mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Compare commits
	
		
			251 Commits
		
	
	
		
			feature/ft
			...
			2111e7ab5f
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					2111e7ab5f | ||
| 
						 | 
					d29abfdcaf | ||
| 
						 | 
					a751c42cc5 | ||
| 
						 | 
					6a3bc9865e | ||
| 
						 | 
					4d5f7e4377 | ||
| 
						 | 
					78b117fb78 | ||
| 
						 | 
					ded63a1319 | ||
| 
						 | 
					df3e4d1e9c | ||
| 
						 | 
					b58fd80379 | ||
| 
						 | 
					7f6e0f57d0 | ||
| 
						 | 
					cae27678d8 | ||
| 
						 | 
					48ff655bad | ||
| 
						 | 
					2525ad4623 | ||
| 
						 | 
					e7020017c5 | ||
| 
						 | 
					eacebfad74 | ||
| 
						 | 
					3bc2da5321 | ||
| 
						 | 
					2d710d6bfd | ||
| 
						 | 
					6532b7f32b | ||
| 
						 | 
					7b41b92d99 | ||
| 
						 | 
					dd557af84b | ||
| 
						 | 
					59b9d0e030 | ||
| 
						 | 
					b82eee4733 | ||
| 
						 | 
					6a87487544 | ||
| 
						 | 
					fcf5023845 | ||
| 
						 | 
					c8adad6d8b | ||
| 
						 | 
					737d3ffb98 | ||
| 
						 | 
					b01e67bab1 | ||
| 
						 | 
					8a70314f54 | ||
| 
						 | 
					afc316f501 | ||
| 
						 | 
					f14bfd5c1b | ||
| 
						 | 
					c5f1420dea | ||
| 
						 | 
					018e6da872 | ||
| 
						 | 
					b77bccfac2 | ||
| 
						 | 
					36ae6e5aba | ||
| 
						 | 
					9db585cfeb | ||
| 
						 | 
					c564611ba7 | ||
| 
						 | 
					e187bcb85c | ||
| 
						 | 
					be18ffe3b4 | ||
| 
						 | 
					0d63dce4e2 | ||
| 
						 | 
					26b30e1551 | ||
| 
						 | 
					7fc58ac293 | ||
| 
						 | 
					3a86cce8c1 | ||
| 
						 | 
					80359e0d49 | ||
| 
						 | 
					3d437c5cc4 | ||
| 
						 | 
					37884d369f | ||
| 
						 | 
					9246e653cd | ||
| 
						 | 
					64283c8673 | ||
| 
						 | 
					755002da9c | ||
| 
						 | 
					31b8e8b437 | ||
| 
						 | 
					0ec0de97e6 | ||
| 
						 | 
					6c3ade5d89 | ||
| 
						 | 
					980c5f9a34 | ||
| 
						 | 
					471ca5f281 | ||
| 
						 | 
					e82ddcff5d | ||
| 
						 | 
					b9dcad89e8 | ||
| 
						 | 
					993f43ef4a | ||
| 
						 | 
					2b43308208 | ||
| 
						 | 
					04a1ac3a76 | ||
| 
						 | 
					990b8798bd | ||
| 
						 | 
					b334a73a44 | ||
| 
						 | 
					5d113d1c70 | ||
| 
						 | 
					c14977aeab | ||
| 
						 | 
					3e94838204 | ||
| 
						 | 
					c0a0b8ca62 | ||
| 
						 | 
					b8a7004365 | ||
| 
						 | 
					bd56c95a6f | ||
| 
						 | 
					994512048e | ||
| 
						 | 
					dbd8bb49dc | ||
| 
						 | 
					3a29af0ce4 | ||
| 
						 | 
					f7b79cdd45 | ||
| 
						 | 
					075b9d22d0 | ||
| 
						 | 
					b92428f05f | ||
| 
						 | 
					34b11864b6 | ||
| 
						 | 
					1dfaa08afb | ||
| 
						 | 
					f44dce390f | ||
| 
						 | 
					bb71e9a96a | ||
| 78bae9417c | |||
| dd170ead01 | |||
| 014704856f | |||
| 
						 | 
					6f6844ccf1 | ||
| 
						 | 
					4c6613d72c | ||
| 
						 | 
					ee92e08edb | ||
| 
						 | 
					c1dcee9328 | ||
| 
						 | 
					559257bbe9 | ||
| 
						 | 
					6b150961fe | ||
| 
						 | 
					cff1f8d3b8 | ||
| 
						 | 
					f27d2083cd | ||
| 
						 | 
					36cc9c524f | ||
| 
						 | 
					2822487450 | ||
| 
						 | 
					e07fafe46a | ||
| 
						 | 
					063d290bd8 | ||
| 
						 | 
					4e6194d92a | ||
| 
						 | 
					de30c4e22a | ||
| 
						 | 
					5bafcaedfa | ||
| 
						 | 
					bfeceae708 | ||
| 
						 | 
					eacb66591f | ||
| 
						 | 
					fadaa85626 | ||
| 
						 | 
					02a5b0d786 | ||
| 
						 | 
					0e2141442a | ||
| 
						 | 
					769eb0eecb | ||
| 
						 | 
					4241c7d4a3 | ||
| 
						 | 
					7b11075102 | ||
| 
						 | 
					abc658dca5 | ||
| 
						 | 
					2372275b2c | ||
| 
						 | 
					ef736e8aa4 | ||
| 
						 | 
					5e539e2d54 | ||
| 
						 | 
					96773f5254 | ||
| 
						 | 
					d80df09f3b | ||
| 
						 | 
					621e612c30 | ||
| 
						 | 
					8c3792721b | ||
| 
						 | 
					c95bbd3948 | ||
| 
						 | 
					e28ab7a732 | ||
| 
						 | 
					c797cbe737 | ||
| 
						 | 
					e09dfbf1c2 | ||
| 85e35c4da1 | |||
| 
						 | 
					d72e914cf0 | ||
| 
						 | 
					3b5254e2d5 | ||
| 
						 | 
					f1c358b596 | ||
| 
						 | 
					c0ef210265 | ||
| 
						 | 
					e3e1cc1962 | ||
| 
						 | 
					723eadbb5c | ||
| 
						 | 
					e24637ec1e | ||
| 
						 | 
					8b01ff4ce7 | ||
| 
						 | 
					588197c487 | ||
| 
						 | 
					116d90b0ee | ||
| 
						 | 
					b0646ca187 | ||
| 
						 | 
					1352bad2e4 | ||
| 
						 | 
					4895ff260e | ||
| 
						 | 
					470d93006a | ||
| 
						 | 
					2f3d03f188 | ||
| 
						 | 
					8db7c23bee | ||
| 
						 | 
					69dc5172dc | ||
| 
						 | 
					fd72eb6546 | ||
| 477b794bc5 | |||
| 
						 | 
					b405767569 | ||
| 
						 | 
					fe88a0c12f | ||
| 
						 | 
					e61a9ed2b4 | ||
| 
						 | 
					de8daa3824 | ||
| 
						 | 
					3a50fb29cb | ||
| 
						 | 
					6647d2656f | ||
| 
						 | 
					a6f4dbeb6d | ||
| 
						 | 
					92a282f2d8 | ||
| 
						 | 
					ca2fd9fc7b | ||
| 
						 | 
					be1a4f5860 | ||
| 
						 | 
					5897b93dd4 | ||
| 
						 | 
					af091e0881 | ||
| 
						 | 
					3c1e5e9517 | ||
| 
						 | 
					85b2cb7a8a | ||
| 
						 | 
					b8bdc2eefb | ||
| 
						 | 
					0078826ff1 | ||
| 
						 | 
					e855c41772 | ||
| 
						 | 
					d169c275b6 | ||
| 
						 | 
					a5125e23f4 | ||
| 
						 | 
					7b83c80757 | ||
| 
						 | 
					e41821e206 | ||
| 
						 | 
					5a75ab15a2 | ||
| 
						 | 
					932c783fbf | ||
| 
						 | 
					55f9cce577 | ||
| 
						 | 
					b3533ca847 | ||
| 
						 | 
					fd2a637010 | ||
| 
						 | 
					eee27b8b30 | ||
| 
						 | 
					8522352aa3 | ||
| 
						 | 
					3beb8f4091 | ||
| 
						 | 
					12a706e9b1 | ||
| 
						 | 
					170aa7df01 | ||
| 
						 | 
					e8ad1fef53 | ||
| 
						 | 
					aa9df63a05 | ||
| 
						 | 
					3953312a93 | ||
| 
						 | 
					6e62f4f616 | ||
| 
						 | 
					6a7bdca53b | ||
| 
						 | 
					c7fba9aace | ||
| 
						 | 
					ac6c7cb8d6 | ||
| 
						 | 
					c5924833a1 | ||
| 
						 | 
					ac0a74be0d | ||
| 
						 | 
					42b0e1125d | ||
| 
						 | 
					339c4fda79 | ||
| 
						 | 
					9b85bf9402 | ||
| 
						 | 
					86b02c3cd8 | ||
| 
						 | 
					7b3b7093fa | ||
| 
						 | 
					881b08a465 | ||
| 
						 | 
					3ee5444c69 | ||
| 
						 | 
					5e28fe56d2 | ||
| 
						 | 
					5aabe074fe | ||
| 
						 | 
					dace904c10 | ||
| 
						 | 
					be98d26610 | ||
| 
						 | 
					178376f24b | ||
| 
						 | 
					6a0eb466ee | ||
| 
						 | 
					4ea29b8f0f | ||
| 
						 | 
					778291230a | ||
| 
						 | 
					026e736dfa | ||
| 
						 | 
					4275b3f431 | ||
| 
						 | 
					1b8176e2c0 | ||
| 
						 | 
					cbc053c3db | ||
| 
						 | 
					cdf3f6ef6e | ||
| 
						 | 
					ba7f9d7b70 | ||
| 
						 | 
					371fd123fb | ||
| 
						 | 
					d6ff644aab | ||
| 
						 | 
					29586f6b5e | ||
| 
						 | 
					fd057c838f | ||
| 
						 | 
					f51222086c | ||
| 
						 | 
					f73691ec47 | ||
| 
						 | 
					7ebda3e9ec | ||
| 
						 | 
					b10e1b7bc8 | ||
| 
						 | 
					d7dea44ce7 | ||
| 
						 | 
					37b6b82869 | ||
| 
						 | 
					92ad5b8f74 | ||
| 
						 | 
					8c80f1c168 | ||
| 
						 | 
					0af7d5a793 | ||
| 
						 | 
					505fa49983 | ||
| 
						 | 
					7bcf33def9 | ||
| 
						 | 
					a13820656a | ||
| 
						 | 
					fa71b46a41 | ||
| 
						 | 
					b8b3ae6ac1 | ||
| 
						 | 
					55c008da21 | ||
| 
						 | 
					2507606bd0 | ||
| 
						 | 
					7c2ad4f8c8 | ||
| 
						 | 
					54c8025aad | ||
| 
						 | 
					921e23e83c | ||
| 
						 | 
					6e750ecb0e | ||
| 
						 | 
					b8f1f5d2a3 | ||
| 
						 | 
					9273f2937c | ||
| 
						 | 
					1aa28b47ae | ||
| 
						 | 
					629cb2987a | ||
| 
						 | 
					03235d6368 | ||
| 
						 | 
					22064c7e4c | ||
| 
						 | 
					2de03e5172 | ||
| 
						 | 
					3af4929dda | ||
| 
						 | 
					1ba429345b | ||
| 
						 | 
					88bdd4344b | ||
| 
						 | 
					4044536eea | ||
| 
						 | 
					4d8ae6221c | ||
| 
						 | 
					4e31e4e094 | ||
| 
						 | 
					0d6674e489 | ||
| 
						 | 
					b145fd4f5b | ||
| 
						 | 
					8a5b794f25 | ||
| 
						 | 
					291e80f88a | ||
| 
						 | 
					1ace5850ae | ||
| 
						 | 
					283f14b7c1 | ||
| 
						 | 
					1d6e708083 | ||
| 
						 | 
					89457e25e3 | ||
| 
						 | 
					7e3b298d3d | ||
| 
						 | 
					7ff3e5eed4 | ||
| 
						 | 
					19eb51cf41 | ||
| 
						 | 
					470d4dcc6d | ||
| 
						 | 
					ed03bfd555 | ||
| 
						 | 
					8c0fbcccae | ||
| 
						 | 
					d4866157fe | ||
| 
						 | 
					b6496b6cb5 | ||
| 
						 | 
					4f5fe57920 | ||
| 
						 | 
					11fb943b1e | ||
| 
						 | 
					046a23121e | 
@@ -66,6 +66,10 @@ if BUILD_FERMION_REPS
 | 
			
		||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
			
		||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_SP
 | 
			
		||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
			
		||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -69,7 +69,8 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(PowerMethod);
 | 
			
		||||
#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(CoarsendMatrix);
 | 
			
		||||
#include <Grid/algorithms/FFT.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -90,9 +90,8 @@ public:
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    Coeffs.assign(0.,order);
 | 
			
		||||
    Coeffs[order-1] = 1.;
 | 
			
		||||
    Coeffs.resize(order,0.0);
 | 
			
		||||
    Coeffs[order-1] = 1.0;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
			
		||||
 
 | 
			
		||||
@@ -33,218 +33,254 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Deflation methods considered
 | 
			
		||||
   *      -- Solve P A x = P b        [ like Luscher ]
 | 
			
		||||
   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
			
		||||
   * DEF-2        P^T M A x = P^T M b
 | 
			
		||||
   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
			
		||||
   * ADEF-2       Preconditioner = P^T M + Q
 | 
			
		||||
   * BNN          Preconditioner = P^T M P + Q
 | 
			
		||||
   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
			
		||||
   * 
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
   * M1 = P^TM + Q
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   * Vout = x
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// abstract base
 | 
			
		||||
template<class Field, class CoarseField>
 | 
			
		||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  int verbose;
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  const int mmax = 5;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
 | 
			
		||||
  LinearOperatorBase<Field>   *_Linop
 | 
			
		||||
  OperatorFunction<Field>     *_Smoother,
 | 
			
		||||
  LinearFunction<CoarseField> *_CoarseSolver;
 | 
			
		||||
 | 
			
		||||
  // Need somthing that knows how to get from Coarse to fine and back again
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelFlexiblePcg(RealD tol,
 | 
			
		||||
		     Integer maxit,
 | 
			
		||||
		     LinearOperatorBase<Field> *Linop,
 | 
			
		||||
		     LinearOperatorBase<Field> *SmootherLinop,
 | 
			
		||||
		     OperatorFunction<Field>   *Smoother,
 | 
			
		||||
		     OperatorFunction<CoarseField>  CoarseLinop
 | 
			
		||||
		     ) : 
 | 
			
		||||
  TwoLevelCG(RealD tol,
 | 
			
		||||
	     Integer maxit,
 | 
			
		||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
	     LinearFunction<Field>       &Smoother,
 | 
			
		||||
	     GridBase *fine) : 
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      _Linop(Linop),
 | 
			
		||||
      _PreconditionerLinop(PrecLinop),
 | 
			
		||||
      _Preconditioner(Preconditioner)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=0;
 | 
			
		||||
      _FineLinop(FineLinop),
 | 
			
		||||
      _Smoother(Smoother)
 | 
			
		||||
  {
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
			
		||||
  // implementation to derived implmentation
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    grid             = src.Grid();
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  virtual void operator() (const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    Field resid(grid);
 | 
			
		||||
    RealD f;
 | 
			
		||||
    RealD rtzp,rtz,a,d,b;
 | 
			
		||||
    RealD rptzp;
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    RealD ssq   = norm2(src);
 | 
			
		||||
    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    std::vector<Field> p  (mmax,grid);
 | 
			
		||||
    std::vector<Field> mmp(mmax,grid);
 | 
			
		||||
    std::vector<RealD> pAp(mmax);
 | 
			
		||||
 | 
			
		||||
    Field x  (grid); x = psi;
 | 
			
		||||
    Field z  (grid);
 | 
			
		||||
    Field p(grid);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
    Field r  (grid);
 | 
			
		||||
    Field mu (grid);
 | 
			
		||||
  
 | 
			
		||||
    Field rp (grid);
 | 
			
		||||
    
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    double tn;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    x=src;
 | 
			
		||||
    x=Zero();
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    // r0 = b -A x0
 | 
			
		||||
    HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
			
		||||
    _FineLinop.HermOp(x,mmp);
 | 
			
		||||
 | 
			
		||||
    axpy(r, -1.0, mmp, src);    // Recomputes r=src-x0
 | 
			
		||||
    rp=r;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    M1(r,z,tmp,mp,SmootherMirs);
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
    rtzp =real(innerProduct(r,z));
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
			
		||||
    // Def2: p = 1 - Q Az = Pright z 
 | 
			
		||||
    // Other algos M2 is trivial
 | 
			
		||||
    // Except Def2, M2 is trivial
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    M2(z,p[0]);
 | 
			
		||||
    p=z;
 | 
			
		||||
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    RealD ssq =  norm2(src);
 | 
			
		||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" target rsq "<<rsq<<" ssq "<<ssq<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
    for (int k=1;k<=MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      rtz=rtzp;
 | 
			
		||||
      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
			
		||||
      d= PcgM3(p,mmp);
 | 
			
		||||
      a = rtz/d;
 | 
			
		||||
    
 | 
			
		||||
      // Memorise this
 | 
			
		||||
      pAp[peri_k] = d;
 | 
			
		||||
 | 
			
		||||
      axpy(x,a,p[peri_k],x);
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
			
		||||
      axpy(x,a,p,x);
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp,r);
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x
 | 
			
		||||
      M1(r,z,tmp,mp);
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
      rtzp =real(innerProduct(r,z));
 | 
			
		||||
 | 
			
		||||
      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
 | 
			
		||||
      p[peri_kp]=p[peri_k];
 | 
			
		||||
 | 
			
		||||
      // Standard search direction  p -> z + b p    ; b = 
 | 
			
		||||
      b = (rtzp)/rtz;
 | 
			
		||||
 | 
			
		||||
      int northog;
 | 
			
		||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
			
		||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
    
 | 
			
		||||
      for(int back=0; back < northog; back++){
 | 
			
		||||
	int peri_back = (k-back)%mmax;
 | 
			
		||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
			
		||||
	RealD beta = -pbApk/pAp[peri_back];
 | 
			
		||||
	axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
 | 
			
		||||
      int ipcg=1; // almost free inexact preconditioned CG
 | 
			
		||||
      if (ipcg) {
 | 
			
		||||
	rptzp =real(innerProduct(rp,z));
 | 
			
		||||
      } else {
 | 
			
		||||
	rptzp =0;
 | 
			
		||||
      }
 | 
			
		||||
      b = (rtzp-rptzp)/rtz;
 | 
			
		||||
 | 
			
		||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
 | 
			
		||||
      axpy(p,b,p,mu);  // mu = A r
 | 
			
		||||
 | 
			
		||||
      RealD rrn=sqrt(rn/ssq);
 | 
			
		||||
      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
			
		||||
      RealD rtn=sqrt(rtz/ssq);
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: Pcg k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if ( ipcg ) {
 | 
			
		||||
	axpy(rp,0.0,r,r);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if ( rn <= rsq ) { 
 | 
			
		||||
 | 
			
		||||
	HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
			
		||||
	
 | 
			
		||||
	RealD psinorm = sqrt(norm2(x));
 | 
			
		||||
	RealD srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
			
		||||
	return k;
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	_FineLinop.HermOp(x,mmp);			  
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp);
 | 
			
		||||
 | 
			
		||||
	RealD  mmpnorm = sqrt(norm2(mmp));
 | 
			
		||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
	RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage
 | 
			
		||||
		 <<"HDCG: true residual is "<<true_residual
 | 
			
		||||
		 <<" solution "<<xnorm
 | 
			
		||||
		 <<" source "<<srcnorm
 | 
			
		||||
		 <<" mmp "<<mmpnorm	  
 | 
			
		||||
		 <<std::endl;
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    // Non-convergence
 | 
			
		||||
    assert(0);
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged"<<std::endl;
 | 
			
		||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return ;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void M1(Field & in, Field & out) {// the smoother
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Field, class CoarseField, class Aggregation>
 | 
			
		||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
			
		||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  Aggregation &_Aggregates;                    
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelADEF2(RealD tol,
 | 
			
		||||
		Integer maxit,
 | 
			
		||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		LinearFunction<Field>        &Smoother,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
			
		||||
		Aggregation &Aggregates
 | 
			
		||||
		) :
 | 
			
		||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
			
		||||
      _CoarseSolver(CoarseSolver),
 | 
			
		||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
			
		||||
      _Aggregates(Aggregates)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field Min(grid);
 | 
			
		||||
 | 
			
		||||
    PcgM(in,Min); // Smoother call
 | 
			
		||||
    Field tmp(this->grid);
 | 
			
		||||
    Field Min(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    HermOp(Min,out);
 | 
			
		||||
    GridStopWatch SmootherTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    SmootherTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    SmootherTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    this->_FineLinop.HermOp(Min,out);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(tmp,PleftProj);     
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    GridStopWatch ProjTimer;
 | 
			
		||||
    GridStopWatch CoarseTimer;
 | 
			
		||||
    GridStopWatch PromTimer;
 | 
			
		||||
    ProjTimer.Start();
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
			
		||||
    ProjTimer.Stop();
 | 
			
		||||
    CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    CoarseTimer.Stop();
 | 
			
		||||
    PromTimer.Start();
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    PromTimer.Stop();
 | 
			
		||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void M2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
    // Must override for Def2 only
 | 
			
		||||
    //  case PcgDef2:
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD M3(const Field & p, Field & mmp){
 | 
			
		||||
    double d,dd;
 | 
			
		||||
    HermOpAndNorm(p,mmp,d,dd);
 | 
			
		||||
    return dd;
 | 
			
		||||
    // Must override for Def1 only
 | 
			
		||||
    //  case PcgDef1:
 | 
			
		||||
    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
			
		||||
    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
			
		||||
    //    Pleft(mp,mmp);
 | 
			
		||||
    //    d=real(linop_d->inner(p,mmp));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void VstartDef2(Field & xconst Field & src){
 | 
			
		||||
    //case PcgDef2:
 | 
			
		||||
    //case PcgAdef2: 
 | 
			
		||||
    //case PcgAdef2f:
 | 
			
		||||
    //case PcgV11f:
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)
 | 
			
		||||
  {
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
@@ -256,142 +292,73 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
    
 | 
			
		||||
    HermOp(x,mmp);
 | 
			
		||||
    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
			
		||||
    ProjectToSubspace(r,PleftProj);     
 | 
			
		||||
    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
			
		||||
    x=x+mmp;
 | 
			
		||||
    Field r(this->grid);
 | 
			
		||||
    Field mmp(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
			
		||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
  
 | 
			
		||||
  TwoLevelADEF1defl(RealD tol,
 | 
			
		||||
		   Integer maxit,
 | 
			
		||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		   LinearFunction<Field>   &Smoother,
 | 
			
		||||
		   std::vector<Field> &_evec,
 | 
			
		||||
		   std::vector<RealD> &_eval) : 
 | 
			
		||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
			
		||||
    evec(_evec),
 | 
			
		||||
    eval(_eval)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  // Can just inherit existing M2
 | 
			
		||||
  // Can just inherit existing M3
 | 
			
		||||
 | 
			
		||||
  // Simple vstart - do nothing
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    return;
 | 
			
		||||
    x=src; // Could apply Q
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Override PcgM1
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    int N=evec.size();
 | 
			
		||||
    Field Pin(this->grid);
 | 
			
		||||
    Field Qin(this->grid);
 | 
			
		||||
 | 
			
		||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
			
		||||
    // // If we are eigenvector deflating in coarse space
 | 
			
		||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
			
		||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
			
		||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
			
		||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
			
		||||
    Qin = Zero();
 | 
			
		||||
    Pin = in;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
			
		||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
			
		||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->_Smoother(Pin,out);
 | 
			
		||||
 | 
			
		||||
    out = out + Qin;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout. Override in Def1
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
			
		||||
    out = in;
 | 
			
		||||
    //case PcgDef1:
 | 
			
		||||
    //    //Qb + PT x
 | 
			
		||||
    //    ProjectToSubspace(src,PleftProj);     
 | 
			
		||||
    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
			
		||||
    //    
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    
 | 
			
		||||
    //    linop_d->axpy(out,tmp,out,1.0);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pright and Pleft are common to all implementations
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void Pright(Field & in,Field & out){
 | 
			
		||||
    // P_R  = [ 1              0 ] 
 | 
			
		||||
    //        [ -Mss^-1 Msb    0 ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
			
		||||
 | 
			
		||||
    HermOp(in_sbar,out);
 | 
			
		||||
    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
			
		||||
 | 
			
		||||
    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Pleft (Field & in,Field & out){
 | 
			
		||||
    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
			
		||||
    //        [ 0   0         ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
    Field    tmp2(grid);
 | 
			
		||||
    Field    Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
			
		||||
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);
 | 
			
		||||
 | 
			
		||||
    HermOp(out,Mtmp);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
			
		||||
    PromoteFromSubspace(PleftProj,tmp2);
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,tmp2,Mtmp);
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp){
 | 
			
		||||
 | 
			
		||||
  } 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void M2(Field & in, Field & out){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -183,13 +183,13 @@ public:
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -419,14 +419,15 @@ until convergence
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( Nconv < Nstop )
 | 
			
		||||
      if ( Nconv < Nstop ) {
 | 
			
		||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      eval=eval2;
 | 
			
		||||
      
 | 
			
		||||
      //Keep only converged
 | 
			
		||||
      eval.resize(Nconv);// Nstop?
 | 
			
		||||
      evec.resize(Nconv,grid);// Nstop?
 | 
			
		||||
      eval.resize(Nstop);// was Nconv
 | 
			
		||||
      evec.resize(Nstop,grid);// was Nconv
 | 
			
		||||
      basisSortInPlace(evec,eval,reverse);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
@@ -456,7 +457,7 @@ until convergence
 | 
			
		||||
	    std::vector<Field>& evec,
 | 
			
		||||
	    Field& w,int Nm,int k)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    const RealD tiny = 1.0e-20;
 | 
			
		||||
    assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
@@ -464,7 +465,7 @@ until convergence
 | 
			
		||||
 | 
			
		||||
    Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
			
		||||
 | 
			
		||||
@@ -479,18 +480,18 @@ until convergence
 | 
			
		||||
    lme[k] = beta;
 | 
			
		||||
 | 
			
		||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(k < Nm-1) evec[k+1] = w;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    if ( beta < tiny ) 
 | 
			
		||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
 
 | 
			
		||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class NormalEquations {
 | 
			
		||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -60,7 +60,7 @@ public:
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver {
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -78,13 +78,13 @@ public:
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class MdagMSolver {
 | 
			
		||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
 
 | 
			
		||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 50; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 100; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										262
									
								
								Grid/algorithms/multigrid/Aggregates.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										262
									
								
								Grid/algorithms/multigrid/Aggregates.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,262 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
			
		||||
    int nn=nbasis;
 | 
			
		||||
    RealD scale;
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      subspace[b] = noise;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
			
		||||
	      <<ordermin<<" step "<<orderstep
 | 
			
		||||
	      <<" lo"<<filterlo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -56,243 +56,6 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
			
		||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation   {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
							
