501 Rename headers 2023-10-02 16:25:11 -04:00
f14bfd5c1b Relocate sub includes 2023-10-02 16:23:38 -04:00
c5f1420dea Merge remote-tracking branch 'LupoA/develop' into LupoA-develop 2023-10-02 16:22:35 -04:00
018e6da872 Merge pull request #440 from giltirn/feature/paddedcellgauge
Feature/paddedcellgauge
2023-10-02 10:00:42 -04:00
b77bccfac2 Merge pull request #444 from mmphys/feature/docX
Update doc complete list of Macports needed to build Grid on a fresh Mac
2023-10-02 09:57:11 -04:00
80359e0d49 Bland SYCL compile 2023-09-26 13:20:27 -07:00
3d437c5cc4 Making SYCL happy 2023-09-26 13:19:42 -07:00
bd56c95a6f Update documentation with complete list of Macports needed to build Grid on a fresh Mac 2023-07-14 13:50:06 +01:00
dbd8bb49dc Merge pull request #32 from LupoA/sp2n/develop
Sp2n/develop
2023-07-04 15:23:43 +00:00
3a29af0ce4 Fixed linker error 2023-07-04 16:08:44 +01:00
f7b79cdd45 Added test for ProjectSpn 2023-07-03 18:00:32 +01:00
075b9d22d0 adjoint rep implemented as 2indx symmetric 2023-07-02 13:58:31 +01:00
b92428f05f better test 2023-07-02 13:34:03 +01:00
34b11864b6 prettiest tests 2023-07-02 13:25:57 +01:00
1dfaa08afb The stencils for the staple and rect-staple padded cell implementations are now created and stored by workspace classes that allow for reuse providing the grids remain consistent
The workspaces are now used by the plaq+rectangle gauge action resulting in a further 2x performance improvement as measured on a 16^4 local volume for 2 nodes (16 ranks) of Crusher
2023-06-28 15:11:24 -04:00
f44dce390f Implemented acclerator-optimized versions of localCopyRegion and insertSliceLocal to speed up padding
Fixed const correctness on PaddedCell methods
Fixed compile issues on Crusher
Added timing breakdowns for PaddedCell::Expand and the padded implementations of the staples, visible under --log Performance
Optimized kernel for StaplePadded
Test_iwasaki_action_newstaple now repeats the calculation 10 times and reports average timings
2023-06-27 14:58:10 -04:00
bb71e9a96a Added PaddedCell and GeneralisedLocalStencil header includes to standard base headers
Moved versions of the padded-cell implementations of staple and rect-staple from test code to WilsonLoops header
Added StapleAndRectStapleAll which is now called by the plaq+rectangle action class. Under the hood it uses the padded cell implementations with maximal reuse of the padded gauge links
2023-06-27 11:23:30 -04:00
6f6844ccf1 Added new StapleAll and RectStapleAll functions that return the staples for all mu as an array
Modified plaq+rectangle gauge actions to use the above
Added a test code to confirm the above changes
2023-06-26 15:48:47 -04:00
4c6613d72c Modified RectStapleDouble and RectStapleOptimised to use Gauge-BC respecting CshiftLink
Added test code tests/debug/Test_optimized_staple_gaugebc demonstrating equivalence of above to RectStapleUnoptimised for cconj gauge BCs
Removed optimized staple only being used for periodic gauge BCs; it is now always used
2023-06-26 10:20:23 -04:00
559257bbe9 better documentation and filelist names 2023-06-23 16:16:48 +01:00
cff1f8d3b8 rm unused variables and formatting 2023-06-23 16:04:18 +01:00
f27d2083cd adjustments in SUn and Sp2n impl 2023-06-23 15:34:08 +01:00
36cc9c524f Threaded the constructor of GeneralLocalStencil 2023-06-23 09:57:38 -04:00
2822487450 rm unncessary line 2023-06-23 14:55:23 +01:00
e07fafe46a minor adjustments to twoindex 2023-06-23 12:18:04 +01:00
063d290bd8 missing function 2023-06-23 11:11:20 +01:00
4e6194d92a Avoid code duplication in ProjectSUn 2023-06-23 11:03:50 +01:00
de30c4e22a minor improvements 2023-06-23 10:49:41 +01:00
4241c7d4a3 Imported coalescedReadGeneralPermute GPU implementation from Christoph
Fixed bug in padded staple code where extract was being called on the result before the GPU view was closed
Fixed compile issue with pointer cast in padded staple code
Added timing summaries of padded staple code and timing breakdown of staple implementation to Test_padded_cell_staple
2023-06-21 16:01:01 -04:00
7b11075102 The user can now specify the implementation of Cshift used by the PaddedCell class through a virtual base class API. Implementations for default (regular Cshift) and for gauge links (which respects the gauge BCs)
Fixed const-correctness for PaddedCell and ConjugateGimpl::setDirections
Modified test code for padded-cell implementation of staple, rect-staple to use cconj BCs
2023-06-20 17:09:56 -04:00
abc658dca5 Added coalescedReadGeneralPermute CPU implementation based on Christoph's GPT code
In a test code, implemented a padded-cell version of the staple and rectangular-staple calculation
2023-06-20 16:14:25 -04:00
2372275b2c Merge pull request #36 from LupoA/sp2n/gpu-bugfix
Sp2n/gpu bugfix [close #30]
2023-06-20 13:46:00 +01:00
ef736e8aa4 Merge pull request #35 from LupoA/sp2n/enableSp
consistent enable sp config flag
2023-06-20 10:41:09 +00:00
5e539e2d54 Forgot some follow-ups on changed signature 2023-06-18 12:37:51 +01:00
96773f5254 Apparently forgot to remove one Lattice version 2023-06-18 12:21:39 +01:00
d80df09f3b consistent enable sp config flag 2023-06-16 19:16:46 +01:00
621e612c30 Fix non-zero ret on device bug 2023-06-16 16:27:49 +01:00
8c3792721b ClangFormat 2023-06-16 15:58:23 +01:00
c95bbd3948 Remove accelerated lattice version 2023-06-16 15:50:26 +01:00
e28ab7a732 Re-included instantiations for symmetric 2Index AS Sp 2023-06-16 14:20:37 +01:00
c797cbe737 deal with post-merge trauma 2023-06-16 14:20:37 +01:00
e09dfbf1c2 definetely the right merge upstream/develop 2023-06-16 14:19:46 +01:00
116d90b0ee First attempt on #30 2023-06-15 15:09:37 +01:00
b0646ca187 Remove some unused variables 2023-06-15 15:09:09 +01:00
4895ff260e Merge pull request #28 from LupoA/sp2n/config
compile sp2n fermion impl only if declared at config time
2023-06-09 13:07:48 +00:00
470d93006a compile sp2n fermion impl only if declared at config time 2023-06-07 12:53:33 +01:00
2f3d03f188 Merge pull request #27 from LupoA/sp2n/documentation
documentation for gaugegroup and sp2n
2023-06-01 16:42:27 +00:00
8db7c23bee improve documentation 2023-06-01 17:39:10 +01:00
69dc5172dc Merge pull request #26 from LupoA/sp2n/irreps
Sp2n/irreps
2023-06-01 16:28:15 +00:00
fd72eb6546 Merge branch 'sp2n/algorithm' into sp2n/irreps 2023-06-01 17:24:01 +01:00
b405767569 make private methods private 2023-05-26 17:02:16 +01:00
fe88a0c12f cleaner twoindex class, cleaner tests 2023-05-26 16:55:30 +01:00
e61a9ed2b4 partial revert 2023-05-26 13:54:26 +01:00
de8daa3824 group is SUn by default 2023-05-26 13:44:41 +01:00
3a50fb29cb directly call sp helper 2023-05-26 13:28:47 +01:00
6647d2656f rm unnecessary specialisation 2023-05-26 12:27:22 +01:00
a6f4dbeb6d remove redundant template parameter 2023-05-26 12:13:40 +01:00
92a282f2d8 Merge pull request #24 from LupoA/sp2n/fix_static_assert_symmetric
Move static_assert inside of function
2023-05-26 11:13:50 +01:00
ca2fd9fc7b documentation for gaugegroup and sp2n 2023-05-25 18:40:54 +01:00
be1a4f5860 implement TwoIndexSymm for sp2n 2023-05-22 17:21:03 +01:00
5897b93dd4 debug tests, fix dimension 2023-05-22 13:42:21 +01:00
af091e0881 DimensionHelper for 2index irreps 2023-05-21 16:56:06 +01:00
3c1e5e9517 Merge pull request #25 from LupoA/sp2n/unify_representations
Sp2n/unify representations [close #3]
2023-05-21 14:55:27 +01:00
85b2cb7a8a changing some hardcoded SUn lines 2023-05-21 14:50:28 +01:00
b8bdc2eefb Unified two index representations 2023-05-18 18:36:29 +01:00
0078826ff1 Move static_assert inside of function 2023-05-18 18:14:53 +01:00
e855c41772 Unified spfundamental.h with fundamental.h 2023-05-18 18:11:20 +01:00
d169c275b6 Merge pull request #22 from LupoA/sp2n/unify_twoindex
Unify TwoIndex
2023-05-18 14:55:02 +00:00
a5125e23f4 Typo 2023-05-18 15:41:35 +01:00
7b83c80757 Merge branch 'sp2n/unify_twoindex' of github.com:LupoA/Grid into sp2n/unify_twoindex 2023-05-18 15:36:14 +01:00
e41821e206 Disable two index symmetric 2023-05-18 15:29:55 +01:00
5a75ab15a2 typo in 2S dim 2023-05-17 20:47:57 +01:00
932c783fbf 2AS for every Nc! 2023-05-17 20:22:05 +01:00
55f9cce577 Revert "Added automated HMC test for Nc=4"
This reverts commit eee27b8b30.
2023-05-17 09:17:48 +01:00
b3533ca847 correct tests (failing) 2023-05-16 17:43:52 +01:00
fd2a637010 test 2index 2023-05-16 14:10:39 +01:00
eee27b8b30 Added automated HMC test for Nc=4 2023-05-15 18:37:33 +01:00
8522352aa3 ClangFormat 2023-05-15 18:36:05 +01:00
3beb8f4091 fixing typo, getting pre-changes physics 2023-05-15 16:00:15 +01:00
12a706e9b1 de-hardcode the number of generators 2023-05-15 15:48:21 +01:00
170aa7df01 fix (dimension to be improved) 2023-05-15 15:20:18 +01:00
e8ad1fef53 Unify TwoIndex 2023-05-12 14:35:50 +01:00
aa9df63a05 rename group projections based on determinants 2023-05-10 14:50:52 +01:00
3953312a93 Merge pull request #20 from LupoA/sp2n/unify_gaugeimpltypes
Sp2n/unify gaugeimpltypes
2023-05-03 15:17:10 +00:00
6e62f4f616 ClangFormat 2023-05-03 16:15:12 +01:00
6a7bdca53b Take over additional algebra tests from Alessandro 2023-05-03 16:02:02 +01:00
c7fba9aace Take over additional group tests from Alessandro 2023-05-03 16:01:48 +01:00
ac6c7cb8d6 Merge in Alessandro's changes [test fails] 2023-05-03 02:53:03 +01:00
c5924833a1 ClangFormat 2023-05-03 02:39:36 +01:00
ac0a74be0d Taken care of algebra tests 2023-05-03 02:32:42 +01:00
42b0e1125d Naming and argument types 2023-05-03 01:51:46 +01:00
339c4fda79 Extracted is_element_of Sp2n 2023-05-02 15:44:34 +01:00
9b85bf9402 better projection test 2023-05-02 15:42:20 +01:00
86b02c3cd8 cleaning up requested by Julian 2023-05-02 13:31:17 +01:00
7b3b7093fa cleaning up requested by Ed 2023-05-02 12:50:57 +01:00
881b08a465 Correct implementation of SpTa 2023-04-27 18:17:06 +01:00
3ee5444c69 Remove commented out stuff 2023-04-21 08:08:18 +01:00
5e28fe56d2 Remove code duplication: Iterating through vectors 2023-04-21 08:08:06 +01:00
5aabe074fe Rename Sympl* to Sp* 2023-04-18 11:50:20 +01:00
dace904c10 fix typo 2023-04-14 18:06:18 +01:00
be98d26610 small change I missed in previous commit 2023-04-13 17:48:43 +01:00
178376f24b minor stylistic changes 2023-04-06 12:08:17 +01:00
6a0eb466ee Merge pull request #19 from LupoA/refactoring_sp2n
refactoring sp2n
2023-04-05 10:50:58 +00:00
4ea29b8f0f Template group into GaugeImplTypes. Closing #2 2023-04-04 17:49:28 +01:00
778291230a expand ProjecOnGaugeGroup, change ProjectOnSp2nAlgebra into SpTa, fixing some of its issues 2023-04-04 17:48:13 +01:00
026e736dfa Projection on algebra can now be templated. Fix #12 2023-04-03 16:31:19 +01:00
4275b3f431 Fix typo and remove unnecessary lines 2023-04-03 12:01:52 +01:00
1b8176e2c0 fix code duplication 2023-03-17 14:58:00 +00:00
cbc053c3db Revert "projection on Sp2n algebra, to be used instead of Ta"
This reverts commit ba7f9d7b70.
2023-03-17 11:36:58 +00:00
cdf3f6ef6e Merge branch 'refactoring_sp2n' of https://github.com/LupoA/Grid into refactoring_sp2n 2023-03-15 15:59:50 +00:00
ba7f9d7b70 projection on Sp2n algebra, to be used instead of Ta 2023-03-15 15:55:12 +00:00
371fd123fb consequence of iSUnMatrix being no longer a member of the SU class 2023-03-14 10:47:07 +00:00
d6ff644aab Towards the day all tests compile 2023-03-14 10:43:25 +00:00
29586f6b5e Deactivate some tests for Nc!=3 2023-03-13 08:17:14 +00:00
fd057c838f add ProjectOnGaugeGroup and ProjectGn to allow future templating in GaugeImplTypes 2023-03-10 12:10:46 +00:00
f51222086c Move functions from GaugeGroup to group specific implementations 2023-03-09 16:22:20 +00:00
f73691ec47 Merge pull request #18 from nickforce989/sp2n/newbranch
Sp2n/newbranch
2023-02-13 10:22:27 +01:00
7ebda3e9ec Merge commit 'b10e1b7bc8bec809f874e9e48a3ccc7b2619c9d1' into sp2n/newbranch 2023-01-19 12:10:18 +00:00
b10e1b7bc8 Fixed files giving zero force computation on GPU, issue #8 2023-01-18 18:04:47 +00:00
d7dea44ce7 Merge pull request #17 from chillenzer/unify_gauge_groups
Fix compilation error in nvcc (closes #15)
2022-12-19 16:24:03 +00:00
37b6b82869 Fix file extensions 2022-12-18 16:12:56 +00:00
92ad5b8f74 Compiler error fix: NVCC requires names for templ. par. 2022-12-18 15:50:19 +00:00
8c80f1c168 Merge pull request #14 from chillenzer/unify_gauge_groups
Unify gauge groups (closes #5)
2022-12-01 17:35:46 +00:00
0af7d5a793 Rename Grid/qcd/utils/<Group>_impl.h -> Grid/qcd/utils/<Group>.h 2022-11-30 17:12:00 +00:00
505fa49983 Renamed SUn.h -> GaugeGroup.h 2022-11-30 17:09:48 +00:00
7bcf33def9 Removed Sp2n.h 2022-11-30 16:59:46 +00:00
a13820656a Removed iSUnMatrix, etc. 2022-11-30 15:09:03 +00:00
fa71b46a41 Hide nsp 2022-11-30 14:44:23 +00:00
b8b3ae6ac1 Make helper functions private 2022-11-30 13:29:14 +00:00
55c008da21 Removed forward declaration 2022-11-30 13:12:21 +00:00
2507606bd0 With function overloading (still dirty). 2022-11-30 12:54:36 +00:00
7c2ad4f8c8 Attempt with SFINAE (failed) 2022-11-30 11:57:39 +00:00
54c8025aad Remove unnecessary pwd in scripts/filelist 2022-11-28 17:50:38 +00:00
921e23e83c Separated out everything SU specific 2022-11-28 17:47:50 +00:00
6e750ecb0e Remove apparently forgotten file 2022-11-28 16:33:46 +00:00
b8f1f5d2a3 Introduce GaugeGroup 2022-11-25 17:45:32 +00:00
9273f2937c Autoformat google style 2022-11-25 17:44:08 +00:00
1aa28b47ae Add existing test to check 2022-11-25 17:40:40 +00:00
629cb2987a Fix typo in Makefile.am 2022-11-25 17:40:21 +00:00
03235d6368 Fixed type in configure.ac 2022-11-25 16:57:40 +00:00
22064c7e4c Fixing #11 2022-11-25 13:10:29 +00:00
2de03e5172 Revert "Revert "Fixing issue #11: consistent use of ncolour and nsp""
This reverts commit 3af4929dda.
2022-11-23 19:40:28 +00:00
3af4929dda Revert "Fixing issue #11: consistent use of ncolour and nsp"
This reverts commit 1ba429345b.
2022-11-23 19:34:59 +00:00
1ba429345b Fixing issue #11: consistent use of ncolour and nsp 2022-11-23 18:45:01 +00:00
88bdd4344b 2indx antisymm representation of sp2n 2021-11-04 18:27:35 +00:00
4044536eea add projection on sp2n algebra 2021-10-26 10:20:44 +01:00
4d8ae6221c fix projection 2021-10-22 10:44:54 +01:00
4e31e4e094 Better tests 2021-10-13 15:07:23 +01:00
0d6674e489 hot start for sp2n 2021-10-12 18:53:54 +01:00
b145fd4f5b necessary to merge 2021-10-12 17:08:46 +01:00
8a5b794f25 necessary change to merge with upstrm 2021-10-12 16:04:03 +01:00
291e80f88a sp2n as config option 2021-10-12 16:00:32 +01:00
1ace5850ae first hmc 2021-10-12 16:00:32 +01:00
283f14b7c1 fix sp2n projection 2021-10-12 16:00:32 +01:00
1d6e708083 tests! 2021-10-12 16:00:32 +01:00
89457e25e3 sp fermion instantiation 2021-10-12 16:00:32 +01:00
7e3b298d3d project on sp2n 2021-10-12 16:00:32 +01:00
7ff3e5eed4 gauge and fermion implementation for sp2n 2021-10-12 16:00:32 +01:00
19eb51cf41 sp2n generators 2021-10-12 15:53:33 +01:00
470d4dcc6d sp2n as config option 2021-10-12 15:47:56 +01:00
ed03bfd555 first hmc 2021-10-12 12:16:47 +01:00
8c0fbcccae fix sp2n projection 2021-10-12 12:12:16 +01:00
d4866157fe tests! 2021-10-12 09:06:15 +01:00
b6496b6cb5 sp fermion instantiation 2021-10-11 16:32:10 +01:00
4f5fe57920 project on sp2n 2021-10-11 16:28:15 +01:00
11fb943b1e gauge and fermion implementation for sp2n 2021-10-11 16:21:25 +01:00
046a23121e sp2n generators 2021-10-05 15:51:22 +01:00
126 changed files with 8710 additions and 2279 deletions

View File

@ -66,6 +66,10 @@ if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
if BUILD_SP
extra_sources+=$(SP_FERMION_FILES)
extra_sources+=$(SP_TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a

View File

@ -460,6 +460,53 @@ class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Fi
}
};
template<class Matrix,class Field>
class QuadLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
RealD a0,a1,a2;
QuadLinearOperator(Matrix &Mat): _Mat(Mat),a0(0.),a1(0.),a2(1.) {};
QuadLinearOperator(Matrix &Mat, RealD _a0,RealD _a1,RealD _a2): _Mat(Mat),a0(_a0),a1(_a1),a2(_a2) {};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
_Mat.MdirAll(in,out);
}
void HermOp (const Field &in, Field &out){
// _Mat.M(in,out);
Field tmp1(in.Grid());
// Linop.HermOpAndNorm(psi, mmp, d, b);
_Mat.M(in,tmp1);
_Mat.M(tmp1,out);
out *= a2;
axpy(out, a1, tmp1, out);
axpy(out, a0, in, out);
// d=real(innerProduct(psi,mmp));
// b=norm2(mmp);
}
void AdjOp (const Field &in, Field &out){
assert(0);
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void Op(const Field &in, Field &out){
assert(0);
_Mat.M(in,out);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi

View File

@ -36,11 +36,12 @@ NAMESPACE_BEGIN(Grid);
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
// Changing to operator
template<class LinearOperatorBase, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
virtual Field operator()(LinearOperatorBase &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
@ -54,13 +55,13 @@ public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
std::cout << GridLogMessage << "ChronoForecast: degree= " << degree << std::endl;
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = Zero(); return chi; }
else if(degree == 1){ return prev_solns[0]; }
// RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
@ -83,8 +84,9 @@ public:
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
// Mat.M(v[i],Mv);
// Mat.Mdag(Mv,MdagMv[i]);
Mat.HermOp(v[i],MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}

View File

@ -604,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle;
clone_mem_t handle;

View File

@ -47,3 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/PaddedCell.h>

View File

@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnarySpTa, SpTa(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(SpTa, UnarySpTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the

View File

@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
return ret;
};
template<int N, class Vec>
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
typedef typename Vec::scalar_type scalar;
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<scalar, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
scalar tmp= Us()()(i,j);
ComplexD ztmp(real(tmp),imag(tmp));
EigenU(i,j)=ztmp;
}}
ComplexD detD = EigenU.determinant();
typename Vec::scalar_type det(detD.real(),detD.imag());
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -697,8 +697,68 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]);
}
// the above should guarantee that the operations are local
#if 1
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx, nsite, {
Coordinate from_coor, to_coor;
size_t rem = idx;
for(int i=0;i<nd;i++){
size_t base_i = rem % RegionSize[i]; rem /= RegionSize[i];
from_coor[i] = base_i + FromLowerLeft[i];
to_coor[i] = base_i + ToLowerLeft[i];
}
int foidx = Fg->oIndex(from_coor);
int fiidx = Fg->iIndex(from_coor);
int toidx = Tg->oIndex(to_coor);
int tiidx = Tg->iIndex(to_coor);
int* tt = table + 4*idx;
tt[0] = foidx;
tt[1] = fiidx;
tt[2] = toidx;
tt[3] = tiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
Coordinate ldf = Fg->_ldimensions;
Coordinate rdf = Fg->_rdimensions;
Coordinate isf = Fg->_istride;
@ -738,6 +798,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
#endif
}
});
#endif
}
@ -830,6 +892,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
@ -851,6 +915,65 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
}
}
#if 1
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx,nsite,{
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lcoor[orthog] = slice_lo;
hcoor[orthog] = slice_hi;
size_t rem = idx;
for(int mu=0;mu<nl;mu++){
if(mu != orthog){
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
lcoor[mu] = hcoor[mu] = xmu;
}
}
int loidx = lg->oIndex(lcoor);
int liidx = lg->iIndex(lcoor);
int hoidx = hg->oIndex(hcoor);
int hiidx = hg->iIndex(hcoor);
int* tt = table + 4*idx;
tt[0] = loidx;
tt[1] = liidx;
tt[2] = hoidx;
tt[3] = hiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(lowDim_v,lowDim,AcceleratorRead);
autoView(higherDim_v,higherDim,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
@ -866,6 +989,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
pokeLocalSite(s,higherDimv,hcoor);
}
});
#endif
}

