1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-10-13 20:54:43 +01:00

Compare commits

...

52 Commits

Author SHA1 Message Date
Peter Boyle
6165931afa Update GridStd.h 2025-10-03 14:35:37 -04:00
23581333e6 link cufft 2025-08-21 22:25:55 +01:00
e5fa3d887f Compile on CUDA 2025-08-21 22:10:27 +01:00
583fa7bb0a FFTW guarded after CUDA adn HIP 2025-08-21 22:00:12 +01:00
Peter Boyle
fe0db53842 FFT offload to GPU and MUCH faster comms.
40x speed up on Frontier
2025-08-21 16:45:38 -04:00
Peter Boyle
76c0ada1e1 Benchmark for En Hung 2025-08-21 16:45:38 -04:00
Peter Boyle
92f49e9194 Merge pull request #482 from g-simonetti/wflow_sp2n_paboyle
Fixed Wilson flow for Nc not equal to 3
2025-08-21 09:10:25 -04:00
Peter Boyle
44c8057b5f Merge pull request #481 from vataspro/sp-reps-fix
Only compile higher fermion representations for symplectic gauge group when requested via configure flag
2025-08-20 12:57:28 -04:00
Alexis Provatas
0ad837f595 Fix Sp representations compilation 2025-08-20 17:48:39 +01:00
Peter Boyle
bd2103c746 Merge pull request #480 from vataspro/fix-no-comms
Fix enable-comms=none
2025-08-20 12:26:47 -04:00
Alexis Provatas
9c18d2ddb0 Fix StencilSendToRecvFromBegin to agree with base 2025-08-20 17:17:06 +01:00
g-simonetti
1245a8c151 num_colours added to class S 2025-08-20 16:27:34 +01:00
g-simonetti
07113dc8ba Changed beta=3 to beta=Nc with comments 2025-08-20 16:18:34 +01:00
a3420e6fa9 Update for grid view logging 2025-08-14 21:29:20 +00:00
732836d9f8 Missed one 2025-08-14 20:25:54 +00:00
87658f7b53 ASSERT tripped in Shuhei's branch 2025-08-14 20:08:54 +00:00
e7f51e5fb1 Timer pointers for hadrons compat.
Reluctantly, this interface is silly to pass timers around.
2025-08-11 21:11:36 +01:00
Peter Boyle
1ce5f70dd1 Update GridStd.h 2025-08-11 12:20:54 -04:00
Peter Boyle
473635f401 Update BinaryIO.h 2025-08-11 11:06:06 -04:00
5adf2657dd Updated to compile and run fast on CUDA 2025-08-10 00:00:13 +01:00
82cfff2990 A2A meson field BLAS based momentum project 2025-08-07 15:51:15 +00:00
4397b1c442 Debugged momentum projection for A2A Meson Field 2025-08-07 15:51:01 +00:00
9e6a4a4737 Assertion updates to macros (mostly) with backtrace.
WIlson flow to include options for DBW2, Iwasaki, Symanzik.
View logging for data assurance
2025-08-07 15:48:38 +00:00
41f344bbd3 Merge with Christoph GPT checksum debug 2025-07-15 03:06:09 +00:00
a77cd50b2f Update comms logging in Cshift 2025-07-11 14:36:10 +00:00
73af020f98 improved 2025-06-27 06:08:54 +00:00
bffb83c46e std::cout<<GridLogMessage<<"Debug:"<<std::endl;
std::cout<<GridLogMessage<<"  --dylib-map     : print dynamic library map, useful for interpreting signal backtraces "<<std::endl;
    std::cout<<GridLogMessage<<"  --heartbeat     : periodic itimer wakeup (interrupts stuck system calls!) "<<std::endl;
    std::cout<<GridLogMessage<<"  --signal-delay n : pause for n seconds after signal handling (useful to get ALL nodes in stuck state) "<<std::endl;
    std::cout<<GridLogMessage<<"  --debug-stdout  : print stdout from EVERY node to file Grid.stdout/err.rank "<<std::endl;
    std::cout<<GridLogMessage<<"  --debug-signals : catch sigsegv and print a blame report, handle SIGHUP with a backtrace to stderr"<<std::endl;
    std::cout<<GridLogMessage<<"  --debug-heartbeat : periodically report backtrace "<<std::endl;

--dylib-map : Grid prints its dylib regions
--heartbeat : itimer based / SIGALRM wake up which seems to make Aurora
more stable
--debug-heartbeat : periodically report to stderr where we are in code

Now have libunwind option (configure: --with-unwind=<prefix>) to give an
Asynch-Signal safe backtrace. Avoid glibc backtrace due to mallocs.
2025-06-27 06:08:54 +00:00
7031f37350 Use libunwind for backtrace as it is signal asynch safe 2025-06-27 06:08:54 +00:00
829dd74cb2 Verbose change 2025-06-27 06:08:54 +00:00
66e671985d P2P 2025-06-27 06:08:54 +00:00
5afcbcf0f3 Cshift uses flight recorder 2025-06-27 06:08:54 +00:00
9730579312 Simplify and verbose 2025-06-27 06:08:51 +00:00
bfae14d035 More flight logging 2025-06-27 06:07:34 +00:00
b78fc73d19 Better signal handler 2025-06-27 06:07:34 +00:00
Peter Boyle
709f8ae76c Update README 2025-06-26 23:06:11 -04:00
Peter Boyle
7aa06329d0 Update for new stencil compression options 2025-06-17 18:06:19 +02:00
Peter Boyle
9d6a38c44c Compressed comms options as Sloppy 2025-06-17 16:43:53 +02:00
Peter Boyle
6ec5cee368 Preparing for compressed comms 2025-06-17 16:38:10 +02:00
Peter Boyle
f2e9a68825 Simplify 2025-06-13 17:32:05 +02:00
Peter Boyle
d88750e6b6 Sloppy + non-sloppy 2025-06-13 16:42:01 +02:00
Peter Boyle
821358eda7 Remove partial dirichlet. Favour intro reduced prec comms options 2025-06-13 05:08:45 +02:00
Peter Boyle
fce6e1f135 Kill core files for quota reasons 2025-06-13 05:08:15 +02:00
Peter Boyle
8f0bb3e676 remove partial dirichlet 2025-06-13 05:07:56 +02:00
Peter Boyle
262c70d967 USe sloppy comms options 2025-06-13 05:07:23 +02:00
Peter Boyle
da43ef7c2d REmove partial dirichlet option. It's going nowhere 2025-06-13 05:05:15 +02:00
Peter Boyle
7b60ab5df1 Warning suppress 2025-06-13 05:04:55 +02:00
Peter Boyle
f6b961a64e Warning suppress 2025-06-13 05:04:47 +02:00
Peter Boyle
f1ed988aa3 Interface to reduced precision comms 2025-06-13 05:04:12 +02:00
Peter Boyle
eea51bb604 Suppress annoying warns 2025-06-13 05:03:36 +02:00
Peter Boyle
9203126aa5 Scripts 2025-06-11 15:30:16 +02:00
Peter Boyle
f90ba4712a Update for Jupiter 2025-06-11 15:24:34 +02:00
Peter Boyle
3737a24096 Updated python output 2025-06-03 14:09:29 -04:00
335 changed files with 5247 additions and 3670 deletions

View File

@@ -120,7 +120,7 @@ inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(ba
cudaGetErrorString( err )); \
printf("File %s Line %d\n",__FILE__,__LINE__); \
fflush(stdout); \
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess); \
if (acceleratorAbortOnGpuError) GRID_ASSERT(err==cudaSuccess); \
} \
}
@@ -168,7 +168,7 @@ public:
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
@@ -276,11 +276,11 @@ public:
{
#ifdef GRID_HIP
auto err = hipDeviceSynchronize();
assert(err==hipSuccess);
GRID_ASSERT(err==hipSuccess);
#endif
#ifdef GRID_CUDA
auto err = cudaDeviceSynchronize();
assert(err==cudaSuccess);
GRID_ASSERT(err==cudaSuccess);
#endif
#ifdef GRID_SYCL
accelerator_barrier();
@@ -305,8 +305,8 @@ public:
{
RealD t2=usecond();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
GRID_ASSERT(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -341,7 +341,7 @@ public:
(hipblasDoubleComplex *) Bkn, ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc);
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -361,7 +361,7 @@ public:
(cuDoubleComplex *) Bkn, ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
@@ -433,8 +433,8 @@ public:
{
RealD t2=usecond();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
GRID_ASSERT(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -469,7 +469,7 @@ public:
(hipblasComplex *) Bkn, ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex *) Cmn, ldc);
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -489,7 +489,7 @@ public:
(cuComplex *) Bkn, ldb,
(cuComplex *) &beta_p[0],
(cuComplex *) Cmn, ldc);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
@@ -595,11 +595,11 @@ public:
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
GRID_ASSERT(Bkn.size()==batchCount);
GRID_ASSERT(Cmn.size()==batchCount);
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
GRID_ASSERT(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -636,7 +636,7 @@ public:
(hipblasDoubleComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -657,7 +657,7 @@ public:
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
@@ -804,8 +804,8 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
GRID_ASSERT(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -821,8 +821,8 @@ public:
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
GRID_ASSERT(Bkn.size()==batchCount);
GRID_ASSERT(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
@@ -843,7 +843,7 @@ public:
(hipblasComplex **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -864,7 +864,7 @@ public:
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;

View File

@@ -51,11 +51,13 @@ directory
#pragma nv_diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
#pragma nv_diag_suppress declared_but_not_referenced
#pragma nv_diag_suppress extra_semicolon
#else
//disables nvcc specific warning in json.hpp
#pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type
#pragma diag_suppress declared_but_not_referenced
//disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon

View File

@@ -1,9 +1,17 @@
#ifndef GRID_STD_H
#define GRID_STD_H
///////////////////
// Grid config
///////////////////
#include "Config.h"
///////////////////
// Std C++ dependencies
///////////////////
#define _NBACKTRACE (256)
extern void * Grid_backtrace_buffer[_NBACKTRACE];
#include <cassert>
#include <complex>
#include <memory>
@@ -15,7 +23,9 @@
#include <random>
#include <functional>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <strings.h>
#include <stdio.h>
#include <signal.h>
@@ -23,11 +33,36 @@
#include <sys/time.h>
#include <chrono>
#include <zlib.h>
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>
#endif
void GridAbort(void);
#define ASSLOG(A) ::write(STDERR_FILENO,A,::strlen(A));
#ifdef HAVE_EXECINFO_H
#define GRID_ASSERT(b) if(!(b)) { \
fflush(stdout); \
ASSLOG(" GRID_ASSERT failure: "); \
ASSLOG(__FILE__); \
ASSLOG(" : "); \
ASSLOG(#b); \
ASSLOG(" : "); \
int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE); \
backtrace_symbols_fd(Grid_backtrace_buffer,symbols,STDERR_FILENO); \
GridAbort(); \
};
#else
#define GRID_ASSERT(b) if(!(b)) { \
ASSLOG(" GRID_ASSERT failure: "); \
ASSLOG(__FILE__); \
ASSLOG(" : "); \
ASSLOG(#b); \
ASSLOG(" : "); \
GridAbort(); \
};
#endif
///////////////////
// Grid config
///////////////////
#include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS

View File

@@ -68,8 +68,10 @@ if BUILD_FERMION_REPS
endif
if BUILD_SP
extra_sources+=$(SP_FERMION_FILES)
if BUILD_FERMION_REPS
extra_sources+=$(SP_TWOIND_FERMION_FILES)
endif
endif
lib_LIBRARIES = libGrid.a

View File

@@ -29,8 +29,8 @@ directory
#pragma once
#include <type_traits>
#include <cassert>
#include <exception>
#include <cassert>
#define NAMESPACE_BEGIN(A) namespace A {
#define NAMESPACE_END(A) }

View File

@@ -51,6 +51,8 @@ NAMESPACE_CHECK(approx);
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
// Not really deflation, but useful
#include <Grid/algorithms/blas/MomentumProject.h>
NAMESPACE_CHECK(deflation);
#include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad);

View File

@@ -28,6 +28,15 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
#ifdef GRID_CUDA
#include <cufft.h>
#endif
#ifdef GRID_HIP
#include <hipfft/hipfft.h>
#endif
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
#ifdef HAVE_FFTW
#if defined(USE_MKL) || defined(GRID_SYCL)
#include <fftw/fftw3.h>
@@ -35,88 +44,190 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <fftw3.h>
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
#ifndef FFTW_FORWARD
#define FFTW_FORWARD (-1)
#define FFTW_BACKWARD (+1)
#define FFTW_ESTIMATE (0)
#endif
#ifdef HAVE_FFTW
template<class scalar> struct FFTW {
};
#ifdef GRID_HIP
template<> struct FFTW<ComplexD> {
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
typedef hipfftDoubleComplex FFTW_scalar;
typedef hipfftHandle FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
FFTW_scalar *in, int *inembed,
int istride, int idist,
FFTW_scalar *out, int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
FFTW_plan p;
auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_Z2Z,howmany);
GRID_ASSERT(rv==HIPFFT_SUCCESS);
return p;
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
hipfftResult rv;
if ( sign == forward ) rv =hipfftExecZ2Z(p,in,out,HIPFFT_FORWARD);
else rv =hipfftExecZ2Z(p,in,out,HIPFFT_BACKWARD);
accelerator_barrier();
GRID_ASSERT(rv==HIPFFT_SUCCESS);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
hipfftDestroy(p);
}
};
template<> struct FFTW<ComplexF> {
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
typedef hipfftComplex FFTW_scalar;
typedef hipfftHandle FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
FFTW_scalar *in, int *inembed,
int istride, int idist,
FFTW_scalar *out, int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
FFTW_plan p;
auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_C2C,howmany);
GRID_ASSERT(rv==HIPFFT_SUCCESS);
return p;
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
hipfftResult rv;
if ( sign == forward ) rv =hipfftExecC2C(p,in,out,HIPFFT_FORWARD);
else rv =hipfftExecC2C(p,in,out,HIPFFT_BACKWARD);
accelerator_barrier();
GRID_ASSERT(rv==HIPFFT_SUCCESS);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
hipfftDestroy(p);
}
};
#endif
#ifdef GRID_CUDA
template<> struct FFTW<ComplexD> {
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
typedef cufftDoubleComplex FFTW_scalar;
typedef cufftHandle FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
FFTW_scalar *in, int *inembed,
int istride, int idist,
FFTW_scalar *out, int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
FFTW_plan p;
cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_Z2Z,howmany);
return p;
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
if ( sign == forward ) cufftExecZ2Z(p,in,out,CUFFT_FORWARD);
else cufftExecZ2Z(p,in,out,CUFFT_INVERSE);
accelerator_barrier();
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
cufftDestroy(p);
}
};
template<> struct FFTW<ComplexF> {
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
typedef cufftComplex FFTW_scalar;
typedef cufftHandle FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
FFTW_scalar *in, int *inembed,
int istride, int idist,
FFTW_scalar *out, int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
FFTW_plan p;
cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_C2C,howmany);
return p;
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
if ( sign == forward ) cufftExecC2C(p,in,out,CUFFT_FORWARD);
else cufftExecC2C(p,in,out,CUFFT_INVERSE);
accelerator_barrier();
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
cufftDestroy(p);
}
};
#endif
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
#ifdef HAVE_FFTW
template<> struct FFTW<ComplexD> {
public:
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
FFTW_scalar *in, int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
FFTW_scalar *out, int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
template<> struct FFTW<ComplexF> {
public:
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
FFTW_scalar *in, int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
FFTW_scalar *out, int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
#endif
#ifndef FFTW_FORWARD
#define FFTW_FORWARD (-1)
#define FFTW_BACKWARD (+1)
#endif
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
double flops;
double flops_call;
uint64_t usec;
Coordinate dimensions;
Coordinate processors;
Coordinate processor_coor;
public:
static const int forward=FFTW_FORWARD;
@@ -126,31 +237,25 @@ public:
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
FFT ( GridCartesian * grid )
{
flops=0;
usec =0;
Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors,*grid);
};
~FFT ( void) {
delete sgrid;
// delete sgrid;
}
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
// vgrid=result.Grid();
// conformable(result.Grid(),vgrid);
// conformable(source.Grid(),vgrid);
const int Ndim = source.Grid()->Nd();
Lattice<vobj> tmp = source;
for(int d=0;d<Ndim;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
@@ -160,62 +265,70 @@ public:
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
Coordinate mask(Nd,1);
const int Ndim = source.Grid()->Nd();
Coordinate mask(Ndim,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
std::cerr << "FFTW is not compiled but is called"<<std::endl;
assert(0);
#else
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
const int Ndim = source.Grid()->Nd();
GridBase *grid = source.Grid();
conformable(result.Grid(),source.Grid());
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
Coordinate layout(Nd,1);
Coordinate pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
int L = grid->_ldimensions[dim];
int G = grid->_fdimensions[dim];
Coordinate layout(Ndim,1);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
int64_t Nlow = 1;
int64_t Nhigh = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
Nlow*=grid->_ldimensions[d];
}
for(int d=dim+1;d<Ndim;d++){
Nhigh*=grid->_ldimensions[d];
}
int64_t Nperp=Nlow*Nhigh;
deviceVector<scalar> pgbuf; // Layout is [perp][component][dim]
pgbuf.resize(Nperp*Ncomp*G);
scalar *pgbuf_v = &pgbuf[0];
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int howmany = Ncomp * Nperp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
idist = odist = G; /* Distance between consecutive FT's */
istride = ostride = 1; /* Distance between two elements in the same FT */
int *inembed = n, *onembed = n;
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
else GRID_ASSERT(0);
double t_pencil=0;
double t_fft =0;
double t_total =-usecond();
// std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
/*
*
*/
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@@ -229,72 +342,154 @@ public:
}
// Barrel shift and collect global pencil
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
// std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Ndim), gcoor(Ndim);
double t_copy=0;
double t_shift=0;
t_pencil = -usecond();
result = source;
int pc = processor_coor[dim];
int pc = grid->_processor_coor[dim];
const Coordinate ldims = grid->_ldimensions;
const Coordinate rdims = grid->_rdimensions;
const Coordinate sdims = grid->_simd_layout;
Coordinate processors = grid->_processors;
Coordinate pgdims(Ndim);
pgdims[0] = G;
for(int d=0, dd=1;d<Ndim;d++){
if ( d!=dim ) pgdims[dd++] = ldims[d];
}
int64_t pgvol=1;
for(int d=0;d<Ndim;d++) pgvol*=pgdims[d];
const int Nsimd = vobj::Nsimd();
for(int p=0;p<processors[dim];p++) {
t_copy-=usecond();
autoView(r_v,result,AcceleratorRead);
accelerator_for(idx, grid->oSites(), vobj::Nsimd(), {
#ifdef GRID_SIMT
{
autoView(r_v,result,CpuRead);
autoView(p_v,pgbuf,CpuWrite);
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,r_v,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
pokeLocalSite(s,p_v,cbuf);
});
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
Coordinate icoor;
Coordinate ocoor;
Coordinate pgcoor;
Lexicographic::CoorFromIndex(icoor,lane,sdims);
Lexicographic::CoorFromIndex(ocoor,idx,rdims);
pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + ((pc+p)%processors[dim])*L;
for(int d=0,dd=1;d<Ndim;d++){
if ( d!=dim ) {
pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
dd++;
}
}
// Map coordinates in lattice layout to FFTW index
int64_t pgidx;
Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
vector_type *from = (vector_type *)&r_v[idx];
scalar_type stmp;
for(int w=0;w<Ncomp;w++){
int64_t pg_idx = pgidx + w*pgvol;
stmp = getlane(from[w], lane);
pgbuf_v[pg_idx] = stmp;
}
#ifdef GRID_SIMT
}
#else
}
#endif
});
t_copy+=usecond();
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
Lattice<vobj> temp(grid);
t_shift-=usecond();
temp = Cshift(result,dim,L); result = temp;
t_shift+=usecond();
}
}
t_pencil += usecond();
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
thread_for( idx,NN,{
Coordinate cbuf(Nd);
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
});
timer.Stop();
FFTW_scalar *in = (FFTW_scalar *)pgbuf_v;
FFTW_scalar *out= (FFTW_scalar *)pgbuf_v;
t_fft = -usecond();
FFTW<scalar>::fftw_execute_dft(p,in,out,sign);
t_fft += usecond();
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result
flops_call = 5.0*howmany*G*log2(G);
usec = t_fft;
flops= flops_call;
result = Zero();
double t_insert = -usecond();
{
autoView(pgbuf_v,pgbuf,CpuRead);
autoView(result_v,result,CpuWrite);
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf_v,cgbuf);
pokeLocalSite(s,result_v,clbuf);
autoView(r_v,result,AcceleratorWrite);
accelerator_for(idx,grid->oSites(),Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
Coordinate icoor(Ndim);
Coordinate ocoor(Ndim);
Coordinate pgcoor(Ndim);
Lexicographic::CoorFromIndex(icoor,lane,sdims);
Lexicographic::CoorFromIndex(ocoor,idx,rdims);
pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + pc*L;
for(int d=0,dd=1;d<Ndim;d++){
if ( d!=dim ) {
pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
dd++;
}
}
// Map coordinates in lattice layout to FFTW index
int64_t pgidx;
Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
vector_type *to = (vector_type *)&r_v[idx];
scalar_type stmp;
for(int w=0;w<Ncomp;w++){
int64_t pg_idx = pgidx + w*pgvol;
stmp = pgbuf_v[pg_idx];
putlane(to[w], stmp, lane);
}
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
result = result*div;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
t_insert +=usecond();
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif
t_total +=usecond();
std::cout <<GridLogPerformance<< " FFT took "<<t_total/1.0e6 <<" s" << std::endl;
std::cout <<GridLogPerformance<< " FFT pencil "<<t_pencil/1.0e6 <<" s" << std::endl;
std::cout <<GridLogPerformance<< " of which copy "<<t_copy/1.0e6 <<" s" << std::endl;
std::cout <<GridLogPerformance<< " of which shift"<<t_shift/1.0e6 <<" s" << std::endl;
std::cout <<GridLogPerformance<< " FFT kernels "<<t_fft/1.0e6 <<" s" << std::endl;
std::cout <<GridLogPerformance<< " FFT insert "<<t_insert/1.0e6 <<" s" << std::endl;
}
};