								
								
									
										419
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										419
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,419 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  int hermitian;
 | 
			
		||||
  GridBase      *       _FineGrid; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid; 
 | 
			
		||||
  NonLocalStencilGeometry &geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<CoarseMatrix> _A;
 | 
			
		||||
  std::vector<CoarseMatrix> _Adag;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
			
		||||
  {
 | 
			
		||||
    int nfound=0;
 | 
			
		||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
			
		||||
 	// Search for the same relative shift
 | 
			
		||||
	// Avoids brutal handling of Grid pointers
 | 
			
		||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
			
		||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
			
		||||
	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
			
		||||
	  nfound++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
			
		||||
    : geom(_geom),
 | 
			
		||||
      _FineGrid(FineGrid),
 | 
			
		||||
      _CoarseGrid(CoarseGrid),
 | 
			
		||||
      hermitian(1),
 | 
			
		||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
			
		||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
			
		||||
  {
 | 
			
		||||
    {
 | 
			
		||||
      int npoint = _geom.npoint;
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      int osites=Stencil.Grid()->oSites();
 | 
			
		||||
      for(int ss=0;ss<osites;ss++){
 | 
			
		||||
	for(int point=0;point<npoint;point++){
 | 
			
		||||
	  auto SE = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	  int o = SE->_offset;
 | 
			
		||||
	  assert( o< osites);
 | 
			
		||||
	}
 | 
			
		||||
      }    
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
    _Adag.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( hermitian ) M(in,out);
 | 
			
		||||
    else Mult(_Adag,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    RealD tviews=0;
 | 
			
		||||
    RealD ttot=0;
 | 
			
		||||
    RealD tmult=0;
 | 
			
		||||
    RealD texch=0;
 | 
			
		||||
    RealD text=0;
 | 
			
		||||
    ttot=-usecond();
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
 | 
			
		||||
    texch-=usecond();
 | 
			
		||||
    CoarseVector pin  = Cell.Exchange(tin);
 | 
			
		||||
    texch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid()); pout=Zero();
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    int osites=pin.Grid()->oSites();
 | 
			
		||||
    //    int gsites=pin.Grid()->gSites();
 | 
			
		||||
 | 
			
		||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8 * osites;
 | 
			
		||||
    RealD bytes = (1.0*osites*sizeof(siteMatrix)*npoint+2.0*osites*sizeof(siteVector))*npoint;
 | 
			
		||||
      
 | 
			
		||||
    //    for(int point=0;point<npoint;point++){
 | 
			
		||||
    //      conformable(A[point],pin);
 | 
			
		||||
    //    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      autoView( in_v , pin, AcceleratorRead);
 | 
			
		||||
      autoView( out_v , pout, AcceleratorWrite);
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
      
 | 
			
		||||
      for(int point=0;point<npoint;point++){
 | 
			
		||||
	tviews-=usecond();
 | 
			
		||||
	autoView( A_v, A[point],AcceleratorRead);
 | 
			
		||||
	tviews+=usecond();
 | 
			
		||||
	tmult-=usecond();
 | 
			
		||||
	accelerator_for(sss, osites*nbasis, Nsimd, {
 | 
			
		||||
 | 
			
		||||
	    typedef decltype(coalescedRead(in_v[0]))    calcVector;
 | 
			
		||||
 | 
			
		||||
	    int ss = sss/nbasis;
 | 
			
		||||
	    int b  = sss%nbasis;
 | 
			
		||||
 | 
			
		||||
	    auto SE  = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	    auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
			
		||||
	    auto res = out_v(ss)(b);
 | 
			
		||||
	    for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	      res = res + coalescedRead(A_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
	    }
 | 
			
		||||
	    coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
	tmult+=usecond();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    text-=usecond();
 | 
			
		||||
    out = Cell.Extract(pout);
 | 
			
		||||
    text+=usecond();
 | 
			
		||||
    ttot+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse Kernel bytes/s"<< bytes/tmult<<" MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void PopulateAdag(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
			
		||||
      Coordinate bcoor;
 | 
			
		||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
			
		||||
      
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
	Coordinate scoor = bcoor;
 | 
			
		||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
			
		||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
			
		||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
			
		||||
	}
 | 
			
		||||
	// Flip to poke/peekLocalSite and not too bad
 | 
			
		||||
	auto link = peekSite(_A[p],scoor);
 | 
			
		||||
	int pp = geom.Reverse(p);
 | 
			
		||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // 
 | 
			
		||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
			
		||||
  // and apply MpcDagMpc in the padded cell.
 | 
			
		||||
  //
 | 
			
		||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
			
		||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
			
		||||
  // Cost is 81x more, same as stencil size.
 | 
			
		||||
  //
 | 
			
		||||
  // But: can eliminate comms and do as local dirichlet.
 | 
			
		||||
  //
 | 
			
		||||
  // Local exchange gauge field once.
 | 
			
		||||
  // Apply to all vectors, local only computation.
 | 
			
		||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
			
		||||
  //
 | 
			
		||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
			
		||||
  //                     pad by 2, apply Doe
 | 
			
		||||
  //                     pad by 3, apply Deo
 | 
			
		||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
			
		||||
  //
 | 
			
		||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
			
		||||
  //
 | 
			
		||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
			
		||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    /*
 | 
			
		||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
			
		||||
     *
 | 
			
		||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
			
		||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
			
		||||
     *
 | 
			
		||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
     *
 | 
			
		||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
     */
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	// Stick a phase on every block
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	tphase-=usecond();
 | 
			
		||||
	CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  LatticeCoordinate(coor,mu);
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
	}
 | 
			
		||||
	pha  =exp(pha*ci);
 | 
			
		||||
	phaV=Zero();
 | 
			
		||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
			
		||||
	tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](j,i) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      Coordinate coor({0,0,0,0,0});
 | 
			
		||||
      auto sval = peekSite(_A[p],coor);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ExchangeCoarseLinks(void){
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      _A[p] = Cell.Exchange(_A[p]);
 | 
			
		||||
      _Adag[p]= Cell.Exchange(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										243
									
								
								Grid/algorithms/multigrid/Geometry.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										243
									
								
								Grid/algorithms/multigrid/Geometry.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,243 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less local equivalent of Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
class NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  int depth;
 | 
			
		||||
  int hops;
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  Coordinate stencil_size;
 | 
			
		||||
  Coordinate stencil_lo;
 | 
			
		||||
  Coordinate stencil_hi;
 | 
			
		||||
  GridCartesian *grid;
 | 
			
		||||
  GridCartesian *Grid() {return grid;};
 | 
			
		||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
			
		||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
			
		||||
 | 
			
		||||
  virtual int DimSkip(void) =0;
 | 
			
		||||
 | 
			
		||||
  virtual ~NonLocalStencilGeometry() {};
 | 
			
		||||
 | 
			
		||||
  int  Reverse(int point)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd = Grid()->Nd();
 | 
			
		||||
    Coordinate shft = shifts[point];
 | 
			
		||||
    Coordinate rev(Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
			
		||||
    for(int p=0;p<npoint;p++){
 | 
			
		||||
      if(rev==shifts[p]){
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
  {
 | 
			
		||||
    this->shifts.resize(0);
 | 
			
		||||
    int Nd = this->grid->Nd();
 | 
			
		||||
 | 
			
		||||
    int dd = this->DimSkip();
 | 
			
		||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
			
		||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
			
		||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
			
		||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
			
		||||
      Coordinate sft(Nd,0);
 | 
			
		||||
      sft[dd+0] = s0;
 | 
			
		||||
      sft[dd+1] = s1;
 | 
			
		||||
      sft[dd+2] = s2;
 | 
			
		||||
      sft[dd+3] = s3;
 | 
			
		||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
			
		||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
			
		||||
    }}}}
 | 
			
		||||
    this->npoint = this->shifts.size();
 | 
			
		||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops) : grid(_coarse_grid), hops(_hops)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate latt = grid->GlobalDimensions();
 | 
			
		||||
    stencil_size.resize(grid->Nd());
 | 
			
		||||
    stencil_lo.resize(grid->Nd());
 | 
			
		||||
    stencil_hi.resize(grid->Nd());
 | 
			
		||||
    for(int d=0;d<grid->Nd();d++){
 | 
			
		||||
     if ( latt[d] == 1 ) {
 | 
			
		||||
      stencil_lo[d] = 0;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 1;
 | 
			
		||||
     } else if ( latt[d] == 2 ) {
 | 
			
		||||
      stencil_lo[d] = -1;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 2;
 | 
			
		||||
     } else if ( latt[d] > 2 ) {
 | 
			
		||||
       stencil_lo[d] = -1;
 | 
			
		||||
       stencil_hi[d] =  1;
 | 
			
		||||
       stencil_size[d]= 3;
 | 
			
		||||
     }
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Need to worry about red-black now
 | 
			
		||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DimSkip(void) { return 0;};
 | 
			
		||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops) { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
			
		||||
};
 | 
			
		||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DimSkip(void) { return 1; }; 
 | 
			
		||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops)  { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 * Bunch of different options classes
 | 
			
		||||
 */
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										33
									
								
								Grid/algorithms/multigrid/MultiGrid.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								Grid/algorithms/multigrid/MultiGrid.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,33 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
			
		||||
@@ -70,8 +70,8 @@ public:
 | 
			
		||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
			
		||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _isites;
 | 
			
		||||
  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _gsites;
 | 
			
		||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int64_t _gsites;
 | 
			
		||||
  Coordinate _slice_block;// subslice information
 | 
			
		||||
  Coordinate _slice_stride;
 | 
			
		||||
  Coordinate _slice_nblock;
 | 
			
		||||
@@ -183,7 +183,7 @@ public:
 | 
			
		||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
			
		||||
  inline int oSites(void) const { return _osites; };
 | 
			
		||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
			
		||||
  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
			
		||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
@@ -214,7 +214,7 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
@@ -222,7 +222,7 @@ public:
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
			
		||||
    gidx=0;
 | 
			
		||||
    int mult=1;
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
			
		||||
 
 | 
			
		||||
@@ -604,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
 
 | 
			
		||||
@@ -47,3 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_basis.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a));
 | 
			
		||||
GridUnopClass(UnaryTrace, trace(a));
 | 
			
		||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
			
		||||
GridUnopClass(UnaryTa, Ta(a));
 | 
			
		||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
			
		||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
			
		||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
			
		||||
GridUnopClass(UnaryAbs, abs(a));
 | 
			
		||||
@@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
			
		||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
			
		||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
			
		||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
			
		||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
			
		||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
			
		||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
			
		||||
 
 | 
			
		||||
@@ -360,7 +360,7 @@ public:
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 
 | 
			
		||||
@@ -361,9 +361,14 @@ public:
 | 
			
		||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
			
		||||
  {
 | 
			
		||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
			
		||||
      Lattice<vobj> tmp(_grid);
 | 
			
		||||
      fill(tmp,dist);
 | 
			
		||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -427,7 +432,7 @@ public:
 | 
			
		||||
#if 1
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int gidx;
 | 
			
		||||
	int64_t gidx;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
	int rank;
 | 
			
		||||
 
 | 
			
		||||
@@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
  typedef typename Vec::scalar_type scalar;
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<scalar, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	scalar tmp= Us()()(i,j);
 | 
			
		||||
	ComplexD ztmp(real(tmp),imag(tmp));
 | 
			
		||||
	EigenU(i,j)=ztmp;
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -471,13 +471,13 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
 | 
			
		||||
  vobj zz = Zero();
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),1,{
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
			
		||||
 | 
			
		||||
      // One thread per sub block
 | 
			
		||||
      Coordinate coor_c(_ndimension);
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
			
		||||
 | 
			
		||||
      vobj cd = zz;
 | 
			
		||||
      auto cd = coalescedRead(zz);
 | 
			
		||||
      
 | 
			
		||||
      for(int sb=0;sb<blockVol;sb++){
 | 
			
		||||
 | 
			
		||||
@@ -488,10 +488,10 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	cd=cd+fineData_p[sf];
 | 
			
		||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      coarseData_p[sc] = cd;
 | 
			
		||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
			
		||||
 | 
			
		||||
    });
 | 
			
		||||
  return;
 | 
			
		||||
@@ -697,8 +697,68 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  
 | 
			
		||||
#if 1
 | 
			
		||||
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
			
		||||
  
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
 
 | 
			
		||||
  thread_for(idx, nsite, {
 | 
			
		||||
      Coordinate from_coor, to_coor;
 | 
			
		||||
      size_t rem = idx;
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i];
 | 
			
		||||
	from_coor[i] = base_i + FromLowerLeft[i];
 | 
			
		||||
	to_coor[i] = base_i + ToLowerLeft[i];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      int foidx = Fg->oIndex(from_coor);
 | 
			
		||||
      int fiidx = Fg->iIndex(from_coor);
 | 
			
		||||
      int toidx = Tg->oIndex(to_coor);
 | 
			
		||||
      int tiidx = Tg->iIndex(to_coor);
 | 
			
		||||
      int* tt = table + 4*idx;
 | 
			
		||||
      tt[0] = foidx;
 | 
			
		||||
      tt[1] = fiidx;
 | 
			
		||||
      tt[2] = toidx;
 | 
			
		||||
      tt[3] = tiidx;
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,From,AcceleratorRead);
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
#else  
 | 
			
		||||
  Coordinate ldf = Fg->_ldimensions;
 | 
			
		||||
  Coordinate rdf = Fg->_rdimensions;
 | 
			
		||||
  Coordinate isf = Fg->_istride;
 | 
			
		||||
@@ -738,6 +798,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -830,6 +892,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
 | 
			
		||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
			
		||||
{
 | 
			
		||||
@@ -851,6 +915,65 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
  
 | 
			
		||||
  thread_for(idx,nsite,{
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lcoor[orthog] = slice_lo;
 | 
			
		||||
    hcoor[orthog] = slice_hi;
 | 
			
		||||
    size_t rem = idx;
 | 
			
		||||
    for(int mu=0;mu<nl;mu++){
 | 
			
		||||
      if(mu != orthog){
 | 
			
		||||
	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu];
 | 
			
		||||
	lcoor[mu] = hcoor[mu] = xmu;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    int loidx = lg->oIndex(lcoor);
 | 
			
		||||
    int liidx = lg->iIndex(lcoor);
 | 
			
		||||
    int hoidx = hg->oIndex(hcoor);
 | 
			
		||||
    int hiidx = hg->iIndex(hcoor);
 | 
			
		||||
    int* tt = table + 4*idx;
 | 
			
		||||
    tt[0] = loidx;
 | 
			
		||||
    tt[1] = liidx;
 | 
			
		||||
    tt[2] = hoidx;
 | 
			
		||||
    tt[3] = hiidx;
 | 
			
		||||
    });
 | 
			
		||||
   
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lowDim_v,lowDim,AcceleratorRead);
 | 
			
		||||
  autoView(higherDim_v,higherDim,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&higherDim_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  autoView(lowDimv,lowDim,CpuRead);
 | 
			
		||||
  autoView(higherDimv,higherDim,CpuWrite);
 | 
			
		||||
@@ -866,6 +989,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
      pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -930,7 +1054,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
 | 
			
		||||
  Coordinate fcoor(nd);
 | 
			
		||||
  Coordinate ccoor(nd);
 | 
			
		||||
  for(int g=0;g<fg->gSites();g++){
 | 
			
		||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
			
		||||
 | 
			
		||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
			
		||||
    for(int d=0;d<nd;d++){
 | 
			
		||||
 
 | 
			
		||||
@@ -26,14 +26,32 @@ Author: Peter Boyle pboyle@bnl.gov
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include<Grid/cshift/Cshift.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplBase{
 | 
			
		||||
  virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
 | 
			
		||||
  virtual ~CshiftImplBase(){}
 | 
			
		||||
};
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
 | 
			
		||||
  Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
 | 
			
		||||
};
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
 | 
			
		||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
			
		||||
};  
 | 
			
		||||
 | 
			
		||||
class PaddedCell {
 | 
			
		||||
public:
 | 
			
		||||
  GridCartesian * unpadded_grid;
 | 
			
		||||
  int dims;
 | 
			
		||||
  int depth;
 | 
			
		||||
  std::vector<GridCartesian *> grids;
 | 
			
		||||
 | 
			
		||||
  ~PaddedCell()
 | 
			
		||||
  {
 | 
			
		||||
    DeleteGrids();
 | 
			
		||||
@@ -45,8 +63,9 @@ public:
 | 
			
		||||
    dims=_grid->Nd();
 | 
			
		||||
    AllocateGrids();
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      assert(local[d]>=depth);
 | 
			
		||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeleteGrids(void)
 | 
			
		||||
@@ -67,8 +86,10 @@ public:
 | 
			
		||||
    // expand up one dim at a time
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
 | 
			
		||||
      plocal[d] += 2*depth; 
 | 
			
		||||
 | 
			
		||||
      if ( processors[d] > 1 ) { 
 | 
			
		||||
	plocal[d] += 2*depth; 
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      for(int d=0;d<dims;d++){
 | 
			
		||||
	global[d] = plocal[d]*processors[d];
 | 
			
		||||
      }
 | 
			
		||||
@@ -77,31 +98,38 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Extract(Lattice<vobj> &in)
 | 
			
		||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
 | 
			
		||||
    Lattice<vobj> out(unpadded_grid);
 | 
			
		||||
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
			
		||||
    // depends on the MPI spread      
 | 
			
		||||
    Coordinate fll(dims,depth);
 | 
			
		||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if( processors[d]==1 ) fll[d]=0;
 | 
			
		||||
    }
 | 
			
		||||
    localCopyRegion(in,out,fll,tll,local);
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Exchange(Lattice<vobj> &in)
 | 
			
		||||
  inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    int dims = old_grid->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = in;
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      tmp = Expand(d,tmp); // rvalue && assignment
 | 
			
		||||
      tmp = Expand(d,tmp,cshift); // rvalue && assignment
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  // expand up one dim at a time
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
@@ -111,21 +139,53 @@ public:
 | 
			
		||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
    // Middle bit
 | 
			
		||||
    for(int x=0;x<local[dim];x++){
 | 
			
		||||
      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    // High bit
 | 
			
		||||
    shifted = Cshift(in,dim,depth);
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    // Low bit
 | 
			
		||||
    shifted = Cshift(in,dim,-depth);
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
    //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
 | 
			
		||||
    int islocal = 0 ;
 | 
			
		||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
			
		||||
 | 
			
		||||
    if ( islocal ) {
 | 
			
		||||
      
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      for(int x=0;x<local[dim];x++){
 | 
			
		||||
	InsertSliceLocal(in,padded,x,x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
      
 | 
			
		||||
    } else { 
 | 
			
		||||
      // Middle bit
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      for(int x=0;x<local[dim];x++){
 | 
			
		||||
	InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      // High bit
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      shifted = cshift.Cshift(in,dim,depth);
 | 
			
		||||
      tshift += usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      for(int x=0;x<depth;x++){
 | 
			
		||||
	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      // Low bit
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      shifted = cshift.Cshift(in,dim,-depth);
 | 
			
		||||
      tshift += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      for(int x=0;x<depth;x++){
 | 
			
		||||
	InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
      }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogDebug << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Sp(2n)
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Twisted mass fermion
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
			
		||||
 
 | 
			
		||||
@@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex,  TwoIndexAntiSymmetricRepresentation, CoeffReal > W
 | 
			
		||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
//sp 2n
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpFundamentalRepresentation, CoeffReal > SpWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR;  // Real.. whichever prec    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF;  // Float     // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD;  // Double    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -423,7 +423,6 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_EXT(A)						\
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
  const uint64_t    sz = st.surface_list.size();			\
 | 
			
		||||
  auto ptr = &st.surface_list[0];					\
 | 
			
		||||
  accelerator_forNB( ss, sz, Simd::Nsimd(), {				\
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplD
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplF
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -0,0 +1 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF
 | 
			
		||||
@@ -10,12 +10,18 @@ WILSON_IMPL_LIST=" \
 | 
			
		||||
	   WilsonImplF \
 | 
			
		||||
	   WilsonImplD \
 | 
			
		||||
	   WilsonImplD2 \
 | 
			
		||||
	   SpWilsonImplF \
 | 
			
		||||
	   SpWilsonImplD \
 | 
			
		||||
	   WilsonAdjImplF \
 | 
			
		||||
	   WilsonAdjImplD \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplF \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplD \
 | 
			
		||||
	   WilsonTwoIndexAntiSymmetricImplF \
 | 
			
		||||
	   WilsonTwoIndexAntiSymmetricImplD \
 | 
			
		||||
	   SpWilsonTwoIndexAntiSymmetricImplF \
 | 
			
		||||
	   SpWilsonTwoIndexAntiSymmetricImplD \
 | 
			
		||||
	   SpWilsonTwoIndexSymmetricImplF \
 | 
			
		||||
	   SpWilsonTwoIndexSymmetricImplD \
 | 
			
		||||
	   GparityWilsonImplF \
 | 
			
		||||
	   GparityWilsonImplD "
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -39,6 +39,9 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplR>          WilsonGaugeActionR;
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplF>          WilsonGaugeActionF;
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplD>          WilsonGaugeActionD;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplR>        SpWilsonGaugeActionR;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplF>        SpWilsonGaugeActionF;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplD>        SpWilsonGaugeActionD;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplR>    PlaqPlusRectangleActionR;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplF>    PlaqPlusRectangleActionF;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplD>    PlaqPlusRectangleActionD;
 | 
			
		||||
 
 | 
			
		||||
@@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  typedef typename Impl::Field Field;
 | 
			
		||||
 | 
			
		||||
// hardcodes the exponential approximation in the template
 | 
			
		||||
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
 | 
			
		||||
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
 | 
			
		||||
public:
 | 
			
		||||
  typedef S Simd;
 | 
			
		||||
  typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
@@ -78,8 +78,6 @@ public:
 | 
			
		||||
  typedef Lattice<SiteLink>    LinkField; 
 | 
			
		||||
  typedef Lattice<SiteField>   Field;
 | 
			
		||||
 | 
			
		||||
  typedef SU<Nrepresentation> Group;
 | 
			
		||||
 | 
			
		||||
  // Guido: we can probably separate the types from the HMC functions
 | 
			
		||||
  // this will create 2 kind of implementations
 | 
			
		||||
  // probably confusing the users
 | 
			
		||||
@@ -119,6 +117,7 @@ public:
 | 
			
		||||
    //
 | 
			
		||||
    LinkField Pmu(P.Grid());
 | 
			
		||||
    Pmu = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
 | 
			
		||||
      RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
 | 
			
		||||
@@ -126,8 +125,12 @@ public:
 | 
			
		||||
      PokeIndex<LorentzIndex>(P, Pmu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline Field projectForce(Field &P) { return Ta(P); }
 | 
			
		||||
    
 | 
			
		||||
  static inline Field projectForce(Field &P) {
 | 
			
		||||
      Field ret(P.Grid());
 | 
			
		||||
      Group::taProj(P, ret);
 | 
			
		||||
      return ret;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  static inline void update_field(Field& P, Field& U, double ep){
 | 
			
		||||
    //static std::chrono::duration<double> diff;
 | 
			
		||||
@@ -137,14 +140,15 @@ public:
 | 
			
		||||
    autoView(P_v,P,AcceleratorRead);
 | 
			
		||||
    accelerator_for(ss, P.Grid()->oSites(),1,{
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
        U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
 | 
			
		||||
          U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
 | 
			
		||||
          U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
   //auto end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
   // diff += end - start;
 | 
			
		||||
   // std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  static inline RealD FieldSquareNorm(Field& U){
 | 
			
		||||
    LatticeComplex Hloc(U.Grid());
 | 
			
		||||
    Hloc = Zero();
 | 
			
		||||
@@ -157,7 +161,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void Project(Field &U) {
 | 
			
		||||
    ProjectSUn(U);
 | 
			
		||||
    Group::ProjectOnSpecialGroup(U);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
 | 
			
		||||
@@ -171,6 +175,7 @@ public:
 | 
			
		||||
  static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
 | 
			
		||||
    Group::ColdConfiguration(pRNG, U);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -178,10 +183,17 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
 | 
			
		||||
 | 
			
		||||
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
 | 
			
		||||
 | 
			
		||||
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // GRID_GAUGE_IMPL_TYPES_H
 | 
			
		||||
 
 | 
			
		||||
@@ -176,7 +176,7 @@ public:
 | 
			
		||||
      return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline void       setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline std::vector<int> getDirections(void) { return _conjDirs; }
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return false; }
 | 
			
		||||
};
 | 
			
		||||
@@ -193,6 +193,11 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
 | 
			
		||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
 | 
			
		||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
 | 
			
		||||
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -43,7 +43,7 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
  RealD c_plaq;
 | 
			
		||||
  RealD c_rect;
 | 
			
		||||
 | 
			
		||||
  typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
 | 
			
		||||
public:
 | 
			
		||||
  PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
 | 
			
		||||
 | 
			
		||||
@@ -79,27 +79,18 @@ public:
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
    std::vector<GaugeLinkField> U (Nd,grid);
 | 
			
		||||
    std::vector<GaugeLinkField> U2(Nd,grid);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
 | 
			
		||||
    WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkField dSdU_mu(grid);
 | 
			
		||||
    GaugeLinkField staple(grid);
 | 
			
		||||
 | 
			
		||||
    for (int mu=0; mu < Nd; mu++){
 | 
			
		||||
 | 
			
		||||
      // Staple in direction mu
 | 
			
		||||
 | 
			
		||||
      WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
 | 
			
		||||
 | 
			
		||||
      dSdU_mu = Ta(U[mu]*staple)*factor_p;
 | 
			
		||||
 | 
			
		||||
      WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
 | 
			
		||||
 | 
			
		||||
      dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
 | 
			
		||||
      dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
 | 
			
		||||
      dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
 | 
			
		||||
	  
 | 
			
		||||
      PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -225,6 +225,18 @@ template <class RepresentationsPolicy,
 | 
			
		||||
using GenericHMCRunnerHirep =
 | 
			
		||||
				     HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 | 
			
		||||
// sp2n
 | 
			
		||||
 | 
			
		||||
template <template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
 | 
			
		||||
 | 
			
		||||
template <class RepresentationsPolicy,
 | 
			
		||||
          template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericSpHMCRunnerHirep =
 | 
			
		||||
                     HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Implementation, class RepresentationsPolicy, 
 | 
			
		||||
          template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 
 | 
			
		||||
@@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 * Empty since HMC updates already the fundamental representation 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
template <int ncolour, class group_name>
 | 
			
		||||
class FundamentalRep {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
@@ -21,7 +21,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  // typdef to be used by the Representations class in HMC to get the
 | 
			
		||||
  // types for the higher representation fields
 | 
			
		||||
  typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
 | 
			
		||||
  typedef LatticeGaugeField LatticeField;
 | 
			
		||||
  
 | 
			
		||||
  explicit FundamentalRep(GridBase* grid) {} //do nothing
 | 
			
		||||
@@ -45,7 +45,8 @@ public:
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
typedef	 FundamentalRep<Nc> FundamentalRepresentation;
 | 
			
		||||
typedef	 FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
 | 
			
		||||
typedef	 FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);  
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 * in the SUnTwoIndex.h file
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
 | 
			
		||||
class TwoIndexRep {
 | 
			
		||||
public:
 | 
			
		||||
  // typdef to be used by the Representations class in HMC to get the
 | 
			
		||||
  // types for the higher representation fields
 | 
			
		||||
  typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
 | 
			
		||||
  static const int Dimension = ncolour * (ncolour + S) / 2;
 | 
			
		||||
  typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
 | 
			
		||||
  static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
 | 
			
		||||
  static const bool isFundamental = false;
 | 
			
		||||
 | 
			
		||||
  LatticeField U;
 | 
			
		||||
@@ -43,10 +43,10 @@ public:
 | 
			
		||||
    U = Zero();
 | 
			
		||||
    LatticeColourMatrix tmp(Uin.Grid());
 | 
			
		||||
 | 
			
		||||
    Vector<typename SU<ncolour>::Matrix> eij(Dimension);
 | 
			
		||||
    Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++)
 | 
			
		||||
      SU_TwoIndex<ncolour, S>::base(a, eij[a]);
 | 
			
		||||
      GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      auto Uin_mu = peekLorentz(Uin, mu);
 | 
			
		||||
@@ -71,7 +71,7 @@ public:
 | 
			
		||||
 | 
			
		||||
      out_mu = Zero();
 | 
			
		||||
 | 
			
		||||
      typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
 | 
			
		||||
      projectOnAlgebra(h, in_mu, double(Nc + 2 * S));  // factor T(r)/T(fund)
 | 
			
		||||
      FundamentalLieAlgebraMatrix(h, out_mu);          // apply scale only once
 | 
			
		||||
      pokeLorentz(out, out_mu, mu);
 | 
			
		||||
@@ -80,20 +80,23 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
  void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
                        const LatticeMatrix &in, Real scale = 1.0) const {
 | 
			
		||||
    SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
 | 
			
		||||
    GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void FundamentalLieAlgebraMatrix(
 | 
			
		||||
				   typename SU<ncolour>::LatticeAlgebraVector &h,
 | 
			
		||||
				   typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
 | 
			
		||||
    SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
 | 
			
		||||
				   typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
 | 
			
		||||
				   typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
 | 
			
		||||
    GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -37,13 +37,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Make these members of an Impl class for BC's.
 | 
			
		||||
 | 
			
		||||
namespace PeriodicBC { 
 | 
			
		||||
 | 
			
		||||
  //Out(x) = Link(x)*field(x+mu)
 | 
			
		||||
  template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link, 
 | 
			
		||||
									   int mu,
 | 
			
		||||
									   const Lattice<covariant> &field)
 | 
			
		||||
  {
 | 
			
		||||
    return Link*Cshift(field,mu,1);// moves towards negative mu
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link^dag(x-mu)*field(x-mu)
 | 
			
		||||
  template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link, 
 | 
			
		||||
									    int mu,
 | 
			
		||||
									    const Lattice<covariant> &field)
 | 
			
		||||
@@ -52,19 +53,19 @@ namespace PeriodicBC {
 | 
			
		||||
    tmp = adj(Link)*field;
 | 
			
		||||
    return Cshift(tmp,mu,-1);// moves towards positive mu
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = Link^dag(x-mu)
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) 
 | 
			
		||||
  {
 | 
			
		||||
    return Cshift(adj(Link), mu, -1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = Link(x)
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Link(x) = Link(x+mu)
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  ShiftStaple(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										470
									