View File

@ -26,14 +26,32 @@ Author: Peter Boyle pboyle@bnl.gov
/* END LEGAL */
#pragma once
#include<Grid/cshift/Cshift.h>
NAMESPACE_BEGIN(Grid);
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
template<typename vobj>
struct CshiftImplBase{
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
virtual ~CshiftImplBase(){}
};
template<typename vobj>
struct CshiftImplDefault: public CshiftImplBase<vobj>{
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
};
template<typename Gimpl>
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
};
class PaddedCell {
public:
GridCartesian * unpadded_grid;
int dims;
int depth;
std::vector<GridCartesian *> grids;
~PaddedCell()
{
DeleteGrids();
@ -77,7 +95,7 @@ public:
}
};
template<class vobj>
inline Lattice<vobj> Extract(Lattice<vobj> &in)
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
{
Lattice<vobj> out(unpadded_grid);
@ -88,19 +106,19 @@ public:
return out;
}
template<class vobj>
inline Lattice<vobj> Exchange(Lattice<vobj> &in)
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
GridBase *old_grid = in.Grid();
int dims = old_grid->Nd();
Lattice<vobj> tmp = in;
for(int d=0;d<dims;d++){
tmp = Expand(d,tmp); // rvalue && assignment
tmp = Expand(d,tmp,cshift); // rvalue && assignment
}
return tmp;
}
// expand up one dim at a time
template<class vobj>
inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
GridBase *old_grid = in.Grid();
GridCartesian *new_grid = grids[dim];//These are new grids
@ -112,20 +130,40 @@ public:
else conformable(old_grid,grids[dim-1]);
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
double tins=0, tshift=0;
// Middle bit
double t = usecond();
for(int x=0;x<local[dim];x++){
InsertSliceLocal(in,padded,x,depth+x,dim);
}
tins += usecond() - t;
// High bit
shifted = Cshift(in,dim,depth);
t = usecond();
shifted = cshift.Cshift(in,dim,depth);
tshift += usecond() - t;
t=usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
}
tins += usecond() - t;
// Low bit
shifted = Cshift(in,dim,-depth);
t = usecond();
shifted = cshift.Cshift(in,dim,-depth);
tshift += usecond() - t;
t = usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,x,x,dim);
}
tins += usecond() - t;
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
return padded;
}

View File

@ -67,6 +67,7 @@ NAMESPACE_CHECK(Scalar);
#include <Grid/qcd/utils/Metric.h>
NAMESPACE_CHECK(Metric);
#include <Grid/qcd/utils/CovariantLaplacian.h>
#include <Grid/qcd/utils/CovariantLaplacianRat.h>
NAMESPACE_CHECK(CovariantLaplacian);

View File

@ -65,6 +65,19 @@ struct WilsonImplParams {
}
};
struct GaugeImplParams {
// bool overlapCommsCompute;
// AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases;
GaugeImplParams() {
boundary_phases.resize(Nd, 1.0);
// twist_n_2pi_L.resize(Nd, 0.0);
};
GaugeImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi) {
// twist_n_2pi_L.resize(Nd, 0.0);
}
};
struct StaggeredImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;

View File

@ -124,11 +124,6 @@ public:
RealD _b;
RealD _c;
// possible boost
std::vector<ComplexD> qmu;
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
// Cayley form Moebius (tanh and zolotarev)
Vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs

View File

@ -60,50 +60,6 @@ public:
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);

View File

@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
// Sp(2n)
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
// Twisted mass fermion
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;

View File

@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
public:
INHERIT_IMPL_TYPES(Impl);
const int part_frac_chroma_convention=0;
const int part_frac_chroma_convention=1;
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
@ -83,63 +83,12 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
protected:
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
// Part frac
std::vector<RealD> qmu;
RealD mass;
RealD dw_diag;
RealD R;

View File

@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
//sp 2n
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
NAMESPACE_END(Grid);

View File

@ -48,8 +48,7 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
FourDimGrid,
FourDimRedBlackGrid,_M5,p),
mass_plus(_mass), mass_minus(_mass)
{
// qmu defaults to zero size;
{
}
///////////////////////////////////////////////////////////////
@ -271,34 +270,6 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
M5Ddag(psi,psi,Din,lower,diag,upper);
}
template<class Impl>
void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag)
{
if ( qmu.size() ) {
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
std::vector<ComplexD> coeff(Nd);
ComplexD ci(0,1);
assert(qmu.size()==Nd);
for(int mu=0;mu<Nd;mu++){
coeff[mu] = ci*qmu[mu];
if ( dag ) coeff[mu] = conjugate(coeff[mu]);
}
chi = chi + Gamma(Gmu[0])*psi*coeff[0];
for(int mu=1;mu<Nd;mu++){
chi = chi + Gamma(Gmu[mu])*psi*coeff[mu];
}
}
}
template<class Impl>
void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
{
@ -306,12 +277,8 @@ void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
// Assemble Din
Meooe5D(psi,Din);
this->DW(Din,chi,DaggerNo);
// add i q_mu gamma_mu here
addQmu(Din,chi,DaggerNo);
this->DW(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi);
@ -328,9 +295,6 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
FermionField Din(psi.Grid());
// Apply Dw
this->DW(psi,Din,DaggerYes);
// add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not.
addQmu(psi,Din,DaggerYes);
MeooeDag5D(Din,chi);

View File

@ -42,13 +42,13 @@ template<class Impl>
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
{
// How to check Ls matches??
std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
int Ls = this->Ls;
std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
assert(zdata->db==Ls);// Beta has Ls coeffs
R=(1+this->mass)/(1-this->mass);
@ -320,7 +320,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
int Ls = this->Ls;
conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid());
ExtractSlice(exported4d, solution5d, Ls-1, 0);
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
}
template<class Impl>
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
@ -330,7 +330,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
conformable(input4d.Grid() ,this->GaugeGrid());
FermionField tmp(this->FermionGrid());
tmp=Zero();
InsertSlice(input4d, tmp, Ls-1, 0);
InsertSlice(input4d, tmp, Ls-1, Ls-1);
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
this->Dminus(tmp,imported5d);
}

View File

@ -255,76 +255,15 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
}
{
// The 'conventional' Cayley overlap operator is
//
// Dov = (1+m)/2 + (1-m)/2 g5 sgn Hw
//
//
// With massless limit 1/2(1+g5 sgnHw)
//
// Luscher shows quite neatly that 1+g5 sgn Hw has tree level propagator i qslash +O(a^2)
//
// However, the conventional normalisation has both a leading order factor of 2 in Zq
// at tree level AND a mass dependent (1-m) that are convenient to absorb.
//
// In WilsonFermion5DImplementation.h, the tree level propagator for Hw is
//
// num = -i sin kmu gmu
//
// denom ( sqrt(sk^2 + (2shk^2 - 1)^2
// b_k = sk2 - M5;
//
// w_k = sqrt(sk + b_k*b_k);
//
// denom= ( w_k + b_k + mass*mass) ;
//
// denom= one/denom;
// out = num*denom;
//
// Chroma, and Grid define partial fraction via 4d operator
//
// Dpf = 2/(1-m) x Dov = (1+m)/(1-m) + g5 sgn Hw
//
// Now since:
//
// (1+m)/(1-m) = (1-m)/(1-m) + 2m/(1-m) = 1 + 2m/(1-m)
//
// This corresponds to a modified mass parameter
//
// It has an annoying
//
//
double R=(1+this->mass)/(1-this->mass);
//R g5 psi[Ls] + p[0] H
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
for(int b=0;b<nblock;b++){
int s = 2*b+1;
double pp = p[nblock-1-b];
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
}
if ( qmu.size() ) {
FermionField qslash_psi(psi.Grid());
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
ComplexD ci(0,1);
assert(qmu.size()==Nd);
qslash_psi = Gamma(Gmu[0])*psi;
for(int mu=1;mu<Nd;mu++){
qslash_psi = Gamma(Gmu[mu])*psi;
}
// RealD coeff = 1.0;
qslash_psi = Gamma(Gamma::Algebra::Gamma5)*qslash_psi*ci ; // i g5 qslash -- 1-m factor???
axpby_ssp(chi,1.0,chi,1.0, qslash_psi,Ls-1,Ls-1);
}
}
}
@ -472,7 +411,7 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
int Ls = this->Ls;
conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid());
ExtractSlice(exported4d, solution5d, Ls-1, 0);
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
}
template<class Impl>
void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
@ -482,8 +421,7 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
conformable(input4d.Grid() ,this->GaugeGrid());
FermionField tmp(this->FermionGrid());
tmp=Zero();
std::cout << " importing to slice " << Ls-1 <<std::endl;
InsertSlice(input4d, tmp, Ls-1, 0);
InsertSlice(input4d, tmp, Ls-1, Ls-1);
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
this->Dminus(tmp,imported5d);
}
@ -504,7 +442,7 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
{
int Ls = this->Ls;
qmu.resize(0);
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;
@ -522,22 +460,6 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
Approx::zolotarev_free(zdata);
}
template<class Impl>
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,
std::vector<RealD> &_qmu,
const ImplParams &p)
: PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,FiveDimRedBlackGrid,
FourDimGrid,FourDimRedBlackGrid,
_mass,M5,p)
{
qmu=_qmu;
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonImplD

View File

@ -0,0 +1 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonImplF

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF

View File

@ -10,12 +10,18 @@ WILSON_IMPL_LIST=" \
WilsonImplF \
WilsonImplD \
WilsonImplD2 \
SpWilsonImplF \
SpWilsonImplD \
WilsonAdjImplF \
WilsonAdjImplD \
WilsonTwoIndexSymmetricImplF \
WilsonTwoIndexSymmetricImplD \
WilsonTwoIndexAntiSymmetricImplF \
WilsonTwoIndexAntiSymmetricImplD \
SpWilsonTwoIndexAntiSymmetricImplF \
SpWilsonTwoIndexAntiSymmetricImplD \
SpWilsonTwoIndexSymmetricImplF \
SpWilsonTwoIndexSymmetricImplD \
GparityWilsonImplF \
GparityWilsonImplD "

View File

@ -39,6 +39,9 @@ NAMESPACE_BEGIN(Grid);
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
typedef WilsonGaugeAction<SpPeriodicGimplR> SpWilsonGaugeActionR;
typedef WilsonGaugeAction<SpPeriodicGimplF> SpWilsonGaugeActionF;
typedef WilsonGaugeAction<SpPeriodicGimplD> SpWilsonGaugeActionD;
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;

View File

@ -32,7 +32,7 @@ directory
NAMESPACE_BEGIN(Grid);
#define CPS_MD_TIME
#undef CPS_MD_TIME
#ifdef CPS_MD_TIME
#define HMC_MOMENTUM_DENOMINATOR (2.0)
@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
typedef typename Impl::Field Field;
// hardcodes the exponential approximation in the template
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
@ -78,8 +78,6 @@ public:
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef SU<Nrepresentation> Group;
// Guido: we can probably separate the types from the HMC functions
// this will create 2 kind of implementations
// probably confusing the users
@ -119,6 +117,7 @@ public:
//
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
@ -126,8 +125,12 @@ public:
PokeIndex<LorentzIndex>(P, Pmu, mu);
}
}
static inline Field projectForce(Field &P) { return Ta(P); }
static inline Field projectForce(Field &P) {
Field ret(P.Grid());
Group::taProj(P, ret);
return ret;
}
static inline void update_field(Field& P, Field& U, double ep){
//static std::chrono::duration<double> diff;
@ -137,14 +140,15 @@ public:
autoView(P_v,P,AcceleratorRead);
accelerator_for(ss, P.Grid()->oSites(),1,{
for (int mu = 0; mu < Nd; mu++) {
U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
}
});
//auto end = std::chrono::high_resolution_clock::now();
// diff += end - start;
// std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
}
static inline RealD FieldSquareNorm(Field& U){
LatticeComplex Hloc(U.Grid());
Hloc = Zero();
@ -157,7 +161,7 @@ public:
}
static inline void Project(Field &U) {
ProjectSUn(U);
Group::ProjectOnSpecialGroup(U);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
@ -171,6 +175,7 @@ public:
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::ColdConfiguration(pRNG, U);
}
};
@ -178,10 +183,17 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
NAMESPACE_END(Grid);
#endif // GRID_GAUGE_IMPL_TYPES_H

View File

@ -176,7 +176,7 @@ public:
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline void setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }
};
@ -193,6 +193,11 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
NAMESPACE_END(Grid);
#endif

View File

@ -43,7 +43,7 @@ public:
private:
RealD c_plaq;
RealD c_rect;
typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
public:
PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
@ -79,27 +79,18 @@ public:
GridBase *grid = Umu.Grid();
std::vector<GaugeLinkField> U (Nd,grid);
std::vector<GaugeLinkField> U2(Nd,grid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
}
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
GaugeLinkField dSdU_mu(grid);
GaugeLinkField staple(grid);
for (int mu=0; mu < Nd; mu++){
// Staple in direction mu
WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
dSdU_mu = Ta(U[mu]*staple)*factor_p;
WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}

View File

@ -42,9 +42,13 @@ template <class Gimpl>
class WilsonGaugeAction : public Action<typename Gimpl::GaugeField> {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef GaugeImplParams ImplParams;
ImplParams Params;
/////////////////////////// constructors
explicit WilsonGaugeAction(RealD beta_):beta(beta_){};
explicit WilsonGaugeAction(RealD beta_,
const ImplParams &p = ImplParams()
):beta(beta_),Params(p){};
virtual std::string action_name() {return "WilsonGaugeAction";}
@ -56,14 +60,53 @@ public:
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG){}; // noop as no pseudoferms
// Umu<->U maximally confusing
virtual void boundary(const GaugeField &Umu, GaugeField &Ub){
typedef typename Simd::scalar_type scalar_type;
assert(Params.boundary_phases.size() == Nd);
GridBase *GaugeGrid=Umu.Grid();
GaugeLinkField U(GaugeGrid);
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) {
////////// boundary phase /////////////
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
std::cout<< GridLogIterative << "[WilsonGaugeAction] boundary "<<mu<<" "<<phase<< std::endl;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
tmp = where(coor == Lmu, phase * U, U);
PokeIndex<LorentzIndex>(Ub, tmp, mu);
// PokeIndex<LorentzIndex>(Ub, U, mu);
// PokeIndex<LorentzIndex>(Umu, tmp, mu);
}
};
virtual RealD S(const GaugeField &U) {
RealD plaq = WilsonLoops<Gimpl>::avgPlaquette(U);
RealD vol = U.Grid()->gSites();
GaugeField Ub(U.Grid());
this->boundary(U,Ub);
static RealD lastG=0.;
RealD plaq = WilsonLoops<Gimpl>::avgPlaquette(Ub);
RealD vol = Ub.Grid()->gSites();
RealD action = beta * (1.0 - plaq) * (Nd * (Nd - 1.0)) * vol * 0.5;
std::cout << GridLogMessage << "[WilsonGaugeAction] dH: " << action-lastG << std::endl;
RealD plaq_o = WilsonLoops<Gimpl>::avgPlaquette(U);
RealD action_o = beta * (1.0 - plaq_o) * (Nd * (Nd - 1.0)) * vol * 0.5;
std::cout << GridLogMessage << "[WilsonGaugeAction] U: " << action_o <<" Ub: "<< action << std::endl;
lastG=action;
return action;
};
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
GaugeField Ub(U.Grid());
this->boundary(U,Ub);
// not optimal implementation FIXME
// extend Ta to include Lorentz indexes
@ -73,10 +116,9 @@ public:
GaugeLinkField dSdU_mu(U.Grid());
for (int mu = 0; mu < Nd; mu++) {
Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = PeekIndex<LorentzIndex>(Ub, mu);
// Staple in direction mu
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
WilsonLoops<Gimpl>::Staple(dSdU_mu, Ub, mu);
dSdU_mu = Ta(Umu * dSdU_mu) * factor;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);

View File

@ -178,7 +178,10 @@ NAMESPACE_BEGIN(Grid);
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
MdagMLinearOperator<AbstractEOFAFermion<Impl> ,FermionField> MdagML(Lop);
MdagMLinearOperator<AbstractEOFAFermion<Impl> ,FermionField> MdagMR(Rop);
// ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
ChronoForecast<MdagMLinearOperator<AbstractEOFAFermion<Impl>, FermionField> , FermionField> Forecast;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
@ -198,7 +201,7 @@ NAMESPACE_BEGIN(Grid);
heatbathRefreshShiftCoefficients(0, -gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
CG_soln = Forecast(MdagML, Forecast_src, prev_solns);
SolverHBL(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
@ -225,7 +228,7 @@ NAMESPACE_BEGIN(Grid);
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
CG_soln = Forecast(MdagMR, Forecast_src, prev_solns);
SolverHBR(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {

View File

@ -1,6 +1,6 @@
#pragma once
#define CPS_MD_TIME
#undef CPS_MD_TIME
#ifdef CPS_MD_TIME
#define HMC_MOMENTUM_DENOMINATOR (2.0)

View File

@ -121,12 +121,19 @@ public:
template <class SmearingPolicy>
void Run(SmearingPolicy &S) {
Runner(S);
TrivialMetric<typename Implementation::Field> Mtr;
Runner(S,Mtr);
}
template <class SmearingPolicy, class Metric>
void Run(SmearingPolicy &S, Metric &Mtr) {
Runner(S,Mtr);
}
void Run(){
NoSmearing<Implementation> S;
Runner(S);
TrivialMetric<typename Implementation::Field> Mtr;
Runner(S,Mtr);
}
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
@ -176,15 +183,15 @@ public:
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
template <class SmearingPolicy, class Metric>
void Runner(SmearingPolicy &Smearing, Metric &Mtr) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing,Mtr);
// Sets the momentum filter
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
@ -225,6 +232,18 @@ template <class RepresentationsPolicy,
using GenericHMCRunnerHirep =
HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
// sp2n
template <template <typename, typename, typename> class Integrator>
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
template <class RepresentationsPolicy,
template <typename, typename, typename> class Integrator>
using GenericSpHMCRunnerHirep =
HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
template <class Implementation, class RepresentationsPolicy,
template <typename, typename, typename> class Integrator>
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;

View File

@ -55,6 +55,8 @@ struct HMCparameters: Serializable {
Integer, NoMetropolisUntil,
bool, PerformRandomShift, /* @brief Randomly shift the gauge configuration at the start of a trajectory */
std::string, StartingType,
Integer, SW,
RealD, Kappa,
IntegratorParameters, MD)
HMCparameters() {
@ -110,6 +112,8 @@ private:
IntegratorType &TheIntegrator;
ObsListType Observables;
int traj_num;
/////////////////////////////////////////////////////////
// Metropolis step
/////////////////////////////////////////////////////////
@ -200,14 +204,14 @@ private:
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
TheIntegrator.integrate(U);
TheIntegrator.integrate(U,traj_num);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute final action";
std::cout << GridLogMessage << "Compute final action" <<std::endl;
RealD H1 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
@ -242,7 +246,7 @@ public:
HybridMonteCarlo(HMCparameters _Pams, IntegratorType &_Int,
GridSerialRNG &_sRNG, GridParallelRNG &_pRNG,
ObsListType _Obs, Field &_U)
: Params(_Pams), TheIntegrator(_Int), sRNG(_sRNG), pRNG(_pRNG), Observables(_Obs), Ucur(_U) {}
: Params(_Pams), TheIntegrator(_Int), sRNG(_sRNG), pRNG(_pRNG), Observables(_Obs), Ucur(_U),traj_num(0) {}
~HybridMonteCarlo(){};
void evolve(void) {
@ -257,9 +261,10 @@ public:
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
traj_num=traj;
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}