View File

@@ -64,7 +64,7 @@ public:
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// with an GRID_ASSERT trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
/////////////////////////////////////////////////////////////////////////////////////////////
@@ -148,22 +148,22 @@ public:
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
GRID_ASSERT(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
GRID_ASSERT(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
GRID_ASSERT(0);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
GRID_ASSERT(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
GRID_ASSERT(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
@@ -188,13 +188,13 @@ public:
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
GRID_ASSERT(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
GRID_ASSERT(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
GRID_ASSERT(0);
};
void Op (const Field &in, Field &out){
HermOp(in,out);
@@ -271,10 +271,10 @@ public:
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
GRID_ASSERT(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
GRID_ASSERT(0);
}
};
template<class Matrix,class Field>
@@ -303,10 +303,10 @@ public:
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
GRID_ASSERT(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
GRID_ASSERT(0);
}
};
@@ -345,13 +345,13 @@ class SchurOperatorBase : public LinearOperatorBase<Field> {
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
GRID_ASSERT(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
GRID_ASSERT(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
GRID_ASSERT(0);
};
};
template<class Matrix,class Field>
@@ -447,10 +447,10 @@ class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
assert(0);
GRID_ASSERT(0);
}
virtual void HermOp(const Field& in, Field& out) {
assert(0);
GRID_ASSERT(0);
}
void Op(const Field& in, Field& out) {
Mpc(in, out);
@@ -460,13 +460,13 @@ class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
}
// Support for coarsening to a multigrid
void OpDiag(const Field& in, Field& out) {
assert(0); // must coarsen the unpreconditioned system
GRID_ASSERT(0); // must coarsen the unpreconditioned system
}
void OpDir(const Field& in, Field& out, int dir, int disp) {
assert(0);
GRID_ASSERT(0);
}
void OpDirAll(const Field& in, std::vector<Field>& out){
assert(0);
GRID_ASSERT(0);
};
};
@@ -580,7 +580,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
GRID_ASSERT( _Mat.isTrivialEE() );
mass = _Mat.Mass();
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
@@ -611,7 +611,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out) {
assert(0);// Never need with staggered
GRID_ASSERT(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
@@ -623,7 +623,7 @@ template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
assert(in.size()==out.size());
GRID_ASSERT(in.size()==out.size());
for(int k=0;k<in.size();k++){
(*this)(Linop,in[k],out[k]);
}
@@ -637,7 +637,7 @@ public:
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
assert(in.size() == out.size());
GRID_ASSERT(in.size() == out.size());
for (unsigned int i = 0; i < in.size(); ++i)
{

View File

@@ -121,7 +121,7 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
// Reallocate arrays, since degree has changed
if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
assert(a_len<=SUM_MAX);
GRID_ASSERT(a_len<=SUM_MAX);
step = new bigfloat[num_degree+den_degree+2];
@@ -151,9 +151,9 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
equations();
if (delta < tolerance) {
std::cout<<"Delta too small, try increasing precision\n";
assert(0);
GRID_ASSERT(0);
};
assert( delta>= tolerance);
GRID_ASSERT( delta>= tolerance);
search(step);
}

View File

@@ -134,7 +134,7 @@ class AlgRemez
virtual ~AlgRemez();
int getDegree(void){
assert(n==d);
GRID_ASSERT(n==d);
return n;
}
// Reset the bounds of the approximation

View File

@@ -28,11 +28,11 @@ void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyTy
pow_n = num_degree;
pow_d = den_degree;
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) GRID_ASSERT(0);
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) GRID_ASSERT(0);
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) GRID_ASSERT(0);
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) GRID_ASSERT(0);
num_type = num_type_in;
den_type = den_type_in;
@@ -112,9 +112,9 @@ double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degre
equations();
if (delta < tolerance) {
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
assert(0);
GRID_ASSERT(0);
};
assert( delta>= tolerance );
GRID_ASSERT( delta>= tolerance );
search();
}
@@ -278,7 +278,7 @@ void AlgRemezGeneral::equations(){
if(num_pows[j] != -1){ *aa++ = z; t++; }
z *= x;
}
assert(t == n+1);
GRID_ASSERT(t == n+1);
z = (bigfloat)1l;
t = 0;
@@ -286,7 +286,7 @@ void AlgRemezGeneral::equations(){
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
z *= x;
}
assert(t == d);
GRID_ASSERT(t == d);
B[i] = y * z; // Right hand side vector
}

View File

@@ -106,7 +106,7 @@ class AlgRemezGeneral{
bigfloat (*f)(bigfloat x, void *data), void *data);
inline int getDegree(void) const{
assert(n==d);
GRID_ASSERT(n==d);
return n;
}
// Reset the bounds of the approximation

View File

@@ -74,7 +74,7 @@ bigfloat epsilonMobius(bigfloat x, void* data){
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound){
assert(omega_in.size() == Ls_in);
GRID_ASSERT(omega_in.size() == Ls_in);
omega_out.resize(Ls_out);
//Use the Remez algorithm to generate the appropriate rational polynomial

View File

@@ -65,6 +65,7 @@ NAMESPACE_BEGIN(Grid);
#endif
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
enum GridBLASPrecision_t { GridBLAS_PRECISION_DEFAULT, GridBLAS_PRECISION_16F, GridBLAS_PRECISION_16BF, GridBLAS_PRECISION_TF32 };
class GridBLAS {
public:
@@ -97,7 +98,22 @@ public:
gridblasInit=1;
}
}
#ifdef GRID_CUDA
cublasComputeType_t toDataType(GridBLASPrecision_t p) {
switch (p) {
case GridBLAS_PRECISION_16F:
return CUBLAS_COMPUTE_32F_FAST_16F;
case GridBLAS_PRECISION_16BF:
return CUBLAS_COMPUTE_32F_FAST_16BF;
case GridBLAS_PRECISION_TF32:
return CUBLAS_COMPUTE_32F_FAST_TF32;
default:
GRID_ASSERT(0);
}
return CUBLAS_COMPUTE_32F_FAST_16F;
}
#endif
// Force construct once
GridBLAS() { Init(); };
~GridBLAS() { };
@@ -119,11 +135,11 @@ public:
{
#ifdef GRID_HIP
auto err = hipDeviceSynchronize();
assert(err==hipSuccess);
GRID_ASSERT(err==hipSuccess);
#endif
#ifdef GRID_CUDA
auto err = cudaDeviceSynchronize();
assert(err==cudaSuccess);
GRID_ASSERT(err==cudaSuccess);
#endif
#ifdef GRID_SYCL
accelerator_barrier();
@@ -138,8 +154,10 @@ public:
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
deviceVector<ComplexD*> &Cmn,
GridBLASPrecision_t precision = GridBLAS_PRECISION_DEFAULT)
{
GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT);
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
@@ -201,12 +219,14 @@ public:
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
deviceVector<ComplexD*> &Cmn,
GridBLASPrecision_t precision = GridBLAS_PRECISION_DEFAULT)
{
GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT);
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
GRID_ASSERT(Bkn.size()==batchCount);
GRID_ASSERT(Cmn.size()==batchCount);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
@@ -246,7 +266,7 @@ public:
(hipblasDoubleComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -267,7 +287,7 @@ public:
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
@@ -448,7 +468,8 @@ public:
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
deviceVector<ComplexF*> &Cmn,
GridBLASPrecision_t precision = GridBLAS_PRECISION_DEFAULT)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
@@ -470,9 +491,10 @@ public:
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
GRID_ASSERT(Bkn.size()==batchCount);
GRID_ASSERT(Cmn.size()==batchCount);
#ifdef GRID_HIP
GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT);
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
@@ -492,7 +514,7 @@ public:
(hipblasComplex **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -503,50 +525,67 @@ public:
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda,
(cuComplex **)&Bkn[0], ldb,
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
cublasStatus_t err;
if (precision == GridBLAS_PRECISION_DEFAULT) {
err = cublasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda,
(cuComplex **)&Bkn[0], ldb,
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
} else {
cublasComputeType_t compute_precision = toDataType(precision);
err = cublasGemmBatchedEx(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(void *) &alpha_p[0],
(void **)&Amk[0], CUDA_C_32F, lda,
(void **)&Bkn[0], CUDA_C_32F, ldb,
(void *) &beta_p[0],
(void **)&Cmn[0], CUDA_C_32F, ldc,
batchCount, compute_precision, CUBLAS_GEMM_DEFAULT);
}
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(ComplexF *) &alpha_p[0],
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
(const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
(ComplexF *) &beta_p[0],
(ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT);
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(ComplexF *) &alpha_p[0],
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
(const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
(ComplexF *) &beta_p[0],
(ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT);
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
@@ -643,8 +682,8 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
GRID_ASSERT(OpA!=GridBLAS_OP_C); // Real case no conjugate
GRID_ASSERT(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -660,8 +699,8 @@ public:
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
GRID_ASSERT(Bkn.size()==batchCount);
GRID_ASSERT(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
@@ -681,7 +720,7 @@ public:
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -702,7 +741,7 @@ public:
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
@@ -802,8 +841,8 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
GRID_ASSERT(OpA!=GridBLAS_OP_C); // Real case no conjugate
GRID_ASSERT(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -820,8 +859,8 @@ public:
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
GRID_ASSERT(Bkn.size()==batchCount);
GRID_ASSERT(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
@@ -841,7 +880,7 @@ public:
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
@@ -862,7 +901,7 @@ public:
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
@@ -946,6 +985,336 @@ public:
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
/*
Inverse and Determinant
- CPU version uses Eigen
- GPU version uses LAPACK-compatible getrf / getri
Design comment: Eigen does not expose getrf / getri in a LAPACK compatible manner.
Overhead to go through getrf / getri for CPU version too large.
Current interface therefore only guarantees the inverse and determinant
functions on all platforms but not the getrf / getri ones.
*/
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
void inverseBatched(int64_t n,
deviceVector<ComplexD*> &Ann,
deviceVector<ComplexD*> &Cnn) {
int64_t batchCount = Ann.size();
GRID_ASSERT(batchCount == Cnn.size());
thread_for(p,batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAnn(Ann[p],n,n);
Eigen::Map<Eigen::MatrixXcd> eCnn(Cnn[p],n,n);
eCnn = eAnn.inverse();
});
}
void inverseBatched(int64_t n,
deviceVector<ComplexF*> &Ann,
deviceVector<ComplexF*> &Cnn) {
int64_t batchCount = Ann.size();
GRID_ASSERT(batchCount == Cnn.size());
thread_for(p,batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAnn(Ann[p],n,n);
Eigen::Map<Eigen::MatrixXcf> eCnn(Cnn[p],n,n);
eCnn = eAnn.inverse();
});
}
void determinantBatched(int64_t n,
deviceVector<ComplexD*> &Ann,
deviceVector<ComplexD*> &C) {
int64_t batchCount = Ann.size();
GRID_ASSERT(batchCount == C.size());
thread_for(p,batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAnn(Ann[p],n,n);
*C[p] = eAnn.determinant();
});
}
void determinantBatched(int64_t n,
deviceVector<ComplexF*> &Ann,
deviceVector<ComplexF*> &C) {
int64_t batchCount = Ann.size();
GRID_ASSERT(batchCount == C.size());
thread_for(p,batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAnn(Ann[p],n,n);
*C[p] = eAnn.determinant();
});
}
#else
#ifdef GRID_SYCL
template<typename T>
void getrfBatchedSYCL(int64_t n,
deviceVector<T*> &Ann,
deviceVector<int64_t> &ipiv,
deviceVector<int64_t> &info) {
int64_t batchCount = Ann.size();
static deviceVector<T> scratchpad;
int64_t sp_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<T>(*gridblasHandle, &n, &n, &n, (int64_t)1, &batchCount);
if (sp_size > scratchpad.size())
scratchpad.resize(sp_size);
static deviceVector<int64_t*> _ipiv;
if (batchCount > _ipiv.size())
_ipiv.resize(batchCount);
int64_t** p_ipiv = &_ipiv[0];
int64_t* pipiv = &ipiv[0];
accelerator_for(i, batchCount, 1, { p_ipiv[i] = &pipiv[i*n]; });
oneapi::mkl::lapack::getrf_batch(*gridblasHandle,
&n, &n,
(T **)&Ann[0],
&n,
(int64_t**)&_ipiv[0],
(int64_t)1, &batchCount,
(T*)&scratchpad[0], (int64_t)scratchpad.size(),
std::vector<sycl::event>());
synchronise();
}
#endif
void getrfBatched(int64_t n,
deviceVector<ComplexD*> &Ann,
deviceVector<int64_t> &ipiv,
deviceVector<int64_t> &info)
{
int64_t batchCount = Ann.size();
GRID_ASSERT(ipiv.size()==batchCount*n);
GRID_ASSERT(info.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasZgetrfBatched(gridblasHandle,(int)n,
(hipblasDoubleComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasZgetrfBatched(gridblasHandle, (int)n,
(cuDoubleComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
getrfBatchedSYCL(n, Ann, ipiv, info);
#endif
}
void getrfBatched(int64_t n,
deviceVector<ComplexF*> &Ann,
deviceVector<int64_t> &ipiv,
deviceVector<int64_t> &info)
{
int64_t batchCount = Ann.size();
GRID_ASSERT(ipiv.size()==batchCount*n);
GRID_ASSERT(info.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasCgetrfBatched(gridblasHandle,(int)n,
(hipblasComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasCgetrfBatched(gridblasHandle, (int)n,
(cuComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
getrfBatchedSYCL(n, Ann, ipiv, info);
#endif
}
#ifdef GRID_SYCL
template<typename T>
void getriBatchedSYCL(int64_t n,
deviceVector<T*> &Ann,
deviceVector<int64_t> &ipiv,
deviceVector<int64_t> &info,
deviceVector<T*> &Cnn) {
int64_t batchCount = Ann.size();
static deviceVector<T> scratchpad;
int64_t sp_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<T>(*gridblasHandle, &n, &n, (int64_t)1, &batchCount);
if (sp_size > scratchpad.size())
scratchpad.resize(sp_size);
static deviceVector<int64_t*> _ipiv;
if (batchCount > _ipiv.size())
_ipiv.resize(batchCount);
int64_t** p_ipiv = &_ipiv[0];
int64_t* pipiv = &ipiv[0];
accelerator_for(i, batchCount, 1, { p_ipiv[i] = &pipiv[i*n]; });
oneapi::mkl::lapack::getri_batch(*gridblasHandle,
&n,
(T **)&Ann[0],
&n,
(int64_t**)p_ipiv,
(int64_t)1, &batchCount,
(T *)&scratchpad[0], (int64_t)scratchpad.size(),
std::vector<sycl::event>());
synchronise();
T** pA = &Ann[0];
T** pC = &Cnn[0];
accelerator_for(i, batchCount*n*n, 1, {
auto j = i / batchCount;
auto k = i % batchCount;
pC[k][j] = pA[k][j];
});
}
#endif
void getriBatched(int64_t n,
deviceVector<ComplexD*> &Ann,
deviceVector<int64_t> &ipiv,
deviceVector<int64_t> &info,
deviceVector<ComplexD*> &Cnn)
{
int64_t batchCount = Ann.size();
GRID_ASSERT(ipiv.size()==batchCount*n);
GRID_ASSERT(info.size()==batchCount);
GRID_ASSERT(Cnn.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasZgetriBatched(gridblasHandle,(int)n,
(hipblasDoubleComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(hipblasDoubleComplex **)&Cnn[0], (int)n,
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasZgetriBatched(gridblasHandle, (int)n,
(cuDoubleComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(cuDoubleComplex **)&Cnn[0], (int)n,
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
getriBatchedSYCL(n, Ann, ipiv, info, Cnn);
#endif
}
void getriBatched(int64_t n,
deviceVector<ComplexF*> &Ann,
deviceVector<int64_t> &ipiv,
deviceVector<int64_t> &info,
deviceVector<ComplexF*> &Cnn)
{
int64_t batchCount = Ann.size();
GRID_ASSERT(ipiv.size()==batchCount*n);
GRID_ASSERT(info.size()==batchCount);
GRID_ASSERT(Cnn.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasCgetriBatched(gridblasHandle,(int)n,
(hipblasComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(hipblasComplex **)&Cnn[0], (int)n,
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasCgetriBatched(gridblasHandle, (int)n,
(cuComplex **)&Ann[0], (int)n,
(int*) &ipiv[0],
(cuComplex **)&Cnn[0], (int)n,
(int*) &info[0],
(int)batchCount);
GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
getriBatchedSYCL(n, Ann, ipiv, info, Cnn);
#endif
}
template<typename dtype>
void inverseBatched(int64_t n,
deviceVector<dtype*> &Ann, // this will be overwritten with LU decomposition
deviceVector<dtype*> &Cnn // this will be overwritten with the inverse
) {
int64_t batchCount = Ann.size();
RealD t0 = usecond();
deviceVector<int64_t> ipiv(batchCount*n);
deviceVector<int64_t> info(batchCount);
//RealD t1 = usecond();
getrfBatched(n, Ann, ipiv, info);
// test info for non-invertibility? set to nan if yes?
getriBatched(n, Ann, ipiv, info, Cnn);
//synchronise();
//RealD t2 = usecond();
//std::cout << GridLogMessage << "Temp " << t1-t0 << " rf/ri " << t2-t1 << std::endl;
}
template<typename dtype>
void determinantBatched(int64_t n,
deviceVector<dtype*> &Ann, // this will be overwritten with LU decomposition
deviceVector<dtype*> &C // this will be overwritten with determinant
) {
int64_t batchCount = Ann.size();
//RealD t0 = usecond();
deviceVector<int64_t> ipiv(batchCount*n);
deviceVector<int64_t> info(batchCount);
dtype** pAnn = (dtype**)&Ann[0];
dtype** pC = (dtype**)&C[0];
#if defined(GRID_CUDA) || defined(GRID_HIP)
int* pipiv = (int*)&ipiv[0];
#else
int64_t* pipiv = (int64_t*)&ipiv[0];
#endif
//RealD t1 = usecond();
getrfBatched(n, Ann, ipiv, info);
//RealD t2 = usecond();
accelerator_for(i,batchCount,1,{
dtype det = 1.0;
for (int64_t j=0;j<n;j++) {
det *= pAnn[i][n*j + j];
// branchless signs
det *= (pipiv[i*n + j] == j+1) ? (1.0) : (-1.0);
}
*pC[i] = det;
});
//RealD t3 = usecond();
//std::cout << GridLogMessage << "Temp " << t1 - t0 << " rf/ri " << t2-t1 << "final" << t3 - t2 << std::endl;
}
#endif
template<class CComplex>
double benchmark(int M, int N, int K, int BATCH)
{