								
								Grid/qcd/utils/GaugeGroup.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										470
									
								
								Grid/qcd/utils/GaugeGroup.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,470 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/utils/GaugeGroup.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef QCD_UTIL_GAUGEGROUP_H
 | 
			
		||||
#define QCD_UTIL_GAUGEGROUP_H
 | 
			
		||||
 | 
			
		||||
// Important detail: nvcc requires all template parameters to have names.
 | 
			
		||||
// This is the only reason why the second template parameter has a name.
 | 
			
		||||
#define ONLY_IF_SU                                                       \
 | 
			
		||||
  typename dummy_name = group_name,                                      \
 | 
			
		||||
           typename named_dummy = std::enable_if_t <                                 \
 | 
			
		||||
                          std::is_same<dummy_name, group_name>::value && \
 | 
			
		||||
                      is_su<dummy_name>::value >
 | 
			
		||||
 | 
			
		||||
#define ONLY_IF_Sp                                                       \
 | 
			
		||||
  typename dummy_name = group_name,                                      \
 | 
			
		||||
           typename named_dummy = std::enable_if_t <                                 \
 | 
			
		||||
                          std::is_same<dummy_name, group_name>::value && \
 | 
			
		||||
                      is_sp<dummy_name>::value >
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
namespace GroupName {
 | 
			
		||||
class SU {};
 | 
			
		||||
class Sp {};
 | 
			
		||||
}  // namespace GroupName
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
struct is_su {
 | 
			
		||||
  static const bool value = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
struct is_su<GroupName::SU> {
 | 
			
		||||
  static const bool value = true;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
struct is_sp {
 | 
			
		||||
  static const bool value = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
struct is_sp<GroupName::Sp> {
 | 
			
		||||
  static const bool value = true;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
constexpr int compute_adjoint_dimension(int ncolour);
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
 | 
			
		||||
  return ncolour * ncolour - 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
 | 
			
		||||
  return ncolour / 2 * (ncolour + 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int ncolour, class group_name>
 | 
			
		||||
class GaugeGroup {
 | 
			
		||||
 public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
  static const int AdjointDimension =
 | 
			
		||||
      compute_adjoint_dimension<group_name>(ncolour);
 | 
			
		||||
  static const int AlgebraDimension =
 | 
			
		||||
      compute_adjoint_dimension<group_name>(ncolour);
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
 | 
			
		||||
  static int su2subgroups(void) { return su2subgroups(group_name()); }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
 | 
			
		||||
  // SU<2>::LatticeMatrix etc...
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef iGroupMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iGroupMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iGroupMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupMatrix<vComplex> vMatrix;
 | 
			
		||||
  typedef iGroupMatrix<vComplexF> vMatrixF;
 | 
			
		||||
  typedef iGroupMatrix<vComplexD> vMatrixD;
 | 
			
		||||
 | 
			
		||||
  // For the projectors to the algebra
 | 
			
		||||
  // these should be real...
 | 
			
		||||
  // keeping complex for consistency with the SIMD vector types
 | 
			
		||||
  typedef iAlgebraVector<Complex> AlgebraVector;
 | 
			
		||||
  typedef iAlgebraVector<ComplexF> AlgebraVectorF;
 | 
			
		||||
  typedef iAlgebraVector<ComplexD> AlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iAlgebraVector<vComplex> vAlgebraVector;
 | 
			
		||||
  typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
 | 
			
		||||
  typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vMatrix> LatticeMatrix;
 | 
			
		||||
  typedef Lattice<vMatrixF> LatticeMatrixF;
 | 
			
		||||
  typedef Lattice<vMatrixD> LatticeMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<Complex> SU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<ComplexF> SU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<ComplexD> SU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<vComplex> vSU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<vComplexF> vSU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<vComplexD> vSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
 | 
			
		||||
  typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
 | 
			
		||||
  typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  // Private implementation details are specified in the following files:
 | 
			
		||||
  // Grid/qcd/utils/SUn.impl
 | 
			
		||||
  // Grid/qcd/utils/SUn.impl
 | 
			
		||||
  // The public part of the interface follows below and refers to these
 | 
			
		||||
  // private member functions.
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/utils/SUn.impl.h>
 | 
			
		||||
#include <Grid/qcd/utils/Sp2n.impl.h>
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
    return generator(lieIndex, ta, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
 | 
			
		||||
    return su2SubGroupIndex(i1, i2, su2_index, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) { testGenerators(group_name()); }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < AlgebraDimension; gen++) {
 | 
			
		||||
      Matrix ta;
 | 
			
		||||
      generator(gen, ta);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << ta << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
 | 
			
		||||
                           double scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<vTComplexType> LatticeComplexType;
 | 
			
		||||
    typedef typename GridTypeMapper<
 | 
			
		||||
        typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeComplexType ca(grid);
 | 
			
		||||
    LatticeMatrixType lie(grid);
 | 
			
		||||
    LatticeMatrixType la(grid);
 | 
			
		||||
    ComplexD ci(0.0, scale);
 | 
			
		||||
    MatrixType ta;
 | 
			
		||||
 | 
			
		||||
    lie = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      random(pRNG, ca);
 | 
			
		||||
 | 
			
		||||
      ca = (ca + conjugate(ca)) * 0.5;
 | 
			
		||||
      ca = ca - 0.5;
 | 
			
		||||
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
 | 
			
		||||
      la = ci * ca * ta;
 | 
			
		||||
 | 
			
		||||
      lie = lie + la;  // e^{i la ta}
 | 
			
		||||
    }
 | 
			
		||||
    taExp(lie, out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeReal ca(grid);
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Complex ci(0.0, scale);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      gaussian(pRNG, ca);
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = toComplex(ca) * ta;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= ci;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
 | 
			
		||||
                                          LatticeMatrix &out,
 | 
			
		||||
                                          Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = peekColour(h, a) * timesI(ta) * scale;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
 | 
			
		||||
  // ) inverse operation: FundamentalLieAlgebraMatrix
 | 
			
		||||
  static void projectOnAlgebra(LatticeAlgebraVector &h_out,
 | 
			
		||||
                               const LatticeMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    Matrix Ta;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      generator(a, Ta);
 | 
			
		||||
      pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
  template <class vtype>
 | 
			
		||||
  accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
 | 
			
		||||
    return ProjectOnGeneralGroup(r, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vtype, int N>
 | 
			
		||||
  accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
 | 
			
		||||
    return ProjectOnGeneralGroup(r, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
  accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
 | 
			
		||||
    return ProjectOnGeneralGroup(arg, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>                  // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
 | 
			
		||||
  static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
      Umu = ProjectOnGeneralGroup(Umu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  template <int N,class vComplex_t>
 | 
			
		||||
  static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
 | 
			
		||||
    return ProjectOnGeneralGroup(Umu, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>       // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
 | 
			
		||||
  static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
 | 
			
		||||
       Umu = ProjectOnGeneralGroup(Umu);
 | 
			
		||||
       auto det = Determinant(Umu);
 | 
			
		||||
 | 
			
		||||
       det = conjugate(det);
 | 
			
		||||
 | 
			
		||||
       for (int i = 0; i < N; i++) {
 | 
			
		||||
           auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
 | 
			
		||||
           element = element * det;
 | 
			
		||||
           PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
 | 
			
		||||
       }
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>    // reunitarise, resimplectify... previously ProjectSUn
 | 
			
		||||
    static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
 | 
			
		||||
      // Reunitarise
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
        auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
        ProjectOnSpecialGroup(Umu);
 | 
			
		||||
        PokeIndex<LorentzIndex>(U, Umu, mu);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    LatticeMatrixType tmp(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      //      LieRandomize(pRNG, Umu, 1.0);
 | 
			
		||||
      //      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
      gaussian(pRNG,Umu);
 | 
			
		||||
      tmp = Ta(Umu);
 | 
			
		||||
      taExp(tmp,Umu);
 | 
			
		||||
      ProjectOnSpecialGroup(Umu);
 | 
			
		||||
      //      ProjectSUn(Umu);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      LieRandomize(pRNG, Umu, 0.01);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    Umu = 1.0;
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    ColdConfiguration(out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
 | 
			
		||||
    taProj(in, out, group_name());
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type ComplexType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType xn(x.Grid());
 | 
			
		||||
    RealD nfac = 1.0;
 | 
			
		||||
 | 
			
		||||
    xn = x;
 | 
			
		||||
    ex = xn + ComplexType(1.0);  // 1+x
 | 
			
		||||
 | 
			
		||||
    // Do a 12th order exponentiation
 | 
			
		||||
    for (int i = 2; i <= 12; ++i) {
 | 
			
		||||
      nfac = nfac / RealD(i);  // 1/2, 1/2.3 ...
 | 
			
		||||
      xn = xn * x;             // x2, x3,x4....
 | 
			
		||||
      ex = ex + xn * nfac;     // x2/2!, x3/3!....
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
using SU = GaugeGroup<ncolour, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
 | 
			
		||||
 | 
			
		||||
typedef SU<2> SU2;
 | 
			
		||||
typedef SU<3> SU3;
 | 
			
		||||
typedef SU<4> SU4;
 | 
			
		||||
typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
typedef SU<Nc> FundamentalMatrices;
 | 
			
		||||
    
 | 
			
		||||
typedef Sp<2> Sp2;
 | 
			
		||||
typedef Sp<4> Sp4;
 | 
			
		||||
typedef Sp<6> Sp6;
 | 
			
		||||
typedef Sp<8> Sp8;
 | 
			
		||||
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = Umu.Grid();
 | 
			
		||||
  const int x = 0;
 | 
			
		||||
  const int y = 1;
 | 
			
		||||
  const int z = 2;
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  Umu = ProjectOnGroup(Umu);
 | 
			
		||||
  autoView(Umu_v, Umu, CpuWrite);
 | 
			
		||||
  thread_for(ss, grid->oSites(), {
 | 
			
		||||
    auto cm = Umu_v[ss];
 | 
			
		||||
    cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
 | 
			
		||||
                       cm()()(0, z) * cm()()(1, y));  // x= yz-zy
 | 
			
		||||
    cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
 | 
			
		||||
                       cm()()(0, x) * cm()()(1, z));  // y= zx-xz
 | 
			
		||||
    cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
 | 
			
		||||
                       cm()()(0, y) * cm()()(1, x));  // z= xy-yx
 | 
			
		||||
    Umu_v[ss] = cm;
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
    Umu = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSU3(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										371
									
								
								Grid/qcd/utils/GaugeGroupTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										371
									
								
								Grid/qcd/utils/GaugeGroupTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,371 @@
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// * Two index representation generators
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation for the fundamental generators:
 | 
			
		||||
//   trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   base for NxN two index (anti-symmetric) matrices
 | 
			
		||||
//   normalized to 1 (d_ij is the kroenecker delta)
 | 
			
		||||
//
 | 
			
		||||
//   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
 | 
			
		||||
//
 | 
			
		||||
//   Then the generators are written as
 | 
			
		||||
//
 | 
			
		||||
//   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
 | 
			
		||||
//   tr[e^(lk)e^(ij)^dag T_a] )  //
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Authors: David Preti, Guido Cossu
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
 | 
			
		||||
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
 | 
			
		||||
 | 
			
		||||
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
 | 
			
		||||
 | 
			
		||||
namespace detail {
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc, TwoIndexSymmetry S>
 | 
			
		||||
struct baseOffDiagonalSpHelper;
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc>
 | 
			
		||||
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
 | 
			
		||||
  static const int ngroup = nc / 2;
 | 
			
		||||
  static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    RealD tmp;
 | 
			
		||||
 | 
			
		||||
    if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
 | 
			
		||||
      for (int k = 0; k < j+1; k++) {
 | 
			
		||||
        if (k < j) {
 | 
			
		||||
          tmp = 1 / sqrt(j * (j + 1));
 | 
			
		||||
          eij()()(k, k + ngroup) = tmp;
 | 
			
		||||
          eij()()(k + ngroup, k) = -tmp;
 | 
			
		||||
        }
 | 
			
		||||
        if (k == j) {
 | 
			
		||||
          tmp = -j / sqrt(j * (j + 1));
 | 
			
		||||
          eij()()(k, k + ngroup) = tmp;
 | 
			
		||||
          eij()()(k + ngroup, k) = -tmp;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    else if (i != ngroup + j) {
 | 
			
		||||
      for (int k = 0; k < nc; k++)
 | 
			
		||||
        for (int l = 0; l < nc; l++) {
 | 
			
		||||
          eij()()(l, k) =
 | 
			
		||||
              delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc>
 | 
			
		||||
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
 | 
			
		||||
  static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < nc; k++)
 | 
			
		||||
      for (int l = 0; l < nc; l++)
 | 
			
		||||
        eij()()(l, k) =
 | 
			
		||||
            delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}   // closing detail namespace
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S, class group_name>
 | 
			
		||||
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
 | 
			
		||||
 public:
 | 
			
		||||
  // The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
 | 
			
		||||
  // in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
 | 
			
		||||
  static_assert(std::is_same<group_name, GroupName::SU>::value or
 | 
			
		||||
                    std::is_same<group_name, GroupName::Sp>::value,
 | 
			
		||||
                "ngroup is only implemented for SU and Sp currently.");
 | 
			
		||||
  static const int ngroup =
 | 
			
		||||
      std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
 | 
			
		||||
  static const int Dimension =
 | 
			
		||||
      (ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
 | 
			
		||||
  static const int DimensionAS =
 | 
			
		||||
      (ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
 | 
			
		||||
  static const int DimensionS =
 | 
			
		||||
      ncolour * (ncolour + 1) / 2;
 | 
			
		||||
  static const int NumGenerators =
 | 
			
		||||
      GaugeGroup<ncolour, group_name>::AlgebraDimension;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
 | 
			
		||||
  typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
 | 
			
		||||
  typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexField;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexFieldD;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iGroupMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iGroupMatrix<ComplexD> MatrixD;
 | 
			
		||||
    
 | 
			
		||||
private:
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    eij()()(Index - ncolour * (ncolour - 1) / 2,
 | 
			
		||||
            Index - ncolour * (ncolour - 1) / 2) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < ncolour; k++)
 | 
			
		||||
      for (int l = 0; l < ncolour; l++)
 | 
			
		||||
        eij()()(l, k) =
 | 
			
		||||
            delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
 | 
			
		||||
    detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void base(int Index, iGroupMatrix<cplx> &eij) {
 | 
			
		||||
  // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
 | 
			
		||||
    assert(Index < Dimension);
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
  // for the linearisation of the 2 indexes
 | 
			
		||||
    static int a[ncolour * (ncolour - 1) / 2][2];  // store the a <-> i,j
 | 
			
		||||
    static bool filled = false;
 | 
			
		||||
    if (!filled) {
 | 
			
		||||
      int counter = 0;
 | 
			
		||||
      for (int i = 1; i < ncolour; i++) {
 | 
			
		||||
      for (int j = 0; j < i; j++) {
 | 
			
		||||
        if (std::is_same<group_name, GroupName::Sp>::value)
 | 
			
		||||
          {
 | 
			
		||||
            if (j==0 && i==ngroup+j && S==-1) {
 | 
			
		||||
            //std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
 | 
			
		||||
              j = j+1;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
          a[counter][0] = i;
 | 
			
		||||
          a[counter][1] = j;
 | 
			
		||||
          counter++;
 | 
			
		||||
          }
 | 
			
		||||
      }
 | 
			
		||||
      filled = true;
 | 
			
		||||
    }
 | 
			
		||||
    if (Index < ncolour*ncolour - DimensionS)
 | 
			
		||||
    {
 | 
			
		||||
      baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
 | 
			
		||||
    } else {
 | 
			
		||||
      baseDiagonal(Index, eij);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  static void printBase(void) {
 | 
			
		||||
    for (int gen = 0; gen < Dimension; gen++) {
 | 
			
		||||
      Matrix tmp;
 | 
			
		||||
      base(gen, tmp);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << tmp << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
 | 
			
		||||
    Vector<iGroupMatrix<cplx> > ta(NumGenerators);
 | 
			
		||||
    Vector<iGroupMatrix<cplx> > eij(Dimension);
 | 
			
		||||
    iGroupMatrix<cplx> tmp;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++)
 | 
			
		||||
      GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
 | 
			
		||||
      for (int b = 0; b < Dimension; b++) {
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
 | 
			
		||||
        i2indTa()()(a, b) = iTr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < NumGenerators; gen++) {
 | 
			
		||||
      TIMatrix i2indTa;
 | 
			
		||||
      generator(gen, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << i2indTa << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    TIMatrix i2indTa, i2indTb;
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(trace(i2indTa)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      for (int b = 0; b < NumGenerators; b++) {
 | 
			
		||||
        generator(a, i2indTa);
 | 
			
		||||
        generator(b, i2indTb);
 | 
			
		||||
 | 
			
		||||
        // generator returns iTa, so we need a minus sign here
 | 
			
		||||
        Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
 | 
			
		||||
        std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
        if (a == b) {
 | 
			
		||||
          assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
 | 
			
		||||
        } else {
 | 
			
		||||
          assert(real(Tr) < 1e-8);
 | 
			
		||||
        }
 | 
			
		||||
        assert(imag(Tr) < 1e-8);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void TwoIndexLieAlgebraMatrix(
 | 
			
		||||
      const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
 | 
			
		||||
      LatticeTwoIndexMatrix &out, Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeTwoIndexMatrix la(grid);
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      la = peekColour(h, a) * i2indTa;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= scale;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components
 | 
			
		||||
  // of a lattice matrix ( of dimension ncol*ncol -1 )
 | 
			
		||||
  static void projectOnAlgebra(
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
      const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
    Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
 | 
			
		||||
    // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // a projector that keeps the generators stored to avoid the overhead of
 | 
			
		||||
  // recomputing them
 | 
			
		||||
  static void projector(
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
      const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    // to store the generators
 | 
			
		||||
    static std::vector<TIMatrix> i2indTa(NumGenerators);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    static bool precalculated = false;
 | 
			
		||||
    if (!precalculated) {
 | 
			
		||||
      precalculated = true;
 | 
			
		||||
      for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Real coefficient =
 | 
			
		||||
        -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization
 | 
			
		||||
    // of the trace in the two index rep
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
// Some useful type names
 | 
			
		||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
 | 
			
		||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
 | 
			
		||||
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
 | 
			
		||||
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,930 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/utils/SUn.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_UTIL_SUN_H
 | 
			
		||||
#define QCD_UTIL_SUN_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
  auto det = Determinant(Umu);
 | 
			
		||||
 | 
			
		||||
  det = conjugate(det);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
 | 
			
		||||
    element = element * det;
 | 
			
		||||
    PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<int N,class Vec>
 | 
			
		||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
    Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSUn(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U,Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
class SU {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
  static const int AdjointDimension = ncolour * ncolour - 1;
 | 
			
		||||
  static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnAlgebraVector =
 | 
			
		||||
    iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
 | 
			
		||||
  // SU<2>::LatticeMatrix etc...
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef iSUnMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iSUnMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iSUnMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnMatrix<vComplex> vMatrix;
 | 
			
		||||
  typedef iSUnMatrix<vComplexF> vMatrixF;
 | 
			
		||||
  typedef iSUnMatrix<vComplexD> vMatrixD;
 | 
			
		||||
 | 
			
		||||
  // For the projectors to the algebra
 | 
			
		||||
  // these should be real...
 | 
			
		||||
  // keeping complex for consistency with the SIMD vector types
 | 
			
		||||
  typedef iSUnAlgebraVector<Complex> AlgebraVector;
 | 
			
		||||
  typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
 | 
			
		||||
  typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vMatrix> LatticeMatrix;
 | 
			
		||||
  typedef Lattice<vMatrixF> LatticeMatrixF;
 | 
			
		||||
  typedef Lattice<vMatrixD> LatticeMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<Complex> SU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<ComplexF> SU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<ComplexD> SU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<vComplex> vSU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<vComplexF> vSU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<vComplexD> vSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
 | 
			
		||||
  typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
 | 
			
		||||
  typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // There are N^2-1 generators for SU(N).
 | 
			
		||||
  //
 | 
			
		||||
  // We take a traceless hermitian generator basis as follows
 | 
			
		||||
  //
 | 
			
		||||
  // * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
  //   T_F = 1/2  for SU(N) groups
 | 
			
		||||
  //
 | 
			
		||||
  // * Off diagonal
 | 
			
		||||
  //    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
 | 
			
		||||
  //
 | 
			
		||||
  //    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ]
 | 
			
		||||
  //      direct count off each row
 | 
			
		||||
  //
 | 
			
		||||
  //    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
 | 
			
		||||
  //
 | 
			
		||||
  //      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2
 | 
			
		||||
  //      1+ 2+          +   + Nc-1
 | 
			
		||||
  //
 | 
			
		||||
  //    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
 | 
			
		||||
  //
 | 
			
		||||
  //    - We enumerate the row-col pairs.
 | 
			
		||||
  //    - for each row col pair there is a (sigma_x) and a (sigma_y) like
 | 
			
		||||
  //    generator
 | 
			
		||||
  //
 | 
			
		||||
  //
 | 
			
		||||
  //   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} +
 | 
			
		||||
  //   delta_{i,i1} delta_{j,i2})
 | 
			
		||||
  //   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1}
 | 
			
		||||
  //   delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
 | 
			
		||||
  //
 | 
			
		||||
  // * Diagonal; must be traceless and normalised
 | 
			
		||||
  //   - Sequence is
 | 
			
		||||
  //   N  (1,-1,0,0...)
 | 
			
		||||
  //   N  (1, 1,-2,0...)
 | 
			
		||||
  //   N  (1, 1, 1,-3,0...)
 | 
			
		||||
  //   N  (1, 1, 1, 1,-4,0...)
 | 
			
		||||
  //
 | 
			
		||||
  //   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
 | 
			
		||||
  //   NB this gives the famous SU3 result for su2 index 8
 | 
			
		||||
  //
 | 
			
		||||
  //   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
 | 
			
		||||
  //
 | 
			
		||||
  //   ( 1      )
 | 
			
		||||
  //   (    1   ) / sqrt(3) /2  = 1/2 lambda_8
 | 
			
		||||
  //   (      -2)
 | 
			
		||||
  //
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    // map lie index to which type of generator
 | 
			
		||||
    int diagIndex;
 | 
			
		||||
    int su2Index;
 | 
			
		||||
    int sigxy;
 | 
			
		||||
    int NNm1 = ncolour * (ncolour - 1);
 | 
			
		||||
    if (lieIndex >= NNm1) {
 | 
			
		||||
      diagIndex = lieIndex - NNm1;
 | 
			
		||||
      generatorDiagonal(diagIndex, ta);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    sigxy = lieIndex & 0x1;  // even or odd
 | 
			
		||||
    su2Index = lieIndex >> 1;
 | 
			
		||||
    if (sigxy)
 | 
			
		||||
      generatorSigmaY(su2Index, ta);
 | 
			
		||||
    else
 | 
			
		||||
      generatorSigmaX(su2Index, ta);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    ta()()(i1, i2) = 1.0;
 | 
			
		||||
    ta()()(i2, i1) = 1.0;
 | 
			
		||||
    ta = ta * 0.5;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    cplx i(0.0, 1.0);
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    ta()()(i1, i2) = i;
 | 
			
		||||
    ta()()(i2, i1) = -i;
 | 
			
		||||
    ta = ta * 0.5;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    int k = diagIndex + 1;                  // diagIndex starts from 0
 | 
			
		||||
    for (int i = 0; i <= diagIndex; i++) {  // k iterations
 | 
			
		||||
      ta()()(i, i) = 1.0;
 | 
			
		||||
    }
 | 
			
		||||
    ta()()(k, k) = -k;  // indexing starts from 0
 | 
			
		||||
    RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
 | 
			
		||||
    ta = ta * nrm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
 | 
			
		||||
    assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
    int spare = su2_index;
 | 
			