View File

@ -9,6 +9,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <cossu@post.kek.jp>
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,6 +34,7 @@ directory
#define INTEGRATOR_INCLUDED
#include <memory>
#include <Grid/parallelIO/NerscIO.h>
NAMESPACE_BEGIN(Grid);
@ -41,10 +43,19 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(IntegratorParameters,
std::string, name, // name of the integrator
unsigned int, MDsteps, // number of outer steps
RealD, RMHMCTol,
RealD, RMHMCCGTol,
RealD, lambda0,
RealD, lambda1,
RealD, lambda2,
RealD, trajL) // trajectory length
IntegratorParameters(int MDsteps_ = 10, RealD trajL_ = 1.0)
: MDsteps(MDsteps_),
lambda0(0.1931833275037836),
lambda1(0.1931833275037836),
lambda2(0.1931833275037836),
RMHMCTol(1e-8),RMHMCCGTol(1e-8),
trajL(trajL_) {};
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
@ -75,11 +86,14 @@ public:
double t_U; // Track time passing on each level and for U and for P
std::vector<double> t_P;
MomentaField P;
// MomentaField P;
GeneralisedMomenta<FieldImplementation > P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
RealD Saux,Smom,Sg;
//Filters allow the user to manipulate the conjugate momentum, for example to freeze links in DDHMC
//It is applied whenever the momentum is updated / refreshed
//The default filter does nothing
@ -96,7 +110,16 @@ public:
void update_P(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P(P, U, level, ep);
update_P(P.Mom, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
void update_P2(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P2(P.Mom, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
@ -119,62 +142,174 @@ public:
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Smearer, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
auto name = as[level].actions.at(a)->action_name();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<< std::endl;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] dt : " << ep <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void update_P2(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
std::cout << GridLogIntegrator << "U before update_P2: " << std::sqrt(norm2(U)) << std::endl;
// Generalised momenta
// Derivative of the kinetic term must be computed before
// Mom is the momenta and gets updated by the
// actions derivatives
MomentaField MomDer(P.Mom.Grid());
P.M.ImportGauge(U);
P.DerivativeU(P.Mom, MomDer);
std::cout << GridLogIntegrator << "MomDer update_P2: " << std::sqrt(norm2(MomDer)) << std::endl;
// Mom -= MomDer * ep;
Mom -= MomDer * ep * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "Mom update_P2: " << std::sqrt(norm2(Mom)) << std::endl;
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5 );
P.AuxiliaryFieldsDerivative(MomDer);
std::cout << GridLogIntegrator << "MomDer(Aux) update_P2: " << std::sqrt(norm2(Mom)) << std::endl;
// Mom -= MomDer * ep;
Mom -= MomDer * ep * HMC_MOMENTUM_DENOMINATOR;
P.update_auxiliary_momenta(ep*0.5 );
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void implicit_update_P(Field& U, int level, double ep, double ep1, bool intermediate = false) {
t_P[level] += ep;
double ep2= ep-ep1;
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
std::cout << GridLogIntegrator << "U before implicit_update_P: " << std::sqrt(norm2(U)) << std::endl;
// Fundamental updates, include smearing
MomentaField Msum(P.Mom.Grid());
Msum = Zero();
for (int a = 0; a < as[level].actions.size(); ++a) {
// Compute the force terms for the lagrangian part
// We need to compute the derivative of the actions
// only once
Field force(U.Grid());
conformable(U.Grid(), P.Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| site average: " << force_abs
<< std::endl;
Msum += force;
}
MomentaField NewMom = P.Mom;
MomentaField OldMom = P.Mom;
double threshold = Params.RMHMCTol;
P.M.ImportGauge(U);
MomentaField MomDer(P.Mom.Grid());
MomentaField MomDer1(P.Mom.Grid());
MomentaField AuxDer(P.Mom.Grid());
MomDer1 = Zero();
MomentaField diff(P.Mom.Grid());
double factor = 2.0;
if (intermediate){
P.DerivativeU(P.Mom, MomDer1);
factor = 1.0;
}
// std::cout << GridLogIntegrator << "MomDer1 implicit_update_P: " << std::sqrt(norm2(MomDer1)) << std::endl;
// Auxiliary fields
P.update_auxiliary_momenta(ep1);
P.AuxiliaryFieldsDerivative(AuxDer);
Msum += AuxDer;
// Here run recursively
int counter = 1;
RealD RelativeError;
do {
std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl;
// Compute the derivative of the kinetic term
// with respect to the gauge field
P.DerivativeU(NewMom, MomDer);
Real force_abs = std::sqrt(norm2(MomDer) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs
<< std::endl;
// NewMom = P.Mom - ep* 0.5 * HMC_MOMENTUM_DENOMINATOR * (2.0*Msum + factor*MomDer + MomDer1);// simplify
NewMom = P.Mom - HMC_MOMENTUM_DENOMINATOR * (ep*Msum + ep1* factor*MomDer + ep2* MomDer1);// simplify
diff = NewMom - OldMom;
counter++;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom));
std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl;
OldMom = NewMom;
} while (RelativeError > threshold);
P.Mom = NewMom;
std::cout << GridLogIntegrator << "NewMom implicit_update_P: " << std::sqrt(norm2(NewMom)) << std::endl;
// update the auxiliary fields momenta
P.update_auxiliary_momenta(ep2);
}
void implicit_update_P(Field& U, int level, double ep, bool intermediate = false) {
implicit_update_P( U, level, ep, ep*0.5, intermediate );
}
void update_U(Field& U, double ep)
{
update_U(P, U, ep);
update_U(P.Mom, U, ep);
t_U += ep;
int fl = levels - 1;
@ -183,12 +318,8 @@ public:
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(MomFiltered, U, ep);
FieldImplementation::update_field(Mom, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
@ -197,18 +328,74 @@ public:
Representations.update(U); // void functions if fundamental representation
}
void implicit_update_U(Field&U, double ep, double ep1 ){
double ep2=ep-ep1;
t_U += ep;
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
std::cout << GridLogIntegrator << "U before implicit_update_U: " << std::sqrt(norm2(U)) << std::endl;
MomentaField Mom1(P.Mom.Grid());
MomentaField Mom2(P.Mom.Grid());
RealD RelativeError;
Field diff(U.Grid());
Real threshold = Params.RMHMCTol;
int counter = 1;
int MaxCounter = 100;
Field OldU = U;
Field NewU = U;
P.M.ImportGauge(U);
P.DerivativeP(Mom1); // first term in the derivative
std::cout << GridLogIntegrator << "implicit_update_U: Mom1: " << std::sqrt(norm2(Mom1)) << std::endl;
P.update_auxiliary_fields(ep1);
MomentaField sum=Mom1;
do {
std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl;
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
std::cout << GridLogIntegrator << "implicit_update_U: Mom1: " << std::sqrt(norm2(Mom1)) << std::endl;
sum = (Mom1*ep1 + Mom2*ep2);
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
auto Pmu = PeekIndex<LorentzIndex>(sum, mu);
Umu = expMat(Pmu, 1, 12) * Umu;
PokeIndex<LorentzIndex>(NewU, ProjectOnGroup(Umu), mu);
}
diff = NewU - OldU;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU));
std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl;
P.M.ImportGauge(NewU);
OldU = NewU; // some redundancy to be eliminated
counter++;
} while (RelativeError > threshold && counter < MaxCounter);
U = NewU;
std::cout << GridLogIntegrator << "NewU implicit_update_U: " << std::sqrt(norm2(U)) << std::endl;
P.update_auxiliary_fields(ep2);
}
virtual void step(Field& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<MomentaField>& M)
: Params(Par),
as(Aset),
P(grid),
P(grid, M),
levels(Aset.size()),
Smearer(Sm),
Representations(grid)
Representations(grid),
Saux(0.),Smom(0.),Sg(0.)
{
t_P.resize(levels, 0.0);
t_U = 0.0;
@ -324,7 +511,8 @@ public:
void reverse_momenta()
{
P *= -1.0;
P.Mom *= -1.0;
P.AuxMom *= -1.0;
}
// to be used by the actionlevel class to iterate
@ -343,11 +531,14 @@ public:
// Initialization of momenta and actions
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
assert(P.Mom.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG);
// FieldImplementation::generate_momenta(P.Mom, sRNG, pRNG);
P.M.ImportGauge(U);
P.MomentaDistribution(sRNG,pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
@ -402,9 +593,22 @@ public:
std::cout << GridLogIntegrator << "Integrator action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD Hterm;
// static RealD Saux=0.,Smom=0.,Sg=0.;
RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
std::cout << GridLogMessage << "S:FieldSquareNorm H_p = " << H << "\n";
std::cout << GridLogMessage << "S:dSField = " << H-Smom << "\n";
Smom=H;
P.M.ImportGauge(U);
RealD Hterm = - P.MomentaAction();
std::cout << GridLogMessage << "S:Momentum action H_p = " << Hterm << "\n";
std::cout << GridLogMessage << "S:dSMom = " << Hterm-Saux << "\n";
Saux=Hterm;
H = Hterm;
RealD Hterm;
// Actions
for (int level = 0; level < as.size(); ++level) {
@ -446,9 +650,18 @@ public:
std::cout << GridLogIntegrator << "Integrator initial action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
RealD Hterm;
// RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD Hterm;
RealD H = - FieldImplementation::FieldSquareNorm(P.Mom)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
std::cout << GridLogMessage << "S:FieldSquareNorm H_p = " << H << "\n";
std::cout << GridLogMessage << "S:dSField = " << H-Smom << "\n";
Smom=H;
P.M.ImportGauge(U);
RealD Hterm = - P.MomentaAction();
std::cout << GridLogMessage << "S:Momentum action H_p = " << Hterm << "\n";
std::cout << GridLogMessage << "S:dSMom = " << Hterm-Saux << "\n";
Saux=Hterm;
H = Hterm;
// Actions
for (int level = 0; level < as.size(); ++level) {
@ -471,7 +684,7 @@ public:
}
void integrate(Field& U)
void integrate(Field& U, int traj=-1 )
{
// reset the clocks
t_U = 0;
@ -483,6 +696,12 @@ public:
int first_step = (stp == 0);
int last_step = (stp == Params.MDsteps - 1);
this->step(U, 0, first_step, last_step);
if (traj>=0){
std::string file("./config."+std::to_string(traj)+"_"+std::to_string(stp+1) );
int precision32 = 0;
int tworow = 0;
NerscIO::writeConfiguration(U,file,tworow,precision32);
}
}
// Check the clocks all match on all levels
@ -492,7 +711,6 @@ public:
}
FieldImplementation::Project(U);
// and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6);

View File

@ -102,8 +102,8 @@ public:
std::string integrator_name(){return "LeapFrog";}
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
@ -140,14 +140,14 @@ template <class FieldImplementation_, class SmearingPolicy, class Representation
class MinimumNorm2 : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy>
{
private:
const RealD lambda = 0.1931833275037836;
// const RealD lambda = 0.1931833275037836;
public:
typedef FieldImplementation_ FieldImplementation;
INHERIT_FIELD_TYPES(FieldImplementation);
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
std::string integrator_name(){return "MininumNorm2";}
@ -155,6 +155,11 @@ public:
// level : current level
// fl : final level
// eps : current step size
assert(level<3);
RealD lambda= this->Params.lambda0;
if (level>0) lambda= this->Params.lambda1;
if (level>1) lambda= this->Params.lambda2;
std::cout << GridLogMessage << "level: "<<level<< "lambda: "<<lambda<<std::endl;
int fl = this->as.size() - 1;
@ -210,9 +215,9 @@ public:
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
ForceGradient(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm){};
grid, Par, Aset, Sm,M){};
std::string integrator_name(){return "ForceGradient";}
@ -275,6 +280,255 @@ public:
}
};
////////////////////////////////
// Riemannian Manifold HMC
// Girolami et al
////////////////////////////////
// correct
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
public:
typedef ImplicitLeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
Algorithm;
INHERIT_FIELD_TYPES(FieldImplementation);
// Riemannian manifold metric operator
// Hermitian operator Fisher
std::string integrator_name(){return "ImplicitLeapFrog";}
ImplicitLeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
// level : current level
// fl : final level
// eps : current step size
// Get current level step size
RealD eps = this->Params.trajL/this->Params.MDsteps;
for (int l = 0; l <= level; ++l) eps /= this->as[l].multiplier;
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) {
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, eps / 2.0);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, eps,eps/2.);
} else { // recursive function call
this->step(U, level + 1, first_step, last_step);
}
//int mm = last_step ? 1 : 2;
if (last_step){
this->update_P2(U, level, eps / 2.0);
} else {
this->implicit_update_P(U, level, eps, true);// works intermediate step
}
}
}
};
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitMinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
// const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitMininumNorm2";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
// assert(Params.lambda.size()>level);
// RealD lambda= Params.lambda[level];
assert(level<3);
RealD lambda= this->Params.lambda0;
if (level>0) lambda= this->Params.lambda1;
if (level>1) lambda= this->Params.lambda2;
std::cout << GridLogMessage << "level: "<<level<< "lambda: "<<lambda<<std::endl;
if(level<fl){
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->update_P(U, level, lambda * eps);
}
this->step(U, level + 1, first_step, 0);
this->update_P(U, level, (1.0 - 2.0 * lambda) * eps);
this->step(U, level + 1, 0, last_step);
int mm = (last_step) ? 1 : 2;
this->update_P(U, level, lambda * eps * mm);
}
}
else
{ // last level
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, lambda * eps);
}
this->implicit_update_U(U, 0.5 * eps,lambda*eps);
this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps, true);
this->implicit_update_U(U, 0.5 * eps, (0.5-lambda)*eps);
if (last_step) {
this->update_P2(U, level, eps * lambda);
} else {
this->implicit_update_P(U, level, lambda * eps*2.0, true);
}
}
}
}
};
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitCampostrini : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
// const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitCampostrini(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitCampostrini";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
// assert(Params.lambda.size()>level);
// RealD lambda= Params.lambda[level];
assert(level<3);
RealD lambda= this->Params.lambda0;
if (level>0) lambda= this->Params.lambda1;
if (level>1) lambda= this->Params.lambda2;
std::cout << GridLogMessage << "level: "<<level<< "lambda: "<<lambda<<std::endl;
RealD sigma=pow(2.0,1./3.);
if(level<fl){
//Still Omelyan. Needs to change step() to accept variable stepsize
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->update_P(U, level, lambda * eps);
}
this->step(U, level + 1, first_step, 0);
this->update_P(U, level, (1.0 - 2.0 * lambda) * eps);
this->step(U, level + 1, 0, last_step);
int mm = (last_step) ? 1 : 2;
this->update_P(U, level, lambda * eps * mm);
}
}
else
{ // last level
RealD dt = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) dt /= 2.0 * this->as[l].multiplier;
RealD epsilon = dt/(2.0 - sigma);
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
// initial half step
if (first_step) { this->implicit_update_P(U, level, epsilon*0.5); }
this->implicit_update_U(U, epsilon,epsilon*0.5);
this->implicit_update_P(U, level, (1.0 - sigma) * epsilon *0.5, epsilon*0.5, true);
this->implicit_update_U(U, -epsilon*sigma, -epsilon*sigma*0.5);
this->implicit_update_P(U, level, (1.0 - sigma) * epsilon *0.5, -epsilon*sigma*0.5, true);
this->implicit_update_U(U, epsilon,epsilon*0.5);
if (last_step) { this->update_P2(U, level, epsilon*0.5 ); }
else
this->implicit_update_P(U, level, epsilon,epsilon*0.5);
}
}
}
};
NAMESPACE_END(Grid);
#endif // INTEGRATOR_INCLUDED

View File

@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
* Empty since HMC updates already the fundamental representation
*/
template <int ncolour>
template <int ncolour, class group_name>
class FundamentalRep {
public:
static const int Dimension = ncolour;
@ -21,7 +21,7 @@ public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
typedef LatticeGaugeField LatticeField;
explicit FundamentalRep(GridBase* grid) {} //do nothing
@ -45,7 +45,8 @@ public:
typedef FundamentalRep<Nc> FundamentalRepresentation;
typedef FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
typedef FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
NAMESPACE_END(Grid);

View File

@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
* in the SUnTwoIndex.h file
*/
template <int ncolour, TwoIndexSymmetry S>
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
class TwoIndexRep {
public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
static const int Dimension = ncolour * (ncolour + S) / 2;
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
static const bool isFundamental = false;
LatticeField U;
@ -43,10 +43,10 @@ public:
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++)
SU_TwoIndex<ncolour, S>::base(a, eij[a]);
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
for (int mu = 0; mu < Nd; mu++) {
auto Uin_mu = peekLorentz(Uin, mu);
@ -71,7 +71,7 @@ public:
out_mu = Zero();
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
pokeLorentz(out, out_mu, mu);
@ -80,20 +80,23 @@ public:
}
private:
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) const {
SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
}
void FundamentalLieAlgebraMatrix(
typename SU<ncolour>::LatticeAlgebraVector &h,
typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
}
};
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
NAMESPACE_END(Grid);

View File

@ -37,13 +37,14 @@ NAMESPACE_BEGIN(Grid);
// Make these members of an Impl class for BC's.
namespace PeriodicBC {
//Out(x) = Link(x)*field(x+mu)
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
{
return Link*Cshift(field,mu,1);// moves towards negative mu
}
//Out(x) = Link^dag(x-mu)*field(x-mu)
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
@ -52,19 +53,19 @@ namespace PeriodicBC {
tmp = adj(Link)*field;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
//Out(x) = Link^dag(x-mu)
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
{
return Cshift(adj(Link), mu, -1);
}
//Out(x) = Link(x)
template<class gauge> Lattice<gauge>
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
{
return Link;
}
//Link(x) = Link(x+mu)
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{

View File

@ -54,7 +54,361 @@ struct LaplacianParams : Serializable {
precision(precision){};
};
#define LEG_LOAD(Dir) \
SE = st.GetEntry(ptype, Dir, ss); \
if (SE->_is_local ) { \
int perm= SE->_permute; \
chi = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise();
const std::vector<int> directions4D ({Xdir,Ydir,Zdir,Tdir,Xdir,Ydir,Zdir,Tdir});
const std::vector<int> displacements4D({1,1,1,1,-1,-1,-1,-1});
template<class Gimpl,class Field> class CovariantAdjointLaplacianStencil : public SparseMatrixBase<Field>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
// RealD kappa;
typedef typename Field::vector_object siteObject;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nc> >, Nds>;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef CartesianStencil<siteObject, siteObject, DefaultImplParams> StencilImpl;
GridBase *grid;
StencilImpl Stencil;
SimpleCompressor<siteObject> Compressor;
DoubledGaugeField Uds;
CovariantAdjointLaplacianStencil( GridBase *_grid)
: grid(_grid),
Stencil (grid,8,Even,directions4D,displacements4D),
Uds(grid){}
CovariantAdjointLaplacianStencil(GaugeField &Umu)
:
grid(Umu.Grid()),
Stencil (grid,8,Even,directions4D,displacements4D),
Uds(grid)
{ GaugeImport(Umu); }
void GaugeImport (const GaugeField &Umu)
{
assert(grid == Umu.Grid());
for (int mu = 0; mu < Nd; mu++) {
auto U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Uds, U, mu );
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
}
};
virtual GridBase *Grid(void) { return grid; };
//broken
#if 0
virtual void MDeriv(const Field &_left, Field &_right,Field &_der, int mu)
{
///////////////////////////////////////////////
// Halo exchange for this geometry of stencil
///////////////////////////////////////////////
Stencil.HaloExchange(_lef, Compressor);
///////////////////////////////////
// Arithmetic expressions
///////////////////////////////////
autoView( st , Stencil , AcceleratorRead);
auto buf = st.CommBuf();
autoView( in , _left , AcceleratorRead);
autoView( right , _right , AcceleratorRead);
autoView( der , _der , AcceleratorWrite);
autoView( U , Uds , AcceleratorRead);
typedef typename Field::vector_object vobj;
typedef decltype(coalescedRead(left[0])) calcObj;
typedef decltype(coalescedRead(U[0](0))) calcLink;
const int Nsimd = vobj::Nsimd();
const uint64_t NN = grid->oSites();
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj phi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
res = coalescedRead(def[ss]);
phi = coalescedRead(right[ss]);
#define LEG_LOAD_MULT_LINK(leg,polarisation) \
UU = coalescedRead(U[ss](polarisation)); \
Udag = adj(UU); \
LEG_LOAD(leg); \
mult(&Utmp(), &UU, &chi()); \
Utmp2 = adj(Utmp); \
mult(&Utmp(), &UU, &Utmp2()); \
Utmp2 = adj(Utmp); \
mult(&Uchi(), &phi(), &Utmp2()); \
res = res + Uchi;
LEG_LOAD_MULT_LINK(0,Xp);
LEG_LOAD_MULT_LINK(1,Yp);
LEG_LOAD_MULT_LINK(2,Zp);
LEG_LOAD_MULT_LINK(3,Tp);
coalescedWrite(der[ss], res,lane);
});
};
#endif
virtual void Morig(const Field &_in, Field &_out)
{
///////////////////////////////////////////////
// Halo exchange for this geometry of stencil
///////////////////////////////////////////////
Stencil.HaloExchange(_in, Compressor);
///////////////////////////////////
// Arithmetic expressions
///////////////////////////////////
// auto st = Stencil.View(AcceleratorRead);
autoView( st , Stencil , AcceleratorRead);
auto buf = st.CommBuf();
autoView( in , _in , AcceleratorRead);
autoView( out , _out , AcceleratorWrite);
autoView( U , Uds , AcceleratorRead);
typedef typename Field::vector_object vobj;
typedef decltype(coalescedRead(in[0])) calcObj;
typedef decltype(coalescedRead(U[0](0))) calcLink;
const int Nsimd = vobj::Nsimd();
const uint64_t NN = grid->oSites();
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
res = coalescedRead(in[ss])*(-8.0);
#define LEG_LOAD_MULT(leg,polarisation) \
UU = coalescedRead(U[ss](polarisation)); \
Udag = adj(UU); \
LEG_LOAD(leg); \
mult(&Utmp(), &UU, &chi()); \
Utmp2 = adj(Utmp); \
mult(&Utmp(), &UU, &Utmp2()); \
Uchi = adj(Utmp); \
res = res + Uchi;
LEG_LOAD_MULT(0,Xp);
LEG_LOAD_MULT(1,Yp);
LEG_LOAD_MULT(2,Zp);
LEG_LOAD_MULT(3,Tp);
LEG_LOAD_MULT(4,Xm);
LEG_LOAD_MULT(5,Ym);
LEG_LOAD_MULT(6,Zm);
LEG_LOAD_MULT(7,Tm);
coalescedWrite(out[ss], res,lane);
});
};
virtual void Mnew (const Field &_in, Field &_out)
{
///////////////////////////////////////////////
// Halo exchange for this geometry of stencil
///////////////////////////////////////////////
// Stencil.HaloExchange(_in, Compressor);
std::vector<std::vector<CommsRequest_t> > requests;
Stencil.Prepare();
{
GRID_TRACE("Laplace Gather");
Stencil.HaloGather(_in,Compressor);
}
tracePush("Laplace Communication");
Stencil.CommunicateBegin(requests);
{
GRID_TRACE("MergeSHM");
Stencil.CommsMergeSHM(Compressor);
}
///////////////////////////////////
// Arithmetic expressions
///////////////////////////////////
// auto st = Stencil.View(AcceleratorRead);
autoView( st , Stencil , AcceleratorRead);
auto buf = st.CommBuf();
autoView( in , _in , AcceleratorRead);
autoView( out , _out , AcceleratorWrite);
autoView( U , Uds , AcceleratorRead);
typedef typename Field::vector_object vobj;
typedef decltype(coalescedRead(in[0])) calcObj;
typedef decltype(coalescedRead(U[0](0))) calcLink;
const int Nsimd = vobj::Nsimd();
const uint64_t NN = grid->oSites();
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
res = coalescedRead(in[ss])*(-8.0);
SE = st.GetEntry(ptype, 0, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(0,Xp);
}
SE = st.GetEntry(ptype, 1, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(1,Yp);
}
SE = st.GetEntry(ptype, 2, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(2,Zp);
}
SE = st.GetEntry(ptype, 3, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(3,Tp);
}
SE = st.GetEntry(ptype, 4, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(4,Xm);
}
SE = st.GetEntry(ptype, 5, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(5,Ym);
}
SE = st.GetEntry(ptype, 6, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(6,Zm);
}
SE = st.GetEntry(ptype, 7, ss);
if (SE->_is_local ) {
LEG_LOAD_MULT(7,Tm);
}
coalescedWrite(out[ss], res,lane);
});
Stencil.CommunicateComplete(requests);
tracePop("Communication");
{
GRID_TRACE("Merge");
Stencil.CommsMerge(Compressor);
}
accelerator_for( ss, NN, Nsimd, {
StencilEntry *SE;
const int lane=acceleratorSIMTlane(Nsimd);
calcObj chi;
calcObj res;
calcObj Uchi;
calcObj Utmp;
calcObj Utmp2;
calcLink UU;
calcLink Udag;
int ptype;
// res = coalescedRead(in[ss])*(-8.0);
res = coalescedRead(out[ss]);
SE = st.GetEntry(ptype, 0, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(0,Xp);
}
SE = st.GetEntry(ptype, 1, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(1,Yp);
}
SE = st.GetEntry(ptype, 2, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(2,Zp);
}
SE = st.GetEntry(ptype, 3, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(3,Tp);
}
SE = st.GetEntry(ptype, 4, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(4,Xm);
}
SE = st.GetEntry(ptype, 5, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(5,Ym);
}
SE = st.GetEntry(ptype, 6, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(6,Zm);
}
SE = st.GetEntry(ptype, 7, ss);
if ((SE->_is_local )==0){
LEG_LOAD_MULT(7,Tm);
}
coalescedWrite(out[ss], res,lane);
});
};
virtual void M(const Field &in, Field &out) {Mnew(in,out);};
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
};
#undef LEG_LOAD_MULT
#undef LEG_LOAD_MULT_LINK
#undef LEG_LOAD
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
@ -76,29 +430,40 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
LaplacianParams param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerInvHalf;
//template<class Gimpl,class Field> class CovariantAdjointLaplacianStencil : public SparseMatrixBase<Field>
CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField> LapStencil;
public:
INHERIT_GIMPL_TYPES(Impl);
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
: U(Nd, grid), Solver(S), param(p), kappa(k){
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0, bool if_remez=true)
: U(Nd, grid), Solver(S), param(p), kappa(k)
,LapStencil(grid){
AlgRemez remez(param.lo,param.hi,param.precision);
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
if(if_remez){
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerInvHalf.Init(remez,param.tolerance,true);
}
this->triv=0;
};
LaplacianAdjointField(){this->triv=0; printf("triv=%d\n",this->Trivial());}
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void MdirAll(const GaugeField&, std::vector<GaugeField> &){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
RealD total=0.;
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
total += norm2(U[mu]);
}
LapStencil.GaugeImport (_U);
std::cout << GridLogDebug <<"ImportGauge:norm2(U _U) = "<<total<<std::endl;
}
void M(const GaugeField& in, GaugeField& out) {
@ -106,10 +471,12 @@ public:
// test
//GaugeField herm = in + adj(in);
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
// std::cout << GridLogDebug <<"M:Kappa = "<<kappa<<std::endl;
GaugeLinkField sum(in.Grid());
#if 0
GaugeLinkField tmp(in.Grid());
GaugeLinkField tmp2(in.Grid());
GaugeLinkField sum(in.Grid());
for (int nu = 0; nu < Nd; nu++) {
sum = Zero();
@ -123,10 +490,22 @@ public:
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
#else
for (int nu = 0; nu < Nd; nu++) {
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out.Grid());
LapStencil.M(in_nu,sum);
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
#endif
// std::cout << GridLogDebug <<"M:norm2(out) = "<<norm2(out)<<std::endl;
}
void MDeriv(const GaugeField& in, GaugeField& der) {
// in is anti-hermitian
// std::cout << GridLogDebug <<"MDeriv:Kappa = "<<kappa<<std::endl;
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++){
@ -140,6 +519,7 @@ public:
// adjoint in the last multiplication
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
}
std::cout << GridLogDebug <<"MDeriv: Kappa= "<< kappa << " norm2(der) = "<<norm2(der)<<std::endl;
}
// separating this temporarily
@ -159,11 +539,22 @@ public:
}
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
std::cout << GridLogDebug <<"MDeriv: Kappa= "<< kappa << " norm2(der) = "<<norm2(der)<<std::endl;
}
void Minv(const GaugeField& in, GaugeField& inverted){
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
Solver(HermOp, in, inverted);
std::cout << GridLogDebug <<"Minv:norm2(inverted) = "<<norm2(inverted)<<std::endl;
}
void MinvDeriv(const GaugeField& in, GaugeField& der) {
GaugeField X(in.Grid());
Minv(in,X);
MDeriv(X,der);
der *=-1.0;
std::cout << GridLogDebug <<"MinvDeriv:norm2(der) = "<<norm2(der)<<std::endl;
}
void MSquareRoot(GaugeField& P){
@ -172,6 +563,7 @@ public:
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
msCG(HermOp,P,Gp);
P = Gp;
std::cout << GridLogDebug <<"MSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}
void MInvSquareRoot(GaugeField& P){
@ -180,6 +572,7 @@ public:
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
msCG(HermOp,P,Gp);
P = Gp;
std::cout << GridLogDebug <<"MInvSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}

