mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Compare commits
	
		
			20 Commits
		
	
	
		
			feature/hd
			...
			feature/CG
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					70068cff51 | ||
| 
						 | 
					85c055fa30 | ||
| 
						 | 
					90fedbd2af | ||
| 
						 | 
					ec0c53fa68 | ||
| 
						 | 
					6ceee102e8 | ||
| 
						 | 
					6e57bdb6b3 | ||
| 
						 | 
					4c11e36d3d | ||
| 
						 | 
					9977c53035 | ||
| 
						 | 
					3a74fec62f | ||
| 
						 | 
					8fb0a13f39 | ||
| 
						 | 
					14a1406f54 | ||
| 
						 | 
					538e64e5b4 | ||
| 
						 | 
					b2dc17e160 | ||
| 
						 | 
					afbbcd2194 | ||
| 
						 | 
					d4e0b11bb1 | ||
| 
						 | 
					7144ee7ae8 | ||
| 
						 | 
					f1908c7bc9 | ||
| 
						 | 
					036ec31c48 | ||
| 
						 | 
					53f240200e | ||
| 
						 | 
					9720c9ba3f | 
							
								
								
									
										23
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										23
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -9,7 +9,6 @@
 | 
			
		||||
################
 | 
			
		||||
*~
 | 
			
		||||
*#
 | 
			
		||||
*.sublime-*
 | 
			
		||||
 | 
			
		||||
# Precompiled Headers #
 | 
			
		||||
#######################
 | 
			
		||||
@@ -83,7 +82,6 @@ ltmain.sh
 | 
			
		||||
.Trashes
 | 
			
		||||
ehthumbs.db
 | 
			
		||||
Thumbs.db
 | 
			
		||||
.dirstamp
 | 
			
		||||
 | 
			
		||||
# build directory #
 | 
			
		||||
###################
 | 
			
		||||
@@ -93,25 +91,16 @@ build*/*
 | 
			
		||||
#####################
 | 
			
		||||
*.xcodeproj/*
 | 
			
		||||
build.sh
 | 
			
		||||
.vscode
 | 
			
		||||
*.code-workspace
 | 
			
		||||
 | 
			
		||||
# Eigen source #
 | 
			
		||||
################
 | 
			
		||||
Grid/Eigen
 | 
			
		||||
Eigen/*
 | 
			
		||||
lib/Eigen/*
 | 
			
		||||
 | 
			
		||||
# FFTW source #
 | 
			
		||||
################
 | 
			
		||||
lib/fftw/*
 | 
			
		||||
 | 
			
		||||
# libtool macros #
 | 
			
		||||
##################
 | 
			
		||||
m4/lt*
 | 
			
		||||
m4/libtool.m4
 | 
			
		||||
 | 
			
		||||
# github pages #
 | 
			
		||||
################
 | 
			
		||||
gh-pages/
 | 
			
		||||
 | 
			
		||||
# generated sources #
 | 
			
		||||
#####################
 | 
			
		||||
Grid/qcd/spin/gamma-gen/*.h
 | 
			
		||||
Grid/qcd/spin/gamma-gen/*.cc
 | 
			
		||||
Grid/util/Version.h
 | 
			
		||||
m4/libtool.m4
 | 
			
		||||
							
								
								
									
										101
									
								
								.travis.yml
									
									
									
									
									
								
							
							
						
						
									
										101
									
								
								.travis.yml
									
									
									
									
									
								
							@@ -7,13 +7,64 @@ cache:
 | 
			
		||||
matrix:
 | 
			
		||||
  include:
 | 
			
		||||
    - os:        osx
 | 
			
		||||
      osx_image: xcode8.3
 | 
			
		||||
      osx_image: xcode7.2
 | 
			
		||||
      compiler: clang
 | 
			
		||||
      env: PREC=single
 | 
			
		||||
    - os:        osx
 | 
			
		||||
      osx_image: xcode8.3
 | 
			
		||||
      compiler: clang
 | 
			
		||||
      env: PREC=double
 | 
			
		||||
    - compiler: gcc
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-4.9
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: VERSION=-4.9
 | 
			
		||||
    - compiler: gcc
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-5
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: VERSION=-5
 | 
			
		||||
    - compiler: clang
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-4.8
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: CLANG_LINK=http://llvm.org/releases/3.8.0/clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
 | 
			
		||||
    - compiler: clang
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-4.8
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: CLANG_LINK=http://llvm.org/releases/3.7.0/clang+llvm-3.7.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
 | 
			
		||||
      
 | 
			
		||||
before_install:
 | 
			
		||||
    - export GRIDDIR=`pwd`
 | 
			
		||||
@@ -21,41 +72,35 @@ before_install:
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install openmpi; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]] && [[ "$CC" == "gcc" ]]; then brew install gcc5; fi
 | 
			
		||||
    
 | 
			
		||||
install:
 | 
			
		||||
    - export CWD=`pwd`
 | 
			
		||||
    - echo $CWD
 | 
			
		||||
    - export CC=$CC$VERSION
 | 
			
		||||
    - export CXX=$CXX$VERSION
 | 
			
		||||
    - echo $PATH
 | 
			
		||||
    - which autoconf
 | 
			
		||||
    - autoconf  --version
 | 
			
		||||
    - which automake
 | 
			
		||||
    - automake  --version
 | 
			
		||||
    - which $CC
 | 
			
		||||
    - $CC  --version
 | 
			
		||||
    - which $CXX
 | 
			
		||||
    - $CXX --version
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi
 | 
			
		||||
    
 | 
			
		||||
script:
 | 
			
		||||
    - ./bootstrap.sh
 | 
			
		||||
    - mkdir build
 | 
			
		||||
    - cd build
 | 
			
		||||
    - mkdir lime
 | 
			
		||||
    - cd lime
 | 
			
		||||
    - mkdir build
 | 
			
		||||
    - cd build
 | 
			
		||||
    - wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz
 | 
			
		||||
    - tar xf lime-1.3.2.tar.gz
 | 
			
		||||
    - cd lime-1.3.2
 | 
			
		||||
    - ./configure --prefix=$CWD/build/lime/install
 | 
			
		||||
    - make -j4
 | 
			
		||||
    - make install
 | 
			
		||||
    - cd $CWD/build
 | 
			
		||||
    - ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
 | 
			
		||||
    - ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
 | 
			
		||||
    - make -j4 
 | 
			
		||||
    - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
 | 
			
		||||
    - make check
 | 
			
		||||
    - ./benchmarks/Benchmark_dwf --threads 1
 | 
			
		||||
    - echo make clean
 | 
			
		||||
    - ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
 | 
			
		||||
    - make -j4
 | 
			
		||||
    - ./benchmarks/Benchmark_dwf --threads 1
 | 
			
		||||
    - echo make clean
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then export CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi
 | 
			
		||||
    - ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto
 | 
			
		||||
    - make -j4
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then mpirun -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +0,0 @@
 | 
			
		||||
Version : 0.8.0
 | 
			
		||||
 | 
			
		||||
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
 | 
			
		||||
- MPI and MPI3 comms optimisations for KNL and OPA finished
 | 
			
		||||
- Half precision comms
 | 
			
		||||
 
 | 
			
		||||
@@ -1,30 +0,0 @@
 | 
			
		||||
#ifndef GRID_STD_H
 | 
			
		||||
#define GRID_STD_H
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Std C++ dependencies
 | 
			
		||||
///////////////////
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <complex>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <array>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <iomanip>
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <functional>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <signal.h>
 | 
			
		||||
#include <ctime>
 | 
			
		||||
#include <sys/time.h>
 | 
			
		||||
#include <chrono>
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Grid config
 | 
			
		||||
///////////////////
 | 
			
		||||
#include "Config.h"
 | 
			
		||||
 | 
			
		||||
#endif /* GRID_STD_H */
 | 
			
		||||
@@ -1,41 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#pragma once
 | 
			
		||||
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
 | 
			
		||||
#ifdef USE_MKL
 | 
			
		||||
#define EIGEN_USE_MKL_ALL
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined __GNUC__
 | 
			
		||||
#pragma GCC diagnostic push
 | 
			
		||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* NVCC save and restore compile environment*/
 | 
			
		||||
#ifdef __NVCC__
 | 
			
		||||
#pragma push
 | 
			
		||||
#pragma diag_suppress code_is_unreachable
 | 
			
		||||
#pragma push_macro("__CUDA_ARCH__")
 | 
			
		||||
#pragma push_macro("__NVCC__")
 | 
			
		||||
#pragma push_macro("__CUDACC__")
 | 
			
		||||
#undef __NVCC__
 | 
			
		||||
#undef __CUDACC__
 | 
			
		||||
#undef __CUDA_ARCH__
 | 
			
		||||
#define __NVCC__REDEFINE__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include <Grid/Eigen/Dense>
 | 
			
		||||
#include <Grid/Eigen/unsupported/CXX11/Tensor>
 | 
			
		||||
 | 
			
		||||
/* NVCC restore */
 | 
			
		||||
#ifdef __NVCC__REDEFINE__
 | 
			
		||||
#pragma pop_macro("__CUDACC__")
 | 
			
		||||
#pragma pop_macro("__NVCC__")
 | 
			
		||||
#pragma pop_macro("__CUDA_ARCH__")
 | 
			
		||||
#pragma pop
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined __GNUC__
 | 
			
		||||
#pragma GCC diagnostic pop
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
@@ -1,63 +0,0 @@
 | 
			
		||||
extra_sources=
 | 
			
		||||
extra_headers=
 | 
			
		||||
 | 
			
		||||
if BUILD_COMMS_MPI3
 | 
			
		||||
  extra_sources+=communicator/Communicator_mpi3.cc
 | 
			
		||||
  extra_sources+=communicator/Communicator_base.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemoryMPI.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemory.cc
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
if BUILD_COMMS_NONE
 | 
			
		||||
  extra_sources+=communicator/Communicator_none.cc
 | 
			
		||||
  extra_sources+=communicator/Communicator_base.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemoryNone.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemory.cc
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
if BUILD_HDF5
 | 
			
		||||
  extra_sources+=serialisation/Hdf5IO.cc 
 | 
			
		||||
  extra_headers+=serialisation/Hdf5IO.h
 | 
			
		||||
  extra_headers+=serialisation/Hdf5Type.h
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
all: version-cache
 | 
			
		||||
 | 
			
		||||
version-cache:
 | 
			
		||||
	@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
 | 
			
		||||
		a="uncommited changes";\
 | 
			
		||||
	else\
 | 
			
		||||
		a="clean";\
 | 
			
		||||
	fi;\
 | 
			
		||||
	echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d $$a\\"%n" HEAD`" > vertmp;\
 | 
			
		||||
	if [ -e version-cache ]; then\
 | 
			
		||||
		d=`diff vertmp version-cache`;\
 | 
			
		||||
		if [ "$${d}" != "" ]; then\
 | 
			
		||||
			mv vertmp version-cache;\
 | 
			
		||||
			rm -f Version.h;\
 | 
			
		||||
		fi;\
 | 
			
		||||
	else\
 | 
			
		||||
		mv vertmp version-cache;\
 | 
			
		||||
		rm -f Version.h;\
 | 
			
		||||
	fi;\
 | 
			
		||||
	rm -f vertmp
 | 
			
		||||
 | 
			
		||||
Version.h:
 | 
			
		||||
	cp version-cache Version.h
 | 
			
		||||
 | 
			
		||||
.PHONY: version-cache
 | 
			
		||||
 | 
			
		||||
#
 | 
			
		||||
# Libraries
 | 
			
		||||
#
 | 
			
		||||
include Make.inc
 | 
			
		||||
include Eigen.inc
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
CCFILES += $(extra_sources)
 | 
			
		||||
HFILES  += $(extra_headers) Config.h Version.h
 | 
			
		||||
 | 
			
		||||
libGrid_a_SOURCES              = $(CCFILES)
 | 
			
		||||
libGrid_adir                   = $(includedir)/Grid
 | 
			
		||||
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) $(eigen_unsupp_files)
 | 
			
		||||
@@ -1,38 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/Namespace.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2016
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
			
		||||
#define NAMESPACE_END(A)   }
 | 
			
		||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
			
		||||
#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
			
		||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
			
		||||
@@ -1,985 +0,0 @@
 | 
			
		||||
    // blockZaxpy in bockPromote - 3s, 5%
 | 
			
		||||
    // noncoalesced linalg in Preconditionoer ~ 3s 5%
 | 
			
		||||
    // Lancos tuning or replace 10-20s ~ 25%, open ended
 | 
			
		||||
    // setup tuning   5s  ~  8%
 | 
			
		||||
    //    -- e.g. ordermin, orderstep tunables.
 | 
			
		||||
    // MdagM path without norm in LinOp code.     few seconds
 | 
			
		||||
 | 
			
		||||
    // Mdir calc blocking kernels
 | 
			
		||||
    // Fuse kernels in blockMaskedInnerProduct
 | 
			
		||||
    // preallocate Vectors in Cayley 5D ~ few percent few seconds
 | 
			
		||||
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/CoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_ALGORITHM_COARSENED_MATRIX_H
 | 
			
		||||
#define  GRID_ALGORITHM_COARSENED_MATRIX_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj,class CComplex>
 | 
			
		||||
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
			
		||||
				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
 | 
			
		||||
				    const Lattice<vobj> &fineX,
 | 
			
		||||
				    const Lattice<vobj> &fineY)
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) dotp;
 | 
			
		||||
 | 
			
		||||
  GridBase *coarse(CoarseInner.Grid());
 | 
			
		||||
  GridBase *fine  (fineX.Grid());
 | 
			
		||||
 | 
			
		||||
  Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
 | 
			
		||||
  Lattice<dotp> fine_inner_msk(fine);
 | 
			
		||||
 | 
			
		||||
  // Multiply could be fused with innerProduct
 | 
			
		||||
  // Single block sum kernel could do both masks.
 | 
			
		||||
  fine_inner = localInnerProduct(fineX,fineY);
 | 
			
		||||
  mult(fine_inner_msk, fine_inner,FineMask);
 | 
			
		||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    int base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
      
 | 
			
		||||
    //// report back
 | 
			
		||||
    std::cout<<GridLogMessage<<"directions    :";
 | 
			
		||||
    for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
 | 
			
		||||
    std::cout<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"displacements :";
 | 
			
		||||
    for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
 | 
			
		||||
    std::cout<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  /*
 | 
			
		||||
  // Original cleaner code
 | 
			
		||||
  Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
 | 
			
		||||
  for(int d=0;d<dimension;d++){
 | 
			
		||||
  directions[2*d  ] = d;
 | 
			
		||||
  directions[2*d+1] = d;
 | 
			
		||||
  displacements[2*d  ] = +1;
 | 
			
		||||
  displacements[2*d+1] = -1;
 | 
			
		||||
  }
 | 
			
		||||
  directions   [2*dimension]=0;
 | 
			
		||||
  displacements[2*dimension]=0;
 | 
			
		||||
  }
 | 
			
		||||
  std::vector<int> GetDelta(int point) {
 | 
			
		||||
  std::vector<int> delta(dimension,0);
 | 
			
		||||
  delta[directions[point]] = displacements[point];
 | 
			
		||||
  return delta;
 | 
			
		||||
  };
 | 
			
		||||
  */    
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation   {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 2"<<std::endl; // Really have to do twice? Yuck
 | 
			
		||||
    //    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
    //      std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
 | 
			
		||||
    //      CheckOrthogonal();
 | 
			
		||||
  } 
 | 
			
		||||
  void CheckOrthogonal(void){
 | 
			
		||||
    CoarseVector iProj(CoarseGrid); 
 | 
			
		||||
    CoarseVector eProj(CoarseGrid); 
 | 
			
		||||
    for(int i=0;i<nbasis;i++){
 | 
			
		||||
      blockProject(iProj,subspace[i],subspace);
 | 
			
		||||
      eProj=Zero(); 
 | 
			
		||||
      accelerator_for(ss, CoarseGrid->oSites(),1,{
 | 
			
		||||
	eProj[ss](i)=CComplex(1.0);
 | 
			
		||||
      });
 | 
			
		||||
      eProj=eProj - iProj;
 | 
			
		||||
      std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void CreateSubspaceRandom(GridParallelRNG &RNG){
 | 
			
		||||
    for(int i=0;i<nbasis;i++){
 | 
			
		||||
      random(RNG,subspace[i]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
	
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
	
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#if 1
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	auto y_v = y.View();
 | 
			
		||||
	auto Tn_v = Tn->View();
 | 
			
		||||
	auto Tnp_v = Tnp->View();
 | 
			
		||||
	auto Tnm_v = Tnm->View();
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
#if 0
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    FineField combined(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
#define FILTERb(llo,hhi,oorder)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      Chebyshev<FineField> Cheb(llo,hhi,oorder);			\
 | 
			
		||||
      Cheb(hermop,noise,Mn);						\
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;			\
 | 
			
		||||
      subspace[b]   = Mn;						\
 | 
			
		||||
      hermop.Op(Mn,tmp);						\
 | 
			
		||||
      std::cout<<GridLogMessage << oorder<< " Cheb filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
 | 
			
		||||
      b++;								\
 | 
			
		||||
    }									
 | 
			
		||||
 | 
			
		||||
    //      JacobiPolynomial<FineField> Cheb(0.002,60.0,1500,-0.5,3.5);	\
 | 
			
		||||
 | 
			
		||||
    RealD alpha=-0.8;
 | 
			
		||||
    RealD beta =-0.8;
 | 
			
		||||
#define FILTER(llo,hhi,oorder)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      Chebyshev<FineField> Cheb(llo,hhi,oorder);			\
 | 
			
		||||
      /* JacobiPolynomial<FineField> Cheb(0.0,60.0,oorder,alpha,beta);*/\
 | 
			
		||||
      Cheb(hermop,noise,Mn);						\
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;			\
 | 
			
		||||
      subspace[b]   = Mn;						\
 | 
			
		||||
      hermop.Op(Mn,tmp);						\
 | 
			
		||||
      std::cout<<GridLogMessage << oorder<< "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
 | 
			
		||||
      b++;								\
 | 
			
		||||
    }									
 | 
			
		||||
    
 | 
			
		||||
#define FILTERc(llo,hhi,oorder)				\
 | 
			
		||||
    {							\
 | 
			
		||||
      Chebyshev<FineField> Cheb(llo,hhi,oorder);	\
 | 
			
		||||
      Cheb(hermop,noise,combined);			\
 | 
			
		||||
    }									
 | 
			
		||||
 | 
			
		||||
    double node = 0.000;
 | 
			
		||||
    FILTERb(lo,hi,orderfilter);// 0
 | 
			
		||||
    //    FILTERc(node,hi,51);// 0
 | 
			
		||||
    noise = Mn;
 | 
			
		||||
    int base = 0;
 | 
			
		||||
    int mult = 100;
 | 
			
		||||
    FILTER(node,hi,base+1*mult);
 | 
			
		||||
    FILTER(node,hi,base+2*mult);
 | 
			
		||||
    FILTER(node,hi,base+3*mult);
 | 
			
		||||
    FILTER(node,hi,base+4*mult);
 | 
			
		||||
    FILTER(node,hi,base+5*mult);
 | 
			
		||||
    FILTER(node,hi,base+6*mult);
 | 
			
		||||
    FILTER(node,hi,base+7*mult);
 | 
			
		||||
    FILTER(node,hi,base+8*mult);
 | 
			
		||||
    FILTER(node,hi,base+9*mult);
 | 
			
		||||
    FILTER(node,hi,base+10*mult);
 | 
			
		||||
    FILTER(node,hi,base+11*mult);
 | 
			
		||||
    FILTER(node,hi,base+12*mult);
 | 
			
		||||
    FILTER(node,hi,base+13*mult);
 | 
			
		||||
    FILTER(node,hi,base+14*mult);
 | 
			
		||||
    FILTER(node,hi,base+15*mult);
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    FineField combined(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {						
 | 
			
		||||
      Chebyshev<FineField> JacobiPoly(0.005,60.,1500);
 | 
			
		||||
      //      JacobiPolynomial<FineField> JacobiPoly(0.002,60.0,1500,-0.5,3.5);
 | 
			
		||||
      //JacobiPolynomial<FineField> JacobiPoly(0.03,60.0,500,-0.5,3.5);
 | 
			
		||||
      //      JacobiPolynomial<FineField> JacobiPoly(0.00,60.0,1000,-0.5,3.5);
 | 
			
		||||
      JacobiPoly(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; 
 | 
			
		||||
      b++;
 | 
			
		||||
      //      scale = std::pow(norm2(tmp),-0.5);     tmp=tmp*scale;
 | 
			
		||||
      //      subspace[b]   = tmp;      b++;
 | 
			
		||||
      //    }									
 | 
			
		||||
    }									
 | 
			
		||||
 | 
			
		||||
#define FILTER(lambda)						\
 | 
			
		||||
    {								\
 | 
			
		||||
      hermop.HermOp(subspace[0],tmp);				\
 | 
			
		||||
      tmp = tmp - lambda *subspace[0];				\
 | 
			
		||||
      scale = std::pow(norm2(tmp),-0.5);			\
 | 
			
		||||
      tmp=tmp*scale;							\
 | 
			
		||||
      subspace[b]   = tmp;						\
 | 
			
		||||
      hermop.Op(subspace[b],tmp);					\
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
 | 
			
		||||
      b++;								\
 | 
			
		||||
    }									
 | 
			
		||||
    //      scale = std::pow(norm2(tmp),-0.5);     tmp=tmp*scale;
 | 
			
		||||
    //      subspace[b]   = tmp;      b++;
 | 
			
		||||
    //    }									
 | 
			
		||||
 | 
			
		||||
    FILTER(2.0e-5);
 | 
			
		||||
    FILTER(2.0e-4);
 | 
			
		||||
    FILTER(4.0e-4);
 | 
			
		||||
    FILTER(8.0e-4);
 | 
			
		||||
    FILTER(8.0e-4);
 | 
			
		||||
 | 
			
		||||
    FILTER(2.0e-3);
 | 
			
		||||
    FILTER(3.0e-3);
 | 
			
		||||
    FILTER(4.0e-3);
 | 
			
		||||
    FILTER(5.0e-3);
 | 
			
		||||
    FILTER(6.0e-3);
 | 
			
		||||
 | 
			
		||||
    FILTER(2.5e-3);
 | 
			
		||||
    FILTER(3.5e-3);
 | 
			
		||||
    FILTER(4.5e-3);
 | 
			
		||||
    FILTER(5.5e-3);
 | 
			
		||||
    FILTER(6.5e-3);
 | 
			
		||||
 | 
			
		||||
    //    FILTER(6.0e-5);//6
 | 
			
		||||
    //    FILTER(7.0e-5);//8
 | 
			
		||||
    //    FILTER(8.0e-5);//9
 | 
			
		||||
    //    FILTER(9.0e-5);//3
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    //    FILTER(1.0e-4);//10
 | 
			
		||||
    FILTER(2.0e-4);//11
 | 
			
		||||
    //   FILTER(3.0e-4);//12
 | 
			
		||||
    //    FILTER(4.0e-4);//13
 | 
			
		||||
    FILTER(5.0e-4);//14
 | 
			
		||||
 | 
			
		||||
    FILTER(6.0e-3);//4
 | 
			
		||||
    FILTER(7.0e-4);//1
 | 
			
		||||
    FILTER(8.0e-4);//7
 | 
			
		||||
    FILTER(9.0e-4);//15
 | 
			
		||||
    FILTER(1.0e-3);//2
 | 
			
		||||
 | 
			
		||||
    FILTER(2.0e-3);//2
 | 
			
		||||
    FILTER(3.0e-3);//2
 | 
			
		||||
    FILTER(4.0e-3);//2
 | 
			
		||||
    FILTER(5.0e-3);//2
 | 
			
		||||
    FILTER(6.0e-3);//2
 | 
			
		||||
 | 
			
		||||
    FILTER(7.0e-3);//2
 | 
			
		||||
    FILTER(8.0e-3);//2
 | 
			
		||||
    FILTER(1.0e-2);//2
 | 
			
		||||
    */
 | 
			
		||||
    std::cout << GridLogMessage <<"Jacobi filtering done" <<std::endl;
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef Lattice<CComplex >                  CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  Geometry         geom;
 | 
			
		||||
  GridBase *       _grid; 
 | 
			
		||||
  int hermitian;
 | 
			
		||||
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> Stencil; 
 | 
			
		||||
 | 
			
		||||
  std::vector<CoarseMatrix> A;
 | 
			
		||||
      
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  RealD M (const CoarseVector &in, CoarseVector &out){
 | 
			
		||||
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
 | 
			
		||||
    //    RealD Nin = norm2(in);
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    double comms_usec = -usecond();
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
    comms_usec += usecond();
 | 
			
		||||
 | 
			
		||||
    auto in_v = in.View();
 | 
			
		||||
    auto out_v = out.View();
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch ArithmeticTimer;
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
    //    double flops = osites*Nsimd*nbasis*nbasis*8.0*geom.npoint;
 | 
			
		||||
    //    double bytes = osites*nbasis*nbasis*geom.npoint*sizeof(CComplex);
 | 
			
		||||
    double usecs =-usecond();
 | 
			
		||||
    // assert(geom.npoint==9);
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      int lane=SIMTlane(Nsimd);
 | 
			
		||||
      for(int point=0;point<geom.npoint;point++){
 | 
			
		||||
 | 
			
		||||
	SE=Stencil.GetEntry(ptype,point,ss);
 | 
			
		||||
	  
 | 
			
		||||
	if(SE->_is_local) { 
 | 
			
		||||
	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
 | 
			
		||||
	} else {
 | 
			
		||||
	  nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
 | 
			
		||||
	}
 | 
			
		||||
	synchronise();
 | 
			
		||||
 | 
			
		||||
	for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res,lane);
 | 
			
		||||
    });
 | 
			
		||||
    usecs +=usecond();
 | 
			
		||||
 | 
			
		||||
    double nrm_usec=-usecond();
 | 
			
		||||
    RealD Nout= norm2(out);
 | 
			
		||||
    nrm_usec+=usecond();
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
        std::cout << GridLogMessage << "\tNorm        " << nrm_usec << " us" <<std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "\tHalo        " << comms_usec << " us" <<std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "\tMatrix      " << usecs << " us" <<std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "\t  mflop/s   " << flops/usecs<<std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "\t  MB/s      " << bytes/usecs<<std::endl;
 | 
			
		||||
    */
 | 
			
		||||
    return Nout;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  RealD Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if(hermitian) {
 | 
			
		||||
      // corresponds to Petrov-Galerkin coarsening
 | 
			
		||||
      return M(in,out);
 | 
			
		||||
    } else {
 | 
			
		||||
      // corresponds to Galerkin coarsening
 | 
			
		||||
      CoarseVector tmp(Grid());
 | 
			
		||||
      G5C(tmp, in); 
 | 
			
		||||
      M(tmp, out);
 | 
			
		||||
      G5C(out, out);
 | 
			
		||||
      return norm2(out);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void MdirComms(const CoarseVector &in)
 | 
			
		||||
  {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
  void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(_grid,out.Grid());
 | 
			
		||||
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    auto out_v = out.View();
 | 
			
		||||
    auto in_v  = in.View();
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      int lane=SIMTlane(Nsimd);
 | 
			
		||||
      SE=Stencil.GetEntry(ptype,point,ss);
 | 
			
		||||
	  
 | 
			
		||||
      if(SE->_is_local) { 
 | 
			
		||||
	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
 | 
			
		||||
      } else {
 | 
			
		||||
	nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
 | 
			
		||||
      }
 | 
			
		||||
      synchronise();
 | 
			
		||||
 | 
			
		||||
      for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res,lane);
 | 
			
		||||
    });
 | 
			
		||||
#if 0
 | 
			
		||||
    accelerator_for(ss,Grid()->oSites(),1,{
 | 
			
		||||
 | 
			
		||||
      siteVector res = Zero();
 | 
			
		||||
      siteVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
      
 | 
			
		||||
      SE=Stencil.GetEntry(ptype,point,ss);
 | 
			
		||||
      
 | 
			
		||||
      if(SE->_is_local&&SE->_permute) {
 | 
			
		||||
	permute(nbr,in_v[SE->_offset],ptype);
 | 
			
		||||
      } else if(SE->_is_local) {
 | 
			
		||||
	nbr = in_v[SE->_offset];
 | 
			
		||||
      } else {
 | 
			
		||||
	nbr = Stencil.CommBuf()[SE->_offset];
 | 
			
		||||
      }
 | 
			
		||||
      synchronise();
 | 
			
		||||
 | 
			
		||||
      res = res + Aview_p[point][ss]*nbr;
 | 
			
		||||
      
 | 
			
		||||
      out_v[ss]=res;
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
			
		||||
  {
 | 
			
		||||
    this->MdirComms(in);
 | 
			
		||||
    int ndir=geom.npoint-1;
 | 
			
		||||
    if ((out.size()!=ndir)&&(out.size()!=ndir+1)) { 
 | 
			
		||||
      std::cout <<"MdirAll out size "<< out.size()<<std::endl;
 | 
			
		||||
      std::cout <<"MdirAll ndir "<< ndir<<std::endl;
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=0;p<ndir;p++){
 | 
			
		||||
      MdirCalc(in,out[p],p);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
 | 
			
		||||
 | 
			
		||||
    this->MdirComms(in);
 | 
			
		||||
 | 
			
		||||
    int ndim = in.Grid()->Nd();
 | 
			
		||||
 | 
			
		||||
    //////////////
 | 
			
		||||
    // 4D action like wilson
 | 
			
		||||
    // 0+ => 0 
 | 
			
		||||
    // 0- => 1
 | 
			
		||||
    // 1+ => 2 
 | 
			
		||||
    // 1- => 3
 | 
			
		||||
    // etc..
 | 
			
		||||
    //////////////
 | 
			
		||||
    // 5D action like DWF
 | 
			
		||||
    // 1+ => 0 
 | 
			
		||||
    // 1- => 1
 | 
			
		||||
    // 2+ => 2 
 | 
			
		||||
    // 2- => 3
 | 
			
		||||
    // etc..
 | 
			
		||||
    auto point = [dir, disp, ndim](){
 | 
			
		||||
      if(dir == 0 and disp == 0)
 | 
			
		||||
	return 8;
 | 
			
		||||
      else if ( ndim==4 ) { 
 | 
			
		||||
	return (4 * dir + 1 - disp) / 2;
 | 
			
		||||
      } else { 
 | 
			
		||||
	return (4 * (dir-1) + 1 - disp) / 2;
 | 
			
		||||
      }
 | 
			
		||||
    }();
 | 
			
		||||
 | 
			
		||||
    MdirCalc(in,out,point);
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdiag(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    int point=geom.npoint-1;
 | 
			
		||||
    MdirCalc(in, out, point); // No comms
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	: 
 | 
			
		||||
 | 
			
		||||
    _grid(&CoarseGrid),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
      A(geom.npoint,&CoarseGrid)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
 | 
			
		||||
    typedef typename Fobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
    FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
 | 
			
		||||
    FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
 | 
			
		||||
 | 
			
		||||
    std::vector<FineComplexField> masks(geom.npoint,FineGrid);
 | 
			
		||||
    FineComplexField imask(FineGrid); // contributions from within this block
 | 
			
		||||
    FineComplexField omask(FineGrid); // contributions from outwith this block
 | 
			