		||||
    for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
 | 
			
		||||
      spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
    }
 | 
			
		||||
    i2 = i1 + 1 + spare;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pull out a subgroup and project on to real coeffs x pauli basis
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vcplx>
 | 
			
		||||
  static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
 | 
			
		||||
                         Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                         const Lattice<iSUnMatrix<vcplx> > &source,
 | 
			
		||||
                         int su2_index) {
 | 
			
		||||
    GridBase *grid(source.Grid());
 | 
			
		||||
    conformable(subgroup, source);
 | 
			
		||||
    conformable(subgroup, Determinant);
 | 
			
		||||
    int i0, i1;
 | 
			
		||||
    su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
    autoView( subgroup_v , subgroup,AcceleratorWrite);
 | 
			
		||||
    autoView( source_v   , source,AcceleratorRead);
 | 
			
		||||
    autoView( Determinant_v , Determinant,AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
 | 
			
		||||
      subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
 | 
			
		||||
      subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
 | 
			
		||||
      subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
 | 
			
		||||
      subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
 | 
			
		||||
 | 
			
		||||
      iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
 | 
			
		||||
 | 
			
		||||
      Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
 | 
			
		||||
 | 
			
		||||
      subgroup_v[ss] = Sigma;
 | 
			
		||||
 | 
			
		||||
      // this should be purely real
 | 
			
		||||
      Determinant_v[ss] =
 | 
			
		||||
	Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Set matrix to one and insert a pauli subgroup
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vcplx>
 | 
			
		||||
  static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                        Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
 | 
			
		||||
    GridBase *grid(dest.Grid());
 | 
			
		||||
    conformable(subgroup, dest);
 | 
			
		||||
    int i0, i1;
 | 
			
		||||
    su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
    dest = 1.0;  // start out with identity
 | 
			
		||||
    autoView( dest_v , dest, AcceleratorWrite);
 | 
			
		||||
    autoView( subgroup_v, subgroup, AcceleratorRead);
 | 
			
		||||
    accelerator_for(ss, grid->oSites(),1,
 | 
			
		||||
    {
 | 
			
		||||
      dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
 | 
			
		||||
      dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
 | 
			
		||||
      dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
 | 
			
		||||
      dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Generate e^{ Re Tr Staple Link} dlink
 | 
			
		||||
  //
 | 
			
		||||
  // *** Note Staple should be appropriate linear compbination between all
 | 
			
		||||
  // staples.
 | 
			
		||||
  // *** If already by beta pass coefficient 1.0.
 | 
			
		||||
  // *** This routine applies the additional 1/Nc factor that comes after trace
 | 
			
		||||
  // in action.
 | 
			
		||||
  //
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
 | 
			
		||||
			       RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
			       LatticeMatrix &link,
 | 
			
		||||
			       const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
			       int su2_subgroup, int nheatbath, LatticeInteger &wheremask) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = link.Grid();
 | 
			
		||||
 | 
			
		||||
    const RealD twopi = 2.0 * M_PI;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix staple(grid);
 | 
			
		||||
 | 
			
		||||
    staple = barestaple * (beta / ncolour);
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix V(grid);
 | 
			
		||||
    V = link * staple;
 | 
			
		||||
 | 
			
		||||
    // Subgroup manipulation in the lie algebra space
 | 
			
		||||
    LatticeSU2Matrix u(grid);  // Kennedy pendleton "u" real projected normalised Sigma
 | 
			
		||||
    LatticeSU2Matrix uinv(grid);
 | 
			
		||||
    LatticeSU2Matrix ua(grid);  // a in pauli form
 | 
			
		||||
    LatticeSU2Matrix b(grid);   // rotated matrix after hb
 | 
			
		||||
 | 
			
		||||
    // Some handy constant fields
 | 
			
		||||
    LatticeComplex ones(grid);
 | 
			
		||||
    ones = 1.0;
 | 
			
		||||
    LatticeComplex zeros(grid);
 | 
			
		||||
    zeros = Zero();
 | 
			
		||||
    LatticeReal rones(grid);
 | 
			
		||||
    rones = 1.0;
 | 
			
		||||
    LatticeReal rzeros(grid);
 | 
			
		||||
    rzeros = Zero();
 | 
			
		||||
    LatticeComplex udet(grid);  // determinant of real(staple)
 | 
			
		||||
    LatticeInteger mask_true(grid);
 | 
			
		||||
    mask_true = 1;
 | 
			
		||||
    LatticeInteger mask_false(grid);
 | 
			
		||||
    mask_false = 0;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
      PLB 156 P393 (1985) (Kennedy and Pendleton)
 | 
			
		||||
 | 
			
		||||
      Note: absorb "beta" into the def of sigma compared to KP paper; staple
 | 
			
		||||
      passed to this routine has "beta" already multiplied in
 | 
			
		||||
 | 
			
		||||
      Action linear in links h and of form:
 | 
			
		||||
 | 
			
		||||
      beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq )
 | 
			
		||||
 | 
			
		||||
      Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
 | 
			
		||||
 | 
			
		||||
      beta S = const - beta/Nc Re Tr h Sigma'
 | 
			
		||||
      = const - Re Tr h Sigma
 | 
			
		||||
 | 
			
		||||
      Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
 | 
			
		||||
      arbitrary.
 | 
			
		||||
 | 
			
		||||
      Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij
 | 
			
		||||
      Re Tr h Sigma = 2 h_j Re Sigma_j
 | 
			
		||||
 | 
			
		||||
      Normalised re Sigma_j = xi u_j
 | 
			
		||||
 | 
			
		||||
      With u_j a unit vector and U can be in SU(2);
 | 
			
		||||
 | 
			
		||||
      Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
 | 
			
		||||
 | 
			
		||||
      4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
      u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
      xi = sqrt(Det)/2;
 | 
			
		||||
 | 
			
		||||
      Write a= u h in SU(2); a has pauli decomp a_j;
 | 
			
		||||
 | 
			
		||||
      Note: Product b' xi is unvariant because scaling Sigma leaves
 | 
			
		||||
      normalised vector "u" fixed; Can rescale Sigma so b' = 1.
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////
 | 
			
		||||
    // Real part of Pauli decomposition
 | 
			
		||||
    // Note a subgroup can project to zero in cold start
 | 
			
		||||
    ////////////////////////////////////////////////////////
 | 
			
		||||
    su2Extract(udet, u, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Normalising this vector if possible; else identity
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    LatticeComplex xi(grid);
 | 
			
		||||
 | 
			
		||||
    LatticeSU2Matrix lident(grid);
 | 
			
		||||
 | 
			
		||||
    SU2Matrix ident = Complex(1.0);
 | 
			
		||||
    SU2Matrix pauli1;
 | 
			
		||||
    SU<2>::generator(0, pauli1);
 | 
			
		||||
    SU2Matrix pauli2;
 | 
			
		||||
    SU<2>::generator(1, pauli2);
 | 
			
		||||
    SU2Matrix pauli3;
 | 
			
		||||
    SU<2>::generator(2, pauli3);
 | 
			
		||||
    pauli1 = timesI(pauli1) * 2.0;
 | 
			
		||||
    pauli2 = timesI(pauli2) * 2.0;
 | 
			
		||||
    pauli3 = timesI(pauli3) * 2.0;
 | 
			
		||||
 | 
			
		||||
    LatticeComplex cone(grid);
 | 
			
		||||
    LatticeReal adet(grid);
 | 
			
		||||
    adet = abs(toReal(udet));
 | 
			
		||||
    lident = Complex(1.0);
 | 
			
		||||
    cone = Complex(1.0);
 | 
			
		||||
    Real machine_epsilon = 1.0e-7;
 | 
			
		||||
    u = where(adet > machine_epsilon, u, lident);
 | 
			
		||||
    udet = where(adet > machine_epsilon, udet, cone);
 | 
			
		||||
 | 
			
		||||
    xi = 0.5 * sqrt(udet);  // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
    u = 0.5 * u *
 | 
			
		||||
      pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
    // Debug test for sanity
 | 
			
		||||
    uinv = adj(u);
 | 
			
		||||
    b = u * uinv - 1.0;
 | 
			
		||||
    assert(norm2(b) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
      Measure: Haar measure dh has d^4a delta(1-|a^2|)
 | 
			
		||||
      In polars:
 | 
			
		||||
      da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
 | 
			
		||||
      = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
 | 
			
		||||
      r) )
 | 
			
		||||
      = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
 | 
			
		||||
 | 
			
		||||
      Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta enters
 | 
			
		||||
      through xi
 | 
			
		||||
      =  e^{2 xi (h.u)} dh
 | 
			
		||||
      =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
 | 
			
		||||
      h2u2}.e^{2 xi h3u3} dh
 | 
			
		||||
 | 
			
		||||
      Therefore for each site, take xi for that site
 | 
			
		||||
      i) generate  |a0|<1 with dist
 | 
			
		||||
      (1-a0^2)^0.5 e^{2 xi a0 } da0
 | 
			
		||||
 | 
			
		||||
      Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
 | 
			
		||||
      factor in Chroma ]
 | 
			
		||||
      A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
 | 
			
		||||
      R''' in the unit interval;
 | 
			
		||||
      B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
 | 
			
		||||
      C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
 | 
			
		||||
      D. Set A = XC;
 | 
			
		||||
      E. Let d  = X'+A;
 | 
			
		||||
      F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
      G. Set a0 = 1 - d;
 | 
			
		||||
 | 
			
		||||
      Note that in step D setting B ~ X - A and using B in place of A in step E will
 | 
			
		||||
      generate a second independent a 0 value.
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    // count the number of sites by picking "1"'s out of hat
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    Integer hit = 0;
 | 
			
		||||
    LatticeReal rtmp(grid);
 | 
			
		||||
    rtmp = where(wheremask, rones, rzeros);
 | 
			
		||||
    RealD numSites = sum(rtmp);
 | 
			
		||||
    RealD numAccepted;
 | 
			
		||||
    LatticeInteger Accepted(grid);
 | 
			
		||||
    Accepted = Zero();
 | 
			
		||||
    LatticeInteger newlyAccepted(grid);
 | 
			
		||||
 | 
			
		||||
    std::vector<LatticeReal> xr(4, grid);
 | 
			
		||||
    std::vector<LatticeReal> a(4, grid);
 | 
			
		||||
    LatticeReal d(grid);
 | 
			
		||||
    d = Zero();
 | 
			
		||||
    LatticeReal alpha(grid);
 | 
			
		||||
 | 
			
		||||
    //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
 | 
			
		||||
    xi = 2.0 *xi;
 | 
			
		||||
    alpha = toReal(xi);
 | 
			
		||||
 | 
			
		||||
    do {
 | 
			
		||||
      // A. Generate two uniformly distributed pseudo-random numbers R and R',
 | 
			
		||||
      // R'', R''' in the unit interval;
 | 
			
		||||
      random(pRNG, xr[0]);
 | 
			
		||||
      random(pRNG, xr[1]);
 | 
			
		||||
      random(pRNG, xr[2]);
 | 
			
		||||
      random(pRNG, xr[3]);
 | 
			
		||||
 | 
			
		||||
      // B. Set X = - ln R/alpha, X' = -ln R'/alpha
 | 
			
		||||
      xr[1] = -log(xr[1]) / alpha;
 | 
			
		||||
      xr[2] = -log(xr[2]) / alpha;
 | 
			
		||||
 | 
			
		||||
      // C. Set C = cos^2(2piR'')
 | 
			
		||||
      xr[3] = cos(xr[3] * twopi);
 | 
			
		||||
      xr[3] = xr[3] * xr[3];
 | 
			
		||||
 | 
			
		||||
      LatticeReal xrsq(grid);
 | 
			
		||||
 | 
			
		||||
      // D. Set A = XC;
 | 
			
		||||
      // E. Let d  = X'+A;
 | 
			
		||||
      xrsq = xr[2] + xr[1] * xr[3];
 | 
			
		||||
 | 
			
		||||
      d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
 | 
			
		||||
 | 
			
		||||
      // F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
      LatticeReal thresh(grid);
 | 
			
		||||
      thresh = 1.0 - d * 0.5;
 | 
			
		||||
      xrsq = xr[0] * xr[0];
 | 
			
		||||
      LatticeInteger ione(grid);
 | 
			
		||||
      ione = 1;
 | 
			
		||||
      LatticeInteger izero(grid);
 | 
			
		||||
      izero = Zero();
 | 
			
		||||
 | 
			
		||||
      newlyAccepted = where(xrsq < thresh, ione, izero);
 | 
			
		||||
      Accepted = where(newlyAccepted, newlyAccepted, Accepted);
 | 
			
		||||
      Accepted = where(wheremask, Accepted, izero);
 | 
			
		||||
 | 
			
		||||
      // FIXME need an iSum for integer to avoid overload on return type??
 | 
			
		||||
      rtmp = where(Accepted, rones, rzeros);
 | 
			
		||||
      numAccepted = sum(rtmp);
 | 
			
		||||
 | 
			
		||||
      hit++;
 | 
			
		||||
 | 
			
		||||
    } while ((numAccepted < numSites) && (hit < nheatbath));
 | 
			
		||||
 | 
			
		||||
    // G. Set a0 = 1 - d;
 | 
			
		||||
    a[0] = Zero();
 | 
			
		||||
    a[0] = where(wheremask, 1.0 - d, a[0]);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////
 | 
			
		||||
    //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
 | 
			
		||||
    //////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    LatticeReal a123mag(grid);
 | 
			
		||||
    a123mag = sqrt(abs(1.0 - a[0] * a[0]));
 | 
			
		||||
 | 
			
		||||
    LatticeReal cos_theta(grid);
 | 
			
		||||
    LatticeReal sin_theta(grid);
 | 
			
		||||
    LatticeReal phi(grid);
 | 
			
		||||
 | 
			
		||||
    random(pRNG, phi);
 | 
			
		||||
    phi = phi * twopi;  // uniform in [0,2pi]
 | 
			
		||||
    random(pRNG, cos_theta);
 | 
			
		||||
    cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1]
 | 
			
		||||
    sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
 | 
			
		||||
 | 
			
		||||
    a[1] = a123mag * sin_theta * cos(phi);
 | 
			
		||||
    a[2] = a123mag * sin_theta * sin(phi);
 | 
			
		||||
    a[3] = a123mag * cos_theta;
 | 
			
		||||
 | 
			
		||||
    ua = toComplex(a[0]) * ident  + toComplex(a[1]) * pauli1 +
 | 
			
		||||
         toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
 | 
			
		||||
 | 
			
		||||
    b = 1.0;
 | 
			
		||||
    b = where(wheremask, uinv * ua, b);
 | 
			
		||||
    su2Insert(b, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
    // mask the assignment back based on Accptance
 | 
			
		||||
    link = where(Accepted, V * link, link);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    // Debug Checks
 | 
			
		||||
    // SU2 check
 | 
			
		||||
    LatticeSU2Matrix check(grid);  // rotated matrix after hb
 | 
			
		||||
    u = Zero();
 | 
			
		||||
    check = ua * adj(ua) - 1.0;
 | 
			
		||||
    check = where(Accepted, check, u);
 | 
			
		||||
    assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    check = b * adj(b) - 1.0;
 | 
			
		||||
    check = where(Accepted, check, u);
 | 
			
		||||
    assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix Vcheck(grid);
 | 
			
		||||
    Vcheck = Zero();
 | 
			
		||||
    Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
 | 
			
		||||
    //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
 | 
			
		||||
    assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    // Verify the link stays in SU(3)
 | 
			
		||||
    //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
 | 
			
		||||
    Vcheck = link * adj(link) - 1.0;
 | 
			
		||||
    assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
    /////////////////////////////////
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < AdjointDimension; gen++) {
 | 
			
		||||
      Matrix ta;
 | 
			
		||||
      generator(gen, ta);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << ta << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
    Matrix tb;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "Fundamental - Checking trace ta tb is 0.5 delta_ab"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      for (int b = 0; b < AdjointDimension; b++) {
 | 
			
		||||
        generator(a, ta);
 | 
			
		||||
        generator(b, tb);
 | 
			
		||||
        Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
        std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
        if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
        if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
      std::cout << GridLogMessage << a << " " << std::endl;
 | 
			
		||||
      assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // reunitarise??
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<vTComplexType> LatticeComplexType;
 | 
			
		||||
    typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeComplexType ca(grid);
 | 
			
		||||
    LatticeMatrixType lie(grid);
 | 
			
		||||
    LatticeMatrixType la(grid);
 | 
			
		||||
    ComplexD ci(0.0, scale);
 | 
			
		||||
    //    ComplexD cone(1.0, 0.0);
 | 
			
		||||
    MatrixType ta;
 | 
			
		||||
 | 
			
		||||
    lie = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      random(pRNG, ca);
 | 
			
		||||
 | 
			
		||||
      ca = (ca + conjugate(ca)) * 0.5;
 | 
			
		||||
      ca = ca - 0.5;
 | 
			
		||||
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
 | 
			
		||||
      la = ci * ca * ta;
 | 
			
		||||
 | 
			
		||||
      lie = lie + la;  // e^{i la ta}
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    taExp(lie, out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeReal ca(grid);
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Complex ci(0.0, scale);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      gaussian(pRNG, ca);
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = toComplex(ca) * ta;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= ci;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
 | 
			
		||||
                                          LatticeMatrix &out,
 | 
			
		||||
                                          Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = peekColour(h, a) * timesI(ta) * scale;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 * Fundamental rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
  template<typename Fundamental,typename GaugeMat>
 | 
			
		||||
  static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
 | 
			
		||||
    GridBase *grid = ferm._grid;
 | 
			
		||||
    conformable(grid,g._grid);
 | 
			
		||||
    ferm = g*ferm;
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
    typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
      PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    LieRandomize(pRNG,g,1.0);
 | 
			
		||||
    GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
 | 
			
		||||
  // inverse operation: FundamentalLieAlgebraMatrix
 | 
			
		||||
  static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    Matrix Ta;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, Ta);
 | 
			
		||||
      pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    LatticeMatrixType tmp(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      //      LieRandomize(pRNG, Umu, 1.0);
 | 
			
		||||
      //      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
      gaussian(pRNG,Umu);
 | 
			
		||||
      tmp = Ta(Umu);
 | 
			
		||||
      taExp(tmp,Umu);
 | 
			
		||||
      ProjectSUn(Umu);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      LieRandomize(pRNG,Umu,0.01);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out,Umu,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out){
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    Umu=1.0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      PokeIndex<LorentzIndex>(out,Umu,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
 | 
			
		||||
    ColdConfiguration(out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename LatticeMatrixType>
 | 
			
		||||
  static void taProj( const LatticeMatrixType &in,  LatticeMatrixType &out){
 | 
			
		||||
    out = Ta(in);
 | 
			
		||||
  }
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type ComplexType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType xn(x.Grid());
 | 
			
		||||
    RealD nfac = 1.0;
 | 
			
		||||
 | 
			
		||||
    xn = x;
 | 
			
		||||
    ex = xn + ComplexType(1.0);  // 1+x
 | 
			
		||||
 | 
			
		||||
    // Do a 12th order exponentiation
 | 
			
		||||
    for (int i = 2; i <= 12; ++i) {
 | 
			
		||||
      nfac = nfac / RealD(i);  // 1/2, 1/2.3 ...
 | 
			
		||||
      xn = xn * x;             // x2, x3,x4....
 | 
			
		||||
      ex = ex + xn * nfac;     // x2/2!, x3/3!....
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
static void
 | 
			
		||||
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  const int x=0;
 | 
			
		||||
  const int y=1;
 | 
			
		||||
  const int z=2;
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  Umu = ProjectOnGroup(Umu);
 | 
			
		||||
  autoView(Umu_v,Umu,CpuWrite);
 | 
			
		||||
  thread_for(ss,grid->oSites(),{
 | 
			
		||||
      auto cm = Umu_v[ss];
 | 
			
		||||
      cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
 | 
			
		||||
      cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
 | 
			
		||||
      cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
 | 
			
		||||
      Umu_v[ss]=cm;
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
    Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSU3(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U,Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
typedef SU<2> SU2;
 | 
			
		||||
typedef SU<3> SU3;
 | 
			
		||||
typedef SU<4> SU4;
 | 
			
		||||
typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
typedef SU<Nc> FundamentalMatrices;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										578
									
								
								Grid/qcd/utils/SUn.impl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										578
									
								
								Grid/qcd/utils/SUn.impl.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,578 @@
 | 
			
		||||
// This file is #included into the body of the class template definition of
 | 
			
		||||
// GaugeGroup. So, image there to be
 | 
			
		||||
//
 | 
			
		||||
// template <int ncolour, class group_name>
 | 
			
		||||
// class GaugeGroup {
 | 
			
		||||
//
 | 
			
		||||
// around it.
 | 
			
		||||
//
 | 
			
		||||
// Please note that the unconventional file extension makes sure that it
 | 
			
		||||
// doesn't get found by the scripts/filelist during bootstrapping.
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// There are N^2-1 generators for SU(N).
 | 
			
		||||
//
 | 
			
		||||
// We take a traceless hermitian generator basis as follows
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
// * Off diagonal
 | 
			
		||||
//    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
 | 
			
		||||
//
 | 
			
		||||
//    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ]
 | 
			
		||||
//      direct count off each row
 | 
			
		||||
//
 | 
			
		||||
//    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
 | 
			
		||||
//
 | 
			
		||||
//      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2
 | 
			
		||||
//      1+ 2+          +   + Nc-1
 | 
			
		||||
//
 | 
			
		||||
//    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
 | 
			
		||||
//
 | 
			
		||||
//    - We enumerate the row-col pairs.
 | 
			
		||||
//    - for each row col pair there is a (sigma_x) and a (sigma_y) like
 | 
			
		||||
//    generator
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} +
 | 
			
		||||
//   delta_{i,i1} delta_{j,i2})
 | 
			
		||||
//   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1}
 | 
			
		||||
//   delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
 | 
			
		||||
//
 | 
			
		||||
// * Diagonal; must be traceless and normalised
 | 
			
		||||
//   - Sequence is
 | 
			
		||||
//   N  (1,-1,0,0...)
 | 
			
		||||
//   N  (1, 1,-2,0...)
 | 
			
		||||
//   N  (1, 1, 1,-3,0...)
 | 
			
		||||
//   N  (1, 1, 1, 1,-4,0...)
 | 
			
		||||
//
 | 
			
		||||
//   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
 | 
			
		||||
//   NB this gives the famous SU3 result for su2 index 8
 | 
			
		||||
//
 | 
			
		||||
//   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
 | 
			
		||||
//
 | 
			
		||||
//   ( 1      )
 | 
			
		||||
//   (    1   ) / sqrt(3) /2  = 1/2 lambda_8
 | 
			
		||||
//   (      -2)
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
 | 
			
		||||
  // map lie index to which type of generator
 | 
			
		||||
  int diagIndex;
 | 
			
		||||
  int su2Index;
 | 
			
		||||
  int sigxy;
 | 
			
		||||
  int NNm1 = ncolour * (ncolour - 1);
 | 
			
		||||
  if (lieIndex >= NNm1) {
 | 
			
		||||
    diagIndex = lieIndex - NNm1;
 | 
			
		||||
    generatorDiagonal(diagIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  sigxy = lieIndex & 0x1;  // even or odd
 | 
			
		||||
  su2Index = lieIndex >> 1;
 | 
			
		||||
  if (sigxy)
 | 
			
		||||
    generatorSigmaY(su2Index, ta);
 | 
			
		||||
  else
 | 
			
		||||
    generatorSigmaX(su2Index, ta);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
  ta()()(i1, i2) = 1.0;
 | 
			
		||||
  ta()()(i2, i1) = 1.0;
 | 
			
		||||
  ta = ta * 0.5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
  ta()()(i1, i2) = i;
 | 
			
		||||
  ta()()(i2, i1) = -i;
 | 
			
		||||
  ta = ta * 0.5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  int k = diagIndex + 1;                  // diagIndex starts from 0
 | 
			
		||||
  for (int i = 0; i <= diagIndex; i++) {  // k iterations
 | 
			
		||||
    ta()()(i, i) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
  ta()()(k, k) = -k;  // indexing starts from 0
 | 
			
		||||
  RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
 | 
			
		||||
  assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
  int spare = su2_index;
 | 
			
		||||
  for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
 | 
			
		||||
    spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
  }
 | 
			
		||||
  i2 = i1 + 1 + spare;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Pull out a subgroup and project on to real coeffs x pauli basis
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vcplx, ONLY_IF_SU>
 | 
			
		||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
 | 
			
		||||
                       Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                       const Lattice<iGroupMatrix<vcplx> > &source,
 | 
			
		||||
                       int su2_index) {
 | 
			
		||||
  GridBase *grid(source.Grid());
 | 
			
		||||
  conformable(subgroup, source);
 | 
			
		||||
  conformable(subgroup, Determinant);
 | 
			
		||||
  int i0, i1;
 | 
			
		||||
  su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
  autoView(subgroup_v, subgroup, AcceleratorWrite);
 | 
			
		||||
  autoView(source_v, source, AcceleratorRead);
 | 
			
		||||
  autoView(Determinant_v, Determinant, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
    subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
 | 
			
		||||
    subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
 | 
			
		||||
    subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
 | 
			
		||||
    subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
 | 
			
		||||
 | 
			
		||||
    iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
 | 
			
		||||
 | 
			
		||||
    Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
 | 
			
		||||
 | 
			
		||||
    subgroup_v[ss] = Sigma;
 | 
			
		||||
 | 
			
		||||
    // this should be purely real
 | 
			
		||||
    Determinant_v[ss] =
 | 
			
		||||
        Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Set matrix to one and insert a pauli subgroup
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vcplx, ONLY_IF_SU>
 | 
			
		||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                      Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
 | 
			
		||||
  GridBase *grid(dest.Grid());
 | 
			
		||||
  conformable(subgroup, dest);
 | 
			
		||||
  int i0, i1;
 | 
			
		||||
  su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
  dest = 1.0;  // start out with identity
 | 
			
		||||
  autoView(dest_v, dest, AcceleratorWrite);
 | 
			
		||||
  autoView(subgroup_v, subgroup, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
    dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
 | 
			
		||||
    dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
 | 
			
		||||
    dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
 | 
			
		||||
    dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Generate e^{ Re Tr Staple Link} dlink
 | 
			
		||||
//
 | 
			
		||||
// *** Note Staple should be appropriate linear compbination between all
 | 
			
		||||
// staples.
 | 
			
		||||
// *** If already by beta pass coefficient 1.0.
 | 
			
		||||
// *** This routine applies the additional 1/Nc factor that comes after trace
 | 
			
		||||
// in action.
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static void SubGroupHeatBath(
 | 
			
		||||
    GridSerialRNG &sRNG, GridParallelRNG &pRNG,
 | 
			
		||||
    RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
    LatticeMatrix &link,
 | 
			
		||||
    const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
    int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
 | 
			
		||||
  GridBase *grid = link.Grid();
 | 
			
		||||
 | 
			
		||||
  const RealD twopi = 2.0 * M_PI;
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix staple(grid);
 | 
			