View File

@@ -0,0 +1,300 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MomentumProject.h
Copyright (C) 2025
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/*
MultiMomProject
Import vectors -> nxyz x (ncomponent x nt)
Import complex phases -> nmom x nxy
apply = via (possibly batched) GEMM
*/
template<class Field, class ComplexField>
class MomentumProject
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
GridBase *grid;
uint64_t nmom;
uint64_t nxyz;
uint64_t nt;
uint64_t nbtw;
uint64_t words;
deviceVector<scalar> BLAS_V; //
deviceVector<scalar> BLAS_M; //
deviceVector<scalar> BLAS_P; //
MomentumProject(){};
~MomentumProject(){ Deallocate(); };
void Deallocate(void)
{
grid=nullptr;
nmom=0;
nxyz=0;
nt=0;
nbtw=0;
words=0;
BLAS_V.resize(0);
BLAS_M.resize(0);
BLAS_P.resize(0);
}
void Allocate(int _nmom,GridBase *_grid)
{
grid=_grid;
Coordinate ldims = grid->LocalDimensions();
nmom=_nmom;
nt = ldims[grid->Nd()-1];
nxyz = grid->lSites()/nt;
words = sizeof(scalar_object)/sizeof(scalar);
nbtw = nt * words;
BLAS_V.resize (nxyz * nt * words );
BLAS_M.resize (nmom * nxyz );
BLAS_P.resize (nmom * nt * words );
}
void ImportMomenta(const std::vector <ComplexField> &momenta)
{
GRID_ASSERT(momenta.size()==nmom);
// might as well just make the momenta here
typedef typename Field::vector_object vobj;
int nd = grid->_ndimension;
uint64_t sz = BLAS_M.size();
GRID_ASSERT(momenta.size()==nmom)
GRID_ASSERT(momenta[0].Grid()==grid);
GRID_ASSERT(sz = nxyz * nmom);
Coordinate rdimensions = grid->_rdimensions;
Coordinate ldims = grid->LocalDimensions();
int64_t osites = grid->oSites();
Coordinate simd = grid->_simd_layout;
const int Nsimd = vobj::Nsimd();
uint64_t lwords = words; // local variable for copy in to GPU
int64_t Nxyz = nxyz;
auto blasData_p = &BLAS_M[0];
for(int m=0;m<momenta.size();m++){
autoView( Data , momenta[m], AcceleratorRead);
auto Data_p = &Data[0];
accelerator_for(xyz,nxyz,1,{
//////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate lcoor(nd,0);
Lexicographic::CoorFromIndex(lcoor,xyz,ldims);
Coordinate icoor(nd);
Coordinate ocoor(nd);
for (int d = 0; d < nd; d++) {
icoor[d] = lcoor[d]/rdimensions[d];
ocoor[d] = lcoor[d]%rdimensions[d];
}
int64_t osite;
int64_t isite;
Lexicographic::IndexFromCoor(ocoor,osite,rdimensions);
Lexicographic::IndexFromCoor(icoor,isite,simd);
// BLAS_M[nmom][slice_vol]
// Fortran Column major BLAS layout is M_xyz,mom
scalar data = extractLane(isite,Data[osite]);
uint64_t idx = xyz+m*Nxyz;
blasData_p[idx] = data;
});
}
}
void ImportVector(Field &vec)
{
typedef typename Field::vector_object vobj;
int nd = grid->_ndimension;
uint64_t sz = BLAS_V.size();
GRID_ASSERT(sz = nxyz * words * nt);
Coordinate rdimensions = grid->_rdimensions;
Coordinate ldims= grid->LocalDimensions();
int64_t osites = grid->oSites();
Coordinate simd = grid->_simd_layout;
const int Nsimd = vobj::Nsimd();
uint64_t lwords= words; // local variable for copy in to GPU
auto blasData_p = &BLAS_V[0];
autoView( Data , vec, AcceleratorRead);
auto Data_p = &Data[0];
int64_t nwords = words;// for capture
int64_t Nt = nt;// for capture
accelerator_for(sf,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
//////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate lcoor(nd,0);
Coordinate icoor(nd);
Coordinate ocoor(nd);
Lexicographic::CoorFromIndex(icoor,lane,simd);
Lexicographic::CoorFromIndex(ocoor,sf,rdimensions);
int64_t l_xyz = 0;
for (int d = 0; d < nd; d++) {
lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d];
}
uint64_t l_t = lcoor[nd-1];
Coordinate xyz_coor = lcoor;
xyz_coor[nd-1] =0;
Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims);
scalar_object data = extractLane(lane,Data[sf]);
scalar *data_words = (scalar *) &data;
for(int w = 0 ; w < nwords; w++) {
// BLAS_V[slice_vol][nt][words]
// Fortran Column major BLAS layout is V_(t,w)_xyz
uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt;
blasData_p[idx] = data_words[w];
}
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection)
{
projection.resize(nmom*nt);
acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar));
// Could decide on a layout late?
}
// Row major layout "C" order:
// BLAS_V[slice_vol][nt][words]
// BLAS_M[nmom][slice_vol]
// BLAS_P[nmom][nt][words]
//
// Fortran Column major BLAS layout is V_(w,t)_xyz
// Fortran Column major BLAS layout is M_xyz,mom
// Fortran Column major BLAS layout is P_(w,t),mom
//
// Projected
//
// P = (V * M)_(w,t),mom
//
void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata)
{
double t_import=0;
double t_export=0;
double t_gemm =0;
double t_allreduce=0;
t_import-=usecond();
this->ImportVector(data);
std::vector< typename Field::scalar_object > projected_planes;
deviceVector<scalar *> Vd(1);
deviceVector<scalar *> Md(1);
deviceVector<scalar *> Pd(1);
scalar * Vh = & BLAS_V[0];
scalar * Mh = & BLAS_M[0];
scalar * Ph = & BLAS_P[0];
acceleratorPut(Vd[0],Vh);
acceleratorPut(Md[0],Mh);
acceleratorPut(Pd[0],Ph);
t_import+=usecond();
GridBLAS BLAS;
/////////////////////////////////////////
// P_im = VMmx . Vxi
/////////////////////////////////////////
t_gemm-=usecond();
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
words*nt,nmom,nxyz,
scalar(1.0),
Vd,
Md,
scalar(0.0), // wipe out result
Pd);
BLAS.synchronise();
t_gemm+=usecond();
t_export-=usecond();
ExportMomentumProjection(projected_planes); // resizes
t_export+=usecond();
/////////////////////////////////
// Reduce across MPI ranks
/////////////////////////////////
int nd = grid->Nd();
int gt = grid->GlobalDimensions()[nd-1];
int lt = grid->LocalDimensions()[nd-1];
projected_gdata.resize(gt*nmom);
for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node
projected_gdata[t]=Zero();
}
for(int t=0;t<lt;t++){
for(int m=0;m<nmom;m++){
int st = grid->LocalStarts()[nd-1];
projected_gdata[t+st + gt*m] = projected_planes[t+lt*m];
}}
t_allreduce-=usecond();
grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words);
t_allreduce+=usecond();
std::cout << GridLogPerformance<<" MomentumProject t_import "<<t_import<<"us"<<std::endl;
std::cout << GridLogPerformance<<" MomentumProject t_export "<<t_export<<"us"<<std::endl;
std::cout << GridLogPerformance<<" MomentumProject t_gemm "<<t_gemm<<"us"<<std::endl;
std::cout << GridLogPerformance<<" MomentumProject t_reduce "<<t_allreduce<<"us"<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@@ -69,8 +69,8 @@ public:
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
: evec(_evec), eval(_eval), N(_N)
{
assert(evec.size()==eval.size());
assert(N <= evec.size());
GRID_ASSERT(evec.size()==eval.size());
GRID_ASSERT(N <= evec.size());
}
virtual void operator()(const Field &src,Field &guess) {
@@ -141,11 +141,10 @@ public:
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
for (int j=0;j<Nsrc;j++) {
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};

View File

@@ -160,7 +160,7 @@ public:
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
GRID_ASSERT(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
@@ -259,7 +259,7 @@ public:
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
GRID_ASSERT(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
@@ -267,7 +267,7 @@ public:
vol = grid->oSites()/rd0;
words = rd0*sizeof(vector_object)/sizeof(scalar);
int64_t vw = vol * words;
assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
GRID_ASSERT(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change

View File

@@ -131,12 +131,12 @@ public:
typedef typename Field::vector_object vobj;
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
assert(vecs[0].Grid()==fine_grid);
GRID_ASSERT(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
@@ -164,7 +164,7 @@ public:
const int Nsimd = vobj::Nsimd();
// std::cout << "sz "<<sz<<std::endl;
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
GRID_ASSERT(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
uint64_t lwords= words; // local variable for copy in to GPU
accelerator_for(sf,osites,Nsimd,{
#ifdef GRID_SIMT
@@ -198,7 +198,7 @@ public:
+ v*bv
+ sb;
// assert(site*lwords<sz);
// GRID_ASSERT(site*lwords<sz);
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
@@ -219,12 +219,12 @@ public:
int nvec = vecs.size();
assert(vecs[0].Grid()==fine_grid);
GRID_ASSERT(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
@@ -299,7 +299,7 @@ public:
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
GRID_ASSERT(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
@@ -320,7 +320,7 @@ public:
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
GRID_ASSERT(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
#ifdef GRID_SIMT
@@ -353,7 +353,7 @@ public:
typedef typename vobj::scalar_object coarse_scalar_object;
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
GRID_ASSERT(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
@@ -375,7 +375,7 @@ public:
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
GRID_ASSERT(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
@@ -409,7 +409,7 @@ public:
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
assert(nbasis==_nbasis);
GRID_ASSERT(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
@@ -464,7 +464,7 @@ public:
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
assert(nbasis==_nbasis);
GRID_ASSERT(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );

View File

@@ -98,7 +98,7 @@ public:
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
{
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
assert(ev<eval.size());
GRID_ASSERT(ev<eval.size());
eval[ev] = _eval;
int64_t offset = ev*vol*words;
@@ -113,7 +113,7 @@ public:
// Could use to import a batch of eigenvectors
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
{
assert(_ev0+_nev<=evec.size());
GRID_ASSERT(_ev0+_nev<=evec.size());
Allocate(_nev,evec[0].Grid());
@@ -126,8 +126,8 @@ public:
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
{
int nrhs = source.size();
assert(source.size()==guess.size());
assert(grid == guess[0].Grid());
GRID_ASSERT(source.size()==guess.size());
GRID_ASSERT(grid == guess[0].Grid());
conformable(guess[0],source[0]);
int64_t vw = vol * words;
@@ -189,7 +189,7 @@ public:
Cd);
BLAS.synchronise();
assert(BLAS_C.size()==nev*nrhs);
GRID_ASSERT(BLAS_C.size()==nev*nrhs);
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));

View File

@@ -270,7 +270,7 @@ class TwoLevelCG : public LinearFunction<Field>
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
GRID_ASSERT(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);

View File

@@ -161,7 +161,7 @@ class TwoLevelCGmrhs
////////////////////////////////////////////
std::vector<RealD> ssq(nrhs);
for(int rhs=0;rhs<nrhs;rhs++){
ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
ssq[rhs]=norm2(src[rhs]); GRID_ASSERT(ssq[rhs]!=0.0);
}
///////////////////////////
@@ -382,7 +382,7 @@ class TwoLevelCGmrhs
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
assert(0);
GRID_ASSERT(0);
}
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
@@ -415,7 +415,7 @@ class TwoLevelCGmrhs
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
GRID_ASSERT(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);

View File

@@ -47,7 +47,7 @@ class BiCGSTAB : public OperatorFunction<Field>
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
@@ -77,7 +77,7 @@ class BiCGSTAB : public OperatorFunction<Field>
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
Linop.Op(psi, v);
b = norm2(v);
@@ -214,7 +214,7 @@ class BiCGSTAB : public OperatorFunction<Field>
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
if(ErrorOnNoConverge){ GRID_ASSERT(true_residual / Tolerance < 10000.0); }
IterationsToComplete = k;
@@ -224,7 +224,7 @@ class BiCGSTAB : public OperatorFunction<Field>
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
if(ErrorOnNoConverge){ assert(0); }
if(ErrorOnNoConverge){ GRID_ASSERT(0); }
IterationsToComplete = k;
}
};

View File

@@ -98,7 +98,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
int Nblock;
BlockCGtype CGtype;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
@@ -201,7 +201,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
} else if (CGtype == CGmultiRHS ) {
CGmultiRHSsolve(Linop,Src,Psi);
} else {
assert(0);
GRID_ASSERT(0);
}
}
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
@@ -209,7 +209,7 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
if ( CGtype == BlockCGrQVec ) {
BlockCGrQsolveVec(Linop,Src,Psi);
} else {
assert(0);
GRID_ASSERT(0);
}
}
@@ -259,10 +259,10 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
sliceNorm(residuals,B,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
sliceNorm(residuals,X,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
@@ -402,7 +402,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
<<" residual "<< std::sqrt(max_resid)<< std::endl;
if (ErrorOnNoConverge) assert(0);
if (ErrorOnNoConverge) GRID_ASSERT(0);
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
@@ -438,10 +438,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
@@ -540,7 +540,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
}
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
if (ErrorOnNoConverge) GRID_ASSERT(0);
IterationsToComplete = k;
}
@@ -554,7 +554,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
{
Nblock = B.size();
assert(Nblock == X.size());
GRID_ASSERT(Nblock == X.size());
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
@@ -594,10 +594,10 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
@@ -731,7 +731,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
if (ErrorOnNoConverge) GRID_ASSERT(0);
IterationsToComplete = k;
}

View File

@@ -36,7 +36,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when CAGMRES fails to converge,
// defaults to true
RealD Tolerance;
@@ -82,7 +82,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
@@ -137,7 +137,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
GRID_ASSERT(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
@@ -185,7 +185,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
}
}
assert(0); // Never reached
GRID_ASSERT(0); // Never reached
return cp;
}

View File

@@ -45,7 +45,7 @@ public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
@@ -94,7 +94,7 @@ public:
ssq = norm2(src);
RealD guess = norm2(psi);
NormTimer.Stop();
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
AssignTimer.Start();
if ( guess == 0.0 ) {
r = src;
@@ -222,7 +222,7 @@ public:
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
TrueResidual = true_residual;
@@ -251,7 +251,7 @@ public:
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(0);
if (ErrorOnNoConverge) GRID_ASSERT(0);
IterationsToComplete = k;
}

View File

@@ -77,7 +77,7 @@ public:
}
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
assert(src_d_in.size() == sol_d.size());
GRID_ASSERT(src_d_in.size() == sol_d.size());
int NBatch = src_d_in.size();
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;

View File

@@ -98,9 +98,9 @@ public:
std::vector<RealD> alpha(nshift,1.0);
std::vector<Field> ps(nshift,grid);// Search directions
assert(psi.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
GRID_ASSERT(psi.size()==nshift);
GRID_ASSERT(mass.size()==nshift);
GRID_ASSERT(mresidual.size()==nshift);
// remove dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
@@ -122,7 +122,7 @@ public:
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
GRID_ASSERT( mass[s]>= mass[primary] );
converged[s]=0;
}
@@ -338,7 +338,7 @@ public:
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
// GRID_ASSERT(0);
}
};

View File

@@ -118,9 +118,9 @@ public:
FieldF r_f(SinglePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
GRID_ASSERT(psi_d.size()==nshift);
GRID_ASSERT(mass.size()==nshift);
GRID_ASSERT(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
@@ -141,7 +141,7 @@ public:
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
GRID_ASSERT( mass[s]>= mass[primary] );
converged[s]=0;
}
@@ -179,7 +179,7 @@ public:
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
// assert(norm2(tmp_d)< 1.0e-4);
// GRID_ASSERT(norm2(tmp_d)< 1.0e-4);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
@@ -365,7 +365,7 @@ public:
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
GRID_ASSERT(0);
}
};

View File

@@ -48,12 +48,12 @@ public:
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void OpDiag (const Field &in, Field &out){ GRID_ASSERT(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ GRID_ASSERT(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ GRID_ASSERT(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void Op (const Field &in, Field &out){ GRID_ASSERT(0); }
void AdjOp (const Field &in, Field &out){ GRID_ASSERT(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
@@ -151,9 +151,9 @@ public:
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
GRID_ASSERT(psi_d.size()==nshift);
GRID_ASSERT(mass.size()==nshift);
GRID_ASSERT(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
@@ -174,7 +174,7 @@ public:
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
GRID_ASSERT( mass[s]>= mass[primary] );
converged[s]=0;
}
@@ -211,7 +211,7 @@ public:
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
assert(norm2(tmp_d)< 1.0);
GRID_ASSERT(norm2(tmp_d)< 1.0);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
@@ -408,7 +408,7 @@ public:
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
GRID_ASSERT(0);
}
};

View File

@@ -35,7 +35,7 @@ template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
@@ -66,7 +66,7 @@ public:
DoFinalCleanup(true),
Linop_fallback(NULL)
{
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
GRID_ASSERT(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
@@ -90,7 +90,7 @@ public:
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
Linop_d.HermOpAndNorm(psi, mmp, d, b);
@@ -217,7 +217,7 @@ public:
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
else if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
return;
@@ -263,7 +263,7 @@ public:
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
if (ErrorOnNoConverge) GRID_ASSERT(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}

View File

@@ -106,7 +106,7 @@ public:
}
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
assert(0);
GRID_ASSERT(0);
}
};
NAMESPACE_END(Grid);

View File

@@ -36,7 +36,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FCAGMRES fails to converge,
// defaults to true
RealD Tolerance;
@@ -87,7 +87,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
@@ -144,7 +144,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
GRID_ASSERT(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
@@ -191,7 +191,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
}
}
assert(0); // Never reached
GRID_ASSERT(0); // Never reached
return cp;
}

View File

@@ -36,7 +36,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FGMRES fails to converge,
// defaults to true
RealD Tolerance;
@@ -85,7 +85,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
@@ -142,7 +142,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
GRID_ASSERT(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
@@ -189,7 +189,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
}
}
assert(0); // Never reached
GRID_ASSERT(0); // Never reached
return cp;
}

View File

@@ -36,7 +36,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when GMRES fails to converge,
// defaults to true
RealD Tolerance;
@@ -80,7 +80,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
@@ -135,7 +135,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
GRID_ASSERT(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
@@ -181,7 +181,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
}
}
assert(0); // Never reached
GRID_ASSERT(0); // Never reached
return cp;
}

View File

@@ -175,7 +175,7 @@ public:
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation),split_test(0),
Nevec_acc(_Nu)
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
{ GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
////////////////////////////////
// Helpers
@@ -206,7 +206,7 @@ public:
Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
}
}
assert(normalize(w,if_print) != 0);
GRID_ASSERT(normalize(w,if_print) != 0);
}
void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
{
@@ -225,7 +225,7 @@ public:
w[i] = w[i] - ip * evec[j];
}}
for(int i=0; i<_Nu; ++i)
assert(normalize(w[i],if_print) !=0);
GRID_ASSERT(normalize(w[i],if_print) !=0);
}
@@ -244,7 +244,7 @@ public:
const uint64_t sites = grid->lSites();
int Nbatch = R/Nevec_acc;
assert( R%Nevec_acc == 0 );
GRID_ASSERT( R%Nevec_acc == 0 );
// Glog << "nBatch, Nevec_acc, R, Nu = "
// << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
@@ -302,7 +302,7 @@ public:
}
}
for (int i=0; i<Nu; ++i) {
assert(normalize(w[i],do_print)!=0);
GRID_ASSERT(normalize(w[i],do_print)!=0);
}
Glog << "cuBLAS Zgemm done"<< std::endl;
@@ -374,8 +374,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
{
std::string fname = std::string(cname+"::calc_irbl()");
GridBase *grid = evec[0].Grid();
assert(grid == src[0].Grid());
assert( Nu = src.size() );
GRID_ASSERT(grid == src[0].Grid());
GRID_ASSERT( Nu = src.size() );
Glog << std::string(74,'*') << std::endl;
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
@@ -396,7 +396,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
}
Glog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
@@ -579,8 +579,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
{
std::string fname = std::string(cname+"::calc_rbl()");
GridBase *grid = evec[0].Grid();
assert(grid == src[0].Grid());
assert( Nu = src.size() );
GRID_ASSERT(grid == src[0].Grid());
GRID_ASSERT( Nu = src.size() );
int Np = (Nm-Nk);
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
@@ -607,7 +607,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
}
Glog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
@@ -785,7 +785,7 @@ private:
int Nu = w.size();
int Nm = evec.size();
assert( b < Nm/Nu );
GRID_ASSERT( b < Nm/Nu );
// GridCartesian *grid = evec[0]._grid;
// converts block index to full indicies for an interval [L,R)
@@ -796,7 +796,7 @@ private:
Glog << "Using split grid"<< std::endl;
// LatticeGaugeField s_Umu(SGrid);
assert((Nu%mrhs)==0);
GRID_ASSERT((Nu%mrhs)==0);
std::vector<Field> in(mrhs,f_grid);
Field s_in(sf_grid);
@@ -906,7 +906,7 @@ if(split_test){
for (int u=0; u<Nu; ++u) {
// Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
assert (!isnan(norm2(w[u])));
GRID_ASSERT (!isnan(norm2(w[u])));
for (int k=L+u; k<R; ++k) {
Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
}
@@ -929,8 +929,8 @@ if(split_test){
Eigen::MatrixXcd & Qt, // Nm x Nm
GridBase *grid)
{
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
@@ -970,8 +970,8 @@ if(split_test){
GridBase *grid)
{
Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
@@ -1119,7 +1119,7 @@ if (1){
diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
#endif
} else {
assert(0);
GRID_ASSERT(0);
}
}
@@ -1131,8 +1131,8 @@ if (1){
Eigen::MatrixXcd& M)
{
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
// rearrange
@@ -1159,8 +1159,8 @@ if (1){
Eigen::MatrixXcd& M)
{
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
// rearrange
for ( int u=0; u<Nu; ++u ) {

View File

@@ -121,7 +121,7 @@ public:
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation),
Nevec_acc(_Nu)
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
{ GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
////////////////////////////////
// Helpers
@@ -151,7 +151,7 @@ public:
Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
}
}
assert(normalize(w,if_print) != 0);
GRID_ASSERT(normalize(w,if_print) != 0);
}
void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
{
@@ -169,7 +169,7 @@ public:
w[i] = w[i] - ip * evec[j];
}}
for(int i=0; i<_Nu; ++i)
assert(normalize(w[i],if_print) !=0);
GRID_ASSERT(normalize(w[i],if_print) !=0);
}
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
@@ -205,8 +205,8 @@ public:
{
std::string fname = std::string(cname+"::calc_irbl()");
GridBase *grid = evec[0].Grid();
assert(grid == src[0].Grid());
assert( Nu = src.size() );
GRID_ASSERT(grid == src[0].Grid());
GRID_ASSERT( Nu = src.size() );
Glog << std::string(74,'*') << std::endl;
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
@@ -227,7 +227,7 @@ public:
}
Glog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
@@ -413,8 +413,8 @@ public:
{
std::string fname = std::string(cname+"::calc_rbl()");
GridBase *grid = evec[0].Grid();
assert(grid == src[0].Grid());
assert( Nu = src.size() );
GRID_ASSERT(grid == src[0].Grid());
GRID_ASSERT( Nu = src.size() );
int Np = (Nm-Nk);
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
@@ -441,7 +441,7 @@ public:
}
Glog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
@@ -622,7 +622,7 @@ private:
int Nu = w.size();
int Nm = evec.size();
assert( b < Nm/Nu );
GRID_ASSERT( b < Nm/Nu );
// converts block index to full indicies for an interval [L,R)
int L = Nu*b;
@@ -630,7 +630,7 @@ private:
Real beta;
assert((Nu%mrhs)==0);
GRID_ASSERT((Nu%mrhs)==0);
std::vector<Field> in(mrhs,f_grid);
std::vector<Field> out(mrhs,f_grid);
@@ -711,7 +711,7 @@ private:
for (int u=0; u<Nu; ++u) {
// Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
assert (!isnan(norm2(w[u])));
GRID_ASSERT (!isnan(norm2(w[u])));
for (int k=L+u; k<R; ++k) {
// Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
}
@@ -734,8 +734,8 @@ private:
Eigen::MatrixXcd & Qt, // Nm x Nm
GridBase *grid)
{
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
@@ -775,8 +775,8 @@ private:
GridBase *grid)
{
Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
@@ -924,7 +924,7 @@ if (1){
diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
#endif
} else {
assert(0);
GRID_ASSERT(0);
}
}
@@ -936,8 +936,8 @@ if (1){
Eigen::MatrixXcd& M)
{
// Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
// rearrange
@@ -964,8 +964,8 @@ if (1){
Eigen::MatrixXcd& M)
{
// Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
GRID_ASSERT( Nk <= Nm );
// rearrange
for ( int u=0; u<Nu; ++u ) {