		||||
 | 
			
		||||
    FineComplexField evenmask(FineGrid);
 | 
			
		||||
    FineComplexField oddmask(FineGrid); 
 | 
			
		||||
 | 
			
		||||
    FineField     phi(FineGrid);
 | 
			
		||||
    FineField     tmp(FineGrid);
 | 
			
		||||
    FineField     zz(FineGrid); zz=Zero();
 | 
			
		||||
    FineField    Mphi(FineGrid);
 | 
			
		||||
    FineField    Mphie(FineGrid);
 | 
			
		||||
    FineField    Mphio(FineGrid);
 | 
			
		||||
    std::vector<FineField>     Mphi_p(geom.npoint,FineGrid);
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor (FineGrid);
 | 
			
		||||
    Lattice<iScalar<vInteger> > bcoor(FineGrid);
 | 
			
		||||
    Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero();
 | 
			
		||||
 | 
			
		||||
    CoarseVector iProj(Grid()); 
 | 
			
		||||
    CoarseVector oProj(Grid()); 
 | 
			
		||||
    CoarseVector SelfProj(Grid()); 
 | 
			
		||||
    CoarseComplexField iZProj(Grid()); 
 | 
			
		||||
    CoarseComplexField oZProj(Grid()); 
 | 
			
		||||
 | 
			
		||||
    CoarseScalar InnerProd(Grid()); 
 | 
			
		||||
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    // Compute the matrix elements of linop between this orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    int self_stencil=-1;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++)
 | 
			
		||||
    { 
 | 
			
		||||
      int dir   = geom.directions[p];
 | 
			
		||||
      int disp  = geom.displacements[p];
 | 
			
		||||
      A[p]=Zero();
 | 
			
		||||
      if( geom.displacements[p]==0){
 | 
			
		||||
	self_stencil=p;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor,dir);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////////
 | 
			
		||||
      // Work out even and odd block checkerboarding for fast diagonal term
 | 
			
		||||
      ///////////////////////////////////////////////////////
 | 
			
		||||
      if ( disp==1 ) {
 | 
			
		||||
	bcb   = bcb + div(coor,block);
 | 
			
		||||
      }
 | 
			
		||||
	
 | 
			
		||||
      if ( disp==0 ) {
 | 
			
		||||
	  masks[p]= Zero();
 | 
			
		||||
      } else if ( disp==1 ) {
 | 
			
		||||
	masks[p] = where(mod(coor,block)==(block-1),one,zero);
 | 
			
		||||
      } else if ( disp==-1 ) {
 | 
			
		||||
	masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
 | 
			
		||||
    oddmask  = one-evenmask;
 | 
			
		||||
 | 
			
		||||
    assert(self_stencil!=-1);
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<nbasis;i++){
 | 
			
		||||
 | 
			
		||||
      phi=Subspace.subspace[i];
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
 | 
			
		||||
      linop.OpDirAll(phi,Mphi_p);
 | 
			
		||||
      linop.OpDiag  (phi,Mphi_p[geom.npoint-1]);
 | 
			
		||||
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){ 
 | 
			
		||||
 | 
			
		||||
	Mphi = Mphi_p[p];
 | 
			
		||||
 | 
			
		||||
	int dir   = geom.directions[p];
 | 
			
		||||
	int disp  = geom.displacements[p];
 | 
			
		||||
 | 
			
		||||
	if ( (disp==-1) || (!hermitian ) ) {
 | 
			
		||||
 | 
			
		||||
	  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Pick out contributions coming from this cell and neighbour cell
 | 
			
		||||
	  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  omask = masks[p];
 | 
			
		||||
	  imask = one-omask;
 | 
			
		||||
	
 | 
			
		||||
	  for(int j=0;j<nbasis;j++){
 | 
			
		||||
	    
 | 
			
		||||
	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
 | 
			
		||||
	    
 | 
			
		||||
	    auto iZProj_v = iZProj.View() ;
 | 
			
		||||
	    auto oZProj_v = oZProj.View() ;
 | 
			
		||||
	    auto A_p     =  A[p].View();
 | 
			
		||||
	    auto A_self  = A[self_stencil].View();
 | 
			
		||||
 | 
			
		||||
	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
 | 
			
		||||
	    //      if( disp!= 0 ) { accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });}
 | 
			
		||||
	    //	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_self[ss](j,i),A_self(ss)(j,i)+iZProj_v(ss)); });
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////
 | 
			
		||||
      // Faster alternate self coupling.. use hermiticity to save 2x
 | 
			
		||||
      ///////////////////////////////////////////
 | 
			
		||||
      {
 | 
			
		||||
	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie);
 | 
			
		||||
	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio);
 | 
			
		||||
 | 
			
		||||
	{
 | 
			
		||||
	  auto tmp_      = tmp.View();
 | 
			
		||||
	  auto evenmask_ = evenmask.View();
 | 
			
		||||
	  auto oddmask_  =  oddmask.View();
 | 
			
		||||
	  auto Mphie_    =  Mphie.View();
 | 
			
		||||
	  auto Mphio_    =  Mphio.View();
 | 
			
		||||
	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{ 
 | 
			
		||||
	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
 | 
			
		||||
	    });
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	blockProject(SelfProj,tmp,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
	auto SelfProj_ = SelfProj.View();
 | 
			
		||||
	auto A_self  = A[self_stencil].View();
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
 | 
			
		||||
	  for(int j=0;j<nbasis;j++){
 | 
			
		||||
	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if(hermitian) {
 | 
			
		||||
      std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
 | 
			
		||||
      ForceHermitian();
 | 
			
		||||
    }
 | 
			
		||||
      // AssertHermitian();
 | 
			
		||||
      // ForceDiagonal();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    // test code worth preserving in if block
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage<< A[p] << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl;
 | 
			
		||||
 | 
			
		||||
    phi=Subspace.subspace[0];
 | 
			
		||||
    std::vector<int> bc(FineGrid->_ndimension,0);
 | 
			
		||||
 | 
			
		||||
    blockPick(Grid(),phi,tmp,bc);      // Pick out a block
 | 
			
		||||
    linop.Op(tmp,Mphi);                // Apply big dop
 | 
			
		||||
    blockProject(iProj,Mphi,Subspace.subspace); // project it and print it
 | 
			
		||||
    std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<< iProj <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  void ForceHermitian(void) {
 | 
			
		||||
    CoarseMatrix Diff  (Grid());
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      int dir   = geom.directions[p];
 | 
			
		||||
      int disp  = geom.displacements[p];
 | 
			
		||||
      if(disp==-1) {
 | 
			
		||||
	// Find the opposite link
 | 
			
		||||
	for(int pp=0;pp<geom.npoint;pp++){
 | 
			
		||||
	  int dirp   = geom.directions[pp];
 | 
			
		||||
	  int dispp  = geom.displacements[pp];
 | 
			
		||||
	  if ( (dirp==dir) && (dispp==1) ){
 | 
			
		||||
	    //	    Diff = adj(Cshift(A[p],dir,1)) - A[pp]; 
 | 
			
		||||
	    //	    std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
 | 
			
		||||
	    A[pp] = adj(Cshift(A[p],dir,1));
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void AssertHermitian(void) {
 | 
			
		||||
    CoarseMatrix AA    (Grid());
 | 
			
		||||
    CoarseMatrix AAc   (Grid());
 | 
			
		||||
    CoarseMatrix Diff  (Grid());
 | 
			
		||||
    for(int d=0;d<4;d++){
 | 
			
		||||
	
 | 
			
		||||
      int dd=d+1;
 | 
			
		||||
      AAc = Cshift(A[2*d+1],dd,1);
 | 
			
		||||
      AA  = A[2*d];
 | 
			
		||||
	
 | 
			
		||||
      Diff = AA - adj(AAc);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
    Diff = A[8] - adj(A[8]);
 | 
			
		||||
    std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,291 +0,0 @@
 | 
			
		||||
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/Cshift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef _GRID_FFT_H_
 | 
			
		||||
#define _GRID_FFT_H_
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_FFTW
 | 
			
		||||
#ifdef USE_MKL
 | 
			
		||||
#include <fftw/fftw3.h>
 | 
			
		||||
#else
 | 
			
		||||
#include <fftw3.h>
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class scalar> struct FFTW { };
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_FFTW	
 | 
			
		||||
template<> struct FFTW<ComplexD> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef fftw_complex FFTW_scalar;
 | 
			
		||||
  typedef fftw_plan    FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, const int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, const int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
			
		||||
    ::fftw_flops(p,add,mul,fmas);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
			
		||||
    ::fftw_execute_dft(p,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    ::fftw_destroy_plan(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<> struct FFTW<ComplexF> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef fftwf_complex FFTW_scalar;
 | 
			
		||||
  typedef fftwf_plan    FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, const int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, const int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
			
		||||
    ::fftwf_flops(p,add,mul,fmas);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
			
		||||
    ::fftwf_execute_dft(p,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    ::fftwf_destroy_plan(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef FFTW_FORWARD
 | 
			
		||||
#define FFTW_FORWARD (-1)
 | 
			
		||||
#define FFTW_BACKWARD (+1)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class FFT {
 | 
			
		||||
private:
 | 
			
		||||
    
 | 
			
		||||
  GridCartesian *vgrid;
 | 
			
		||||
  GridCartesian *sgrid;
 | 
			
		||||
    
 | 
			
		||||
  int Nd;
 | 
			
		||||
  double flops;
 | 
			
		||||
  double flops_call;
 | 
			
		||||
  uint64_t usec;
 | 
			
		||||
    
 | 
			
		||||
  Coordinate dimensions;
 | 
			
		||||
  Coordinate processors;
 | 
			
		||||
  Coordinate processor_coor;
 | 
			
		||||
    
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
  static const int backward=FFTW_BACKWARD;
 | 
			
		||||
    
 | 
			
		||||
  double Flops(void) {return flops;}
 | 
			
		||||
  double MFlops(void) {return flops/usec;}
 | 
			
		||||
  double USec(void)   {return (double)usec;}    
 | 
			
		||||
 | 
			
		||||
  FFT ( GridCartesian * grid ) :
 | 
			
		||||
    vgrid(grid),
 | 
			
		||||
    Nd(grid->_ndimension),
 | 
			
		||||
    dimensions(grid->_fdimensions),
 | 
			
		||||
    processors(grid->_processors),
 | 
			
		||||
    processor_coor(grid->_processor_coor)
 | 
			
		||||
  {
 | 
			
		||||
    flops=0;
 | 
			
		||||
    usec =0;
 | 
			
		||||
    Coordinate layout(Nd,1);
 | 
			
		||||
    sgrid = new GridCartesian(dimensions,layout,processors);
 | 
			
		||||
  };
 | 
			
		||||
    
 | 
			
		||||
  ~FFT ( void)  {
 | 
			
		||||
    delete sgrid;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
 | 
			
		||||
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
    conformable(source.Grid(),vgrid);
 | 
			
		||||
    Lattice<vobj> tmp(vgrid);
 | 
			
		||||
    tmp = source;
 | 
			
		||||
    for(int d=0;d<Nd;d++){
 | 
			
		||||
      if( mask[d] ) {
 | 
			
		||||
	FFT_dim(result,tmp,d,sign);
 | 
			
		||||
	tmp=result;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
 | 
			
		||||
    Coordinate mask(Nd,1);
 | 
			
		||||
    FFT_dim_mask(result,source,mask,sign);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
			
		||||
#ifndef HAVE_FFTW
 | 
			
		||||
    assert(0);
 | 
			
		||||
#else
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
    conformable(source.Grid(),vgrid);
 | 
			
		||||
 | 
			
		||||
    int L = vgrid->_ldimensions[dim];
 | 
			
		||||
    int G = vgrid->_fdimensions[dim];
 | 
			
		||||
      
 | 
			
		||||
    Coordinate layout(Nd,1);
 | 
			
		||||
    Coordinate pencil_gd(vgrid->_fdimensions);
 | 
			
		||||
      
 | 
			
		||||
    pencil_gd[dim] = G*processors[dim];
 | 
			
		||||
      
 | 
			
		||||
    // Pencil global vol LxLxGxLxL per node
 | 
			
		||||
    GridCartesian pencil_g(pencil_gd,layout,processors);
 | 
			
		||||
      
 | 
			
		||||
    // Construct pencils
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename sobj::scalar_type   scalar;
 | 
			
		||||
      
 | 
			
		||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
			
		||||
    auto pgbuf_v = pgbuf.View();
 | 
			
		||||
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
			
		||||
      
 | 
			
		||||
    int Ncomp = sizeof(sobj)/sizeof(scalar);
 | 
			
		||||
    int Nlow  = 1;
 | 
			
		||||
    for(int d=0;d<dim;d++){
 | 
			
		||||
      Nlow*=vgrid->_ldimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    int rank = 1;  /* 1d transforms */
 | 
			
		||||
    int n[] = {G}; /* 1d transforms of length G */
 | 
			
		||||
    int howmany = Ncomp;
 | 
			
		||||
    int odist,idist,istride,ostride;
 | 
			
		||||
    idist   = odist   = 1;          /* Distance between consecutive FT's */
 | 
			
		||||
    istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
 | 
			
		||||
    int *inembed = n, *onembed = n;
 | 
			
		||||
      
 | 
			
		||||
    scalar div;
 | 
			
		||||
    if ( sign == backward ) div = 1.0/G;
 | 
			
		||||
    else if ( sign == forward ) div = 1.0;
 | 
			
		||||
    else assert(0);
 | 
			
		||||
      
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    {
 | 
			
		||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
      FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
      p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
 | 
			
		||||
					   in,inembed,
 | 
			
		||||
					   istride,idist,
 | 
			
		||||
					   out,onembed,
 | 
			
		||||
					   ostride, odist,
 | 
			
		||||
					   sign,FFTW_ESTIMATE);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // Barrel shift and collect global pencil
 | 
			
		||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
			
		||||
    result = source;
 | 
			
		||||
    int pc = processor_coor[dim];
 | 
			
		||||
    for(int p=0;p<processors[dim];p++) {
 | 
			
		||||
      thread_for(idx, sgrid->lSites(),{
 | 
			
		||||
          Coordinate cbuf(Nd);
 | 
			
		||||
          sobj s;
 | 
			
		||||
	  sgrid->LocalIndexToLocalCoor(idx,cbuf);
 | 
			
		||||
	  peekLocalSite(s,result,cbuf);
 | 
			
		||||
	  cbuf[dim]+=((pc+p) % processors[dim])*L;
 | 
			
		||||
	  //            cbuf[dim]+=p*L;
 | 
			
		||||
	  pokeLocalSite(s,pgbuf,cbuf);
 | 
			
		||||
      });
 | 
			
		||||
      if (p != processors[dim] - 1) {
 | 
			
		||||
	result = Cshift(result,dim,L);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // Loop over orthog coords
 | 
			
		||||
    int NN=pencil_g.lSites();
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
    timer.Start();
 | 
			
		||||
    thread_for( idx,NN,{
 | 
			
		||||
        Coordinate cbuf(Nd);
 | 
			
		||||
	pencil_g.LocalIndexToLocalCoor(idx, cbuf);
 | 
			
		||||
	if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0
 | 
			
		||||
	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
 | 
			
		||||
	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
 | 
			
		||||
	  FFTW<scalar>::fftw_execute_dft(p,in,out);
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
      
 | 
			
		||||
    // performance counting
 | 
			
		||||
    double add,mul,fma;
 | 
			
		||||
    FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
 | 
			
		||||
    flops_call = add+mul+2.0*fma;
 | 
			
		||||
    usec += timer.useconds();
 | 
			
		||||
    flops+= flops_call*NN;
 | 
			
		||||
      
 | 
			
		||||
    // writing out result
 | 
			
		||||
    thread_for(idx,sgrid->lSites(),{
 | 
			
		||||
	Coordinate clbuf(Nd), cgbuf(Nd);
 | 
			
		||||
	sobj s;
 | 
			
		||||
	sgrid->LocalIndexToLocalCoor(idx,clbuf);
 | 
			
		||||
	cgbuf = clbuf;
 | 
			
		||||
	cgbuf[dim] = clbuf[dim]+L*pc;
 | 
			
		||||
	peekLocalSite(s,pgbuf,cgbuf);
 | 
			
		||||
	pokeLocalSite(s,result,clbuf);
 | 
			
		||||
    });
 | 
			
		||||
    result = result*div;
 | 
			
		||||
      
 | 
			
		||||
    // destroying plan
 | 
			
		||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,535 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/LinearOperator.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// LinearOperators Take a something and return a something.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real):
 | 
			
		||||
//SBase
 | 
			
		||||
//   i)  F(a x + b y) = aF(x) + b F(y).
 | 
			
		||||
//  ii)  <x|Op|y> = <y|AdjOp|x>^\ast
 | 
			
		||||
//
 | 
			
		||||
// Would be fun to have a test linearity & Herm Conj function!
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class LinearOperatorBase {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
 | 
			
		||||
  virtual void OpDir  (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
 | 
			
		||||
  virtual void OpDirAll  (const Field &in, std::vector<Field> &out) = 0; // Abstract base
 | 
			
		||||
 | 
			
		||||
  virtual void Op     (const Field &in, Field &out) = 0; // Abstract base
 | 
			
		||||
  virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base
 | 
			
		||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
 | 
			
		||||
  virtual void HermOp(const Field &in, Field &out)=0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
 | 
			
		||||
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
 | 
			
		||||
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
 | 
			
		||||
// replication of code.
 | 
			
		||||
//
 | 
			
		||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
 | 
			
		||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
 | 
			
		||||
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
 | 
			
		||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op from non-herm matrix
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class MdagMLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MdagM(in,out,n1,n2);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op and shift it for mgrid smoother
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  RealD _shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MdagM(in,out,n1,n2);
 | 
			
		||||
    out = out + _shift*in;
 | 
			
		||||
 | 
			
		||||
    ComplexD dot;	
 | 
			
		||||
    dot= innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    RealD n1,n2;
 | 
			
		||||
    HermOpAndNorm(in,out,n1,n2);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Wrap an already herm matrix
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class HermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    ComplexD dot= innerProduct(in,out); n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class NonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // Even Odd Schur decomp operators; there are several
 | 
			
		||||
    // ways to introduce the even odd checkerboarding
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    template<class Field>
 | 
			
		||||
    class SchurOperatorBase :  public LinearOperatorBase<Field> {
 | 
			
		||||
    public:
 | 
			
		||||
      virtual  RealD Mpc      (const Field &in, Field &out) =0;
 | 
			
		||||
      virtual  RealD MpcDag   (const Field &in, Field &out) =0;
 | 
			
		||||
      virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
      tmp.Checkerboard() = in.Checkerboard();
 | 
			
		||||
	ni=Mpc(in,tmp);
 | 
			
		||||
	no=MpcDag(tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
      out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
	MpcDagMpc(in,out,n1,n2);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
	RealD n1,n2;
 | 
			
		||||
	HermOpAndNorm(in,out,n1,n2);
 | 
			
		||||
      }
 | 
			
		||||
      void Op     (const Field &in, Field &out){
 | 
			
		||||
	Mpc(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      void AdjOp     (const Field &in, Field &out){ 
 | 
			
		||||
	MpcDag(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      // Support for coarsening to a multigrid
 | 
			
		||||
      void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
	assert(0); // must coarsen the unpreconditioned system
 | 
			
		||||
      }
 | 
			
		||||
      void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
      void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
	assert(0);
 | 
			
		||||
      };
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
    class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    public:
 | 
			
		||||
      Matrix &_Mat;
 | 
			
		||||
      SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
      virtual  RealD Mpc      (const Field &in, Field &out) {
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
      tmp.Checkerboard() = !in.Checkerboard();
 | 
			
		||||
	//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << "  _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
 | 
			
		||||
 | 
			
		||||
	_Mat.Meooe(in,tmp);
 | 
			
		||||
	_Mat.MooeeInv(tmp,out);
 | 
			
		||||
	_Mat.Meooe(out,tmp);
 | 
			
		||||
 | 
			
		||||
      //std::cout << "cb in " << in.Checkerboard() << "  cb out " << out.Checkerboard() << std::endl;
 | 
			
		||||
	_Mat.Mooee(in,out);
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD MpcDag   (const Field &in, Field &out){
 | 
			
		||||
	Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
	_Mat.MeooeDag(in,tmp);
 | 
			
		||||
        _Mat.MooeeInvDag(tmp,out);
 | 
			
		||||
	_Mat.MeooeDag(out,tmp);
 | 
			
		||||
 | 
			
		||||
	_Mat.MooeeDag(in,out);
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurDiagOneOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
      Matrix &_Mat;
 | 
			
		||||
    public:
 | 
			
		||||
      SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
      virtual  RealD Mpc      (const Field &in, Field &out) {
 | 
			
		||||
	Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
	_Mat.Meooe(in,out);
 | 
			
		||||
	_Mat.MooeeInv(out,tmp);
 | 
			
		||||
	_Mat.Meooe(tmp,out);
 | 
			
		||||
	_Mat.MooeeInv(out,tmp);
 | 
			
		||||
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD MpcDag   (const Field &in, Field &out){
 | 
			
		||||
	Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
	_Mat.MooeeInvDag(in,out);
 | 
			
		||||
	_Mat.MeooeDag(out,tmp);
 | 
			
		||||
	_Mat.MooeeInvDag(tmp,out);
 | 
			
		||||
	_Mat.MeooeDag(out,tmp);
 | 
			
		||||
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurDiagTwoOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
      Matrix &_Mat;
 | 
			
		||||
    public:
 | 
			
		||||
      SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
      virtual  RealD Mpc      (const Field &in, Field &out) {
 | 
			
		||||
	Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
	_Mat.MooeeInv(in,out);
 | 
			
		||||
	_Mat.Meooe(out,tmp);
 | 
			
		||||
	_Mat.MooeeInv(tmp,out);
 | 
			
		||||
	_Mat.Meooe(out,tmp);
 | 
			
		||||
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD MpcDag   (const Field &in, Field &out){
 | 
			
		||||
	Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
	_Mat.MeooeDag(in,out);
 | 
			
		||||
	_Mat.MooeeInvDag(out,tmp);
 | 
			
		||||
	_Mat.MeooeDag(tmp,out);
 | 
			
		||||
	_Mat.MooeeInvDag(out,tmp);
 | 
			
		||||
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
 | 
			
		||||
    // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
 | 
			
		||||
    template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //  Staggered use
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
      Matrix &_Mat;
 | 
			
		||||
      Field tmp;
 | 
			
		||||
      RealD mass;
 | 
			
		||||
      double tMpc;
 | 
			
		||||
      double tIP;
 | 
			
		||||
      double tMeo;
 | 
			
		||||
      double taxpby_norm;
 | 
			
		||||
      uint64_t ncall;
 | 
			
		||||
public:
 | 
			
		||||
      void Report(void)
 | 
			
		||||
      {
 | 
			
		||||
	std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << " HermOpAndNorm.IP  "<< tIP /ncall<<" usec "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << " Mpc.MeoMoe        "<< tMeo/ncall<<" usec "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << " Mpc.axpby_norm    "<< taxpby_norm/ncall<<" usec "<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid()) 
 | 
			
		||||
      { 
 | 
			
		||||
	assert( _Mat.isTrivialEE() );
 | 
			
		||||
	mass = _Mat.Mass();
 | 
			
		||||
	tMpc=0;
 | 
			
		||||
	tIP =0;
 | 
			
		||||
        tMeo=0;
 | 
			
		||||
        taxpby_norm=0;
 | 
			
		||||
	ncall=0;
 | 
			
		||||
      }
 | 
			
		||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	ncall++;
 | 
			
		||||
	tMpc-=usecond();
 | 
			
		||||
    n2 = Mpc(in,out);
 | 
			
		||||
	tMpc+=usecond();
 | 
			
		||||
	tIP-=usecond();
 | 
			
		||||
    ComplexD dot= innerProduct(in,out);
 | 
			
		||||
	tIP+=usecond();
 | 
			
		||||
    n1 = real(dot);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
	ncall++;
 | 
			
		||||
	tMpc-=usecond();
 | 
			
		||||
	_Mat.Meooe(in,out);
 | 
			
		||||
	_Mat.Meooe(out,tmp);
 | 
			
		||||
	tMpc+=usecond();
 | 
			
		||||
	taxpby_norm-=usecond();
 | 
			
		||||
	axpby(out,-1.0,mass*mass,tmp,in);
 | 
			
		||||
	taxpby_norm+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  virtual  RealD Mpc      (const Field &in, Field &out) 
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    Field tmp2(in.Grid());
 | 
			
		||||
 | 
			
		||||
    //    std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
 | 
			
		||||
    _Mat.Mooee(in,out);
 | 
			
		||||
    _Mat.Mooee(out,tmp);
 | 
			
		||||
    //    std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
 | 
			
		||||
 | 
			
		||||
    tMeo-=usecond();
 | 
			
		||||
    _Mat.Meooe(in,out);
 | 
			
		||||
    _Mat.Meooe(out,tmp);
 | 
			
		||||
    tMeo+=usecond();
 | 
			
		||||
    taxpby_norm-=usecond();
 | 
			
		||||
    RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in);
 | 
			
		||||
    taxpby_norm+=usecond();
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
  virtual  RealD MpcDag   (const Field &in, Field &out){
 | 
			
		||||
    return Mpc(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
 | 
			
		||||
    assert(0);// Never need with staggered
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for functions of operators
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class OperatorFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    for(int k=0;k<in.size();k++){
 | 
			
		||||
      (*this)(Linop,in[k],out[k]);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class LinearFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (const Field &in, Field &out) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
    out = in;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for Multishift solvers for operators
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class OperatorMultiFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// FIXME : To think about
 | 
			
		||||
 | 
			
		||||
// Chroma functionality list defining LinearOperator
 | 
			
		||||
/*
 | 
			
		||||
  virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
 | 
			
		||||
  virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
 | 
			
		||||
  virtual const Subset& subset() const = 0;
 | 
			
		||||
  virtual unsigned long nFlops() const { return 0; }
 | 
			
		||||
  virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
 | 
			
		||||
  class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
 | 
			
		||||
  const Subset& subset() const {return all;}
 | 
			
		||||
  };
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Hermitian operator Linear function and operator function
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
    Linop.HermOp(in,out);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class PlainHermOp : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  LinearOperatorBase<Field> &_Linop;
 | 
			
		||||
      
 | 
			
		||||
  PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) 
 | 
			
		||||
  {}
 | 
			
		||||
      
 | 
			
		||||
  void operator()(const Field& in, Field& out) {
 | 
			
		||||
    _Linop.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class FunctionHermOp : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  OperatorFunction<Field>   & _poly;
 | 
			
		||||
  LinearOperatorBase<Field> &_Linop;
 | 
			
		||||
      
 | 
			
		||||
  FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop) 
 | 
			
		||||
    : _poly(poly), _Linop(linop) {};
 | 
			
		||||
      
 | 
			
		||||
  void operator()(const Field& in, Field& out) {
 | 
			
		||||
    _poly(_Linop,in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class Polynomial : public OperatorFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
 | 
			
		||||
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    Field AtoN(in.Grid());
 | 
			
		||||
    Field Mtmp(in.Grid());
 | 
			
		||||
    AtoN = in;
 | 
			
		||||
    out = AtoN*Coeffs[0];
 | 
			
		||||
    for(int n=1;n<Coeffs.size();n++){
 | 
			
		||||
      Mtmp = AtoN;
 | 
			
		||||
      Linop.HermOp(Mtmp,AtoN);
 | 
			
		||||
      out=out+AtoN*Coeffs[n];
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,84 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/SparseMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_ALGORITHM_SPARSE_MATRIX_H
 | 
			
		||||
#define  GRID_ALGORITHM_SPARSE_MATRIX_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class SparseMatrixBase {
 | 
			
		||||
public:
 | 
			
		||||
  virtual GridBase *Grid(void) =0;
 | 
			
		||||
  // Full checkerboar operations
 | 
			
		||||
  virtual RealD M    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual RealD Mdag (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual void  MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
 | 
			
		||||
    Field tmp (in.Grid());
 | 
			
		||||
    ni=M(in,tmp);
 | 
			
		||||
    no=Mdag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  MdagM(const Field &in, Field &out) {
 | 
			
		||||
    RealD ni, no;
 | 
			
		||||
    MdagM(in,out,ni,no);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Interface augmented by a red black sparse matrix, such as a Fermion action
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  virtual GridBase *RedBlackGrid(void)=0;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Query the even even properties to make algorithmic decisions
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual RealD  Mass(void)        { return 0.0; };
 | 
			
		||||
  virtual int    ConstEE(void)     { return 1; }; // Disable assumptions unless overridden
 | 
			
		||||
  virtual int    isTrivialEE(void) { return 0; }; // by a derived class that knows better
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operaions
 | 
			
		||||
  virtual  void Meooe    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mooee    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void MooeeInv (const Field &in, Field &out)=0;
 | 
			
		||||
 | 
			
		||||
  virtual  void MeooeDag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void MooeeDag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void MooeeInvDag (const Field &in, Field &out)=0;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,397 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/approx/Chebyshev.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CHEBYSHEV_H
 | 
			
		||||
#define GRID_CHEBYSHEV_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/LinearOperator.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
struct ChebyParams : Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
 | 
			
		||||
				  RealD, alpha,  
 | 
			
		||||
				  RealD, beta,   
 | 
			
		||||
				  int, Npoly);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Generic Chebyshev approximations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class Chebyshev : public OperatorFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD hi;
 | 
			
		||||
  RealD lo;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    RealD diff = hi-lo;
 | 
			
		||||
    RealD delta = diff*1.0e-9;
 | 
			
		||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
      delta*=1.1;
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Convenience for plotting the approximation
 | 
			
		||||
  void   PlotApprox(std::ostream &out) {
 | 
			
		||||
    out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
 | 
			
		||||
      out <<x<<"\t"<<approx(x)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  Chebyshev(){};
 | 
			
		||||
  Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
 | 
			
		||||
  Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
 | 
			
		||||
  Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // CJ: the one we need for Lanczos
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    Coeffs.assign(0.,order);
 | 
			
		||||
    Coeffs[order-1] = 1.;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
			
		||||
  // Similar kick effect below the threshold as Lanczos filter approach
 | 
			
		||||
  void InitLowPass(RealD _lo,RealD _hi,int _order)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD k=(order-1.0);
 | 
			
		||||
      RealD s=std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  void JacksonSmooth(void){
 | 
			
		||||
    RealD M=order;
 | 
			
		||||
    RealD alpha = M_PI/(M+2);
 | 
			
		||||
    RealD lmax = std::cos(alpha);
 | 
			
		||||
    RealD sumUsq =0;
 | 
			
		||||
    std::vector<RealD> U(M);
 | 
			
		||||
    std::vector<RealD> a(M);
 | 
			
		||||
    std::vector<RealD> g(M);
 | 
			
		||||
    for(int n=0;n<=M;n++){
 | 
			
		||||
      U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
 | 
			
		||||
      sumUsq += U[n]*U[n];
 | 
			
		||||
    }      
 | 
			
		||||
    sumUsq = std::sqrt(sumUsq);
 | 
			
		||||
 | 
			
		||||
    for(int i=1;i<=M;i++){
 | 
			
		||||
      a[i] = U[i]/sumUsq;
 | 
			
		||||
    }
 | 
			
		||||
    g[0] = 1.0;
 | 
			
		||||
    for(int m=1;m<=M;m++){
 | 
			
		||||
      g[m] = 0;
 | 
			
		||||
      for(int i=0;i<=M-m;i++){
 | 
			
		||||
	g[m]+= a[i]*a[m+i];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for(int m=1;m<=M;m++){
 | 
			
		||||
      Coeffs[m]*=g[m];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  RealD approx(RealD x) // Convenience for plotting the approximation
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
      