		||||
 | 
			
		||||
  staple = barestaple * (beta / ncolour);
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix V(grid);
 | 
			
		||||
  V = link * staple;
 | 
			
		||||
 | 
			
		||||
  // Subgroup manipulation in the lie algebra space
 | 
			
		||||
  LatticeSU2Matrix u(
 | 
			
		||||
      grid);  // Kennedy pendleton "u" real projected normalised Sigma
 | 
			
		||||
  LatticeSU2Matrix uinv(grid);
 | 
			
		||||
  LatticeSU2Matrix ua(grid);  // a in pauli form
 | 
			
		||||
  LatticeSU2Matrix b(grid);   // rotated matrix after hb
 | 
			
		||||
 | 
			
		||||
  // Some handy constant fields
 | 
			
		||||
  LatticeComplex ones(grid);
 | 
			
		||||
  ones = 1.0;
 | 
			
		||||
  LatticeComplex zeros(grid);
 | 
			
		||||
  zeros = Zero();
 | 
			
		||||
  LatticeReal rones(grid);
 | 
			
		||||
  rones = 1.0;
 | 
			
		||||
  LatticeReal rzeros(grid);
 | 
			
		||||
  rzeros = Zero();
 | 
			
		||||
  LatticeComplex udet(grid);  // determinant of real(staple)
 | 
			
		||||
  LatticeInteger mask_true(grid);
 | 
			
		||||
  mask_true = 1;
 | 
			
		||||
  LatticeInteger mask_false(grid);
 | 
			
		||||
  mask_false = 0;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    PLB 156 P393 (1985) (Kennedy and Pendleton)
 | 
			
		||||
 | 
			
		||||
    Note: absorb "beta" into the def of sigma compared to KP paper; staple
 | 
			
		||||
    passed to this routine has "beta" already multiplied in
 | 
			
		||||
 | 
			
		||||
    Action linear in links h and of form:
 | 
			
		||||
 | 
			
		||||
    beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq )
 | 
			
		||||
 | 
			
		||||
    Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
 | 
			
		||||
 | 
			
		||||
    beta S = const - beta/Nc Re Tr h Sigma'
 | 
			
		||||
    = const - Re Tr h Sigma
 | 
			
		||||
 | 
			
		||||
    Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
 | 
			
		||||
    arbitrary.
 | 
			
		||||
 | 
			
		||||
    Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij
 | 
			
		||||
    Re Tr h Sigma = 2 h_j Re Sigma_j
 | 
			
		||||
 | 
			
		||||
    Normalised re Sigma_j = xi u_j
 | 
			
		||||
 | 
			
		||||
    With u_j a unit vector and U can be in SU(2);
 | 
			
		||||
 | 
			
		||||
    Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
 | 
			
		||||
 | 
			
		||||
    4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
    u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
    xi = sqrt(Det)/2;
 | 
			
		||||
 | 
			
		||||
    Write a= u h in SU(2); a has pauli decomp a_j;
 | 
			
		||||
 | 
			
		||||
    Note: Product b' xi is unvariant because scaling Sigma leaves
 | 
			
		||||
    normalised vector "u" fixed; Can rescale Sigma so b' = 1.
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // Real part of Pauli decomposition
 | 
			
		||||
  // Note a subgroup can project to zero in cold start
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  su2Extract(udet, u, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Normalising this vector if possible; else identity
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  LatticeComplex xi(grid);
 | 
			
		||||
 | 
			
		||||
  LatticeSU2Matrix lident(grid);
 | 
			
		||||
 | 
			
		||||
  SU2Matrix ident = Complex(1.0);
 | 
			
		||||
  SU2Matrix pauli1;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
 | 
			
		||||
  SU2Matrix pauli2;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
 | 
			
		||||
  SU2Matrix pauli3;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
 | 
			
		||||
  pauli1 = timesI(pauli1) * 2.0;
 | 
			
		||||
  pauli2 = timesI(pauli2) * 2.0;
 | 
			
		||||
  pauli3 = timesI(pauli3) * 2.0;
 | 
			
		||||
 | 
			
		||||
  LatticeComplex cone(grid);
 | 
			
		||||
  LatticeReal adet(grid);
 | 
			
		||||
  adet = abs(toReal(udet));
 | 
			
		||||
  lident = Complex(1.0);
 | 
			
		||||
  cone = Complex(1.0);
 | 
			
		||||
  Real machine_epsilon = 1.0e-7;
 | 
			
		||||
  u = where(adet > machine_epsilon, u, lident);
 | 
			
		||||
  udet = where(adet > machine_epsilon, udet, cone);
 | 
			
		||||
 | 
			
		||||
  xi = 0.5 * sqrt(udet);        // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
  u = 0.5 * u * pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
  // Debug test for sanity
 | 
			
		||||
  uinv = adj(u);
 | 
			
		||||
  b = u * uinv - 1.0;
 | 
			
		||||
  assert(norm2(b) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    Measure: Haar measure dh has d^4a delta(1-|a^2|)
 | 
			
		||||
    In polars:
 | 
			
		||||
    da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
 | 
			
		||||
    = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
 | 
			
		||||
    r) )
 | 
			
		||||
    = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
 | 
			
		||||
 | 
			
		||||
    Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta
 | 
			
		||||
    enters through xi =  e^{2 xi (h.u)} dh =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
 | 
			
		||||
    xi h2u2}.e^{2 xi h3u3} dh
 | 
			
		||||
 | 
			
		||||
    Therefore for each site, take xi for that site
 | 
			
		||||
    i) generate  |a0|<1 with dist
 | 
			
		||||
    (1-a0^2)^0.5 e^{2 xi a0 } da0
 | 
			
		||||
 | 
			
		||||
    Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm];
 | 
			
		||||
    hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
 | 
			
		||||
    pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
 | 
			
		||||
    -(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
 | 
			
		||||
    another uniform random number in [0,1] ; D. Set A = XC; E. Let d  = X'+A;
 | 
			
		||||
    F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
    G. Set a0 = 1 - d;
 | 
			
		||||
 | 
			
		||||
    Note that in step D setting B ~ X - A and using B in place of A in step E
 | 
			
		||||
    will generate a second independent a 0 value.
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // count the number of sites by picking "1"'s out of hat
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  Integer hit = 0;
 | 
			
		||||
  LatticeReal rtmp(grid);
 | 
			
		||||
  rtmp = where(wheremask, rones, rzeros);
 | 
			
		||||
  RealD numSites = sum(rtmp);
 | 
			
		||||
  RealD numAccepted;
 | 
			
		||||
  LatticeInteger Accepted(grid);
 | 
			
		||||
  Accepted = Zero();
 | 
			
		||||
  LatticeInteger newlyAccepted(grid);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeReal> xr(4, grid);
 | 
			
		||||
  std::vector<LatticeReal> a(4, grid);
 | 
			
		||||
  LatticeReal d(grid);
 | 
			
		||||
  d = Zero();
 | 
			
		||||
  LatticeReal alpha(grid);
 | 
			
		||||
 | 
			
		||||
  //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
 | 
			
		||||
  xi = 2.0 * xi;
 | 
			
		||||
  alpha = toReal(xi);
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    // A. Generate two uniformly distributed pseudo-random numbers R and R',
 | 
			
		||||
    // R'', R''' in the unit interval;
 | 
			
		||||
    random(pRNG, xr[0]);
 | 
			
		||||
    random(pRNG, xr[1]);
 | 
			
		||||
    random(pRNG, xr[2]);
 | 
			
		||||
    random(pRNG, xr[3]);
 | 
			
		||||
 | 
			
		||||
    // B. Set X = - ln R/alpha, X' = -ln R'/alpha
 | 
			
		||||
    xr[1] = -log(xr[1]) / alpha;
 | 
			
		||||
    xr[2] = -log(xr[2]) / alpha;
 | 
			
		||||
 | 
			
		||||
    // C. Set C = cos^2(2piR'')
 | 
			
		||||
    xr[3] = cos(xr[3] * twopi);
 | 
			
		||||
    xr[3] = xr[3] * xr[3];
 | 
			
		||||
 | 
			
		||||
    LatticeReal xrsq(grid);
 | 
			
		||||
 | 
			
		||||
    // D. Set A = XC;
 | 
			
		||||
    // E. Let d  = X'+A;
 | 
			
		||||
    xrsq = xr[2] + xr[1] * xr[3];
 | 
			
		||||
 | 
			
		||||
    d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
 | 
			
		||||
 | 
			
		||||
    // F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
    LatticeReal thresh(grid);
 | 
			
		||||
    thresh = 1.0 - d * 0.5;
 | 
			
		||||
    xrsq = xr[0] * xr[0];
 | 
			
		||||
    LatticeInteger ione(grid);
 | 
			
		||||
    ione = 1;
 | 
			
		||||
    LatticeInteger izero(grid);
 | 
			
		||||
    izero = Zero();
 | 
			
		||||
 | 
			
		||||
    newlyAccepted = where(xrsq < thresh, ione, izero);
 | 
			
		||||
    Accepted = where(newlyAccepted, newlyAccepted, Accepted);
 | 
			
		||||
    Accepted = where(wheremask, Accepted, izero);
 | 
			
		||||
 | 
			
		||||
    // FIXME need an iSum for integer to avoid overload on return type??
 | 
			
		||||
    rtmp = where(Accepted, rones, rzeros);
 | 
			
		||||
    numAccepted = sum(rtmp);
 | 
			
		||||
 | 
			
		||||
    hit++;
 | 
			
		||||
 | 
			
		||||
  } while ((numAccepted < numSites) && (hit < nheatbath));
 | 
			
		||||
 | 
			
		||||
  // G. Set a0 = 1 - d;
 | 
			
		||||
  a[0] = Zero();
 | 
			
		||||
  a[0] = where(wheremask, 1.0 - d, a[0]);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  LatticeReal a123mag(grid);
 | 
			
		||||
  a123mag = sqrt(abs(1.0 - a[0] * a[0]));
 | 
			
		||||
 | 
			
		||||
  LatticeReal cos_theta(grid);
 | 
			
		||||
  LatticeReal sin_theta(grid);
 | 
			
		||||
  LatticeReal phi(grid);
 | 
			
		||||
 | 
			
		||||
  random(pRNG, phi);
 | 
			
		||||
  phi = phi * twopi;  // uniform in [0,2pi]
 | 
			
		||||
  random(pRNG, cos_theta);
 | 
			
		||||
  cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1]
 | 
			
		||||
  sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
 | 
			
		||||
 | 
			
		||||
  a[1] = a123mag * sin_theta * cos(phi);
 | 
			
		||||
  a[2] = a123mag * sin_theta * sin(phi);
 | 
			
		||||
  a[3] = a123mag * cos_theta;
 | 
			
		||||
 | 
			
		||||
  ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
 | 
			
		||||
       toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
 | 
			
		||||
 | 
			
		||||
  b = 1.0;
 | 
			
		||||
  b = where(wheremask, uinv * ua, b);
 | 
			
		||||
  su2Insert(b, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
  // mask the assignment back based on Accptance
 | 
			
		||||
  link = where(Accepted, V * link, link);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Debug Checks
 | 
			
		||||
  // SU2 check
 | 
			
		||||
  LatticeSU2Matrix check(grid);  // rotated matrix after hb
 | 
			
		||||
  u = Zero();
 | 
			
		||||
  check = ua * adj(ua) - 1.0;
 | 
			
		||||
  check = where(Accepted, check, u);
 | 
			
		||||
  assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  check = b * adj(b) - 1.0;
 | 
			
		||||
  check = where(Accepted, check, u);
 | 
			
		||||
  assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix Vcheck(grid);
 | 
			
		||||
  Vcheck = Zero();
 | 
			
		||||
  Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
 | 
			
		||||
  //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
 | 
			
		||||
  assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  // Verify the link stays in SU(3)
 | 
			
		||||
  //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
 | 
			
		||||
  Vcheck = link * adj(link) - 1.0;
 | 
			
		||||
  assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static void testGenerators(GroupName::SU) {
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  Matrix tb;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
            << "Fundamental - Checking trace ta tb is 0.5 delta_ab"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    for (int b = 0; b < AdjointDimension; b++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      generator(b, tb);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
      std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
      if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
    std::cout << GridLogMessage << a << " " << std::endl;
 | 
			
		||||
    assert(abs(tr) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <int N, class vtype>
 | 
			
		||||
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
 | 
			
		||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype>
 | 
			
		||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype, int N>
 | 
			
		||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(arg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename LatticeMatrixType>
 | 
			
		||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
 | 
			
		||||
  out = Ta(in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Fundamental rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
template<typename Fundamental,typename GaugeMat>
 | 
			
		||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
 | 
			
		||||
  GridBase *grid = ferm._grid;
 | 
			
		||||
  conformable(grid,g._grid);
 | 
			
		||||
  ferm = g*ferm;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  GridBase *grid = Umu.Grid();
 | 
			
		||||
  conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
  typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
  typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
    U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  GridBase *grid = g.Grid();
 | 
			
		||||
  typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  LieRandomize(pRNG,g,1.0);
 | 
			
		||||
  GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
}
 | 
			
		||||
@@ -51,6 +51,10 @@ public:
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > >  LatticeAdjVector;
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
@@ -58,8 +62,8 @@ public:
 | 
			
		||||
    // returns i(T_Adj)^index necessary for the projectors
 | 
			
		||||
    // see definitions above
 | 
			
		||||
    iAdjTa = Zero();
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
 | 
			
		||||
    typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
 | 
			
		||||
    Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
 | 
			
		||||
    iSUnMatrix<cplx> tmp;
 | 
			
		||||
 | 
			
		||||
    // FIXME not very efficient to get all the generators everytime
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
 | 
			
		||||
@@ -67,8 +71,7 @@ public:
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
 | 
			
		||||
      for (int b = 0; b < (ncolour * ncolour - 1); b++) {
 | 
			
		||||
        typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
 | 
			
		||||
	  2.0 * tmp * ta[b];  // 2.0 from the normalization
 | 
			
		||||
        iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b];  // 2.0 from the normalization
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp1)));
 | 
			
		||||
        //iAdjTa()()(b, a) = iTr;
 | 
			
		||||
        iAdjTa()()(a, b) = iTr;
 | 
			
		||||
@@ -134,8 +137,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      generator(a, iTa);
 | 
			
		||||
      LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
      pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,273 +0,0 @@
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// * Two index representation generators
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation for the fundamental generators:
 | 
			
		||||
//   trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   base for NxN two index (anti-symmetric) matrices
 | 
			
		||||
//   normalized to 1 (d_ij is the kroenecker delta)
 | 
			
		||||
//
 | 
			
		||||
//   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
 | 
			
		||||
//
 | 
			
		||||
//   Then the generators are written as
 | 
			
		||||
//
 | 
			
		||||
//   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
 | 
			
		||||
//   tr[e^(lk)e^(ij)^dag T_a] )  //
 | 
			
		||||
//   
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Authors: David Preti, Guido Cossu
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_UTIL_SUN2INDEX_H
 | 
			
		||||
#define QCD_UTIL_SUN2INDEX_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
 | 
			
		||||
 | 
			
		||||
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
class SU_TwoIndex : public SU<ncolour> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour * (ncolour + S) / 2;
 | 
			
		||||
  static const int NumGenerators = SU<ncolour>::AdjointDimension;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
 | 
			
		||||
  typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
 | 
			
		||||
  typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexField;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexFieldD;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iSUnMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iSUnMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void base(int Index, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
 | 
			
		||||
    assert(Index < NumGenerators);
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
 | 
			
		||||
    // for the linearisation of the 2 indexes 
 | 
			
		||||
    static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
 | 
			
		||||
    static bool filled = false;
 | 
			
		||||
    if (!filled) {
 | 
			
		||||
      int counter = 0;
 | 
			
		||||
      for (int i = 1; i < ncolour; i++) {
 | 
			
		||||
        for (int j = 0; j < i; j++) {
 | 
			
		||||
          a[counter][0] = i;
 | 
			
		||||
          a[counter][1] = j;
 | 
			
		||||
          counter++;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      filled = true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (Index < ncolour * (ncolour - 1) / 2) {
 | 
			
		||||
      baseOffDiagonal(a[Index][0], a[Index][1], eij);
 | 
			
		||||
    } else {
 | 
			
		||||
      baseDiagonal(Index, eij);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    eij()()(Index - ncolour * (ncolour - 1) / 2,
 | 
			
		||||
            Index - ncolour * (ncolour - 1) / 2) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < ncolour; k++)
 | 
			
		||||
      for (int l = 0; l < ncolour; l++)
 | 
			
		||||
        eij()()(l, k) = delta(i, k) * delta(j, l) +
 | 
			
		||||
	  S * delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printBase(void) {
 | 
			
		||||
    for (int gen = 0; gen < Dimension; gen++) {
 | 
			
		||||
      Matrix tmp;
 | 
			
		||||
      base(gen, tmp);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << tmp << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
 | 
			
		||||
								ncolour * ncolour - 1);
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
 | 
			
		||||
    typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
 | 
			
		||||
    i2indTa = Zero();
 | 
			
		||||
    
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++)
 | 
			
		||||
      SU<ncolour>::generator(a, ta[a]);
 | 
			
		||||
    
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
 | 
			
		||||
      for (int b = 0; b < Dimension; b++) {
 | 
			
		||||
        typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
 | 
			
		||||
	  tmp * eij[b]; 
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp1)));
 | 
			
		||||
        i2indTa()()(a, b) = iTr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
 | 
			
		||||
      TIMatrix i2indTa;
 | 
			
		||||
      generator(gen, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << i2indTa << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    TIMatrix i2indTa, i2indTb;
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(trace(i2indTa)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      for (int b = 0; b < ncolour * ncolour - 1; b++) {
 | 
			
		||||
        generator(a, i2indTa);
 | 
			
		||||
        generator(b, i2indTb);
 | 
			
		||||
 | 
			
		||||
        // generator returns iTa, so we need a minus sign here
 | 
			
		||||
        Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
 | 
			
		||||
        std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void TwoIndexLieAlgebraMatrix(
 | 
			
		||||
				       const typename SU<ncolour>::LatticeAlgebraVector &h,
 | 
			
		||||
				       LatticeTwoIndexMatrix &out, Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeTwoIndexMatrix la(grid);
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      la = peekColour(h, a) * i2indTa;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= scale;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components 
 | 
			
		||||
  // of a lattice matrix ( of dimension ncol*ncol -1 )
 | 
			
		||||
  static void projectOnAlgebra(
 | 
			
		||||
			       typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
			       const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
    Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
 | 
			
		||||
    // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      auto tmp = real(trace(i2indTa * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // a projector that keeps the generators stored to avoid the overhead of
 | 
			
		||||
  // recomputing them
 | 
			
		||||
  static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
                        const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    // to store the generators
 | 
			
		||||
    static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1); 
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    static bool precalculated = false;
 | 
			
		||||
    if (!precalculated) {
 | 
			
		||||
      precalculated = true;
 | 
			
		||||
      for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Real coefficient =
 | 
			
		||||
      -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization
 | 
			
		||||
    // of the trace in the two index rep
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Some useful type names
 | 
			
		||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
 | 
			
		||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										317
									
								
								Grid/qcd/utils/Sp2n.impl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										317
									
								
								Grid/qcd/utils/Sp2n.impl.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,317 @@
 | 
			
		||||
// This file is #included into the body of the class template definition of
 | 
			
		||||
// GaugeGroup. So, image there to be
 | 
			
		||||
//
 | 
			
		||||
// template <int ncolour, class group_name>
 | 
			
		||||
// class GaugeGroup {
 | 
			
		||||
//
 | 
			
		||||
// around it.
 | 
			
		||||
//
 | 
			
		||||
// Please note that the unconventional file extension makes sure that it
 | 
			
		||||
// doesn't get found by the scripts/filelist during bootstrapping.
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
 | 
			
		||||
 | 
			
		||||
// Sp(2N) has N(2N+1) = 2N^2+N generators
 | 
			
		||||
//
 | 
			
		||||
// normalise the generators such that
 | 
			
		||||
// Trace ( Ta Tb) = 1/2 delta_ab
 | 
			
		||||
//
 | 
			
		||||
// N generators in the cartan, 2N^2 off
 | 
			
		||||
// off diagonal:
 | 
			
		||||
//     there are 6 types named a,b,c,d and w,z
 | 
			
		||||
//     abcd are N(N-1)/2 each while wz are N each
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
 | 
			
		||||
  // map lie index into type of generators: diagonal, abcd type, wz type
 | 
			
		||||
 | 
			
		||||
  const int nsp = ncolour/2;
 | 
			
		||||
  int diagIndex;
 | 
			
		||||
  int aIndex, bIndex, cIndex, dIndex;
 | 
			
		||||
  int wIndex, zIndex;  // a,b,c,d are N(N-1)/2 and w,z are N
 | 
			
		||||
  const int mod = nsp * (nsp - 1) * 0.5;
 | 
			
		||||
  const int offdiag =
 | 
			
		||||
      2 * nsp * nsp;  // number of generators not in the cartan subalgebra
 | 
			
		||||
  const int wmod = 4 * mod;
 | 
			
		||||
  const int zmod = wmod + nsp;
 | 
			
		||||
  if (lieIndex >= offdiag) {
 | 
			
		||||
    diagIndex = lieIndex - offdiag;  // 0, ... ,N-1
 | 
			
		||||
    // std::cout << GridLogMessage << "diag type " << std::endl;
 | 
			
		||||
    generatorDiagtype(diagIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= wmod) && (lieIndex < zmod)) {
 | 
			
		||||
    // std::cout << GridLogMessage << "w type " << std::endl;
 | 
			
		||||
    wIndex = lieIndex - wmod;  // 0, ... ,N-1
 | 
			
		||||
    generatorWtype(wIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
 | 
			
		||||
    // std::cout << GridLogMessage << "z type " << std::endl;
 | 
			
		||||
    // std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
 | 
			
		||||
    // std::cout << GridLogMessage << "z mod " << zmod << std::endl;
 | 
			
		||||
    zIndex = lieIndex - zmod;  // 0, ... ,N-1
 | 
			
		||||
    generatorZtype(zIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if (lieIndex < mod) {  // atype 0, ... , N(N-1)/2=mod
 | 
			
		||||
    // std::cout << GridLogMessage << "a type " << std::endl;
 | 
			
		||||
    aIndex = lieIndex;
 | 
			
		||||
    // std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
 | 
			
		||||
    generatorAtype(aIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= mod) && lieIndex < 2 * mod) {  // btype mod, ... , 2mod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "b type " << std::endl;
 | 
			
		||||
    bIndex = lieIndex - mod;
 | 
			
		||||
    generatorBtype(bIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= 2 * mod) &&
 | 
			
		||||
      lieIndex < 3 * mod) {  // ctype 2mod, ... , 3mod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "c type " << std::endl;
 | 
			
		||||
    cIndex = lieIndex - 2 * mod;
 | 
			
		||||
    generatorCtype(cIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= 3 * mod) &&
 | 
			
		||||
      lieIndex < wmod) {  // ctype 3mod, ... , 4mod-1 = wmod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "d type " << std::endl;
 | 
			
		||||
    dIndex = lieIndex - 3 * mod;
 | 
			
		||||
    generatorDtype(dIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}  // end of generator
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;
 | 
			
		||||
 | 
			
		||||
  ta()()(diagIndex, diagIndex) = nrm;
 | 
			
		||||
  ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
 | 
			
		||||
  // with i<j and i=0,...,N-2
 | 
			
		||||
  // follows that j=i+1, ... , N
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
 | 
			
		||||
  su2SubGroupIndex(i1, i2, aIndex);
 | 
			
		||||
  ta()()(i1, i2) = 1;
 | 
			
		||||
  ta()()(i2, i1) = 1;
 | 
			
		||||
  ta()()(i1 + nsp, i2 + nsp) = -1;
 | 
			
		||||
  ta()()(i2 + nsp, i1 + nsp) = -1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
 | 
			
		||||
  // with i<j and i=0,...,N-2
 | 
			
		||||
  // follows that j=i+1, ... , N-1
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, bIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2) = i;
 | 
			
		||||
  ta()()(i2, i1) = -i;
 | 
			
		||||
  ta()()(i1 + nsp, i2 + nsp) = i;
 | 
			
		||||
  ta()()(i2 + nsp, i1 + nsp) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, cIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2 + nsp) = 1;
 | 
			
		||||
  ta()()(i2, i1 + nsp) = 1;
 | 
			
		||||
  ta()()(i1 + nsp, i2) = 1;
 | 
			
		||||
  ta()()(i2 + nsp, i1) = 1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i /  2 sqrt(2)
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, dIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2 + nsp) = i;
 | 
			
		||||
  ta()()(i2, i1 + nsp) = i;
 | 
			
		||||
  ta()()(i1 + nsp, i2) = -i;
 | 
			
		||||
  ta()()(i2 + nsp, i1) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i+N) =  ta(i+N,i) = 1/2
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;  // check
 | 
			
		||||
 | 
			
		||||
  ta()()(wIndex, wIndex + nsp) = 1;
 | 
			
		||||
  ta()()(wIndex + nsp, wIndex) = 1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i+N) = - ta(i+N,i) = i/2
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;  // check
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  ta()()(zIndex, zIndex + nsp) = i;
 | 
			
		||||
  ta()()(zIndex + nsp, zIndex) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
  int spare = su2_index;
 | 
			
		||||
  for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
 | 
			
		||||
    spare = spare - (nsp - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
  }
 | 
			
		||||
  i2 = i1 + 1 + spare;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void testGenerators(GroupName::Sp) {
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  Matrix tb;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
            << "Fundamental - Checking trace ta tb is 0.5 delta_ab "
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    for (int b = 0; b < AlgebraDimension; b++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      generator(b, tb);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
      std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
      if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(abs(tr) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int N>
 | 
			
		||||
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
 | 
			
		||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype>
 | 
			
		||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype, int N>
 | 
			
		||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(arg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename LatticeMatrixType>   
 | 
			
		||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
 | 
			
		||||
  out = SpTa(in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static void Omega(LatticeColourMatrixD &in) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  LatticeColourMatrixD OmegaLatt(in.Grid());
 | 
			
		||||
  LatticeColourMatrixD identity(in.Grid());
 | 
			
		||||
  ColourMatrix Omega;
 | 
			
		||||
 | 
			
		||||
  OmegaLatt = Zero();
 | 
			
		||||
  Omega = Zero();
 | 
			
		||||
  identity = 1.;
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < nsp; i++) {
 | 
			
		||||
    Omega()()(i, nsp + i) = 1.;
 | 
			
		||||
    Omega()()(nsp + i, i) = -1;
 | 
			
		||||
  }
 | 
			
		||||
  OmegaLatt = OmegaLatt + (identity * Omega);
 | 
			
		||||
  in = OmegaLatt;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_Sp, class vtype, int N>
 | 
			
		||||
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
    
 | 
			
		||||
  iScalar<iScalar<iMatrix<vtype, N> > > Omega;
 | 
			
		||||
  Omega = Zero();
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < nsp; i++) {
 | 
			
		||||
    Omega()()(i, nsp + i) = 1.;
 | 
			
		||||
    Omega()()(nsp + i, i) = -1;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  in = Omega;
 | 
			