View File

@@ -211,7 +211,7 @@ until convergence
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
{
GridBase *grid = src.Grid();
assert(grid == evec[0].Grid());
GRID_ASSERT(grid == evec[0].Grid());
// GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
@@ -231,7 +231,7 @@ until convergence
}
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
assert(Nm <= evec.size() && Nm <= eval.size());
GRID_ASSERT(Nm <= evec.size() && Nm <= eval.size());
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
@@ -337,7 +337,7 @@ until convergence
}
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
GRID_ASSERT(k2<Nm); GRID_ASSERT(k2<Nm); GRID_ASSERT(k1>0);
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
@@ -463,7 +463,7 @@ until convergence
{
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
const RealD tiny = 1.0e-20;
assert( k< Nm );
GRID_ASSERT( k< Nm );
GridStopWatch gsw_op,gsw_o;
@@ -597,7 +597,7 @@ until convergence
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
} else {
assert(0);
GRID_ASSERT(0);
}
}
@@ -687,7 +687,7 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
}
}
#else
assert(0);
GRID_ASSERT(0);
#endif
}

View File

@@ -80,7 +80,7 @@ public:
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
_Linop(linop), subspace(_subspace)
{
assert(subspace.size() >0);
GRID_ASSERT(subspace.size() >0);
};
void operator()(const CoarseField& in, CoarseField& out) {
@@ -346,12 +346,12 @@ public:
void testFine(RealD resid)
{
assert(evals_fine.size() == nbasis);
assert(subspace.size() == nbasis);
GRID_ASSERT(evals_fine.size() == nbasis);
GRID_ASSERT(subspace.size() == nbasis);
PlainHermOp<FineField> Op(_FineOp);
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
for(int k=0;k<nbasis;k++){
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
GRID_ASSERT(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
}
}
@@ -359,8 +359,8 @@ public:
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
assert(subspace.size() == nbasis);
GRID_ASSERT(evals_fine.size() == nbasis);
GRID_ASSERT(subspace.size() == nbasis);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
@@ -380,7 +380,7 @@ public:
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
assert(nbasis<=Nm);
GRID_ASSERT(nbasis<=Nm);
Chebyshev<FineField> Cheby(cheby_parms);
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
PlainHermOp<FineField> Op(_FineOp);
@@ -400,8 +400,8 @@ public:
IRL.calc(evals_fine,subspace,src,Nconv,false);
// Shrink down to number saved
assert(Nstop>=nbasis);
assert(Nconv>=nbasis);
GRID_ASSERT(Nstop>=nbasis);
GRID_ASSERT(Nconv>=nbasis);
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
@@ -433,7 +433,7 @@ public:
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
assert(Nconv>=Nstop);
GRID_ASSERT(Nconv>=Nstop);
evals_coarse.resize(Nstop);
evec_coarse.resize (Nstop,_CoarseGrid);
for (int i=0;i<Nstop;i++){

View File

@@ -35,7 +35,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the MR fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
@@ -59,7 +59,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
@@ -136,7 +136,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
if (ErrorOnNoConverge)
assert(true_residual / Tolerance < 10000.0);
GRID_ASSERT(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
@@ -148,7 +148,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
<< std::endl;
if (ErrorOnNoConverge)
assert(0);
GRID_ASSERT(0);
IterationsToComplete = k;
}

View File

@@ -37,7 +37,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
using OperatorFunction<FieldD>::operator();
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when MPFGMRES fails to converge,
// defaults to true
RealD Tolerance;
@@ -91,7 +91,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
GRID_ASSERT(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
@@ -150,7 +150,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
GRID_ASSERT(0);
}
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
@@ -197,7 +197,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
}
}
assert(0); // Never reached
GRID_ASSERT(0); // Never reached
return cp;
}

View File

@@ -112,7 +112,7 @@ public:
}
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
assert(0);
GRID_ASSERT(0);
}
};
NAMESPACE_END(Grid);

View File

@@ -118,7 +118,7 @@ public:
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
// GRID_ASSERT(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
@@ -221,7 +221,7 @@ public:
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
int peri_back=(k-back)%mmax; GRID_ASSERT((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
@@ -231,7 +231,7 @@ public:
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
GRID_ASSERT(0); // never reached
return cp;
}
};

View File

@@ -113,7 +113,7 @@ public:
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
// GRID_ASSERT(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
@@ -224,7 +224,7 @@ public:
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
int peri_back=(k-back)%mmax; GRID_ASSERT((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
@@ -234,7 +234,7 @@ public:
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
GRID_ASSERT(0); // never reached
return cp;
}
};

View File

@@ -79,7 +79,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
LinOp.Op(x,r); r = b - r;
assert(normb> 0.0);
GRID_ASSERT(normb> 0.0);
resid = norm2(r)/normb;
if (resid <= Tolerance) {
@@ -105,8 +105,8 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
for (int i = 1; i <= MaxIterations; i++) {
// Breakdown tests
assert( rho != 0.0);
assert( xi != 0.0);
GRID_ASSERT( rho != 0.0);
GRID_ASSERT( xi != 0.0);
v = (1. / rho) * v_tld;
y = (1. / rho) * y;
@@ -134,10 +134,10 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
ep=Zep.real();
std::cout << "Zep "<<Zep <<std::endl;
// Complex Audit
assert(abs(ep)>0);
GRID_ASSERT(abs(ep)>0);
beta = ep / delta;
assert(abs(beta)>0);
GRID_ASSERT(abs(beta)>0);
v_tld = p_tld - beta * v;
y = v_tld;
@@ -158,7 +158,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
std::cout << "theta "<<theta<<std::endl;
std::cout << "gamma "<<gamma<<std::endl;
assert(abs(gamma)> 0.0);
GRID_ASSERT(abs(gamma)> 0.0);
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
@@ -178,7 +178,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
}
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
}
assert(0);
GRID_ASSERT(0);
return; // no convergence
}
#else

View File

@@ -327,9 +327,9 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
@@ -347,17 +347,17 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
src_e = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); GRID_ASSERT(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
@@ -396,13 +396,13 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
// get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
@@ -416,17 +416,17 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
src_e_i = src_e-tmp; GRID_ASSERT( src_e_i.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); GRID_ASSERT(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
@@ -461,9 +461,9 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
_Matrix.MooeeInv(src_e, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); GRID_ASSERT( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; GRID_ASSERT( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
@@ -478,18 +478,18 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
_Matrix.Meooe(sol_o, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
src_e_i = src_e - tmp; GRID_ASSERT( src_e_i.Checkerboard() == Even );
_Matrix.MooeeInv(src_e_i, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o); GRID_ASSERT( sol_o.Checkerboard() == Odd );
}
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
this->_HermitianRBSolver(_OpEO, src_o, sol_o); GRID_ASSERT(sol_o.Checkerboard() == Odd);
}
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
@@ -539,13 +539,13 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
Mtmp=src_o-Mtmp;
_Matrix.MooeeInv(Mtmp,tmp); assert( tmp.Checkerboard() ==Odd);
_Matrix.MooeeInv(Mtmp,tmp); GRID_ASSERT( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
@@ -560,12 +560,12 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
@@ -612,12 +612,12 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
@@ -638,12 +638,12 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
_Matrix.Meooe(sol_o_i,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o_i); GRID_ASSERT( sol_o_i.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
@@ -684,9 +684,9 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
_Matrix.MooeeInv(src_e, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); GRID_ASSERT( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; GRID_ASSERT( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
@@ -707,12 +707,12 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
_Matrix.Meooe(sol_o_i, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
tmp = src_e - tmp; GRID_ASSERT( src_e.Checkerboard() == Even );
_Matrix.MooeeInv(tmp, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o_i); GRID_ASSERT( sol_o_i.Checkerboard() == Odd );
};
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)

View File

@@ -292,7 +292,7 @@ public:
}
}
assert(b==nn);
GRID_ASSERT(b==nn);
}

View File

@@ -309,7 +309,7 @@ public:
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
assert(0);
GRID_ASSERT(0);
}
for(int p=0;p<ndir;p++){
MdirCalc(in,out[p],p);
@@ -373,7 +373,7 @@ public:
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Even);
GRID_ASSERT(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, Aodd, in, out, dag);
@@ -383,7 +383,7 @@ public:
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Odd);
GRID_ASSERT(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, Aeven, in, out, dag);
@@ -391,7 +391,7 @@ public:
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
out.Checkerboard() = in.Checkerboard();
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
GRID_ASSERT(in.Checkerboard() == Odd || in.Checkerboard() == Even);
CoarseMatrix *Aself = nullptr;
if(in.Grid()->_isCheckerBoarded) {
@@ -406,7 +406,7 @@ public:
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
DselfInternal(Stencil, *Aself, in, out, dag);
}
assert(Aself != nullptr);
GRID_ASSERT(Aself != nullptr);
}
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
@@ -697,7 +697,7 @@ public:
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
oddmask = one-evenmask;
assert(self_stencil!=-1);
GRID_ASSERT(self_stencil!=-1);
for(int i=0;i<nbasis;i++){

View File

@@ -99,7 +99,7 @@ public:
}
}
}
assert(nfound==geom.npoint);
GRID_ASSERT(nfound==geom.npoint);
ExchangeCoarseLinks();
}
*/
@@ -124,7 +124,7 @@ public:
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
assert(hermitian);
GRID_ASSERT(hermitian);
Mult(_A,in,out);
// if ( hermitian ) M(in,out);
// else Mult(_Adag,in,out);
@@ -619,7 +619,7 @@ public:
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdiag (const Field &in, Field &out){ GRID_ASSERT(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};

View File

@@ -80,12 +80,12 @@ public:
// Can be used to do I/O on the operator matrices externally
void SetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
GRID_ASSERT(A.size()==geom_srhs.npoint);
GridtoBLAS(A[p],BLAS_A[p]);
}
void GetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
GRID_ASSERT(A.size()==geom_srhs.npoint);
BLAStoGrid(A[p],BLAS_A[p]);
}
void CopyMatrix (GeneralCoarseOp &_Op)
@@ -178,14 +178,14 @@ public:
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
assert(nbr<BLAS_B.size());
GRID_ASSERT(nbr<BLAS_B.size());
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
}
j++;
}
}
assert(j==unpadded_sites);
GRID_ASSERT(j==unpadded_sites);
}
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
{
@@ -194,7 +194,7 @@ public:
typedef typename vobj::vector_type vector_type;
GridBase *Fg = from.Grid();
assert(!Fg->_isCheckerBoarded);
GRID_ASSERT(!Fg->_isCheckerBoarded);
int nd = Fg->_ndimension;
to.resize(Fg->lSites());
@@ -241,10 +241,10 @@ public:
typedef typename vobj::vector_type vector_type;
GridBase *Tg = grid.Grid();
assert(!Tg->_isCheckerBoarded);
GRID_ASSERT(!Tg->_isCheckerBoarded);
int nd = Tg->_ndimension;
assert(in.size()==Tg->lSites());
GRID_ASSERT(in.size()==Tg->lSites());
Coordinate LocalLatt = Tg->LocalDimensions();
size_t nsite = 1;
@@ -669,7 +669,7 @@ Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
const int Nsimd = CComplex::Nsimd();
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
GRID_ASSERT(nrhs>=1);
RealD flops,bytes;
int64_t osites=in.Grid()->oSites(); // unpadded
@@ -721,7 +721,7 @@ Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdiag (const Field &in, Field &out){ GRID_ASSERT(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};

View File

@@ -67,8 +67,8 @@ public:
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
GRID_ASSERT(disp == -1 || disp == 0 || disp == 1);
GRID_ASSERT(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
@@ -131,7 +131,7 @@ public:
return p;
}
}
assert(0);
GRID_ASSERT(0);
return -1;
}
void BuildShifts(void)

View File

@@ -57,7 +57,7 @@ public:
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
@@ -106,7 +106,7 @@ public:
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
@@ -154,7 +154,7 @@ public:
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}

View File

@@ -292,7 +292,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
GRID_ASSERT(omp_in_parallel()==0);
#endif
if (ncache == 0) return ptr;
@@ -345,7 +345,7 @@ void *MemoryManager::Lookup(size_t bytes,int type)
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
GRID_ASSERT(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {

View File

@@ -50,12 +50,12 @@ int MemoryManager::EntryPresent(uint64_t CpuPtr)
{
if(AccViewTable.empty()) return 0;
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
auto count = AccViewTable.count(CpuPtr); GRID_ASSERT((count==0)||(count==1));
return count;
}
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
assert(!EntryPresent(CpuPtr));
GRID_ASSERT(!EntryPresent(CpuPtr));
AcceleratorViewEntry AccCache;
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
@@ -69,9 +69,9 @@ void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,View
}
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
{
assert(EntryPresent(CpuPtr));
GRID_ASSERT(EntryPresent(CpuPtr));
auto AccCacheIterator = AccViewTable.find(CpuPtr);
assert(AccCacheIterator!=AccViewTable.end());
GRID_ASSERT(AccCacheIterator!=AccViewTable.end());
return AccCacheIterator;
}
void MemoryManager::EntryErase(uint64_t CpuPtr)
@@ -81,7 +81,7 @@ void MemoryManager::EntryErase(uint64_t CpuPtr)
}
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
GRID_ASSERT(AccCache.LRU_valid==0);
if (AccCache.transient) {
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
@@ -94,7 +94,7 @@ void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
GRID_ASSERT(AccCache.LRU_valid==1);
LRU.erase(AccCache.LRU_entry);
AccCache.LRU_valid = 0;
DeviceLRUBytes-=AccCache.bytes;
@@ -108,12 +108,12 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
// Remove from Accelerator, remove entry, without flush
// Cannot be locked. If allocated Must be in LRU pool.
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
GRID_ASSERT(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
GRID_ASSERT(AccCache.accLock==0);
GRID_ASSERT(AccCache.cpuLock==0);
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceDestroy++;
@@ -138,7 +138,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
// Take these OUT LRU queue when CPU locked?
// Cannot take out the table as cpuLock data is important.
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
GRID_ASSERT(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
@@ -162,11 +162,11 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
}
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==AccDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
GRID_ASSERT(AccCache.state==AccDirty);
GRID_ASSERT(AccCache.cpuLock==0);
GRID_ASSERT(AccCache.accLock==0);
GRID_ASSERT(AccCache.AccPtr!=(uint64_t)NULL);
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
@@ -175,10 +175,10 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
}
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==CpuDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
GRID_ASSERT(AccCache.state==CpuDirty);
GRID_ASSERT(AccCache.cpuLock==0);
GRID_ASSERT(AccCache.accLock==0);
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
@@ -194,10 +194,10 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state!=Empty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
GRID_ASSERT(AccCache.state!=Empty);
GRID_ASSERT(AccCache.cpuLock==0);
GRID_ASSERT(AccCache.accLock==0);
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
@@ -216,7 +216,7 @@ void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
} else {
assert(0);
GRID_ASSERT(0);
}
}
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
@@ -228,7 +228,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
} else {
assert(0);
GRID_ASSERT(0);
return NULL;
}
}
@@ -237,10 +237,10 @@ void MemoryManager::EvictVictims(uint64_t bytes)
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes);
GRID_ASSERT(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
assert(LRU.size()>0);
GRID_ASSERT(LRU.size()>0);
uint64_t victim = LRU.back(); // From the LRU
auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second;
@@ -264,9 +264,9 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
GRID_ASSERT((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
GRID_ASSERT(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
@@ -275,8 +275,8 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
(uint64_t)AccCache.bytes,
(uint64_t)bytes,
(uint64_t)AccCache.accLock);
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
GRID_ASSERT(AccCache.bytes ==bytes);
}
/*
* State transitions and actions
@@ -293,7 +293,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
* AccWrite AccDirty AccDirty - -
*/
if(AccCache.state==Empty) {
assert(AccCache.LRU_valid==0);
GRID_ASSERT(AccCache.LRU_valid==0);
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
@@ -338,10 +338,10 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else {
assert(0);
GRID_ASSERT(0);
}
assert(AccCache.accLock>0);
GRID_ASSERT(AccCache.accLock>0);
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
@@ -362,8 +362,8 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock==0);
assert(AccCache.accLock>0);
GRID_ASSERT(AccCache.cpuLock==0);
GRID_ASSERT(AccCache.accLock>0);
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
@@ -379,8 +379,8 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock>0);
assert(AccCache.accLock==0);
GRID_ASSERT(AccCache.cpuLock>0);
GRID_ASSERT(AccCache.accLock==0);
AccCache.cpuLock--;
}
@@ -413,12 +413,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
// EvictVictims(bytes);
// }
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error
GRID_ASSERT((mode==CpuRead)||(mode==CpuWrite));
GRID_ASSERT(AccCache.accLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes==bytes);
GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
GRID_ASSERT(AccCache.bytes==bytes);
}
if(AccCache.state==Empty) {
@@ -433,20 +433,20 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
AccCache.cpuLock++;
} else if(AccCache.state==Consistent) {
assert(AccCache.AccPtr != (uint64_t)NULL);
GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
if(mode==CpuWrite)
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
else
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
AccCache.cpuLock++;
} else if(AccCache.state==AccDirty) {
assert(AccCache.AccPtr != (uint64_t)NULL);
GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
Flush(AccCache);
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
AccCache.cpuLock++;
} else {
assert(0); // should be unreachable
GRID_ASSERT(0); // should be unreachable
}
AccCache.transient= transient? EvictNext : 0;
@@ -528,12 +528,12 @@ void MemoryManager::Audit(std::string s)
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
for(auto it=LRU.begin();it!=LRU.end();it++){
uint64_t cpuPtr = *it;
assert(EntryPresent(cpuPtr));
GRID_ASSERT(EntryPresent(cpuPtr));
auto AccCacheIterator = EntryLookup(cpuPtr);
auto & AccCache = AccCacheIterator->second;
LruBytes2+=AccCache.bytes;
assert(AccCache.LRU_valid==1);
assert(AccCache.LRU_entry==it);
GRID_ASSERT(AccCache.LRU_valid==1);
GRID_ASSERT(AccCache.LRU_entry==it);
}
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
@@ -552,7 +552,7 @@ void MemoryManager::Audit(std::string s)
if( AccCache.LRU_valid ) LruCnt++;
if ( AccCache.cpuLock || AccCache.accLock ) {
assert(AccCache.LRU_valid==0);
GRID_ASSERT(AccCache.LRU_valid==0);
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
@@ -561,16 +561,16 @@ void MemoryManager::Audit(std::string s)
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
}
assert( AccCache.cpuLock== 0 ) ;
assert( AccCache.accLock== 0 ) ;
GRID_ASSERT( AccCache.cpuLock== 0 ) ;
GRID_ASSERT( AccCache.accLock== 0 ) ;
}
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
assert(LruBytes1==LruBytes2);
assert(LruBytes1==DeviceLRUBytes);
GRID_ASSERT(LruBytes1==LruBytes2);
GRID_ASSERT(LruBytes1==DeviceLRUBytes);
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
assert(AccBytes==DeviceBytes);
GRID_ASSERT(AccBytes==DeviceBytes);
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
assert(LruCnt == LRU.size());
GRID_ASSERT(LruCnt == LRU.size());
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
}

View File

@@ -10,16 +10,16 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
GRID_ASSERT(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
std::vector<uint64_t> pagedata(npages);
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
GRID_ASSERT(ret == offset);
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
GRID_ASSERT(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;

View File

@@ -165,7 +165,7 @@ public:
//
if ( _simd_layout[dimension] > 2 ) {
for(int d=0;d<_ndimension;d++){
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
if ( d != dimension ) GRID_ASSERT ( (_simd_layout[d]==1) );
}
permute_type = RotateBit; // How to specify distance; this is not just direction.
return permute_type;
@@ -187,7 +187,7 @@ public:
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const Coordinate LocalStarts(void) { return _lstart; };
inline const Coordinate &LocalStarts(void) { return _lstart; };
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
@@ -216,11 +216,11 @@ public:
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
assert(gidx< gSites());
GRID_ASSERT(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
assert(lidx<lSites());
GRID_ASSERT(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){