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
    RealD T0=1;
 | 
			
		||||
    RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
    sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int i=2;i<order;i++){
 | 
			
		||||
      Tnp=2*y*Tn-Tnm;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
      sum+= Tn*Coeffs[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  RealD approxD(RealD x)
 | 
			
		||||
  {
 | 
			
		||||
    RealD Un;
 | 
			
		||||
    RealD Unm;
 | 
			
		||||
    RealD Unp;
 | 
			
		||||
      
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
    RealD U0=1;
 | 
			
		||||
    RealD U1=2*y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = Coeffs[1]*U0;
 | 
			
		||||
    sum+= Coeffs[2]*U1*2.0;
 | 
			
		||||
      
 | 
			
		||||
    Un =U1;
 | 
			
		||||
    Unm=U0;
 | 
			
		||||
    for(int i=2;i<order-1;i++){
 | 
			
		||||
      Unp=2*y*Un-Unm;
 | 
			
		||||
      Unm=Un;
 | 
			
		||||
      Un =Unp;
 | 
			
		||||
      sum+= Un*Coeffs[i+1]*(i+1.0);
 | 
			
		||||
    }
 | 
			
		||||
    return sum/(0.5*(hi-lo));
 | 
			
		||||
  };
 | 
			
		||||
    
 | 
			
		||||
  RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
 | 
			
		||||
    RealD x = x0;
 | 
			
		||||
    RealD eps;
 | 
			
		||||
      
 | 
			
		||||
    int i;
 | 
			
		||||
    for (i=0;i<maxiter;i++) {
 | 
			
		||||
      eps = approx(x) - z;
 | 
			
		||||
      if (fabs(eps / z) < resid)
 | 
			
		||||
	return x;
 | 
			
		||||
      x = x - eps / approxD(x);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    return std::numeric_limits<double>::quiet_NaN();
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
 | 
			
		||||
    // std::cout << "Chevyshef(): in.Grid()="<<in.Grid()<<std::endl;
 | 
			
		||||
    //std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid); T0 = in;  
 | 
			
		||||
    Field T1(grid); 
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field y(grid);
 | 
			
		||||
      
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    axpby(T1,xscale,mscale,y,in);
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
			
		||||
    axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
      //     y=xscale*y+mscale*(*Tn);
 | 
			
		||||
      //      *Tnp=2.0*y-(*Tnm);
 | 
			
		||||
      //      out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
      axpby(y,xscale,mscale,y,(*Tn));
 | 
			
		||||
      axpby(*Tnp,2.0,-1.0,y,(*Tnm));
 | 
			
		||||
      axpy(out,Coeffs[n],*Tnp,out);
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ChebyshevLanczos : public Chebyshev<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD alpha;
 | 
			
		||||
  RealD beta;
 | 
			
		||||
  RealD mu;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
 | 
			
		||||
    alpha(_alpha),
 | 
			
		||||
    beta(_beta),
 | 
			
		||||
    mu(_mu)
 | 
			
		||||
  {
 | 
			
		||||
    order=_order;
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int i=0;i<_order;i++){
 | 
			
		||||
      Coeffs[i] = 0.0;
 | 
			
		||||
    }
 | 
			
		||||
    Coeffs[order-1]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD approx(RealD xx) // Convenience for plotting the approximation
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
    Real aa = alpha * alpha;
 | 
			
		||||
    Real bb = beta  *  beta;
 | 
			
		||||
      
 | 
			
		||||
    RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
 | 
			
		||||
 | 
			
		||||
    RealD y= x;
 | 
			
		||||
      
 | 
			
		||||
    RealD T0=1;
 | 
			
		||||
    RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
    sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int i=2;i<order;i++){
 | 
			
		||||
      Tnp=2*y*Tn-Tnm;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
      sum+= Tn*Coeffs[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // shift_Multiply in Rudy's code
 | 
			
		||||
  void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
 | 
			
		||||
    RealD aa= alpha*alpha;
 | 
			
		||||
    RealD bb= beta * beta;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOp(in,out);
 | 
			
		||||
    out = out - mu*in;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOp(out,tmp);
 | 
			
		||||
    tmp = tmp - mu * out;
 | 
			
		||||
 | 
			
		||||
    out = (2.0/ (aa-bb) ) * tmp -  ((aa+bb)/(aa-bb))*in;
 | 
			
		||||
  };
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid); T0 = in;  
 | 
			
		||||
    Field T1(grid); 
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field  y(grid);
 | 
			
		||||
      
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    // Tn=T1 = (xscale M )*in
 | 
			
		||||
    AminusMuSq(Linop,T0,T1);
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
      AminusMuSq(Linop,*Tn,y);
 | 
			
		||||
 | 
			
		||||
      *Tnp=2.0*y-(*Tnm);
 | 
			
		||||
 | 
			
		||||
      out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,152 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/approx/Forecast.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef INCLUDED_FORECAST_H
 | 
			
		||||
#define INCLUDED_FORECAST_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Abstract base class.
 | 
			
		||||
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
 | 
			
		||||
// and returns a forecasted solution to the system D*psi = phi (psi).
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class Forecast
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
 | 
			
		||||
// used to forecast solutions across poles of the EOFA heatbath.
 | 
			
		||||
//
 | 
			
		||||
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class ChronoForecast : public Forecast<Matrix,Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
 | 
			
		||||
  {
 | 
			
		||||
    int degree = prev_solns.size();
 | 
			
		||||
    Field chi(phi); // forecasted solution
 | 
			
		||||
 | 
			
		||||
    // Trivial cases
 | 
			
		||||
    if(degree == 0){ chi = Zero(); return chi; }
 | 
			
		||||
    else if(degree == 1){ return prev_solns[0]; }
 | 
			
		||||
 | 
			
		||||
    //    RealD dot;
 | 
			
		||||
    ComplexD xp;
 | 
			
		||||
    Field r(phi); // residual
 | 
			
		||||
    Field Mv(phi);
 | 
			
		||||
    std::vector<Field> v(prev_solns); // orthonormalized previous solutions
 | 
			
		||||
    std::vector<Field> MdagMv(degree,phi);
 | 
			
		||||
 | 
			
		||||
    // Array to hold the matrix elements
 | 
			
		||||
    std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
 | 
			
		||||
 | 
			
		||||
    // Solution and source vectors
 | 
			
		||||
    std::vector<ComplexD> a(degree);
 | 
			
		||||
    std::vector<ComplexD> b(degree);
 | 
			
		||||
 | 
			
		||||
    // Orthonormalize the vector basis
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      v[i] *= 1.0/std::sqrt(norm2(v[i]));
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Perform sparse matrix multiplication and construct rhs
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      b[i] = innerProduct(v[i],phi);
 | 
			
		||||
      Mat.M(v[i],Mv);
 | 
			
		||||
      Mat.Mdag(Mv,MdagMv[i]);
 | 
			
		||||
      G[i][i] = innerProduct(v[i],MdagMv[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Construct the matrix
 | 
			
		||||
    for(int j=0; j<degree; j++){
 | 
			
		||||
      for(int k=j+1; k<degree; k++){
 | 
			
		||||
	G[j][k] = innerProduct(v[j],MdagMv[k]);
 | 
			
		||||
	G[k][j] = conjugate(G[j][k]);
 | 
			
		||||
      }}
 | 
			
		||||
 | 
			
		||||
    // Gauss-Jordan elimination with partial pivoting
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
 | 
			
		||||
      // Perform partial pivoting
 | 
			
		||||
      int k = i;
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
 | 
			
		||||
      if(k != i){
 | 
			
		||||
	xp = b[k];
 | 
			
		||||
	b[k] = b[i];
 | 
			
		||||
	b[i] = xp;
 | 
			
		||||
	for(int j=0; j<degree; j++){
 | 
			
		||||
	  xp = G[k][j];
 | 
			
		||||
	  G[k][j] = G[i][j];
 | 
			
		||||
	  G[i][j] = xp;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Convert matrix to upper triangular form
 | 
			
		||||
      for(int j=i+1; j<degree; j++){
 | 
			
		||||
	xp = G[j][i]/G[i][i];
 | 
			
		||||
	b[j] -= xp * b[i];
 | 
			
		||||
	for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Use Gaussian elimination to solve equations and calculate initial guess
 | 
			
		||||
    chi = Zero();
 | 
			
		||||
    r = phi;
 | 
			
		||||
    for(int i=degree-1; i>=0; i--){
 | 
			
		||||
      a[i] = 0.0;
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
 | 
			
		||||
      a[i] = (b[i]-a[i])/G[i][i];
 | 
			
		||||
      chi += a[i]*v[i];
 | 
			
		||||
      r -= a[i]*MdagMv[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD true_r(0.0);
 | 
			
		||||
    ComplexD tmp;
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      tmp = -b[i];
 | 
			
		||||
      for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
 | 
			
		||||
      tmp = conjugate(tmp)*tmp;
 | 
			
		||||
      true_r += std::sqrt(tmp.real());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD error = std::sqrt(norm2(r)/norm2(phi));
 | 
			
		||||
    std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
 | 
			
		||||
 | 
			
		||||
    return chi;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,129 +0,0 @@
 | 
			
		||||
#ifndef GRID_JACOBIPOLYNOMIAL_H
 | 
			
		||||
#define GRID_JACOBIPOLYNOMIAL_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/LinearOperator.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class JacobiPolynomial : public OperatorFunction<Field> {
 | 
			
		||||
 private:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD hi;
 | 
			
		||||
  RealD lo;
 | 
			
		||||
  RealD alpha;
 | 
			
		||||
  RealD beta;
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    csv(out,lo,hi);
 | 
			
		||||
  }
 | 
			
		||||
  void csv(std::ostream &out,RealD llo,RealD hhi){
 | 
			
		||||
    RealD diff = hhi-llo;
 | 
			
		||||
    RealD delta = diff*1.0e-5;
 | 
			
		||||
    for (RealD x=llo-delta; x<=hhi; x+=delta) {
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f <<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  JacobiPolynomial(){};
 | 
			
		||||
  JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
 | 
			
		||||
  {
 | 
			
		||||
      lo=_lo;
 | 
			
		||||
      hi=_hi;
 | 
			
		||||
      alpha=_alpha;
 | 
			
		||||
      beta=_beta;
 | 
			
		||||
      order=_order;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  RealD approx(RealD x) // Convenience for plotting the approximation                                                       
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
 | 
			
		||||
    RealD T0=1.0;
 | 
			
		||||
    RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
 | 
			
		||||
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int n=2;n<=order;n++){
 | 
			
		||||
      RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
 | 
			
		||||
      RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
 | 
			
		||||
      RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
 | 
			
		||||
      RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
 | 
			
		||||
      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
    }
 | 
			
		||||
    return Tnp;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Implement the required interface                                                                                       
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid);
 | 
			
		||||
    Field T1(grid);
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field y(grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    //    RealD T0=1.0;                                                                                                     
 | 
			
		||||
    T0=in;
 | 
			
		||||
 | 
			
		||||
    //    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));                                                                           
 | 
			
		||||
    //           = x * 2/(hi-lo) - (hi+lo)/(hi-lo)                                                                          
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    y=y*xscale+in*mscale;
 | 
			
		||||
 | 
			
		||||
    // RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
 | 
			
		||||
    RealD halfAmB  = (alpha-beta)*0.5;
 | 
			
		||||
    RealD halfApBp2= (alpha+beta+2.0)*0.5;
 | 
			
		||||
    T1 = halfAmB * in + halfApBp2*y;
 | 
			
		||||
 | 
			
		||||
    for(int n=2;n<=order;n++){
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
      y=xscale*y+mscale*(*Tn);
 | 
			
		||||
 | 
			
		||||
      RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
 | 
			
		||||
      RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
 | 
			
		||||
      RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
 | 
			
		||||
      RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
 | 
			
		||||
 | 
			
		||||
      //      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;                                                             
 | 
			
		||||
      cny=cny/cnp;
 | 
			
		||||
      cn1=cn1/cnp;
 | 
			
		||||
      cn1=cn1/cnp;
 | 
			
		||||
      cnm=cnm/cnp;
 | 
			
		||||
 | 
			
		||||
      *Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies                                                                                     
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
    }
 | 
			
		||||
    out=*Tnp;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,694 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Block conjugate gradient. Dimension zero should be the block direction
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Field>
 | 
			
		||||
class BlockConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
 | 
			
		||||
  int blockDim ;
 | 
			
		||||
  int Nblock;
 | 
			
		||||
 | 
			
		||||
  BlockCGtype CGtype;
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  Integer PrintInterval; //GridLogMessages or Iterative
 | 
			
		||||
  
 | 
			
		||||
  BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol), CGtype(cgtype),   blockDim(_Orthog),  MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Thin QR factorisation (google it)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //Dimensions
 | 
			
		||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
			
		||||
  //
 | 
			
		||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
			
		||||
  //
 | 
			
		||||
  //   Q  C = R => Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
			
		||||
  //
 | 
			
		||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
			
		||||
  //
 | 
			
		||||
  // Checks:
 | 
			
		||||
  // Cdag C = Rdag R ; passes.
 | 
			
		||||
  // QdagQ  = 1      ; passes
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 Eigen::MatrixXcd &C,
 | 
			
		||||
		 Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		 Field & Q,
 | 
			
		||||
		 const Field & R)
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = blockDim; // First dimension is block dim; this is an assumption
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  // Force manifest hermitian to avoid rounding related
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Q_j  = R_i Cinv(i,j) 
 | 
			
		||||
  //
 | 
			
		||||
  // NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  sliceMulMatrix(Q,Cinv,R,Orthog);
 | 
			
		||||
}
 | 
			
		||||
// see comments above
 | 
			
		||||
void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 Eigen::MatrixXcd &C,
 | 
			
		||||
		 Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		 std::vector<Field> & Q,
 | 
			
		||||
		 const std::vector<Field> & R)
 | 
			
		||||
{
 | 
			
		||||
  InnerProductMatrix(m_rr,R,R);
 | 
			
		||||
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
 | 
			
		||||
  MulMatrix(Q,Cinv,R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Call one of several implementations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  if ( CGtype == BlockCGrQ ) {
 | 
			
		||||
    BlockCGrQsolve(Linop,Src,Psi);
 | 
			
		||||
  } else if (CGtype == CGmultiRHS ) {
 | 
			
		||||
    CGmultiRHSsolve(Linop,Src,Psi);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  if ( CGtype == BlockCGrQVec ) {
 | 
			
		||||
    BlockCGrQsolveVec(Linop,Src,Psi);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQ implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
// X is guess/Solution
 | 
			
		||||
// B is RHS
 | 
			
		||||
// Solve A X_i = B_i    ;        i refers to Nblock index
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) 
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = blockDim; // First dimension is block dim; this is an assumption
 | 
			
		||||
  Nblock = B.Grid()->_fdimensions[Orthog];
 | 
			
		||||
/* FAKE */
 | 
			
		||||
  Nblock=8;
 | 
			
		||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  X.Checkerboard() = B.Checkerboard();
 | 
			
		||||
  conformable(X, B);
 | 
			
		||||
 | 
			
		||||
  Field tmp(B);
 | 
			
		||||
  Field Q(B);
 | 
			
		||||
  Field D(B);
 | 
			
		||||
  Field Z(B);
 | 
			
		||||
  Field AD(B);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  sliceNorm(ssq,B,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,B,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,X,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
			
		||||
   ************************************************************************
 | 
			
		||||
   * Dimensions:
 | 
			
		||||
   *
 | 
			
		||||
   *   X,B==(Nferm x Nblock)
 | 
			
		||||
   *   A==(Nferm x Nferm)
 | 
			
		||||
   *  
 | 
			
		||||
   * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
   * 
 | 
			
		||||
   * QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
   * for k: 
 | 
			
		||||
   *   Z  = AD
 | 
			
		||||
   *   M  = [D^dag Z]^{-1}
 | 
			
		||||
   *   X  = X + D MC
 | 
			
		||||
   *   QS = Q - ZM
 | 
			
		||||
   *   D  = Q + D S^dag
 | 
			
		||||
   *   C  = S C
 | 
			
		||||
   */
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Initial block: initial search dir is guess
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  //1.  QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
  Linop.HermOp(X, AD);
 | 
			
		||||
  tmp = B - AD;  
 | 
			
		||||
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
  D=Q;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch QRTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    //3. Z  = AD
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    Linop.HermOp(D, Z);      
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //4. M  = [D^dag Z]^{-1}
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    m_M       = m_DZ.inverse();
 | 
			
		||||
    
 | 
			
		||||
    //5. X  = X + D MC
 | 
			
		||||
    m_tmp     = m_M * m_C;
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(X,m_tmp, D,X,Orthog);     
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //6. QS = Q - ZM
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(tmp,m_M,Z,Q,Orthog,-1.0);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
    QRTimer.Start();
 | 
			
		||||
    ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
 | 
			
		||||
    QRTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
    //7. D  = Q + D S^dag
 | 
			
		||||
    m_tmp = m_S.adjoint();
 | 
			
		||||
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //8. C  = S C
 | 
			
		||||
    m_C = m_S*m_C;
 | 
			
		||||
    
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<Nblock;b++) {
 | 
			
		||||
      rrsum+=real(m_rr(b,b));
 | 
			
		||||
      rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
 | 
			
		||||
	      <<" ave "<<std::sqrt(rrsum/sssum) << " max "<< max_resid <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
 | 
			
		||||
		  << std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(X, AD);
 | 
			
		||||
      AD = AD-B;
 | 
			
		||||
      std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed()  <<std::endl;
 | 
			
		||||
	    
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// multiRHS conjugate gradient. Dimension zero should be the block direction
 | 
			
		||||
// Use this for spread out across nodes
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = blockDim; // First dimension is block dim
 | 
			
		||||
  Nblock = Src.Grid()->_fdimensions[Orthog];
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  Psi.Checkerboard() = Src.Checkerboard();
 | 
			
		||||
  conformable(Psi, Src);
 | 
			
		||||
 | 
			
		||||
  Field P(Src);
 | 
			
		||||
  Field AP(Src);
 | 
			
		||||
  Field R(Src);
 | 
			
		||||
  
 | 
			
		||||
  std::vector<ComplexD> v_pAp(Nblock);
 | 
			
		||||
  std::vector<RealD> v_rr (Nblock);
 | 
			
		||||
  std::vector<RealD> v_rr_inv(Nblock);
 | 
			
		||||
  std::vector<RealD> v_alpha(Nblock);
 | 
			
		||||
  std::vector<RealD> v_beta(Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  sliceNorm(ssq,Src,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Src,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Psi,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  // Initial search dir is guess
 | 
			
		||||
  Linop.HermOp(Psi, AP);
 | 
			
		||||
 | 
			
		||||
  R = Src - AP;  
 | 
			
		||||
  P = R;
 | 
			
		||||
  sliceNorm(v_rr,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch sliceNormTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
 | 
			
		||||
	      <<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    Linop.HermOp(P, AP);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Alpha
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductVector(v_pAp,P,AP,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_alpha[b] = v_rr[b]/real(v_pAp[b]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Psi, R update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddVector(Psi,v_alpha, P,Psi,Orthog);     // add alpha *  P to psi
 | 
			
		||||
    sliceMaddVector(R  ,v_alpha,AP,  R,Orthog,-1.0);// sub alpha * AP to resid
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Beta
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_rr_inv[b] = 1.0/v_rr[b];
 | 
			
		||||
    }
 | 
			
		||||
    sliceNormTimer.Start();
 | 
			
		||||
    sliceNorm(v_rr,R,Orthog);
 | 
			
		||||
    sliceNormTimer.Stop();
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_beta[b] = v_rr_inv[b] *v_rr[b];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Search update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddVector(P,v_beta,P,R,Orthog);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      RealD rr = v_rr[b]/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tBlock "<<b<<" computed resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(Psi, AP);
 | 
			
		||||
      AP = AP-Src;
 | 
			
		||||
      std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tNorm       " << sliceNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQvec implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
// X is guess/Solution
 | 
			
		||||
// B is RHS
 | 
			
		||||
// Solve A X_i = B_i    ;        i refers to Nblock index
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X) 
 | 
			
		||||
{
 | 
			
		||||
  Nblock = B.size();
 | 
			
		||||
  assert(Nblock == X.size());
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ 
 | 
			
		||||
    X[b].Checkerboard() = B[b].Checkerboard();
 | 
			
		||||
    conformable(X[b], B[b]);
 | 
			
		||||
    conformable(X[b], X[0]); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Field Fake(B[0]);
 | 
			
		||||
 | 
			
		||||
  std::vector<Field> tmp(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>   Q(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>   D(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>   Z(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>  AD(Nblock,Fake);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
			
		||||
   ************************************************************************
 | 
			
		||||
   * Dimensions:
 | 
			
		||||
   *
 | 
			
		||||
   *   X,B==(Nferm x Nblock)
 | 
			
		||||
   *   A==(Nferm x Nferm)
 | 
			
		||||
   *  
 | 
			
		||||
   * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
   * 
 | 
			
		||||
   * QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
   * for k: 
 | 
			
		||||
   *   Z  = AD
 | 
			
		||||
   *   M  = [D^dag Z]^{-1}
 | 
			
		||||
   *   X  = X + D MC
 | 
			
		||||
   *   QS = Q - ZM
 | 
			
		||||
   *   D  = Q + D S^dag
 | 
			
		||||
   *   C  = S C
 | 
			
		||||
   */
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Initial block: initial search dir is guess
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  //1.  QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
    tmp[b] = B[b] - AD[b];  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++) D[b]=Q[b];
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch QRTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    //3. Z  = AD
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);      
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //4. M  = [D^dag Z]^{-1}
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    InnerProductMatrix(m_DZ,D,Z);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    m_M       = m_DZ.inverse();
 | 
			
		||||
    
 | 
			
		||||
    //5. X  = X + D MC
 | 
			
		||||
    m_tmp     = m_M * m_C;
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    MaddMatrix(X,m_tmp, D,X);     
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //6. QS = Q - ZM
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    MaddMatrix(tmp,m_M,Z,Q,-1.0);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
    QRTimer.Start();
 | 
			
		||||
    ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
 | 
			
		||||
    QRTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
    //7. D  = Q + D S^dag
 | 
			
		||||
    m_tmp = m_S.adjoint();
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    MaddMatrix(D,m_tmp,D,Q);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //8. C  = S C
 | 
			
		||||
    m_C = m_S*m_C;
 | 
			
		||||
    
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<Nblock;b++) {
 | 
			
		||||
      rrsum+=real(m_rr(b,b));
 | 
			
		||||
      rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
      for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
 | 
			
		||||
      std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed()  <<std::endl;
 | 
			
		||||
	    
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,248 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the CAGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  CommunicationAvoidingGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                                  Integer maxit,
 | 
			
		||||
                                                  Integer restart_length,
 | 
			
		||||
                                                  bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // this should probably be made a class member so that it is only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    ComplexD scale = 1.0/gamma[0];
 | 
			
		||||
    v[0] = scale * r;
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(v, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(v[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu     = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + v[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,184 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  
 | 
			
		||||
  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD cp, c, a, d, b, ssq, qq;
 | 
			
		||||
    //RealD b_pred;
 | 
			
		||||
 | 
			
		||||
    Field p(src);
 | 
			
		||||
    Field mmp(src);
 | 
			
		||||
    Field r(src);
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
    
 | 
			
		||||
    r = src - mmp;
 | 
			
		||||
    p = r;
 | 
			
		||||
 | 
			
		||||
    a = norm2(p);
 | 
			
		||||
    cp = a;
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:    mp " << d << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:   mmp " << b << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:  cp,r " << cp << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:     p " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    // Check if guess is really REALLY good :)
 | 
			
		||||
    if (cp <= rsq) {
 | 
			
		||||
      std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
 | 
			
		||||
      IterationsToComplete = 0;	
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8)
 | 
			
		||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerTimer;
 | 
			
		||||
    GridStopWatch AxpyNormTimer;
 | 
			
		||||
    GridStopWatch LinearCombTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k;
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
      c = cp;
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
      Linop.HermOp(p, mmp);
 | 
			
		||||
      MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      InnerTimer.Start();
 | 
			
		||||
      ComplexD dc  = innerProduct(p,mmp);
 | 
			
		||||
      InnerTimer.Stop();
 | 
			
		||||
      d = dc.real();
 | 
			
		||||
      a = c / d;
 | 
			
		||||
 | 
			
		||||
      AxpyNormTimer.Start();
 | 
			
		||||
      cp = axpy_norm(r, -a, mmp, r);
 | 
			
		||||
      AxpyNormTimer.Stop();
 | 
			
		||||
      b = cp / c;
 | 
			
		||||
 | 
			
		||||
      LinearCombTimer.Start();
 | 
			
		||||
      auto psi_v = psi.View();
 | 
			
		||||
      auto p_v   = p.View();
 | 
			
		||||
      auto r_v   = r.View();
 | 
			
		||||
      accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
 | 
			
		||||
	  coalescedWrite(psi_v[ss], a      *  p_v(ss) + psi_v(ss));
 | 
			
		||||
	  coalescedWrite(p_v[ss]  , b      *  p_v(ss) + r_v  (ss));
 | 
			
		||||
      });
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
			
		||||
                << " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
        Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
        p = mmp - src;
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm = std::sqrt(norm2(src));
 | 
			
		||||
        RealD resnorm = std::sqrt(norm2(p));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k 
 | 
			
		||||
		  << "\tComputed residual " << std::sqrt(cp / ssq)
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogIterative << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,161 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrec.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  //Mixed precision restarted defect correction CG
 | 
			
		||||
  template<class FieldD,class FieldF, 
 | 
			
		||||
    typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
    typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
  class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
 | 
			
		||||
  public:                                                
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
    LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
    LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionConjugateGradient(RealD tol, 
 | 
			
		||||
				    Integer maxinnerit, 
 | 
			
		||||
				    Integer maxouterit, 
 | 
			
		||||
				    GridBase* _sp_grid, 
 | 
			
		||||
				    LinearOperatorBase<FieldF> &_Linop_f, 
 | 
			
		||||
				    LinearOperatorBase<FieldD> &_Linop_d) :
 | 
			
		||||
      Linop_f(_Linop_f), Linop_d(_Linop_d),
 | 
			
		||||
      Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
 | 
			
		||||
      OuterLoopNormMult(100.), guesser(NULL){ };
 | 
			
		||||
 | 
			
		||||
    void useGuesser(LinearFunction<FieldF> &g){
 | 
			
		||||
      guesser = &g;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    TotalInnerIterations = 0;
 | 
			
		||||
	
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
    TotalTimer.Start();
 | 
			
		||||
    
 | 
			
		||||
    int cb = src_d_in.Checkerboard();
 | 
			
		||||
    sol_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    RealD src_norm = norm2(src_d_in);
 | 
			
		||||
    RealD stop = src_norm * Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    GridBase* DoublePrecGrid = src_d_in.Grid();
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    tmp_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldD tmp2_d(DoublePrecGrid);
 | 
			
		||||
    tmp2_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldD src_d(DoublePrecGrid);
 | 
			
		||||
    src_d = src_d_in; //source for next inner iteration, computed from residual during operation
 | 
			
		||||
    
 | 
			
		||||
    RealD inner_tol = InnerTolerance;
 | 
			
		||||
    
 | 
			
		||||
    FieldF src_f(SinglePrecGrid);
 | 
			
		||||
    src_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
    sol_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch InnerCGtimer;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
      
 | 
			
		||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
			
		||||
      
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(norm < OuterLoopNormMult * stop){
 | 
			
		||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      sol_f = Zero();
 | 
			
		||||
 | 
			
		||||
      //Optionally improve inner solver guess (eg using known eigenvectors)
 | 
			
		||||
      if(guesser != NULL)
 | 
			
		||||
	(*guesser)(src_f, sol_f);
 | 
			
		||||
 | 
			
		||||
      //Inner CG
 | 
			
		||||
      CG_f.Tolerance = inner_tol;
 | 
			
		||||
      InnerCGtimer.Start();
 | 
			
		||||
      CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
      InnerCGtimer.Stop();
 | 
			
		||||
      TotalInnerIterations += CG_f.IterationsToComplete;
 | 
			
		||||
      
 | 
			
		||||
      //Convert sol back to double and add to double prec solution
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(tmp_d, sol_f);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //Final trial CG
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,325 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
 | 
			
		||||
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
 | 
			
		||||
				    public OperatorFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
    Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    shifts(_shifts)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<Field> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
 | 
			
		||||
  {
 | 
			
		||||
  
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
  
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
    std::vector<Field>   ps(nshift,grid);// Search directions
 | 
			
		||||
 | 
			
		||||
    assert(psi.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field p(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
  
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src);
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
			
		||||
	       <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps[s] = src;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    r=src;
 | 
			
		||||
    p=src;
 | 
			
		||||
  
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    Linop.HermOpAndNorm(p,mmp,d,qq);
 | 
			
		||||
    axpy(mmp,mass[0],p,mmp);
 | 
			
		||||
    RealD rn = norm2(p);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
  
 | 
			
		||||
    // have verified that inner product of 
 | 
			
		||||
    // p and mmp is equal to d after this since
 | 
			
		||||
    // the d computation is tricky
 | 
			
		||||
    //  qq = real(innerProduct(p,mmp));
 | 
			
		||||
    //  std::cout<<GridLogMessage << "debug equal ?  qq "<<qq<<" d "<< d<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r,b,mmp,r);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  GridStopWatch AXPYTimer;
 | 
			
		||||
  GridStopWatch ShiftTimer;
 | 
			
		||||
  GridStopWatch QRTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      axpy(p,a,p,r);
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      // Note to self - direction ps is iterated seperately
 | 
			
		||||
      // for each shift. Does not appear to have any scope
 | 
			
		||||
      // for avoiding linear algebra in "single" case.
 | 
			
		||||
      // 
 | 
			
		||||
      // However SAME r is used. Could load "r" and update
 | 
			
		||||
      // ALL ps[s]. 2/3 Bandwidth saving
 | 
			
		||||
      // New Kernel: Load r, vector of coeffs, vector of pointers ps
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps[s],a,ps[s],r);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps[s],z[s][iz],as,r,ps[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      cp=c;
 | 
			
		||||
    MatrixTimer.Start();  
 | 
			
		||||
    //Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
 | 
			
		||||
    // The below is faster on KNL
 | 
			
		||||
    Linop.HermOp(p,mmp); 
 | 
			
		||||
    d=real(innerProduct(p,mmp));
 | 
			
		||||
    
 | 
			
		||||
    MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      axpy(mmp,mass[0],p,mmp);
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
    