View File

@ -0,0 +1,403 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacianRat.h
Copyright (C) 2021
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#define MIXED_CG
//enable/disable push_back
#undef USE_CHRONO
//#include <roctracer/roctx.h>
NAMESPACE_BEGIN(Grid);
struct LaplacianRatParams {
RealD offset;
int order;
std::vector<RealD> a0;
std::vector<RealD> a1;
std::vector<RealD> b0;
std::vector<RealD> b1;
RealD b2; //for debugging
int MaxIter;
RealD tolerance;
int precision;
// constructor
LaplacianRatParams(int ord = 1,
int maxit = 1000,
RealD tol = 1.0e-8,
int precision = 64)
: offset(1.), order(ord),b2(1.),
MaxIter(maxit),
tolerance(tol),
precision(precision){
a0.resize(ord,0.);
a1.resize(ord,0.);
b0.resize(ord,0.);
b1.resize(ord,0.);
};
};
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
template <class Impl, class ImplF>
class LaplacianAdjointRat: public Metric<typename Impl::Field> {
OperatorFunction<typename Impl::Field> &Solver;
LaplacianRatParams Gparam;
LaplacianRatParams Mparam;
GridBase *grid;
GridBase *grid_f;
CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField> LapStencil;
CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField> LapStencilF;
public:
INHERIT_GIMPL_TYPES(Impl);
// typedef typename GImpl::LinkField GaugeLinkField; \
// typedef typename GImpl::Field GaugeField;
typedef typename ImplF::Field GaugeFieldF;
typedef typename ImplF::LinkField GaugeLinkFieldF; \
GaugeField Usav;
GaugeFieldF UsavF;
std::vector< std::vector<GaugeLinkField> > prev_solnsM;
std::vector< std::vector<GaugeLinkField> > prev_solnsMinv;
std::vector< std::vector<GaugeLinkField> > prev_solnsMDeriv;
std::vector< std::vector<GaugeLinkField> > prev_solnsMinvDeriv;
LaplacianAdjointRat(GridBase* _grid, GridBase* _grid_f, OperatorFunction<GaugeField>& S, LaplacianRatParams& gpar, LaplacianRatParams& mpar)
: grid(_grid),grid_f(_grid_f), LapStencil(_grid), LapStencilF(_grid_f), U(Nd, _grid), Solver(S), Gparam(gpar), Mparam(mpar),Usav(_grid), UsavF(_grid_f),
prev_solnsM(4),prev_solnsMinv(4),prev_solnsMDeriv(4),prev_solnsMinvDeriv(4) {
// std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
this->triv=0;
};
LaplacianAdjointRat(){this->triv=0; printf("triv=%d\n",this->Trivial());}
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void MdirAll(const GaugeField&, std::vector<GaugeField> &){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
RealD total=0.;
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
total += norm2(U[mu]);
}
Usav = _U;
precisionChange(UsavF,Usav);
std::cout <<GridLogDebug << "ImportGauge:norm2(_U) = "<<" "<<total<<std::endl;
}
void MDerivLink(const GaugeLinkField& left, const GaugeLinkField& right,
GaugeField& der) {
std::cout<<GridLogMessage << "MDerivLink start "<< std::endl;
RealD factor = -1. / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(der.Grid());
der_mu = Zero();
// for (int nu = 0; nu < Nd; nu++) {
// GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
// GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
der_mu += U[mu] * Cshift(left, mu, 1) * adj(U[mu]) * right;
der_mu += U[mu] * Cshift(right, mu, 1) * adj(U[mu]) * left;
// }
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
// std::cout << GridLogDebug <<"MDerivLink: norm2(der) = "<<norm2(der)<<std::endl;
std::cout<<GridLogMessage << "MDerivLink end "<< std::endl;
}
void MDerivLink(const GaugeLinkField& left, const GaugeLinkField& right,
std::vector<GaugeLinkField> & der) {
// std::cout<<GridLogMessage << "MDerivLink "<< std::endl;
RealD factor = -1. / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(left.Grid());
der_mu = Zero();
der_mu += U[mu] * Cshift(left, mu, 1) * adj(U[mu]) * right;
der_mu += U[mu] * Cshift(right, mu, 1) * adj(U[mu]) * left;
// PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
der[mu] = -factor*der_mu;
// std::cout << GridLogDebug <<"MDerivLink: norm2(der) = "<<norm2(der[mu])<<std::endl;
}
// std::cout<<GridLogMessage << "MDerivLink end "<< std::endl;
}
void MDerivInt(LaplacianRatParams &par, const GaugeField& left, const GaugeField& right,
GaugeField& der , std::vector< std::vector<GaugeLinkField> >& prev_solns ) {
// get rid of this please
std::cout<<GridLogMessage << "LaplaceStart " <<std::endl;
RealD fac = - 1. / (double(4 * Nd)) ;
RealD coef=0.5;
LapStencil.GaugeImport(Usav);
LapStencilF.GaugeImport(UsavF);
for (int nu=0;nu<Nd;nu++){
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
GaugeLinkField LMinvMom(left.Grid());
GaugeLinkField GMom(left.Grid());
GaugeLinkField LMinvGMom(left.Grid());
GaugeLinkField AGMom(left.Grid());
GaugeLinkField MinvAGMom(left.Grid());
GaugeLinkField LMinvAGMom(left.Grid());
GaugeLinkField AMinvMom(left.Grid());
GaugeLinkField LMinvAMom(left.Grid());
GaugeLinkField temp(left.Grid());
GaugeLinkField temp2(left.Grid());
std::vector<GaugeLinkField> MinvMom(par.order,left.Grid());
GaugeLinkField MinvGMom(left.Grid());
GaugeLinkField Gtemp(left.Grid());
GaugeLinkField Gtemp2(left.Grid());
ConjugateGradient<GaugeLinkField> CG(par.tolerance,10000,false);
// ConjugateGradient<GaugeFieldF> CG_f(par.tolerance,10000,false);
LaplacianParams LapPar(0.0001, 1.0, 10000, 1e-8, 12, 64);
ChronoForecast< QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,GaugeLinkField>,GaugeLinkField> , GaugeLinkField> Forecast;
GMom = par.offset * right_nu;
for(int i =0;i<par.order;i++){
QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> QuadOp(LapStencil,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
#if USE_CHRONO
MinvMom[i] = Forecast(QuadOp, right_nu, prev_solns[nu]);
#endif
#ifndef MIXED_CG
CG(QuadOp,right_nu,MinvMom[i]);
#else
QuadLinearOperator<CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
// QuadLinearOperator<LaplacianAdjointField<ImplF>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],par.b1[i],par.b2);
MixedPrecisionConjugateGradient<GaugeLinkField,GaugeLinkFieldF> MixedCG(par.tolerance,10000,10000,grid_f,QuadOpF,QuadOp);
MixedCG.InnerTolerance=par.tolerance;
MixedCG(right_nu,MinvMom[i]);
#endif
#if USE_CHRONO
prev_solns[nu].push_back(MinvMom[i]);
#endif
GMom += par.a0[i]*MinvMom[i];
LapStencil.M(MinvMom[i],Gtemp2);
GMom += par.a1[i]*fac*Gtemp2;
}
for(int i =0;i<par.order;i++){
QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> QuadOp(LapStencil,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
MinvGMom = Forecast(QuadOp, GMom, prev_solns[nu]);
#ifndef MIXED_CG
CG(QuadOp,GMom,MinvGMom);
LapStencil.M(MinvGMom, Gtemp2); LMinvGMom=fac*Gtemp2;
CG(QuadOp,right_nu,MinvMom[i]);
#else
QuadLinearOperator<CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
// QuadLinearOperator<LaplacianAdjointField<ImplF>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],par.b1[i],par.b2);
MixedPrecisionConjugateGradient<GaugeLinkField,GaugeLinkFieldF> MixedCG(par.tolerance,10000,10000,grid_f,QuadOpF,QuadOp);
MixedCG.InnerTolerance=par.tolerance;
MixedCG(GMom,MinvGMom);
LapStencil.M(MinvGMom, Gtemp2); LMinvGMom=fac*Gtemp2;
// Laplacian.M(MinvGMom, LMinvGMom);
MixedCG(right_nu,MinvMom[i]);
#endif
#if USE_CHRONO
prev_solns[nu].push_back(MinvGMom);
#endif
LapStencil.M(MinvMom[i], Gtemp2); LMinvMom=fac*Gtemp2;
AMinvMom = par.a1[i]*LMinvMom;
AMinvMom += par.a0[i]*MinvMom[i];
LapStencil.M(AMinvMom, Gtemp2); LMinvAMom=fac*Gtemp2;
LapStencil.M(MinvGMom, Gtemp2); temp=fac*Gtemp2;
MinvAGMom = par.a1[i]*temp;
MinvAGMom += par.a0[i]*MinvGMom;
LapStencil.M(MinvAGMom, Gtemp2); LMinvAGMom=fac*Gtemp2;
GaugeField tempDer(left.Grid());
std::vector<GaugeLinkField> DerLink(Nd,left.Grid());
std::vector<GaugeLinkField> tempDerLink(Nd,left.Grid());
std::cout<<GridLogMessage << "force contraction "<< i <<std::endl;
// roctxRangePushA("RMHMC force contraction");
#if 0
MDerivLink(GMom,MinvMom[i],tempDer); der += coef*2*par.a1[i]*tempDer;
MDerivLink(left_nu,MinvGMom,tempDer); der += coef*2*par.a1[i]*tempDer;
MDerivLink(LMinvAGMom,MinvMom[i],tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(LMinvAMom,MinvGMom,tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(MinvAGMom,LMinvMom,tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(AMinvMom,LMinvGMom,tempDer); der += coef*-2.*par.b2*tempDer;
MDerivLink(MinvAGMom,MinvMom[i],tempDer); der += coef*-2.*par.b1[i]*tempDer;
MDerivLink(AMinvMom,MinvGMom,tempDer); der += coef*-2.*par.b1[i]*tempDer;
#else
for (int mu=0;mu<Nd;mu++) DerLink[mu]=Zero();
MDerivLink(GMom,MinvMom[i],tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*2*par.a1[i]*tempDerLink[mu];
MDerivLink(left_nu,MinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*2*par.a1[i]*tempDerLink[mu];
MDerivLink(LMinvAGMom,MinvMom[i],tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(LMinvAMom,MinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(MinvAGMom,LMinvMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(AMinvMom,LMinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b2*tempDerLink[mu];
MDerivLink(MinvAGMom,MinvMom[i],tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b1[i]*tempDerLink[mu];
MDerivLink(AMinvMom,MinvGMom,tempDerLink); for (int mu=0;mu<Nd;mu++) DerLink[mu] += coef*-2.*par.b1[i]*tempDerLink[mu];
// PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
for (int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(tempDer, tempDerLink[mu], mu);
der += tempDer;
#endif
std::cout<<GridLogMessage << "coef = force contraction "<< i << "done "<< coef <<std::endl;
// roctxRangePop();
}
}
std::cout<<GridLogMessage << "LaplaceEnd " <<std::endl;
// exit(-42);
}
void MDeriv(const GaugeField& in, GaugeField& der) {
MDeriv(in,in, der);
}
void MDeriv(const GaugeField& left, const GaugeField& right,
GaugeField& der) {
der=Zero();
MDerivInt(Mparam, left, right, der,prev_solnsMDeriv );
std::cout <<GridLogDebug << "MDeriv:norm2(der) = "<<norm2(der)<<std::endl;
}
void MinvDeriv(const GaugeField& in, GaugeField& der) {
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
der=Zero();
MDerivInt(Gparam, in, in, der,prev_solnsMinvDeriv);
std::cout <<GridLogDebug << "MinvDeriv:norm2(der) = "<<norm2(der)<<std::endl;
}
void MSquareRootInt(LaplacianRatParams &par, GaugeField& P, std::vector< std::vector<GaugeLinkField> > & prev_solns ){
std::cout<<GridLogMessage << "LaplaceStart " <<std::endl;
RealD fac = -1. / (double(4 * Nd));
LapStencil.GaugeImport(Usav);
LapStencilF.GaugeImport(UsavF);
for(int nu=0; nu<Nd;nu++){
GaugeLinkField P_nu = PeekIndex<LorentzIndex>(P, nu);
GaugeLinkField Gp(P.Grid());
Gp = par.offset * P_nu;
ConjugateGradient<GaugeLinkField> CG(par.tolerance,10000);
// ConjugateGradient<GaugeLinkFieldF> CG_f(1.0e-8,10000);
ChronoForecast< QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> , GaugeLinkField> Forecast;
GaugeLinkField Gtemp(P.Grid());
GaugeLinkField Gtemp2(P.Grid());
for(int i =0;i<par.order;i++){
QuadLinearOperator<CovariantAdjointLaplacianStencil<Impl,typename Impl::LinkField>,GaugeLinkField> QuadOp(LapStencil,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
Gtemp = Forecast(QuadOp, P_nu, prev_solns[nu]);
#ifndef MIXED_CG
CG(QuadOp,P_nu,Gtemp);
#else
QuadLinearOperator<CovariantAdjointLaplacianStencil<ImplF,typename ImplF::LinkField>,GaugeLinkFieldF> QuadOpF(LapStencilF,par.b0[i],fac*par.b1[i],fac*fac*par.b2);
// QuadLinearOperator<LaplacianAdjointField<ImplF>,GaugeFieldF> QuadOpF(LapStencilF,par.b0[i],par.b1[i],par.b2);
MixedPrecisionConjugateGradient<GaugeLinkField,GaugeLinkFieldF> MixedCG(par.tolerance,10000,10000,grid_f,QuadOpF,QuadOp);
MixedCG.InnerTolerance=par.tolerance;
MixedCG(P_nu,Gtemp);
#endif
#if USE_CHRONO
prev_solns[nu].push_back(Gtemp);
#endif
Gp += par.a0[i]*Gtemp;
LapStencil.M(Gtemp,Gtemp2);
Gp += par.a1[i]*fac*Gtemp2;
}
PokeIndex<LorentzIndex>(P, Gp, nu);
}
std::cout<<GridLogMessage << "LaplaceEnd " <<std::endl;
}
void MSquareRoot(GaugeField& P){
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Mparam,P,prev_solns);
std::cout <<GridLogDebug << "MSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}
void MInvSquareRoot(GaugeField& P){
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Gparam,P,prev_solns);
std::cout <<GridLogDebug << "MInvSquareRoot:norm2(P) = "<<norm2(P)<<std::endl;
}
void M(const GaugeField& in, GaugeField& out) {
out = in;
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Mparam,out,prev_solns);
MSquareRootInt(Mparam,out,prev_solns);
std::cout <<GridLogDebug << "M:norm2(out) = "<<norm2(out)<<std::endl;
}
void Minv(const GaugeField& in, GaugeField& inverted){
inverted = in;
std::vector< std::vector<GaugeLinkField> > prev_solns(4);
MSquareRootInt(Gparam,inverted,prev_solns);
MSquareRootInt(Gparam,inverted,prev_solns);
std::cout <<GridLogDebug << "Minv:norm2(inverted) = "<<norm2(inverted)<<std::endl;
}
private:
std::vector<GaugeLinkField> U;
};
#undef MIXED_CG
NAMESPACE_END(Grid);

470
Grid/qcd/utils/GaugeGroup.h Normal file
View File

@ -0,0 +1,470 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/GaugeGroup.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTIL_GAUGEGROUP_H
#define QCD_UTIL_GAUGEGROUP_H
// Important detail: nvcc requires all template parameters to have names.
// This is the only reason why the second template parameter has a name.
#define ONLY_IF_SU \
typename dummy_name = group_name, \
typename named_dummy = std::enable_if_t < \
std::is_same<dummy_name, group_name>::value && \
is_su<dummy_name>::value >
#define ONLY_IF_Sp \
typename dummy_name = group_name, \
typename named_dummy = std::enable_if_t < \
std::is_same<dummy_name, group_name>::value && \
is_sp<dummy_name>::value >
NAMESPACE_BEGIN(Grid);
namespace GroupName {
class SU {};
class Sp {};
} // namespace GroupName
template <typename group_name>
struct is_su {
static const bool value = false;
};
template <>
struct is_su<GroupName::SU> {
static const bool value = true;
};
template <typename group_name>
struct is_sp {
static const bool value = false;
};
template <>
struct is_sp<GroupName::Sp> {
static const bool value = true;
};
template <typename group_name>
constexpr int compute_adjoint_dimension(int ncolour);
template <>
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
return ncolour * ncolour - 1;
}
template <>
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
return ncolour / 2 * (ncolour + 1);
}
template <int ncolour, class group_name>
class GaugeGroup {
public:
static const int Dimension = ncolour;
static const int AdjointDimension =
compute_adjoint_dimension<group_name>(ncolour);
static const int AlgebraDimension =
compute_adjoint_dimension<group_name>(ncolour);
template <typename vtype>
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
static int su2subgroups(void) { return su2subgroups(group_name()); }
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
// SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
typedef iGroupMatrix<vComplex> vMatrix;
typedef iGroupMatrix<vComplexF> vMatrixF;
typedef iGroupMatrix<vComplexD> vMatrixD;
// For the projectors to the algebra
// these should be real...
// keeping complex for consistency with the SIMD vector types
typedef iAlgebraVector<Complex> AlgebraVector;
typedef iAlgebraVector<ComplexF> AlgebraVectorF;
typedef iAlgebraVector<ComplexD> AlgebraVectorD;
typedef iAlgebraVector<vComplex> vAlgebraVector;
typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
// Private implementation details are specified in the following files:
// Grid/qcd/utils/SUn.impl
// Grid/qcd/utils/SUn.impl
// The public part of the interface follows below and refers to these
// private member functions.
#include <Grid/qcd/utils/SUn.impl.h>
#include <Grid/qcd/utils/Sp2n.impl.h>
public:
template <class cplx>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
return generator(lieIndex, ta, group_name());
}
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
return su2SubGroupIndex(i1, i2, su2_index, group_name());
}
static void testGenerators(void) { testGenerators(group_name()); }
static void printGenerators(void) {
for (int gen = 0; gen < AlgebraDimension; gen++) {
Matrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
template <typename LatticeMatrixType>
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
double scale = 1.0) {
GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type;
typedef iSinglet<vector_type> vTComplexType;
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
LatticeMatrixType la(grid);
ComplexD ci(0.0, scale);
MatrixType ta;
lie = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
random(pRNG, ca);
ca = (ca + conjugate(ca)) * 0.5;
ca = ca - 0.5;
generator(a, ta);
la = ci * ca * ta;
lie = lie + la; // e^{i la ta}
}
taExp(lie, out);
}
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) {
GridBase *grid = out.Grid();
LatticeReal ca(grid);
LatticeMatrix la(grid);
Complex ci(0.0, scale);
Matrix ta;
out = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
la = toComplex(ca) * ta;
out += la;
}
out *= ci;
}
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
LatticeMatrix &out,
Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeMatrix la(grid);
Matrix ta;
out = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
out += la;
}
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
// ) inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, Ta);
pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
return ProjectOnGeneralGroup(r, group_name());
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
return ProjectOnGeneralGroup(r, group_name());
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
return ProjectOnGeneralGroup(arg, group_name());
}
template <int N,class vComplex_t> // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = ProjectOnGeneralGroup(Umu);
}
}
template <int N,class vComplex_t>
static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
return ProjectOnGeneralGroup(Umu, group_name());
}
template <int N,class vComplex_t> // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
Umu = ProjectOnGeneralGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for (int i = 0; i < N; i++) {
auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
element = element * det;
PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
}
}
template <int N,class vComplex_t> // reunitarise, resimplectify... previously ProjectSUn
static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
// Reunitarise
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
ProjectOnSpecialGroup(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
LatticeMatrixType tmp(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
// LieRandomize(pRNG, Umu, 1.0);
// PokeIndex<LorentzIndex>(out, Umu, mu);
gaussian(pRNG,Umu);
tmp = Ta(Umu);
taExp(tmp,Umu);
ProjectOnSpecialGroup(Umu);
// ProjectSUn(Umu);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
LieRandomize(pRNG, Umu, 0.01);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void ColdConfiguration(GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
Umu = 1.0;
for (int mu = 0; mu < Nd; mu++) {
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
ColdConfiguration(out);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
taProj(in, out, group_name());
}
template <typename LatticeMatrixType>
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
typedef typename LatticeMatrixType::scalar_type ComplexType;
LatticeMatrixType xn(x.Grid());
RealD nfac = 1.0;
xn = x;
ex = xn + ComplexType(1.0); // 1+x
// Do a 12th order exponentiation
for (int i = 2; i <= 12; ++i) {
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
xn = xn * x; // x2, x3,x4....
ex = ex + xn * nfac; // x2/2!, x3/3!....
}
}
};
template <int ncolour>
using SU = GaugeGroup<ncolour, GroupName::SU>;
template <int ncolour>
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
typedef Sp<2> Sp2;
typedef Sp<4> Sp4;
typedef Sp<6> Sp6;
typedef Sp<8> Sp8;
template <int N,class vComplex_t>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
{
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
}
template <int N,class vComplex_t>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
{
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
}
template <int N,class vComplex_t>
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
{
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
}
template <int N,class vComplex_t>
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
{
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
}
// Explicit specialisation for SU(3).
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid = Umu.Grid();
const int x = 0;
const int y = 1;
const int z = 2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v, Umu, CpuWrite);
thread_for(ss, grid->oSites(), {
auto cm = Umu_v[ss];
cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
cm()()(0, z) * cm()()(1, y)); // x= yz-zy
cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
cm()()(0, x) * cm()()(1, z)); // y= zx-xz
cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
cm()()(0, y) * cm()()(1, x)); // z= xy-yx
Umu_v[ss] = cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
{
GridBase *grid = U.Grid();
// Reunitarise
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,371 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
namespace detail {
template <class cplx, int nc, TwoIndexSymmetry S>
struct baseOffDiagonalSpHelper;
template <class cplx, int nc>
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
static const int ngroup = nc / 2;
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
eij = Zero();
RealD tmp;
if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
for (int k = 0; k < j+1; k++) {
if (k < j) {
tmp = 1 / sqrt(j * (j + 1));
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
if (k == j) {
tmp = -j / sqrt(j * (j + 1));
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
}
}
else if (i != ngroup + j) {
for (int k = 0; k < nc; k++)
for (int l = 0; l < nc; l++) {
eij()()(l, k) =
delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
}
}
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
};
template <class cplx, int nc>
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
eij = Zero();
for (int k = 0; k < nc; k++)
for (int l = 0; l < nc; l++)
eij()()(l, k) =
delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
};
} // closing detail namespace
template <int ncolour, TwoIndexSymmetry S, class group_name>
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
public:
// The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
// in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
static_assert(std::is_same<group_name, GroupName::SU>::value or
std::is_same<group_name, GroupName::Sp>::value,
"ngroup is only implemented for SU and Sp currently.");
static const int ngroup =
std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
static const int Dimension =
(ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
static const int DimensionAS =
(ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
static const int DimensionS =
ncolour * (ncolour + 1) / 2;
static const int NumGenerators =
GaugeGroup<ncolour, group_name>::AlgebraDimension;
template <typename vtype>
using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
private:
template <class cplx>
static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) =
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
}
public:
template <class cplx>
static void base(int Index, iGroupMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < Dimension);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
if (std::is_same<group_name, GroupName::Sp>::value)
{
if (j==0 && i==ngroup+j && S==-1) {
//std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
j = j+1;
}
}
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour*ncolour - DimensionS)
{
baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
} else {
baseDiagonal(Index, eij);
}
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
Vector<iGroupMatrix<cplx> > ta(NumGenerators);
Vector<iGroupMatrix<cplx> > eij(Dimension);
iGroupMatrix<cplx> tmp;
for (int a = 0; a < NumGenerators; a++)
GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < NumGenerators; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
for (int b = 0; b < NumGenerators; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
if (a == b) {
assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
} else {
assert(real(Tr) < 1e-8);
}
assert(imag(Tr) < 1e-8);
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(NumGenerators);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
template <int ncolour, TwoIndexSymmetry S>
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
template <int ncolour, TwoIndexSymmetry S>
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