View File

@@ -128,10 +128,10 @@ public:
// Use a reduced simd grid
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;

View File

@@ -67,7 +67,7 @@ public:
}
virtual int CheckerBoard(const Coordinate &site){
int linear=0;
assert(site.size()==_ndimension);
GRID_ASSERT(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
if(_checker_dim_mask[d])
linear=linear+site[d];
@@ -160,11 +160,11 @@ public:
_isCheckerBoarded = true;
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim] == 1);
GRID_ASSERT(checker_dim_mask[checker_dim] == 1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size() == _ndimension);
assert(processor_grid.size() == _ndimension);
assert(simd_layout.size() == _ndimension);
GRID_ASSERT(checker_dim_mask.size() == _ndimension);
GRID_ASSERT(processor_grid.size() == _ndimension);
GRID_ASSERT(simd_layout.size() == _ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
@@ -190,20 +190,20 @@ public:
if (d == _checker_dim)
{
assert((_gdimensions[d] & 0x1) == 0);
GRID_ASSERT((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
_gsites /= 2;
}
_ldimensions[d] = _gdimensions[d] / _processors[d];
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
assert(_rdimensions[d] > 0);
GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
GRID_ASSERT(_rdimensions[d] > 0);
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d

View File

@@ -108,7 +108,7 @@ public:
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
static int RankWorld(void) ;
static void BroadcastWorld(int root,void* data, int bytes);
static void BroadcastWorld(int root,void* data, uint64_t bytes);
static void BarrierWorld(void);
////////////////////////////////////////////////////////////
@@ -149,7 +149,7 @@ public:
sizeof(obj),d*100+p);
}
if (!list.empty()) // avoid triggering assert in comms == none
if (!list.empty()) // avoid triggering GRID_ASSERT in comms == none
CommsComplete(list);
for(int p=1;p<_processors[d];p++){
accum = accum + column[p];
@@ -175,37 +175,38 @@ public:
int dest,
void *recv,
int from,
int bytes,int dir);
uint64_t bytes,int dir);
void SendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
uint64_t bytes);
int IsOffNode(int rank);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int bytes,int dir);
uint64_t bytes,int dir);
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
uint64_t xbytes,uint64_t rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
void *xmit,void *xmit_comp,
int xmit_to_rank,int do_xmit,
void *recv,
void *recv,void *recv_comp,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
uint64_t xbytes,uint64_t rbytes,int dir);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
@@ -219,20 +220,20 @@ public:
////////////////////////////////////////////////////////////
// Broadcast a buffer and composite larger
////////////////////////////////////////////////////////////
void Broadcast(int root,void* data, int bytes);
void Broadcast(int root,void* data, uint64_t bytes);
////////////////////////////////////////////////////////////
// All2All down one dimension
////////////////////////////////////////////////////////////
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
assert(dim>=0);
assert(dim<_ndimension);
assert(in.size()==out.size());
GRID_ASSERT(dim>=0);
GRID_ASSERT(dim<_ndimension);
GRID_ASSERT(in.size()==out.size());
int numnode = _processors[dim];
uint64_t bytes=sizeof(T);
uint64_t words=in.size()/numnode;
assert(numnode * words == in.size());
assert(words < (1ULL<<31));
GRID_ASSERT(numnode * words == in.size());
GRID_ASSERT(words < (1ULL<<31));
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
}
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);

View File

@@ -28,10 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/communicator/SharedMemory.h>
void GridAbort(void) { MPI_Abort(MPI_COMM_WORLD,SIGABRT); }
extern void * Grid_backtrace_buffer[_NBACKTRACE];
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
#ifdef GRID_CHECKSUM_COMMS
uint64_t checksum_index = 1;
#endif
////////////////////////////////////////////
// First initialise of comms system
@@ -56,11 +63,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0);
GRID_ASSERT(0);
}
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
assert(0);
GRID_ASSERT(0);
}
}
@@ -81,20 +88,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
GRID_ASSERT(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -121,8 +128,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
_ndimension = processors.size(); GRID_ASSERT(_ndimension>=1);
int parent_ndimension = parent._ndimension; GRID_ASSERT(_ndimension >= parent._ndimension);
Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1);
Coordinate shm_processors (_ndimension,1);
@@ -146,7 +153,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
childsize *= processors[d];
}
int Nchild = Nparent/childsize;
assert (childsize * Nchild == Nparent);
GRID_ASSERT (childsize * Nchild == Nparent);
Coordinate ccoor(_ndimension); // coor within subcommunicator
Coordinate scoor(_ndimension); // coor of split within parent
@@ -172,12 +179,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
// Split the communicator
////////////////////////////////////////////////////////////////
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
assert(ierr==0);
GRID_ASSERT(ierr==0);
} else {
srank = 0;
int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -202,7 +209,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
}
}
for(int d=0;d<processors.size();d++){
assert(_processor_coor[d] == ccoor[d] );
GRID_ASSERT(_processor_coor[d] == ccoor[d] );
}
}
@@ -244,7 +251,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors
for(int i=0;i<_ndimension*2;i++){
MPI_Comm_dup(communicator,&communicator_halo[i]);
}
assert(Size==_Nprocessors);
GRID_ASSERT(Size==_Nprocessors);
}
CartesianCommunicator::~CartesianCommunicator()
@@ -270,59 +277,64 @@ void CartesianCommunicator::GlobalSum(double &d)
}
#else
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("AllReduce");
FlightRecorder::StepLog("AllReduce float");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("AllReduce");
FlightRecorder::StepLog("AllReduce double");
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
#endif
void CartesianCommunicator::GlobalSum(uint32_t &u){
FlightRecorder::StepLog("AllReduce");
FlightRecorder::StepLog("AllReduce uint32_t");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
FlightRecorder::StepLog("AllReduce");
FlightRecorder::StepLog("AllReduce uint64_t");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
FlightRecorder::StepLog("AllReduceVector");
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint64_t &u){
FlightRecorder::StepLog("GlobalXOR");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalMax(float &f)
{
FlightRecorder::StepLog("GlobalMax");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
FlightRecorder::StepLog("GlobalMax");
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
FlightRecorder::StepLog("GlobalSumVector(float *)");
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
FlightRecorder::StepLog("GlobalSumVector(double *)");
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
@@ -330,24 +342,23 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &
int dest,
void *recv,
int from,
int bytes,int dir)
uint64_t bytes,int dir)
{
MPI_Request xrq;
MPI_Request rrq;
assert(dest != _processor);
assert(from != _processor);
GRID_ASSERT(dest != _processor);
GRID_ASSERT(from != _processor);
int tag;
tag= dir+from*32;
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
assert(ierr==0);
int ierr=MPI_Irecv(recv,(int)( bytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator,&rrq);
GRID_ASSERT(ierr==0);
list.push_back(rrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
assert(ierr==0);
ierr =MPI_Isend(xmit,(int)(bytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator,&xrq);
GRID_ASSERT(ierr==0);
list.push_back(xrq);
}
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
@@ -358,7 +369,7 @@ void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
GRID_ASSERT(ierr==0);
list.resize(0);
}
@@ -367,7 +378,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
uint64_t bytes)
{
std::vector<MpiCommsRequest_t> reqs(0);
@@ -375,15 +386,15 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int ierr;
// Enforce no UVM in comms, device or host OK
assert(acceleratorIsCommunicable(xmit));
assert(acceleratorIsCommunicable(recv));
GRID_ASSERT(acceleratorIsCommunicable(xmit));
GRID_ASSERT(acceleratorIsCommunicable(recv));
// Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
ierr=MPI_Sendrecv(xmit,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,dest,myrank,
recv,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
// Basic Halo comms primitive
@@ -391,15 +402,20 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest, int dox,
void *recv,
int from, int dor,
int bytes,int dir)
uint64_t bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,xmit,dest,dox,recv,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
int CartesianCommunicator::IsOffNode(int rank)
{
int grank = ShmRanks[rank];
if ( grank == MPI_UNDEFINED ) return true;
else return false;
}
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
@@ -409,16 +425,16 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
uint64_t xbytes,uint64_t rbytes,int dir)
{
return 0.0; // Do nothing -- no preparation required
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
void *xmit,void *xmit_comp,
int dest,int dox,
void *recv,
void *recv,void *recv_comp,
int from,int dor,
int xbytes,int rbytes,int dir)
uint64_t xbytes,uint64_t rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
@@ -431,24 +447,26 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
GRID_ASSERT(dest != _processor);
GRID_ASSERT(from != _processor);
GRID_ASSERT(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
// std::cout << " StencilSendToRecvFrom "<<dir<<" MPI_Irecv "<<std::hex<<recv<<std::dec<<std::endl;
ierr=MPI_Irecv(recv_comp,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
GRID_ASSERT(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
#ifdef NVLINK_GET
else {
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
GRID_ASSERT(shm!=NULL);
// std::cout << " StencilSendToRecvFrom "<<dir<<" CopyDeviceToDevice recv "<<std::hex<<recv<<" remote "<<shm <<std::dec<<std::endl;
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
}
#endif
@@ -457,14 +475,14 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
ierr =MPI_Isend(xmit_comp,(int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
GRID_ASSERT(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
GRID_ASSERT(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
}
@@ -481,7 +499,7 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
GRID_ASSERT(ierr==0);
list.resize(0);
this->StencilBarrier();
}
@@ -524,7 +542,7 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
uint64_t xbytes,uint64_t rbytes,int dir)
{
/*
* Bring sequence from Stencil.h down to lower level.
@@ -541,9 +559,9 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
GRID_ASSERT(dest != _processor);
GRID_ASSERT(from != _processor);
GRID_ASSERT(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
@@ -556,18 +574,24 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
* - post device - host send buffer transfer asynch
*/
#ifdef GRID_CHECKSUM_COMMS
rbytes += 8;
xbytes += 8;
#endif
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
host_recv = this->HostBufferMalloc(rbytes);
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
ierr=MPI_Irecv(host_recv,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
GRID_ASSERT(ierr==0);
CommsRequest_t srq;
srq.PacketType = InterNodeRecv;
srq.bytes = rbytes;
srq.req = rrq;
srq.host_buf = host_recv;
srq.device_buf = recv;
srq.tag = tag;
list.push_back(srq);
off_node_bytes+=rbytes;
}
@@ -581,10 +605,19 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
host_xmit = this->HostBufferMalloc(xbytes);
CommsRequest_t srq;
#ifdef GRID_CHECKSUM_COMMS
uint64_t xbytes_data = xbytes - 8;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes_data); // Make this Asynch
GRID_ASSERT(xbytes % 8 == 0);
// flip one bit so that a zero buffer is not consistent
uint64_t xsum = checksum_gpu((uint64_t*)xmit, xbytes_data / 8) ^ (checksum_index + 1 + 1000 * tag);
*(uint64_t*)(((char*)host_xmit) + xbytes_data) = xsum;
#else
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
#endif
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// GRID_ASSERT(ierr==0);
// off_node_bytes+=xbytes;
srq.PacketType = InterNodeXmit;
@@ -623,7 +656,11 @@ void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequ
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
#ifdef GRID_CHECKSUM_COMMS
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes - 8);
#else
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
#endif
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
@@ -648,7 +685,7 @@ void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsReque
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
uint64_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
@@ -659,8 +696,8 @@ void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsReque
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
int ierr =MPI_Isend(host_xmit, (int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
GRID_ASSERT(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
@@ -676,11 +713,11 @@ void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsReque
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
void *xmit,void *xmit_comp,
int dest,int dox,
void *recv,
void *recv,void *recv_comp,
int from,int dor,
int xbytes,int rbytes,int dir)
uint64_t xbytes,uint64_t rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
@@ -693,9 +730,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
GRID_ASSERT(dest != _processor);
GRID_ASSERT(from != _processor);
GRID_ASSERT(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
@@ -716,7 +753,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
GRID_ASSERT(shm!=NULL);
CommsRequest_t srq;
@@ -739,7 +776,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
GRID_ASSERT(shm!=NULL);
CommsRequest_t srq;
@@ -778,7 +815,7 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
// for(int r=0;r<nreq;r++){
@@ -786,7 +823,40 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
#ifdef GRID_CHECKSUM_COMMS
for(int r=0;r<list.size();r++){
if ( list[r].PacketType == InterNodeReceiveHtoD ) {
uint64_t rbytes_data = list[r].bytes - 8;
uint64_t expected_cs = *(uint64_t*)(((char*)list[r].host_buf) + rbytes_data);
uint64_t computed_cs = checksum_gpu((uint64_t*)list[r].device_buf, rbytes_data / 8) ^ (checksum_index + 1 + 1000 * list[r].tag); //
if (expected_cs != computed_cs) {
// TODO: error message, backtrace, quit
fprintf(stderr, "GRID_CHECKSUM_COMMS error:\n");
fprintf(stderr, " processor = %d\n", (int)_processor);
for(int d=0;d<_processors.size();d++)
fprintf(stderr, " processor_coord[%d] = %d\n", d, _processor_coor[d]);
fprintf(stderr, " hostname: %s\n", GridHostname());
fprintf(stderr, " expected_cs: %ld\n", expected_cs);
fprintf(stderr, " computed_cs: %ld\n", computed_cs);
fprintf(stderr, " dest: %d\n", list[r].dest);
fprintf(stderr, " tag: %d\n", list[r].tag);
fprintf(stderr, " commdir: %d\n", list[r].commdir);
fprintf(stderr, " bytes: %ld\n", (uint64_t)list[r].bytes);
fflush(stderr);
// backtrace
int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);
backtrace_symbols_fd(Grid_backtrace_buffer,symbols, 2);
exit(1);
}
}
}
checksum_index += 1;
#endif
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
@@ -811,17 +881,17 @@ void CartesianCommunicator::Barrier(void)
{
FlightRecorder::StepLog("GridBarrier");
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
void CartesianCommunicator::Broadcast(int root,void* data,uint64_t bytes)
{
FlightRecorder::StepLog("Broadcast");
int ierr=MPI_Bcast(data,
bytes,
(int)bytes,
MPI_BYTE,
root,
communicator);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
@@ -829,24 +899,25 @@ int CartesianCommunicator::RankWorld(void){
return r;
}
void CartesianCommunicator::BarrierWorld(void){
FlightRecorder::StepLog("BarrierWorld");
int ierr = MPI_Barrier(communicator_world);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes)
{
FlightRecorder::StepLog("BroadcastWorld");
int ierr= MPI_Bcast(data,
bytes,
(int)bytes,
MPI_BYTE,
root,
communicator_world);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
Coordinate row(_ndimension,1);
assert(dim>=0 && dim<_ndimension);
GRID_ASSERT(dim>=0 && dim<_ndimension);
// Split the communicator
row[dim] = _processors[dim];
@@ -867,8 +938,8 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
int ibytes;
iwords = words;
ibytes = bytes;
assert(words == iwords); // safe to cast to int ?
assert(bytes == ibytes); // safe to cast to int ?
GRID_ASSERT(words == iwords); // safe to cast to int ?
GRID_ASSERT(bytes == ibytes); // safe to cast to int ?
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
MPI_Type_commit(&object);
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);

View File

@@ -34,6 +34,8 @@ NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////
Grid_MPI_Comm CartesianCommunicator::communicator_world;
void GridAbort(void) { abort(); }
void CartesianCommunicator::Init(int *argc, char *** arv)
{
GlobalSharedMemory::Init(communicator_world);
@@ -54,14 +56,14 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
_shm_processors = Coordinate(processors.size(),1);
_processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1);
_ndimension = processors.size(); GRID_ASSERT(_ndimension>=1);
_processor_coor.resize(_ndimension);
// Require 1^N processor grid for fake
_Nprocessors=1;
_processor = 0;
for(int d=0;d<_ndimension;d++) {
assert(_processors[d]==1);
GRID_ASSERT(_processors[d]==1);
_processor_coor[d] = 0;
}
SetCommunicator(communicator_world);
@@ -87,19 +89,19 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
uint64_t bytes)
{
assert(0);
GRID_ASSERT(0);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ GRID_ASSERT(list.size()==0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
uint64_t bytes,int dir)
{
assert(0);
GRID_ASSERT(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
@@ -113,8 +115,8 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
void CartesianCommunicator::Broadcast(int root,void* data, uint64_t bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) { }
void CartesianCommunicator::BarrierWorld(void) { }
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
@@ -124,11 +126,13 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
dest=0;
}
int CartesianCommunicator::IsOffNode(int rank) { return false; }
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int bytes, int dir)
uint64_t bytes, int dir)
{
return 2.0*bytes;
}
@@ -139,16 +143,16 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
uint64_t xbytes,uint64_t rbytes, int dir)
{
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
void *xmit, void *xmit_comp,
int xmit_to_rank,int dox,
void *recv,
void *recv, void *recv_comp,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
uint64_t xbytes,uint64_t rbytes, int dir)
{
return xbytes+rbytes;
}

View File

@@ -58,8 +58,8 @@ int GlobalSharedMemory::WorldNode;
void GlobalSharedMemory::SharedMemoryFree(void)
{
assert(_ShmAlloc);
assert(_ShmAllocBytes>0);
GRID_ASSERT(_ShmAlloc);
GRID_ASSERT(_ShmAllocBytes>0);
for(int r=0;r<WorldShmSize;r++){
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
}
@@ -80,7 +80,7 @@ void *SharedMemory::HostBufferMalloc(size_t bytes){
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
assert(host_heap_bytes<host_heap_size);
GRID_ASSERT(host_heap_bytes<host_heap_size);
}
return ptr;
}
@@ -100,7 +100,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
assert(heap_bytes<heap_size);
GRID_ASSERT(heap_bytes<heap_size);
}
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
return ptr;
@@ -127,13 +127,13 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
GRID_ASSERT(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
GRID_ASSERT(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
GRID_ASSERT(ShmSize == WorldShmSize);
return;
}