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      c=axpy_norm(r,b,mmp,r);
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
    ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    ShiftTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	// Scope for optimisation here in case of "single".
 | 
			
		||||
	// Could load psi[0] and pull all ps[s] in.
 | 
			
		||||
	//      if ( single ) ss=primary;
 | 
			
		||||
	// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
 | 
			
		||||
	// Pipelined CG gain:
 | 
			
		||||
	//
 | 
			
		||||
	// New Kernel: Load r, vector of coeffs, vector of pointers ps
 | 
			
		||||
	// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
 | 
			
		||||
	// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
 | 
			
		||||
	//  on ps[s].
 | 
			
		||||
	// Before:  3 x npole  + 3 x npole
 | 
			
		||||
	// After :  2 x npole (ps[s])        => 3x speed up of multishift CG.
 | 
			
		||||
      
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsq[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      if ( all_converged ){
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop.HermOpAndNorm(psi[s],mmp,d,qq);
 | 
			
		||||
	  axpy(tmp,mass[s],psi[s],mmp);
 | 
			
		||||
	  axpy(r,-alpha[s],src,tmp);
 | 
			
		||||
	  RealD rn = norm2(r);
 | 
			
		||||
	  RealD cn = norm2(src);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMarix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    // ugly hack
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    //  assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,258 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class FieldD,class FieldF, 
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
 | 
			
		||||
public:
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
  // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  Integer ReliableUpdatesPerformed;
 | 
			
		||||
 | 
			
		||||
  bool DoFinalCleanup; //Final DP cleanup, defaults to true
 | 
			
		||||
  Integer IterationsToCleanup; //Final DP cleanup step iterations
 | 
			
		||||
    
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
  GridBase* SinglePrecGrid;
 | 
			
		||||
  RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
  //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
			
		||||
  LinearOperatorBase<FieldF> *Linop_fallback;
 | 
			
		||||
  RealD fallback_transition_tol;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      Delta(_delta),
 | 
			
		||||
      Linop_f(_Linop_f),
 | 
			
		||||
      Linop_d(_Linop_d),
 | 
			
		||||
      SinglePrecGrid(_sp_grid),
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv),
 | 
			
		||||
      DoFinalCleanup(true),
 | 
			
		||||
      Linop_fallback(NULL)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
			
		||||
    Linop_fallback = &_Linop_fallback;
 | 
			
		||||
    fallback_transition_tol = _fallback_transition_tol;      
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  void operator()(const FieldD &src, FieldD &psi) {
 | 
			
		||||
    LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
			
		||||
    bool using_fallback = false;
 | 
			
		||||
      
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD cp, c, a, d, b, ssq, qq, b_pred;
 | 
			
		||||
 | 
			
		||||
    FieldD p(src);
 | 
			
		||||
    FieldD mmp(src);
 | 
			
		||||
    FieldD r(src);
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
    Linop_d.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
    
 | 
			
		||||
    r = src - mmp;
 | 
			
		||||
    p = r;
 | 
			
		||||
 | 
			
		||||
    a = norm2(p);
 | 
			
		||||
    cp = a;
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:    mp " << d << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   mmp " << b << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:  cp,r " << cp << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:     p " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    // Check if guess is really REALLY good :)
 | 
			
		||||
    if (cp <= rsq) {
 | 
			
		||||
      std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
 | 
			
		||||
      std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //Single prec initialization
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    r_f.Checkerboard() = r.Checkerboard();
 | 
			
		||||
    precisionChange(r_f, r);
 | 
			
		||||
 | 
			
		||||
    FieldF psi_f(r_f);
 | 
			
		||||
    psi_f = Zero();
 | 
			
		||||
 | 
			
		||||
    FieldF p_f(r_f);
 | 
			
		||||
    FieldF mmp_f(r_f);
 | 
			
		||||
 | 
			
		||||
    RealD MaxResidSinceLastRelUp = cp; //initial residual    
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
	      << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k = 0;
 | 
			
		||||
    int l = 0;
 | 
			
		||||
    
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
      c = cp;
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
      Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
 | 
			
		||||
      MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      a = c / d;
 | 
			
		||||
      b_pred = a * (a * qq - d) / c;
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r_f, -a, mmp_f, r_f);
 | 
			
		||||
      b = cp / c;
 | 
			
		||||
 | 
			
		||||
      // Fuse these loops ; should be really easy
 | 
			
		||||
      psi_f = a * p_f + psi_f;
 | 
			
		||||
      //p_f = p_f * b + r_f;
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
 | 
			
		||||
		<< " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
      std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << "  b = "<< b << std::endl;
 | 
			
		||||
      std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << "  c = "<< c << std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp > MaxResidSinceLastRelUp){
 | 
			
		||||
	std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
 | 
			
		||||
	MaxResidSinceLastRelUp = cp;
 | 
			
		||||
      }
 | 
			
		||||
	  
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	//Although not written in the paper, I assume that I have to add on the final solution
 | 
			
		||||
	precisionChange(mmp, psi_f);
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
	
 | 
			
		||||
	
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	p = mmp - src;
 | 
			
		||||
 | 
			
		||||
	RealD srcnorm = std::sqrt(norm2(src));
 | 
			
		||||
	RealD resnorm = std::sqrt(norm2(p));
 | 
			
		||||
	RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
	ReliableUpdatesPerformed = l;
 | 
			
		||||
	  
 | 
			
		||||
	if(DoFinalCleanup){
 | 
			
		||||
	  //Do a final CG to cleanup
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
 | 
			
		||||
	  ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
 | 
			
		||||
	  CG.ErrorOnNoConverge = ErrorOnNoConverge;
 | 
			
		||||
	  CG(Linop_d,src,psi);
 | 
			
		||||
	  IterationsToCleanup = CG.IterationsToComplete;
 | 
			
		||||
	}
 | 
			
		||||
	else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
			
		||||
		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
			
		||||
	precisionChange(mmp, psi_f);
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
 | 
			
		||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	r = src - mmp;
 | 
			
		||||
 | 
			
		||||
	psi_f = Zero();
 | 
			
		||||
	precisionChange(r_f, r);
 | 
			
		||||
	cp = norm2(r);
 | 
			
		||||
	MaxResidSinceLastRelUp = cp;
 | 
			
		||||
 | 
			
		||||
	b = cp/c;
 | 
			
		||||
	  
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	l = l+1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
 | 
			
		||||
 | 
			
		||||
      if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
 | 
			
		||||
	Linop_f_use = Linop_fallback;
 | 
			
		||||
	using_fallback = true;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
 | 
			
		||||
	      << std::endl;
 | 
			
		||||
      
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
    ReliableUpdatesPerformed = l;      
 | 
			
		||||
  }    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,113 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_RESIDUAL_H
 | 
			
		||||
#define GRID_CONJUGATE_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class ConjugateResidual : public OperatorFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
 | 
			
		||||
  ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) { 
 | 
			
		||||
    verbose=0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    RealD a, b; // c, d;
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
      
 | 
			
		||||
    RealD rAr, rAAr, rArp;
 | 
			
		||||
    RealD pAp, pAAp;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    Field r(grid),  p(grid), Ap(grid), Ar(grid);
 | 
			
		||||
      
 | 
			
		||||
    r=src;
 | 
			
		||||
    p=src;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
 | 
			
		||||
    Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
 | 
			
		||||
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
 | 
			
		||||
    if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int k=1;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      a = rAr/pAAp;
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p,psi);
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r,-a,Ap,r);
 | 
			
		||||
 | 
			
		||||
      rArp=rAr;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
 | 
			
		||||
 | 
			
		||||
      b   =rAr/rArp;
 | 
			
		||||
 
 | 
			
		||||
      axpy(p,b,p,r);
 | 
			
		||||
      pAAp=axpy_norm(Ap,b,Ap,Ar);
 | 
			
		||||
	
 | 
			
		||||
      if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
	Linop.HermOp(psi,Ap);
 | 
			
		||||
	axpy(r,-1.0,src,Ap);
 | 
			
		||||
	RealD true_resid = norm2(r)/ssq;
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
 | 
			
		||||
		 << " computed residual "<<std::sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "<<std::sqrt(true_resid)
 | 
			
		||||
		 << " target "       <<Tolerance <<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,108 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_DEFLATION_H
 | 
			
		||||
#define GRID_DEFLATION_H
 | 
			
		||||
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ZeroGuesser: public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
    virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
 | 
			
		||||
};
 | 
			
		||||
template<class Field>
 | 
			
		||||
class DoNothingGuesser: public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator()(const Field &src, Field &guess) {  };
 | 
			
		||||
};
 | 
			
		||||
template<class Field>
 | 
			
		||||
class SourceGuesser: public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator()(const Field &src, Field &guess) { guess = src; };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////
 | 
			
		||||
// Fine grid deflation
 | 
			
		||||
////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class DeflatedGuesser: public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
 | 
			
		||||
 | 
			
		||||
  virtual void operator()(const Field &src,Field &guess) {
 | 
			
		||||
    guess = Zero();
 | 
			
		||||
    assert(evec.size()==eval.size());
 | 
			
		||||
    auto N = evec.size();
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
 | 
			
		||||
    }
 | 
			
		||||
    guess.Checkerboard() = src.Checkerboard();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class FineField, class CoarseField>
 | 
			
		||||
class LocalCoherenceDeflatedGuesser: public LinearFunction<FineField> {
 | 
			
		||||
private:
 | 
			
		||||
  const std::vector<FineField>   &subspace;
 | 
			
		||||
  const std::vector<CoarseField> &evec_coarse;
 | 
			
		||||
  const std::vector<RealD>       &eval_coarse;
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
  LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace,
 | 
			
		||||
				const std::vector<CoarseField> &_evec_coarse,
 | 
			
		||||
				const std::vector<RealD>       &_eval_coarse)
 | 
			
		||||
    : subspace(_subspace), 
 | 
			
		||||
      evec_coarse(_evec_coarse), 
 | 
			
		||||
      eval_coarse(_eval_coarse)  
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void operator()(const FineField &src,FineField &guess) { 
 | 
			
		||||
    int N = (int)evec_coarse.size();
 | 
			
		||||
    CoarseField src_coarse(evec_coarse[0].Grid());
 | 
			
		||||
    CoarseField guess_coarse(evec_coarse[0].Grid());    guess_coarse = Zero();
 | 
			
		||||
    blockProject(src_coarse,src,subspace);    
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const CoarseField & tmp = evec_coarse[i];
 | 
			
		||||
      axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
 | 
			
		||||
    }
 | 
			
		||||
    blockPromote(guess_coarse,guess,subspace);
 | 
			
		||||
    guess.Checkerboard() = src.Checkerboard();
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,258 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                                          Integer maxit,
 | 
			
		||||
                                                          LinearFunction<Field> &Prec,
 | 
			
		||||
                                                          Integer restart_length,
 | 
			
		||||
                                                          bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.)
 | 
			
		||||
      , Preconditioner(Prec) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // these should probably be made class members so that they are only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
    std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, z, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(z, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(v[iter], z[iter]);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(z[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + z[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,256 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the FGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  FlexibleGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                     Integer maxit,
 | 
			
		||||
                                     LinearFunction<Field> &Prec,
 | 
			
		||||
                                     Integer restart_length,
 | 
			
		||||
                                     bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.)
 | 
			
		||||
      , Preconditioner(Prec) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // these should probably be made class members so that they are only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
    std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, z, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(z, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(v[iter], z[iter]);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(z[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + z[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,244 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the GMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  GeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                             Integer maxit,
 | 
			
		||||
                             Integer restart_length,
 | 
			
		||||
                             bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "GeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // this should probably be made a class member so that it is only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(v, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(v[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + v[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,941 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_BIRL_H
 | 
			
		||||
#define GRID_BIRL_H
 | 
			
		||||
 | 
			
		||||
#include <string.h> //memset
 | 
			
		||||
//#include <zlib.h>
 | 
			
		||||
#include <sys/stat.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // Move following 100 LOC to lattice/Lattice_basis.h
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k) 
 | 
			
		||||
{
 | 
			
		||||
  // If assume basis[j] are already orthonormal,
 | 
			
		||||
  // can take all inner products in parallel saving 2x bandwidth
 | 
			
		||||
  // Save 3x bandwidth on the second line of loop.
 | 
			
		||||
  // perhaps 2.5x speed up.
 | 
			
		||||
  // 2x overall in Multigrid Lanczos  
 | 
			
		||||
  for(int j=0; j<k; ++j){
 | 
			
		||||
    auto ip = innerProduct(basis[j],w);
 | 
			
		||||
    w = w - ip*basis[j];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm) 
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(basis[0].View()) View;
 | 
			
		||||
  auto tmp_v = basis[0].View();
 | 
			
		||||
  Vector<View> basis_v(basis.size(),tmp_v);
 | 
			
		||||
  typedef typename Field::vector_object vobj;
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    basis_v[k] = basis[k].View();
 | 
			
		||||
  }
 | 
			
		||||
#if 0
 | 
			
		||||
  std::vector < vobj , commAllocator<vobj> > Bt(thread_max() * Nm); // Thread private
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    vobj* B = Bt.data() + Nm * thread_num();
 | 
			
		||||
 | 
			
		||||
    thread_for_in_region(ss, grid->oSites(),{
 | 
			
		||||
      for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
			
		||||
      
 | 
			
		||||
      for(int j=j0; j<j1; ++j){
 | 
			
		||||
	for(int k=k0; k<k1; ++k){
 | 
			
		||||
	  B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      for(int j=j0; j<j1; ++j){
 | 
			
		||||
	basis_v[j][ss] = B[j];
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
  int nrot = j1-j0;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  uint64_t oSites   =grid->oSites();
 | 
			
		||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
			
		||||
 | 
			
		||||
  //  printf("BasisRotate %d %d nrot %d siteBlock %d\n",j0,j1,nrot,siteBlock);
 | 
			
		||||
 | 
			
		||||
  Vector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  auto Bp=&Bt[0];
 | 
			
		||||
 | 
			
		||||
  // GPU readable copy of Eigen matrix
 | 
			
		||||
  Vector<double> Qt_jv(Nm*Nm);
 | 
			
		||||
  double *Qt_p = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k){
 | 
			
		||||
    for(int j=0;j<Nm;++j){
 | 
			
		||||
      Qt_p[j*Nm+k]=Qt(j,k);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Block the loop to keep storage footprint down
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
			
		||||
 | 
			
		||||
    // remaining work in this block
 | 
			
		||||
    int ssites=MIN(siteBlock,oSites-s);
 | 
			
		||||
 | 
			
		||||
    // zero out the accumulators
 | 
			
		||||
    accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
 | 
			
		||||
	auto z=coalescedRead(zz);
 | 
			
		||||
	coalescedWrite(Bp[ss],z);
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
 | 
			
		||||
	
 | 
			
		||||
      int j =sj%nrot;
 | 
			
		||||
      int jj  =j0+j;
 | 
			
		||||
      int ss =sj/nrot;
 | 
			
		||||
      int sss=ss+s;
 | 
			
		||||
 | 
			
		||||
      for(int k=k0; k<k1; ++k){
 | 
			
		||||
	auto tmp = coalescedRead(Bp[ss*nrot+j]);
 | 
			
		||||
	coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
 | 
			
		||||
      int j =sj%nrot;
 | 
			
		||||
      int jj  =j0+j;
 | 
			
		||||
      int ss =sj/nrot;
 | 
			
		||||
      int sss=ss+s;
 | 
			
		||||
      coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Extract a single rotated vector
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm) 
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(basis[0].View()) View;
 | 
			
		||||
  typedef typename Field::vector_object vobj;
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
 | 
			
		||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
			
		||||
  auto result_v=result.View();
 | 
			
		||||
  Vector<View> basis_v(basis.size(),result_v);
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    basis_v[k] = basis[k].View();
 | 
			
		||||
  }
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  Vector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
			
		||||
    auto B=coalescedRead(zz);
 | 
			
		||||
    for(int k=k0; k<k1; ++k){
 | 
			
		||||
      B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
 | 
			
		||||
    }
 | 
			
		||||
    coalescedWrite(result_v[ss], B);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx) 
 | 
			
		||||
{
 | 
			
		||||
  int vlen = idx.size();
 | 
			
		||||
 | 
			
		||||
  assert(vlen>=1);
 | 
			
		||||
  assert(vlen<=sort_vals.size());
 | 
			
		||||
  assert(vlen<=_v.size());
 | 
			
		||||
 | 
			
		||||
  for (size_t i=0;i<vlen;i++) {
 | 
			
		||||
 | 
			
		||||
    if (idx[i] != i) {
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////
 | 
			
		||||
      // idx[i] is a table of desired sources giving a permutation.
 | 
			
		||||
      // Swap v[i] with v[idx[i]].
 | 
			
		||||
      // Find  j>i for which _vnew[j] = _vold[i],
 | 
			
		||||
      // track the move idx[j] => idx[i]
 | 
			
		||||
      // track the move idx[i] => i
 | 
			
		||||
      //////////////////////////////////////
 | 
			
		||||
      size_t j;
 | 
			
		||||
      for (j=i;j<idx.size();j++)
 | 
			
		||||
	if (idx[j]==i)
 | 
			
		||||
	  break;
 | 
			
		||||
 | 
			
		||||
      assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i);
 | 
			
		||||
 | 
			
		||||
      swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
 | 
			
		||||
      std::swap(sort_vals[i],sort_vals[idx[i]]);
 | 
			
		||||
 | 
			
		||||
      idx[j] = idx[i];
 | 
			
		||||
      idx[i] = i;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals) 
 | 
			
		||||
{
 | 
			
		||||
  std::vector<int> idx(sort_vals.size());
 | 
			
		||||
  std::iota(idx.begin(), idx.end(), 0);
 | 
			
		||||
 | 
			
		||||
  // sort indexes based on comparing values in v
 | 
			
		||||
  std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
 | 
			
		||||
    return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
 | 
			
		||||
  });
 | 
			
		||||
  return idx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse) 
 | 
			
		||||
{
 | 
			
		||||
  std::vector<int> idx = basisSortGetIndex(sort_vals);
 | 
			
		||||
  if (reverse)
 | 
			
		||||
    std::reverse(idx.begin(), idx.end());
 | 
			
		||||
  
 | 
			
		||||
  basisReorderInPlace(_v,sort_vals,idx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// PAB: faster to compute the inner products first then fuse loops.
 | 
			
		||||
// If performance critical can improve.
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
			
		||||
  result = Zero();
 | 
			
		||||
  assert(_v.size()==eval.size());
 | 
			
		||||
  int N = (int)_v.size();
 | 
			
		||||
  for (int i=0;i<N;i++) {
 | 
			
		||||
    Field& tmp = _v[i];
 | 
			
		||||
    axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Implicitly restarted lanczos
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class ImplicitlyRestartedLanczosTester 
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
 | 
			
		||||
  virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
enum IRLdiagonalisation { 
 | 
			
		||||
  IRLdiagonaliseWithDSTEGR,
 | 
			
		||||
  IRLdiagonaliseWithQR,
 | 
			
		||||
  IRLdiagonaliseWithEigen
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public ImplicitlyRestartedLanczosTester<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field>       &_HermOp;
 | 
			
		||||
  ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOp) : _HermOp(HermOp)  {  };
 | 
			
		||||
  int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    return TestConvergence(j,resid,B,eval,evalMaxApprox);
 | 
			
		||||
  }
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    Field v(B);
 | 
			
		||||
    RealD eval_poly = eval;
 | 
			
		||||
    // Apply operator
 | 
			
		||||
    _HermOp(B,v);
 | 
			
		||||
 | 
			
		||||
    RealD vnum = real(innerProduct(B,v)); // HermOp.
 | 
			
		||||
    RealD vden = norm2(B);
 | 
			
		||||
    RealD vv0  = norm2(v);
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    v -= eval*B;
 | 
			
		||||
 | 
			
		||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class ImplicitlyRestartedLanczos {
 | 
			
		||||
 private:
 | 
			
		||||
  const RealD small = 1.0e-8;
 | 
			
		||||
  int MaxIter;
 | 
			
		||||
  int MinRestart; // Minimum number of restarts; only check for convergence after
 | 
			
		||||
  int Nstop;   // Number of evecs checked for convergence
 | 
			
		||||
  int Nk;      // Number of converged sought
 | 
			
		||||
  //  int Np;      // Np -- Number of spare vecs in krylov space //  == Nm - Nk
 | 
			
		||||
  int Nm;      // Nm -- total number of vectors
 | 
			
		||||
  IRLdiagonalisation diagonalisation;
 | 
			
		||||
  int orth_period;
 | 
			
		||||
    
 | 
			
		||||
  RealD OrthoTime;
 | 
			
		||||
  RealD eresid, betastp;
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Embedded objects
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  LinearFunction<Field>       &_PolyOp;
 | 
			
		||||
  LinearFunction<Field>       &_HermOp;
 | 
			
		||||
  ImplicitlyRestartedLanczosTester<Field> &_Tester;
 | 
			
		||||
  // Default tester provided (we need a ref to something in default case)
 | 
			
		||||
  ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
 | 
			
		||||
  /////////////////////////
 | 
			
		||||
  // Constructor
 | 
			
		||||
  /////////////////////////
 | 
			
		||||
  
 | 
			
		||||
public:       
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // PAB:
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Too many options  & knobs. 
 | 
			
		||||
  // Eliminate:
 | 
			
		||||
  //   orth_period
 | 
			
		||||
  //   betastp
 | 
			
		||||
  //   MinRestart
 | 
			
		||||
  //
 | 
			
		||||
  // Do we really need orth_period
 | 
			
		||||
  // What is the theoretical basis & guarantees of betastp ?
 | 
			
		||||
  // Nstop=Nk viable?
 | 
			
		||||
  // MinRestart avoidable with new convergence test?
 | 
			
		||||
  // Could cut to PolyOp, HermOp, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
 | 
			
		||||
  // HermOp could be eliminated if we dropped the Power method for max eval.
 | 
			
		||||
  // -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
 ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
 | 
			
		||||
			    LinearFunction<Field> & HermOp,
 | 
			
		||||
			    ImplicitlyRestartedLanczosTester<Field> & Tester,
 | 
			
		||||
			    int _Nstop, // sought vecs
 | 
			
		||||
			    int _Nk, // sought vecs
 | 
			
		||||
			    int _Nm, // spare vecs
 | 
			
		||||
			    RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			    int _MaxIter, // Max iterations
 | 
			
		||||
			    RealD _betastp=0.0, // if beta(k) < betastp: converged
 | 
			
		||||
			    int _MinRestart=0, int _orth_period = 1,
 | 
			
		||||
			    IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
 | 
			
		||||
    SimpleTester(HermOp), _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(Tester),
 | 
			
		||||
    Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm),
 | 
			
		||||
    eresid(_eresid),      betastp(_betastp),
 | 
			
		||||
    MaxIter(_MaxIter)  ,      MinRestart(_MinRestart),
 | 
			
		||||
    orth_period(_orth_period), diagonalisation(_diagonalisation)  { };
 | 
			
		||||
 | 
			
		||||
    ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
 | 
			
		||||
			       LinearFunction<Field> & HermOp,
 | 
			
		||||
			       int _Nstop, // sought vecs
 | 
			
		||||
			       int _Nk, // sought vecs
 | 
			
		||||
			       int _Nm, // spare vecs
 | 
			
		||||
			       RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			       int _MaxIter, // Max iterations
 | 
			
		||||
			       RealD _betastp=0.0, // if beta(k) < betastp: converged
 | 
			
		||||
			       int _MinRestart=0, int _orth_period = 1,
 | 
			
		||||
			       IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
 | 
			
		||||
    SimpleTester(HermOp),  _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(SimpleTester),
 | 
			
		||||
    Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm),
 | 
			
		||||
    eresid(_eresid),      betastp(_betastp),
 | 
			
		||||
    MaxIter(_MaxIter)  ,      MinRestart(_MinRestart),
 | 
			
		||||
    orth_period(_orth_period), diagonalisation(_diagonalisation)  { };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = std::sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void orthogonalize(Field& w, std::vector<Field>& evec,int k)
 | 
			
		||||
  {
 | 
			
		||||
    OrthoTime-=usecond()/1e6;
 | 
			
		||||
    basisOrthogonalize(evec,w,k);
 | 
			
		||||
    normalise(w);
 | 
			
		||||
    OrthoTime+=usecond()/1e6;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
/* Rudy Arthur's thesis pp.137
 | 
			
		||||
------------------------
 | 
			
		||||
Require: M > K P = M − K †
 | 
			
		||||
Compute the factorization AVM = VM HM + fM eM 
 | 
			
		||||
repeat
 | 
			
		||||
  Q=I
 | 
			
		||||
  for i = 1,...,P do
 | 
			
		||||
    QiRi =HM −θiI Q = QQi
 | 
			
		||||
    H M = Q †i H M Q i
 | 
			
		||||
  end for
 | 
			
		||||
  βK =HM(K+1,K) σK =Q(M,K)
 | 
			
		||||
  r=vK+1βK +rσK
 | 
			
		||||
  VK =VM(1:M)Q(1:M,1:K)
 | 
			
		||||
  HK =HM(1:K,1:K)
 | 
			
		||||
  →AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
 | 
			
		||||
until convergence
 | 
			
		||||
*/
 | 
			
		||||
  void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    assert(grid == evec[0].Grid());
 | 
			
		||||
    
 | 
			
		||||
    //    GridLogIRL.TimingMode(1);
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 /  "<< MaxIter<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- seek   Nk    = " << Nk    <<" vectors"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- total  Nm    = " << Nm    <<" vectors"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
 | 
			
		||||
    if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
 | 
			
		||||
      std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
 | 
			
		||||
    } else if ( diagonalisation == IRLdiagonaliseWithQR ) { 
 | 
			
		||||
      std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
 | 
			
		||||
    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
			
		||||
      std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
	
 | 
			
		||||
    assert(Nm <= evec.size() && Nm <= eval.size());
 | 
			
		||||
    
 | 
			
		||||
    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
			
		||||
    RealD evalMaxApprox = 0.0;
 | 
			
		||||
    {
 | 
			
		||||
      auto src_n = src;
 | 
			
		||||
      auto tmp = src;
 | 
			
		||||
      std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl;
 | 
			
		||||
      const int _MAX_ITER_IRL_MEVAPP_ = 50;
 | 
			
		||||
      for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
 | 
			
		||||
	normalise(src_n);
 | 
			
		||||
	_HermOp(src_n,tmp);
 | 
			
		||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
			
		||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
			
		||||
	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	RealD vden = norm2(src_n);
 | 
			
		||||
	RealD na = vnum/vden;
 | 
			
		||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
			
		||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	evalMaxApprox = na;
 | 
			
		||||
	std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
	src_n = tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
	
 | 
			
		||||
    std::vector<RealD> lme(Nm);  
 | 
			
		||||
    std::vector<RealD> lme2(Nm);
 | 
			
		||||
    std::vector<RealD> eval2(Nm);
 | 
			
		||||
    std::vector<RealD> eval2_copy(Nm);
 | 
			
		||||
    Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
 | 
			
		||||
 | 
			
		||||
    Field f(grid);
 | 
			
		||||
    Field v(grid);
 | 
			
		||||
    int k1 = 1;
 | 
			
		||||
    int k2 = Nk;
 | 
			
		||||
    RealD beta_k;
 | 
			
		||||
 | 
			
		||||
    Nconv = 0;
 | 
			
		||||
  
 | 
			
		||||
    // Set initial vector
 | 
			
		||||
    evec[0] = src;
 | 
			
		||||
    normalise(evec[0]);
 | 
			
		||||
	
 | 
			
		||||
    // Initial Nk steps
 | 
			
		||||
    OrthoTime=0.;
 | 
			
		||||
    for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
    std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Restarting loop begins
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    int iter;
 | 
			
		||||
    for(iter = 0; iter<MaxIter; ++iter){
 | 
			
		||||
      
 | 
			
		||||
      OrthoTime=0.;
 | 
			
		||||
 | 
			
		||||
      std::cout<< GridLogMessage <<" **********************"<< std::endl;
 | 
			
		||||
      std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
 | 
			
		||||
      std::cout<< GridLogMessage <<" **********************"<< std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
 | 
			
		||||
      for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
      f *= lme[Nm-1];
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
 | 
			
		||||
      std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      // getting eigenvalues
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      for(int k=0; k<Nm; ++k){
 | 
			
		||||
	eval2[k] = eval[k+k1-1];
 | 
			
		||||
	lme2[k] = lme[k+k1-1];
 | 
			
		||||
      }
 | 
			
		||||
      Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
      diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
 | 
			
		||||
      std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      // sorting
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      eval2_copy = eval2;
 | 
			
		||||
      std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
 | 
			
		||||
      std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
 | 
			
		||||
      const int chunk=8;
 | 
			
		||||
      for(int io=0; io<k2;io+=chunk){
 | 
			
		||||
	std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
 | 
			
		||||
	for(int ii=0;ii<chunk;ii++){
 | 
			
		||||
	  if ( (io+ii)<k2 )
 | 
			
		||||
	    std::cout<< " "<< std::setw(12)<< eval2[io+ii];
 | 
			
		||||
	}
 | 
			
		||||
	std::cout << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      // Implicitly shifted QR transformations
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
      for(int ip=k2; ip<Nm; ++ip){ 
 | 
			
		||||
	QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(k2<Nm);      assert(k2<Nm);      assert(k1>0);
 | 
			
		||||
 | 
			
		||||
      basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
 | 
			
		||||
      std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      // Compressed vector f and beta(k2)
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      f *= Qt(k2-1,Nm-1);
 | 
			
		||||
      f += lme[k2-1] * evec[k2];
 | 
			
		||||
      beta_k = norm2(f);
 | 
			
		||||
      beta_k = std::sqrt(beta_k);
 | 
			
		||||
      std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
      RealD betar = 1.0/beta_k;
 | 
			
		||||
      evec[k2] = betar * f;
 | 
			
		||||
      lme[k2-1] = beta_k;
 | 
			
		||||
	  
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      // Convergence test
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      for(int k=0; k<Nm; ++k){    
 | 
			
		||||
	eval2[k] = eval[k];
 | 
			
		||||
	lme2[k] = lme[k];
 | 
			
		||||
      }
 | 
			
		||||
      Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
      diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
 | 
			
		||||
      std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
      Nconv = 0;
 | 
			
		||||
      if (iter >= MinRestart) {
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
 | 
			
		||||
 | 
			
		||||
	Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
	//  power of two search pattern;  not every evalue in eval2 is assessed.
 | 
			
		||||
	int allconv =1;
 | 
			
		||||
	for(int jj = 1; jj<=Nstop; jj*=2){
 | 
			
		||||
	  int j = Nstop-jj;
 | 
			
		||||
	  RealD e = eval2_copy[j]; // Discard the evalue
 | 
			
		||||
	  basisRotateJ(B,evec,Qt,j,0,Nk,Nm);	    
 | 
			
		||||
	  if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
 | 
			
		||||
	    allconv=0;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	// Do evec[0] for good measure
 | 
			
		||||
	{ 
 | 
			
		||||
	  int j=0;
 | 
			
		||||
	  RealD e = eval2_copy[0]; 
 | 
			
		||||
	  basisRotateJ(B,evec,Qt,j,0,Nk,Nm);	    
 | 
			
		||||
	  if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) allconv=0;
 | 
			
		||||
	}
 | 
			
		||||
	if ( allconv ) Nconv = Nstop;
 | 
			
		||||
 | 
			
		||||
	// test if we converged, if so, terminate
 | 
			
		||||
	std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
 | 
			
		||||
	//	if( Nconv>=Nstop || beta_k < betastp){
 | 
			
		||||
	if( Nconv>=Nstop){
 | 
			
		||||
	  goto converged;
 | 
			
		||||
	}
 | 
			
		||||
	  
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
 | 
			
		||||
      } // end of iter loop
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogError<<"\n NOT converged.\n";
 | 
			
		||||
    abort();
 | 
			
		||||
	
 | 
			
		||||
  converged:
 | 
			
		||||
    {
 | 
			
		||||
      Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
 | 
			
		||||
      basisRotate(evec,Qt,0,Nk,0,Nk,Nm);	    
 | 
			
		||||
      std::cout << GridLogIRL << " Rotated basis"<<std::endl;
 | 
			
		||||
      Nconv=0;
 | 
			
		||||
      //////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Full final convergence test; unconditionally applied
 | 
			
		||||
      //////////////////////////////////////////////////////////////////////
 | 
			
		||||
      for(int j = 0; j<=Nk; j++){
 | 
			
		||||
	B=evec[j];
 | 
			
		||||
	if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
 | 
			
		||||
	  Nconv++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( Nconv < Nstop )
 | 
			
		||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      eval=eval2;
 | 
			
		||||
      
 | 
			
		||||
      //Keep only converged
 | 
			
		||||
      eval.resize(Nconv);// Nstop?
 | 
			
		||||
      evec.resize(Nconv,grid);// Nstop?
 | 
			
		||||
      basisSortInPlace(evec,eval,reverse);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
       