View File

@ -7,6 +7,7 @@ Source file: ./lib/qcd/hmc/integrators/Integrator.h
Copyright (C) 2015
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,7 +34,12 @@ NAMESPACE_BEGIN(Grid);
template <typename Field>
class Metric{
protected:
int triv;
public:
Metric(){this->triv=1;}
int Trivial(){ return triv;}
//printf("Metric::Trivial=%d\n",triv); ;
virtual void ImportGauge(const Field&) = 0;
virtual void M(const Field&, Field&) = 0;
virtual void Minv(const Field&, Field&) = 0;
@ -41,6 +47,8 @@ public:
virtual void MInvSquareRoot(Field&) = 0;
virtual void MDeriv(const Field&, Field&) = 0;
virtual void MDeriv(const Field&, const Field&, Field&) = 0;
virtual void MinvDeriv(const Field&, Field&) = 0;
// virtual void MinvDeriv(const Field&, const Field&, Field&) = 0;
};
@ -48,23 +56,36 @@ public:
template <typename Field>
class TrivialMetric : public Metric<Field>{
public:
// TrivialMetric(){this->triv=1;printf("TrivialMetric::triv=%d\n",this->Trivial());}
virtual void ImportGauge(const Field&){};
virtual void M(const Field& in, Field& out){
// printf("M:norm=%0.15e\n",norm2(in));
std::cout << GridLogIntegrator << " M:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = in;
}
virtual void Minv(const Field& in, Field& out){
std::cout << GridLogIntegrator << " Minv:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = in;
}
virtual void MSquareRoot(Field& P){
std::cout << GridLogIntegrator << " MSquareRoot:norm(P)= " << std::sqrt(norm2(P)) << std::endl;
// do nothing
}
virtual void MInvSquareRoot(Field& P){
std::cout << GridLogIntegrator << " MInvSquareRoot:norm(P)= " << std::sqrt(norm2(P)) << std::endl;
// do nothing
}
virtual void MDeriv(const Field& in, Field& out){
std::cout << GridLogIntegrator << " MDeriv:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = Zero();
}
virtual void MinvDeriv(const Field& in, Field& out){
std::cout << GridLogIntegrator << " MinvDeriv:norm(in)= " << std::sqrt(norm2(in)) << std::endl;
out = Zero();
}
virtual void MDeriv(const Field& left, const Field& right, Field& out){
std::cout << GridLogIntegrator << " MDeriv:norm(left)= " << std::sqrt(norm2(left)) << std::endl;
std::cout << GridLogIntegrator << " MDeriv:norm(right)= " << std::sqrt(norm2(right)) << std::endl;
out = Zero();
}
@ -101,14 +122,15 @@ public:
// Generate gaussian momenta
Implementation::generate_momenta(Mom, sRNG, pRNG);
// Modify the distribution with the metric
// if(M.Trivial()) return;
M.MSquareRoot(Mom);
if (1) {
// Auxiliary momenta
// do nothing if trivial, so hide in the metric
MomentaField AuxMomTemp(Mom.Grid());
Implementation::generate_momenta(AuxMom, sRNG, pRNG);
Implementation::generate_momenta(AuxField, sRNG, pRNG);
Implementation::generate_momenta(AuxMom, sRNG,pRNG);
Implementation::generate_momenta(AuxField, sRNG,pRNG);
// Modify the distribution with the metric
// Aux^dag M Aux
M.MInvSquareRoot(AuxMom); // AuxMom = M^{-1/2} AuxMomTemp
@ -117,11 +139,12 @@ public:
// Correct
RealD MomentaAction(){
static RealD Saux=0.,Smom=0.;
MomentaField inv(Mom.Grid());
inv = Zero();
M.Minv(Mom, inv);
LatticeComplex Hloc(Mom.Grid());
Hloc = Zero();
LatticeComplex Hloc(Mom.Grid()); Hloc = Zero();
LatticeComplex Hloc2(Mom.Grid()); Hloc2 = Zero();
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the metric
@ -129,8 +152,15 @@ public:
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
Hloc += trace(Mom_mu * inv_mu);
}
auto Htmp1 = TensorRemove(sum(Hloc));
std::cout << GridLogMessage << "S:dSmom = " << Htmp1.real()-Smom << "\n";
Smom=Htmp1.real()/HMC_MOMENTUM_DENOMINATOR;
if (1) {
// if(!M.Trivial())
{
// Auxiliary Fields
// hide in the metric
M.M(AuxMom, inv);
@ -140,13 +170,18 @@ public:
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
auto am_mu = PeekIndex<LorentzIndex>(AuxMom, mu);
auto af_mu = PeekIndex<LorentzIndex>(AuxField, mu);
Hloc += trace(am_mu * inv_mu);// p M p
Hloc += trace(af_mu * af_mu);
Hloc += trace(am_mu * inv_mu);
Hloc2 += trace(af_mu * af_mu);
}
}
auto Htmp2 = TensorRemove(sum(Hloc))-Htmp1;
std::cout << GridLogMessage << "S:dSaux = " << Htmp2.real()-Saux << "\n";
Saux=Htmp2.real();
auto Hsum = TensorRemove(sum(Hloc));
return Hsum.real();
auto Hsum = TensorRemove(sum(Hloc))/HMC_MOMENTUM_DENOMINATOR;
auto Hsum2 = TensorRemove(sum(Hloc2));
std::cout << GridLogIntegrator << "MomentaAction: " << Hsum.real()+Hsum2.real() << std::endl;
return Hsum.real()+Hsum2.real();
}
// Correct
@ -157,15 +192,17 @@ public:
MomentaField MDer(in.Grid());
MomentaField X(in.Grid());
X = Zero();
M.Minv(in, X); // X = G in
M.MDeriv(X, MDer); // MDer = U * dS/dU
der = Implementation::projectForce(MDer); // Ta if gauge fields
M.MinvDeriv(in, MDer); // MDer = U * dS/dU
der = -1.0* Implementation::projectForce(MDer); // Ta if gauge fields
// std::cout << GridLogIntegrator << " DerivativeU: norm(in)= " << std::sqrt(norm2(in)) << std::endl;
// std::cout << GridLogIntegrator << " DerivativeU: norm(der)= " << std::sqrt(norm2(der)) << std::endl;
}
void AuxiliaryFieldsDerivative(MomentaField& der){
der = Zero();
if (1){
// if(!M.Trivial())
{
// Auxiliary fields
MomentaField der_temp(der.Grid());
MomentaField X(der.Grid());
@ -173,6 +210,7 @@ public:
//M.M(AuxMom, X); // X = M Aux
// Two derivative terms
// the Mderiv need separation of left and right terms
std::cout << GridLogIntegrator << " AuxiliaryFieldsDerivative:norm(AuxMom)= " << std::sqrt(norm2(AuxMom)) << std::endl;
M.MDeriv(AuxMom, der);
@ -180,6 +218,7 @@ public:
//M.MDeriv(X, AuxMom, der_temp); der += der_temp;
der = -1.0*Implementation::projectForce(der);
std::cout << GridLogIntegrator << " AuxiliaryFieldsDerivative:norm(der)= " << std::sqrt(norm2(der)) << std::endl;
}
}
@ -189,22 +228,28 @@ public:
// is the projection necessary here?
// no for fields in the algebra
der = Implementation::projectForce(der);
std::cout << GridLogIntegrator << " DerivativeP:norm(der)= " << std::sqrt(norm2(der)) << std::endl;
}
void update_auxiliary_momenta(RealD ep){
if(1){
AuxMom -= ep * AuxField;
std::cout << GridLogIntegrator << "AuxMom update_auxiliary_fields: " << std::sqrt(norm2(AuxMom)) << std::endl;
std::cout << GridLogIntegrator << "AuxField update_auxiliary_fields: " << std::sqrt(norm2(AuxField)) << std::endl;
{
AuxMom -= ep * AuxField * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "AuxMom update_auxiliary_fields: " << std::sqrt(norm2(AuxMom)) << std::endl;
}
}
void update_auxiliary_fields(RealD ep){
if (1) {
// if(!M.Trivial())
{
MomentaField tmp(AuxMom.Grid());
MomentaField tmp2(AuxMom.Grid());
M.M(AuxMom, tmp);
// M.M(tmp, tmp2);
AuxField += ep * tmp; // M^2 AuxMom
// factor of 2?
std::cout << GridLogIntegrator << "AuxField update_auxiliary_fields: " << std::sqrt(norm2(AuxField)) << std::endl;
}
}

View File

@ -1,932 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/SUn.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
NAMESPACE_BEGIN(Grid);
template<int N, class Vec>
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
typedef typename Vec::scalar_type scalar;
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<scalar, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
scalar tmp= Us()()(i,j);
ComplexD ztmp(real(tmp),imag(tmp));
EigenU(i,j)=ztmp;
}}
ComplexD detD = EigenU.determinant();
typename Vec::scalar_type det(detD.real(),detD.imag());
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N, class Vec>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
Umu = ProjectOnGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for(int i=0;i<N;i++){
auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
element = element * det;
PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
}
}
template<int N,class Vec>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSUn(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
template <int ncolour>
class SU {
public:
static const int Dimension = ncolour;
static const int AdjointDimension = ncolour * ncolour - 1;
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iSUnAlgebraVector =
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
// SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
typedef iSUnMatrix<vComplex> vMatrix;
typedef iSUnMatrix<vComplexF> vMatrixF;
typedef iSUnMatrix<vComplexD> vMatrixD;
// For the projectors to the algebra
// these should be real...
// keeping complex for consistency with the SIMD vector types
typedef iSUnAlgebraVector<Complex> AlgebraVector;
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
// generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
// delta_{i,i1} delta_{j,i2})
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
//
////////////////////////////////////////////////////////////////////////
template <class cplx>
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour * (ncolour - 1);
if (lieIndex >= NNm1) {
diagIndex = lieIndex - NNm1;
generatorDiagonal(diagIndex, ta);
return;
}
sigxy = lieIndex & 0x1; // even or odd
su2Index = lieIndex >> 1;
if (sigxy)
generatorSigmaY(su2Index, ta);
else
generatorSigmaX(su2Index, ta);
}
template <class cplx>
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
ta = Zero();
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = 1.0;
ta()()(i2, i1) = 1.0;
ta = ta * 0.5;
}
template <class cplx>
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
ta = Zero();
cplx i(0.0, 1.0);
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta = ta * 0.5;
}
template <class cplx>
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
ta = Zero();
int k = diagIndex + 1; // diagIndex starts from 0
for (int i = 0; i <= diagIndex; i++) { // k iterations
ta()()(i, i) = 1.0;
}
ta()()(k, k) = -k; // indexing starts from 0
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Pull out a subgroup and project on to real coeffs x pauli basis
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx>
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
Lattice<iSU2Matrix<vcplx> > &subgroup,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index) {
GridBase *grid(source.Grid());
conformable(subgroup, source);
conformable(subgroup, Determinant);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
autoView( subgroup_v , subgroup,AcceleratorWrite);
autoView( source_v , source,AcceleratorRead);
autoView( Determinant_v , Determinant,AcceleratorWrite);
accelerator_for(ss, grid->oSites(), 1, {
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
subgroup_v[ss] = Sigma;
// this should be purely real
Determinant_v[ss] =
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
});
}
//////////////////////////////////////////////////////////////////////////////////////////
// Set matrix to one and insert a pauli subgroup
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx>
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
GridBase *grid(dest.Grid());
conformable(subgroup, dest);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
dest = 1.0; // start out with identity
autoView( dest_v , dest, AcceleratorWrite);
autoView( subgroup_v, subgroup, AcceleratorRead);
accelerator_for(ss, grid->oSites(),1,
{
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
});
}
///////////////////////////////////////////////
// Generate e^{ Re Tr Staple Link} dlink
//
// *** Note Staple should be appropriate linear compbination between all
// staples.
// *** If already by beta pass coefficient 1.0.
// *** This routine applies the additional 1/Nc factor that comes after trace
// in action.
//
///////////////////////////////////////////////
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask)
{
GridBase *grid = link.Grid();
const RealD twopi = 2.0 * M_PI;
LatticeMatrix staple(grid);
staple = barestaple * (beta / ncolour);
LatticeMatrix V(grid);
V = link * staple;
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
// Some handy constant fields
LatticeComplex ones(grid);
ones = 1.0;
LatticeComplex zeros(grid);
zeros = Zero();
LatticeReal rones(grid);
rones = 1.0;
LatticeReal rzeros(grid);
rzeros = Zero();
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true(grid);
mask_true = 1;
LatticeInteger mask_false(grid);
mask_false = 0;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Action linear in links h and of form:
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
// Real part of Pauli decomposition
// Note a subgroup can project to zero in cold start
////////////////////////////////////////////////////////
su2Extract(udet, u, V, su2_subgroup);
//////////////////////////////////////////////////////
// Normalising this vector if possible; else identity
//////////////////////////////////////////////////////
LatticeComplex xi(grid);
LatticeSU2Matrix lident(grid);
SU2Matrix ident = Complex(1.0);
SU2Matrix pauli1;
SU<2>::generator(0, pauli1);
SU2Matrix pauli2;
SU<2>::generator(1, pauli2);
SU2Matrix pauli3;
SU<2>::generator(2, pauli3);
pauli1 = timesI(pauli1) * 2.0;
pauli2 = timesI(pauli2) * 2.0;
pauli3 = timesI(pauli3) * 2.0;
LatticeComplex cone(grid);
LatticeReal adet(grid);
adet = abs(toReal(udet));
lident = Complex(1.0);
cone = Complex(1.0);
Real machine_epsilon = 1.0e-7;
u = where(adet > machine_epsilon, u, lident);
udet = where(adet > machine_epsilon, udet, cone);
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5 * u *
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv = adj(u);
b = u * uinv - 1.0;
assert(norm2(b) < 1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
through xi
= e^{2 xi (h.u)} dh
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
factor in Chroma ]
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
R''' in the unit interval;
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
D. Set A = XC;
E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E will
generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
// count the number of sites by picking "1"'s out of hat
/////////////////////////////////////////////////////////
Integer hit = 0;
LatticeReal rtmp(grid);
rtmp = where(wheremask, rones, rzeros);
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid);
Accepted = Zero();
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4, grid);
std::vector<LatticeReal> a(4, grid);
LatticeReal d(grid);
d = Zero();
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
xi = 2.0 *xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',
// R'', R''' in the unit interval;
random(pRNG, xr[0]);
random(pRNG, xr[1]);
random(pRNG, xr[2]);
random(pRNG, xr[3]);
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
xr[1] = -log(xr[1]) / alpha;
xr[2] = -log(xr[2]) / alpha;
// C. Set C = cos^2(2piR'')
xr[3] = cos(xr[3] * twopi);
xr[3] = xr[3] * xr[3];
LatticeReal xrsq(grid);
// D. Set A = XC;
// E. Let d = X'+A;
xrsq = xr[2] + xr[1] * xr[3];
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
LatticeReal thresh(grid);
thresh = 1.0 - d * 0.5;
xrsq = xr[0] * xr[0];
LatticeInteger ione(grid);
ione = 1;
LatticeInteger izero(grid);
izero = Zero();
newlyAccepted = where(xrsq < thresh, ione, izero);
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
Accepted = where(wheremask, Accepted, izero);
// FIXME need an iSum for integer to avoid overload on return type??
rtmp = where(Accepted, rones, rzeros);
numAccepted = sum(rtmp);
hit++;
} while ((numAccepted < numSites) && (hit < nheatbath));
// G. Set a0 = 1 - d;
a[0] = Zero();
a[0] = where(wheremask, 1.0 - d, a[0]);
//////////////////////////////////////////
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
//////////////////////////////////////////
LatticeReal a123mag(grid);
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
LatticeReal cos_theta(grid);
LatticeReal sin_theta(grid);
LatticeReal phi(grid);
random(pRNG, phi);
phi = phi * twopi; // uniform in [0,2pi]
random(pRNG, cos_theta);
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
a[1] = a123mag * sin_theta * cos(phi);
a[2] = a123mag * sin_theta * sin(phi);
a[3] = a123mag * cos_theta;
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
b = 1.0;
b = where(wheremask, uinv * ua, b);
su2Insert(b, V, su2_subgroup);
// mask the assignment back based on Accptance
link = where(Accepted, V * link, link);
//////////////////////////////
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = Zero();
check = ua * adj(ua) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
check = b * adj(b) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = Zero();
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck) < 1.0e-4);
// Verify the link stays in SU(3)
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
Vcheck = link * adj(link) - 1.0;
assert(norm2(Vcheck) < 1.0e-4);
/////////////////////////////////
}
static void printGenerators(void) {
for (int gen = 0; gen < AdjointDimension; gen++) {
Matrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
static void testGenerators(void) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
for (int b = 0; b < AdjointDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << " " << std::endl;
assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
// reunitarise??
template <typename LatticeMatrixType>
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0)
{
GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type;
typedef iSinglet<vector_type> vTComplexType;
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
LatticeMatrixType la(grid);
ComplexD ci(0.0, scale);
// ComplexD cone(1.0, 0.0);
MatrixType ta;
lie = Zero();
for (int a = 0; a < AdjointDimension; a++) {
random(pRNG, ca);
ca = (ca + conjugate(ca)) * 0.5;
ca = ca - 0.5;
generator(a, ta);
la = ci * ca * ta;
lie = lie + la; // e^{i la ta}
}
taExp(lie, out);
}
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) {
GridBase *grid = out.Grid();
LatticeReal ca(grid);
LatticeMatrix la(grid);
Complex ci(0.0, scale);
Matrix ta;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
la = toComplex(ca) * ta;
out += la;
}
out *= ci;
}
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
LatticeMatrix &out,
Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeMatrix la(grid);
Matrix ta;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
out += la;
}
}
/*
* Fundamental rep gauge xform
*/
template<typename Fundamental,typename GaugeMat>
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
GridBase *grid = ferm._grid;
conformable(grid,g._grid);
ferm = g*ferm;
}
/*
* Adjoint rep gauge xform
*/
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid();
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
}
}
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform<Gimpl>(Umu,g);
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
// inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, Ta);
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
LatticeMatrixType tmp(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
// LieRandomize(pRNG, Umu, 1.0);
// PokeIndex<LorentzIndex>(out, Umu, mu);
gaussian(pRNG,Umu);
tmp = Ta(Umu);
taExp(tmp,Umu);
ProjectSUn(Umu);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template<typename GaugeField>
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for(int mu=0;mu<Nd;mu++){
LieRandomize(pRNG,Umu,0.01);
PokeIndex<LorentzIndex>(out,Umu,mu);
}
}
template<typename GaugeField>
static void ColdConfiguration(GaugeField &out){
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
PokeIndex<LorentzIndex>(out,Umu,mu);
}
}
template<typename GaugeField>
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
ColdConfiguration(out);
}
template<typename LatticeMatrixType>
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
out = Ta(in);
}
template <typename LatticeMatrixType>
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
typedef typename LatticeMatrixType::scalar_type ComplexType;
LatticeMatrixType xn(x.Grid());
RealD nfac = 1.0;
xn = x;
ex = xn + ComplexType(1.0); // 1+x
// Do a 12th order exponentiation
for (int i = 2; i <= 12; ++i) {
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
xn = xn * x; // x2, x3,x4....
ex = ex + xn * nfac; // x2/2!, x3/3!....
}
}
};
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
// Explicit specialisation for SU(3).
// Explicit specialisation for SU(3).
static void
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid=Umu.Grid();
const int x=0;
const int y=1;
const int z=2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v,Umu,CpuWrite);
thread_for(ss,grid->oSites(),{
auto cm = Umu_v[ss];
cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
Umu_v[ss]=cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
NAMESPACE_END(Grid);
#endif