View File

@@ -43,10 +43,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
#define GRID_SYCL_LEVEL_ZERO_IPC
#define SHM_SOCKETS
#else
#ifdef HAVE_NUMAIF_H
#warning " Using NUMAIF "
#include <numaif.h>
#endif
#endif
#include <syscall.h>
#endif
@@ -71,7 +67,7 @@ public:
{
int errnum;
sock = socket(AF_UNIX, SOCK_DGRAM, 0); assert(sock>0);
sock = socket(AF_UNIX, SOCK_DGRAM, 0); GRID_ASSERT(sock>0);
struct sockaddr_un sa_un = { 0 };
sa_un.sun_family = AF_UNIX;
@@ -162,7 +158,7 @@ public:
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
{
assert(_ShmSetup==0);
GRID_ASSERT(_ShmSetup==0);
WorldComm = comm;
MPI_Comm_rank(WorldComm,&WorldRank);
MPI_Comm_size(WorldComm,&WorldSize);
@@ -188,7 +184,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
// WorldNodes
WorldNodes = WorldSize/WorldShmSize;
assert( (WorldNodes * WorldShmSize) == WorldSize );
GRID_ASSERT( (WorldNodes * WorldShmSize) == WorldSize );
// FIXME: Check all WorldShmSize are the same ?
@@ -213,7 +209,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
MyGroup.resize(WorldShmSize);
for(int rank=0;rank<WorldSize;rank++){
if(WorldShmRanks[rank]!=MPI_UNDEFINED){
assert(g<WorldShmSize);
GRID_ASSERT(g<WorldShmSize);
MyGroup[g++] = rank;
}
}
@@ -229,7 +225,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
// global sum leaders over comm world
///////////////////////////////////////////////////////////////////
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
assert(ierr==0);
GRID_ASSERT(ierr==0);
///////////////////////////////////////////////////////////////////
// find the group leaders world rank
@@ -250,7 +246,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
WorldNode=g;
}
}
assert(WorldNode!=-1);
GRID_ASSERT(WorldNode!=-1);
_ShmSetup=1;
}
// Gray encode support
@@ -292,7 +288,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
// Assert power of two shm_size.
////////////////////////////////////////////////////////////////
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
assert(log2size != -1);
GRID_ASSERT(log2size != -1);
////////////////////////////////////////////////////////////////
// Identify the hypercube coordinate of this node using hostname
@@ -313,7 +309,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
// Parse ICE-XA hostname to get hypercube location
gethostname(name,namelen);
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
assert(nscan==3);
GRID_ASSERT(nscan==3);
int nlo = N%9;
int nhi = N/9;
@@ -337,8 +333,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
//////////////////////////////////////////////////////////////////
MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm);
hypercoor=hypercoor-rootcoor;
assert(hypercoor<WorldSize);
assert(hypercoor>=0);
GRID_ASSERT(hypercoor<WorldSize);
GRID_ASSERT(hypercoor>=0);
//////////////////////////////////////
// Printing
@@ -386,7 +382,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
for(int i=0;i<ndimension;i++){
Nprocessors*=processors[i];
}
assert(WorldSize==Nprocessors);
GRID_ASSERT(WorldSize==Nprocessors);
////////////////////////////////////////////////////////////////
// Establish mapping between lexico physics coord and WorldRank
@@ -405,7 +401,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
// Build the new communicator
/////////////////////////////////////////////////////////////////
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
@@ -435,7 +431,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
for(int i=0;i<ndimension;i++){
Nprocessors*=processors[i];
}
assert(WorldSize==Nprocessors);
// std::cerr << " WorldSize "<<WorldSize << " Nprocessors "<<Nprocessors<<" "<<processors<<std::endl;
GRID_ASSERT(WorldSize==Nprocessors);
////////////////////////////////////////////////////////////////
// Establish mapping between lexico physics coord and WorldRank
@@ -451,7 +448,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
// Build the new communicator
/////////////////////////////////////////////////////////////////
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
////////////////////////////////////////////////////////////////////////////////////////////
// SHMGET
@@ -460,8 +457,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the shared windows for our group
@@ -522,8 +519,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
@@ -543,49 +540,21 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
// printf("Host buffer allocate for GPU non-aware MPI\n");
#if 0
HostCommBuf= acceleratorAllocHost(bytes);
#else
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
#if 0
#warning "Moving host buffers to specific NUMA domain"
int numa;
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
if(numa_name) {
unsigned long page_size = sysconf(_SC_PAGESIZE);
numa = atoi(numa_name);
unsigned long page_count = bytes/page_size;
std::vector<void *> pages(page_count);
std::vector<int> nodes(page_count,numa);
std::vector<int> status(page_count,-1);
for(unsigned long p=0;p<page_count;p++){
pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
}
int ret = move_pages(0,
page_count,
&pages[0],
&nodes[0],
&status[0],
MPOL_MF_MOVE);
printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
if (ret) perror(" move_pages failed for reason:");
}
#endif
acceleratorPin(HostCommBuf,bytes);
#endif
#endif
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
std::cerr << "SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
std::cout << Mheader " acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
std::cout<< "Setting up IPC"<<std::endl;
if ( WorldRank == 0 ){
std::cout<< Mheader "Setting up IPC"<<std::endl;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -616,8 +585,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
if ( err != ZE_RESULT_SUCCESS ) {
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
exit(EXIT_FAILURE);
} else {
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
}
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
handle.pid = getpid();
@@ -662,7 +629,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
MPI_BYTE,
r,
WorldShmComm);
assert(ierr==0);
GRID_ASSERT(ierr==0);
}
///////////////////////////////////////////////////////////////
@@ -676,12 +643,12 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef SHM_SOCKETS
myfd=UnixSockets::RecvFileDescriptor();
#else
std::cout<<"mapping seeking remote pid/fd "
<<handle.pid<<"/"
<<handle.fd<<std::endl;
// std::cout<<"mapping seeking remote pid/fd "
// <<handle.pid<<"/"
// <<handle.fd<<std::endl;
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
// std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
myfd = syscall(438,pidfd,handle.fd,0);
int err_t = errno;
@@ -691,7 +658,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(0);
}
#endif
std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
// std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
@@ -700,11 +667,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
exit(EXIT_FAILURE);
} else {
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
}
assert(thisBuf!=nullptr);
GRID_ASSERT(thisBuf!=nullptr);
}
#endif
#ifdef GRID_CUDA
@@ -745,8 +709,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -776,13 +740,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
if ( ptr == (void *)MAP_FAILED ) {
printf("mmap %s failed\n",shm_name);
perror("failed mmap"); assert(0);
perror("failed mmap"); GRID_ASSERT(0);
}
assert(((uint64_t)ptr&0x3F)==0);
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
std::cout<< Mheader " Intra-node IPC setup is complete "<<std::endl;
_ShmAlloc=1;
_ShmAllocBytes = bytes;
};
@@ -792,8 +757,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -804,7 +769,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Hugetlbf and others map filesystems as mappable huge pages
////////////////////////////////////////////////////////////////////////////////////////////
char shm_name [NAME_MAX];
assert(WorldShmSize == 1);
GRID_ASSERT(WorldShmSize == 1);
for(int r=0;r<WorldShmSize;r++){
int fd=-1;
@@ -818,9 +783,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
if ( ptr == (void *)MAP_FAILED ) {
printf("mmap %s failed\n",shm_name);
perror("failed mmap"); assert(0);
perror("failed mmap"); GRID_ASSERT(0);
}
assert(((uint64_t)ptr&0x3F)==0);
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
@@ -839,8 +804,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
@@ -871,7 +836,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
perror("failed mmap");
assert(0);
}
assert(((uint64_t)ptr&0x3F)==0);
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
WorldShmCommBufs[r] =ptr;
close(fd);
@@ -892,8 +857,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
assert(((uint64_t)ptr&0x3F)==0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); GRID_ASSERT(0); }
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
WorldShmCommBufs[r] =ptr;
close(fd);
@@ -950,7 +915,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
//////////////////////////////////////////////////////////////////////
// Map ShmRank to WorldShmRank and use the right buffer
//////////////////////////////////////////////////////////////////////
assert (GlobalSharedMemory::ShmAlloc()==1);
GRID_ASSERT (GlobalSharedMemory::ShmAlloc()==1);
heap_size = GlobalSharedMemory::ShmAllocBytes();
for(int r=0;r<ShmSize;r++){
@@ -1018,9 +983,9 @@ void SharedMemory::SharedMemoryTest(void)
ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==magic);
GRID_ASSERT(check[0]==GlobalSharedMemory::WorldNode);
GRID_ASSERT(check[1]==r);
GRID_ASSERT(check[2]==magic);
}
ShmBarrier();
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
@@ -1038,12 +1003,14 @@ void *SharedMemory::ShmBuffer(int rank)
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
{
int gpeer = ShmRanks[rank];
assert(gpeer!=ShmRank); // never send to self
GRID_ASSERT(gpeer!=ShmRank); // never send to self
// std::cout << "ShmBufferTranslate for rank " << rank<<" peer "<<gpeer<<std::endl;
if (gpeer == MPI_UNDEFINED){
return NULL;
} else {
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
// std::cout << "ShmBufferTranslate : local,offset,remote "<<std::hex<<local_p<<" "<<offset<<" "<<remote<<std::dec<<std::endl;
return (void *) remote;
}
}

View File

@@ -34,7 +34,7 @@ NAMESPACE_BEGIN(Grid);
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
{
assert(_ShmSetup==0);
GRID_ASSERT(_ShmSetup==0);
WorldComm = 0;
WorldRank = 0;
WorldSize = 1;
@@ -62,8 +62,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
@@ -92,8 +92,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
GRID_ASSERT(_ShmSetup==1);
GRID_ASSERT(_ShmAlloc==0);
int mmap_flag =0;
#ifdef MAP_ANONYMOUS
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
@@ -132,7 +132,7 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
////////////////////////////////////////////////////////
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
{
assert(GlobalSharedMemory::ShmAlloc()==1);
GRID_ASSERT(GlobalSharedMemory::ShmAlloc()==1);
ShmRanks.resize(1);
ShmCommBufs.resize(1);
ShmRanks[0] = 0;

View File

@@ -202,7 +202,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
autoView( rhs_v, rhs, AcceleratorWrite);
autoView( rhs_v, rhs, AcceleratorWriteDiscard);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
@@ -228,7 +228,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
autoView( rhs_v , rhs, AcceleratorWrite);
autoView( rhs_v , rhs, AcceleratorWriteDiscard);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
@@ -240,9 +240,9 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout << "Scatter_plane merge GRID_ASSERT(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
assert(0); // This will fail if hit on GPU
GRID_ASSERT(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
@@ -302,7 +302,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
{
auto table = MapCshiftTable();
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
autoView(lhs_v , lhs, AcceleratorWriteDiscard);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});

View File

@@ -29,8 +29,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef _GRID_CSHIFT_MPI_H_
#define _GRID_CSHIFT_MPI_H_
NAMESPACE_BEGIN(Grid);
#ifdef GRID_CHECKSUM_COMMS
extern uint64_t checksum_index;
#endif
const int Cshift_verbose=0;
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
@@ -45,6 +49,20 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
if( shift ==0 ) {
ret = rhs;
return ret;
}
//
// Potential easy fast cases:
// Shift is a multiple of the local lattice extent.
// Then need only to shift whole subvolumes
int L = rhs.Grid()->_ldimensions[dimension];
if ( (shift%L )==0 && !rhs.Grid()->CheckerBoarded(dimension) ) {
Cshift_simple(ret,rhs,dimension,shift);
return ret;
}
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
// the permute type
@@ -69,6 +87,55 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
return ret;
}
template<class vobj> void Cshift_simple(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
GridBase *grid=rhs.Grid();
int comm_proc, xmit_to_rank, recv_from_rank;
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int ld = rhs.Grid()->_ldimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
comm_proc = ((shift)/ld)%pd;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
if(comm_dim) {
int64_t bytes = sizeof(vobj) * grid->oSites();
autoView(rhs_v , rhs, AcceleratorRead);
autoView(ret_v , ret, AcceleratorWrite);
void *send_buf = (void *)&rhs_v[0];
void *recv_buf = (void *)&ret_v[0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom(send_buf,
xmit_to_rank,
recv_buf,
recv_from_rank,
bytes);
#else
static hostVector<vobj> hrhs; hrhs.resize(grid->oSites());
static hostVector<vobj> hret; hret.resize(grid->oSites());
void *hsend_buf = (void *)&hrhs[0];
void *hrecv_buf = (void *)&hret[0];
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom(hsend_buf,
xmit_to_rank,
hrecv_buf,
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
}
}
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
@@ -117,17 +184,18 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
GRID_ASSERT(simd_layout==1);
GRID_ASSERT(comm_dim==1);
GRID_ASSERT(shift>=0);
GRID_ASSERT(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
int pad = (8 + sizeof(vobj) - 1) / sizeof(vobj);
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size+pad);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size+pad);
#endif
int cb= (cbmask==0x2)? Odd : Even;
@@ -143,9 +211,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
FlightRecorder::StepLog("Cshift_Copy_plane");
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
FlightRecorder::StepLog("Cshift_Copy_plane_complete");
} else {
int words = buffer_size;
@@ -153,9 +223,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int bytes = words * sizeof(vobj);
FlightRecorder::StepLog("Cshift_Gather_plane");
tgather-=usecond();
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
tgather+=usecond();
FlightRecorder::StepLog("Cshift_Gather_plane_complete");
// int rank = grid->_processor;
int recv_from_rank;
@@ -166,6 +238,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
tcomms-=usecond();
grid->Barrier();
FlightRecorder::StepLog("Cshift_SendRecv");
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
@@ -175,17 +248,46 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
#ifdef GRID_CHECKSUM_COMMS
GRID_ASSERT(bytes % 8 == 0);
checksum_index++;
uint64_t xsum = checksum_gpu((uint64_t*)&send_buf[0], bytes / 8) ^ (1 + checksum_index);
*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
bytes += 8;
#endif
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
#ifdef GRID_CHECKSUM_COMMS
bytes -= 8;
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
uint64_t computed_cs = checksum_gpu((uint64_t*)&recv_buf[0], bytes / 8) ^ (1 + checksum_index);
std::cout << GridLogComms<< " Cshift: "
<<" dim"<<dimension
<<" shift "<<shift
<< " rank "<< grid->ThisRank()
<<" Coor "<<grid->ThisProcessorCoor()
<<" send "<<xsum<<" to "<<xmit_to_rank
<<" recv "<<computed_cs<<" from "<<recv_from_rank
<<std::endl;
GRID_ASSERT(expected_cs == computed_cs);
#else
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
#endif
FlightRecorder::StepLog("Cshift_SendRecv_complete");
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
FlightRecorder::StepLog("Cshift_barrier_complete");
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
@@ -220,10 +322,10 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
GRID_ASSERT(comm_dim==1);
GRID_ASSERT(simd_layout==2);
GRID_ASSERT(shift>=0);
GRID_ASSERT(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
@@ -249,8 +351,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
recv_buf_extract[s].resize(buffer_size);
}
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#ifdef GRID_CHECKSUM_COMMS
buffer_size += (8 + sizeof(vobj) - 1) / sizeof(vobj);
#endif
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#ifdef GRID_CHECKSUM_COMMS
buffer_size -= (8 + sizeof(vobj) - 1) / sizeof(vobj);
#endif
#endif
int bytes = buffer_size*sizeof(scalar_object);
@@ -294,7 +404,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
GRID_ASSERT (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
@@ -313,12 +423,37 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
#else
// bouncy bouncy
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
#ifdef GRID_CHECKSUM_COMMS
assert(bytes % 8 == 0);
checksum_index++;
uint64_t xsum = checksum_gpu((uint64_t*)send_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
bytes += 8;
#endif
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
#ifdef GRID_CHECKSUM_COMMS
bytes -= 8;
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
uint64_t computed_cs = checksum_gpu((uint64_t*)recv_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
std::cout << GridLogComms<< " Cshift_comms_simd: "
<<" dim"<<dimension
<<" shift "<<shift
<< " rank "<< grid->ThisRank()
<<" Coor "<<grid->ThisProcessorCoor()
<<" send "<<xsum<<" to "<<xmit_to_rank
<<" recv "<<computed_cs<<" from "<<recv_from_rank
<<std::endl;
assert(expected_cs == computed_cs);
#else
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
#endif
#endif
xbytes+=bytes;

View File

@@ -245,7 +245,7 @@ template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * =
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.Checkerboard());
GRID_ASSERT(cb == lat.Checkerboard());
}
cb = lat.Checkerboard();
}

View File

@@ -120,12 +120,12 @@ public:
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
GRID_ASSERT(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
GRID_ASSERT( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
@@ -144,12 +144,12 @@ public:
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
GRID_ASSERT(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
GRID_ASSERT( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
@@ -168,12 +168,12 @@ public:
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
GRID_ASSERT(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
GRID_ASSERT( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
@@ -191,11 +191,11 @@ public:
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
GRID_ASSERT(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
GRID_ASSERT( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
@@ -206,11 +206,11 @@ public:
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
GRID_ASSERT(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
GRID_ASSERT( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
@@ -221,11 +221,11 @@ public:
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
GRID_ASSERT(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
GRID_ASSERT( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
@@ -264,7 +264,7 @@ public:
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
GRID_ASSERT((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
SetViewMode(mode);
}

View File

@@ -166,9 +166,9 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
GRID_ASSERT(vlen>=1);
GRID_ASSERT(vlen<=sort_vals.size());
GRID_ASSERT(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
@@ -186,7 +186,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
GRID_ASSERT(idx[i] > i); GRID_ASSERT(j!=idx.size()); GRID_ASSERT(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
@@ -224,7 +224,7 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
GRID_ASSERT(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];

View File

@@ -32,8 +32,8 @@ NAMESPACE_BEGIN(Grid);
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
{
assert(lhs.Grid() == rhs.Grid());
assert(lhs.Checkerboard() == rhs.Checkerboard());
GRID_ASSERT(lhs.Grid() == rhs.Grid());
GRID_ASSERT(lhs.Checkerboard() == rhs.Checkerboard());
}
NAMESPACE_END(Grid);

View File

@@ -42,7 +42,7 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@@ -86,7 +86,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
assert( FullGrid->_simd_layout[Orthog]==1);
GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@@ -140,7 +140,7 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;

View File

@@ -98,8 +98,8 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
GRID_ASSERT( l.Checkerboard()== l.Grid()->CheckerBoard(site));
GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
// Optional to broadcast from node 0.
@@ -135,7 +135,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
int Nsimd = grid->Nsimd();
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
GRID_ASSERT( l.Checkerboard() == l.Grid()->CheckerBoard(site));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
@@ -159,14 +159,14 @@ template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid = l.getGrid();
assert(l.mode==CpuRead);
GRID_ASSERT(l.mode==CpuRead);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
// GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
@@ -195,15 +195,15 @@ template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid=l.getGrid();
assert(l.mode==CpuWrite);
GRID_ASSERT(l.mode==CpuWrite);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
// GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;

View File

@@ -292,26 +292,26 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// Hack
// Fast integer xor checksum. Can also be used in comms now.
autoView(l_v,left,AcceleratorRead);
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&l_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
} else {
// csum2=svm_xor(base,words);
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
// uint64_t csum=0;
// uint64_t csum2=0;
// if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
// {
// Hack
// Fast integer xor checksum. Can also be used in comms now.
// autoView(l_v,left,AcceleratorRead);
// Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
// uint64_t *base= (uint64_t *)&l_v[0];
// csum=svm_xor(base,words);
// ok = FlightRecorder::CsumLog(csum);
// if ( !ok ) {
// csum2=svm_xor(base,words);
// std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
// } else {
// csum2=svm_xor(base,words);
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
// }
// GRID_ASSERT(ok);
// }
#endif
FlightRecorder::StepLog("rank inner product");
ComplexD nrm = rankInnerProduct(left,right);
@@ -322,11 +322,11 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
ComplexD nrm2 = rankInnerProduct(left,right);
RealD local2 = real(nrm2);
std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
assert(ok);
GRID_ASSERT(ok);
}
FlightRecorder::StepLog("Start global sum");
// grid->GlobalSumP2P(nrm);
grid->GlobalSum(nrm);
grid->GlobalSumP2P(nrm);
// grid->GlobalSum(nrm);
FlightRecorder::StepLog("Finished global sum");
// std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
FlightRecorder::ReductionLog(local,real(nrm));
@@ -376,40 +376,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(z_v[ss],tmp);
});
bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// z_v
{
Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&z_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
// inner_v
{
Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&inner_tmp_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
}
#endif
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
ok = FlightRecorder::NormLog(real(nrm));
assert(ok);
GRID_ASSERT(ok);
RealD local = real(nrm);
grid->GlobalSum(nrm);
FlightRecorder::ReductionLog(local,real(nrm));
@@ -495,13 +464,13 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_object::scalar_type scalar_type;
GridBase *grid = Data.Grid();
assert(grid!=NULL);
GRID_ASSERT(grid!=NULL);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
GRID_ASSERT(orthogdim >= 0);
GRID_ASSERT(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
@@ -588,14 +557,14 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs.Grid();
assert(grid!=NULL);
GRID_ASSERT(grid!=NULL);
conformable(grid,rhs.Grid());
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
GRID_ASSERT(orthogdim >= 0);
GRID_ASSERT(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];

View File

@@ -208,7 +208,7 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
GRID_ASSERT(ok);
Integer smemSize = numThreads * sizeof(sobj);
// Move out of UVM

View File

@@ -87,6 +87,25 @@ template<class Word> Word svm_xor(Word *vec,uint64_t L)
theGridAccelerator->wait();
return ret;
}
template<class Word> Word checksum_gpu(Word *vec,uint64_t L)
{
Word identity; identity=0;
Word ret = 0;
{
sycl::buffer<Word, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
cgh.parallel_for(sycl::range<1>{L},
Reduction,
[=] (sycl::id<1> index, auto &sum) {
auto l = index % 61;
sum ^= vec[index]<<l | vec[index]>>(64-l);
});
});
}
theGridAccelerator->wait();
return ret;
}
NAMESPACE_END(Grid);

View File

@@ -53,10 +53,10 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
GRID_ASSERT(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
GRID_ASSERT(fine->_simd_layout[d]==1);
GRID_ASSERT(fine->_processors[d]==1);
}
int multiplicity=1;
@@ -66,9 +66,9 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
GRID_ASSERT(coarse->_processors[d] == fine->_processors[fd]);
GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
GRID_ASSERT(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
@@ -83,18 +83,18 @@ inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension; assert(lowerdims >= 0);
int lowerdims = fine->_ndimension - coarse->_ndimension; GRID_ASSERT(lowerdims >= 0);
// assumes that the higher dimensions are not using more processors
// all further divisions are local
for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
for(int d=0;d<lowerdims;d++) GRID_ASSERT(fine->_processors[d]==1);
for(int d=0;d<rngdims;d++) GRID_ASSERT(coarse->_processors[d] == fine->_processors[d+lowerdims]);
// then divide the number of local sites
// check that the total number of sims agree, meanse the iSites are the same
assert(fine->Nsimd() == coarse->Nsimd());
GRID_ASSERT(fine->Nsimd() == coarse->Nsimd());
// check that the two grids divide cleanly
assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
GRID_ASSERT( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
return fine->lSites() / coarse->lSites();
}
@@ -177,7 +177,7 @@ public:
skip = skip<<shift;
assert((skip >> shift)==site); // check for overflow
GRID_ASSERT((skip >> shift)==site); // check for overflow
eng.discard(skip);
#else
@@ -218,7 +218,7 @@ public:
GetState(saved,_generators[gen]);
}
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
assert(saved.size()==RngStateCount);
GRID_ASSERT(saved.size()==RngStateCount);
std::stringstream ss;
for(int i=0;i<RngStateCount;i++){
ss<< saved[i]<<" ";