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL << " -- Iterations  = "<< iter   << "\n";
 | 
			
		||||
    std::cout << GridLogIRL << " -- beta(k)     = "<< beta_k << "\n";
 | 
			
		||||
    std::cout << GridLogIRL << " -- Nconv       = "<< Nconv  << "\n";
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
/* Saad PP. 195
 | 
			
		||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
 | 
			
		||||
2. For k = 1,2,...,m Do:
 | 
			
		||||
3. wk:=Avk - b_k v_{k-1}      
 | 
			
		||||
4. ak:=(wk,vk)       // 
 | 
			
		||||
5. wk:=wk-akvk       // wk orthog vk 
 | 
			
		||||
6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop
 | 
			
		||||
7. vk+1 := wk/b_k+1
 | 
			
		||||
8. EndDo
 | 
			
		||||
 */
 | 
			
		||||
  void step(std::vector<RealD>& lmd,
 | 
			
		||||
	    std::vector<RealD>& lme, 
 | 
			
		||||
	    std::vector<Field>& evec,
 | 
			
		||||
	    Field& w,int Nm,int k)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    const RealD tiny = 1.0e-20;
 | 
			
		||||
    assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
    GridStopWatch gsw_op,gsw_o;
 | 
			
		||||
 | 
			
		||||
    Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
			
		||||
 | 
			
		||||
    ComplexD zalph = innerProduct(evec_k,w);
 | 
			
		||||
    RealD     alph = real(zalph);
 | 
			
		||||
 | 
			
		||||
    w = w - alph * evec_k;
 | 
			
		||||
 | 
			
		||||
    RealD beta = normalise(w); 
 | 
			
		||||
 | 
			
		||||
    lmd[k] = alph;
 | 
			
		||||
    lme[k] = beta;
 | 
			
		||||
 | 
			
		||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(k < Nm-1) evec[k+1] = w;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    if ( beta < tiny ) 
 | 
			
		||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
			 int Nk, int Nm,  
 | 
			
		||||
			 Eigen::MatrixXd & Qt, // Nm x Nm
 | 
			
		||||
			 GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nk;i++)   TriDiag(i,i)   = lmd[i];
 | 
			
		||||
    for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
 | 
			
		||||
    for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
 | 
			
		||||
    
 | 
			
		||||
    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < Nk; i++) {
 | 
			
		||||
      lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
 | 
			
		||||
    }
 | 
			
		||||
    for (int i = 0; i < Nk; i++) {
 | 
			
		||||
      for (int j = 0; j < Nk; j++) {
 | 
			
		||||
	Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // File could end here if settle on Eigen ??? !!!
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void QR_decomp(std::vector<RealD>& lmd,   // Nm 
 | 
			
		||||
		 std::vector<RealD>& lme,   // Nm 
 | 
			
		||||
		 int Nk, int Nm,            // Nk, Nm
 | 
			
		||||
		 Eigen::MatrixXd& Qt,       // Nm x Nm matrix
 | 
			
		||||
		 RealD Dsh, int kmin, int kmax)
 | 
			
		||||
  {
 | 
			
		||||
    int k = kmin-1;
 | 
			
		||||
    RealD x;
 | 
			
		||||
    
 | 
			
		||||
    RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
 | 
			
		||||
    RealD c = ( lmd[k] -Dsh) *Fden;
 | 
			
		||||
    RealD s = -lme[k] *Fden;
 | 
			
		||||
      
 | 
			
		||||
    RealD tmpa1 = lmd[k];
 | 
			
		||||
    RealD tmpa2 = lmd[k+1];
 | 
			
		||||
    RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
    lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
    lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
    lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
    x        =-s*lme[k+1];
 | 
			
		||||
    lme[k+1] = c*lme[k+1];
 | 
			
		||||
      
 | 
			
		||||
    for(int i=0; i<Nk; ++i){
 | 
			
		||||
      RealD Qtmp1 = Qt(k,i);
 | 
			
		||||
      RealD Qtmp2 = Qt(k+1,i);
 | 
			
		||||
      Qt(k,i)  = c*Qtmp1 - s*Qtmp2;
 | 
			
		||||
      Qt(k+1,i)= s*Qtmp1 + c*Qtmp2; 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Givens transformations
 | 
			
		||||
    for(int k = kmin; k < kmax-1; ++k){
 | 
			
		||||
      
 | 
			
		||||
      RealD Fden = 1.0/hypot(x,lme[k-1]);
 | 
			
		||||
      RealD c = lme[k-1]*Fden;
 | 
			
		||||
      RealD s = - x*Fden;
 | 
			
		||||
	
 | 
			
		||||
      RealD tmpa1 = lmd[k];
 | 
			
		||||
      RealD tmpa2 = lmd[k+1];
 | 
			
		||||
      RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
      lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
      lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
      lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
      lme[k-1] = c*lme[k-1] -s*x;
 | 
			
		||||
 | 
			
		||||
      if(k != kmax-2){
 | 
			
		||||
	x = -s*lme[k+1];
 | 
			
		||||
	lme[k+1] = c*lme[k+1];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int i=0; i<Nk; ++i){
 | 
			
		||||
	RealD Qtmp1 = Qt(k,i);
 | 
			
		||||
	RealD Qtmp2 = Qt(k+1,i);
 | 
			
		||||
	Qt(k,i)     = c*Qtmp1 -s*Qtmp2;
 | 
			
		||||
	Qt(k+1,i)   = s*Qtmp1 +c*Qtmp2;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
		   int Nk, int Nm,   
 | 
			
		||||
		   Eigen::MatrixXd & Qt,
 | 
			
		||||
		   GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
    if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
 | 
			
		||||
      diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    } else if ( diagonalisation == IRLdiagonaliseWithQR ) { 
 | 
			
		||||
      diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
			
		||||
      diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    } else { 
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK
 | 
			
		||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
 | 
			
		||||
                   double *vl, double *vu, int *il, int *iu, double *abstol,
 | 
			
		||||
                   int *m, double *w, double *z, int *ldz, int *isuppz,
 | 
			
		||||
                   double *work, int *lwork, int *iwork, int *liwork,
 | 
			
		||||
                   int *info);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void diagonalize_lapack(std::vector<RealD>& lmd,
 | 
			
		||||
			std::vector<RealD>& lme, 
 | 
			
		||||
			int Nk, int Nm,  
 | 
			
		||||
			Eigen::MatrixXd& Qt,
 | 
			
		||||
			GridBase *grid)
 | 
			
		||||
{
 | 
			
		||||
#ifdef USE_LAPACK
 | 
			
		||||
  const int size = Nm;
 | 
			
		||||
  int NN = Nk;
 | 
			
		||||
  double evals_tmp[NN];
 | 
			
		||||
  double evec_tmp[NN][NN];
 | 
			
		||||
  memset(evec_tmp[0],0,sizeof(double)*NN*NN);
 | 
			
		||||
  double DD[NN];
 | 
			
		||||
  double EE[NN];
 | 
			
		||||
  for (int i = 0; i< NN; i++) {
 | 
			
		||||
    for (int j = i - 1; j <= i + 1; j++) {
 | 
			
		||||
      if ( j < NN && j >= 0 ) {
 | 
			
		||||
	if (i==j) DD[i] = lmd[i];
 | 
			
		||||
	if (i==j) evals_tmp[i] = lmd[i];
 | 
			
		||||
	if (j==(i-1)) EE[j] = lme[j];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  int evals_found;
 | 
			
		||||
  int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
 | 
			
		||||
  int liwork =  3+NN*10 ;
 | 
			
		||||
  int iwork[liwork];
 | 
			
		||||
  double work[lwork];
 | 
			
		||||
  int isuppz[2*NN];
 | 
			
		||||
  char jobz = 'V'; // calculate evals & evecs
 | 
			
		||||
  char range = 'I'; // calculate all evals
 | 
			
		||||
  //    char range = 'A'; // calculate all evals
 | 
			
		||||
  char uplo = 'U'; // refer to upper half of original matrix
 | 
			
		||||
  char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
 | 
			
		||||
  int ifail[NN];
 | 
			
		||||
  int info;
 | 
			
		||||
  int total = grid->_Nprocessors;
 | 
			
		||||
  int node  = grid->_processor;
 | 
			
		||||
  int interval = (NN/total)+1;
 | 
			
		||||
  double vl = 0.0, vu = 0.0;
 | 
			
		||||
  int il = interval*node+1 , iu = interval*(node+1);
 | 
			
		||||
  if (iu > NN)  iu=NN;
 | 
			
		||||
  double tol = 0.0;
 | 
			
		||||
  if (1) {
 | 
			
		||||
    memset(evals_tmp,0,sizeof(double)*NN);
 | 
			
		||||
    if ( il <= NN){
 | 
			
		||||
      LAPACK_dstegr(&jobz, &range, &NN,
 | 
			
		||||
		    (double*)DD, (double*)EE,
 | 
			
		||||
		    &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
 | 
			
		||||
		    &tol, // tolerance
 | 
			
		||||
		    &evals_found, evals_tmp, (double*)evec_tmp, &NN,
 | 
			
		||||
		    isuppz,
 | 
			
		||||
		    work, &lwork, iwork, &liwork,
 | 
			
		||||
		    &info);
 | 
			
		||||
      for (int i = iu-1; i>= il-1; i--){
 | 
			
		||||
	evals_tmp[i] = evals_tmp[i - (il-1)];
 | 
			
		||||
	if (il>1) evals_tmp[i-(il-1)]=0.;
 | 
			
		||||
	for (int j = 0; j< NN; j++){
 | 
			
		||||
	  evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
 | 
			
		||||
	  if (il>1) evec_tmp[i-(il-1)][j]=0.;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
      grid->GlobalSumVector(evals_tmp,NN);
 | 
			
		||||
      grid->GlobalSumVector((double*)evec_tmp,NN*NN);
 | 
			
		||||
    }
 | 
			
		||||
  } 
 | 
			
		||||
  // Safer to sort instead of just reversing it, 
 | 
			
		||||
  // but the document of the routine says evals are sorted in increasing order. 
 | 
			
		||||
  // qr gives evals in decreasing order.
 | 
			
		||||
  for(int i=0;i<NN;i++){
 | 
			
		||||
    lmd [NN-1-i]=evals_tmp[i];
 | 
			
		||||
    for(int j=0;j<NN;j++){
 | 
			
		||||
      Qt((NN-1-i),j)=evec_tmp[i][j];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#else 
 | 
			
		||||
  assert(0);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
		    int Nk, int Nm,   
 | 
			
		||||
		    Eigen::MatrixXd & Qt,
 | 
			
		||||
		    GridBase *grid)
 | 
			
		||||
{
 | 
			
		||||
  int QRiter = 100*Nm;
 | 
			
		||||
  int kmin = 1;
 | 
			
		||||
  int kmax = Nk;
 | 
			
		||||
  
 | 
			
		||||
  // (this should be more sophisticated)
 | 
			
		||||
  for(int iter=0; iter<QRiter; ++iter){
 | 
			
		||||
    
 | 
			
		||||
    // determination of 2x2 leading submatrix
 | 
			
		||||
    RealD dsub = lmd[kmax-1]-lmd[kmax-2];
 | 
			
		||||
    RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
 | 
			
		||||
    RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
 | 
			
		||||
    // (Dsh: shift)
 | 
			
		||||
    
 | 
			
		||||
    // transformation
 | 
			
		||||
    QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
 | 
			
		||||
    
 | 
			
		||||
    // Convergence criterion (redef of kmin and kamx)
 | 
			
		||||
    for(int j=kmax-1; j>= kmin; --j){
 | 
			
		||||
      RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
 | 
			
		||||
      if(fabs(lme[j-1])+dds > dds){
 | 
			
		||||
	kmax = j+1;
 | 
			
		||||
	goto continued;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    QRiter = iter;
 | 
			
		||||
    return;
 | 
			
		||||
    
 | 
			
		||||
  continued:
 | 
			
		||||
    for(int j=0; j<kmax-1; ++j){
 | 
			
		||||
      RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
 | 
			
		||||
      if(fabs(lme[j])+dds > dds){
 | 
			
		||||
	kmin = j+1;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
 | 
			
		||||
  abort();
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,409 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LOCAL_COHERENCE_IRL_H
 | 
			
		||||
#define GRID_LOCAL_COHERENCE_IRL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
struct LanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
 | 
			
		||||
				  ChebyParams, Cheby,/*Chebyshev*/
 | 
			
		||||
				  int, Nstop,    /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
 | 
			
		||||
				  int, Nk,       /*Vecs in Lanczos seek converge*/
 | 
			
		||||
				  int, Nm,       /*Total vecs in Lanczos include restart*/
 | 
			
		||||
				  RealD, resid,  /*residual*/
 | 
			
		||||
 				  int, MaxIt, 
 | 
			
		||||
				  RealD, betastp,  /* ? */
 | 
			
		||||
				  int, MinRes);    // Must restart
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
			
		||||
				  bool, saveEvecs,
 | 
			
		||||
				  bool, doFine,
 | 
			
		||||
				  bool, doFineRead,
 | 
			
		||||
				  bool, doCoarse,
 | 
			
		||||
	       			  bool, doCoarseRead,
 | 
			
		||||
				  LanczosParams, FineParams,
 | 
			
		||||
				  LanczosParams, CoarseParams,
 | 
			
		||||
				  ChebyParams,   Smoother,
 | 
			
		||||
				  RealD        , coarse_relax_tol,
 | 
			
		||||
				  std::vector<int>, blockSize,
 | 
			
		||||
				  std::string, config,
 | 
			
		||||
				  std::vector < ComplexD  >, omega,
 | 
			
		||||
				  RealD, mass,
 | 
			
		||||
				  RealD, M5);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  std::vector<FineField>        &subspace;
 | 
			
		||||
 | 
			
		||||
  ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) : 
 | 
			
		||||
    _Linop(linop), subspace(_subspace)
 | 
			
		||||
  {  
 | 
			
		||||
    assert(subspace.size() >0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator()(const CoarseField& in, CoarseField& out) {
 | 
			
		||||
    GridBase *FineGrid = subspace[0].Grid();    
 | 
			
		||||
    int   checkerboard = subspace[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
    FineField fin (FineGrid);     fin.Checkerboard()= checkerboard;
 | 
			
		||||
    FineField fout(FineGrid);   fout.Checkerboard() = checkerboard;
 | 
			
		||||
 | 
			
		||||
    blockPromote(in,fin,subspace);       std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
 | 
			
		||||
    _Linop.HermOp(fin,fout);                   std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
 | 
			
		||||
    blockProject(out,fout,subspace);     std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  OperatorFunction<FineField>   & _poly;
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  std::vector<FineField>        &subspace;
 | 
			
		||||
 | 
			
		||||
  ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,
 | 
			
		||||
			  LinearOperatorBase<FineField>& linop, 
 | 
			
		||||
			  std::vector<FineField> & _subspace) :
 | 
			
		||||
    _poly(poly),
 | 
			
		||||
    _Linop(linop),
 | 
			
		||||
    subspace(_subspace)
 | 
			
		||||
  {  };
 | 
			
		||||
 | 
			
		||||
  void operator()(const CoarseField& in, CoarseField& out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *FineGrid = subspace[0].Grid();    
 | 
			
		||||
    int   checkerboard = subspace[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
    FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
 | 
			
		||||
    FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
 | 
			
		||||
    
 | 
			
		||||
    blockPromote(in,fin,subspace);             std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
 | 
			
		||||
    _poly(_Linop,fin,fout);                    std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
 | 
			
		||||
    blockProject(out,fout,subspace);           std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class ImplicitlyRestartedLanczosSmoothedTester  : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<CoarseField> & _Poly;
 | 
			
		||||
  OperatorFunction<FineField>   & _smoother;
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  RealD                             _coarse_relax_tol;
 | 
			
		||||
  std::vector<FineField>        &_subspace;
 | 
			
		||||
  
 | 
			
		||||
  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
			
		||||
					   OperatorFunction<FineField>   &smoother,
 | 
			
		||||
					   LinearOperatorBase<FineField> &Linop,
 | 
			
		||||
					   std::vector<FineField>        &subspace,
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3) 
 | 
			
		||||
    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol)  
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    CoarseField v(B);
 | 
			
		||||
    RealD eval_poly = eval;
 | 
			
		||||
 | 
			
		||||
    // Apply operator
 | 
			
		||||
    _Poly(B,v);
 | 
			
		||||
 | 
			
		||||
    RealD vnum = real(innerProduct(B,v)); // HermOp.
 | 
			
		||||
    RealD vden = norm2(B);
 | 
			
		||||
    RealD vv0  = norm2(v);
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    v -= eval*B;
 | 
			
		||||
 | 
			
		||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
			
		||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
			
		||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
			
		||||
    FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
 | 
			
		||||
 | 
			
		||||
    blockPromote(B,fv,_subspace);  
 | 
			
		||||
    
 | 
			
		||||
    _smoother(_Linop,fv,fB); 
 | 
			
		||||
 | 
			
		||||
    RealD eval_poly = eval;
 | 
			
		||||
    _Linop.HermOp(fB,fv);
 | 
			
		||||
 | 
			
		||||
    RealD vnum = real(innerProduct(fB,fv)); // HermOp.
 | 
			
		||||
    RealD vden = norm2(fB);
 | 
			
		||||
    RealD vv0  = norm2(fv);
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    fv -= eval*fB;
 | 
			
		||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    if( (vv<eresid*eresid) ) return 1;
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Make serializable Lanczos params
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class LocalCoherenceLanczos 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<Fobj>                       FineField;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  GridBase *_CoarseGrid;
 | 
			
		||||
  GridBase *_FineGrid;
 | 
			
		||||
  int _checkerboard;
 | 
			
		||||
  LinearOperatorBase<FineField>                 & _FineOp;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<RealD>                              &evals_fine;
 | 
			
		||||
  std::vector<RealD>                              &evals_coarse; 
 | 
			
		||||
  std::vector<FineField>                          &subspace;
 | 
			
		||||
  std::vector<CoarseField>                        &evec_coarse;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD>                              _evals_fine;
 | 
			
		||||
  std::vector<RealD>                              _evals_coarse; 
 | 
			
		||||
  std::vector<FineField>                          _subspace;
 | 
			
		||||
  std::vector<CoarseField>                        _evec_coarse;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  LocalCoherenceLanczos(GridBase *FineGrid,
 | 
			
		||||
			GridBase *CoarseGrid,
 | 
			
		||||
			LinearOperatorBase<FineField> &FineOp,
 | 
			
		||||
			int checkerboard) :
 | 
			
		||||
    _CoarseGrid(CoarseGrid),
 | 
			
		||||
    _FineGrid(FineGrid),
 | 
			
		||||
    _FineOp(FineOp),
 | 
			
		||||
    _checkerboard(checkerboard),
 | 
			
		||||
    evals_fine  (_evals_fine),
 | 
			
		||||
    evals_coarse(_evals_coarse),
 | 
			
		||||
    subspace    (_subspace),
 | 
			
		||||
    evec_coarse(_evec_coarse)
 | 
			
		||||
  {
 | 
			
		||||
    evals_fine.resize(0);
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Alternate constructore, external storage for use by Hadrons module
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  LocalCoherenceLanczos(GridBase *FineGrid,
 | 
			
		||||
			GridBase *CoarseGrid,
 | 
			
		||||
			LinearOperatorBase<FineField> &FineOp,
 | 
			
		||||
			int checkerboard,
 | 
			
		||||
			std::vector<FineField>   &ext_subspace,
 | 
			
		||||
			std::vector<CoarseField> &ext_coarse,
 | 
			
		||||
			std::vector<RealD>       &ext_eval_fine,
 | 
			
		||||
			std::vector<RealD>       &ext_eval_coarse
 | 
			
		||||
			) :
 | 
			
		||||
    _CoarseGrid(CoarseGrid),
 | 
			
		||||
    _FineGrid(FineGrid),
 | 
			
		||||
    _FineOp(FineOp),
 | 
			
		||||
    _checkerboard(checkerboard),
 | 
			
		||||
    evals_fine  (ext_eval_fine), 
 | 
			
		||||
    evals_coarse(ext_eval_coarse),
 | 
			
		||||
    subspace    (ext_subspace),
 | 
			
		||||
    evec_coarse (ext_coarse)
 | 
			
		||||
  {
 | 
			
		||||
    evals_fine.resize(0);
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Orthogonalise(void ) {
 | 
			
		||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = ::sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  void fakeFine(void)
 | 
			
		||||
  {
 | 
			
		||||
    int Nk = nbasis;
 | 
			
		||||
    subspace.resize(Nk,_FineGrid);
 | 
			
		||||
    subspace[0]=1.0;
 | 
			
		||||
    subspace[0].Checkerboard()=_checkerboard;
 | 
			
		||||
    normalise(subspace[0]);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
    for(int k=1;k<Nk;k++){
 | 
			
		||||
      subspace[k].Checkerboard()=_checkerboard;
 | 
			
		||||
      Op(subspace[k-1],subspace[k]);
 | 
			
		||||
      normalise(subspace[k]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  void testFine(RealD resid) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
    assert(subspace.size() == nbasis);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
    ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
 | 
			
		||||
    for(int k=0;k<nbasis;k++){
 | 
			
		||||
      assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
    assert(subspace.size() == nbasis);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    Chebyshev<FineField>                          ChebySmooth(cheby_smooth);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,subspace);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<evec_coarse.size();k++){
 | 
			
		||||
      if ( k < nbasis ) { 
 | 
			
		||||
	assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid, 
 | 
			
		||||
		RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    assert(nbasis<=Nm);
 | 
			
		||||
    Chebyshev<FineField>      Cheby(cheby_parms);
 | 
			
		||||
    FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
 | 
			
		||||
    evals_fine.resize(Nm);
 | 
			
		||||
    subspace.resize(Nm,_FineGrid);
 | 
			
		||||
 | 
			
		||||
    ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
 | 
			
		||||
    FineField src(_FineGrid); 
 | 
			
		||||
    typedef typename FineField::scalar_type Scalar;
 | 
			
		||||
    // src=1.0; 
 | 
			
		||||
    src=Scalar(1.0); 
 | 
			
		||||
    src.Checkerboard() = _checkerboard;
 | 
			
		||||
 | 
			
		||||
    int Nconv;
 | 
			
		||||
    IRL.calc(evals_fine,subspace,src,Nconv,false);
 | 
			
		||||
    
 | 
			
		||||
    // Shrink down to number saved
 | 
			
		||||
    assert(Nstop>=nbasis);
 | 
			
		||||
    assert(Nconv>=nbasis);
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
			
		||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
			
		||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op);
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
			
		||||
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
    assert(Nconv>=Nstop);
 | 
			
		||||
    evals_coarse.resize(Nstop);
 | 
			
		||||
    evec_coarse.resize (Nstop,_CoarseGrid);
 | 
			
		||||
    for (int i=0;i<Nstop;i++){
 | 
			
		||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,157 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/MinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
 | 
			
		||||
                          // Defaults true.
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  RealD   overRelaxParam;
 | 
			
		||||
  Integer IterationsToComplete; // Number of iterations the MR took to finish.
 | 
			
		||||
                                // Filled in upon completion
 | 
			
		||||
 | 
			
		||||
  MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    ComplexD a, c;
 | 
			
		||||
    RealD    d;
 | 
			
		||||
 | 
			
		||||
    Field Mr(src);
 | 
			
		||||
    Field r(src);
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Linop.Op(psi, Mr);
 | 
			
		||||
 | 
			
		||||
    r = src - Mr;
 | 
			
		||||
 | 
			
		||||
    RealD cp = norm2(r);
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual:  cp,r " << cp << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (cp <= rsq) {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k;
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
      Linop.Op(r, Mr);
 | 
			
		||||
      MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      c = innerProduct(Mr, r);
 | 
			
		||||
 | 
			
		||||
      d = norm2(Mr);
 | 
			
		||||
 | 
			
		||||
      a = c / d;
 | 
			
		||||
 | 
			
		||||
      a = a * overRelaxParam;
 | 
			
		||||
 | 
			
		||||
      psi = psi + r * a;
 | 
			
		||||
 | 
			
		||||
      r = r - Mr * a;
 | 
			
		||||
 | 
			
		||||
      cp = norm2(r);
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
      std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        Linop.Op(psi, Mr);
 | 
			
		||||
        r = src - Mr;
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "MinimalResidual Converged on iteration " << k
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Total   " << SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Matrix  " << MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge)
 | 
			
		||||
          assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
        IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "MinimalResidual did NOT converge"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
} // namespace Grid
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,276 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
 | 
			
		||||
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
  GridStopWatch ChangePrecTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<FieldF> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                                   Integer maxit,
 | 
			
		||||
                                                   GridBase * sp_grid,
 | 
			
		||||
                                                   LinearFunction<FieldF> &Prec,
 | 
			
		||||
                                                   Integer restart_length,
 | 
			
		||||
                                                   bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.)
 | 
			
		||||
      , SinglePrecGrid(sp_grid)
 | 
			
		||||
      , Preconditioner(Prec) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    FieldD r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "MPFGMRES:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
    ChangePrecTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "MPFGMRES: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total      " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon     " <<         PrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix     " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg     " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR         " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol    " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " <<   ChangePrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    FieldD w(src.Grid());
 | 
			
		||||
    FieldD r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // these should probably be made class members so that they are only allocated once, not in every restart
 | 
			
		||||
    std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
    std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, z, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(z, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    FieldF v_f(SinglePrecGrid);
 | 
			
		||||
    FieldF z_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    ChangePrecTimer.Start();
 | 
			
		||||
    precisionChange(v_f, v[iter]);
 | 
			
		||||
    precisionChange(z_f, z[iter]);
 | 
			
		||||
    ChangePrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(v_f, z_f);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    ChangePrecTimer.Start();
 | 
			
		||||
    precisionChange(z[iter], z_f);
 | 
			
		||||
    ChangePrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(z[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + z[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,112 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/NormalEquations.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_NORMAL_EQUATIONS_H
 | 
			
		||||
#define GRID_NORMAL_EQUATIONS_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class NormalEquations {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
		 LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    Field src(in.Grid());
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
    MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
 | 
			
		||||
    _Matrix.Mdag(in,src);
 | 
			
		||||
    _Guess(src,out);
 | 
			
		||||
    _HermitianSolver(MdagMOp,src,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 HPDSolver(LinearOperatorBase<Field> &Matrix,
 | 
			
		||||
	   OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
	   LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class MdagMSolver {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
	     LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
 | 
			
		||||
    _HermitianSolver(MdagMOp,in,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,45 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
namespace Grid {
 | 
			
		||||
template<class Field> class PowerMethod  
 | 
			
		||||
{ 
 | 
			
		||||
 public: 
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *grid = src.Grid(); 
 | 
			
		||||
    
 | 
			
		||||
    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum 
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 50; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
      normalise(src_n); 
 | 
			
		||||
      HermOp.HermOp(src_n,tmp); 
 | 
			
		||||
      RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. 
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
 	return evalMaxApprox; 
 | 
			
		||||
      } 
 | 
			
		||||
      evalMaxApprox = na; 
 | 
			
		||||
      src_n = tmp;
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
@@ -1,119 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/PrecConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
 | 
			
		||||
#define GRID_PREC_CONJUGATE_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class PrecConjugateResidual : public OperatorFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
  LinearFunction<Field> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit),      Preconditioner(Prec)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    RealD a, b, c, d;
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
      
 | 
			
		||||
    RealD rAr, rAAr, rArp;
 | 
			
		||||
    RealD pAp, pAAp;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    Field r(grid),  p(grid), Ap(grid), Ar(grid), z(grid);
 | 
			
		||||
      
 | 
			
		||||
    psi=zero;
 | 
			
		||||
    r  = src;
 | 
			
		||||
    Preconditioner(r,p);
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
    Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
 | 
			
		||||
    Ar=Ap;
 | 
			
		||||
    rAr=pAp;
 | 
			
		||||
    rAAr=pAAp;
 | 
			
		||||
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
 | 
			
		||||
    if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      Preconditioner(Ap,z);
 | 
			
		||||
      RealD rq= real(innerProduct(Ap,z)); 
 | 
			
		||||
 | 
			
		||||
      a = rAr/rq;
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p,psi);
 | 
			
		||||
      cp = axpy_norm(r,-a,z,r);
 | 
			
		||||
 | 
			
		||||
      rArp=rAr;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
 | 
			
		||||
 | 
			
		||||
      b   =rAr/rArp;
 | 
			
		||||
 
 | 
			
		||||
      axpy(p,b,p,r);
 | 
			
		||||
      pAAp=axpy_norm(Ap,b,Ap,Ar);
 | 
			
		||||
	
 | 
			
		||||
      if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
	Linop.HermOp(psi,Ap);
 | 
			
		||||
	axpy(r,-1.0,src,Ap);
 | 
			
		||||
	RealD true_resid = norm2(r)/ssq;
 | 
			
		||||
	std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
 | 
			
		||||
		 << " computed residual "<<sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "<<sqrt(true_resid)
 | 
			
		||||
		 << " target "       <<Tolerance <<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,239 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_PREC_GCR_H
 | 
			
		||||
#define GRID_PREC_GCR_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//VPGCR Abe and Zhang, 2005.
 | 
			
		||||
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
 | 
			
		||||
//Computing and Information Volume 2, Number 2, Pages 147-161
 | 
			
		||||
//NB. Likely not original reference since they are focussing on a preconditioner variant.
 | 
			
		||||
//    but VPGCR was nicely written up in their paper
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" " 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
  int mmax;
 | 
			
		||||
  int nstep;
 | 
			
		||||
  int steps;
 | 
			
		||||
  int level;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch MatTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field>     &Preconditioner;
 | 
			
		||||
  LinearOperatorBase<Field> &Linop;
 | 
			
		||||
 | 
			
		||||
  void Level(int lv) { level=lv; };
 | 
			
		||||
 | 
			
		||||
  PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) : 
 | 
			
		||||
    Tolerance(tol), 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    Linop(_Linop),
 | 
			
		||||
    Preconditioner(Prec),
 | 
			
		||||
    mmax(_mmax),
 | 
			
		||||
    nstep(_nstep)
 | 
			
		||||
  { 
 | 
			
		||||
    level=1;
 | 
			
		||||
    verbose=1;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
      
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    steps=0;
 | 
			
		||||
    for(int k=0;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      cp=GCRnStep(src,psi,rsq);
 | 
			
		||||
 | 
			
		||||
      GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	Linop.HermOp(psi,r);
 | 
			
		||||
	axpy(r,-1.0,src,r);
 | 
			
		||||
	RealD tr = norm2(r);
 | 
			
		||||
	GCRLogLevel<<"PGCR: Converged on iteration " <<steps
 | 
			
		||||
		 << " computed residual "<<sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "    <<sqrt(tr/ssq)
 | 
			
		||||
		 << " target "           <<Tolerance <<std::endl;
 | 
			
		||||
 | 
			
		||||
	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	/*
 | 
			
		||||
	  GCRLogLevel<<"PGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl;
 | 
			
		||||
	  GCRLogLevel<<"PGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl;
 | 
			
		||||
	  GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	*/
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
			
		||||
    //    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD a, b;
 | 
			
		||||
    RealD zAz, zAAz;
 | 
			
		||||
    RealD rq;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field ttmp(grid);
 | 
			
		||||
    Field Az(grid);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////
 | 
			
		||||
    // history for flexible orthog
 | 
			
		||||
    ////////////////////////////////
 | 
			
		||||
    std::vector<Field> q(mmax,grid);
 | 
			
		||||
    std::vector<Field> p(mmax,grid);
 | 
			
		||||
    std::vector<RealD> qq(mmax);
 | 
			
		||||
      
 | 
			
		||||
    GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // initial guess x0 is taken as nonzero.
 | 
			