578
Grid/qcd/utils/SUn.impl.h Normal file
View File

@ -0,0 +1,578 @@
// This file is #included into the body of the class template definition of
// GaugeGroup. So, image there to be
//
// template <int ncolour, class group_name>
// class GaugeGroup {
//
// around it.
//
// Please note that the unconventional file extension makes sure that it
// doesn't get found by the scripts/filelist during bootstrapping.
private:
template <ONLY_IF_SU>
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
// generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
// delta_{i,i1} delta_{j,i2})
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
//
////////////////////////////////////////////////////////////////////////
template <class cplx, ONLY_IF_SU>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour * (ncolour - 1);
if (lieIndex >= NNm1) {
diagIndex = lieIndex - NNm1;
generatorDiagonal(diagIndex, ta);
return;
}
sigxy = lieIndex & 0x1; // even or odd
su2Index = lieIndex >> 1;
if (sigxy)
generatorSigmaY(su2Index, ta);
else
generatorSigmaX(su2Index, ta);
}
template <class cplx, ONLY_IF_SU>
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
ta = Zero();
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = 1.0;
ta()()(i2, i1) = 1.0;
ta = ta * 0.5;
}
template <class cplx, ONLY_IF_SU>
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
ta = Zero();
cplx i(0.0, 1.0);
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta = ta * 0.5;
}
template <class cplx, ONLY_IF_SU>
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
ta = Zero();
int k = diagIndex + 1; // diagIndex starts from 0
for (int i = 0; i <= diagIndex; i++) { // k iterations
ta()()(i, i) = 1.0;
}
ta()()(k, k) = -k; // indexing starts from 0
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
public:
//////////////////////////////////////////////////////////////////////////////////////////
// Pull out a subgroup and project on to real coeffs x pauli basis
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx, ONLY_IF_SU>
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
Lattice<iSU2Matrix<vcplx> > &subgroup,
const Lattice<iGroupMatrix<vcplx> > &source,
int su2_index) {
GridBase *grid(source.Grid());
conformable(subgroup, source);
conformable(subgroup, Determinant);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
autoView(subgroup_v, subgroup, AcceleratorWrite);
autoView(source_v, source, AcceleratorRead);
autoView(Determinant_v, Determinant, AcceleratorWrite);
accelerator_for(ss, grid->oSites(), 1, {
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
subgroup_v[ss] = Sigma;
// this should be purely real
Determinant_v[ss] =
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
});
}
//////////////////////////////////////////////////////////////////////////////////////////
// Set matrix to one and insert a pauli subgroup
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx, ONLY_IF_SU>
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
GridBase *grid(dest.Grid());
conformable(subgroup, dest);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
dest = 1.0; // start out with identity
autoView(dest_v, dest, AcceleratorWrite);
autoView(subgroup_v, subgroup, AcceleratorRead);
accelerator_for(ss, grid->oSites(), 1, {
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
});
}
///////////////////////////////////////////////
// Generate e^{ Re Tr Staple Link} dlink
//
// *** Note Staple should be appropriate linear compbination between all
// staples.
// *** If already by beta pass coefficient 1.0.
// *** This routine applies the additional 1/Nc factor that comes after trace
// in action.
//
///////////////////////////////////////////////
template <ONLY_IF_SU>
static void SubGroupHeatBath(
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
GridBase *grid = link.Grid();
const RealD twopi = 2.0 * M_PI;
LatticeMatrix staple(grid);
staple = barestaple * (beta / ncolour);
LatticeMatrix V(grid);
V = link * staple;
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(
grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
// Some handy constant fields
LatticeComplex ones(grid);
ones = 1.0;
LatticeComplex zeros(grid);
zeros = Zero();
LatticeReal rones(grid);
rones = 1.0;
LatticeReal rzeros(grid);
rzeros = Zero();
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true(grid);
mask_true = 1;
LatticeInteger mask_false(grid);
mask_false = 0;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Action linear in links h and of form:
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
// Real part of Pauli decomposition
// Note a subgroup can project to zero in cold start
////////////////////////////////////////////////////////
su2Extract(udet, u, V, su2_subgroup);
//////////////////////////////////////////////////////
// Normalising this vector if possible; else identity
//////////////////////////////////////////////////////
LatticeComplex xi(grid);
LatticeSU2Matrix lident(grid);
SU2Matrix ident = Complex(1.0);
SU2Matrix pauli1;
GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
SU2Matrix pauli2;
GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
SU2Matrix pauli3;
GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
pauli1 = timesI(pauli1) * 2.0;
pauli2 = timesI(pauli2) * 2.0;
pauli3 = timesI(pauli3) * 2.0;
LatticeComplex cone(grid);
LatticeReal adet(grid);
adet = abs(toReal(udet));
lident = Complex(1.0);
cone = Complex(1.0);
Real machine_epsilon = 1.0e-7;
u = where(adet > machine_epsilon, u, lident);
udet = where(adet > machine_epsilon, udet, cone);
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5 * u * pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv = adj(u);
b = u * uinv - 1.0;
assert(norm2(b) < 1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta
enters through xi = e^{2 xi (h.u)} dh = e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
xi h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm];
hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
-(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
another uniform random number in [0,1] ; D. Set A = XC; E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E
will generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
// count the number of sites by picking "1"'s out of hat
/////////////////////////////////////////////////////////
Integer hit = 0;
LatticeReal rtmp(grid);
rtmp = where(wheremask, rones, rzeros);
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid);
Accepted = Zero();
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4, grid);
std::vector<LatticeReal> a(4, grid);
LatticeReal d(grid);
d = Zero();
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
xi = 2.0 * xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',
// R'', R''' in the unit interval;
random(pRNG, xr[0]);
random(pRNG, xr[1]);
random(pRNG, xr[2]);
random(pRNG, xr[3]);
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
xr[1] = -log(xr[1]) / alpha;
xr[2] = -log(xr[2]) / alpha;
// C. Set C = cos^2(2piR'')
xr[3] = cos(xr[3] * twopi);
xr[3] = xr[3] * xr[3];
LatticeReal xrsq(grid);
// D. Set A = XC;
// E. Let d = X'+A;
xrsq = xr[2] + xr[1] * xr[3];
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
LatticeReal thresh(grid);
thresh = 1.0 - d * 0.5;
xrsq = xr[0] * xr[0];
LatticeInteger ione(grid);
ione = 1;
LatticeInteger izero(grid);
izero = Zero();
newlyAccepted = where(xrsq < thresh, ione, izero);
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
Accepted = where(wheremask, Accepted, izero);
// FIXME need an iSum for integer to avoid overload on return type??
rtmp = where(Accepted, rones, rzeros);
numAccepted = sum(rtmp);
hit++;
} while ((numAccepted < numSites) && (hit < nheatbath));
// G. Set a0 = 1 - d;
a[0] = Zero();
a[0] = where(wheremask, 1.0 - d, a[0]);
//////////////////////////////////////////
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
//////////////////////////////////////////
LatticeReal a123mag(grid);
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
LatticeReal cos_theta(grid);
LatticeReal sin_theta(grid);
LatticeReal phi(grid);
random(pRNG, phi);
phi = phi * twopi; // uniform in [0,2pi]
random(pRNG, cos_theta);
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
a[1] = a123mag * sin_theta * cos(phi);
a[2] = a123mag * sin_theta * sin(phi);
a[3] = a123mag * cos_theta;
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
b = 1.0;
b = where(wheremask, uinv * ua, b);
su2Insert(b, V, su2_subgroup);
// mask the assignment back based on Accptance
link = where(Accepted, V * link, link);
//////////////////////////////
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = Zero();
check = ua * adj(ua) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
check = b * adj(b) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = Zero();
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck) < 1.0e-4);
// Verify the link stays in SU(3)
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
Vcheck = link * adj(link) - 1.0;
assert(norm2(Vcheck) < 1.0e-4);
/////////////////////////////////
}
template <ONLY_IF_SU>
static void testGenerators(GroupName::SU) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
for (int b = 0; b < AdjointDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << " " << std::endl;
assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
template <int N, class vtype>
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
return ProjectOnGroup(Umu);
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
return ProjectOnGroup(r);
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
return ProjectOnGroup(r);
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
return ProjectOnGroup(arg);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
out = Ta(in);
}
/*
* Fundamental rep gauge xform
*/
template<typename Fundamental,typename GaugeMat>
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
GridBase *grid = ferm._grid;
conformable(grid,g._grid);
ferm = g*ferm;
}
/*
* Adjoint rep gauge xform
*/
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid();
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
}
}
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform<Gimpl>(Umu,g);
}

View File

@ -51,6 +51,10 @@ public:
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > > LatticeAdjVector;
template <class cplx>
@ -58,8 +62,8 @@ public:
// returns i(T_Adj)^index necessary for the projectors
// see definitions above
iAdjTa = Zero();
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
iSUnMatrix<cplx> tmp;
// FIXME not very efficient to get all the generators everytime
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
@ -67,8 +71,7 @@ public:
for (int a = 0; a < Dimension; a++) {
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
2.0 * tmp * ta[b]; // 2.0 from the normalization
iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b]; // 2.0 from the normalization
Complex iTr = TensorRemove(timesI(trace(tmp1)));
//iAdjTa()()(b, a) = iTr;
iAdjTa()()(a, b) = iTr;
@ -134,8 +137,7 @@ public:
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
}
}

View File

@ -1,273 +0,0 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_SUN2INDEX_H
#define QCD_UTIL_SUN2INDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
template <int ncolour, TwoIndexSymmetry S>
class SU_TwoIndex : public SU<ncolour> {
public:
static const int Dimension = ncolour * (ncolour + S) / 2;
static const int NumGenerators = SU<ncolour>::AdjointDimension;
template <typename vtype>
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
template <class cplx>
static void base(int Index, iSUnMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour * (ncolour - 1) / 2) {
baseOffDiagonal(a[Index][0], a[Index][1], eij);
} else {
baseDiagonal(Index, eij);
}
}
template <class cplx>
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) = delta(i, k) * delta(j, l) +
S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
ncolour * ncolour - 1);
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
i2indTa = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++)
SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
tmp * eij[b];
Complex iTr = TensorRemove(timesI(trace(tmp1)));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
for (int b = 0; b < ncolour * ncolour - 1; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
auto tmp = real(trace(i2indTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

317
Grid/qcd/utils/Sp2n.impl.h Normal file
View File

@ -0,0 +1,317 @@
// This file is #included into the body of the class template definition of
// GaugeGroup. So, image there to be
//
// template <int ncolour, class group_name>
// class GaugeGroup {
//
// around it.
//
// Please note that the unconventional file extension makes sure that it
// doesn't get found by the scripts/filelist during bootstrapping.
private:
template <ONLY_IF_Sp>
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
// Sp(2N) has N(2N+1) = 2N^2+N generators
//
// normalise the generators such that
// Trace ( Ta Tb) = 1/2 delta_ab
//
// N generators in the cartan, 2N^2 off
// off diagonal:
// there are 6 types named a,b,c,d and w,z
// abcd are N(N-1)/2 each while wz are N each
template <class cplx, ONLY_IF_Sp>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
// map lie index into type of generators: diagonal, abcd type, wz type
const int nsp = ncolour/2;
int diagIndex;
int aIndex, bIndex, cIndex, dIndex;
int wIndex, zIndex; // a,b,c,d are N(N-1)/2 and w,z are N
const int mod = nsp * (nsp - 1) * 0.5;
const int offdiag =
2 * nsp * nsp; // number of generators not in the cartan subalgebra
const int wmod = 4 * mod;
const int zmod = wmod + nsp;
if (lieIndex >= offdiag) {
diagIndex = lieIndex - offdiag; // 0, ... ,N-1
// std::cout << GridLogMessage << "diag type " << std::endl;
generatorDiagtype(diagIndex, ta);
return;
}
if ((lieIndex >= wmod) && (lieIndex < zmod)) {
// std::cout << GridLogMessage << "w type " << std::endl;
wIndex = lieIndex - wmod; // 0, ... ,N-1
generatorWtype(wIndex, ta);
return;
}
if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
// std::cout << GridLogMessage << "z type " << std::endl;
// std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
// std::cout << GridLogMessage << "z mod " << zmod << std::endl;
zIndex = lieIndex - zmod; // 0, ... ,N-1
generatorZtype(zIndex, ta);
return;
}
if (lieIndex < mod) { // atype 0, ... , N(N-1)/2=mod
// std::cout << GridLogMessage << "a type " << std::endl;
aIndex = lieIndex;
// std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
generatorAtype(aIndex, ta);
return;
}
if ((lieIndex >= mod) && lieIndex < 2 * mod) { // btype mod, ... , 2mod-1
// std::cout << GridLogMessage << "b type " << std::endl;
bIndex = lieIndex - mod;
generatorBtype(bIndex, ta);
return;
}
if ((lieIndex >= 2 * mod) &&
lieIndex < 3 * mod) { // ctype 2mod, ... , 3mod-1
// std::cout << GridLogMessage << "c type " << std::endl;
cIndex = lieIndex - 2 * mod;
generatorCtype(cIndex, ta);
return;
}
if ((lieIndex >= 3 * mod) &&
lieIndex < wmod) { // ctype 3mod, ... , 4mod-1 = wmod-1
// std::cout << GridLogMessage << "d type " << std::endl;
dIndex = lieIndex - 3 * mod;
generatorDtype(dIndex, ta);
return;
}
} // end of generator
template <class cplx, ONLY_IF_Sp>
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
// ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1.0 / 2;
ta()()(diagIndex, diagIndex) = nrm;
ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
// with i<j and i=0,...,N-2
// follows that j=i+1, ... , N
int i1, i2;
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, aIndex);
ta()()(i1, i2) = 1;
ta()()(i2, i1) = 1;
ta()()(i1 + nsp, i2 + nsp) = -1;
ta()()(i2 + nsp, i1 + nsp) = -1;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
// with i<j and i=0,...,N-2
// follows that j=i+1, ... , N-1
const int nsp=ncolour/2;
int i1, i2;
ta = Zero();
cplx i(0.0, 1.0);
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, bIndex);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta()()(i1 + nsp, i2 + nsp) = i;
ta()()(i2 + nsp, i1 + nsp) = -i;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
const int nsp=ncolour/2;
int i1, i2;
ta = Zero();
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, cIndex);
ta()()(i1, i2 + nsp) = 1;
ta()()(i2, i1 + nsp) = 1;
ta()()(i1 + nsp, i2) = 1;
ta()()(i2 + nsp, i1) = 1;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i / 2 sqrt(2)
const int nsp=ncolour/2;
int i1, i2;
ta = Zero();
cplx i(0.0, 1.0);
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, dIndex);
ta()()(i1, i2 + nsp) = i;
ta()()(i2, i1 + nsp) = i;
ta()()(i1 + nsp, i2) = -i;
ta()()(i2 + nsp, i1) = -i;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
// ta(i,i+N) = ta(i+N,i) = 1/2
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1.0 / 2; // check
ta()()(wIndex, wIndex + nsp) = 1;
ta()()(wIndex + nsp, wIndex) = 1;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
// ta(i,i+N) = - ta(i+N,i) = i/2
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1.0 / 2; // check
cplx i(0.0, 1.0);
ta()()(zIndex, zIndex + nsp) = i;
ta()()(zIndex + nsp, zIndex) = -i;
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
template <ONLY_IF_Sp>
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
const int nsp=ncolour/2;
assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
spare = spare - (nsp - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
static void testGenerators(GroupName::Sp) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab "
<< std::endl;
for (int a = 0; a < AlgebraDimension; a++) {
for (int b = 0; b < AlgebraDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << std::endl;
assert(abs(tr) < 1.0e-6);
}
}
template <int N>
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
return ProjectOnSpGroup(Umu);
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
return ProjectOnSpGroup(r);
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
return ProjectOnSpGroup(r);
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
return ProjectOnSpGroup(arg);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
out = SpTa(in);
}
public:
template <ONLY_IF_Sp>
static void Omega(LatticeColourMatrixD &in) {
const int nsp=ncolour/2;
LatticeColourMatrixD OmegaLatt(in.Grid());
LatticeColourMatrixD identity(in.Grid());
ColourMatrix Omega;
OmegaLatt = Zero();
Omega = Zero();
identity = 1.;
for (int i = 0; i < nsp; i++) {
Omega()()(i, nsp + i) = 1.;
Omega()()(nsp + i, i) = -1;
}
OmegaLatt = OmegaLatt + (identity * Omega);
in = OmegaLatt;
}
template <ONLY_IF_Sp, class vtype, int N>
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
const int nsp=ncolour/2;
iScalar<iScalar<iMatrix<vtype, N> > > Omega;
Omega = Zero();
for (int i = 0; i < nsp; i++) {
Omega()()(i, nsp + i) = 1.;
Omega()()(nsp + i, i) = -1;
}
in = Omega;
}

View File

@ -8,9 +8,9 @@
#include <Grid/qcd/utils/ScalarObjs.h>
// Include representations
#include <Grid/qcd/utils/SUn.h>
#include <Grid/qcd/utils/GaugeGroup.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
// All-to-all contraction kernels that touch the
// internal lattice structure

View File

@ -290,7 +290,7 @@ public:
}
*/
//////////////////////////////////////////////////
// the sum over all staples on each site
// the sum over all nu-oriented staples for nu != mu on each site
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
@ -300,6 +300,10 @@ public:
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
Staple(staple, U, mu);
}
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
staple = Zero();
for (int nu = 0; nu < Nd; nu++) {
@ -335,6 +339,203 @@ public:
}
}
/////////////
//Staples for each direction mu, summed over nu != mu
//staple: output staples for each mu (Nd)
//U: link array (Nd)
/////////////
static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
assert(staple.size() == Nd); assert(U.size() == Nd);
for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
}
//A workspace class allowing reuse of the stencil
class WilsonLoopPaddedStencilWorkspace{
std::unique_ptr<GeneralLocalStencil> stencil;
size_t nshift;
void generateStencil(GridBase* padded_grid){
double t0 = usecond();
//Generate shift arrays
std::vector<Coordinate> shifts = this->getShifts();
nshift = shifts.size();
double t1 = usecond();
//Generate local stencil
stencil.reset(new GeneralLocalStencil(padded_grid,shifts));
double t2 = usecond();
std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;
}
public:
//Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly
const GeneralLocalStencil & getStencil(const PaddedCell &pcell){
assert(pcell.depth >= this->paddingDepth());
if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back());
return *stencil;
}
size_t Nshift() const{ return nshift; }
virtual std::vector<Coordinate> getShifts() const = 0;
virtual int paddingDepth() const = 0; //padding depth required
virtual ~WilsonLoopPaddedStencilWorkspace(){}
};
//This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces
class WilsonLoopPaddedWorkspace{
std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk;
std::unique_ptr<PaddedCell> pcell;
void generatePcell(GridBase* unpadded_grid){
assert(stencil_wk.size());
int max_depth = 0;
for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth());
pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid)));
}
public:
//Add a stencil definition. This should be done before the first call to retrieve a stencil object.
//Takes ownership of the pointer
void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){
assert(!pcell);
stencil_wk.push_back(stencil);
}
const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){
if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
return stencil_wk[stencil_idx]->getStencil(*pcell);
}
const PaddedCell & getPaddedCell(GridBase* unpadded_grid){
if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
return *pcell;
}
~WilsonLoopPaddedWorkspace(){
for(auto &s : stencil_wk) delete s;
}
};
//A workspace class allowing reuse of the stencil
class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
public:
std::vector<Coordinate> getShifts() const override{
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++){
for(int nu=0;nu<Nd;nu++){
if(nu != mu){
Coordinate shift_0(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
//U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
shifts.push_back(shift_0);
shifts.push_back(shift_nu);
shifts.push_back(shift_mu);
//U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
shifts.push_back(shift_mnu);
shifts.push_back(shift_mnu);
shifts.push_back(shift_mnu_pmu);
}
}
}
return shifts;
}
int paddingDepth() const override{ return 1; }
};
//Padded cell implementation of the staple method for all mu, summed over nu != mu
//staple: output staple for each mu, summed over nu != mu (Nd)
//U_padded: the gauge link fields padded out using the PaddedCell class
//Cell: the padded cell class
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
StaplePaddedAllWorkspace wk;
StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
}
//Padded cell implementation of the staple method for all mu, summed over nu != mu
//staple: output staple for each mu, summed over nu != mu (Nd)
//U_padded: the gauge link fields padded out using the PaddedCell class
//Cell: the padded cell class
//gStencil: the precomputed generalized local stencil for the staple
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil)
{
double t0 = usecond();
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
assert(Cell.depth >= 1);
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
int shift_mu_off = gStencil._npoints/Nd;
//Open views to padded gauge links and keep open over mu loop
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
size_t vsize = Nd*sizeof(GaugeViewType);
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
GaugeMat gStaple(ggrid);
int outer_off = 0;
for(int mu=0;mu<Nd;mu++){
{ //view scope
autoView( gStaple_v , gStaple, AcceleratorWrite);
auto gStencil_v = gStencil.View();
accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
stencil_ss = Zero();
int off = outer_off;
for(int nu=0;nu<Nd;nu++){
if(nu != mu){
GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss);
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(off++,ss);
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(off++,ss);
auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U2 * U1 * U0;
e = gStencil_v.GetEntry(off++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(off++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(off++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
stencil_ss = stencil_ss + U2 * U1 * U0;
}
}
coalescedWrite(gStaple_v[ss],stencil_ss);
}
);
} //ensure views are all closed!
staple[mu] = Cell.Extract(gStaple);
outer_off += shift_mu_off;
}//mu loop
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
free(Ug_dirs_v_host);
acceleratorFreeDevice(Ug_dirs_v);
double t1=usecond();
std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;
}
//////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu, upper part
//////////////////////////////////////////////////
@ -707,18 +908,14 @@ public:
// the sum over all staples on each site
//////////////////////////////////////////////////
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
U2 = U * Cshift(U, mu, 1);
U2 = U * Gimpl::CshiftLink(U, mu, 1);
}
////////////////////////////////////////////////////////////////////////////
// Hop by two optimisation strategy does not work nicely with Gparity. (could
// do,
// but need to track two deep where cross boundary and apply a conjugation).
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
// so .
// Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
////////////////////////////////////////////////////////////////////////////
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
std::vector<GaugeMat> &U, int mu) {
static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
const std::vector<GaugeMat> &U, int mu) {
Stap = Zero();
@ -732,9 +929,9 @@ public:
// Up staple ___ ___
// | |
tmp = Cshift(adj(U[nu]), nu, -1);
tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1);
tmp = adj(U2[mu]) * tmp;
tmp = Cshift(tmp, mu, -2);
tmp = Gimpl::CshiftLink(tmp, mu, -2);
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
@ -742,14 +939,14 @@ public:
// |___ ___|
//
tmp = adj(U2[mu]) * U[nu];
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2));
// ___ ___
// | ___|
// |___ ___|
//
Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
// ___ ___
// |___ |
@ -758,7 +955,7 @@ public:
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
// Stap+= Cshift(tmp,mu,1) ;
Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1);
;
// --
@ -766,10 +963,10 @@ public:
//
// | |
tmp = Cshift(adj(U2[nu]), nu, -2);
tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2);
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
tmp = U2[nu] * Cshift(tmp, nu, 2);
Stap += Cshift(tmp, mu, 1);
tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2);
Stap += Gimpl::CshiftLink(tmp, mu, 1);
// | |
//
@ -778,25 +975,12 @@ public:
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
tmp = adj(U2[nu]) * tmp;
tmp = Cshift(tmp, nu, -2);
Stap += Cshift(tmp, mu, 1);
tmp = Gimpl::CshiftLink(tmp, nu, -2);
Stap += Gimpl::CshiftLink(tmp, mu, 1);
}
}
}
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
RectStapleUnoptimised(Stap, Umu, mu);
}
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
int mu) {
if (Gimpl::isPeriodicGaugeField()) {
RectStapleOptimised(Stap, U2, U, mu);
} else {
RectStapleUnoptimised(Stap, Umu, mu);
}
}
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
int mu) {
GridBase *grid = Umu.Grid();
@ -895,6 +1079,288 @@ public:
}
}
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
RectStapleUnoptimised(Stap, Umu, mu);
}
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
int mu) {
RectStapleOptimised(Stap, U2, U, mu);
}
//////////////////////////////////////////////////////
//Compute the rectangular staples for all orientations
//Stap : Array of staples (Nd)
//U: Gauge links in each direction (Nd)
/////////////////////////////////////////////////////
static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
assert(Stap.size() == Nd); assert(U.size() == Nd);
std::vector<GaugeMat> U2(Nd,U[0].Grid());
for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
}
//A workspace class allowing reuse of the stencil
class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
public:
std::vector<Coordinate> getShifts() const override{
std::vector<Coordinate> shifts;
for (int mu = 0; mu < Nd; mu++){
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
auto genShift = [&](int mushift,int nushift){
Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
};
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
shifts.push_back(genShift(0,0));
shifts.push_back(genShift(0,+1));
shifts.push_back(genShift(+1,+1));
shifts.push_back(genShift(+2,0));
shifts.push_back(genShift(+1,0));
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(+1,-1));
shifts.push_back(genShift(+2,-1));
shifts.push_back(genShift(+1,0));
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
shifts.push_back(genShift(-1,0));
shifts.push_back(genShift(-1,-1));
shifts.push_back(genShift(-1,-1));
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(+1,-1));
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
shifts.push_back(genShift(-1,0));
shifts.push_back(genShift(-1,0));
shifts.push_back(genShift(-1,+1));
shifts.push_back(genShift(0,+1));
shifts.push_back(genShift(+1,0));
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
shifts.push_back(genShift(0,0));
shifts.push_back(genShift(0,+1));
shifts.push_back(genShift(0,+2));
shifts.push_back(genShift(+1,+1));
shifts.push_back(genShift(+1,0));
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(0,-2));
shifts.push_back(genShift(0,-2));
shifts.push_back(genShift(+1,-2));
shifts.push_back(genShift(+1,-1));
}
}
}
return shifts;
}
int paddingDepth() const override{ return 2; }
};
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
//staple: output staple for each mu, summed over nu != mu (Nd)
//U_padded: the gauge link fields padded out using the PaddedCell class
//Cell: the padded cell class
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
RectStaplePaddedAllWorkspace wk;
RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
}
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
//staple: output staple for each mu, summed over nu != mu (Nd)
//U_padded: the gauge link fields padded out using the PaddedCell class
//Cell: the padded cell class
//gStencil: the stencil
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
double t0 = usecond();
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
assert(Cell.depth >= 2);
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
size_t nshift = gStencil._npoints;
int mu_off_delta = nshift / Nd;
//Open views to padded gauge links and keep open over mu loop
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
size_t vsize = Nd*sizeof(GaugeViewType);
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
GaugeMat gStaple(ggrid); //temp staple object on padded grid
int offset = 0;
for(int mu=0; mu<Nd; mu++){
{ //view scope
autoView( gStaple_v , gStaple, AcceleratorWrite);
auto gStencil_v = gStencil.View();
accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
stencil_ss = Zero();
int s=offset;
for(int nu=0;nu<Nd;nu++){
if(nu != mu){
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
e = gStencil_v.GetEntry(s++,ss);
U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
}
}
coalescedWrite(gStaple_v[ss],stencil_ss);
}
);
offset += mu_off_delta;
}//kernel/view scope
staple[mu] = Cell.Extract(gStaple);
}//mu loop
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
free(Ug_dirs_v_host);
acceleratorFreeDevice(Ug_dirs_v);
double t1 = usecond();
std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;
}
//A workspace for reusing the PaddedCell and GeneralLocalStencil objects
class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{
public:
StapleAndRectStapleAllWorkspace(){
this->addStencil(new StaplePaddedAllWorkspace);
this->addStencil(new RectStaplePaddedAllWorkspace);
}
};
//////////////////////////////////////////////////////
//Compute the 1x1 and 1x2 staples for all orientations
//Stap : Array of staples (Nd)
//RectStap: Array of rectangular staples (Nd)
//U: Gauge links in each direction (Nd)
/////////////////////////////////////////////////////
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
StapleAndRectStapleAllWorkspace wk;
StapleAndRectStapleAll(Stap,RectStap,U,wk);
}
//////////////////////////////////////////////////////
//Compute the 1x1 and 1x2 staples for all orientations
//Stap : Array of staples (Nd)
//RectStap: Array of rectangular staples (Nd)
//U: Gauge links in each direction (Nd)
//wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse
/////////////////////////////////////////////////////
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){
#if 0
StapleAll(Stap, U);
RectStapleAll(RectStap, U);
#else
double t0 = usecond();
GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid());
const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid);
CshiftImplGauge<Gimpl> cshift_impl;
std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
double t1 = usecond();
StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) );
double t2 = usecond();
RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid));
double t3 = usecond();
std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl;
#endif
}
//////////////////////////////////////////////////
// Wilson loop of size (R1, R2), oriented in mu,nu plane
//////////////////////////////////////////////////