		||||
}
 | 
			
		||||
@@ -8,9 +8,9 @@
 | 
			
		||||
#include <Grid/qcd/utils/ScalarObjs.h>
 | 
			
		||||
 | 
			
		||||
// Include representations
 | 
			
		||||
#include <Grid/qcd/utils/SUn.h>
 | 
			
		||||
#include <Grid/qcd/utils/GaugeGroup.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUnAdjoint.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUnTwoIndex.h>
 | 
			
		||||
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
 | 
			
		||||
 | 
			
		||||
// All-to-all contraction kernels that touch the 
 | 
			
		||||
// internal lattice structure
 | 
			
		||||
 
 | 
			
		||||
@@ -290,7 +290,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
*/
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // the sum over all staples on each site
 | 
			
		||||
  // the sum over all nu-oriented staples for nu != mu on each site
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
 | 
			
		||||
@@ -300,6 +300,10 @@ public:
 | 
			
		||||
    for (int d = 0; d < Nd; d++) {
 | 
			
		||||
      U[d] = PeekIndex<LorentzIndex>(Umu, d);
 | 
			
		||||
    }
 | 
			
		||||
    Staple(staple, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
    staple = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int nu = 0; nu < Nd; nu++) {
 | 
			
		||||
@@ -335,6 +339,202 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////
 | 
			
		||||
  //Staples for each direction mu, summed over nu != mu
 | 
			
		||||
  //staple: output staples for each mu (Nd)
 | 
			
		||||
  //U: link array (Nd)
 | 
			
		||||
  /////////////
 | 
			
		||||
  static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
 | 
			
		||||
    assert(staple.size() == Nd); assert(U.size() == Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
    std::unique_ptr<GeneralLocalStencil> stencil;
 | 
			
		||||
    size_t nshift;
 | 
			
		||||
 | 
			
		||||
    void generateStencil(GridBase* padded_grid){
 | 
			
		||||
      double t0 = usecond();
 | 
			
		||||
      
 | 
			
		||||
      //Generate shift arrays
 | 
			
		||||
      std::vector<Coordinate> shifts = this->getShifts();
 | 
			
		||||
      nshift = shifts.size();
 | 
			
		||||
      
 | 
			
		||||
      double t1 = usecond();
 | 
			
		||||
      //Generate local stencil
 | 
			
		||||
      stencil.reset(new GeneralLocalStencil(padded_grid,shifts));
 | 
			
		||||
      double t2 = usecond();
 | 
			
		||||
      std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;   
 | 
			
		||||
    }
 | 
			
		||||
  public:
 | 
			
		||||
    //Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly
 | 
			
		||||
    const GeneralLocalStencil & getStencil(const PaddedCell &pcell){
 | 
			
		||||
      assert(pcell.depth >= this->paddingDepth());
 | 
			
		||||
      if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back());
 | 
			
		||||
      return *stencil;
 | 
			
		||||
    }
 | 
			
		||||
    size_t Nshift() const{ return nshift; }
 | 
			
		||||
    
 | 
			
		||||
    virtual std::vector<Coordinate> getShifts() const = 0;
 | 
			
		||||
    virtual int paddingDepth() const = 0; //padding depth required
 | 
			
		||||
    
 | 
			
		||||
    virtual ~WilsonLoopPaddedStencilWorkspace(){}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces
 | 
			
		||||
  class WilsonLoopPaddedWorkspace{
 | 
			
		||||
    std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk;
 | 
			
		||||
    std::unique_ptr<PaddedCell> pcell;
 | 
			
		||||
 | 
			
		||||
    void generatePcell(GridBase* unpadded_grid){
 | 
			
		||||
      assert(stencil_wk.size());
 | 
			
		||||
      int max_depth = 0;
 | 
			
		||||
      for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth());
 | 
			
		||||
      
 | 
			
		||||
      pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid)));
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  public:
 | 
			
		||||
    //Add a stencil definition. This should be done before the first call to retrieve a stencil object.
 | 
			
		||||
    //Takes ownership of the pointer
 | 
			
		||||
    void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){
 | 
			
		||||
      assert(!pcell);
 | 
			
		||||
      stencil_wk.push_back(stencil);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){
 | 
			
		||||
      if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
 | 
			
		||||
      return stencil_wk[stencil_idx]->getStencil(*pcell);
 | 
			
		||||
    }      
 | 
			
		||||
    const PaddedCell & getPaddedCell(GridBase* unpadded_grid){
 | 
			
		||||
      if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
 | 
			
		||||
      return *pcell;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ~WilsonLoopPaddedWorkspace(){
 | 
			
		||||
      for(auto &s : stencil_wk) delete s;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    std::vector<Coordinate> getShifts() const override{
 | 
			
		||||
      std::vector<Coordinate> shifts;
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	  if(nu != mu){
 | 
			
		||||
	    Coordinate shift_0(Nd,0);
 | 
			
		||||
	    Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
 | 
			
		||||
	    Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
 | 
			
		||||
	    Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
 | 
			
		||||
	    Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
 | 
			
		||||
      
 | 
			
		||||
	    //U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
 | 
			
		||||
	    shifts.push_back(shift_0);
 | 
			
		||||
	    shifts.push_back(shift_nu);
 | 
			
		||||
	    shifts.push_back(shift_mu);
 | 
			
		||||
      
 | 
			
		||||
	    //U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(shift_mnu);
 | 
			
		||||
	    shifts.push_back(shift_mnu);
 | 
			
		||||
	    shifts.push_back(shift_mnu_pmu);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      return shifts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int paddingDepth() const override{ return 1; }
 | 
			
		||||
  }; 
 | 
			
		||||
 | 
			
		||||
  //Padded cell implementation of the staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
 | 
			
		||||
    StaplePaddedAllWorkspace wk;
 | 
			
		||||
    StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Padded cell implementation of the staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  //gStencil: the precomputed generalized local stencil for the staple
 | 
			
		||||
  static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
    assert(U_padded.size() == Nd); assert(staple.size() == Nd);
 | 
			
		||||
    assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
 | 
			
		||||
    assert(Cell.depth >= 1);
 | 
			
		||||
    GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
 | 
			
		||||
 | 
			
		||||
    int shift_mu_off = gStencil._npoints/Nd;
 | 
			
		||||
    
 | 
			
		||||
    //Open views to padded gauge links and keep open over mu loop
 | 
			
		||||
    typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
 | 
			
		||||
    size_t vsize = Nd*sizeof(GaugeViewType);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
 | 
			
		||||
    acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
 | 
			
		||||
    
 | 
			
		||||
    GaugeMat gStaple(ggrid);
 | 
			
		||||
 | 
			
		||||
    int outer_off = 0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View(AcceleratorRead);
 | 
			
		||||
	
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
	    stencil_ss = Zero();
 | 
			
		||||
	    int off = outer_off;
 | 
			
		||||
	    
 | 
			
		||||
	    for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	      if(nu != mu){	  
 | 
			
		||||
		GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
      
 | 
			
		||||
		stencil_ss = stencil_ss + U2 * U1 * U0;
 | 
			
		||||
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U2 * U1 * U0;
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
		
 | 
			
		||||
	    coalescedWrite(gStaple_v[ss],stencil_ss);
 | 
			
		||||
	  }
 | 
			
		||||
	  );
 | 
			
		||||
      } //ensure views are all closed!
 | 
			
		||||
      
 | 
			
		||||
      staple[mu] = Cell.Extract(gStaple);
 | 
			
		||||
      outer_off += shift_mu_off;
 | 
			
		||||
    }//mu loop
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
 | 
			
		||||
    free(Ug_dirs_v_host);
 | 
			
		||||
    acceleratorFreeDevice(Ug_dirs_v);
 | 
			
		||||
    
 | 
			
		||||
    double t1=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // the sum over all staples on each site in direction mu,nu, upper part
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
@@ -707,18 +907,14 @@ public:
 | 
			
		||||
  // the sum over all staples on each site
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
 | 
			
		||||
    U2 = U * Cshift(U, mu, 1);
 | 
			
		||||
    U2 = U * Gimpl::CshiftLink(U, mu, 1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Hop by two optimisation strategy does not work nicely with Gparity. (could
 | 
			
		||||
  // do,
 | 
			
		||||
  // but need to track two deep where cross boundary and apply a conjugation).
 | 
			
		||||
  // Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
 | 
			
		||||
  // so .
 | 
			
		||||
  // Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
 | 
			
		||||
                                  std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
  static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
 | 
			
		||||
                                  const std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
 | 
			
		||||
    Stap = Zero();
 | 
			
		||||
 | 
			
		||||
@@ -732,9 +928,9 @@ public:
 | 
			
		||||
 | 
			
		||||
        // Up staple    ___ ___
 | 
			
		||||
        //             |       |
 | 
			
		||||
        tmp = Cshift(adj(U[nu]), nu, -1);
 | 
			
		||||
        tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1);
 | 
			
		||||
        tmp = adj(U2[mu]) * tmp;
 | 
			
		||||
        tmp = Cshift(tmp, mu, -2);
 | 
			
		||||
        tmp = Gimpl::CshiftLink(tmp, mu, -2);
 | 
			
		||||
 | 
			
		||||
        Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
 | 
			
		||||
 | 
			
		||||
@@ -742,14 +938,14 @@ public:
 | 
			
		||||
        //             |___ ___|
 | 
			
		||||
        //
 | 
			
		||||
        tmp = adj(U2[mu]) * U[nu];
 | 
			
		||||
        Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
 | 
			
		||||
        Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2));
 | 
			
		||||
 | 
			
		||||
        //              ___ ___
 | 
			
		||||
        //             |    ___|
 | 
			
		||||
        //             |___ ___|
 | 
			
		||||
        //
 | 
			
		||||
 | 
			
		||||
        Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
 | 
			
		||||
 | 
			
		||||
        //              ___ ___
 | 
			
		||||
        //             |___    |
 | 
			
		||||
@@ -758,7 +954,7 @@ public:
 | 
			
		||||
 | 
			
		||||
        //  tmp= Staple2x1* Cshift(U[mu],mu,-2);
 | 
			
		||||
        //  Stap+= Cshift(tmp,mu,1) ;
 | 
			
		||||
        Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1);
 | 
			
		||||
        ;
 | 
			
		||||
 | 
			
		||||
        //       --
 | 
			
		||||
@@ -766,10 +962,10 @@ public:
 | 
			
		||||
        //
 | 
			
		||||
        //      |  |
 | 
			
		||||
 | 
			
		||||
        tmp = Cshift(adj(U2[nu]), nu, -2);
 | 
			
		||||
        tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2);
 | 
			
		||||
        tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
 | 
			
		||||
        tmp = U2[nu] * Cshift(tmp, nu, 2);
 | 
			
		||||
        Stap += Cshift(tmp, mu, 1);
 | 
			
		||||
        tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(tmp, mu, 1);
 | 
			
		||||
 | 
			
		||||
        //      |  |
 | 
			
		||||
        //
 | 
			
		||||
@@ -778,25 +974,12 @@ public:
 | 
			
		||||
 | 
			
		||||
        tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
 | 
			
		||||
        tmp = adj(U2[nu]) * tmp;
 | 
			
		||||
        tmp = Cshift(tmp, nu, -2);
 | 
			
		||||
        Stap += Cshift(tmp, mu, 1);
 | 
			
		||||
        tmp = Gimpl::CshiftLink(tmp, nu, -2);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(tmp, mu, 1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
    RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
  static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
 | 
			
		||||
                         std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
 | 
			
		||||
                         int mu) {
 | 
			
		||||
    if (Gimpl::isPeriodicGaugeField()) {
 | 
			
		||||
      RectStapleOptimised(Stap, U2, U, mu);
 | 
			
		||||
    } else {
 | 
			
		||||
      RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
 | 
			
		||||
                                    int mu) {
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
@@ -895,6 +1078,288 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
    RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
  static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
 | 
			
		||||
                         std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
 | 
			
		||||
                         int mu) {
 | 
			
		||||
    RectStapleOptimised(Stap, U2, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the rectangular staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
 | 
			
		||||
    assert(Stap.size() == Nd); assert(U.size() == Nd);
 | 
			
		||||
    std::vector<GaugeMat> U2(Nd,U[0].Grid());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    std::vector<Coordinate> getShifts() const override{
 | 
			
		||||
      std::vector<Coordinate> shifts;
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++){
 | 
			
		||||
	for (int nu = 0; nu < Nd; nu++) {
 | 
			
		||||
	  if (nu != mu) {
 | 
			
		||||
	    auto genShift = [&](int mushift,int nushift){
 | 
			
		||||
	      Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
 | 
			
		||||
	    };
 | 
			
		||||
 | 
			
		||||
	    //tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
 | 
			
		||||
	    shifts.push_back(genShift(0,0));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+2,0));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+2,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(-1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
 | 
			
		||||
	    shifts.push_back(genShift(0,0));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(0,+2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-2));
 | 
			
		||||
	    shifts.push_back(genShift(0,-2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      return shifts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int paddingDepth() const override{ return 2; }
 | 
			
		||||
  }; 
 | 
			
		||||
 | 
			
		||||
  //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
 | 
			
		||||
    RectStaplePaddedAllWorkspace wk;
 | 
			
		||||
    RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  //gStencil: the stencil
 | 
			
		||||
  static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
    assert(U_padded.size() == Nd); assert(staple.size() == Nd);
 | 
			
		||||
    assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
 | 
			
		||||
    assert(Cell.depth >= 2);
 | 
			
		||||
    GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
 | 
			
		||||
 | 
			
		||||
    size_t nshift = gStencil._npoints;
 | 
			
		||||
    int mu_off_delta = nshift / Nd;
 | 
			
		||||
    
 | 
			
		||||
    //Open views to padded gauge links and keep open over mu loop
 | 
			
		||||
    typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
 | 
			
		||||
    size_t vsize = Nd*sizeof(GaugeViewType);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
 | 
			
		||||
    acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
 | 
			
		||||
 | 
			
		||||
    GaugeMat gStaple(ggrid); //temp staple object on padded grid
 | 
			
		||||
 | 
			
		||||
    int offset = 0;
 | 
			
		||||
    for(int mu=0; mu<Nd; mu++){
 | 
			
		||||
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View(AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
	    stencil_ss = Zero();
 | 
			
		||||
	    int s=offset;
 | 
			
		||||
	    for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	      if(nu != mu){
 | 
			
		||||
		//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
 | 
			
		||||
		GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
	    
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;   
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;   
 | 
			
		||||
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
	    coalescedWrite(gStaple_v[ss],stencil_ss);
 | 
			
		||||
	  }
 | 
			
		||||
	  );
 | 
			
		||||
	offset += mu_off_delta;
 | 
			
		||||
      }//kernel/view scope
 | 
			
		||||
 | 
			
		||||
      staple[mu] = Cell.Extract(gStaple);    
 | 
			
		||||
    }//mu loop
 | 
			
		||||
  
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
 | 
			
		||||
    free(Ug_dirs_v_host);
 | 
			
		||||
    acceleratorFreeDevice(Ug_dirs_v);
 | 
			
		||||
    
 | 
			
		||||
    double t1 = usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //A workspace for reusing the PaddedCell and GeneralLocalStencil objects
 | 
			
		||||
  class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    StapleAndRectStapleAllWorkspace(){
 | 
			
		||||
      this->addStencil(new StaplePaddedAllWorkspace);
 | 
			
		||||
      this->addStencil(new RectStaplePaddedAllWorkspace);
 | 
			
		||||
    }
 | 
			
		||||
  };     
 | 
			
		||||
    
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the 1x1 and 1x2 staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //RectStap: Array of rectangular staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
 | 
			
		||||
    StapleAndRectStapleAllWorkspace wk;
 | 
			
		||||
    StapleAndRectStapleAll(Stap,RectStap,U,wk);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the 1x1 and 1x2 staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //RectStap: Array of rectangular staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  //wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){
 | 
			
		||||
#if 0
 | 
			
		||||
    StapleAll(Stap, U);
 | 
			
		||||
    RectStapleAll(RectStap, U);
 | 
			
		||||
#else
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
 | 
			
		||||
    GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid());
 | 
			
		||||
    const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid);
 | 
			
		||||
        
 | 
			
		||||
    CshiftImplGauge<Gimpl> cshift_impl;
 | 
			
		||||
    std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
 | 
			
		||||
    double t1 = usecond();
 | 
			
		||||
    StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) );
 | 
			
		||||
    double t2 = usecond();
 | 
			
		||||
    RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid));
 | 
			
		||||
    double t3 = usecond();
 | 
			
		||||
    std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // Wilson loop of size (R1, R2), oriented in mu,nu plane
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -1130,6 +1130,14 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Fixme need coalesced read gpermute
 | 
			
		||||
template<class vobj> void gpermute(vobj & inout,int perm){
 | 
			
		||||
  vobj tmp=inout;
 | 
			
		||||
  if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
 | 
			
		||||
  if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
 | 
			
		||||
  if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
 | 
			
		||||
  if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -46,7 +46,7 @@ class GeneralLocalStencilView {
 | 
			
		||||
  accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) { 
 | 
			
		||||
    return & this->_entries_p[point+this->_npoints*osite]; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void ViewClose(void){};
 | 
			
		||||
};
 | 
			
		||||
////////////////////////////////////////
 | 
			
		||||
// The Stencil Class itself
 | 
			
		||||
@@ -61,7 +61,7 @@ protected:
 | 
			
		||||
public: 
 | 
			
		||||
  GridBase *Grid(void) const { return _grid; }
 | 
			
		||||
 | 
			
		||||
  View_type View(void) const {
 | 
			
		||||
  View_type View(int mode) const {
 | 
			
		||||
    View_type accessor(*( (View_type *) this));
 | 
			
		||||
    return accessor;
 | 
			
		||||
  }
 | 
			
		||||
@@ -79,60 +79,60 @@ public:
 | 
			
		||||
    this->_entries.resize(npoints* osites);
 | 
			
		||||
    this->_entries_p = &_entries[0];
 | 
			
		||||
 | 
			
		||||
    thread_for(site, osites, {
 | 
			
		||||
	Coordinate Coor;
 | 
			
		||||
	Coordinate NbrCoor;
 | 
			
		||||
 | 
			
		||||
    Coordinate Coor;
 | 
			
		||||
    Coordinate NbrCoor;
 | 
			
		||||
    for(Integer site=0;site<osites;site++){
 | 
			
		||||
      for(Integer ii=0;ii<npoints;ii++){
 | 
			
		||||
	Integer lex = site*npoints+ii;
 | 
			
		||||
	GeneralStencilEntry SE;
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	// Outer index of neighbour Offset calculation
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	grid->oCoorFromOindex(Coor,site);
 | 
			
		||||
	for(int d=0;d<Coor.size();d++){
 | 
			
		||||
	  int rd = grid->_rdimensions[d];
 | 
			
		||||
	  NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
 | 
			
		||||
	for(Integer ii=0;ii<npoints;ii++){
 | 
			
		||||
	  Integer lex = site*npoints+ii;
 | 
			
		||||
	  GeneralStencilEntry SE;
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  // Outer index of neighbour Offset calculation
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  grid->oCoorFromOindex(Coor,site);
 | 
			
		||||
	  for(int d=0;d<Coor.size();d++){
 | 
			
		||||
	    int rd = grid->_rdimensions[d];
 | 
			
		||||
	    NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
 | 
			
		||||
	  }
 | 
			
		||||
	  SE._offset      = grid->oIndexReduced(NbrCoor);
 | 
			
		||||
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  // Inner index permute calculation
 | 
			
		||||
	  // Simpler version using icoor calculation
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  SE._permute =0;
 | 
			
		||||
	  for(int d=0;d<Coor.size();d++){
 | 
			
		||||
 | 
			
		||||
	    int fd = grid->_fdimensions[d];
 | 
			
		||||
	    int rd = grid->_rdimensions[d];
 | 
			
		||||
	    int ly = grid->_simd_layout[d];
 | 
			
		||||
 | 
			
		||||
	    assert((ly==1)||(ly==2));
 | 
			
		||||
 | 
			
		||||
	    int shift = (shifts[ii][d]+fd)%fd;  // make it strictly positive 0.. L-1
 | 
			
		||||
	    int x = Coor[d];                // x in [0... rd-1] as an oSite 
 | 
			
		||||
 | 
			
		||||
	    int permute_dim  = grid->PermuteDim(d);
 | 
			
		||||
	    int permute_slice=0;
 | 
			
		||||
	    if(permute_dim){    
 | 
			
		||||
	      int  num = shift%rd; // Slice within dest osite cell of slice zero
 | 
			
		||||
	      int wrap = shift/rd; // Number of osite local volume cells crossed through
 | 
			
		||||
	      // x+num < rd dictates whether we are in same permute state as slice 0
 | 
			
		||||
	      if ( x< rd-num ) permute_slice=wrap;
 | 
			
		||||
	      else             permute_slice=(wrap+1)%ly;
 | 
			
		||||
	    }
 | 
			
		||||
	    if ( permute_slice ) {
 | 
			
		||||
	      int ptype       =grid->PermuteType(d);
 | 
			
		||||
	      uint8_t mask    =0x1<<ptype;
 | 
			
		||||
	      SE._permute    |= mask;
 | 
			
		||||
	    }
 | 
			
		||||
	  }	
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  // Store in look up table
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  this->_entries[lex] = SE;
 | 
			
		||||
	}
 | 
			
		||||
	SE._offset      = grid->oIndexReduced(NbrCoor);
 | 
			
		||||
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	// Inner index permute calculation
 | 
			
		||||
	// Simpler version using icoor calculation
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	SE._permute =0;
 | 
			
		||||
	for(int d=0;d<Coor.size();d++){
 | 
			
		||||
 | 
			
		||||
	  int fd = grid->_fdimensions[d];
 | 
			
		||||
	  int rd = grid->_rdimensions[d];
 | 
			
		||||
	  int ly = grid->_simd_layout[d];
 | 
			
		||||
 | 
			
		||||
	  assert((ly==1)||(ly==2));
 | 
			
		||||
 | 
			
		||||
	  int shift = (shifts[ii][d]+fd)%fd;  // make it strictly positive 0.. L-1
 | 
			
		||||
	  int x = Coor[d];                // x in [0... rd-1] as an oSite 
 | 
			
		||||
 | 
			
		||||
	  int permute_dim  = grid->PermuteDim(d);
 | 
			
		||||
	  int permute_slice=0;
 | 
			
		||||
	  if(permute_dim){    
 | 
			
		||||
	    int  num = shift%rd; // Slice within dest osite cell of slice zero
 | 
			
		||||
	    int wrap = shift/rd; // Number of osite local volume cells crossed through
 | 
			
		||||
                                  // x+num < rd dictates whether we are in same permute state as slice 0
 | 
			
		||||
	    if ( x< rd-num ) permute_slice=wrap;
 | 
			
		||||
	    else             permute_slice=(wrap+1)%ly;
 | 
			
		||||
	  }
 | 
			
		||||
	  if ( permute_slice ) {
 | 
			
		||||
	    int ptype       =grid->PermuteType(d);
 | 
			
		||||
	    uint8_t mask    =0x1<<ptype;
 | 
			
		||||
	    SE._permute    |= mask;
 | 
			
		||||
	  }
 | 
			
		||||
	}	
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	// Store in look up table
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	this->_entries[lex] = SE;
 | 
			
		||||
      }
 | 
			
		||||
    }      
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -32,6 +32,7 @@
 | 
			
		||||
 | 
			
		||||
#include <Grid/stencil/SimpleCompressor.h>   // subdir aggregate
 | 
			
		||||
#include <Grid/stencil/Lebesgue.h>   // subdir aggregate
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Must not lose sight that goal is to be able to construct really efficient
 | 
			
		||||
@@ -705,7 +706,7 @@ public:
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  /// Introduce a block structure and switch off comms on boundaries
 | 
			
		||||
  void DirichletBlock(const Coordinate &dirichlet_block)
 | 
			
		||||
 
 | 
			
		||||
@@ -73,6 +73,16 @@ vobj coalescedReadPermute(const vobj & __restrict__ vec,int ptype,int doperm,int
 | 
			
		||||
    return vec;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
//'perm_mask' acts as a bitmask
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
vobj coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=0)
 | 
			
		||||
{
 | 
			
		||||
  auto obj = vec, tmp = vec;
 | 
			
		||||
  for (int d=0;d<nd;d++)
 | 
			
		||||
    if (perm_mask & (0x1 << d)) { permute(obj,tmp,d); tmp=obj;}
 | 
			
		||||
  return obj;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
 | 
			
		||||
{
 | 
			
		||||
@@ -83,7 +93,7 @@ void coalescedWriteNonTemporal(vobj & __restrict__ vec,const vobj & __restrict__
 | 
			
		||||
{
 | 
			
		||||
  vstream(vec, extracted);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
#else //==GRID_SIMT
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#ifndef GRID_SYCL
 | 
			
		||||
@@ -166,6 +176,14 @@ typename vobj::scalar_object coalescedReadPermute(const vobj & __restrict__ vec,
 | 
			
		||||
  return extractLane(plane,vec);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
typename vobj::scalar_object coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=acceleratorSIMTlane(vobj::Nsimd()))
 | 
			
		||||
{
 | 
			
		||||
  int plane = lane;
 | 
			
		||||
  for (int d=0;d<nd;d++)
 | 
			
		||||
    plane = (perm_mask & (0x1 << d)) ? plane ^ (vobj::Nsimd() >> (d + 1)) : plane;
 | 
			
		||||
  return extractLane(plane,vec);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
 | 
			
		||||
{
 | 
			
		||||
  insertLane(lane,vec,extracted);
 | 
			
		||||
 
 | 
			
		||||
@@ -66,13 +66,61 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
  ret._internal = SpTa(r._internal);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype,N> ret;
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    ret._internal[i] = SpTa(r._internal[i]);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  // Generalises Ta to Sp2n
 | 
			
		||||
  // Applies the following projections
 | 
			
		||||
  // P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
 | 
			
		||||
  // where the ordering matters
 | 
			
		||||
  // P_{traceless} subtracts the trace
 | 
			
		||||
  // P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
 | 
			
		||||
  // P_{antihermitian} does in-adj(in) / 2
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  double factor = (1.0/(double)N);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  nrm = 0.5;
 | 
			
		||||
    
 | 
			
		||||
  ret = arg - (trace(arg)*factor);
 | 
			
		||||
    
 | 
			
		||||
  for(int c1=0;c1<N/2;c1++)
 | 
			
		||||
  {
 | 
			
		||||
      for(int c2=0;c2<N/2;c2++)
 | 
			
		||||
      {
 | 
			
		||||
          ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
 | 
			
		||||
          ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
 | 
			
		||||
      }
 | 
			
		||||
      for(int c2=N/2;c2<N;c2++)
 | 
			
		||||
      {
 | 
			
		||||
          ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);  //  reconstructs lower blocks
 | 
			
		||||
          ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]);   //  from upper blocks
 | 
			
		||||
      }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  ret = (ret - adj(ret))*0.5;
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////// 
 | 
			
		||||
// ProjectOnGroup function for scalar, vector, matrix 
 | 
			
		||||
// Projects on orthogonal, unitary group
 | 
			
		||||
/////////////////////////////////////////////// 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
@@ -90,10 +138,12 @@ template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(c
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> 
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iMatrix<vtype,N>::scalar_type scalar;
 | 
			