		||||
    // r0=src-A x0 = src
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    MatTimer.Start();
 | 
			
		||||
    Linop.HermOpAndNorm(psi,Az,zAz,zAAz); 
 | 
			
		||||
    MatTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r=src-Az;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
    GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////
 | 
			
		||||
    // p = Prec(r)
 | 
			
		||||
    /////////////////////
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(r,z);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatTimer.Start();
 | 
			
		||||
    Linop.HermOpAndNorm(z,Az,zAz,zAAz); 
 | 
			
		||||
    MatTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
    //p[0],q[0],qq[0] 
 | 
			
		||||
    p[0]= z;
 | 
			
		||||
    q[0]= Az;
 | 
			
		||||
    qq[0]= zAAz;
 | 
			
		||||
    
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<nstep;k++){
 | 
			
		||||
 | 
			
		||||
      steps++;
 | 
			
		||||
 | 
			
		||||
      int kp     = k+1;
 | 
			
		||||
      int peri_k = k %mmax;
 | 
			
		||||
      int peri_kp= kp%mmax;
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
 | 
			
		||||
      a = rq/qq[peri_k];
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p[peri_k],psi);         
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r,-a,q[peri_k],r);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl; 
 | 
			
		||||
 | 
			
		||||
      if((k==nstep-1)||(cp<rsq)){
 | 
			
		||||
	return cp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      PrecTimer.Start();
 | 
			
		||||
      Preconditioner(r,z);// solve Az = r
 | 
			
		||||
      PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      MatTimer.Start();
 | 
			
		||||
      Linop.HermOpAndNorm(z,Az,zAz,zAAz);
 | 
			
		||||
      MatTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      q[peri_kp]=Az;
 | 
			
		||||
      p[peri_kp]=z;
 | 
			
		||||
 | 
			
		||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
			
		||||
      for(int back=0;back<northog;back++){
 | 
			
		||||
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
			
		||||
 | 
			
		||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
			
		||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
			
		||||
	q[peri_kp]=q[peri_kp]+b*q[peri_back];
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    assert(0); // never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,371 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2019
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
RealD innerG5ProductReal(Field &l, Field &r)
 | 
			
		||||
{
 | 
			
		||||
  Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
  Field tmp(l.Grid());
 | 
			
		||||
  //  tmp = G5*r;
 | 
			
		||||
  G5R5(tmp,r);
 | 
			
		||||
  ComplexD ip =innerProduct(l,tmp);
 | 
			
		||||
  std::cout << "innerProductRealG5R5 "<<ip<<std::endl;
 | 
			
		||||
  return ip.real();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; 
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationCount;
 | 
			
		||||
 | 
			
		||||
  QuasiMinimalResidual(RealD   tol,
 | 
			
		||||
		       Integer maxit,
 | 
			
		||||
		       bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv) 
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD resid;
 | 
			
		||||
    IterationCount=0;
 | 
			
		||||
 | 
			
		||||
    RealD  rho, rho_1, xi, gamma, gamma_1, theta, theta_1;
 | 
			
		||||
    RealD  eta, delta, ep, beta; 
 | 
			
		||||
 | 
			
		||||
    GridBase *Grid = b.Grid();
 | 
			
		||||
    Field r(Grid), d(Grid), s(Grid);
 | 
			
		||||
    Field v(Grid), w(Grid), y(Grid),  z(Grid);
 | 
			
		||||
    Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid);
 | 
			
		||||
    Field p(Grid), q(Grid), p_tld(Grid);
 | 
			
		||||
 | 
			
		||||
    Real normb = norm2(b);
 | 
			
		||||
 | 
			
		||||
    LinOp.Op(x,r); r = b - r;
 | 
			
		||||
 | 
			
		||||
    assert(normb> 0.0);
 | 
			
		||||
 | 
			
		||||
    resid = norm2(r)/normb;
 | 
			
		||||
    if (resid <= Tolerance) {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    v_tld = r;
 | 
			
		||||
    y = v_tld;
 | 
			
		||||
    rho = norm2(y);
 | 
			
		||||
 | 
			
		||||
    // Take Gamma5 conjugate
 | 
			
		||||
    //    Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
    //    G5R5(w_tld,r);
 | 
			
		||||
    //    w_tld = G5* v_tld;
 | 
			
		||||
    w_tld=v_tld;
 | 
			
		||||
    z = w_tld;
 | 
			
		||||
    xi = norm2(z);
 | 
			
		||||
 | 
			
		||||
    gamma = 1.0;
 | 
			
		||||
    eta   = -1.0;
 | 
			
		||||
    theta = 0.0;
 | 
			
		||||
 | 
			
		||||
    for (int i = 1; i <= MaxIterations; i++) {
 | 
			
		||||
 | 
			
		||||
      // Breakdown tests
 | 
			
		||||
      assert( rho != 0.0);
 | 
			
		||||
      assert( xi  != 0.0);
 | 
			
		||||
 | 
			
		||||
      v = (1. / rho) * v_tld;
 | 
			
		||||
      y = (1. / rho) * y;
 | 
			
		||||
 | 
			
		||||
      w = (1. / xi) * w_tld;
 | 
			
		||||
      z = (1. / xi) * z;
 | 
			
		||||
 | 
			
		||||
      ComplexD Zdelta = innerProduct(z, y); // Complex?
 | 
			
		||||
      std::cout << "Zdelta "<<Zdelta<<std::endl;
 | 
			
		||||
      delta = Zdelta.real();
 | 
			
		||||
 | 
			
		||||
      y_tld = y; 
 | 
			
		||||
      z_tld = z;
 | 
			
		||||
 | 
			
		||||
      if (i > 1) {
 | 
			
		||||
	p = y_tld - (xi  * delta / ep) * p;
 | 
			
		||||
	q = z_tld - (rho * delta / ep) * q;
 | 
			
		||||
      } else {
 | 
			
		||||
	p = y_tld;
 | 
			
		||||
	q = z_tld;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      LinOp.Op(p,p_tld);      //     p_tld = A * p;
 | 
			
		||||
      ComplexD Zep = innerProduct(q, p_tld);
 | 
			
		||||
      ep=Zep.real();
 | 
			
		||||
      std::cout << "Zep "<<Zep <<std::endl;
 | 
			
		||||
      // Complex Audit
 | 
			
		||||
      assert(abs(ep)>0);
 | 
			
		||||
 | 
			
		||||
      beta = ep / delta;
 | 
			
		||||
      assert(abs(beta)>0);
 | 
			
		||||
 | 
			
		||||
      v_tld = p_tld - beta * v;
 | 
			
		||||
      y = v_tld;
 | 
			
		||||
 | 
			
		||||
      rho_1 = rho;
 | 
			
		||||
      rho   = norm2(y);
 | 
			
		||||
      LinOp.AdjOp(q,w_tld);
 | 
			
		||||
      w_tld = w_tld - beta * w;
 | 
			
		||||
      z = w_tld;
 | 
			
		||||
 | 
			
		||||
      xi = norm2(z);
 | 
			
		||||
 | 
			
		||||
      gamma_1 = gamma;
 | 
			
		||||
      theta_1 = theta;
 | 
			
		||||
 | 
			
		||||
      theta   = rho / (gamma_1 * beta);
 | 
			
		||||
      gamma   = 1.0 / sqrt(1.0 + theta * theta);
 | 
			
		||||
      std::cout << "theta "<<theta<<std::endl;
 | 
			
		||||
      std::cout << "gamma "<<gamma<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(abs(gamma)> 0.0);
 | 
			
		||||
 | 
			
		||||
      eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
 | 
			
		||||
 | 
			
		||||
      if (i > 1) {
 | 
			
		||||
	d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d;
 | 
			
		||||
	s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s;
 | 
			
		||||
      } else {
 | 
			
		||||
	d = eta * p;
 | 
			
		||||
	s = eta * p_tld;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      x =x+d;                            // update approximation vector
 | 
			
		||||
      r =r-s;                            // compute residual
 | 
			
		||||
 | 
			
		||||
      if ((resid = norm2(r) / normb) <= Tolerance) {
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return;                            // no convergence
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  // QMRg5 SMP thesis
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x) 
 | 
			
		||||
  {
 | 
			
		||||
    // Real scalars
 | 
			
		||||
    GridBase *grid = b.Grid();
 | 
			
		||||
 | 
			
		||||
    Field    r(grid);
 | 
			
		||||
    Field    p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid);
 | 
			
		||||
    Field    v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid);
 | 
			
		||||
    Field    tmp(grid);
 | 
			
		||||
 | 
			
		||||
    RealD    w;
 | 
			
		||||
    RealD    z1, z2;
 | 
			
		||||
    RealD    delta_m, delta_m_minus_1;
 | 
			
		||||
    RealD    c_m_plus_1, c_m, c_m_minus_1;
 | 
			
		||||
    RealD    s_m_plus_1, s_m, s_m_minus_1;
 | 
			
		||||
    RealD    alpha, beta, gamma, epsilon;
 | 
			
		||||
    RealD    mu, nu, rho, theta, xi, chi;
 | 
			
		||||
    RealD    mod2r, mod2b;
 | 
			
		||||
    RealD    tau2, target2;
 | 
			
		||||
 | 
			
		||||
    mod2b=norm2(b);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Initial residual
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    LinOp.Op(x,tmp);
 | 
			
		||||
    r = b - tmp;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // \mu = \rho = |r_0|
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    mod2r = norm2(r);
 | 
			
		||||
    rho = sqrt( mod2r);
 | 
			
		||||
    mu=rho;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Zero negative history
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    v_m_plus_1  = Zero();
 | 
			
		||||
    v_m_minus_1 = Zero();
 | 
			
		||||
    p_m_minus_1 = Zero();
 | 
			
		||||
    p_m_minus_2 = Zero();
 | 
			
		||||
 | 
			
		||||
    // v0
 | 
			
		||||
    v_m = (1.0/rho)*r;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Initial coeffs
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    delta_m_minus_1 = 1.0;
 | 
			
		||||
    c_m_minus_1     = 1.0;
 | 
			
		||||
    c_m             = 1.0;
 | 
			
		||||
    s_m_minus_1     = 0.0;
 | 
			
		||||
    s_m             = 0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Set up convergence check
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    tau2    = mod2r;
 | 
			
		||||
    target2 = mod2b * Tolerance*Tolerance;
 | 
			
		||||
 
 | 
			
		||||
    for(int iter = 0 ; iter < MaxIterations; iter++){
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \delta_m = (v_m, \gamma_5 v_m) 
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      delta_m = innerG5ProductReal(v_m,v_m);
 | 
			
		||||
      std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // tmp = A v_m
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      LinOp.Op(v_m,tmp);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \alpha = (v_m, \gamma_5 temp) / \delta_m 
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      alpha = innerG5ProductReal(v_m,tmp);
 | 
			
		||||
      alpha = alpha/delta_m ;
 | 
			
		||||
      std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \beta = \rho \delta_m / \delta_{m-1}
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      beta = rho * delta_m / delta_m_minus_1;
 | 
			
		||||
      std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1}
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      // \rho = || \tilde{v}_{m+1} ||
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      rho = sqrt( norm2(v_m_plus_1) );
 | 
			
		||||
      std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      //      v_{m+1} = \tilde{v}_{m+1}
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      v_m_plus_1 = (1.0 / rho) * v_m_plus_1;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      // QMR recurrence coefficients.
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      theta      = s_m_minus_1 * beta;
 | 
			
		||||
      gamma      = c_m_minus_1 * beta;
 | 
			
		||||
      epsilon    =  c_m * gamma + s_m * alpha;
 | 
			
		||||
      xi         = -s_m * gamma + c_m * alpha;
 | 
			
		||||
      nu         = sqrt( xi*xi + rho*rho );
 | 
			
		||||
      c_m_plus_1 = fabs(xi) / nu;
 | 
			
		||||
      if ( xi == 0.0 ) {
 | 
			
		||||
	s_m_plus_1 = 1.0;
 | 
			
		||||
      } else {
 | 
			
		||||
	s_m_plus_1 = c_m_plus_1 * rho / xi;
 | 
			
		||||
      }
 | 
			
		||||
      chi = c_m_plus_1 * xi + s_m_plus_1 * rho;
 | 
			
		||||
 | 
			
		||||
      std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl;
 | 
			
		||||
      std::cout << "QuasiMinimalResidual coeffs "<< chi   <<std::endl;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      //p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////
 | 
			
		||||
      //      \psi = \psi + c_{m+1} \mu p_m	
 | 
			
		||||
      ////////////////////////////////////////////////////////////////
 | 
			
		||||
      x = x + ( c_m_plus_1 * mu ) * p_m;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////
 | 
			
		||||
      //
 | 
			
		||||
      ////////////////////////////////////////
 | 
			
		||||
      mu              = -s_m_plus_1 * mu;
 | 
			
		||||
      delta_m_minus_1 = delta_m;
 | 
			
		||||
      c_m_minus_1     = c_m;
 | 
			
		||||
      c_m             = c_m_plus_1;
 | 
			
		||||
      s_m_minus_1     = s_m;
 | 
			
		||||
      s_m             = s_m_plus_1;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////
 | 
			
		||||
      // Could use pointer swizzle games.
 | 
			
		||||
      ////////////////////////////////////
 | 
			
		||||
      v_m_minus_1 = v_m;
 | 
			
		||||
      v_m         = v_m_plus_1;
 | 
			
		||||
      p_m_minus_2 = p_m_minus_1;
 | 
			
		||||
      p_m_minus_1 = p_m;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      /////////////////////////////////////
 | 
			
		||||
      z1 = RealD(iter+1.0);
 | 
			
		||||
      z2 = z1 + 1.0;
 | 
			
		||||
      tau2 = tau2 *( z2 / z1 ) * s_m * s_m;
 | 
			
		||||
      std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl;
 | 
			
		||||
      std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Compute true residual
 | 
			
		||||
      mod2r = tau2;
 | 
			
		||||
      if ( 1 || (tau2 < (100.0 * target2)) ) {
 | 
			
		||||
	LinOp.Op(x,tmp);
 | 
			
		||||
	r = b - tmp;
 | 
			
		||||
	mod2r = norm2(r);
 | 
			
		||||
	std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if ( mod2r < target2 ) { 
 | 
			
		||||
 | 
			
		||||
	std::cout << " QuasiMinimumResidual has converged"<<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,486 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/SchurRedBlack.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_SCHUR_RED_BLACK_H
 | 
			
		||||
#define GRID_SCHUR_RED_BLACK_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * Red black Schur decomposition
 | 
			
		||||
   *
 | 
			
		||||
   *  M = (Mee Meo) =  (1             0 )   (Mee   0               )  (1 Mee^{-1} Meo)
 | 
			
		||||
   *      (Moe Moo)    (Moe Mee^-1    1 )   (0   Moo-Moe Mee^-1 Meo)  (0   1         )
 | 
			
		||||
   *                =         L                     D                     U
 | 
			
		||||
   *
 | 
			
		||||
   * L^-1 = (1              0 )
 | 
			
		||||
   *        (-MoeMee^{-1}   1 )   
 | 
			
		||||
   * L^{dag} = ( 1       Mee^{-dag} Moe^{dag} )
 | 
			
		||||
   *           ( 0       1                    )
 | 
			
		||||
   * L^{-d}  = ( 1      -Mee^{-dag} Moe^{dag} )
 | 
			
		||||
   *           ( 0       1                    )
 | 
			
		||||
   *
 | 
			
		||||
   * U^-1 = (1   -Mee^{-1} Meo)
 | 
			
		||||
   *        (0    1           )
 | 
			
		||||
   * U^{dag} = ( 1                 0)
 | 
			
		||||
   *           (Meo^dag Mee^{-dag} 1)
 | 
			
		||||
   * U^{-dag} = (  1                 0)
 | 
			
		||||
   *            (-Meo^dag Mee^{-dag} 1)
 | 
			
		||||
   ***********************
 | 
			
		||||
   *     M psi = eta
 | 
			
		||||
   ***********************
 | 
			
		||||
   *Odd
 | 
			
		||||
   * i)                 D_oo psi_o =  L^{-1}  eta_o
 | 
			
		||||
   *                        eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * Wilson:
 | 
			
		||||
   *      (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   * Stag:
 | 
			
		||||
   *      D_oo psi_o = L^{-1}  eta =    (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * L^-1 eta_o= (1              0 ) (e
 | 
			
		||||
   *             (-MoeMee^{-1}   1 )   
 | 
			
		||||
   *
 | 
			
		||||
   *Even
 | 
			
		||||
   * ii)  Mee psi_e + Meo psi_o = src_e
 | 
			
		||||
   *
 | 
			
		||||
   *   => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
   *
 | 
			
		||||
   * 
 | 
			
		||||
   * TODO: Other options:
 | 
			
		||||
   * 
 | 
			
		||||
   * a) change checkerboards for Schur e<->o
 | 
			
		||||
   *
 | 
			
		||||
   * Left precon by Moo^-1
 | 
			
		||||
   * b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 =  (D_oo)^dag M_oo^-dag Moo^-1 L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * Right precon by Moo^-1
 | 
			
		||||
   * c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *                              psi_o = M_oo^-1 phi_o
 | 
			
		||||
   * TODO: Deflation 
 | 
			
		||||
   */
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Use base class to share code
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackBase {
 | 
			
		||||
  protected:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
    OperatorFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
    bool subGuess;
 | 
			
		||||
    bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
        const bool _solnAsInitGuess = false)  :
 | 
			
		||||
    _HermitianRBSolver(HermitianRBSolver),
 | 
			
		||||
    useSolnAsInitGuess(_solnAsInitGuess)
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise = 0;
 | 
			
		||||
      subtractGuess(initSubGuess);
 | 
			
		||||
    };
 | 
			
		||||
    void subtractGuess(const bool initSubGuess)
 | 
			
		||||
    {
 | 
			
		||||
      subGuess = initSubGuess;
 | 
			
		||||
    }
 | 
			
		||||
    bool isSubtractGuess(void)
 | 
			
		||||
    {
 | 
			
		||||
      return subGuess;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Shared code
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
      ZeroGuesser<Field> guess;
 | 
			
		||||
      (*this)(_Matrix,in,out,guess);
 | 
			
		||||
    }
 | 
			
		||||
    void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out) 
 | 
			
		||||
    {
 | 
			
		||||
      ZeroGuesser<Field> guess;
 | 
			
		||||
      (*this)(_Matrix,in,out,guess);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Guesser>
 | 
			
		||||
    void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess) 
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
      int nblock = in.size();
 | 
			
		||||
 | 
			
		||||
      std::vector<Field> src_o(nblock,grid);
 | 
			
		||||
      std::vector<Field> sol_o(nblock,grid);
 | 
			
		||||
      
 | 
			
		||||
      std::vector<Field> guess_save;
 | 
			
		||||
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
      Field tmp(grid);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Prepare RedBlack source
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
 | 
			
		||||
      }
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Make the guesses
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      if ( subGuess ) guess_save.resize(nblock,grid);
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
        if(useSolnAsInitGuess) {
 | 
			
		||||
          pickCheckerboard(Odd, sol_o[b], out[b]);
 | 
			
		||||
        } else {
 | 
			
		||||
          guess(src_o[b],sol_o[b]); 
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
	if ( subGuess ) { 
 | 
			
		||||
	  guess_save[b] = sol_o[b];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the block solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
 | 
			
		||||
      RedBlackSolve(_Matrix,src_o,sol_o);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // A2A boolean behavioural control & reconstruct other checkerboard
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      for(int b=0;b<nblock;b++) {
 | 
			
		||||
 | 
			
		||||
	if (subGuess)   sol_o[b] = sol_o[b] - guess_save[b];
 | 
			
		||||
 | 
			
		||||
	///////// Needs even source //////////////
 | 
			
		||||
	pickCheckerboard(Even,tmp,in[b]);
 | 
			
		||||
	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////
 | 
			
		||||
	// Check unprec residual if possible
 | 
			
		||||
	/////////////////////////////////////////////////
 | 
			
		||||
	if ( ! subGuess ) {
 | 
			
		||||
	  _Matrix.M(out[b],resid); 
 | 
			
		||||
	  resid = resid-in[b];
 | 
			
		||||
	  RealD ns = norm2(in[b]);
 | 
			
		||||
	  RealD nr = norm2(resid);
 | 
			
		||||
	
 | 
			
		||||
	  std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class Guesser>
 | 
			
		||||
    void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // RedBlack source
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSource(_Matrix,in,src_e,src_o);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      // Construct the guess
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      if(useSolnAsInitGuess) {
 | 
			
		||||
        pickCheckerboard(Odd, sol_o, out);
 | 
			
		||||
      } else {
 | 
			
		||||
        guess(src_o,sol_o);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Field  guess_save(grid);
 | 
			
		||||
      guess_save = sol_o;
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSolve(_Matrix,src_o,sol_o);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Fionn A2A boolean behavioural control
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      if (subGuess)      sol_o= sol_o-guess_save;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // RedBlack solution needs the even source
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSolution(_Matrix,sol_o,src_e,out);
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      if ( ! subGuess ) {
 | 
			
		||||
        _Matrix.M(out,resid); 
 | 
			
		||||
        resid = resid-in;
 | 
			
		||||
        RealD ns = norm2(in);
 | 
			
		||||
        RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
        std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
 | 
			
		||||
      } else {
 | 
			
		||||
        std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }     
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Override in derived. 
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    virtual void RedBlackSource  (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)                =0;
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)          =0;
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)                           =0;
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)=0;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
        const bool _solnAsInitGuess = false) 
 | 
			
		||||
      :    SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) 
 | 
			
		||||
    {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Override RedBlack specialisation
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field   sol_e(grid);
 | 
			
		||||
      Field   src_e(grid);
 | 
			
		||||
 | 
			
		||||
      src_e = src_e_c; // Const correctness
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal has Mooee on it.
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
        const bool _solnAsInitGuess = false)  
 | 
			
		||||
      : SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Override RedBlack specialisation
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  sol_e(grid);
 | 
			
		||||
      Field  src_e_i(grid);
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
			
		||||
  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
			
		||||
  //=> psi = MeeInv phi
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
      const bool _solnAsInitGuess = false)  
 | 
			
		||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   sol_o_i(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field   sol_e(grid);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // MooeeInv due to pecond
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(sol_o,tmp);
 | 
			
		||||
      sol_o_i = tmp;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd );
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,133 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <fcntl.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
MemoryStats *MemoryProfiler::stats = nullptr;
 | 
			
		||||
bool         MemoryProfiler::debug = false;
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
#define SMALL_LIMIT (0)
 | 
			
		||||
#else
 | 
			
		||||
#define SMALL_LIMIT (4096)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef POINTER_CACHE
 | 
			
		||||
int PointerCache::victim;
 | 
			
		||||
 | 
			
		||||
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
 | 
			
		||||
 | 
			
		||||
void *PointerCache::Insert(void *ptr,size_t bytes) {
 | 
			
		||||
 | 
			
		||||
  if (bytes < SMALL_LIMIT ) return ptr;
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
  void * ret = NULL;
 | 
			
		||||
  int v = -1;
 | 
			
		||||
 | 
			
		||||
  for(int e=0;e<Ncache;e++) {
 | 
			
		||||
    if ( Entries[e].valid==0 ) {
 | 
			
		||||
      v=e; 
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( v==-1 ) {
 | 
			
		||||
    v=victim;
 | 
			
		||||
    victim = (victim+1)%Ncache;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( Entries[v].valid ) {
 | 
			
		||||
    ret = Entries[v].address;
 | 
			
		||||
    Entries[v].valid = 0;
 | 
			
		||||
    Entries[v].address = NULL;
 | 
			
		||||
    Entries[v].bytes = 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Entries[v].address=ptr;
 | 
			
		||||
  Entries[v].bytes  =bytes;
 | 
			
		||||
  Entries[v].valid  =1;
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *PointerCache::Lookup(size_t bytes) {
 | 
			
		||||
 | 
			
		||||
  if (bytes < SMALL_LIMIT ) return NULL;
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
  for(int e=0;e<Ncache;e++){
 | 
			
		||||
    if ( Entries[e].valid && ( Entries[e].bytes == bytes ) ) {
 | 
			
		||||
      Entries[e].valid = 0;
 | 
			
		||||
      return Entries[e].address;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return NULL;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  int fd = open("/proc/self/pagemap", O_RDONLY);
 | 
			
		||||
  assert(fd >= 0);
 | 
			
		||||
  const int page_size = 4096;
 | 
			
		||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
			
		||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
			
		||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
			
		||||
  uint64_t pagedata[npages];
 | 
			
		||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
			
		||||
  assert(ret == offset);
 | 
			
		||||
  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
			
		||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
			
		||||
  int nhugepages = npages / 512;
 | 
			
		||||
  int n4ktotal, nnothuge;
 | 
			
		||||
  n4ktotal = 0;
 | 
			
		||||
  nnothuge = 0;
 | 
			
		||||
  for (int i = 0; i < nhugepages; ++i) {
 | 
			
		||||
    uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
 | 
			
		||||
    for (int j = 0; j < 512; ++j) {
 | 
			
		||||
      uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
 | 
			
		||||
      ++n4ktotal;
 | 
			
		||||
      if (pageaddr != baseaddr + j * page_size)
 | 
			
		||||
	++nnothuge;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  int rank = CartesianCommunicator::RankWorld();
 | 
			
		||||
  printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::string sizeString(const size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  constexpr unsigned int bufSize = 256;
 | 
			
		||||
  const char             *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
 | 
			
		||||
  char                   buf[256];
 | 
			
		||||
  size_t                 s     = 0;
 | 
			
		||||
  double                 count = bytes;
 | 
			
		||||
  
 | 
			
		||||
  while (count >= 1024 && s < 7)
 | 
			
		||||
    {
 | 
			
		||||
      s++;
 | 
			
		||||
      count /= 1024;
 | 
			
		||||
    }
 | 
			
		||||
  if (count - floor(count) == 0.0)
 | 
			
		||||
    {
 | 
			
		||||
      snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
 | 
			
		||||
    }
 | 
			
		||||
  else
 | 
			
		||||
    {
 | 
			
		||||
      snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  return std::string(buf);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,249 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/AlignedAllocator.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_ALIGNED_ALLOCATOR_H
 | 
			
		||||
#define GRID_ALIGNED_ALLOCATOR_H
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_MALLOC_MALLOC_H
 | 
			
		||||
#include <malloc/malloc.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef HAVE_MALLOC_H
 | 
			
		||||
#include <malloc.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_MM_MALLOC_H
 | 
			
		||||
#include <mm_malloc.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define POINTER_CACHE
 | 
			
		||||
#define GRID_ALLOC_ALIGN (2*1024*1024)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Move control to configure.ac and Config.h?
 | 
			
		||||
#ifdef POINTER_CACHE
 | 
			
		||||
class PointerCache {
 | 
			
		||||
private:
 | 
			
		||||
/*Pinning pages is costly*/
 | 
			
		||||
/*Could maintain separate large and small allocation caches*/
 | 
			
		||||
#ifdef GRID_NVCC 
 | 
			
		||||
  static const int Ncache=128;
 | 
			
		||||
#else
 | 
			
		||||
  static const int Ncache=8;
 | 
			
		||||
#endif
 | 
			
		||||
  static int victim;
 | 
			
		||||
 | 
			
		||||
  typedef struct { 
 | 
			
		||||
    void *address;
 | 
			
		||||
    size_t bytes;
 | 
			
		||||
    int valid;
 | 
			
		||||
  } PointerCacheEntry;
 | 
			
		||||
    
 | 
			
		||||
  static PointerCacheEntry Entries[Ncache];
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  static void *Insert(void *ptr,size_t bytes) ;
 | 
			
		||||
  static void *Lookup(size_t bytes) ;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
#endif  
 | 
			
		||||
 | 
			
		||||
std::string sizeString(size_t bytes);
 | 
			
		||||
 | 
			
		||||
struct MemoryStats
 | 
			
		||||
{
 | 
			
		||||
  size_t totalAllocated{0}, maxAllocated{0}, 
 | 
			
		||||
    currentlyAllocated{0}, totalFreed{0};
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
class MemoryProfiler
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  static MemoryStats *stats;
 | 
			
		||||
  static bool        debug;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
 | 
			
		||||
#define profilerDebugPrint						\
 | 
			
		||||
  if (MemoryProfiler::stats)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      auto s = MemoryProfiler::stats;					\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#define profilerAllocate(bytes)						\
 | 
			
		||||
  if (MemoryProfiler::stats)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      auto s = MemoryProfiler::stats;					\
 | 
			
		||||
      s->totalAllocated     += (bytes);					\
 | 
			
		||||
      s->currentlyAllocated += (bytes);					\
 | 
			
		||||
      s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated); \
 | 
			
		||||
    }									\
 | 
			
		||||
  if (MemoryProfiler::debug)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
 | 
			
		||||
      profilerDebugPrint;						\
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#define profilerFree(bytes)						\
 | 
			
		||||
  if (MemoryProfiler::stats)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      auto s = MemoryProfiler::stats;					\
 | 
			
		||||
      s->totalFreed         += (bytes);					\
 | 
			
		||||
      s->currentlyAllocated -= (bytes);					\
 | 
			
		||||
    }									\
 | 
			
		||||
  if (MemoryProfiler::debug)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
 | 
			
		||||
      profilerDebugPrint;						\
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
void check_huge_pages(void *Buf,uint64_t BYTES);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// A lattice of something, but assume the something is SIMDized.
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<typename _Tp>
 | 
			
		||||
class alignedAllocator {
 | 
			
		||||
public: 
 | 
			
		||||
  typedef std::size_t     size_type;
 | 
			
		||||
  typedef std::ptrdiff_t  difference_type;
 | 
			
		||||
  typedef _Tp*       pointer;
 | 
			
		||||
  typedef const _Tp* const_pointer;
 | 
			
		||||
  typedef _Tp&       reference;
 | 
			
		||||
  typedef const _Tp& const_reference;
 | 
			
		||||
  typedef _Tp        value_type;
 | 
			
		||||
 | 
			
		||||
  template<typename _Tp1>  struct rebind { typedef alignedAllocator<_Tp1> other; };
 | 
			
		||||
  alignedAllocator() throw() { }
 | 
			
		||||
  alignedAllocator(const alignedAllocator&) throw() { }
 | 
			
		||||
  template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { }
 | 
			
		||||
  ~alignedAllocator() throw() { }
 | 
			
		||||
  pointer       address(reference __x)       const { return &__x; }
 | 
			
		||||
  size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
 | 
			
		||||
 | 
			
		||||
  pointer allocate(size_type __n, const void* _p= 0)
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef POINTER_CACHE
 | 
			
		||||
    _Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
 | 
			
		||||
#else
 | 
			
		||||
    pointer ptr = nullptr;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
    ////////////////////////////////////
 | 
			
		||||
    // Unified (managed) memory
 | 
			
		||||
    ////////////////////////////////////
 | 
			
		||||
    if ( ptr == (_Tp *) NULL ) {
 | 
			
		||||
      //      printf(" alignedAllocater cache miss %ld bytes ",bytes);      BACKTRACEFP(stdout);
 | 
			
		||||
      auto err = cudaMallocManaged((void **)&ptr,bytes);
 | 
			
		||||
      if( err != cudaSuccess ) {
 | 
			
		||||
	ptr = (_Tp *) NULL;
 | 
			
		||||
	std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
    } 
 | 
			
		||||
    assert( ptr != (_Tp *)NULL);
 | 
			
		||||
#else 
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // 2MB align; could make option probably doesn't need configurability
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  #ifdef HAVE_MM_MALLOC_H
 | 
			