View File

@ -43,7 +43,7 @@ class GeneralLocalStencilView {
int _npoints; // Move to template param?
GeneralStencilEntry* _entries_p;
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) {
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) const {
return & this->_entries_p[point+this->_npoints*osite];
}
@ -79,60 +79,60 @@ public:
this->_entries.resize(npoints* osites);
this->_entries_p = &_entries[0];
thread_for(site, osites, {
Coordinate Coor;
Coordinate NbrCoor;
Coordinate Coor;
Coordinate NbrCoor;
for(Integer site=0;site<osites;site++){
for(Integer ii=0;ii<npoints;ii++){
Integer lex = site*npoints+ii;
GeneralStencilEntry SE;
////////////////////////////////////////////////
// Outer index of neighbour Offset calculation
////////////////////////////////////////////////
grid->oCoorFromOindex(Coor,site);
for(int d=0;d<Coor.size();d++){
int rd = grid->_rdimensions[d];
NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
for(Integer ii=0;ii<npoints;ii++){
Integer lex = site*npoints+ii;
GeneralStencilEntry SE;
////////////////////////////////////////////////
// Outer index of neighbour Offset calculation
////////////////////////////////////////////////
grid->oCoorFromOindex(Coor,site);
for(int d=0;d<Coor.size();d++){
int rd = grid->_rdimensions[d];
NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
}
SE._offset = grid->oIndexReduced(NbrCoor);
////////////////////////////////////////////////
// Inner index permute calculation
// Simpler version using icoor calculation
////////////////////////////////////////////////
SE._permute =0;
for(int d=0;d<Coor.size();d++){
int fd = grid->_fdimensions[d];
int rd = grid->_rdimensions[d];
int ly = grid->_simd_layout[d];
assert((ly==1)||(ly==2));
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
int x = Coor[d]; // x in [0... rd-1] as an oSite
int permute_dim = grid->PermuteDim(d);
int permute_slice=0;
if(permute_dim){
int num = shift%rd; // Slice within dest osite cell of slice zero
int wrap = shift/rd; // Number of osite local volume cells crossed through
// x+num < rd dictates whether we are in same permute state as slice 0
if ( x< rd-num ) permute_slice=wrap;
else permute_slice=(wrap+1)%ly;
}
if ( permute_slice ) {
int ptype =grid->PermuteType(d);
uint8_t mask =0x1<<ptype;
SE._permute |= mask;
}
}
////////////////////////////////////////////////
// Store in look up table
////////////////////////////////////////////////
this->_entries[lex] = SE;
}
SE._offset = grid->oIndexReduced(NbrCoor);
////////////////////////////////////////////////
// Inner index permute calculation
// Simpler version using icoor calculation
////////////////////////////////////////////////
SE._permute =0;
for(int d=0;d<Coor.size();d++){
int fd = grid->_fdimensions[d];
int rd = grid->_rdimensions[d];
int ly = grid->_simd_layout[d];
assert((ly==1)||(ly==2));
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
int x = Coor[d]; // x in [0... rd-1] as an oSite
int permute_dim = grid->PermuteDim(d);
int permute_slice=0;
if(permute_dim){
int num = shift%rd; // Slice within dest osite cell of slice zero
int wrap = shift/rd; // Number of osite local volume cells crossed through
// x+num < rd dictates whether we are in same permute state as slice 0
if ( x< rd-num ) permute_slice=wrap;
else permute_slice=(wrap+1)%ly;
}
if ( permute_slice ) {
int ptype =grid->PermuteType(d);
uint8_t mask =0x1<<ptype;
SE._permute |= mask;
}
}
////////////////////////////////////////////////
// Store in look up table
////////////////////////////////////////////////
this->_entries[lex] = SE;
}
}
});
}
};

View File

@ -32,6 +32,7 @@
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
#include <Grid/stencil/GeneralLocalStencil.h>
//////////////////////////////////////////////////////////////////////////////////////////
// Must not lose sight that goal is to be able to construct really efficient

View File

@ -73,6 +73,16 @@ vobj coalescedReadPermute(const vobj & __restrict__ vec,int ptype,int doperm,int
return vec;
}
}
//'perm_mask' acts as a bitmask
template<class vobj> accelerator_inline
vobj coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=0)
{
auto obj = vec, tmp = vec;
for (int d=0;d<nd;d++)
if (perm_mask & (0x1 << d)) { permute(obj,tmp,d); tmp=obj;}
return obj;
}
template<class vobj> accelerator_inline
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
{
@ -83,7 +93,7 @@ void coalescedWriteNonTemporal(vobj & __restrict__ vec,const vobj & __restrict__
{
vstream(vec, extracted);
}
#else
#else //==GRID_SIMT
//#ifndef GRID_SYCL
@ -166,6 +176,14 @@ typename vobj::scalar_object coalescedReadPermute(const vobj & __restrict__ vec,
return extractLane(plane,vec);
}
template<class vobj> accelerator_inline
typename vobj::scalar_object coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=acceleratorSIMTlane(vobj::Nsimd()))
{
int plane = lane;
for (int d=0;d<nd;d++)
plane = (perm_mask & (0x1 << d)) ? plane ^ (vobj::Nsimd() >> (d + 1)) : plane;
return extractLane(plane,vec);
}
template<class vobj> accelerator_inline
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
{
insertLane(lane,vec,extracted);

View File

@ -66,13 +66,61 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
return ret;
}
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
ret._internal = SpTa(r._internal);
return ret;
}
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i] = SpTa(r._internal[i]);
}
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
{
// Generalises Ta to Sp2n
// Applies the following projections
// P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
// where the ordering matters
// P_{traceless} subtracts the trace
// P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
// P_{antihermitian} does in-adj(in) / 2
iMatrix<vtype,N> ret(arg);
double factor = (1.0/(double)N);
vtype nrm;
nrm = 0.5;
ret = arg - (trace(arg)*factor);
for(int c1=0;c1<N/2;c1++)
{
for(int c2=0;c2<N/2;c2++)
{
ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
}
for(int c2=N/2;c2<N;c2++)
{
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]); // reconstructs lower blocks
ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]); // from upper blocks
}
}
ret = (ret - adj(ret))*0.5;
return ret;
}
///////////////////////////////////////////////
// ProjectOnGroup function for scalar, vector, matrix
// Projects on orthogonal, unitary group
///////////////////////////////////////////////
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
@ -90,10 +138,12 @@ template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(c
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
{
typedef typename iMatrix<vtype,N>::scalar_type scalar;
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
vtype nrm;
vtype inner;
scalar one(1.0);
for(int c1=0;c1<N;c1++){
// Normalises row c1
@ -102,7 +152,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
nrm = sqrt(inner);
nrm = 1.0/nrm;
nrm = one/nrm;
for(int c2=0;c2<N;c2++)
ret._internal[c1][c2]*= nrm;
@ -127,7 +177,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
nrm = sqrt(inner);
nrm = 1.0/nrm;
nrm = one/nrm;
for(int c2=0;c2<N;c2++)
ret._internal[c1][c2]*= nrm;
}
@ -135,6 +185,85 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
return ret;
}
// re-do for sp2n
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
// It is defined in gauge impl types
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
ret._internal = ProjectOnSpGroup(r._internal);
return ret;
}
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
}
return ret;
}
// int N is 2n in Sp(2n)
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
{
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
vtype nrm;
vtype inner;
for(int c1=0;c1<N/2;c1++)
{
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
{
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
zeroit(pr);
zeroit(prn);
for(int c=0; c<N; c++)
{
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
}
for(int c=0; c<N; c++)
{
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
}
}
zeroit(inner);
for(int c2=0;c2<N;c2++)
{
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
}
nrm = sqrt(inner);
nrm = 1.0/nrm;
for(int c2=0;c2<N;c2++)
{
ret._internal[c1][c2]*= nrm;
}
for(int c2=0;c2<N/2;c2++)
{
ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]); // down right in the new matrix = (up-left)* of the old matrix
}
for(int c2=N/2;c2<N;c2++)
{
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);; // down left in the new matrix = -(up-right)* of the old
}
}
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -53,7 +53,6 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
}
// Specialisation: Cayley-Hamilton exponential for SU(3)
#if 0
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>

View File

@ -0,0 +1,637 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu
Author: David Murphy
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
// second level EOFA
#undef EOFA_H
#undef USE_OBC
#define DO_IMPLICIT
NAMESPACE_BEGIN(Grid);
/*
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
* -- Store the single prec action operator.
* -- Clone the gauge field from the operator function argument.
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
*/
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
/* Debugging instances of objects; references are stored
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
*/
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Must snarf a single precision copy of the gauge field in Linop_d argument
////////////////////////////////////////////////////////////////////////////////////
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
GridBase * GridPtrF = SinglePrecGrid4;
GridBase * GridPtrD = FermOpD.Umu.Grid();
GaugeFieldF U_f (GridPtrF);
GaugeLinkFieldF Umu_f(GridPtrF);
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
GaugeLinkFieldD Umu_d(GridPtrD);
for(int mu=0;mu<Nd*2;mu++){
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
precisionChange(Umu_f,Umu_d);
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
}
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionD FermionEOFAAction;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
HMCparameters HMCparams;
#if 1
{
XmlReader HMCrd("HMCparameters.xml");
read(HMCrd,"HMCparameters",HMCparams);
}
#else
{
// HMCparameters HMCparams;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.StartTrajectory =7;
HMCparams.SW =4;
HMCparams.Trajectories =1000;
HMCparams.NoMetropolisUntil=0;
HMCparams.MD.name =std::string("Force Gradient");
HMCparams.MD.MDsteps = 10;
HMCparams.MD.trajL = 1.0;
}
#endif
#ifdef DO_IMPLICIT
// typedef GenericHMCRunner<ImplicitLeapFrog> HMCWrapper;
typedef GenericHMCRunner<ImplicitMinimumNorm2> HMCWrapper;
HMCparams.MD.name =std::string("ImplicitMinimumNorm2");
#else
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
HMCparams.MD.name =std::string("ForceGradient");
#endif
std::cout << GridLogMessage<< HMCparams <<std::endl;
HMCWrapper TheHMC(HMCparams);
TheHMC.ReadCommandLine(argc, argv);
{
XmlWriter HMCwr("HMCparameters.xml.out");
write(HMCwr,"HMCparameters",TheHMC.Parameters);
}
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
Real beta = 5.983;
std::cout << GridLogMessage << " beta "<< beta << std::endl;
Real light_mass = 0.00049;
Real strange_mass = 0.0158;
Real charm_mass = 0.191;
Real pv_mass = 1.0;
RealD M5 = 1.4;
RealD b = 2.0;
RealD c = 1.0;
// Copied from paper
// std::vector<Real> hasenbusch({ 0.045 }); // Paper values from F1 incorrect run
std::vector<Real> hasenbusch({ 0.0038, 0.0145, 0.045, 0.108 , 0.25, 0.51 }); // Paper values from F1 incorrect run
std::vector<Real> hasenbusch2({ 0.4 }); // Paper values from F1 incorrect run
// RealD eofa_mass=0.05 ;
///////////////////////////////////////////////////////////////////////////////////////////////
//Bad choices with large dH. Equalising force L2 norm was not wise.
///////////////////////////////////////////////////////////////////////////////////////////////
//std::vector<Real> hasenbusch({ 0.03, 0.2, 0.3, 0.5, 0.8 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
// auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto UGrid_f = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_f);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_f);
#ifndef USE_OBC
// IwasakiGaugeActionR GaugeAction(beta);
WilsonGaugeActionR GaugeAction(beta);
#else
std::vector<Complex> boundaryG = {1,1,1,0};
WilsonGaugeActionR::ImplParams ParamsG(boundaryG);
WilsonGaugeActionR GaugeAction(beta,ParamsG);
#endif
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(UGrid_f);
// These lines are unecessary if BC are all periodic
#ifndef USE_OBC
std::vector<Complex> boundary = {1,1,1,-1};
#else
std::vector<Complex> boundary = {1,1,1,0};
#endif
FermionAction::ImplParams Params(boundary);
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-8;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 100000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(HMCparams.SW);
////////////////////////////////////
// Strange action
////////////////////////////////////
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
// DJM: setup for EOFA ratio (Mobius)
OneFlavourRationalParams OFRp;
OFRp.lo = 0.99; // How do I know this on F1?
OFRp.hi = 20;
OFRp.MaxIter = 100000;
OFRp.tolerance= 1.0e-12;
OFRp.degree = 12;
OFRp.precision= 50;
MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, charm_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, strange_mass, strange_mass, charm_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , charm_mass, strange_mass, charm_mass, -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, charm_mass, strange_mass, charm_mass, -1.0, 1, M5, b, c);
#ifdef EOFA_H
MobiusEOFAFermionD Strange2_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , eofa_mass, eofa_mass, charm_mass , 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange2_Op_LF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, eofa_mass, eofa_mass, charm_mass , 0.0, -1, M5, b, c);
MobiusEOFAFermionD Strange2_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , charm_mass , eofa_mass, charm_mass , -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange2_Op_RF(UF, *FGridF, *FrbGridF, *UGrid_f, *GridRBPtrF, charm_mass , eofa_mass, charm_mass , -1.0, 1, M5, b, c);
#endif
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 50000;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
#ifdef EOFA_H
// Mixed precision EOFA
LinearOperatorEOFAD Strange2_LinOp_L (Strange2_Op_L);
LinearOperatorEOFAD Strange2_LinOp_R (Strange2_Op_R);
LinearOperatorEOFAF Strange2_LinOp_LF(Strange2_Op_LF);
LinearOperatorEOFAF Strange2_LinOp_RF(Strange2_Op_RF);
#endif
MxPCG_EOFA ActionCGL(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
#ifdef EOFA_H
MxPCG_EOFA ActionCGL2(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_LF,Strange2_Op_L,
Strange2_LinOp_LF,Strange2_LinOp_L);
#endif
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
#ifdef EOFA_H
MxPCG_EOFA DerivativeCGL2(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_LF,Strange2_Op_L,
Strange2_LinOp_LF,Strange2_LinOp_L);
#endif
MxPCG_EOFA ActionCGR(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
#ifdef EOFA_H
MxPCG_EOFA ActionCGR2(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_RF,Strange2_Op_R,
Strange2_LinOp_RF,Strange2_LinOp_R);
#endif
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
#ifdef EOFA_H
MxPCG_EOFA DerivativeCGR2(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
Strange2_Op_RF,Strange2_Op_R,
Strange2_LinOp_RF,Strange2_LinOp_R);
#endif
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
OFRp, true);
#ifdef EOFA_H
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA2(Strange2_Op_L, Strange2_Op_R,
ActionCG,
ActionCGL2, ActionCGR2,
DerivativeCGL2, DerivativeCGR2,
OFRp, true);
#endif
Level1.push_back(&EOFA);
#ifdef EOFA_H
Level1.push_back(&EOFA2);
#endif
#else
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
ActionCG, ActionCG,
// DerivativeCG, DerivativeCG,
OFRp, true);
Level1.push_back(&EOFA);
#endif
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
int n_hasenbusch2 = hasenbusch2.size();
light_den.push_back(charm_mass);
for(int h=0;h<n_hasenbusch2;h++){
light_den.push_back(hasenbusch2[h]);
light_num.push_back(hasenbusch2[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<FermionActionF *> DenominatorsF;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
for(int h=0;h<light_den.size();h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
#ifdef MIXED_PRECISION
////////////////////////////////////////////////////////////////////////////
// Mixed precision CG for 2f force
////////////////////////////////////////////////////////////////////////////
double DerivativeStoppingConditionLoose = 1e-8;
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*UGrid_f,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
double conv = DerivativeStoppingCondition;
if (h<3) conv= DerivativeStoppingConditionLoose; // Relax on first two hasenbusch factors
MPCG.push_back(new MxPCG(conv,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
UGrid_f,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
#else
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
#endif
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
NoSmearing<HMCWrapper::ImplPolicy> S;
#ifndef DO_IMPLICIT
TrivialMetric<HMCWrapper::ImplPolicy::Field> Mtr;
#else
LaplacianRatParams gpar(2),mpar(2);
gpar.offset = 1.;
gpar.a0[0] = 500.;
gpar.a1[0] = 0.;
gpar.b0[0] = 0.25;
gpar.b1[0] = 1.;
gpar.a0[1] = -500.;
gpar.a1[1] = 0.;
gpar.b0[1] = 0.36;
gpar.b1[1] = 1.2;
gpar.b2=1.;
mpar.offset = 1.;
mpar.a0[0] = -0.850891906532;
mpar.a1[0] = -1.54707654538;
mpar. b0[0] = 2.85557166137;
mpar. b1[0] = 5.74194794773;
mpar.a0[1] = -13.5120056831218384729709214298;
mpar.a1[1] = 1.54707654538396877086370295729;
mpar.b0[1] = 19.2921090880640520026645390317;
mpar.b1[1] = -3.54194794773029020262811172870;
mpar.b2=1.;
for(int i=0;i<2;i++){
gpar.a1[i] *=16.;
gpar.b1[i] *=16.;
mpar.a1[i] *=16.;
mpar.b1[i] *=16.;
}
gpar.b2 *= 16.*16.;
mpar.b2 *= 16.*16.;
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
LaplacianParams LapPar(0.0001, 1.0, 10000, 1e-8, 12, 64);
std::cout << GridLogMessage << "LaplacianRat " << std::endl;
gpar.tolerance=HMCparams.MD.RMHMCCGTol;
mpar.tolerance=HMCparams.MD.RMHMCCGTol;
std::cout << GridLogMessage << "gpar offset= " << gpar.offset <<std::endl;
std::cout << GridLogMessage << " a0= " << gpar.a0 <<std::endl;
std::cout << GridLogMessage << " a1= " << gpar.a1 <<std::endl;
std::cout << GridLogMessage << " b0= " << gpar.b0 <<std::endl;
std::cout << GridLogMessage << " b1= " << gpar.b1 <<std::endl;
std::cout << GridLogMessage << " b2= " << gpar.b2 <<std::endl ;;
std::cout << GridLogMessage << "mpar offset= " << mpar.offset <<std::endl;
std::cout << GridLogMessage << " a0= " << mpar.a0 <<std::endl;
std::cout << GridLogMessage << " a1= " << mpar.a1 <<std::endl;
std::cout << GridLogMessage << " b0= " << mpar.b0 <<std::endl;
std::cout << GridLogMessage << " b1= " << mpar.b1 <<std::endl;
std::cout << GridLogMessage << " b2= " << mpar.b2 <<std::endl;
// Assumes PeriodicGimplR or D at the moment
auto UGrid = TheHMC.Resources.GetCartesian("gauge");
// auto UGrid_f = GridPtrF;
// auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
// std::cout << GridLogMessage << " UGrid= " << UGrid <<std::endl;
// std::cout << GridLogMessage << " UGrid_f= " << UGrid_f <<std::endl;
LaplacianAdjointRat<HMCWrapper::ImplPolicy, PeriodicGimplF> Mtr(UGrid, UGrid_f ,CG, gpar, mpar);
#endif
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(S,Mtr); // no smearing
Grid_finalize();
} // main