		||||
  // need a check for the group type?
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  vtype inner;
 | 
			
		||||
  scalar one(1.0);
 | 
			
		||||
  for(int c1=0;c1<N;c1++){
 | 
			
		||||
 | 
			
		||||
    // Normalises row c1
 | 
			
		||||
@@ -102,7 +152,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    nrm = one/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
      
 | 
			
		||||
@@ -127,7 +177,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    nrm = one/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
  }
 | 
			
		||||
@@ -135,6 +185,85 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// re-do for sp2n
 | 
			
		||||
 | 
			
		||||
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
 | 
			
		||||
// It is defined in gauge impl types
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
  ret._internal = ProjectOnSpGroup(r._internal);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype,N> ret;
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// int N is 2n in Sp(2n)
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  // need a check for the group type?
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  vtype inner;
 | 
			
		||||
  
 | 
			
		||||
  for(int c1=0;c1<N/2;c1++)
 | 
			
		||||
  {
 | 
			
		||||
      
 | 
			
		||||
    for (int b=0; b<c1; b++)                  // remove the b-rows from U_c1
 | 
			
		||||
    {
 | 
			
		||||
      decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
 | 
			
		||||
      decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
 | 
			
		||||
      zeroit(pr);
 | 
			
		||||
      zeroit(prn);
 | 
			
		||||
          
 | 
			
		||||
      for(int c=0; c<N; c++)
 | 
			
		||||
      {
 | 
			
		||||
        pr += conjugate(ret._internal[c1][c])*ret._internal[b][c];        // <U_c1 | U_b >
 | 
			
		||||
        prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c];   // <U_c1 | U_{b+N} >
 | 
			
		||||
      }
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
      for(int c=0; c<N; c++)
 | 
			
		||||
      {
 | 
			
		||||
        ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] );    //  U_c1 -= (  <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N}  )
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    zeroit(inner);
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    for(int c2=0;c2<N/2;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]);          // down right in the new matrix = (up-left)* of the old matrix
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    for(int c2=N/2;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);;     // down left in the new matrix = -(up-right)* of the old
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -53,9 +53,8 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Specialisation: Cayley-Hamilton exponential for SU(3)
 | 
			
		||||
#ifndef GRID_ACCELERATED
 | 
			
		||||
#if 0
 | 
			
		||||
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr> 
 | 
			
		||||
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha  , Integer Nexp = DEFAULT_MAT_EXP )
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -137,6 +137,18 @@ inline void cuda_mem(void)
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda);	\
 | 
			
		||||
  }
 | 
			
		||||
#define prof_accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... )	\
 | 
			
		||||
  {									\
 | 
			
		||||
    int nt=acceleratorThreads();					\
 | 
			
		||||
    typedef uint64_t Iterator;						\
 | 
			
		||||
    auto lambda = [=] accelerator					\
 | 
			
		||||
      (Iterator iter1,Iterator iter2,Iterator lane) mutable {		\
 | 
			
		||||
      __VA_ARGS__;							\
 | 
			
		||||
    };									\
 | 
			
		||||
    dim3 cu_threads(nsimd,acceleratorThreads(),1);			\
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    ProfileLambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define accelerator_for6dNB(iter1, num1,				\
 | 
			
		||||
                            iter2, num2,				\
 | 
			
		||||
@@ -157,6 +169,20 @@ inline void cuda_mem(void)
 | 
			
		||||
    Lambda6Apply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... )	\
 | 
			
		||||
  {									\
 | 
			
		||||
    int nt=acceleratorThreads();					\
 | 
			
		||||
    typedef uint64_t Iterator;						\
 | 
			
		||||
    auto lambda = [=] accelerator					\
 | 
			
		||||
      (Iterator iter1,Iterator iter2,Iterator lane) mutable {		\
 | 
			
		||||
      __VA_ARGS__;							\
 | 
			
		||||
    };									\
 | 
			
		||||
    dim3 cu_threads(nsimd,acceleratorThreads(),1);			\
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda);	\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
{
 | 
			
		||||
@@ -168,6 +194,17 @@ void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
    Lambda(x,y,z);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void ProfileLambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
{
 | 
			
		||||
  // Weird permute is to make lane coalesce for large blocks
 | 
			
		||||
  uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
 | 
			
		||||
  uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
 | 
			
		||||
  uint64_t z = threadIdx.x;
 | 
			
		||||
  if ( (x < num1) && (y<num2) && (z<num3) ) {
 | 
			
		||||
    Lambda(x,y,z);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
 | 
			
		||||
@@ -208,6 +245,7 @@ inline void *acceleratorAllocShared(size_t bytes)
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    ptr = (void *) NULL;
 | 
			
		||||
    printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
};
 | 
			
		||||
@@ -460,6 +498,9 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
// FIXME -- the non-blocking nature got broken March 30 2023 by PAB
 | 
			
		||||
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );  
 | 
			
		||||
#define prof_accelerator_for( iter1, num1, nsimd, ... ) \
 | 
			
		||||
  prof_accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );\
 | 
			
		||||
  accelerator_barrier(dummy);
 | 
			
		||||
 | 
			
		||||
#define accelerator_for( iter, num, nsimd, ... )		\
 | 
			
		||||
  accelerator_forNB(iter, num, nsimd, { __VA_ARGS__ } );	\
 | 
			
		||||
 
 | 
			
		||||
@@ -94,6 +94,13 @@ static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;
 | 
			
		||||
 | 
			
		||||
typedef AcceleratorVector<int,MaxDims> Coordinate;
 | 
			
		||||
 | 
			
		||||
template<class T,int _ndim>
 | 
			
		||||
inline bool operator==(const AcceleratorVector<T,_ndim> &v,const AcceleratorVector<T,_ndim> &w)
 | 
			
		||||
{
 | 
			
		||||
  if (v.size()!=w.size()) return false;
 | 
			
		||||
  for(int i=0;i<v.size();i++) if ( v[i]!=w[i] ) return false;
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
template<class T,int _ndim>
 | 
			
		||||
inline std::ostream & operator<<(std::ostream &os, const AcceleratorVector<T,_ndim> &v)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -8,7 +8,7 @@ namespace Grid{
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void CoorFromIndex (coor_t& coor,int index,const coor_t &dims){
 | 
			
		||||
    static accelerator_inline void CoorFromIndex (coor_t& coor,int64_t index,const coor_t &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
@@ -18,28 +18,45 @@ namespace Grid{
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int64_t &index,const coor_t &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
	index = index+stride*coor[d];
 | 
			
		||||
	index = index+(int64_t)stride*coor[d];
 | 
			
		||||
	stride=stride*dims[d];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int64_t index64;
 | 
			
		||||
      IndexFromCoor(coor,index64,dims);
 | 
			
		||||
      assert(index64<2*1024*1024*1024LL);
 | 
			
		||||
      index = (int) index64;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int64_t &index,const coor_t &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
      for(int d=nd-1;d>=0;d--){
 | 
			
		||||
	index = index+stride*coor[d];
 | 
			
		||||
	index = index+(int64_t)stride*coor[d];
 | 
			
		||||
	stride=stride*dims[d];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void CoorFromIndexReversed (coor_t& coor,int index,const coor_t &dims){
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int64_t index64;
 | 
			
		||||
      IndexFromCoorReversed(coor,index64,dims);
 | 
			
		||||
      if ( index64>=2*1024*1024*1024LL ){
 | 
			
		||||
	std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(index64<2*1024*1024*1024LL);
 | 
			
		||||
      index = (int) index64;
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void CoorFromIndexReversed (coor_t& coor,int64_t index,const coor_t &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=nd-1;d>=0;d--){
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										224
									
								
								HMC/FTHMC2p1f.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										224
									
								
								HMC/FTHMC2p1f.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,224 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
 | 
			
		||||
#include <Grid/qcd/smearing/JacobianAction.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << std::setprecision(12);
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
   // Typedefs to simplify notation
 | 
			
		||||
  typedef WilsonImplR FermionImplPolicy;
 | 
			
		||||
  typedef MobiusFermionD FermionAction;
 | 
			
		||||
  typedef typename FermionAction::FermionField FermionField;
 | 
			
		||||
 | 
			
		||||
  typedef Grid::XmlReader       Serialiser;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  //  typedef GenericHMCRunner<LeapFrog> HMCWrapper;
 | 
			
		||||
  //  MD.name    = std::string("Leap Frog");
 | 
			
		||||
  //  typedef GenericHMCRunner<ForceGradient> HMCWrapper;
 | 
			
		||||
  //  MD.name    = std::string("Force Gradient");
 | 
			
		||||
  typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = 12;
 | 
			
		||||
  MD.trajL   = 1.0;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = 0;
 | 
			
		||||
  HMCparams.Trajectories     = 200;
 | 
			
		||||
  HMCparams.NoMetropolisUntil=  20;
 | 
			
		||||
  // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
 | 
			
		||||
  HMCparams.StartingType     =std::string("HotStart");
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_EODWF_lat";
 | 
			
		||||
  CPparams.smeared_prefix = "ckpoint_EODWF_lat_smr";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_EODWF_rng";
 | 
			
		||||
  CPparams.saveInterval  = 1;
 | 
			
		||||
  CPparams.saveSmeared   = true;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  // Construct observables
 | 
			
		||||
  // here there is too much indirection
 | 
			
		||||
  typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 16;
 | 
			
		||||
  Real beta         = 2.13;
 | 
			
		||||
  Real light_mass   = 0.01;
 | 
			
		||||
  Real strange_mass = 0.04;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD b   = 1.0; // Scale factor two
 | 
			
		||||
  RealD c   = 0.0;
 | 
			
		||||
 | 
			
		||||
  OneFlavourRationalParams OFRp;
 | 
			
		||||
  OFRp.lo       = 1.0e-2;
 | 
			
		||||
  OFRp.hi       = 64;
 | 
			
		||||
  OFRp.MaxIter  = 10000;
 | 
			
		||||
  OFRp.tolerance= 1.0e-10;
 | 
			
		||||
  OFRp.degree   = 14;
 | 
			
		||||
  OFRp.precision= 40;
 | 
			
		||||
 | 
			
		||||
  std::vector<Real> hasenbusch({ 0.1 });
 | 
			
		||||
 | 
			
		||||
  auto GridPtr   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGrid     = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
 | 
			
		||||
  auto FrbGrid   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
 | 
			
		||||
 | 
			
		||||
  IwasakiGaugeActionR GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeField U(GridPtr);
 | 
			
		||||
  LatticeGaugeField Uhot(GridPtr);
 | 
			
		||||
 | 
			
		||||
  // These lines are unecessary if BC are all periodic
 | 
			
		||||
  std::vector<Complex> boundary = {1,1,1,-1};
 | 
			
		||||
  FermionAction::ImplParams Params(boundary);
 | 
			
		||||
 | 
			
		||||
  double StoppingCondition = 1e-10;
 | 
			
		||||
  double MaxCGIterations = 30000;
 | 
			
		||||
  ConjugateGradient<FermionField>  CG(StoppingCondition,MaxCGIterations);
 | 
			
		||||
 | 
			
		||||
  bool ApplySmearing = true;
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1);
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(2);
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(4);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
 | 
			
		||||
  MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass,      pv_mass, -1.0, 1, M5, b, c);
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> 
 | 
			
		||||
    EOFA(Strange_Op_L, Strange_Op_R, 
 | 
			
		||||
	 CG,
 | 
			
		||||
	 CG, CG,
 | 
			
		||||
	 CG, CG, 
 | 
			
		||||
	 OFRp, false);
 | 
			
		||||
 | 
			
		||||
  EOFA.is_smeared = ApplySmearing;
 | 
			
		||||
  Level1.push_back(&EOFA);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // up down action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  std::vector<Real> light_den;
 | 
			
		||||
  std::vector<Real> light_num;
 | 
			
		||||
 | 
			
		||||
  int n_hasenbusch = hasenbusch.size();
 | 
			
		||||
  light_den.push_back(light_mass);
 | 
			
		||||
  for(int h=0;h<n_hasenbusch;h++){
 | 
			
		||||
    light_den.push_back(hasenbusch[h]);
 | 
			
		||||
    light_num.push_back(hasenbusch[h]);
 | 
			
		||||
  }
 | 
			
		||||
  light_num.push_back(pv_mass);
 | 
			
		||||
 | 
			
		||||
  std::vector<FermionAction *> Numerators;
 | 
			
		||||
  std::vector<FermionAction *> Denominators;
 | 
			
		||||
  std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
 | 
			
		||||
 | 
			
		||||
  for(int h=0;h<n_hasenbusch+1;h++){
 | 
			
		||||
    std::cout << GridLogMessage << " 2f quotient Action  "<< light_num[h] << " / " << light_den[h]<< std::endl;
 | 
			
		||||
    Numerators.push_back  (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
 | 
			
		||||
    Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
 | 
			
		||||
    Quotients.push_back   (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int h=0;h<n_hasenbusch+1;h++){
 | 
			
		||||
    Quotients[h]->is_smeared = ApplySmearing;
 | 
			
		||||
    Level1.push_back(Quotients[h]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // lnDetJacobianAction
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  double rho = 0.1;  // smearing parameter
 | 
			
		||||
  int Nsmear = 1;    // number of smearing levels - must be multiple of 2Nd
 | 
			
		||||
  int Nstep  = 8*Nsmear;    // number of smearing levels - must be multiple of 2Nd
 | 
			
		||||
  Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
 | 
			
		||||
  SmearedConfigurationMasked<HMCWrapper::ImplPolicy> SmearingPolicy(GridPtr, Nstep, Stout);
 | 
			
		||||
  JacobianAction<HMCWrapper::ImplPolicy> Jacobian(&SmearingPolicy);
 | 
			
		||||
  if( ApplySmearing ) Level2.push_back(&Jacobian);
 | 
			
		||||
  std::cout << GridLogMessage << " Built the Jacobian "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  //  GaugeAction.is_smeared = ApplySmearing;
 | 
			
		||||
  GaugeAction.is_smeared = true;
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " ************************************************"<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete -- NO FERMIONS FOR NOW -- FIXME"<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " ************************************************"<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage <<  std::endl;
 | 
			
		||||
  std::cout << GridLogMessage <<  std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Running the FT HMC "<< std::endl;
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
 | 
			
		||||
  TheHMC.Run(SmearingPolicy); // for smearing
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
} // main
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -146,6 +146,8 @@ NAMESPACE_END(Grid);
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  using namespace Grid;
 | 
			
		||||
 | 
			
		||||
  std::cout << " Grid Initialise "<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
  CartesianCommunicator::BarrierWorld();
 | 
			
		||||
@@ -170,24 +172,24 @@ int main(int argc, char **argv) {
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  //  typedef GenericHMCRunner<LeapFrog> HMCWrapper;
 | 
			
		||||
  //  MD.name    = std::string("Leap Frog");
 | 
			
		||||
  typedef GenericHMCRunner<ForceGradient> HMCWrapper;
 | 
			
		||||
  MD.name    = std::string("Force Gradient");
 | 
			
		||||
  //typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
 | 
			
		||||
  // MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  //  typedef GenericHMCRunner<ForceGradient> HMCWrapper;
 | 
			
		||||
  //  MD.name    = std::string("Force Gradient");
 | 
			
		||||
  typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  // TrajL = 2
 | 
			
		||||
  // 4/2 => 0.6 dH
 | 
			
		||||
  // 3/3 => 0.8 dH .. depth 3, slower
 | 
			
		||||
  //MD.MDsteps =  4;
 | 
			
		||||
  MD.MDsteps =  12;
 | 
			
		||||
  MD.MDsteps =  14;
 | 
			
		||||
  MD.trajL   = 0.5;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = 1077;
 | 
			
		||||
  HMCparams.Trajectories     = 1;
 | 
			
		||||
  HMCparams.Trajectories     = 20;
 | 
			
		||||
  HMCparams.NoMetropolisUntil=  0;
 | 
			
		||||
  // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
 | 
			
		||||
  //  HMCparams.StartingType     =std::string("ColdStart");
 | 
			
		||||
  HMCparams.StartingType     =std::string("CheckpointStart");
 | 
			
		||||
  HMCparams.StartingType     =std::string("ColdStart");
 | 
			
		||||
  //  HMCparams.StartingType     =std::string("CheckpointStart");
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
@@ -223,7 +225,7 @@ int main(int argc, char **argv) {
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  //  std::vector<Real> hasenbusch({ 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass });
 | 
			
		||||
  //  std::vector<Real> hasenbusch({ light_mass, 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass });
 | 
			
		||||
  std::vector<Real> hasenbusch({ 0.005, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // Updated
 | 
			
		||||
  std::vector<Real> hasenbusch({ 0.005, 0.0145, 0.045, 0.108, 0.25, 0.51 }); // Updated
 | 
			
		||||
  //  std::vector<Real> hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , 0.75 , pv_mass });
 | 
			
		||||
 | 
			
		||||
  auto GridPtr   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
@@ -275,10 +277,10 @@ int main(int argc, char **argv) {
 | 
			
		||||
 | 
			
		||||
  //  double StoppingCondition = 1e-14;
 | 
			
		||||
  //  double MDStoppingCondition = 1e-9;
 | 
			
		||||
  double StoppingCondition = 1e-8;
 | 
			
		||||
  double MDStoppingCondition = 1e-7;
 | 
			
		||||
  double MDStoppingConditionLoose = 1e-7;
 | 
			
		||||
  double MDStoppingConditionStrange = 1e-7;
 | 
			
		||||
  double StoppingCondition = 1e-9;
 | 
			
		||||
  double MDStoppingCondition = 1e-8;
 | 
			
		||||
  double MDStoppingConditionLoose = 1e-8;
 | 
			
		||||
  double MDStoppingConditionStrange = 1e-8;
 | 
			
		||||
  double MaxCGIterations = 300000;
 | 
			
		||||
  ConjugateGradient<FermionField>  CG(StoppingCondition,MaxCGIterations);
 | 
			
		||||
  ConjugateGradient<FermionField>  MDCG(MDStoppingCondition,MaxCGIterations);
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										24
									
								
								configure.ac
									
									
									
									
									
								
							
							
						
						
									
										24
									
								
								configure.ac
									
									
									
									
									
								
							@@ -41,7 +41,7 @@ AC_PROG_RANLIB
 | 
			
		||||
 | 
			
		||||
############### Get compiler informations
 | 
			
		||||
AC_LANG([C++])
 | 
			
		||||
AX_CXX_COMPILE_STDCXX_11([noext],[mandatory])
 | 
			
		||||
AX_CXX_COMPILE_STDCXX(14,noext,mandatory)
 | 
			
		||||
AX_COMPILER_VENDOR
 | 
			
		||||
AC_DEFINE_UNQUOTED([CXX_COMP_VENDOR],["$ax_cv_cxx_compiler_vendor"],
 | 
			
		||||
      [vendor of C++ compiler that will compile the code])
 | 
			
		||||
@@ -191,10 +191,28 @@ case ${ac_Nc} in
 | 
			
		||||
        AC_DEFINE([Config_Nc],[4],[Gauge group Nc]);;
 | 
			
		||||
    5)
 | 
			
		||||
        AC_DEFINE([Config_Nc],[5],[Gauge group Nc]);;
 | 
			
		||||
    8)
 | 
			
		||||
        AC_DEFINE([Config_Nc],[8],[Gauge group Nc]);;
 | 
			
		||||
    *)
 | 
			
		||||
      AC_MSG_ERROR(["Unsupport gauge group choice Nc = ${ac_Nc}"]);;
 | 
			
		||||
esac
 | 
			
		||||
 | 
			
		||||
############### Symplectic group
 | 
			
		||||
AC_ARG_ENABLE([Sp],
 | 
			
		||||
    [AC_HELP_STRING([--enable-Sp=yes|no], [enable gauge group Sp2n])],
 | 
			
		||||
    [ac_ENABLE_SP=${enable_Sp}], [ac_ENABLE_SP=no])
 | 
			
		||||
 | 
			
		||||
AM_CONDITIONAL(BUILD_SP, [ test "${ac_ENABLE_SP}X" == "yesX" ])
 | 
			
		||||
 | 
			
		||||
case ${ac_ENABLE_SP} in
 | 
			
		||||
   yes)
 | 
			
		||||
        AC_DEFINE([Sp2n_config],[1],[gauge group Sp2n], [have_sp2n=true]);;
 | 
			
		||||
   no)
 | 
			
		||||
        AC_DEFINE([Sp2n_config],[0],[gauge group SUn], [have_sp2n=false]);;
 | 
			
		||||
    *)
 | 
			
		||||
        AC_MSG_ERROR(["--enable-Sp is either yes or no"]);;
 | 
			
		||||
esac
 | 
			
		||||
 | 
			
		||||
############### FP16 conversions
 | 
			
		||||
AC_ARG_ENABLE([sfw-fp16],
 | 
			
		||||
    [AS_HELP_STRING([--enable-sfw-fp16=yes|no],[enable software fp16 comms])],
 | 
			
		||||
@@ -737,7 +755,7 @@ case ${ac_TIMERS} in
 | 
			
		||||
esac
 | 
			
		||||
 | 
			
		||||
############### Chroma regression test
 | 
			
		||||
AC_ARG_ENABLE([chroma],[AS_HELP_STRING([--enable-chroma],[Expect chroma compiled under c++11 ])],ac_CHROMA=yes,ac_CHROMA=no)
 | 
			
		||||
AC_ARG_ENABLE([chroma],[AS_HELP_STRING([--enable-chroma],[Expect chroma compiled under c++14 ])],ac_CHROMA=yes,ac_CHROMA=no)
 | 
			
		||||
 | 
			
		||||
case ${ac_CHROMA} in
 | 
			
		||||
     yes|no)
 | 
			
		||||
@@ -819,6 +837,7 @@ FFTW                        : `if test "x$have_fftw" = xtrue; then echo yes; els
 | 
			
		||||
LIME (ILDG support)         : `if test "x$have_lime" = xtrue; then echo yes; else echo no; fi`
 | 
			
		||||
HDF5                        : `if test "x$have_hdf5" = xtrue; then echo yes; else echo no; fi`
 | 
			
		||||
build DOXYGEN documentation : `if test "$DX_FLAG_doc" = '1'; then echo yes; else echo no; fi`
 | 
			
		||||
Sp2n                        : ${ac_ENABLE_SP}
 | 
			
		||||
----- BUILD FLAGS -------------------------------------
 | 
			
		||||
CXXFLAGS:
 | 
			
		||||
`echo ${AM_CXXFLAGS} ${CXXFLAGS} | tr ' ' '\n' | sed 's/^-/    -/g'`
 | 
			
		||||
@@ -847,6 +866,7 @@ AC_CONFIG_FILES(tests/lanczos/Makefile)
 | 
			
		||||
AC_CONFIG_FILES(tests/smearing/Makefile)
 | 
			
		||||
AC_CONFIG_FILES(tests/qdpxx/Makefile)
 | 
			
		||||
AC_CONFIG_FILES(tests/testu01/Makefile)
 | 
			
		||||
AC_CONFIG_FILES(tests/sp2n/Makefile)
 | 
			
		||||
AC_CONFIG_FILES(benchmarks/Makefile)
 | 
			
		||||
AC_CONFIG_FILES(examples/Makefile)
 | 
			
		||||
AC_OUTPUT
 | 
			
		||||
 
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							@@ -10,9 +10,8 @@ For first time setup of the Xcode and Grid build environment on Mac OS, you will
 | 
			
		||||
 | 
			
		||||
1. Install Xcode and the Xcode command-line utilities
 | 
			
		||||
2. Set Grid environment variables
 | 
			
		||||
3. Install and build Open MPI ***optional***
 | 
			
		||||
4. Install and build Grid pre-requisites
 | 
			
		||||
5. Install, Configure and Build Grid
 | 
			
		||||
3. Install and build Grid pre-requisites
 | 
			
		||||
4. Install, Configure and Build Grid
 | 
			
		||||
 | 
			
		||||
Apple's [Xcode website][Xcode] is the go-to reference for 1, and the definitive reference for 4 and 5 is the [Grid Documentation][GridDoc].
 | 
			
		||||
 | 
			
		||||
@@ -92,60 +91,33 @@ launchctl setenv GridPkg /opt/local</string>
 | 
			
		||||
</plist>
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## 3. Install and build Open MPI -- ***optional***
 | 
			
		||||
 | 
			
		||||
Download the latest version of [Open MPI][OMPI] version 3.1 (I used 3.1.5) and build it like so:
 | 
			
		||||
 | 
			
		||||
[OMPI]: https://www.open-mpi.org/software/ompi/v3.1/
 | 
			
		||||
 | 
			
		||||
    ../configure CC=clang CXX=clang++ CXXFLAGS=-g --prefix=$GridPre/bin
 | 
			
		||||
    make -j 4 all install
 | 
			
		||||
 | 
			
		||||
***Note the `/bin` at the end of the prefix - this is required. As a quirk of the OpenMPI installer, `--prefix` must point to the `bin` subdirectory, with other files installed in `$GridPre/include`, `$GridPre/lib`, `$GridPre/share`, etc.***
 | 
			
		||||
 | 
			
		||||
Grid does not have any dependencies on fortran, however many standard scientific packages do, so you may wish to download GNU fortran (e.g. MacPorts ``gfortran`` package) and add the following to your configure invocation:
 | 
			
		||||
 | 
			
		||||
    F77=gfortran FC=gfortran
 | 
			
		||||
 | 
			
		||||
## 4. Install and build Grid pre-requisites
 | 
			
		||||
## 3. Install and build Grid pre-requisites
 | 
			
		||||
 | 
			
		||||
To simplify the installation of **Grid pre-requisites**, you can use your favourite package manager, e.g.:
 | 
			
		||||
 | 
			
		||||
### 1. [MacPorts][MacPorts]
 | 
			
		||||
### 3.1. [MacPorts][MacPorts]
 | 
			
		||||
 | 
			
		||||
[MacPorts]: https://www.macports.org "MacPorts package manager"
 | 
			
		||||
 | 
			
		||||
Install [MacPorts][MacPorts] if you haven't done so already, and then install packages with:
 | 
			
		||||
 | 
			
		||||
    sudo port install <portname>
 | 
			
		||||
    sudo port install openmpi git-flow-avh gmp hdf5 mpfr fftw-3-single lapack wget autoconf automake bison cmake gawk libomp
 | 
			
		||||
 | 
			
		||||
These are the `portname`s for mandatory Grid libraries:
 | 
			
		||||
On a Mac without GPUs:
 | 
			
		||||
 | 
			
		||||
* git-flow-avh
 | 
			
		||||
* gmp
 | 
			
		||||
* hdf5
 | 
			
		||||
* mpfr
 | 
			
		||||
    sudo port install OpenBLAS +native
 | 
			
		||||
 | 
			
		||||
and these are the `portname`s for optional Grid libraries:
 | 
			
		||||
To use `Gnu sha256sum`:
 | 
			
		||||
 | 
			
		||||
* fftw-3-single
 | 
			
		||||
* lapack
 | 
			
		||||
* doxygen
 | 
			
		||||
* OpenBLAS
 | 
			
		||||
    pushd /opt/local/bin; sudo ln -s gsha256sum sha256sum; popd 
 | 
			
		||||
 | 
			
		||||
***Please update this list with any packages I've missed! ... and double-check whether OpenBLAS is really for Grid. NB: lapack doesn't seem to work. Should it be scalapack?***
 | 
			