		||||
    if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
 | 
			
		||||
  #else
 | 
			
		||||
    if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
 | 
			
		||||
  #endif
 | 
			
		||||
    assert( ptr != (_Tp *)NULL);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    // First touch optimise in threaded loop 
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    uint64_t *cp = (uint64_t *)ptr;
 | 
			
		||||
    thread_for(n,bytes/sizeof(uint64_t), { // need only one touch per page
 | 
			
		||||
      cp[n]=0;
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void deallocate(pointer __p, size_type __n) { 
 | 
			
		||||
    size_type bytes = __n * sizeof(_Tp);
 | 
			
		||||
 | 
			
		||||
    profilerFree(bytes);
 | 
			
		||||
 | 
			
		||||
#ifdef POINTER_CACHE
 | 
			
		||||
    pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
 | 
			
		||||
#else 
 | 
			
		||||
    pointer __freeme = __p;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
    if ( __freeme ) cudaFree((void *)__freeme);
 | 
			
		||||
#else 
 | 
			
		||||
  #ifdef HAVE_MM_MALLOC_H
 | 
			
		||||
    if ( __freeme ) _mm_free((void *)__freeme); 
 | 
			
		||||
  #else
 | 
			
		||||
    if ( __freeme ) free((void *)__freeme);
 | 
			
		||||
  #endif
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // FIXME: hack for the copy constructor, eventually it must be avoided
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
 | 
			
		||||
  //void construct(pointer __p, const _Tp& __val) { };
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
template<typename _Tp>  inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
 | 
			
		||||
template<typename _Tp>  inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Template typedefs
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class T> using commAllocator = alignedAllocator<T>;
 | 
			
		||||
template<class T> using Vector     = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector = std::vector<T,alignedAllocator<T> >;
 | 
			
		||||
template<class T> using Matrix     = std::vector<std::vector<T,alignedAllocator<T> > >;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,290 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/Cartesian_base.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CARTESIAN_BASE_H
 | 
			
		||||
#define GRID_CARTESIAN_BASE_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Commicator provides information on the processor grid
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
//    unsigned long _ndimension;
 | 
			
		||||
//    Coordinate _processors; // processor grid
 | 
			
		||||
//    int              _processor;  // linear processor rank
 | 
			
		||||
//    Coordinate _processor_coor;  // linear processor rank
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
class GridBase : public CartesianCommunicator , public GridThread {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  // Give Lattice access
 | 
			
		||||
  template<class object> friend class Lattice;
 | 
			
		||||
 | 
			
		||||
  GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;}; 
 | 
			
		||||
 | 
			
		||||
  GridBase(const Coordinate & processor_grid,
 | 
			
		||||
	   const CartesianCommunicator &parent,
 | 
			
		||||
	   int &split_rank) 
 | 
			
		||||
    : CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;};
 | 
			
		||||
 | 
			
		||||
  GridBase(const Coordinate & processor_grid,
 | 
			
		||||
	   const CartesianCommunicator &parent) 
 | 
			
		||||
    : CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;};
 | 
			
		||||
 | 
			
		||||
  virtual ~GridBase() = default;
 | 
			
		||||
 | 
			
		||||
  // Physics Grid information.
 | 
			
		||||
  Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
 | 
			
		||||
  Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
 | 
			
		||||
  Coordinate _gdimensions;// Global dimensions of array after cb removal
 | 
			
		||||
  Coordinate _ldimensions;// local dimensions of array with processor images removed
 | 
			
		||||
  Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed 
 | 
			
		||||
  Coordinate _ostride;    // Outer stride for each dimension
 | 
			
		||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
			
		||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _isites;
 | 
			
		||||
  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _gsites;
 | 
			
		||||
  Coordinate _slice_block;// subslice information
 | 
			
		||||
  Coordinate _slice_stride;
 | 
			
		||||
  Coordinate _slice_nblock;
 | 
			
		||||
 | 
			
		||||
  Coordinate _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
 | 
			
		||||
  Coordinate _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
 | 
			
		||||
 | 
			
		||||
  bool _isCheckerBoarded; 
 | 
			
		||||
  int        LocallyPeriodic;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Checkerboarding interface is virtual and overridden by 
 | 
			
		||||
  // GridCartesian / GridRedBlackCartesian
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual int CheckerBoarded(int dim)=0;
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
			
		||||
  virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
 | 
			
		||||
  virtual int CheckerBoardFromOindex (int Oindex)=0;
 | 
			
		||||
  virtual int CheckerBoardFromOindexTable (int Oindex)=0;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Local layout calculations
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // These routines are key. Subdivide the linearised cartesian index into
 | 
			
		||||
  //      "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
 | 
			
		||||
  //      "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
 | 
			
		||||
  //
 | 
			
		||||
  // Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
 | 
			
		||||
  // stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
 | 
			
		||||
  // coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
 | 
			
		||||
  // lanes are operated upon simultaneously.
 | 
			
		||||
  
 | 
			
		||||
  virtual int oIndex(Coordinate &coor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx=0;
 | 
			
		||||
    // Works with either global or local coordinates
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int iIndex(Coordinate &lcoor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx=0;
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
  inline int oIndexReduced(Coordinate &ocoor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx=0; 
 | 
			
		||||
    // ocoor is already reduced so can eliminate the modulo operation
 | 
			
		||||
    // for fast indexing and inline the routine
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
  inline void oCoorFromOindex (Coordinate& coor,int Oindex){
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
 | 
			
		||||
    lcoor.resize(_ndimension);
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////
 | 
			
		||||
  // SIMD lane addressing
 | 
			
		||||
  //////////////////////////////////////////////////////////
 | 
			
		||||
  inline void iCoorFromIindex(Coordinate &coor,int lane)
 | 
			
		||||
  {
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline int PermuteDim(int dimension){
 | 
			
		||||
    return _simd_layout[dimension]>1;
 | 
			
		||||
  }
 | 
			
		||||
  inline int PermuteType(int dimension){
 | 
			
		||||
    int permute_type=0;
 | 
			
		||||
    //
 | 
			
		||||
    // Best way to encode this would be to present a mask 
 | 
			
		||||
    // for which simd dimensions are rotated, and the rotation
 | 
			
		||||
    // size. If there is only one simd dimension rotated, this is just 
 | 
			
		||||
    // a permute. 
 | 
			
		||||
    //
 | 
			
		||||
    // Cases: PermuteType == 1,2,4,8
 | 
			
		||||
    // Distance should be either 0,1,2..
 | 
			
		||||
    //
 | 
			
		||||
    if ( _simd_layout[dimension] > 2 ) { 
 | 
			
		||||
      for(int d=0;d<_ndimension;d++){
 | 
			
		||||
	if ( d != dimension ) assert ( (_simd_layout[d]==1)  );
 | 
			
		||||
      }
 | 
			
		||||
      permute_type = RotateBit; // How to specify distance; this is not just direction.
 | 
			
		||||
      return permute_type;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int d=_ndimension-1;d>dimension;d--){
 | 
			
		||||
      if (_simd_layout[d]>1 ) permute_type++;
 | 
			
		||||
    }
 | 
			
		||||
    return permute_type;
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Array sizing queries
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  inline int iSites(void) const { return _isites; };
 | 
			
		||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
			
		||||
  inline int oSites(void) const { return _osites; };
 | 
			
		||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
			
		||||
  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
  inline const Coordinate &FullDimensions(void)         { return _fdimensions;};
 | 
			
		||||
  inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;};
 | 
			
		||||
  inline const Coordinate &LocalDimensions(void)        { return _ldimensions;};
 | 
			
		||||
  inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Utility to print the full decomposition details 
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void show_decomposition(){
 | 
			
		||||
    std::cout << GridLogMessage << "\tFull Dimensions    : " << _fdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tSIMD layout        : " << _simd_layout << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tGlobal Dimensions  : " << _gdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tLocal Dimensions   : " << _ldimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tOuter strides      : " << _ostride << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tInner strides      : " << _istride << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tiSites             : " << _isites << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\toSites             : " << _osites << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tlSites             : " << lSites() << std::endl;        
 | 
			
		||||
    std::cout << GridLogMessage << "\tgSites             : " << gSites() << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tNd                 : " << _ndimension << std::endl;             
 | 
			
		||||
  } 
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
			
		||||
    gidx=0;
 | 
			
		||||
    int mult=1;
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
			
		||||
      gidx+=mult*gcoor[mu];
 | 
			
		||||
      mult*=_gdimensions[mu];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    pcoor.resize(_ndimension);
 | 
			
		||||
    lcoor.resize(_ndimension);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++){
 | 
			
		||||
      int _fld  = _fdimensions[mu]/_processors[mu];
 | 
			
		||||
      pcoor[mu] = gcoor[mu]/_fld;
 | 
			
		||||
      lcoor[mu] = gcoor[mu]%_fld;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate pcoor;
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
 | 
			
		||||
    rank = RankFromProcessorCoor(pcoor);
 | 
			
		||||
    /*
 | 
			
		||||
      Coordinate cblcoor(lcoor);
 | 
			
		||||
      for(int d=0;d<cblcoor.size();d++){
 | 
			
		||||
      if( this->CheckerBoarded(d) ) {
 | 
			
		||||
      cblcoor[d] = lcoor[d]/2;
 | 
			
		||||
      }
 | 
			
		||||
      }
 | 
			
		||||
    */
 | 
			
		||||
    i_idx= iIndex(lcoor);
 | 
			
		||||
    o_idx= oIndex(lcoor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    gcoor.resize(_ndimension);
 | 
			
		||||
    Coordinate coor(_ndimension);
 | 
			
		||||
 | 
			
		||||
    ProcessorCoorFromRank(rank,coor);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
 | 
			
		||||
 | 
			
		||||
    iCoorFromIindex(coor,i_idx);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
 | 
			
		||||
 | 
			
		||||
    oCoorFromOindex (coor,o_idx);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
 | 
			
		||||
      
 | 
			
		||||
  }
 | 
			
		||||
  void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
 | 
			
		||||
  {
 | 
			
		||||
    RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
 | 
			
		||||
    if(CheckerBoarded(0)){
 | 
			
		||||
      fcoor[0] = fcoor[0]*2+cb;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    gcoor.resize(_ndimension);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,174 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/Cartesian_full.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CARTESIAN_FULL_H
 | 
			
		||||
#define GRID_CARTESIAN_FULL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Grid Support.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class GridCartesian: public GridBase {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int  CheckerBoardFromOindex (int Oindex)
 | 
			
		||||
  {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardDestination(int cb,int shift,int dim){
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
 | 
			
		||||
    return shift;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
 | 
			
		||||
    return shift;
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Constructor takes a parent grid and possibly subdivides communicator.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
 | 
			
		||||
  {
 | 
			
		||||
    Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
 | 
			
		||||
  {
 | 
			
		||||
    Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Construct from comm world
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid) : GridBase(processor_grid)
 | 
			
		||||
  {
 | 
			
		||||
    Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~GridCartesian() = default;
 | 
			
		||||
 | 
			
		||||
  void Init(const Coordinate &dimensions,
 | 
			
		||||
	    const Coordinate &simd_layout,
 | 
			
		||||
	    const Coordinate &processor_grid)
 | 
			
		||||
  {
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // Grid information
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
      _isCheckerBoarded = false;
 | 
			
		||||
    _ndimension = dimensions.size();
 | 
			
		||||
 | 
			
		||||
    _fdimensions.resize(_ndimension);
 | 
			
		||||
    _gdimensions.resize(_ndimension);
 | 
			
		||||
    _ldimensions.resize(_ndimension);
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _ostride.resize(_ndimension);
 | 
			
		||||
    _istride.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _fsites = _gsites = _osites = _isites = 1;
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        _fdimensions[d] = dimensions[d];   // Global dimensions
 | 
			
		||||
        _gdimensions[d] = _fdimensions[d]; // Global dimensions
 | 
			
		||||
        _simd_layout[d] = simd_layout[d];
 | 
			
		||||
        _fsites = _fsites * _fdimensions[d];
 | 
			
		||||
        _gsites = _gsites * _gdimensions[d];
 | 
			
		||||
 | 
			
		||||
        // Use a reduced simd grid
 | 
			
		||||
        _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
 | 
			
		||||
        //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl;
 | 
			
		||||
        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
 | 
			
		||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
 | 
			
		||||
        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
 | 
			
		||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
			
		||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
			
		||||
        _osites *= _rdimensions[d];
 | 
			
		||||
        _isites *= _simd_layout[d];
 | 
			
		||||
 | 
			
		||||
        // Addressing support
 | 
			
		||||
        if (d == 0)
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = 1;
 | 
			
		||||
	    _istride[d] = 1;
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
 | 
			
		||||
	    _istride[d] = _istride[d - 1] * _simd_layout[d - 1];
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // subplane information
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    _slice_block.resize(_ndimension);
 | 
			
		||||
    _slice_stride.resize(_ndimension);
 | 
			
		||||
    _slice_nblock.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    int block = 1;
 | 
			
		||||
    int nblock = 1;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      nblock *= _rdimensions[d];
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        nblock /= _rdimensions[d];
 | 
			
		||||
        _slice_block[d] = block;
 | 
			
		||||
        _slice_stride[d] = _ostride[d] * _rdimensions[d];
 | 
			
		||||
        _slice_nblock[d] = nblock;
 | 
			
		||||
        block = block * _rdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,289 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/Cartesian_red_black.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CARTESIAN_RED_BLACK_H
 | 
			
		||||
#define GRID_CARTESIAN_RED_BLACK_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
static const int CbRed  =0;
 | 
			
		||||
static const int CbBlack=1;
 | 
			
		||||
static const int Even   =CbRed;
 | 
			
		||||
static const int Odd    =CbBlack;
 | 
			
		||||
    
 | 
			
		||||
// Specialise this for red black grids storing half the data like a chess board.
 | 
			
		||||
class GridRedBlackCartesian : public GridBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
  std::vector<int> _checker_board;
 | 
			
		||||
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    if( dim==_checker_dim) return 1;
 | 
			
		||||
    else return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
    int linear=0;
 | 
			
		||||
    assert(site.size()==_ndimension);
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){ 
 | 
			
		||||
      if(_checker_dim_mask[d])
 | 
			
		||||
	linear=linear+site[d];
 | 
			
		||||
    }
 | 
			
		||||
    return (linear&0x1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Depending on the cb of site, we toggle source cb.
 | 
			
		||||
  // for block #b, element #e = (b, e)
 | 
			
		||||
  // we need 
 | 
			
		||||
  virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
 | 
			
		||||
    if(dim != _checker_dim) return shift;
 | 
			
		||||
 | 
			
		||||
    int fulldim =_fdimensions[dim];
 | 
			
		||||
    shift = (shift+fulldim)%fulldim;
 | 
			
		||||
 | 
			
		||||
    // Probably faster with table lookup;
 | 
			
		||||
    // or by looping over x,y,z and multiply rather than computing checkerboard.
 | 
			
		||||
	  
 | 
			
		||||
    if ( (source_cb+ocb)&1 ) {
 | 
			
		||||
      return (shift)/2;
 | 
			
		||||
    } else {
 | 
			
		||||
      return (shift+1)/2;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return _checker_board[Oindex];
 | 
			
		||||
  }
 | 
			
		||||
  virtual int  CheckerBoardFromOindex (int Oindex)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate ocoor;
 | 
			
		||||
    oCoorFromOindex(ocoor,Oindex);
 | 
			
		||||
    return CheckerBoard(ocoor);
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
 | 
			
		||||
 | 
			
		||||
    if(dim != _checker_dim) return shift;
 | 
			
		||||
 | 
			
		||||
    int ocb=CheckerBoardFromOindex(osite);
 | 
			
		||||
      
 | 
			
		||||
    return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
 | 
			
		||||
    if ( _checker_dim_mask[dim]  ) {
 | 
			
		||||
      // If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
 | 
			
		||||
      // does NOT cause a parity hop.
 | 
			
		||||
      int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
 | 
			
		||||
      if ( (shift+add) &0x1) {
 | 
			
		||||
	return 1-source_cb;
 | 
			
		||||
      } else {
 | 
			
		||||
	return source_cb;
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      return source_cb;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Create Redblack from original grid; require full grid pointer ?
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
 | 
			
		||||
  {
 | 
			
		||||
    int dims = base->_ndimension;
 | 
			
		||||
    Coordinate checker_dim_mask(dims,1);
 | 
			
		||||
    int checker_dim = 0;
 | 
			
		||||
    Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Create redblack from original grid, with non-trivial checker dim mask
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  GridRedBlackCartesian(const GridBase *base,
 | 
			
		||||
			const Coordinate &checker_dim_mask,
 | 
			
		||||
			int checker_dim
 | 
			
		||||
			) :  GridBase(base->_processors,*base) 
 | 
			
		||||
  {
 | 
			
		||||
    Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim)  ;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~GridRedBlackCartesian() = default;
 | 
			
		||||
 | 
			
		||||
  void Init(const Coordinate &dimensions,
 | 
			
		||||
	    const Coordinate &simd_layout,
 | 
			
		||||
	    const Coordinate &processor_grid,
 | 
			
		||||
	    const Coordinate &checker_dim_mask,
 | 
			
		||||
	    int checker_dim)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
      _isCheckerBoarded = true;
 | 
			
		||||
    _checker_dim = checker_dim;
 | 
			
		||||
    assert(checker_dim_mask[checker_dim] == 1);
 | 
			
		||||
    _ndimension = dimensions.size();
 | 
			
		||||
    assert(checker_dim_mask.size() == _ndimension);
 | 
			
		||||
    assert(processor_grid.size() == _ndimension);
 | 
			
		||||
    assert(simd_layout.size() == _ndimension);
 | 
			
		||||
 | 
			
		||||
    _fdimensions.resize(_ndimension);
 | 
			
		||||
    _gdimensions.resize(_ndimension);
 | 
			
		||||
    _ldimensions.resize(_ndimension);
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _ostride.resize(_ndimension);
 | 
			
		||||
    _istride.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _fsites = _gsites = _osites = _isites = 1;
 | 
			
		||||
 | 
			
		||||
    _checker_dim_mask = checker_dim_mask;
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        _fdimensions[d] = dimensions[d];
 | 
			
		||||
        _gdimensions[d] = _fdimensions[d];
 | 
			
		||||
        _fsites = _fsites * _fdimensions[d];
 | 
			
		||||
        _gsites = _gsites * _gdimensions[d];
 | 
			
		||||
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    assert((_gdimensions[d] & 0x1) == 0);
 | 
			
		||||
	    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
 | 
			
		||||
	    _gsites /= 2;
 | 
			
		||||
	  }
 | 
			
		||||
        _ldimensions[d] = _gdimensions[d] / _processors[d];
 | 
			
		||||
        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
			
		||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
			
		||||
 | 
			
		||||
        // Use a reduced simd grid
 | 
			
		||||
        _simd_layout[d] = simd_layout[d];
 | 
			
		||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
 | 
			
		||||
        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
        assert(_rdimensions[d] > 0);
 | 
			
		||||
 | 
			
		||||
        // all elements of a simd vector must have same checkerboard.
 | 
			
		||||
        // If Ls vectorised, this must still be the case; e.g. dwf rb5d
 | 
			
		||||
        if (_simd_layout[d] > 1)
 | 
			
		||||
	  {
 | 
			
		||||
	    if (checker_dim_mask[d])
 | 
			
		||||
	      {
 | 
			
		||||
		assert((_rdimensions[d] & 0x1) == 0);
 | 
			
		||||
	      }
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
        _osites *= _rdimensions[d];
 | 
			
		||||
        _isites *= _simd_layout[d];
 | 
			
		||||
 | 
			
		||||
        // Addressing support
 | 
			
		||||
        if (d == 0)
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = 1;
 | 
			
		||||
	    _istride[d] = 1;
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
 | 
			
		||||
	    _istride[d] = _istride[d - 1] * _simd_layout[d - 1];
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // subplane information
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    _slice_block.resize(_ndimension);
 | 
			
		||||
    _slice_stride.resize(_ndimension);
 | 
			
		||||
    _slice_nblock.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    int block = 1;
 | 
			
		||||
    int nblock = 1;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      nblock *= _rdimensions[d];
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        nblock /= _rdimensions[d];
 | 
			
		||||
        _slice_block[d] = block;
 | 
			
		||||
        _slice_stride[d] = _ostride[d] * _rdimensions[d];
 | 
			
		||||
        _slice_nblock[d] = nblock;
 | 
			
		||||
        block = block * _rdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    // Create a checkerboard lookup table
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    int rvol = 1;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        rvol = rvol * _rdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
    _checker_board.resize(rvol);
 | 
			
		||||
    for (int osite = 0; osite < _osites; osite++)
 | 
			
		||||
      {
 | 
			
		||||
        _checker_board[osite] = CheckerBoardFromOindex(osite);
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  virtual int oIndex(Coordinate &coor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx = 0;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _ostride[d] * (coor[d] % _rdimensions[d]);
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
    return idx;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual int iIndex(Coordinate &lcoor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx = 0;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,77 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/Communicator_none.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <fcntl.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
#include <limits.h>
 | 
			
		||||
#include <sys/mman.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
// Info that is setup once and indept of cartesian layout
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CommunicatorPolicy_t  
 | 
			
		||||
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
 | 
			
		||||
int CartesianCommunicator::nCommThreads = -1;
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Grid information queries
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
int                      CartesianCommunicator::Dimensions(void)        { return _ndimension; };
 | 
			
		||||
int                      CartesianCommunicator::IsBoss(void)            { return _processor==0; };
 | 
			
		||||
int                      CartesianCommunicator::BossRank(void)          { return 0; };
 | 
			
		||||
int                      CartesianCommunicator::ThisRank(void)          { return _processor; };
 | 
			
		||||
const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
 | 
			
		||||
const Coordinate & CartesianCommunicator::ProcessorGrid(void)     { return _processors; };
 | 
			
		||||
int                      CartesianCommunicator::ProcessorCount(void)    { return _Nprocessors; };
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,483 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/Communicator_mpi.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// First initialise of comms system
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
void CartesianCommunicator::Init(int *argc, char ***argv) 
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  int flag;
 | 
			
		||||
  int provided;
 | 
			
		||||
 | 
			
		||||
  MPI_Initialized(&flag); // needed to coexist with other libs apparently
 | 
			
		||||
  if ( !flag ) {
 | 
			
		||||
    MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
 | 
			
		||||
 | 
			
		||||
    //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
 | 
			
		||||
    if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Never clean up as done once.
 | 
			
		||||
  MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
 | 
			
		||||
 | 
			
		||||
  Grid_quiesce_nodes();
 | 
			
		||||
  GlobalSharedMemory::Init(communicator_world);
 | 
			
		||||
  GlobalSharedMemory::SharedMemoryAllocate(
 | 
			
		||||
		   GlobalSharedMemory::MAX_MPI_SHM_BYTES,
 | 
			
		||||
		   GlobalSharedMemory::Hugepages);
 | 
			
		||||
  Grid_unquiesce_nodes();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Use cartesian communicators now even in MPI3
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
 | 
			
		||||
{
 | 
			
		||||
  int rank;
 | 
			
		||||
  int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  return rank;
 | 
			
		||||
}
 | 
			
		||||
void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
 | 
			
		||||
{
 | 
			
		||||
  coor.resize(_ndimension);
 | 
			
		||||
  int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Initialises from communicator_world
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) 
 | 
			
		||||
{
 | 
			
		||||
  MPI_Comm optimal_comm;
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  // Remap using the shared memory optimising routine
 | 
			
		||||
  // The remap creates a comm which must be freed
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm);
 | 
			
		||||
  InitFromMPICommunicator(processors,optimal_comm);
 | 
			
		||||
  SetCommunicator(optimal_comm);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Free the temp communicator
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  MPI_Comm_free(&optimal_comm);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
// Try to subdivide communicator
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)    
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
			
		||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
			
		||||
  Coordinate parent_processors    (_ndimension,1);
 | 
			
		||||
 | 
			
		||||
  // Can make 5d grid from 4d etc...
 | 
			
		||||
  int pad = _ndimension-parent_ndimension;
 | 
			
		||||
  for(int d=0;d<parent_ndimension;d++){
 | 
			
		||||
    parent_processor_coor[pad+d]=parent._processor_coor[d];
 | 
			
		||||
    parent_processors    [pad+d]=parent._processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // split the communicator
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //  int Nparent = parent._processors ; 
 | 
			
		||||
  int Nparent;
 | 
			
		||||
  MPI_Comm_size(parent.communicator,&Nparent);
 | 
			
		||||
 | 
			
		||||
  int childsize=1;
 | 
			
		||||
  for(int d=0;d<processors.size();d++) {
 | 
			
		||||
    childsize *= processors[d];
 | 
			
		||||
  }
 | 
			
		||||
  int Nchild = Nparent/childsize;
 | 
			
		||||
  assert (childsize * Nchild == Nparent);
 | 
			
		||||
 | 
			
		||||
  Coordinate ccoor(_ndimension); // coor within subcommunicator
 | 
			
		||||
  Coordinate scoor(_ndimension); // coor of split within parent
 | 
			
		||||
  Coordinate ssize(_ndimension); // coor of split within parent
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<_ndimension;d++){
 | 
			
		||||
    ccoor[d] = parent_processor_coor[d] % processors[d];
 | 
			
		||||
    scoor[d] = parent_processor_coor[d] / processors[d];
 | 
			
		||||
    ssize[d] = parent_processors[d]     / processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
 | 
			
		||||
  int crank;  
 | 
			
		||||
  // Mpi uses the reverse Lexico convention to us; so reversed routines called
 | 
			
		||||
  Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
 | 
			
		||||
  Lexicographic::IndexFromCoorReversed(scoor,srank,ssize);      // ssize is the number of split grids
 | 
			
		||||
 | 
			
		||||
  MPI_Comm comm_split;
 | 
			
		||||
  if ( Nchild > 1 ) { 
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Split the communicator
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  } else {
 | 
			
		||||
    srank = 0;
 | 
			
		||||
    int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Set up from the new split communicator
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  InitFromMPICommunicator(processors,comm_split);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take the right SHM buffers
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  SetCommunicator(comm_split);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Free the temp communicator 
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  MPI_Comm_free(&comm_split);
 | 
			
		||||
 | 
			
		||||
  if(0){ 
 | 
			
		||||
    std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
 | 
			
		||||
    for(int d=0;d<processors.size();d++){
 | 
			
		||||
      std::cout << d<< " " << _processor_coor[d] <<" " <<  ccoor[d]<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int d=0;d<processors.size();d++){
 | 
			
		||||
    assert(_processor_coor[d] == ccoor[d] );
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  // Creates communicator, and the communicator_halo
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  // Count the requested nodes
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  for(int i=0;i<_ndimension;i++){
 | 
			
		||||
    _Nprocessors*=_processors[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Coordinate periodic(_ndimension,1);
 | 
			
		||||
  MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
 | 
			
		||||
  MPI_Comm_rank(communicator,&_processor);
 | 
			
		||||
  MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
 | 
			
		||||
 | 
			
		||||
  if ( 0 && (communicator_base != communicator_world) ) {
 | 
			
		||||
    std::cout << "InitFromMPICommunicator Cartesian communicator created with a non-world communicator"<<std::endl;
 | 
			
		||||
    std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
 | 
			
		||||
    for(int d=0;d<_processors.size();d++){
 | 
			
		||||
      std::cout << _processor_coor[d]<<" ";
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int Size;
 | 
			
		||||
  MPI_Comm_size(communicator,&Size);
 | 
			
		||||
 | 
			
		||||
  communicator_halo.resize (2*_ndimension);
 | 
			
		||||
  for(int i=0;i<_ndimension*2;i++){
 | 
			
		||||
    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
			
		||||
  }
 | 
			
		||||
  assert(Size==_Nprocessors);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::~CartesianCommunicator()
 | 
			
		||||
{
 | 
			
		||||
  int MPI_is_finalised;
 | 
			
		||||
  MPI_Finalized(&MPI_is_finalised);
 | 
			
		||||
  if (communicator && !MPI_is_finalised) {
 | 
			
		||||
    MPI_Comm_free(&communicator);
 | 
			
		||||
    for(int i=0;i<communicator_halo.size();i++){
 | 
			
		||||
      MPI_Comm_free(&communicator_halo[i]);
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
					   void *recv,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> reqs(0);
 | 
			
		||||
  //    unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  //    unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  //    xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
			
		||||
  SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
 | 
			
		||||
  SendToRecvFromComplete(reqs);
 | 
			
		||||
  //    rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
  //    printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
 | 
			
		||||
					   void *recv,
 | 
			
		||||
					   int sender,
 | 
			
		||||
					   int receiver,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Status stat;
 | 
			
		||||
  assert(sender != receiver);
 | 
			
		||||
  int tag = sender;
 | 
			
		||||
  if ( _processor == sender ) {
 | 
			
		||||
    MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
 | 
			
		||||
  }
 | 
			
		||||
  if ( _processor == receiver ) { 
 | 
			
		||||
    MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int myrank = _processor;
 | 
			
		||||
  int ierr;
 | 
			
		||||
 | 
			
		||||
  if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) { 
 | 
			
		||||
    MPI_Request xrq;
 | 
			
		||||
    MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
    ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
 | 
			
		||||
    ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
 | 
			
		||||
    
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(xrq);
 | 
			
		||||
    list.push_back(rrq);
 | 
			
		||||
  } else { 
 | 
			
		||||
    // Give the CPU to MPI immediately; can use threads to overlap optionally
 | 
			
		||||
    ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
 | 
			
		||||
		      recv,bytes,MPI_CHAR,from, from,
 | 
			
		||||
		      communicator,MPI_STATUS_IGNORE);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int dest,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int from,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,
 | 
			
		||||
							 int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size(); 
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
 | 
			
		||||
  if ( gfrom ==MPI_UNDEFINED) {
 | 
			
		||||
    ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(rrq);
 | 
			
		||||
    off_node_bytes+=bytes;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( gdest == MPI_UNDEFINED ) {
 | 
			
		||||
    ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(xrq);
 | 
			
		||||
    off_node_bytes+=bytes;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( CommunicatorPolicy == CommunicatorPolicySequential ) { 
 | 
			
		||||
    this->StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
 | 
			
		||||
{
 | 
			
		||||
  SendToRecvFromComplete(waitall);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Barrier  (ShmComm);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::Barrier(void)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Barrier(communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Bcast(data,
 | 
			
		||||
		     bytes,
 | 
			
		||||
		     MPI_BYTE,
 | 
			
		||||
		     root,
 | 
			
		||||
		     communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::RankWorld(void){ 
 | 
			
		||||
  int r; 
 | 
			
		||||
  MPI_Comm_rank(communicator_world,&r);
 | 
			
		||||
  return r;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
		      bytes,
 | 
			
		||||
		      MPI_BYTE,
 | 
			
		||||
		      root,
 | 
			
		||||
		      communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  Coordinate row(_ndimension,1);
 | 
			
		||||
  assert(dim>=0 && dim<_ndimension);
 | 
			
		||||
 | 
			
		||||
  //  Split the communicator
 | 
			
		||||
  row[dim] = _processors[dim];
 | 
			
		||||
 | 
			
		||||
  int me;
 | 
			
		||||
  CartesianCommunicator Comm(row,*this,me);
 | 
			
		||||
  Comm.AllToAll(in,out,words,bytes);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  // MPI is a pain and uses "int" arguments
 | 
			
		||||
  // 64*64*64*128*16 == 500Million elements of data.
 | 
			
		||||
  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
			
		||||
  // (Turns up on 32^3 x 64 Gparity too)
 | 
			
		||||
  MPI_Datatype object;
 | 
			
		||||
  int iwords; 
 | 
			
		||||
  int ibytes;
 | 
			
		||||
  iwords = words;
 | 
			
		||||
  ibytes = bytes;
 | 
			
		||||
  assert(words == iwords); // safe to cast to int ?
 | 
			
		||||
  assert(bytes == ibytes); // safe to cast to int ?
 | 
			
		||||
  MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
 | 
			
		||||
  MPI_Type_commit(&object);
 | 
			
		||||
  MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
 | 
			
		||||
  MPI_Type_free(&object);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,94 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
// static data
 | 
			