View File

@ -365,9 +365,15 @@ public:
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
#if 1
typedef DomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
#else
typedef GparityDomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
#endif
///////// Source preparation ////////////
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
@ -635,6 +641,170 @@ public:
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
static double Laplace(int L)
{
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark Laplace on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
// typedef ImprovedStaggeredFermionF Action;
// typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
// typename Action::ImplParams params;
// Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
// PeriodicGimplF
typedef typename PeriodicGimplF::LinkField GaugeLinkFieldF;
///////// Source preparation ////////////
GaugeLinkFieldF src (FGrid); random(RNG4,src);
// GaugeLinkFieldF src_e (FrbGrid);
// GaugeLinkFieldF src_o (FrbGrid);
// GaugeLinkFieldF r_e (FrbGrid);
// GaugeLinkFieldF r_o (FrbGrid);
GaugeLinkFieldF r_eo (FGrid);
{
// pickCheckerboard(Even,src_e,src);
// pickCheckerboard(Odd,src_o,src);
const int num_cases = 1;
std::string fmt("G/O/C ");
controls Cases [] = {
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
};
for(int c=0;c<num_cases;c++) {
CovariantAdjointLaplacianStencil<PeriodicGimplF,typename PeriodicGimplF::LinkField> LapStencilF(FGrid);
QuadLinearOperator<CovariantAdjointLaplacianStencil<PeriodicGimplF,typename PeriodicGimplF::LinkField>,PeriodicGimplF::LinkField> QuadOpF(LapStencilF,c2,c1,1.);
LapStencilF.GaugeImport(Umu);
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
StaggeredKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using Stencil Nc Laplace" <<std::endl;
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
// Ds.DhopEO(src_o,r_e,DaggerNo);
QuadOpF.HermOp(src,r_eo);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
// Ds.DhopEO(src_o,r_e,DaggerNo);
QuadOpF.HermOp(src,r_eo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
// double flops=(1146.0*volume)/2;
double flops=(2*2*8*216.0*volume);
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Quad mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Quad mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Quad mflop/s per node "<< mflops/NN<<std::endl;
FGrid->Barrier();
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 Quad Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Quad Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
FGrid->Barrier();
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
};
@ -662,6 +832,7 @@ int main (int argc, char ** argv)
std::vector<double> wilson;
std::vector<double> dwf4;
std::vector<double> staggered;
std::vector<double> lap;
int Ls=1;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -688,12 +859,20 @@ int main (int argc, char ** argv)
staggered.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Laplace QuadOp 4D " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::Laplace(L_list[l]) ;
lap.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered" <<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered \t\t Quad Laplace" <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<< " \t\t "<< lap[l]<< std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;

View File

@ -41,7 +41,7 @@ AC_PROG_RANLIB
############### Get compiler informations
AC_LANG([C++])
AX_CXX_COMPILE_STDCXX_11([noext],[mandatory])
AX_CXX_COMPILE_STDCXX(17,noext,mandatory)
AX_COMPILER_VENDOR
AC_DEFINE_UNQUOTED([CXX_COMP_VENDOR],["$ax_cv_cxx_compiler_vendor"],
[vendor of C++ compiler that will compile the code])
@ -191,10 +191,28 @@ case ${ac_Nc} in
AC_DEFINE([Config_Nc],[4],[Gauge group Nc]);;
5)
AC_DEFINE([Config_Nc],[5],[Gauge group Nc]);;
8)
AC_DEFINE([Config_Nc],[8],[Gauge group Nc]);;
*)
AC_MSG_ERROR(["Unsupport gauge group choice Nc = ${ac_Nc}"]);;
esac
############### Symplectic group
AC_ARG_ENABLE([Sp],
[AC_HELP_STRING([--enable-Sp=yes|no], [enable gauge group Sp2n])],
[ac_ENABLE_SP=${enable_Sp}], [ac_ENABLE_SP=no])
AM_CONDITIONAL(BUILD_SP, [ test "${ac_ENABLE_SP}X" == "yesX" ])
case ${ac_ENABLE_SP} in
yes)
AC_DEFINE([Sp2n_config],[1],[gauge group Sp2n], [have_sp2n=true]);;
no)
AC_DEFINE([Sp2n_config],[0],[gauge group SUn], [have_sp2n=false]);;
*)
AC_MSG_ERROR(["--enable-Sp is either yes or no"]);;
esac
############### FP16 conversions
AC_ARG_ENABLE([sfw-fp16],
[AS_HELP_STRING([--enable-sfw-fp16=yes|no],[enable software fp16 comms])],
@ -737,7 +755,7 @@ case ${ac_TIMERS} in
esac
############### Chroma regression test
AC_ARG_ENABLE([chroma],[AS_HELP_STRING([--enable-chroma],[Expect chroma compiled under c++11 ])],ac_CHROMA=yes,ac_CHROMA=no)
AC_ARG_ENABLE([chroma],[AS_HELP_STRING([--enable-chroma],[Expect chroma compiled under c++14 ])],ac_CHROMA=yes,ac_CHROMA=no)
case ${ac_CHROMA} in
yes|no)
@ -819,6 +837,7 @@ FFTW : `if test "x$have_fftw" = xtrue; then echo yes; els
LIME (ILDG support) : `if test "x$have_lime" = xtrue; then echo yes; else echo no; fi`
HDF5 : `if test "x$have_hdf5" = xtrue; then echo yes; else echo no; fi`
build DOXYGEN documentation : `if test "$DX_FLAG_doc" = '1'; then echo yes; else echo no; fi`
Sp2n : ${ac_ENABLE_SP}
----- BUILD FLAGS -------------------------------------
CXXFLAGS:
`echo ${AM_CXXFLAGS} ${CXXFLAGS} | tr ' ' '\n' | sed 's/^-/ -/g'`
@ -847,6 +866,7 @@ AC_CONFIG_FILES(tests/lanczos/Makefile)
AC_CONFIG_FILES(tests/smearing/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(tests/testu01/Makefile)
AC_CONFIG_FILES(tests/sp2n/Makefile)
AC_CONFIG_FILES(benchmarks/Makefile)
AC_CONFIG_FILES(examples/Makefile)
AC_OUTPUT

Binary file not shown.

View File

@ -10,9 +10,8 @@ For first time setup of the Xcode and Grid build environment on Mac OS, you will
1. Install Xcode and the Xcode command-line utilities
2. Set Grid environment variables
3. Install and build Open MPI ***optional***
4. Install and build Grid pre-requisites
5. Install, Configure and Build Grid
3. Install and build Grid pre-requisites
4. Install, Configure and Build Grid
Apple's [Xcode website][Xcode] is the go-to reference for 1, and the definitive reference for 4 and 5 is the [Grid Documentation][GridDoc].
@ -92,60 +91,33 @@ launchctl setenv GridPkg /opt/local</string>
</plist>
```
## 3. Install and build Open MPI -- ***optional***
Download the latest version of [Open MPI][OMPI] version 3.1 (I used 3.1.5) and build it like so:
[OMPI]: https://www.open-mpi.org/software/ompi/v3.1/
../configure CC=clang CXX=clang++ CXXFLAGS=-g --prefix=$GridPre/bin
make -j 4 all install
***Note the `/bin` at the end of the prefix - this is required. As a quirk of the OpenMPI installer, `--prefix` must point to the `bin` subdirectory, with other files installed in `$GridPre/include`, `$GridPre/lib`, `$GridPre/share`, etc.***
Grid does not have any dependencies on fortran, however many standard scientific packages do, so you may wish to download GNU fortran (e.g. MacPorts ``gfortran`` package) and add the following to your configure invocation:
F77=gfortran FC=gfortran
## 4. Install and build Grid pre-requisites
## 3. Install and build Grid pre-requisites
To simplify the installation of **Grid pre-requisites**, you can use your favourite package manager, e.g.:
### 1. [MacPorts][MacPorts]
### 3.1. [MacPorts][MacPorts]
[MacPorts]: https://www.macports.org "MacPorts package manager"
Install [MacPorts][MacPorts] if you haven't done so already, and then install packages with:
sudo port install <portname>
sudo port install openmpi git-flow-avh gmp hdf5 mpfr fftw-3-single lapack wget autoconf automake bison cmake gawk libomp
These are the `portname`s for mandatory Grid libraries:
On a Mac without GPUs:
* git-flow-avh
* gmp
* hdf5
* mpfr
sudo port install OpenBLAS +native
and these are the `portname`s for optional Grid libraries:
To use `Gnu sha256sum`:
* fftw-3-single
* lapack
* doxygen
* OpenBLAS
pushd /opt/local/bin; sudo ln -s gsha256sum sha256sum; popd
***Please update this list with any packages I've missed! ... and double-check whether OpenBLAS is really for Grid. NB: lapack doesn't seem to work. Should it be scalapack?***
These `port`s are not strictly necessary, but they are helpful:
### 2. [Homebrew][Homebrew]
sudo port install gnuplot gsl h5utils nasm rclone texinfo tree xorg-server
[Homebrew]: https://brew.sh "Homebrew package manager"
***Please update this list with any packages I've missed!***
Install [Homebrew][Homebrew] if you haven't done so already, and then install packages with:
sudo brew install <packagename>
The same packages are available as from MacPorts.
### Install LIME ***optional***
#### Install LIME
There isn't currently a port for [C-LIME][C-LIME], so download the source and then build it:
@ -154,9 +126,19 @@ There isn't currently a port for [C-LIME][C-LIME], so download the source and th
../configure CC=clang --prefix=$GridPre
make -j 4 all install
## 5. Install, Configure and Build Grid
### 3.2. [Homebrew][Homebrew]
### 5.1 Install Grid
[Homebrew]: https://brew.sh "Homebrew package manager"
Install [Homebrew][Homebrew] if you haven't done so already, and then install packages with:
sudo brew install <packagename>
I don't use Homebrew, so I'm not sure what the Brew package name equivalents are. ** Please update if you know **
## 4. Install, Configure and Build Grid
### 4.1 Install Grid
[Grid]: https://github.com/paboyle/Grid
@ -174,7 +156,7 @@ or
depending on how many times you like to enter your password.
### 5.2 Configure Grid
### 4.2 Configure Grid
The Xcode build system supports multiple configurations for each project, by default: `Debug` and `Release`, but more configurations can be defined. We will create separate Grid build directories for each configuration, using the Grid **Autoconf** build system to make each configuration. NB: it is **not** necessary to run `make install` on them once they are built (IDE features such as *jump to definition* will work better of you don't).
@ -198,7 +180,7 @@ Debug configuration with MPI:
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=mpi-auto MPICXX=$GridPre/bin/mpicxx --prefix=$GridPre/MPIDebug
### 5.3 Build Grid
### 4.3 Build Grid
Each configuration must be built before they can be used. You can either:

View File

@ -2778,47 +2778,81 @@ and there are associated reconstruction routines for assembling four spinors fro
These ca
SU(N)
Gauge Group
--------
A generic Nc qcd/utils/GaugeGroup.h is provided. This defines a template class that can be specialised to different gauge groups::
A generic Nc qcd/utils/SUn.h is provided. This defines a template class::
template <int ncolour, class group_name>
class GaugeGroup {...}
template <int ncolour> class SU ;
Supported groups are SU(N) and Sp(2N). The group can be specified through the GroupName namespace::
The most important external methods are::
namespace GroupName {
class SU {};
class Sp {};
}
A simpler interface is achieved by aliasing the GaugeGroup class with a specific group::
template <int ncolour>
using SU = GaugeGroup<ncolour, GroupName::SU>;
template <int ncolour>
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
Specific aliases are then defined::
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef Sp<2> Sp2;
typedef Sp<4> Sp4;
typedef Sp<6> Sp6;
typedef Sp<8> Sp8;
Some methods are common to both gauge groups. Common external methods are::
static void printGenerators(void) ;
template <class cplx> static void generator(int lieIndex, iSUnMatrix<cplx> &ta) ;
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG, LatticeMatrix &out, Real scale = 1.0) ;
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) ;
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out);
static void ColdConfiguration(GaugeField &out);
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out);
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) ;
static void printGenerators(void) ;
Whenever needed, a different implementation of these methods for the gauge groups is achieved by overloading. For example,::
template <typename LatticeMatrixType> // shared interface for the traceless-antihermitian projection
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
taProj(in, out, group_name());
}
template <typename LatticeMatrixType> // overloaded function to SU(N) simply perform Ta
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
out = Ta(in);
}
template <typename LatticeMatrixType> // overloaded function to Sp(2N) must use a modified Ta function
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
out = SpTa(in);
}
Gauge Group: SU(N)
--------
The specialisation of GaugeGroup to SU(N), formally part of qcd/utils/GaugeGroup.h, is found in the file qcd/utils/SUn.impl
It contains methods that are only implemented for SU(N), and specialisations of shared methods to the special unitary group
Public methods are::
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG, RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask);
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) ;
static void GaugeTransform( GaugeField &Umu, GaugeMat &g)
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g);
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) ;
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out);
static void ColdConfiguration(GaugeField &out);
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out);
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) ;
static int su2subgroups(void) ; // returns how many subgroups
Specific instantiations are defined::
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
For example, Quenched QCD updating may be run as (tests/core/Test_quenched_update.cc)::
for(int sweep=0;sweep<1000;sweep++){
@ -2857,6 +2891,16 @@ For example, Quenched QCD updating may be run as (tests/core/Test_quenched_updat
}
}
Gauge Group: Sp(2N)
--------
The specialisation of GaugeGroup to Sp(2N), formally part of qcd/utils/GaugeGroup.h, is found in the file qcd/utils/Sp(2N).impl
It contains methods that are only implemented for Sp(2N), and specialisations of shared methods to the special unitary group
External methods are::
static void Omega(LatticeColourMatrixD &in) // Symplectic matrix left invariant by Sp(2N)
Generation of Sp(2N) gauge fields is only supported via HMC.
Space time grids
----------------

1018
m4/ax_cxx_compile_stdcxx.m4 Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,34 @@
# =============================================================================
# https://www.gnu.org/software/autoconf-archive/ax_cxx_compile_stdcxx_14.html
# =============================================================================
#
# SYNOPSIS
#
# AX_CXX_COMPILE_STDCXX_14([ext|noext], [mandatory|optional])
#
# DESCRIPTION
#
# Check for baseline language coverage in the compiler for the C++14
# standard; if necessary, add switches to CXX and CXXCPP to enable
# support.
#
# This macro is a convenience alias for calling the AX_CXX_COMPILE_STDCXX
# macro with the version set to C++14. The two optional arguments are
# forwarded literally as the second and third argument respectively.
# Please see the documentation for the AX_CXX_COMPILE_STDCXX macro for
# more information. If you want to use this macro, you also need to
# download the ax_cxx_compile_stdcxx.m4 file.
#
# LICENSE
#
# Copyright (c) 2015 Moritz Klammler <moritz@klammler.eu>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 5
AX_REQUIRE_DEFINED([AX_CXX_COMPILE_STDCXX])
AC_DEFUN([AX_CXX_COMPILE_STDCXX_14], [AX_CXX_COMPILE_STDCXX([14], [$1], [$2])])

View File

@ -15,6 +15,8 @@ STAG_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/ins
GP_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/Gparity*' `
ADJ_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonAdj*' `
TWOIND_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonTwoIndex*'`
SP_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/SpWilsonImpl*'`
SP_TWOIND_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/SpWilsonTwo*'`
HPPFILES=`find . -type f -name '*.hpp'`
echo HFILES=$HFILES $HPPFILES > Make.inc
@ -27,13 +29,14 @@ echo STAG_FERMION_FILES=$STAG_FERMION_FILES >> Make.inc
echo GP_FERMION_FILES=$GP_FERMION_FILES >> Make.inc
echo ADJ_FERMION_FILES=$ADJ_FERMION_FILES >> Make.inc
echo TWOIND_FERMION_FILES=$TWOIND_FERMION_FILES >> Make.inc
echo SP_FERMION_FILES=$SP_FERMION_FILES >> Make.inc
echo SP_TWOIND_FERMION_FILES=$SP_TWOIND_FERMION_FILES >> Make.inc
# tests Make.inc
cd $home/tests
dirs=`find . -type d -not -path '*/\.*'`
for subdir in $dirs; do
cd $home/tests/$subdir
pwd
TESTS=`ls T*.cc`
TESTLIST=`echo ${TESTS} | sed s/.cc//g `
PREF=`[ $subdir = '.' ] && echo noinst || echo EXTRA`

53
systems/PVC-OEM/README Normal file
View File

@ -0,0 +1,53 @@
1. Prerequisites:
===================
Make sure you have the latest Intel ipcx release loaded (via modules or similar)
Make sure you have SYCL aware MPICH or Intel MPI loaded (assumed as mpicxx)
2. Obtain Grid:
===================
bash$
git clone https://github.com/paboyle/Grid
cd Grid
./bootstrap.sh
cd systems/PVC
3. Build Grid:
===================
Here, configure command is stored in file config-command:
bash$
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-accelerator-cshift \
--disable-gparity \
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader " \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare "
make all
4. Run a benchmark:
===================
*** Assumes interactive access to node. ***
run Benchmark_dwf_fp32 using benchmarks/bench.sh
bash$
cd benchmarks
./bench.sh

View File

@ -0,0 +1,18 @@
#!/bin/bash
export EnableImplicitScaling=0
export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
export ONEAPI_DEVICE_FILTER=gpu,level_zero
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
mpiexec -launcher ssh -n 1 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 32.32.32.32 --accelerator-threads 16 --shm-mpi 1 --shm 2048 --device-mem 32768 | tee 1tile.log
mpiexec -launcher ssh -n 2 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 32.32.32.64 --accelerator-threads 16 --shm-mpi 1 --shm 2048 --device-mem 32768 | tee 2tile.log
#mpiexec -launcher ssh -n 4 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.2.2 --grid 16.16.64.64 --accelerator-threads 16 --shm-mpi 0 --shm 2048 --device-mem 32768 | tee 4tile.log
#mpiexec -launcher ssh -n 8 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.2.4 --grid 16.16.64.128 --accelerator-threads 16 --shm-mpi 0 --shm 2048 --device-mem 32768 | tee 8tile.log

View File

@ -0,0 +1,12 @@
#!/bin/bash
num_tile=2
gpu_id=$(( (MPI_LOCALRANKID / num_tile ) ))
tile_id=$((MPI_LOCALRANKID % num_tile))
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
echo "local rank $MPI_LOCALRANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK"
"$@"

View File

@ -0,0 +1,15 @@
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-accelerator-cshift \
--disable-gparity \
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader " \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare "

3
systems/PVC-OEM/setup.sh Normal file
View File

@ -0,0 +1,3 @@
export https_proxy=http://proxy-chain.intel.com:911
module load intel-release
module load intel/mpich

View File

@ -1,62 +0,0 @@
#!/bin/sh
##SBATCH -p PVC-SPR-QZEH
##SBATCH -p PVC-ICX-QZNW
#SBATCH -p QZ1J-ICX-PVC
##SBATCH -p QZ1J-SPR-PVC-2C
#source /nfs/site/home/paboylex/ATS/GridNew/Grid/systems/PVC-nightly/setup.sh
export NT=8
export I_MPI_OFFLOAD=1
export I_MPI_OFFLOAD_TOPOLIB=level_zero
export I_MPI_OFFLOAD_DOMAIN_SIZE=-1
# export IGC_EnableLSCFenceUGMBeforeEOT=0
# export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file=False"
export SYCL_DEVICE_FILTER=gpu,level_zero
#export IGC_ShaderDumpEnable=1
#export IGC_DumpToCurrentDir=1
export I_MPI_OFFLOAD_CELL=tile
export EnableImplicitScaling=0
export EnableWalkerPartition=0
export ZE_AFFINITY_MASK=0.0
mpiexec -launcher ssh -n 1 -host localhost ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 32.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 1 --device-mem 32768
export ZE_AFFINITY_MASK=0
export I_MPI_OFFLOAD_CELL=device
export EnableImplicitScaling=1
export EnableWalkerPartition=1
#mpiexec -launcher ssh -n 2 -host localhost vtune -collect gpu-hotspots -knob gpu-sampling-interval=1 -data-limit=0 -r ./vtune_run4 -- ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-overlap --shm-mpi 1
#mpiexec -launcher ssh -n 1 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-overlap --shm-mpi 1
#mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 1
#mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-overlap --shm-mpi 1
#mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 0
#mpirun -np 2 ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 16.32.32.64 --accelerator-threads $NT --comms-sequential --shm-mpi 0
#mpirun -np 2 ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 32.32.32.64 --accelerator-threads $NT --comms-sequential --shm-mpi 1

View File

@ -1,33 +0,0 @@
#!/bin/bash
##SBATCH -p PVC-SPR-QZEH
##SBATCH -p PVC-ICX-QZNW
#SBATCH -p QZ1J-ICX-PVC
#source /nfs/site/home/paboylex/ATS/GridNew/Grid/systems/PVC-nightly/setup.sh
export NT=16
# export IGC_EnableLSCFenceUGMBeforeEOT=0
# export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file=False"
#export IGC_ShaderDumpEnable=1
#export IGC_DumpToCurrentDir=1
export I_MPI_OFFLOAD=1
export I_MPI_OFFLOAD_TOPOLIB=level_zero
export I_MPI_OFFLOAD_DOMAIN_SIZE=-1
export SYCL_DEVICE_FILTER=gpu,level_zero
export I_MPI_OFFLOAD_CELL=tile
export EnableImplicitScaling=0
export EnableWalkerPartition=0
#export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=1
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0
for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
do
mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 32.32.32.64 --accelerator-threads $NT --shm-mpi 0 --device-mem 32768 > 1.1.1.2.log$i
mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --shm-mpi 0 --device-mem 32768 > 2.1.1.1.log$i
done
mpiexec -launcher ssh -n 2 -host localhost ./wrap.sh ./Benchmark_dwf_fp32 --mpi 2.1.1.1 --grid 64.32.32.32 --accelerator-threads $NT --comms-sequential --shm-mpi 0

View File

@ -1,9 +0,0 @@
#!/bin/sh
export ZE_AFFINITY_MASK=0.$MPI_LOCALRANKID
echo Ranke $MPI_LOCALRANKID ZE_AFFINITY_MASK is $ZE_AFFINITY_MASK
$@

View File

@ -1,16 +0,0 @@
INSTALL=/nfs/site/home/paboylx/prereqs/
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--disable-accelerator-cshift \
--disable-gparity \
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-unified=no \
MPICXX=mpicxx \
CXX=dpcpp \
LDFLAGS="-fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$INSTALL/lib" \
CXXFLAGS="-fsycl-unnamed-lambda -fsycl -no-fma -I$INSTALL/include -Wno-tautological-compare"

View File

@ -1,18 +0,0 @@
export https_proxy=http://proxy-chain.intel.com:911
#export LD_LIBRARY_PATH=/nfs/site/home/azusayax/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$HOME/prereqs/lib/:$LD_LIBRARY_PATH
module load intel-release
module load intel-comp-rt/embargo-ci-neo
#source /opt/intel/oneapi/PVC_setup.sh
#source /opt/intel/oneapi/ATS_setup.sh
#module load intel-nightly/20230331
#module load intel-comp-rt/ci-neo-master/026093
#module load intel/mpich
module load intel/mpich/pvc45.3
export PATH=~/ATS/pti-gpu/tools/onetrace/:$PATH
#clsh embargo-ci-neo-022845
#source /opt/intel/vtune_amplifier/amplxe-vars.sh

Some files were not shown because too many files have changed in this diff Show More