		||||
These `port`s are not strictly necessary, but they are helpful:
 | 
			
		||||
 | 
			
		||||
### 2. [Homebrew][Homebrew]
 | 
			
		||||
    sudo port install gnuplot gsl h5utils nasm rclone texinfo tree xorg-server
 | 
			
		||||
 | 
			
		||||
[Homebrew]: https://brew.sh "Homebrew package manager"
 | 
			
		||||
***Please update this list with any packages I've missed!***
 | 
			
		||||
 | 
			
		||||
Install [Homebrew][Homebrew] if you haven't done so already, and then install packages with:
 | 
			
		||||
 | 
			
		||||
    sudo brew install <packagename>
 | 
			
		||||
 | 
			
		||||
The same packages are available as from MacPorts.
 | 
			
		||||
 | 
			
		||||
### Install LIME ***optional***
 | 
			
		||||
#### Install LIME
 | 
			
		||||
 | 
			
		||||
There isn't currently a port for [C-LIME][C-LIME], so download the source and then build it:
 | 
			
		||||
 | 
			
		||||
@@ -154,9 +126,19 @@ There isn't currently a port for [C-LIME][C-LIME], so download the source and th
 | 
			
		||||
    ../configure CC=clang --prefix=$GridPre
 | 
			
		||||
    make -j 4 all install
 | 
			
		||||
 | 
			
		||||
## 5. Install, Configure and Build Grid
 | 
			
		||||
### 3.2. [Homebrew][Homebrew]
 | 
			
		||||
 | 
			
		||||
### 5.1 Install Grid
 | 
			
		||||
[Homebrew]: https://brew.sh "Homebrew package manager"
 | 
			
		||||
 | 
			
		||||
Install [Homebrew][Homebrew] if you haven't done so already, and then install packages with:
 | 
			
		||||
 | 
			
		||||
    sudo brew install <packagename>
 | 
			
		||||
 | 
			
		||||
I don't use Homebrew, so I'm not sure what the Brew package name equivalents are. ** Please update if you know **
 | 
			
		||||
 | 
			
		||||
## 4. Install, Configure and Build Grid
 | 
			
		||||
 | 
			
		||||
### 4.1 Install Grid
 | 
			
		||||
 | 
			
		||||
[Grid]: https://github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
@@ -174,7 +156,7 @@ or
 | 
			
		||||
 | 
			
		||||
depending on how many times you like to enter your password.
 | 
			
		||||
 | 
			
		||||
### 5.2 Configure Grid
 | 
			
		||||
### 4.2 Configure Grid
 | 
			
		||||
 | 
			
		||||
The Xcode build system supports multiple configurations for each project, by default: `Debug` and `Release`, but more configurations can be defined. We will create separate Grid build directories for each configuration, using the Grid **Autoconf** build system to make each configuration. NB: it is **not** necessary to run `make install` on them once they are built (IDE features such as *jump to definition* will work better of you don't).
 | 
			
		||||
 | 
			
		||||
@@ -198,7 +180,7 @@ Debug configuration with MPI:
 | 
			
		||||
 | 
			
		||||
    ../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=mpi-auto MPICXX=$GridPre/bin/mpicxx --prefix=$GridPre/MPIDebug
 | 
			
		||||
 | 
			
		||||
### 5.3 Build Grid
 | 
			
		||||
### 4.3 Build Grid
 | 
			
		||||
 | 
			
		||||
Each configuration must be built before they can be used. You can either:
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -2778,47 +2778,81 @@ and there are associated reconstruction routines for assembling four spinors fro
 | 
			
		||||
 | 
			
		||||
These ca
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
SU(N)
 | 
			
		||||
Gauge Group
 | 
			
		||||
--------
 | 
			
		||||
A generic Nc qcd/utils/GaugeGroup.h is provided. This defines a template class that can be specialised to different gauge groups::
 | 
			
		||||
 | 
			
		||||
A generic Nc qcd/utils/SUn.h is provided. This defines a template class::
 | 
			
		||||
  template <int ncolour, class group_name>
 | 
			
		||||
  class GaugeGroup {...}
 | 
			
		||||
 | 
			
		||||
  template <int ncolour> class SU ;
 | 
			
		||||
Supported groups are SU(N) and Sp(2N). The group can be specified through the GroupName namespace::
 | 
			
		||||
 | 
			
		||||
The most important external methods are::
 | 
			
		||||
  namespace GroupName {
 | 
			
		||||
  class SU {};
 | 
			
		||||
  class Sp {};
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
A simpler interface is achieved by aliasing the GaugeGroup class with a specific group::
 | 
			
		||||
 | 
			
		||||
  template <int ncolour>
 | 
			
		||||
  using SU = GaugeGroup<ncolour, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
  template <int ncolour>
 | 
			
		||||
  using Sp = GaugeGroup<ncolour, GroupName::Sp>;
 | 
			
		||||
  
 | 
			
		||||
Specific aliases are then defined::
 | 
			
		||||
 | 
			
		||||
  typedef SU<2> SU2;
 | 
			
		||||
  typedef SU<3> SU3;
 | 
			
		||||
  typedef SU<4> SU4;
 | 
			
		||||
  typedef SU<5> SU5;
 | 
			
		||||
  typedef Sp<2> Sp2;
 | 
			
		||||
  typedef Sp<4> Sp4;
 | 
			
		||||
  typedef Sp<6> Sp6;
 | 
			
		||||
  typedef Sp<8> Sp8;
 | 
			
		||||
 | 
			
		||||
Some methods are common to both gauge groups. Common external methods are::
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) ;
 | 
			
		||||
  template <class cplx>  static void generator(int lieIndex, iSUnMatrix<cplx> &ta) ;
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG, LatticeMatrix &out, Real scale = 1.0) ;
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) ;
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out);
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out);
 | 
			
		||||
  static void taProj( const LatticeMatrixType &in,  LatticeMatrixType &out);
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) ;
 | 
			
		||||
  static void printGenerators(void) ;
 | 
			
		||||
   
 | 
			
		||||
Whenever needed, a different implementation of these methods for the gauge groups is achieved by overloading. For example,::
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType> //  shared interface for the traceless-antihermitian projection
 | 
			
		||||
  static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
 | 
			
		||||
    taProj(in, out, group_name());
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <typename LatticeMatrixType> //  overloaded function to SU(N) simply perform Ta
 | 
			
		||||
  static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
 | 
			
		||||
    out = Ta(in);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <typename LatticeMatrixType> //  overloaded function to Sp(2N) must use a modified Ta function
 | 
			
		||||
  static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
 | 
			
		||||
    out = SpTa(in);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
Gauge Group: SU(N)
 | 
			
		||||
--------
 | 
			
		||||
The specialisation of GaugeGroup to SU(N), formally part of qcd/utils/GaugeGroup.h, is found in the file qcd/utils/SUn.impl
 | 
			
		||||
It contains methods that are only implemented for SU(N), and specialisations of shared methods to the special unitary group
 | 
			
		||||
 | 
			
		||||
Public methods are::
 | 
			
		||||
 | 
			
		||||
  static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG, RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
                               LatticeMatrix &link,
 | 
			
		||||
			       const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
			       int su2_subgroup, int nheatbath, LatticeInteger &wheremask);
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) ;
 | 
			
		||||
  static void GaugeTransform( GaugeField &Umu, GaugeMat &g)
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g);
 | 
			
		||||
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) ;
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out);
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out);
 | 
			
		||||
 | 
			
		||||
  static void taProj( const LatticeMatrixType &in,  LatticeMatrixType &out);
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) ;
 | 
			
		||||
 | 
			
		||||
  static int su2subgroups(void) ; // returns how many subgroups
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Specific instantiations are defined::
 | 
			
		||||
 | 
			
		||||
	 typedef SU<2> SU2;
 | 
			
		||||
	 typedef SU<3> SU3;
 | 
			
		||||
	 typedef SU<4> SU4;
 | 
			
		||||
	 typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
For example, Quenched QCD updating may be run as (tests/core/Test_quenched_update.cc)::
 | 
			
		||||
 | 
			
		||||
  for(int sweep=0;sweep<1000;sweep++){
 | 
			
		||||
@@ -2857,6 +2891,16 @@ For example, Quenched QCD updating may be run as (tests/core/Test_quenched_updat
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
Gauge Group: Sp(2N)
 | 
			
		||||
--------
 | 
			
		||||
The specialisation of GaugeGroup to Sp(2N), formally part of qcd/utils/GaugeGroup.h, is found in the file qcd/utils/Sp(2N).impl
 | 
			
		||||
It contains methods that are only implemented for Sp(2N), and specialisations of shared methods to the special unitary group
 | 
			
		||||
 | 
			
		||||
External methods are::
 | 
			
		||||
 | 
			
		||||
  static void Omega(LatticeColourMatrixD &in) // Symplectic matrix left invariant by Sp(2N)
 | 
			
		||||
 | 
			
		||||
Generation of Sp(2N) gauge fields is only supported via HMC.
 | 
			
		||||
 | 
			
		||||
Space time grids
 | 
			
		||||
----------------
 | 
			
		||||
 
 | 
			
		||||
@@ -15,6 +15,8 @@ STAG_FERMION_FILES=`  find . -name '*.cc' -path '*/instantiation/*' -path '*/ins
 | 
			
		||||
GP_FERMION_FILES=`    find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/Gparity*' `
 | 
			
		||||
ADJ_FERMION_FILES=`   find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonAdj*' `
 | 
			
		||||
TWOIND_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonTwoIndex*'`
 | 
			
		||||
SP_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/SpWilsonImpl*'`
 | 
			
		||||
SP_TWOIND_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/SpWilsonTwo*'`
 | 
			
		||||
 | 
			
		||||
HPPFILES=`find . -type f -name '*.hpp'`
 | 
			
		||||
echo HFILES=$HFILES $HPPFILES > Make.inc
 | 
			
		||||
@@ -27,13 +29,14 @@ echo STAG_FERMION_FILES=$STAG_FERMION_FILES   >> Make.inc
 | 
			
		||||
echo GP_FERMION_FILES=$GP_FERMION_FILES   >> Make.inc
 | 
			
		||||
echo ADJ_FERMION_FILES=$ADJ_FERMION_FILES   >> Make.inc
 | 
			
		||||
echo TWOIND_FERMION_FILES=$TWOIND_FERMION_FILES   >> Make.inc
 | 
			
		||||
echo SP_FERMION_FILES=$SP_FERMION_FILES >> Make.inc
 | 
			
		||||
echo SP_TWOIND_FERMION_FILES=$SP_TWOIND_FERMION_FILES >> Make.inc
 | 
			
		||||
 | 
			
		||||
# tests Make.inc
 | 
			
		||||
cd $home/tests
 | 
			
		||||
dirs=`find . -type d -not -path '*/\.*'`
 | 
			
		||||
for subdir in $dirs; do
 | 
			
		||||
    cd $home/tests/$subdir
 | 
			
		||||
    pwd
 | 
			
		||||
    TESTS=`ls T*.cc`
 | 
			
		||||
    TESTLIST=`echo ${TESTS} | sed s/.cc//g `
 | 
			
		||||
    PREF=`[ $subdir = '.' ] && echo noinst || echo EXTRA`
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										43
									
								
								systems/Frontier/benchmarks/bench2.slurm
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										43
									
								
								systems/Frontier/benchmarks/bench2.slurm
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,43 @@
 | 
			
		||||
#!/bin/bash -l
 | 
			
		||||
#SBATCH --job-name=bench
 | 
			
		||||
##SBATCH --partition=small-g
 | 
			
		||||
#SBATCH --nodes=2
 | 
			
		||||
#SBATCH --ntasks-per-node=8
 | 
			
		||||
#SBATCH --cpus-per-task=7
 | 
			
		||||
#SBATCH --gpus-per-node=8
 | 
			
		||||
#SBATCH --time=00:10:00
 | 
			
		||||
#SBATCH --account=phy157_dwf
 | 
			
		||||
#SBATCH --gpu-bind=none
 | 
			
		||||
#SBATCH --exclusive
 | 
			
		||||
#SBATCH --mem=0
 | 
			
		||||
 | 
			
		||||
cat << EOF > select_gpu
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
export GPU_MAP=(0 1 2 3 7 6 5 4)
 | 
			
		||||
export NUMA_MAP=(3 3 1 1 2 2 0 0)
 | 
			
		||||
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
 | 
			
		||||
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
 | 
			
		||||
export HIP_VISIBLE_DEVICES=\$GPU
 | 
			
		||||
unset ROCR_VISIBLE_DEVICES
 | 
			
		||||
echo RANK \$SLURM_LOCALID using GPU \$GPU    
 | 
			
		||||
exec numactl -m \$NUMA -N \$NUMA \$*
 | 
			
		||||
EOF
 | 
			
		||||
 | 
			
		||||
chmod +x ./select_gpu
 | 
			
		||||
 | 
			
		||||
root=$HOME/Frontier/Grid/systems/Frontier/
 | 
			
		||||
source ${root}/sourceme.sh
 | 
			
		||||
 | 
			
		||||
export OMP_NUM_THREADS=7
 | 
			
		||||
export MPICH_GPU_SUPPORT_ENABLED=1
 | 
			
		||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
 | 
			
		||||
 | 
			
		||||
for vol in 32.32.32.64
 | 
			
		||||
do
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol  > log.shm0.ov.$vol
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol  > log.shm1.ov.$vol
 | 
			
		||||
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol  > log.shm0.seq.$vol
 | 
			
		||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
 | 
			
		||||
done
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										23
									
								
								systems/Frontier/config-command
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								systems/Frontier/config-command
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,23 @@
 | 
			
		||||
CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
 | 
			
		||||
../../configure --enable-comms=mpi-auto \
 | 
			
		||||
--with-lime=$CLIME \
 | 
			
		||||
--enable-unified=no \
 | 
			
		||||
--enable-shm=nvlink \
 | 
			
		||||
--enable-tracing=timer \
 | 
			
		||||
--enable-accelerator=hip \
 | 
			
		||||
--enable-gen-simd-width=64 \
 | 
			
		||||
--disable-gparity \
 | 
			
		||||
--disable-fermion-reps \
 | 
			
		||||
--enable-simd=GPU \
 | 
			
		||||
--enable-accelerator-cshift \
 | 
			
		||||
--with-gmp=$OLCF_GMP_ROOT \
 | 
			
		||||
--with-fftw=$FFTW_DIR/.. \
 | 
			
		||||
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
 | 
			
		||||
--disable-fermion-reps \
 | 
			
		||||
CXX=hipcc MPICXX=mpicxx \
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -std=c++14 -I${MPICH_DIR}/include -L/lib64 " \
 | 
			
		||||
 LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 "
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								systems/Frontier/mpiwrapper.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										13
									
								
								systems/Frontier/mpiwrapper.sh
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
lrank=$SLURM_LOCALID
 | 
			
		||||
lgpu=(0 1 2 3 7 6 5 4)
 | 
			
		||||
 | 
			
		||||
export ROCR_VISIBLE_DEVICES=${lgpu[$lrank]}
 | 
			
		||||
 | 
			
		||||
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES "
 | 
			
		||||
 | 
			
		||||
$*
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								systems/Frontier/sourceme.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								systems/Frontier/sourceme.sh
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
 | 
			
		||||
spack load c-lime
 | 
			
		||||
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/sw/crusher/spack-envs/base/opt/cray-sles15-zen3/gcc-11.2.0/gperftools-2.9.1-72ubwtuc5wcz2meqltbfdb76epufgzo2/lib
 | 
			
		||||
module load emacs 
 | 
			
		||||
module load PrgEnv-gnu
 | 
			
		||||
module load rocm
 | 
			
		||||
module load cray-mpich/8.1.23
 | 
			
		||||
module load gmp
 | 
			
		||||
module load cray-fftw
 | 
			
		||||
module load craype-accel-amd-gfx90a
 | 
			
		||||
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
 | 
			
		||||
#Hack for lib
 | 
			
		||||
#export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
 | 
			
		||||
							
								
								
									
										9
									
								
								systems/Frontier/wrap.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										9
									
								
								systems/Frontier/wrap.sh
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,9 @@
 | 
			
		||||
#!/bin/sh
 | 
			
		||||
 | 
			
		||||
export HIP_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES
 | 
			
		||||
unset ROCR_VISIBLE_DEVICES
 | 
			
		||||
 | 
			
		||||
#rank=$SLURM_PROCID
 | 
			
		||||
#rocprof -d rocprof.$rank -o rocprof.$rank/results.rank$SLURM_PROCID.csv --sys-trace $@
 | 
			
		||||
 | 
			
		||||
$@
 | 
			
		||||
							
								
								
									
										44
									
								
								systems/Lumi/benchmarks/bench2.slurm
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										44
									
								
								systems/Lumi/benchmarks/bench2.slurm
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,44 @@
 | 
			
		||||
#!/bin/bash -l
 | 
			
		||||
#SBATCH --job-name=bench_lehner
 | 
			
		||||
#SBATCH --partition=small-g
 | 
			
		||||
#SBATCH --nodes=2
 | 
			
		||||
#SBATCH --ntasks-per-node=8
 | 
			
		||||
#SBATCH --cpus-per-task=7
 | 
			
		||||
#SBATCH --gpus-per-node=8
 | 
			
		||||
#SBATCH --time=00:10:00
 | 
			
		||||
#SBATCH --account=project_465000546
 | 
			
		||||
#SBATCH --gpu-bind=none
 | 
			
		||||
#SBATCH --exclusive
 | 
			
		||||
#SBATCH --mem=0
 | 
			
		||||
 | 
			
		||||
CPU_BIND="map_cpu:48,56,32,40,16,24,1,8"
 | 
			
		||||
echo $CPU_BIND
 | 
			
		||||
 | 
			
		||||
cat << EOF > select_gpu
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
export GPU_MAP=(0 1 2 3 4 5 6 7)
 | 
			
		||||
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
 | 
			
		||||
export HIP_VISIBLE_DEVICES=\$GPU
 | 
			
		||||
unset ROCR_VISIBLE_DEVICES
 | 
			
		||||
echo RANK \$SLURM_LOCALID using GPU \$GPU    
 | 
			
		||||
exec \$*
 | 
			
		||||
EOF
 | 
			
		||||
 | 
			
		||||
chmod +x ./select_gpu
 | 
			
		||||
 | 
			
		||||
root=/scratch/project_465000546/boylepet/Grid/systems/Lumi
 | 
			
		||||
source ${root}/sourceme.sh
 | 
			
		||||
 | 
			
		||||
export OMP_NUM_THREADS=7
 | 
			
		||||
export MPICH_GPU_SUPPORT_ENABLED=1
 | 
			
		||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
 | 
			
		||||
 | 
			
		||||
for vol in 16.16.16.64 32.32.32.64  32.32.32.128
 | 
			
		||||
do
 | 
			
		||||
srun --cpu-bind=${CPU_BIND} ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol  > log.shm0.ov.$vol
 | 
			
		||||
#srun --cpu-bind=${CPU_BIND} ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol  > log.shm1.ov.$vol
 | 
			
		||||
 | 
			
		||||
srun --cpu-bind=${CPU_BIND} ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol  > log.shm0.seq.$vol
 | 
			
		||||
#srun --cpu-bind=${CPU_BIND} ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
 | 
			
		||||
done
 | 
			
		||||
 | 
			
		||||
@@ -3,30 +3,28 @@ spack load gmp
 | 
			
		||||
spack load mpfr
 | 
			
		||||
CLIME=`spack find --paths c-lime | grep c-lime| cut -c 15-`
 | 
			
		||||
GMP=`spack find --paths gmp | grep gmp | cut -c 12-`
 | 
			
		||||
MPFR=`spack find --paths mpfr | grep mpfr | cut -c 12-`
 | 
			
		||||
echo clime $CLIME
 | 
			
		||||
echo gmp $GMP
 | 
			
		||||
echo mpfr $MPFR
 | 
			
		||||
MPFR=`spack find --paths mpfr | grep mpfr | cut -c 13-`
 | 
			
		||||
echo clime X$CLIME
 | 
			
		||||
echo gmp X$GMP
 | 
			
		||||
echo mpfr X$MPFR
 | 
			
		||||
 | 
			
		||||
../../configure --enable-comms=mpi-auto \
 | 
			
		||||
../../configure \
 | 
			
		||||
--enable-comms=mpi-auto \
 | 
			
		||||
--with-lime=$CLIME \
 | 
			
		||||
--enable-unified=no \
 | 
			
		||||
--enable-shm=nvlink \
 | 
			
		||||
--enable-tracing=timer \
 | 
			
		||||
--enable-accelerator=hip \
 | 
			
		||||
--enable-gen-simd-width=64 \
 | 
			
		||||
--enable-simd=GPU \
 | 
			
		||||
--disable-accelerator-cshift \
 | 
			
		||||
--with-gmp=$OLCF_GMP_ROOT \
 | 
			
		||||
--enable-accelerator-cshift \
 | 
			
		||||
--with-gmp=$GMP \
 | 
			
		||||
--with-mpfr=$MPFR \
 | 
			
		||||
--with-fftw=$FFTW_DIR/.. \
 | 
			
		||||
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
 | 
			
		||||
--disable-fermion-reps \
 | 
			
		||||
--disable-gparity \
 | 
			
		||||
CXX=hipcc MPICXX=mpicxx \
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -std=c++14 -I${MPICH_DIR}/include -L/lib64 --amdgpu-target=gfx90a" \
 | 
			
		||||
 LDFLAGS="-L/lib64 -L/opt/rocm-5.2.0/lib/ -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 --amdgpu-target=gfx90a "
 | 
			
		||||
  CXXFLAGS="-fPIC --offload-arch=gfx90a -I/opt/rocm/include/ -std=c++14 -I/opt/cray/pe/mpich/8.1.23/ofi/gnu/9.1/include" \
 | 
			
		||||
  LDFLAGS="-L/opt/cray/pe/mpich/8.1.23/ofi/gnu/9.1/lib -lmpi -L/opt/cray/pe/mpich/8.1.23/gtl/lib -lmpi_gtl_hsa -lamdhip64 -fopenmp" 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#--enable-simd=GPU-RRII \
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1 +1,5 @@
 | 
			
		||||
module load CrayEnv LUMI/22.12 partition/G  cray-fftw/3.3.10.1
 | 
			
		||||
source ~/spack/share/spack/setup-env.sh
 | 
			
		||||
module load CrayEnv LUMI/22.12 partition/G  cray-fftw/3.3.10.1 rocm
 | 
			
		||||
spack load c-lime
 | 
			
		||||
spack load gmp
 | 
			
		||||
spack load mpfr
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										53
									
								
								systems/OEM/README
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								systems/OEM/README
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,53 @@
 | 
			
		||||
1. Prerequisites:
 | 
			
		||||
===================
 | 
			
		||||
Make sure you have the latest Intel ipcx release loaded (via modules or similar)
 | 
			
		||||
Make sure you have SYCL aware MPICH or Intel MPI loaded (assumed as mpicxx)
 | 
			
		||||
 | 
			
		||||
2. Obtain Grid:
 | 
			
		||||
===================
 | 
			
		||||
 | 
			
		||||
bash$
 | 
			
		||||
git clone https://github.com/paboyle/Grid
 | 
			
		||||
cd Grid
 | 
			
		||||
./bootstrap.sh
 | 
			
		||||
cd systems/PVC
 | 
			
		||||
 | 
			
		||||
3. Build Grid:
 | 
			
		||||
===================
 | 
			
		||||
 | 
			
		||||
Here, configure command is stored in file config-command:
 | 
			
		||||
 | 
			
		||||
bash$
 | 
			
		||||
../../configure \
 | 
			
		||||
	--enable-simd=GPU \
 | 
			
		||||
	--enable-gen-simd-width=64 \
 | 
			
		||||
	--enable-comms=mpi-auto \
 | 
			
		||||
	--enable-accelerator-cshift \
 | 
			
		||||
	--disable-gparity \
 | 
			
		||||
	--disable-fermion-reps \
 | 
			
		||||
	--enable-shm=nvlink \
 | 
			
		||||
	--enable-accelerator=sycl \
 | 
			
		||||
	--enable-unified=no \
 | 
			
		||||
	MPICXX=mpicxx \
 | 
			
		||||
	CXX=icpx \
 | 
			
		||||
	LDFLAGS="-fiopenmp  -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader " \
 | 
			
		||||
	CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare "
 | 
			
		||||
 | 
			
		||||
make all
 | 
			
		||||
 | 
			
		||||
4. Run a benchmark:
 | 
			
		||||
===================
 | 
			
		||||
 | 
			
		||||
*** Assumes interactive access to node. ***
 | 
			
		||||
 | 
			
		||||
run Benchmark_dwf_fp32 using benchmarks/bench.sh
 | 
			
		||||
 | 
			
		||||
bash$
 | 
			
		||||
cd benchmarks
 | 
			
		||||
./bench.sh
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										18
									
								
								systems/OEM/benchmarks/bench.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										18
									
								
								systems/OEM/benchmarks/bench.sh
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,18 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
export EnableImplicitScaling=0
 | 
			
		||||
export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
 | 
			
		||||
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
 | 
			
		||||
export ONEAPI_DEVICE_FILTER=gpu,level_zero
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
 | 
			
		||||
 | 
			
		||||
mpiexec -launcher ssh -n 1 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 32.32.32.32 --accelerator-threads 16 --shm-mpi 1 --shm 2048 --device-mem 32768 | tee 1tile.log
 | 
			
		||||
mpiexec -launcher ssh -n 2 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.1.2 --grid 32.32.32.64 --accelerator-threads 16 --shm-mpi 1 --shm 2048 --device-mem 32768 | tee 2tile.log
 | 
			
		||||
 | 
			
		||||
#mpiexec -launcher ssh -n 4 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.2.2 --grid 16.16.64.64 --accelerator-threads 16 --shm-mpi 0 --shm 2048 --device-mem 32768 | tee 4tile.log
 | 
			
		||||
#mpiexec -launcher ssh -n 8 -host localhost ./select_gpu.sh ./Benchmark_dwf_fp32 --mpi 1.1.2.4 --grid 16.16.64.128 --accelerator-threads 16 --shm-mpi 0 --shm 2048 --device-mem 32768 | tee 8tile.log
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								systems/OEM/benchmarks/select_gpu.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										13
									
								
								systems/OEM/benchmarks/select_gpu.sh
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
num_tile=2
 | 
			
		||||
 | 
			
		||||
gpu_id=$(( (MPI_LOCAL_RANKID % num_tile ) ))
 | 
			
		||||
tile_id=$((MPI_LOCAL_RANKID / num_tile))
 | 
			
		||||
 | 
			
		||||
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
 | 
			
		||||
 | 
			
		||||
echo "local rank $MPI_LOCALRANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK"
 | 
			
		||||
 | 
			
		||||
"$@"
 | 
			
		||||
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user