View File

@@ -31,15 +31,15 @@ NAMESPACE_BEGIN(Grid);
inline void subdivides(GridBase *coarse,GridBase *fine)
{
assert(coarse->_ndimension == fine->_ndimension);
GRID_ASSERT(coarse->_ndimension == fine->_ndimension);
int _ndimension = coarse->_ndimension;
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<_ndimension;d++){
assert(coarse->_processors[d] == fine->_processors[d]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[d]);
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
GRID_ASSERT(coarse->_processors[d] == fine->_processors[d]);
GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[d]);
GRID_ASSERT((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
}
@@ -309,7 +309,7 @@ inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &co
const VLattice &Basis)
{
int NBatch = fineData.size();
assert(coarseData.size() == NBatch);
GRID_ASSERT(coarseData.size() == NBatch);
GridBase * fine = fineData[0].Grid();
GridBase * coarse= coarseData[0].Grid();
@@ -344,7 +344,7 @@ template<class vobj,class vobj2,class CComplex>
GridBase * coarse= coarseA.Grid();
fineZ.Checkerboard()=fineX.Checkerboard();
assert(fineX.Checkerboard()==fineY.Checkerboard());
GRID_ASSERT(fineX.Checkerboard()==fineY.Checkerboard());
subdivides(coarse,fine); // require they map
conformable(fineX,fineY);
conformable(fineX,fineZ);
@@ -356,7 +356,7 @@ template<class vobj,class vobj2,class CComplex>
// FIXME merge with subdivide checking routine as this is redundant
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
GRID_ASSERT(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
autoView( fineZ_ , fineZ, AcceleratorWrite);
@@ -613,7 +613,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
GRID_ASSERT( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i].Grid(),fine);
@@ -687,7 +687,7 @@ inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>
const VLattice &Basis)
{
int NBatch = coarseData.size();
assert(fineData.size() == NBatch);
GRID_ASSERT(fineData.size() == NBatch);
GridBase * fine = fineData[0].Grid();
GridBase * coarse = coarseData[0].Grid();
@@ -715,12 +715,12 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
int ni = ig->_ndimension;
int no = og->_ndimension;
assert(ni == no);
GRID_ASSERT(ni == no);
for(int d=0;d<no;d++){
assert(ig->_processors[d] == og->_processors[d]);
assert(ig->_ldimensions[d] == og->_ldimensions[d]);
assert(ig->lSites() == og->lSites());
GRID_ASSERT(ig->_processors[d] == og->_processors[d]);
GRID_ASSERT(ig->_ldimensions[d] == og->_ldimensions[d]);
GRID_ASSERT(ig->lSites() == og->lSites());
}
autoView(in_v,in,CpuRead);
@@ -752,16 +752,16 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
GRID_ASSERT(!Fg->_isCheckerBoarded);
GRID_ASSERT(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
int nd = nF;
assert(nF == nT);
GRID_ASSERT(nF == nT);
for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]);
GRID_ASSERT(Fg->_processors[d] == Tg->_processors[d]);
}
///////////////////////////////////////////////////////////
@@ -821,12 +821,12 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
GRID_ASSERT(!Fg->_isCheckerBoarded);
GRID_ASSERT(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
assert(nF+1 == nT);
GRID_ASSERT(nF+1 == nT);
///////////////////////////////////////////////////////////
// do the index calc on the GPU
@@ -890,12 +890,12 @@ void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, in
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
GRID_ASSERT(!Fg->_isCheckerBoarded);
GRID_ASSERT(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
assert(nT+1 == nF);
GRID_ASSERT(nT+1 == nF);
///////////////////////////////////////////////////////////
// do the index calc on the GPU
@@ -955,16 +955,16 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl+1 == nh);
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
GRID_ASSERT(nl+1 == nh);
GRID_ASSERT(orthog<nh);
GRID_ASSERT(orthog>=0);
GRID_ASSERT(hg->_processors[orthog]==1);
int dl; dl = 0;
for(int d=0;d<nh;d++){
if ( d != orthog) {
assert(lg->_processors[dl] == hg->_processors[d]);
assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
GRID_ASSERT(lg->_processors[dl] == hg->_processors[d]);
GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]);
dl++;
}
}
@@ -1005,17 +1005,17 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl+1 == nh);
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
GRID_ASSERT(nl+1 == nh);
GRID_ASSERT(orthog<nh);
GRID_ASSERT(orthog>=0);
GRID_ASSERT(hg->_processors[orthog]==1);
lowDim.Checkerboard() = higherDim.Checkerboard();
int dl; dl = 0;
for(int d=0;d<nh;d++){
if ( d != orthog) {
assert(lg->_processors[dl] == hg->_processors[d]);
assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
GRID_ASSERT(lg->_processors[dl] == hg->_processors[d]);
GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]);
dl++;
}
}
@@ -1056,14 +1056,14 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
GRID_ASSERT(nl == nh);
GRID_ASSERT(orthog<nh);
GRID_ASSERT(orthog>=0);
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
GRID_ASSERT(lg->_processors[d] == hg->_processors[d]);
GRID_ASSERT(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
Coordinate sz = lg->_ldimensions;
@@ -1093,7 +1093,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
subdivides(cg,fg);
assert(cg->_ndimension==fg->_ndimension);
GRID_ASSERT(cg->_ndimension==fg->_ndimension);
Coordinate ratio(cg->_ndimension);
@@ -1157,7 +1157,7 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
assert(lex < out.size());
GRID_ASSERT(lex < out.size());
out_ptrs[lane] = &out[lex];
}
@@ -1221,7 +1221,7 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
typedef typename vobj::vector_type vtype;
GridBase* grid = out.Grid();
assert(in.size()==grid->lSites());
GRID_ASSERT(in.size()==grid->lSites());
const int ndim = grid->Nd();
constexpr int nsimd = vtype::Nsimd();
@@ -1268,7 +1268,7 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
typedef typename vobj::vector_type vtype;
GridBase* grid = out._grid;
assert(in.size()==grid->lSites());
GRID_ASSERT(in.size()==grid->lSites());
int ndim = grid->Nd();
int nsimd = vtype::Nsimd();
@@ -1329,9 +1329,9 @@ void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
template<class VobjOut, class VobjIn>
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
assert(out.Grid()->Nd() == in.Grid()->Nd());
GRID_ASSERT(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
GRID_ASSERT(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
}
out.Checkerboard() = in.Checkerboard();
GridBase *in_grid=in.Grid();
@@ -1382,9 +1382,9 @@ class precisionChangeWorkspace{
public:
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
assert(out_grid->Nd() == in_grid->Nd());
GRID_ASSERT(out_grid->Nd() == in_grid->Nd());
for(int d=0;d<out_grid->Nd();d++){
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
GRID_ASSERT(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
}
int Nsimd_out = out_grid->Nsimd();
@@ -1549,7 +1549,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
int full_vecs = full.size();
assert(full_vecs>=1);
GRID_ASSERT(full_vecs>=1);
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
@@ -1567,18 +1567,18 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].Checkerboard() == cb);
GRID_ASSERT(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
GRID_ASSERT(nvector*split_nproc==full_nproc);
GRID_ASSERT(nvector == full_vecs);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
@@ -1622,7 +1622,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
int fvol = lsites;
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
int chunk = (nvec*fvol)/sP; GRID_ASSERT(chunk*sP == nvec*fvol);
// Loop over reordered data post A2A
thread_for(c, chunk, {
@@ -1675,7 +1675,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
int full_vecs = full.size();
assert(full_vecs>=1);
GRID_ASSERT(full_vecs>=1);
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
@@ -1693,18 +1693,18 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].Checkerboard() == cb);
GRID_ASSERT(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
GRID_ASSERT(nvector*split_nproc==full_nproc);
GRID_ASSERT(nvector == full_vecs);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
@@ -1740,7 +1740,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
auto lsites= rsites/M; // Decreases rsites by M
int fvol = lsites;
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
int chunk = (nvec*fvol)/sP; GRID_ASSERT(chunk*sP == nvec*fvol);
{
// Loop over reordered data post A2A

View File

@@ -106,6 +106,47 @@ public:
}
};
#ifdef GRID_LOG_VIEWS
// Little autoscope assister
template<class View>
class ViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
const char* filename; int line, mode;
public:
ViewCloser(View &_v, const char* _filename, int _line, int _mode) :
v(_v), filename(_filename), line(_line), mode(_mode) {
switch (mode){
case AcceleratorRead:
case AcceleratorWrite:
case CpuRead:
case CpuWrite:
ViewLogger::LogOpen(filename, line, 1, mode, &v[0], v.size() * sizeof(v[0]));
break;
}
};
~ViewCloser() {
switch (mode) {
case AcceleratorWriteDiscard:
case AcceleratorWrite:
case CpuWrite:
ViewLogger::LogClose(filename, line, -1, mode, &v[0], v.size() * sizeof(v[0]));
break;
}
v.ViewClose();
}
};
#define autoView(l_v,l,mode) \
auto l_v = l.View(mode); \
ViewCloser<decltype(l_v)> _autoView##l_v(l_v,__FILE__,__LINE__,mode);
#else
// Little autoscope assister
template<class View>
class ViewCloser
@@ -119,6 +160,7 @@ class ViewCloser
#define autoView(l_v,l,mode) \
auto l_v = l.View(mode); \
ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
#endif
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST

View File

@@ -82,10 +82,10 @@ template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
int rNsimda= Nsimd/simd[dim]; // should be equal
assert(rNsimda==rNsimd);
GRID_ASSERT(rNsimda==rNsimd);
int face_ovol=block*nblock;
// assert(buf.size()==face_ovol*rNsimd);
// GRID_ASSERT(buf.size()==face_ovol*rNsimd);
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
//Let's make it work on GPU and then make a special accelerator_for that
@@ -172,7 +172,7 @@ template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
int face_ovol=block*nblock;
// assert(buf.size()==face_ovol*rNsimd);
// GRID_ASSERT(buf.size()==face_ovol*rNsimd);
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
//Let's make it work on GPU and then make a special accelerator_for that
@@ -247,7 +247,7 @@ public:
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate procs =unpadded_grid->ProcessorGrid();
for(int d=0;d<dims;d++){
if ( procs[d] > 1 ) assert(local[d]>=depth);
if ( procs[d] > 1 ) GRID_ASSERT(local[d]>=depth);
}
}
void DeleteGrids(void)
@@ -448,9 +448,9 @@ public:
int nld = to.Grid()->_ldimensions[dimension];
const int Nsimd = vobj::Nsimd();
assert(depth<=lds[dimension]); // A must be on neighbouring node
assert(depth>0); // A caller bug if zero
assert(ld+2*depth==nld);
GRID_ASSERT(depth<=lds[dimension]); // A must be on neighbouring node
GRID_ASSERT(depth>0); // A caller bug if zero
GRID_ASSERT(ld+2*depth==nld);
////////////////////////////////////////////////////////////////////////////
// Face size and byte calculations
////////////////////////////////////////////////////////////////////////////
@@ -460,7 +460,7 @@ public:
}
buffer_size = buffer_size / Nsimd;
int rNsimd = Nsimd / simd[dimension];
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
GRID_ASSERT( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
static deviceVector<vobj> send_buf;
static deviceVector<vobj> recv_buf;

View File

@@ -69,6 +69,7 @@ GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogComms (1, "Comms", GridLogColours, "BLUE");
GridLogger GridLogDslash (1, "Dslash", GridLogColours, "BLUE");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
@@ -84,6 +85,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogDebug.Active(0);
GridLogPerformance.Active(0);
GridLogDslash.Active(0);
GridLogComms.Active(0);
GridLogIntegrator.Active(1);
GridLogColours.Active(0);
GridLogHMC.Active(1);
@@ -97,6 +99,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Dslash")) GridLogDslash.Active(1);
if (logstreams[i] == std::string("Comms")) GridLogComms.Active(1);
if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);

View File

@@ -33,10 +33,6 @@
#ifndef GRID_LOG_H
#define GRID_LOG_H
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////
@@ -180,6 +176,7 @@ extern GridLogger GridLogError;
extern GridLogger GridLogWarning;
extern GridLogger GridLogMessage;
extern GridLogger GridLogDebug;
extern GridLogger GridLogComms;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogDslash;
extern GridLogger GridLogIterative;
@@ -226,8 +223,6 @@ inline void Grid_pass(Args&&... args) {
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
}
#define _NBACKTRACE (256)
extern void * Grid_backtrace_buffer[_NBACKTRACE];
#define BACKTRACEFILE() { \
char string[20]; \

View File

@@ -293,9 +293,9 @@ class BinaryIO {
// Flatten the file
uint64_t lsites = grid->lSites();
if ( control & BINARYIO_MASTER_APPEND ) {
assert(iodata.size()==1);
GRID_ASSERT(iodata.size()==1);
} else {
assert(lsites==iodata.size());
GRID_ASSERT(lsites==iodata.size());
}
for(int d=0;d<ndim;d++){
gStart[d] = lLattice[d]*pcoor[d];
@@ -326,20 +326,20 @@ class BinaryIO {
// Sobj in MPI phrasing
//////////////////////////////////////////////////////////////////////////////
int ierr;
ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject); assert(ierr==0);
ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject); GRID_ASSERT(ierr==0);
ierr = MPI_Type_commit(&mpiObject);
//////////////////////////////////////////////////////////////////////////////
// File global array data type
//////////////////////////////////////////////////////////////////////////////
ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray); assert(ierr==0);
ierr=MPI_Type_commit(&fileArray); assert(ierr==0);
ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray); GRID_ASSERT(ierr==0);
ierr=MPI_Type_commit(&fileArray); GRID_ASSERT(ierr==0);
//////////////////////////////////////////////////////////////////////////////
// local lattice array
//////////////////////////////////////////////////////////////////////////////
ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray); assert(ierr==0);
ierr=MPI_Type_commit(&localArray); assert(ierr==0);
ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray); GRID_ASSERT(ierr==0);
ierr=MPI_Type_commit(&localArray); GRID_ASSERT(ierr==0);
#endif
//////////////////////////////////////////////////////////////////////////////
@@ -349,8 +349,8 @@ class BinaryIO {
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
assert(ieee64||ieee32|ieee64big||ieee32big);
assert((ieee64+ieee32+ieee64big+ieee32big)==1);
GRID_ASSERT(ieee64||ieee32|ieee64big||ieee32big);
GRID_ASSERT((ieee64+ieee32+ieee64big+ieee32big)==1);
//////////////////////////////////////////////////////////////////////////////
// Do the I/O
//////////////////////////////////////////////////////////////////////////////
@@ -361,9 +361,9 @@ class BinaryIO {
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
#ifdef USE_MPI_IO
std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl;
ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh); assert(ierr==0);
ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); assert(ierr==0);
ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status); assert(ierr==0);
ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh); GRID_ASSERT(ierr==0);
ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); GRID_ASSERT(ierr==0);
ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status); GRID_ASSERT(ierr==0);
MPI_File_close(&fh);
MPI_Type_free(&fileArray);
MPI_Type_free(&localArray);
@@ -384,13 +384,14 @@ class BinaryIO {
fin.seekg(offset + myrank * lsites * sizeof(fobj));
}
fin.read((char *)&iodata[0], iodata.size() * sizeof(fobj));
assert(fin.fail() == 0);
GRID_ASSERT(fin.fail() == 0);
fin.close();
}
timer.Stop();
grid->Barrier();
timer.Stop();
bstimer.Start();
ScidacChecksum(grid,iodata,scidac_csuma,scidac_csumb);
if (ieee32big) be32toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
@@ -435,11 +436,11 @@ class BinaryIO {
std::cout << GridLogDebug << "MPI write I/O set view " << file << std::endl;
ierr = MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);
assert(ierr == 0);
GRID_ASSERT(ierr == 0);
std::cout << GridLogDebug << "MPI write I/O write all " << file << std::endl;
ierr = MPI_File_write_all(fh, &iodata[0], 1, localArray, &status);
assert(ierr == 0);
GRID_ASSERT(ierr == 0);
MPI_Offset os;
MPI_File_get_position(fh, &os);
@@ -506,6 +507,7 @@ class BinaryIO {
offset = fout.tellp();
fout.close();
}
grid->Barrier();
timer.Stop();
}

View File

@@ -289,7 +289,7 @@ class GridLimeReader : public BinaryIO {
return;
}
}
assert(0);
GRID_ASSERT(0);
}
////////////////////////////////////////////
// Read a generic serialisable object
@@ -314,7 +314,7 @@ class GridLimeReader : public BinaryIO {
}
}
assert(0);
GRID_ASSERT(0);
}
template<class serialisable_object>
@@ -348,7 +348,7 @@ class GridLimeWriter : public BinaryIO
filename= _filename;
if ( boss_node ) {
File = fopen(filename.c_str(), "w");
LimeW = limeCreateWriter(File); assert(LimeW != NULL );
LimeW = limeCreateWriter(File); GRID_ASSERT(LimeW != NULL );
}
}
/////////////////////////////////////////////
@@ -368,7 +368,7 @@ class GridLimeWriter : public BinaryIO
if ( boss_node ) {
LimeRecordHeader *h;
h = limeCreateHeader(MB, ME, const_cast<char *>(message.c_str()), PayloadSize);
assert(limeWriteRecordHeader(h, LimeW) >= 0);
GRID_ASSERT(limeWriteRecordHeader(h, LimeW) >= 0);
limeDestroyHeader(h);
}
return LIME_SUCCESS;
@@ -386,11 +386,11 @@ class GridLimeWriter : public BinaryIO
// std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl;
int err;
LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes);
assert(h!= NULL);
GRID_ASSERT(h!= NULL);
err=limeWriteRecordHeader(h, LimeW); assert(err>=0);
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
err=limeWriteRecordHeader(h, LimeW); GRID_ASSERT(err>=0);
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); GRID_ASSERT(err>=0);
err=limeWriterCloseRecord(LimeW); GRID_ASSERT(err>=0);
limeDestroyHeader(h);
}
}
@@ -431,7 +431,7 @@ class GridLimeWriter : public BinaryIO
////////////////////////////////////////////////////////////////////
GridBase *grid = field.Grid();
assert(boss_node == field.Grid()->IsBoss() );
GRID_ASSERT(boss_node == field.Grid()->IsBoss() );
FieldNormMetaData FNMD; FNMD.norm2 = norm2(field);
@@ -473,7 +473,7 @@ class GridLimeWriter : public BinaryIO
if ( boss_node ) {
fseek(File,0,SEEK_END);
uint64_t offset2 = ftello(File); // std::cout << " now at offset "<<offset2 << std::endl;
assert( (offset2-offset1) == PayloadSize);
GRID_ASSERT( (offset2-offset1) == PayloadSize);
}
/////////////////////////////////////////////////////////////
@@ -481,7 +481,7 @@ class GridLimeWriter : public BinaryIO
/////////////////////////////////////////////////////////////
if ( boss_node ) {
err=limeWriterCloseRecord(LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); GRID_ASSERT(err>=0);
}
////////////////////////////////////////
// Write checksum element, propagaing forward from the BinaryIO
@@ -621,8 +621,8 @@ class IldgWriter : public ScidacWriter {
uint64_t PayloadSize = LFN.size();
int err;
createLimeRecordHeader(ILDG_DATA_LFN, 0 , 0, PayloadSize);
err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); GRID_ASSERT(err>=0);
err=limeWriterCloseRecord(LimeW); GRID_ASSERT(err>=0);
}
////////////////////////////////////////////////////////////////
@@ -656,7 +656,7 @@ class IldgWriter : public ScidacWriter {
header.sequence_number = sequence;
header.ildg_lfn = LFN;
assert ( (format == std::string("IEEE32BIG"))
GRID_ASSERT ( (format == std::string("IEEE32BIG"))
||(format == std::string("IEEE64BIG")) );
//////////////////////////////////////////////////////
@@ -676,8 +676,8 @@ class IldgWriter : public ScidacWriter {
ildgfmt.ly = header.dimension[1];
ildgfmt.lz = header.dimension[2];
ildgfmt.lt = header.dimension[3];
assert(header.nd==4);
assert(header.nd==header.dimension.size());
GRID_ASSERT(header.nd==4);
GRID_ASSERT(header.nd==header.dimension.size());
//////////////////////////////////////////////////////////////////////////////
// Field norm tests
@@ -734,7 +734,7 @@ class IldgReader : public GridLimeReader {
Coordinate dims = Umu.Grid()->FullDimensions();
assert(dims.size()==4);
GRID_ASSERT(dims.size()==4);
// Metadata holders
ildgFormat ildgFormat_ ;
@@ -793,10 +793,10 @@ class IldgReader : public GridLimeReader {
if ( ildgFormat_.precision == 64 ) format = std::string("IEEE64BIG");
if ( ildgFormat_.precision == 32 ) format = std::string("IEEE32BIG");
assert( ildgFormat_.lx == dims[0]);
assert( ildgFormat_.ly == dims[1]);
assert( ildgFormat_.lz == dims[2]);
assert( ildgFormat_.lt == dims[3]);
GRID_ASSERT( ildgFormat_.lx == dims[0]);
GRID_ASSERT( ildgFormat_.ly == dims[1]);
GRID_ASSERT( ildgFormat_.lz == dims[2]);
GRID_ASSERT( ildgFormat_.lt == dims[3]);
found_ildgFormat = 1;
}
@@ -813,10 +813,10 @@ class IldgReader : public GridLimeReader {
format = FieldMetaData_.floating_point;
assert(FieldMetaData_.dimension[0] == dims[0]);
assert(FieldMetaData_.dimension[1] == dims[1]);
assert(FieldMetaData_.dimension[2] == dims[2]);
assert(FieldMetaData_.dimension[3] == dims[3]);
GRID_ASSERT(FieldMetaData_.dimension[0] == dims[0]);
GRID_ASSERT(FieldMetaData_.dimension[1] == dims[1]);
GRID_ASSERT(FieldMetaData_.dimension[2] == dims[2]);
GRID_ASSERT(FieldMetaData_.dimension[3] == dims[3]);
found_FieldMetaData = 1;
}
@@ -866,13 +866,13 @@ class IldgReader : public GridLimeReader {
// Minimally must find binary segment and checksum
// Since this is an ILDG reader require ILDG format
//////////////////////////////////////////////////////
assert(found_ildgLFN);
assert(found_ildgBinary);
assert(found_ildgFormat);
assert(found_scidacChecksum);
GRID_ASSERT(found_ildgLFN);
GRID_ASSERT(found_ildgBinary);
GRID_ASSERT(found_ildgFormat);
GRID_ASSERT(found_scidacChecksum);
// Must find something with the lattice dimensions
assert(found_FieldMetaData||found_ildgFormat);
GRID_ASSERT(found_FieldMetaData||found_ildgFormat);
if ( found_FieldMetaData ) {
@@ -880,9 +880,9 @@ class IldgReader : public GridLimeReader {
} else {
assert(found_ildgFormat);
GRID_ASSERT(found_ildgFormat);
const std::string stNC = std::to_string( Nc ) ;
assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
GRID_ASSERT ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can
@@ -927,20 +927,20 @@ class IldgReader : public GridLimeReader {
FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
assert( scidac_csuma ==FieldMetaData_.scidac_checksuma);
assert( scidac_csumb ==FieldMetaData_.scidac_checksumb);
GRID_ASSERT( scidac_csuma ==FieldMetaData_.scidac_checksuma);
GRID_ASSERT( scidac_csumb ==FieldMetaData_.scidac_checksumb);
std::cout << GridLogMessage<<"SciDAC checksums match " << std::endl;
} else {
std::cout << GridLogWarning<<"SciDAC checksums not found. This is unsafe. " << std::endl;
assert(0); // Can I insist always checksum ?
GRID_ASSERT(0); // Can I insist always checksum ?
}
if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker;
stats Stats;
Stats(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
GRID_ASSERT(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
GRID_ASSERT(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;
}
}

View File

@@ -203,7 +203,7 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
//////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm)
{
assert( Nc < 4 && Nc > 1 ) ;
GRID_ASSERT( Nc < 4 && Nc > 1 ) ;
for(int mu=0;mu<Nd;mu++){
#if Nc == 2
cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ;
@@ -240,7 +240,7 @@ struct BinarySimpleUnmunger {
sobj_stype *in_buffer = (sobj_stype *)&in;
size_t fobj_words = sizeof(out) / sizeof(fobj_stype);
size_t sobj_words = sizeof(in) / sizeof(sobj_stype);
assert(fobj_words == sobj_words);
GRID_ASSERT(fobj_words == sobj_words);
for (unsigned int word = 0; word < sobj_words; word++)
out_buffer[word] = in_buffer[word]; // type conversion on the fly
@@ -259,7 +259,7 @@ struct BinarySimpleMunger {
sobj_stype *out_buffer = (sobj_stype *)&out;
size_t fobj_words = sizeof(in) / sizeof(fobj_stype);
size_t sobj_words = sizeof(out) / sizeof(sobj_stype);
assert(fobj_words == sobj_words);
GRID_ASSERT(fobj_words == sobj_words);
for (unsigned int word = 0; word < sobj_words; word++)
out_buffer[word] = in_buffer[word]; // type conversion on the fly

View File

@@ -76,7 +76,7 @@ public:
removeWhitespace(line);
std::cout << GridLogMessage << "* " << line << std::endl;
assert(line==std::string("BEGIN_HEADER"));
GRID_ASSERT(line==std::string("BEGIN_HEADER"));
do {
getline(fin,line); // read one line
@@ -106,9 +106,9 @@ public:
field.dimension[2] = std::stol(header["DIMENSION_3"]);
field.dimension[3] = std::stol(header["DIMENSION_4"]);
assert(grid->_ndimension == 4);
GRID_ASSERT(grid->_ndimension == 4);
for(int d=0;d<4;d++){
assert(grid->_fdimensions[d]==field.dimension[d]);
GRID_ASSERT(grid->_fdimensions[d]==field.dimension[d]);
}
field.link_trace = std::stod(header["LINK_TRACE"]);
@@ -183,7 +183,7 @@ public:
nersc_csum,scidac_csuma,scidac_csumb);
}
} else {
assert(0);
GRID_ASSERT(0);
}
GaugeStats Stats; Stats(Umu,clone);
@@ -205,9 +205,9 @@ public:
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum );
if(exitOnReadPlaquetteMismatch()) GRID_ASSERT(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
GRID_ASSERT(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
GRID_ASSERT(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
@@ -246,7 +246,7 @@ public:
GridBase *grid = Umu.Grid();
GridMetaData(grid,header);
assert(header.nd==4);
GRID_ASSERT(header.nd==4);
GaugeStats Stats; Stats(Umu,header);
MachineCharacteristics(header);
@@ -302,7 +302,7 @@ public:
GridBase *grid = parallel.Grid();
GridMetaData(grid,header);
assert(header.nd==4);
GRID_ASSERT(header.nd==4);
header.link_trace=0.0;
header.plaquette=0.0;
MachineCharacteristics(header);
@@ -355,16 +355,16 @@ public:
std::string data_type(header.data_type);
#ifdef RNG_RANLUX
assert(format == std::string("UINT64"));
assert(data_type == std::string("RANLUX48"));
GRID_ASSERT(format == std::string("UINT64"));
GRID_ASSERT(data_type == std::string("RANLUX48"));
#endif
#ifdef RNG_MT19937
assert(format == std::string("UINT32"));
assert(data_type == std::string("MT19937"));
GRID_ASSERT(format == std::string("UINT32"));
GRID_ASSERT(data_type == std::string("MT19937"));
#endif
#ifdef RNG_SITMO
assert(format == std::string("UINT64"));
assert(data_type == std::string("SITMO"));
GRID_ASSERT(format == std::string("UINT64"));
GRID_ASSERT(data_type == std::string("SITMO"));
#endif
// depending on datatype, set up munger;
@@ -376,7 +376,7 @@ public:
std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
exit(0);
}
assert(nersc_csum == header.checksum );
GRID_ASSERT(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
}

View File

@@ -49,7 +49,7 @@ public:
{
std::ifstream fin(file, std::ios::in | std::ios::binary);
fin.read(reinterpret_cast<char*>(&header), sizeof(OpenQcdHeader));
assert(!fin.fail());
GRID_ASSERT(!fin.fail());
field.data_start = fin.tellg();
fin.close();
}
@@ -57,10 +57,10 @@ public:
header.plaq /= normalisationFactor;
// sanity check (should trigger on endian issues)
assert(0 < header.Nt && header.Nt <= 1024);
assert(0 < header.Nx && header.Nx <= 1024);
assert(0 < header.Ny && header.Ny <= 1024);
assert(0 < header.Nz && header.Nz <= 1024);
GRID_ASSERT(0 < header.Nt && header.Nt <= 1024);
GRID_ASSERT(0 < header.Nx && header.Nx <= 1024);
GRID_ASSERT(0 < header.Ny && header.Ny <= 1024);
GRID_ASSERT(0 < header.Nz && header.Nz <= 1024);
field.dimension[0] = header.Nx;
field.dimension[1] = header.Ny;
@@ -71,9 +71,9 @@ public:
std::cout << GridLogDebug << "grid dimensions: " << grid->_fdimensions << std::endl;
std::cout << GridLogDebug << "file dimensions: " << field.dimension << std::endl;
assert(grid->_ndimension == Nd);
GRID_ASSERT(grid->_ndimension == Nd);
for(int d = 0; d < Nd; d++)
assert(grid->_fdimensions[d] == field.dimension[d]);
GRID_ASSERT(grid->_fdimensions[d] == field.dimension[d]);
field.plaquette = header.plaq;
@@ -86,10 +86,10 @@ public:
std::string file) {
typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubleStoredGaugeField;
assert(Ns == 4 and Nd == 4 and Nc == 3);
GRID_ASSERT(Ns == 4 and Nd == 4 and Nc == 3);
auto grid = dynamic_cast<GridCartesian*>(Umu.Grid());
assert(grid != nullptr); assert(grid->_ndimension == Nd);
GRID_ASSERT(grid != nullptr); GRID_ASSERT(grid->_ndimension == Nd);
uint64_t offset = readHeader(file, Umu.Grid(), header);
@@ -171,7 +171,7 @@ public:
if(plaq_diff >= tol)
std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl;
assert(plaq_diff < tol);
GRID_ASSERT(plaq_diff < tol);
std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl;
}

View File

@@ -62,7 +62,7 @@ public:
: swap(false)
, grid(gridPtr) {
err = MPI_File_open(comm, const_cast<char*>(filename.c_str()), MPI_MODE_RDONLY, MPI_INFO_NULL, &fp);
assert(err == MPI_SUCCESS);
GRID_ASSERT(err == MPI_SUCCESS);
}
virtual ~ParRdr() { MPI_File_close(&fp); }
@@ -76,8 +76,8 @@ public:
}
int readHeader(FieldMetaData& field) {
assert((grid->_ndimension == Nd) && (Nd == 4));
assert(Nc == 3);
GRID_ASSERT((grid->_ndimension == Nd) && (Nd == 4));
GRID_ASSERT(Nc == 3);
OpenQcdHeader header;
@@ -86,10 +86,10 @@ public:
header.plaq /= 3.; // TODO change this into normalizationfactor
// sanity check (should trigger on endian issues) TODO remove?
assert(0 < header.Nt && header.Nt <= 1024);
assert(0 < header.Nx && header.Nx <= 1024);
assert(0 < header.Ny && header.Ny <= 1024);
assert(0 < header.Nz && header.Nz <= 1024);
GRID_ASSERT(0 < header.Nt && header.Nt <= 1024);
GRID_ASSERT(0 < header.Nx && header.Nx <= 1024);
GRID_ASSERT(0 < header.Ny && header.Ny <= 1024);
GRID_ASSERT(0 < header.Nz && header.Nz <= 1024);
field.dimension[0] = header.Nx;
field.dimension[1] = header.Ny;
@@ -97,7 +97,7 @@ public:
field.dimension[3] = header.Nt;
for(int d = 0; d < Nd; d++)
assert(grid->FullDimensions()[d] == field.dimension[d]);
GRID_ASSERT(grid->FullDimensions()[d] == field.dimension[d]);
field.plaquette = header.plaq;
@@ -114,15 +114,15 @@ public:
int read = -1;
MPI_Get_count(&status, datatype, &read);
// CHECK_VAR(read)
assert(nbytes == (uint64_t)read);
assert(err == MPI_SUCCESS);
GRID_ASSERT(nbytes == (uint64_t)read);
GRID_ASSERT(err == MPI_SUCCESS);
}
void createTypes() {
constexpr int elem_size = Nd * 2 * 2 * Nc * Nc * sizeof(double); // 2_complex 2_fwdbwd
err = MPI_Type_contiguous(elem_size, MPI_BYTE, &oddSiteType); assert(err == MPI_SUCCESS);
err = MPI_Type_commit(&oddSiteType); assert(err == MPI_SUCCESS);
err = MPI_Type_contiguous(elem_size, MPI_BYTE, &oddSiteType); GRID_ASSERT(err == MPI_SUCCESS);
err = MPI_Type_commit(&oddSiteType); GRID_ASSERT(err == MPI_SUCCESS);
Coordinate const L = grid->GlobalDimensions();
Coordinate const l = grid->LocalDimensions();
@@ -132,20 +132,20 @@ public:
Coordinate subsizes({l[2] / 2, l[1], l[0], l[3]});
Coordinate starts({i[2] * l[2] / 2, i[1] * l[1], i[0] * l[0], i[3] * l[3]});
err = MPI_Type_create_subarray(grid->_ndimension, &sizes[0], &subsizes[0], &starts[0], MPI_ORDER_FORTRAN, oddSiteType, &fileViewType); assert(err == MPI_SUCCESS);
err = MPI_Type_commit(&fileViewType); assert(err == MPI_SUCCESS);
err = MPI_Type_create_subarray(grid->_ndimension, &sizes[0], &subsizes[0], &starts[0], MPI_ORDER_FORTRAN, oddSiteType, &fileViewType); GRID_ASSERT(err == MPI_SUCCESS);
err = MPI_Type_commit(&fileViewType); GRID_ASSERT(err == MPI_SUCCESS);
}
void freeTypes() {
err = MPI_Type_free(&fileViewType); assert(err == MPI_SUCCESS);
err = MPI_Type_free(&oddSiteType); assert(err == MPI_SUCCESS);
err = MPI_Type_free(&fileViewType); GRID_ASSERT(err == MPI_SUCCESS);
err = MPI_Type_free(&oddSiteType); GRID_ASSERT(err == MPI_SUCCESS);
}
bool readGauge(std::vector<ColourMatrixD>& domain_buff, FieldMetaData& meta) {
auto hdr_offset = readHeader(meta);
CHECK
createTypes();
err = MPI_File_set_view(fp, hdr_offset, oddSiteType, fileViewType, "native", MPI_INFO_NULL); errInfo(err, "MPI_File_set_view0"); assert(err == MPI_SUCCESS);
err = MPI_File_set_view(fp, hdr_offset, oddSiteType, fileViewType, "native", MPI_INFO_NULL); errInfo(err, "MPI_File_set_view0"); GRID_ASSERT(err == MPI_SUCCESS);
CHECK
int const domainSites = grid->lSites();
domain_buff.resize(Nd * domainSites); // 2_fwdbwd * 4_Nd * domainSites / 2_onlyodd
@@ -166,7 +166,7 @@ public:
CHECK
err = MPI_File_set_view(fp, 0, MPI_BYTE, MPI_BYTE, "native", MPI_INFO_NULL);
errInfo(err, "MPI_File_set_view1");
assert(err == MPI_SUCCESS);
GRID_ASSERT(err == MPI_SUCCESS);
freeTypes();
std::cout << GridLogMessage << "read sum: " << n_os * os_size << " bytes" << std::endl;
@@ -182,7 +182,7 @@ public:
std::string file) {
typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubledGaugeField;
assert(Ns == 4 and Nd == 4 and Nc == 3);
GRID_ASSERT(Ns == 4 and Nd == 4 and Nc == 3);
auto grid = Umu.Grid();
@@ -225,7 +225,7 @@ public:
if(plaq_diff >= tol)
std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl;
assert(plaq_diff < tol);
GRID_ASSERT(plaq_diff < tol);
std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl;
}
@@ -246,7 +246,7 @@ private:
static inline void copyToLatticeObject(std::vector<DoubleStoredColourMatrix>& u_fb,
std::vector<ColourMatrixD> const& node_buff,
GridBase* grid) {
assert(node_buff.size() == Nd * grid->lSites());
GRID_ASSERT(node_buff.size() == Nd * grid->lSites());
Coordinate const& l = grid->LocalDimensions();
@@ -274,7 +274,7 @@ private:
buff_idx += 2 * Nd;
}
assert(node_buff.size() == buff_idx);
GRID_ASSERT(node_buff.size() == buff_idx);
}
};

View File

@@ -146,8 +146,8 @@ public:
PerformanceCounter(int _pct) {
#ifdef __linux__
assert(_pct>=0);
assert(_pct<PERFORMANCE_COUNTER_NUM_TYPES);
GRID_ASSERT(_pct>=0);
GRID_ASSERT(_pct<PERFORMANCE_COUNTER_NUM_TYPES);
fd=-1;
cyclefd=-1;
count=0;
@@ -213,7 +213,7 @@ public:
::ioctl(cyclefd, PERF_EVENT_IOC_DISABLE, 0);
ign=::read(fd, &count, sizeof(long long));
ign+=::read(cyclefd, &cycles, sizeof(long long));
assert(ign==2*sizeof(long long));
GRID_ASSERT(ign==2*sizeof(long long));
}
elapsed = cyclecount() - begin;
#else

View File

@@ -150,7 +150,7 @@ void PmuStat::KNLevsetup(const char *ename, int &fd, int event, int umask)
}
int type;
int ret = fscanf(fp, "%d", &type);
assert(ret == 1);
GRID_ASSERT(ret == 1);
fclose(fp);
// std::cout << "Using PMU type "<<type<<" from " << std::string(ename) <<std::endl;

View File

@@ -60,12 +60,16 @@ inline std::ostream& operator<< (std::ostream & stream, const GridSecs & time)
}
inline std::ostream& operator<< (std::ostream & stream, const GridMillisecs & now)
{
double secs = 1.0*now.count()*1.0e-3;
stream << secs<<" s";
/*
GridSecs second(1);
auto secs = now/second ;
auto subseconds = now%second ;
auto fill = stream.fill();
stream << secs<<"."<<std::setw(3)<<std::setfill('0')<<subseconds.count()<<" s";
stream.fill(fill);
*/
return stream;
}
inline std::ostream& operator<< (std::ostream & stream, const GridUsecs & now)
@@ -90,14 +94,14 @@ public:
Reset();
}
void Start(void) {
assert(running == false);
GRID_ASSERT(running == false);
#ifdef TIMERS_ON
start = GridClock::now();
#endif
running = true;
}
void Stop(void) {
assert(running == true);
GRID_ASSERT(running == true);
#ifdef TIMERS_ON
accumulator+= std::chrono::duration_cast<GridUsecs>(GridClock::now()-start);
#endif
@@ -111,11 +115,11 @@ public:
accumulator = std::chrono::duration_cast<GridUsecs>(start-start);
}
GridTime Elapsed(void) const {
assert(running == false);
GRID_ASSERT(running == false);
return std::chrono::duration_cast<GridTime>( accumulator );
}
uint64_t useconds(void) const {
assert(running == false);
GRID_ASSERT(running == false);
return (uint64_t) accumulator.count();
}
bool isRunning(void) const {

View File

@@ -136,9 +136,9 @@ class EmptyAction : public Action <GaugeField>
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { GRID_ASSERT(0);}; // refresh pseudofermions
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { GRID_ASSERT(0); }; // evaluate the action derivative
///////////////////////////////
// Logging

View File

@@ -77,7 +77,7 @@ public:
actions(std::get<0>(actions_hirep)), multiplier(mul) {
// initialize the hirep vectors to zero.
// apply(this->resize, actions_hirep, 0); //need a working resize
assert(mul >= 1);
GRID_ASSERT(mul >= 1);
}
template < class GenField >

View File

@@ -126,7 +126,7 @@ public:
// possible boost
std::vector<ComplexD> qmu;
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; GRID_ASSERT(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
// Cayley form Moebius (tanh and zolotarev)

View File

@@ -181,7 +181,7 @@ public:
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
GRID_ASSERT(0);
return lambda;
}
@@ -324,7 +324,7 @@ public:
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
GRID_ASSERT(0);
return lambda;
}

View File

@@ -210,8 +210,8 @@ private:
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
const MaskField* m = getCorrectMaskField(f); GRID_ASSERT(m != nullptr);
GRID_ASSERT(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}

View File

@@ -164,8 +164,8 @@ private:
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
const MaskField* m = getCorrectMaskField(f); GRID_ASSERT(m != nullptr);
GRID_ASSERT(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}

View File

@@ -74,8 +74,8 @@ public:
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
GRID_ASSERT(twist.size() == Nd);//check that twist is Nd
GRID_ASSERT(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{

View File

@@ -110,9 +110,9 @@ public:
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag) { assert(0);};
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag) { GRID_ASSERT(0);};
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ GRID_ASSERT(0);};
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ GRID_ASSERT(0);};
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
@@ -128,7 +128,7 @@ public:
void DhopOE(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
assert(in.Checkerboard()==Even);
GRID_ASSERT(in.Checkerboard()==Even);
Dhop5(in,out,MassFieldOdd,MassFieldEven,dag);
for(int mu=0;mu<4;mu++){
DhopDirU(in,UmuOdd[mu],UmuEven[mu],tmp,mu,dag ); out = out + tmp;
@@ -137,7 +137,7 @@ public:
void DhopEO(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
assert(in.Checkerboard()==Odd);
GRID_ASSERT(in.Checkerboard()==Odd);
Dhop5(in,out, MassFieldEven,MassFieldOdd ,dag );
for(int mu=0;mu<4;mu++){
DhopDirU(in,UmuEven[mu],UmuOdd[mu],tmp,mu,dag ); out = out + tmp;
@@ -147,11 +147,11 @@ public:
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ assert(0);};
void MdirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { assert(0);};
void DhopDirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { assert(0);};
void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ GRID_ASSERT(0);};
void MdirAll(const FermionField &in, std::vector<FermionField> &out) { GRID_ASSERT(0);};
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { GRID_ASSERT(0);};
void DhopDirAll(const FermionField &in, std::vector<FermionField> &out) { GRID_ASSERT(0);};
void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { GRID_ASSERT(0);};
void DhopDirU(const FermionField &in, const GaugeLinkField &U5e, const GaugeLinkField &U5o, FermionField &out, int mu, int dag)
{

View File

@@ -123,7 +123,7 @@ public:
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
GRID_ASSERT(zdata->n==this->Ls);
// std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<this->Ls<<std::endl;
// Call base setter

View File

@@ -134,25 +134,25 @@ public:
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu)
{
assert(0);
GRID_ASSERT(0);
}
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
assert(0);
GRID_ASSERT(0);
}
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
assert(0);
GRID_ASSERT(0);
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
assert(0);
GRID_ASSERT(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
assert(0);
GRID_ASSERT(0);
// Following lines to be revised after Peter's addition of half prec
// missing put lane...
/*
@@ -184,7 +184,7 @@ public:
slocal_coor[0] = s;
for (int s4d = 1; s4d< dimF; s4d++) slocal_coor[s4d] = local_coor[s4d-1];
int sF = Bgrid->oIndexReduced(slocal_coor);
assert(sF < Bgrid->oSites());
GRID_ASSERT(sF < Bgrid->oSites());
extract(traceIndex<SpinIndex>(outerProduct(Btilde[sF], Atilde[sF])), vres);
// sum across the 5d dimension

View File

@@ -49,7 +49,7 @@ public:
virtual FermionField &tmp(void) = 0;
virtual void DirichletBlock(const Coordinate & _Block) { assert(0); };
virtual void DirichletBlock(const Coordinate & _Block) { GRID_ASSERT(0); };
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
@@ -93,7 +93,7 @@ public:
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { GRID_ASSERT(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist)
{

Some files were not shown because too many files have changed in this diff Show More