		||||
 | 
			
		||||
int                 GlobalSharedMemory::HPEhypercube = 1;
 | 
			
		||||
uint64_t            GlobalSharedMemory::MAX_MPI_SHM_BYTES   = 1024LL*1024LL*1024LL; 
 | 
			
		||||
int                 GlobalSharedMemory::Hugepages = 0;
 | 
			
		||||
int                 GlobalSharedMemory::_ShmSetup;
 | 
			
		||||
int                 GlobalSharedMemory::_ShmAlloc;
 | 
			
		||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
			
		||||
 | 
			
		||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
			
		||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
			
		||||
int                 GlobalSharedMemory::WorldShmSize;
 | 
			
		||||
std::vector<int>    GlobalSharedMemory::WorldShmRanks;
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       GlobalSharedMemory::WorldComm;
 | 
			
		||||
int                 GlobalSharedMemory::WorldSize;
 | 
			
		||||
int                 GlobalSharedMemory::WorldRank;
 | 
			
		||||
 | 
			
		||||
int                 GlobalSharedMemory::WorldNodes;
 | 
			
		||||
int                 GlobalSharedMemory::WorldNode;
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryFree(void)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmAlloc);
 | 
			
		||||
  assert(_ShmAllocBytes>0);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    munmap(WorldShmCommBufs[r],_ShmAllocBytes);
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAlloc = 0;
 | 
			
		||||
  _ShmAllocBytes = 0;
 | 
			
		||||
}
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Alloc, free shmem region
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
			
		||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
			
		||||
  void *ptr = (void *)heap_top;
 | 
			
		||||
  heap_top  += bytes;
 | 
			
		||||
  heap_bytes+= bytes;
 | 
			
		||||
  if (heap_bytes >= heap_size) {
 | 
			
		||||
    std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
			
		||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
			
		||||
    std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl;
 | 
			
		||||
    assert(heap_bytes<heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void SharedMemory::ShmBufferFreeAll(void) { 
 | 
			
		||||
  heap_top  =(size_t)ShmBufferSelf();
 | 
			
		||||
  heap_bytes=0;
 | 
			
		||||
}
 | 
			
		||||
void *SharedMemory::ShmBufferSelf(void)
 | 
			
		||||
{
 | 
			
		||||
  //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
 | 
			
		||||
  return ShmCommBufs[ShmRank];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
@@ -1,163 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
#include <mpi.h>
 | 
			
		||||
#endif 
 | 
			
		||||
#include <semaphore.h>
 | 
			
		||||
#include <fcntl.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
#include <limits.h>
 | 
			
		||||
#include <sys/types.h>
 | 
			
		||||
#include <sys/ipc.h>
 | 
			
		||||
#include <sys/shm.h>
 | 
			
		||||
#include <sys/mman.h>
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
			
		||||
typedef MPI_Request CommsRequest_t;
 | 
			
		||||
#else 
 | 
			
		||||
typedef int CommsRequest_t;
 | 
			
		||||
typedef int Grid_MPI_Comm;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class GlobalSharedMemory {
 | 
			
		||||
private:
 | 
			
		||||
  static const int     MAXLOG2RANKSPERNODE = 16;            
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // Init once lock on the buffer allocation
 | 
			
		||||
  static int      _ShmSetup;
 | 
			
		||||
  static int      _ShmAlloc;
 | 
			
		||||
  static uint64_t _ShmAllocBytes;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // HPE 8600 hypercube optimisation
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  static int HPEhypercube;
 | 
			
		||||
 | 
			
		||||
  static int      ShmSetup(void)      { return _ShmSetup; }
 | 
			
		||||
  static int      ShmAlloc(void)      { return _ShmAlloc; }
 | 
			
		||||
  static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
 | 
			
		||||
  static uint64_t      MAX_MPI_SHM_BYTES;
 | 
			
		||||
  static int           Hugepages;
 | 
			
		||||
 | 
			
		||||
  static std::vector<void *> WorldShmCommBufs;
 | 
			
		||||
 | 
			
		||||
  static Grid_MPI_Comm WorldComm;
 | 
			
		||||
  static int           WorldRank;
 | 
			
		||||
  static int           WorldSize;
 | 
			
		||||
 | 
			
		||||
  static Grid_MPI_Comm WorldShmComm;
 | 
			
		||||
  static int           WorldShmRank;
 | 
			
		||||
  static int           WorldShmSize;
 | 
			
		||||
 | 
			
		||||
  static int           WorldNodes;
 | 
			
		||||
  static int           WorldNode;
 | 
			
		||||
 | 
			
		||||
  static std::vector<int>  WorldShmRanks;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Create an optimal reordered communicator that makes MPI_Cart_create get it right
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
 | 
			
		||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Provide shared memory facilities off comm world
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
			
		||||
  static void SharedMemoryFree(void);
 | 
			
		||||
  static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
 | 
			
		||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////
 | 
			
		||||
// one per communicator
 | 
			
		||||
//////////////////////////////
 | 
			
		||||
class SharedMemory 
 | 
			
		||||
{
 | 
			
		||||
private:
 | 
			
		||||
  static const int     MAXLOG2RANKSPERNODE = 16;            
 | 
			
		||||
 | 
			
		||||
  size_t heap_top;
 | 
			
		||||
  size_t heap_bytes;
 | 
			
		||||
  size_t heap_size;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
			
		||||
  int    ShmRank; 
 | 
			
		||||
  int    ShmSize;
 | 
			
		||||
  std::vector<void *> ShmCommBufs;
 | 
			
		||||
  std::vector<int>    ShmRanks;// Mapping comm ranks to Shm ranks
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  SharedMemory() {};
 | 
			
		||||
  ~SharedMemory();
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // set the buffers & sizes
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void SetCommunicator(Grid_MPI_Comm comm);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // For this instance ; disjoint buffer sets between splits if split grid
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ShmBarrier(void); 
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Call on any instance
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  void SharedMemoryTest(void);
 | 
			
		||||
  
 | 
			
		||||
  void *ShmBufferSelf(void);
 | 
			
		||||
  void *ShmBuffer    (int rank);
 | 
			
		||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
			
		||||
  void *ShmBufferMalloc(size_t bytes);
 | 
			
		||||
  void  ShmBufferFreeAll(void) ;
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Make info on Nodes & ranks and Shared memory available
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  int NodeCount(void) { return GlobalSharedMemory::WorldNodes;};
 | 
			
		||||
  int RankCount(void) { return GlobalSharedMemory::WorldSize;};
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,823 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <pwd.h>
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
#include <cuda_runtime_api.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
#define header "SharedMemoryMpi: "
 | 
			
		||||
/*Construct from an MPI communicator*/
 | 
			
		||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmSetup==0);
 | 
			
		||||
  WorldComm = comm;
 | 
			
		||||
  MPI_Comm_rank(WorldComm,&WorldRank);
 | 
			
		||||
  MPI_Comm_size(WorldComm,&WorldSize);
 | 
			
		||||
  // WorldComm, WorldSize, WorldRank
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Split into groups that can share memory
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
 | 
			
		||||
  MPI_Comm_rank(WorldShmComm     ,&WorldShmRank);
 | 
			
		||||
  MPI_Comm_size(WorldShmComm     ,&WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  if ( WorldRank == 0) {
 | 
			
		||||
    std::cout << header " World communicator of size " <<WorldSize << std::endl;  
 | 
			
		||||
    std::cout << header " Node  communicator of size " <<WorldShmSize << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  // WorldShmComm, WorldShmSize, WorldShmRank
 | 
			
		||||
 | 
			
		||||
  // WorldNodes
 | 
			
		||||
  WorldNodes = WorldSize/WorldShmSize;
 | 
			
		||||
  assert( (WorldNodes * WorldShmSize) == WorldSize );
 | 
			
		||||
 | 
			
		||||
  // FIXME: Check all WorldShmSize are the same ?
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // find world ranks in our SHM group (i.e. which ranks are on our node)
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Group WorldGroup, ShmGroup;
 | 
			
		||||
  MPI_Comm_group (WorldComm, &WorldGroup); 
 | 
			
		||||
  MPI_Comm_group (WorldShmComm, &ShmGroup);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> world_ranks(WorldSize);   for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
 | 
			
		||||
 | 
			
		||||
  WorldShmRanks.resize(WorldSize); 
 | 
			
		||||
  MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &WorldShmRanks[0]); 
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify who is in my group and nominate the leader
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  int g=0;
 | 
			
		||||
  std::vector<int> MyGroup;
 | 
			
		||||
  MyGroup.resize(WorldShmSize);
 | 
			
		||||
  for(int rank=0;rank<WorldSize;rank++){
 | 
			
		||||
    if(WorldShmRanks[rank]!=MPI_UNDEFINED){
 | 
			
		||||
      assert(g<WorldShmSize);
 | 
			
		||||
      MyGroup[g++] = rank;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  std::sort(MyGroup.begin(),MyGroup.end(),std::less<int>());
 | 
			
		||||
  int myleader = MyGroup[0];
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> leaders_1hot(WorldSize,0);
 | 
			
		||||
  std::vector<int> leaders_group(WorldNodes,0);
 | 
			
		||||
  leaders_1hot [ myleader ] = 1;
 | 
			
		||||
    
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  // global sum leaders over comm world
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  // find the group leaders world rank
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  int group=0;
 | 
			
		||||
  for(int l=0;l<WorldSize;l++){
 | 
			
		||||
    if(leaders_1hot[l]){
 | 
			
		||||
      leaders_group[group++] = l;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify the node of the group in which I (and my leader) live
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  WorldNode=-1;
 | 
			
		||||
  for(int g=0;g<WorldNodes;g++){
 | 
			
		||||
    if (myleader == leaders_group[g]){
 | 
			
		||||
      WorldNode=g;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  assert(WorldNode!=-1);
 | 
			
		||||
  _ShmSetup=1;
 | 
			
		||||
}
 | 
			
		||||
// Gray encode support 
 | 
			
		||||
int BinaryToGray (int  binary) {
 | 
			
		||||
  int gray = (binary>>1)^binary;
 | 
			
		||||
  return gray;
 | 
			
		||||
}
 | 
			
		||||
int Log2Size(int TwoToPower,int MAXLOG2)
 | 
			
		||||
{
 | 
			
		||||
  int log2size = -1;
 | 
			
		||||
  for(int i=0;i<=MAXLOG2;i++){
 | 
			
		||||
    if ( (0x1<<i) == TwoToPower ) {
 | 
			
		||||
      log2size = i;
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return log2size;
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Look and see if it looks like an HPE 8600 based on hostname conventions
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  const int namelen = _POSIX_HOST_NAME_MAX;
 | 
			
		||||
  char name[namelen];
 | 
			
		||||
  int R;
 | 
			
		||||
  int I;
 | 
			
		||||
  int N;
 | 
			
		||||
  gethostname(name,namelen);
 | 
			
		||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
			
		||||
 | 
			
		||||
  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
 | 
			
		||||
  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm);
 | 
			
		||||
}
 | 
			
		||||
static inline int divides(int a,int b)
 | 
			
		||||
{
 | 
			
		||||
  return ( b == ( (b/a)*a ) );
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension = WorldDims.size();
 | 
			
		||||
  ShmDims=Coordinate(ndimension,1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> primes({2,3,5});
 | 
			
		||||
 | 
			
		||||
  int dim = 0;
 | 
			
		||||
  int AutoShmSize = 1;
 | 
			
		||||
  while(AutoShmSize != WorldShmSize) {
 | 
			
		||||
    for(int p=0;p<primes.size();p++) {
 | 
			
		||||
      int prime=primes[p];
 | 
			
		||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
			
		||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
			
		||||
	AutoShmSize*=prime;
 | 
			
		||||
	ShmDims[dim]*=prime;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    dim=(dim+1) %ndimension;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Assert power of two shm_size.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
 | 
			
		||||
  assert(log2size != -1);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify the hypercube coordinate of this node using hostname
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // n runs 0...7 9...16 18...25 27...34     (8*4)  5 bits
 | 
			
		||||
  // i runs 0..7                                    3 bits
 | 
			
		||||
  // r runs 0..3                                    2 bits
 | 
			
		||||
  // 2^10 = 1024 nodes
 | 
			
		||||
  const int maxhdim = 10; 
 | 
			
		||||
  std::vector<int> HyperCubeCoords(maxhdim,0);
 | 
			
		||||
  std::vector<int> RootHyperCubeCoords(maxhdim,0);
 | 
			
		||||
  int R;
 | 
			
		||||
  int I;
 | 
			
		||||
  int N;
 | 
			
		||||
  const int namelen = _POSIX_HOST_NAME_MAX;
 | 
			
		||||
  char name[namelen];
 | 
			
		||||
 | 
			
		||||
  // Parse ICE-XA hostname to get hypercube location
 | 
			
		||||
  gethostname(name,namelen);
 | 
			
		||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
			
		||||
  assert(nscan==3);
 | 
			
		||||
 | 
			
		||||
  int nlo = N%9;
 | 
			
		||||
  int nhi = N/9;
 | 
			
		||||
  uint32_t hypercoor = (R<<8)|(I<<5)|(nhi<<3)|nlo ;
 | 
			
		||||
  uint32_t rootcoor  = hypercoor;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Print debug info
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  for(int d=0;d<maxhdim;d++){
 | 
			
		||||
    HyperCubeCoords[d] = (hypercoor>>d)&0x1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::string hname(name);
 | 
			
		||||
  //  std::cout << "hostname "<<hname<<std::endl;
 | 
			
		||||
  //  std::cout << "R " << R << " I " << I << " N "<< N
 | 
			
		||||
  //            << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // broadcast node 0's base coordinate for this partition.
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm); 
 | 
			
		||||
  hypercoor=hypercoor-rootcoor;
 | 
			
		||||
  assert(hypercoor<WorldSize);
 | 
			
		||||
  assert(hypercoor>=0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////
 | 
			
		||||
  // Printing
 | 
			
		||||
  //////////////////////////////////////
 | 
			
		||||
  for(int d=0;d<maxhdim;d++){
 | 
			
		||||
    HyperCubeCoords[d] = (hypercoor>>d)&0x1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify subblock of ranks on node spreading across dims
 | 
			
		||||
  // in a maximally symmetrical way
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension              = processors.size();
 | 
			
		||||
  Coordinate processor_coor(ndimension);
 | 
			
		||||
  Coordinate WorldDims = processors;
 | 
			
		||||
  Coordinate ShmDims  (ndimension);  Coordinate NodeDims (ndimension);
 | 
			
		||||
  Coordinate ShmCoor  (ndimension);    Coordinate NodeCoor (ndimension);    Coordinate WorldCoor(ndimension);
 | 
			
		||||
  Coordinate HyperCoor(ndimension);
 | 
			
		||||
 | 
			
		||||
  GetShmDims(WorldDims,ShmDims);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish torus of processes and nodes with sub-blockings
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  for(int d=0;d<ndimension;d++){
 | 
			
		||||
    NodeDims[d] = WorldDims[d]/ShmDims[d];
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map Hcube according to physical lattice 
 | 
			
		||||
  // must partition. Loop over dims and find out who would join.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int hcoor = hypercoor;
 | 
			
		||||
  for(int d=0;d<ndimension;d++){
 | 
			
		||||
     int bits = Log2Size(NodeDims[d],MAXLOG2RANKSPERNODE);
 | 
			
		||||
     int msk  = (0x1<<bits)-1;
 | 
			
		||||
     HyperCoor[d]=hcoor & msk;  
 | 
			
		||||
     HyperCoor[d]=BinaryToGray(HyperCoor[d]); // Space filling curve magic
 | 
			
		||||
     hcoor = hcoor >> bits;
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Check processor counts match
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int Nprocessors=1;
 | 
			
		||||
  for(int i=0;i<ndimension;i++){
 | 
			
		||||
    Nprocessors*=processors[i];
 | 
			
		||||
  }
 | 
			
		||||
  assert(WorldSize==Nprocessors);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish mapping between lexico physics coord and WorldRank
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int rank;
 | 
			
		||||
 | 
			
		||||
  Lexicographic::CoorFromIndexReversed(NodeCoor,WorldNode   ,NodeDims);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<ndimension;d++) NodeCoor[d]=HyperCoor[d];
 | 
			
		||||
 | 
			
		||||
  Lexicographic::CoorFromIndexReversed(ShmCoor ,WorldShmRank,ShmDims);
 | 
			
		||||
  for(int d=0;d<ndimension;d++) WorldCoor[d] = NodeCoor[d]*ShmDims[d]+ShmCoor[d];
 | 
			
		||||
  Lexicographic::IndexFromCoorReversed(WorldCoor,rank,WorldDims);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Build the new communicator
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify subblock of ranks on node spreading across dims
 | 
			
		||||
  // in a maximally symmetrical way
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension              = processors.size();
 | 
			
		||||
  Coordinate processor_coor(ndimension);
 | 
			
		||||
  Coordinate WorldDims = processors; Coordinate ShmDims(ndimension);  Coordinate NodeDims (ndimension);
 | 
			
		||||
  Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension);
 | 
			
		||||
 | 
			
		||||
  GetShmDims(WorldDims,ShmDims);
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish torus of processes and nodes with sub-blockings
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  for(int d=0;d<ndimension;d++){
 | 
			
		||||
    NodeDims[d] = WorldDims[d]/ShmDims[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Check processor counts match
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int Nprocessors=1;
 | 
			
		||||
  for(int i=0;i<ndimension;i++){
 | 
			
		||||
    Nprocessors*=processors[i];
 | 
			
		||||
  }
 | 
			
		||||
  assert(WorldSize==Nprocessors);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish mapping between lexico physics coord and WorldRank
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int rank;
 | 
			
		||||
 | 
			
		||||
  Lexicographic::CoorFromIndexReversed(NodeCoor,WorldNode   ,NodeDims);
 | 
			
		||||
  Lexicographic::CoorFromIndexReversed(ShmCoor ,WorldShmRank,ShmDims);
 | 
			
		||||
  for(int d=0;d<ndimension;d++) WorldCoor[d] = NodeCoor[d]*ShmDims[d]+ShmCoor[d];
 | 
			
		||||
  Lexicographic::IndexFromCoorReversed(WorldCoor,rank,WorldDims);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Build the new communicator
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SHMGET
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef GRID_MPI3_SHMGET
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
  std::vector<int> shmids(WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  if ( WorldShmRank == 0 ) {
 | 
			
		||||
    for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
      size_t size = bytes;
 | 
			
		||||
      key_t key   = IPC_PRIVATE;
 | 
			
		||||
      int flags = IPC_CREAT | SHM_R | SHM_W;
 | 
			
		||||
#ifdef SHM_HUGETLB
 | 
			
		||||
      if (Hugepages) flags|=SHM_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
      if ((shmids[r]= shmget(key,size, flags)) ==-1) {
 | 
			
		||||
        int errsv = errno;
 | 
			
		||||
        printf("Errno %d\n",errsv);
 | 
			
		||||
        printf("key   %d\n",key);
 | 
			
		||||
        printf("size  %ld\n",size);
 | 
			
		||||
        printf("flags %d\n",flags);
 | 
			
		||||
        perror("shmget");
 | 
			
		||||
        exit(1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  MPI_Bcast(&shmids[0],WorldShmSize*sizeof(int),MPI_BYTE,0,WorldShmComm);
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    WorldShmCommBufs[r] = (uint64_t *)shmat(shmids[r], NULL,0);
 | 
			
		||||
    if (WorldShmCommBufs[r] == (uint64_t *)-1) {
 | 
			
		||||
      perror("Shared memory attach failure");
 | 
			
		||||
      shmctl(shmids[r], IPC_RMID, NULL);
 | 
			
		||||
      exit(2);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // Mark for clean up
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    shmctl(shmids[r], IPC_RMID,(struct shmid_ds *)NULL);
 | 
			
		||||
  }
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
  _ShmAllocBytes  = bytes;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Hugetlbfs mapping intended
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the pointer array for shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // TODO/FIXME : NOT ALL NVLINK BOARDS have full Peer to peer connectivity.
 | 
			
		||||
  // The annoyance is that they have partial peer 2 peer. This occurs on the 8 GPU blades.
 | 
			
		||||
  // e.g. DGX1, supermicro board, 
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //  cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_IBM_SUMMIT
 | 
			
		||||
  // IBM Jsrun makes cuda Device numbering screwy and not match rank
 | 
			
		||||
    std::cout << "IBM Summit or similar - NOT setting device to WorldShmRank"<<std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    std::cout << "setting device to WorldShmRank"<<std::endl;
 | 
			
		||||
    cudaSetDevice(WorldShmRank);
 | 
			
		||||
#endif
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  auto err =  cudaMalloc(&ShmCommBuf, bytes);
 | 
			
		||||
  if ( err !=  cudaSuccess) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
  if ( WorldRank == 0 ){
 | 
			
		||||
    std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Loop over ranks/gpu's on our node
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    // If it is me, pass around the IPC access key
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    cudaIpcMemHandle_t handle;
 | 
			
		||||
    
 | 
			
		||||
    if ( r==WorldShmRank ) { 
 | 
			
		||||
      err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
 | 
			
		||||
      if ( err !=  cudaSuccess) {
 | 
			
		||||
	std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
 | 
			
		||||
	exit(EXIT_FAILURE);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    // Share this IPC handle across the Shm Comm
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    { 
 | 
			
		||||
      int ierr=MPI_Bcast(&handle,
 | 
			
		||||
			 sizeof(handle),
 | 
			
		||||
			 MPI_BYTE,
 | 
			
		||||
			 r,
 | 
			
		||||
			 WorldShmComm);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ///////////////////////////////////////////////////////////////
 | 
			
		||||
    // If I am not the source, overwrite thisBuf with remote buffer
 | 
			
		||||
    ///////////////////////////////////////////////////////////////
 | 
			
		||||
    void * thisBuf = ShmCommBuf;
 | 
			
		||||
    if ( r!=WorldShmRank ) { 
 | 
			
		||||
      err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
 | 
			
		||||
      if ( err !=  cudaSuccess) {
 | 
			
		||||
	std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
 | 
			
		||||
	exit(EXIT_FAILURE);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ///////////////////////////////////////////////////////////////
 | 
			
		||||
    // Save a copy of the device buffers
 | 
			
		||||
    ///////////////////////////////////////////////////////////////
 | 
			
		||||
    WorldShmCommBufs[r] = thisBuf;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
#ifdef GRID_MPI3_SHMMMAP
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Hugetlbfs and others map filesystems as mappable huge pages
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  char shm_name [NAME_MAX];
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    
 | 
			
		||||
    sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",WorldNode,r);
 | 
			
		||||
    int fd=open(shm_name,O_RDWR|O_CREAT,0666);
 | 
			
		||||
    if ( fd == -1) { 
 | 
			
		||||
      printf("open %s failed\n",shm_name);
 | 
			
		||||
      perror("open hugetlbfs");
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    int mmap_flag = MAP_SHARED ;
 | 
			
		||||
#ifdef MAP_POPULATE    
 | 
			
		||||
    mmap_flag|=MAP_POPULATE;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
    if ( flags ) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
			
		||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
			
		||||
      printf("mmap %s failed\n",shm_name);
 | 
			
		||||
      perror("failed mmap");      assert(0);    
 | 
			
		||||
    }
 | 
			
		||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    close(fd);
 | 
			
		||||
    WorldShmCommBufs[r] =ptr;
 | 
			
		||||
    //    std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
  _ShmAllocBytes  = bytes;
 | 
			
		||||
};
 | 
			
		||||
#endif // MMAP
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_MPI3_SHM_NONE
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Hugetlbf and others map filesystems as mappable huge pages
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  char shm_name [NAME_MAX];
 | 
			
		||||
  assert(WorldShmSize == 1);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    
 | 
			
		||||
    int fd=-1;
 | 
			
		||||
    int mmap_flag = MAP_SHARED |MAP_ANONYMOUS ;
 | 
			
		||||
#ifdef MAP_POPULATE    
 | 
			
		||||
    mmap_flag|=MAP_POPULATE;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
    if ( flags ) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
			
		||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
			
		||||
      printf("mmap %s failed\n",shm_name);
 | 
			
		||||
      perror("failed mmap");      assert(0);    
 | 
			
		||||
    }
 | 
			
		||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    close(fd);
 | 
			
		||||
    WorldShmCommBufs[r] =ptr;
 | 
			
		||||
    //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
  _ShmAllocBytes  = bytes;
 | 
			
		||||
};
 | 
			
		||||
#endif // MMAP
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_MPI3_SHMOPEN
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
 | 
			
		||||
// tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for 
 | 
			
		||||
// the posix shm virtual file system
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{ 
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0); 
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  char shm_name [NAME_MAX];
 | 
			
		||||
  if ( WorldShmRank == 0 ) {
 | 
			
		||||
    for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
	
 | 
			
		||||
      size_t size = bytes;
 | 
			
		||||
      
 | 
			
		||||
      struct passwd *pw = getpwuid (getuid());
 | 
			
		||||
      sprintf(shm_name,"/Grid_%s_mpi3_shm_%d_%d",pw->pw_name,WorldNode,r);
 | 
			
		||||
      
 | 
			
		||||
      shm_unlink(shm_name);
 | 
			
		||||
      int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
 | 
			
		||||
      if ( fd < 0 ) {	perror("failed shm_open");	assert(0);      }
 | 
			
		||||
      ftruncate(fd, size);
 | 
			
		||||
	
 | 
			
		||||
      int mmap_flag = MAP_SHARED;
 | 
			
		||||
#ifdef MAP_POPULATE 
 | 
			
		||||
      mmap_flag |= MAP_POPULATE;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
      if (flags) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
      void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
 | 
			
		||||
      
 | 
			
		||||
      //      std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
 | 
			
		||||
      if ( ptr == (void * )MAP_FAILED ) {       
 | 
			
		||||
	perror("failed mmap");     
 | 
			
		||||
	assert(0);    
 | 
			
		||||
      }
 | 
			
		||||
      assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
      
 | 
			
		||||
      WorldShmCommBufs[r] =ptr;
 | 
			
		||||
      close(fd);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  
 | 
			
		||||
  if ( WorldShmRank != 0 ) { 
 | 
			
		||||
    for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
 | 
			
		||||
      size_t size = bytes ;
 | 
			
		||||
      
 | 
			
		||||
      struct passwd *pw = getpwuid (getuid());
 | 
			
		||||
      sprintf(shm_name,"/Grid_%s_mpi3_shm_%d_%d",pw->pw_name,WorldNode,r);
 | 
			
		||||
      
 | 
			
		||||
      int fd=shm_open(shm_name,O_RDWR,0666);
 | 
			
		||||
      if ( fd<0 ) {	perror("failed shm_open");	assert(0);      }
 | 
			
		||||
      
 | 
			
		||||
      void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
 | 
			
		||||
      if ( ptr == MAP_FAILED ) {       perror("failed mmap");      assert(0);    }
 | 
			
		||||
      assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
      WorldShmCommBufs[r] =ptr;
 | 
			
		||||
 | 
			
		||||
      close(fd);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
  _ShmAllocBytes = bytes;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
#endif // End NVCC case for GPU device buffers
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Routines accessing shared memory should route through for GPU safety
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
  cudaMemset(dest,0,bytes);
 | 
			
		||||
#else
 | 
			
		||||
  bzero(dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
  cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
 | 
			
		||||
#else   
 | 
			
		||||
  bcopy(src,dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  int rank, size;
 | 
			
		||||
  MPI_Comm_rank(comm,&rank);
 | 
			
		||||
  MPI_Comm_size(comm,&size);
 | 
			
		||||
  ShmRanks.resize(size);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Split into groups that can share memory
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
 | 
			
		||||
  MPI_Comm_rank(ShmComm     ,&ShmRank);
 | 
			
		||||
  MPI_Comm_size(ShmComm     ,&ShmSize);
 | 
			
		||||
  ShmCommBufs.resize(ShmSize);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map ShmRank to WorldShmRank and use the right buffer
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert (GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  heap_size = GlobalSharedMemory::ShmAllocBytes();
 | 
			
		||||
  for(int r=0;r<ShmSize;r++){
 | 
			
		||||
 | 
			
		||||
    uint32_t wsr = (r==ShmRank) ? GlobalSharedMemory::WorldShmRank : 0 ;
 | 
			
		||||
 | 
			
		||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
			
		||||
 | 
			
		||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
			
		||||
  }
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Group FullGroup, ShmGroup;
 | 
			
		||||
  MPI_Comm_group (comm   , &FullGroup); 
 | 
			
		||||
  MPI_Comm_group (ShmComm, &ShmGroup);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ranks(size);   for(int r=0;r<size;r++) ranks[r]=r;
 | 
			
		||||
  MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]); 
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_IBM_SUMMIT
 | 
			
		||||
  // Hide the shared memory path between sockets 
 | 
			
		||||
  // if even number of nodes
 | 
			
		||||
  if ( (ShmSize & 0x1)==0 ) {
 | 
			
		||||
    int SocketSize = ShmSize/2;
 | 
			
		||||
    int mySocket = ShmRank/SocketSize; 
 | 
			
		||||
    for(int r=0;r<size;r++){
 | 
			
		||||
      int hisRank=ShmRanks[r];
 | 
			
		||||
      if ( hisRank!= MPI_UNDEFINED ) {
 | 
			
		||||
	int hisSocket=hisRank/SocketSize;
 | 
			
		||||
	if ( hisSocket != mySocket ) {
 | 
			
		||||
	  ShmRanks[r] = MPI_UNDEFINED;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  SharedMemoryTest();
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
// On node barrier
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::ShmBarrier(void)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Barrier  (ShmComm);
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Test the shared memory is working
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SharedMemoryTest(void)
 | 
			
		||||
{
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  uint64_t check[3];
 | 
			
		||||
  uint64_t magic = 0x5A5A5A;
 | 
			
		||||
  if ( ShmRank == 0 ) {
 | 
			
		||||
    for(uint64_t r=0;r<ShmSize;r++){
 | 
			
		||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
			
		||||
       check[1]=r;
 | 
			
		||||
       check[2]=magic;
 | 
			
		||||
       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
			
		||||
    assert(check[1]==r);
 | 
			
		||||
    assert(check[2]==magic);
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
{
 | 
			
		||||
  int gpeer = ShmRanks[rank];
 | 
			
		||||
  if (gpeer == MPI_UNDEFINED){
 | 
			
		||||
    return NULL;
 | 
			
		||||
  } else { 
 | 
			
		||||
    return ShmCommBufs[gpeer];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
 | 
			
		||||
{
 | 
			
		||||
  int gpeer = ShmRanks[rank];
 | 
			
		||||
  assert(gpeer!=ShmRank); // never send to self
 | 
			
		||||
  if (gpeer == MPI_UNDEFINED){
 | 
			
		||||
    return NULL;
 | 
			
		||||
  } else { 
 | 
			
		||||
    uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
 | 
			
		||||
    uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
 | 
			
		||||
    return (void *) remote;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
SharedMemory::~SharedMemory()
 | 
			
		||||
{
 | 
			
		||||
  int MPI_is_finalised;  MPI_Finalized(&MPI_is_finalised);
 | 
			
		||||
  if ( !MPI_is_finalised ) { 
 | 
			
		||||
    MPI_Comm_free(&ShmComm);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
@@ -1,129 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
/*Construct from an MPI communicator*/
 | 
			
		||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmSetup==0);
 | 
			
		||||
  WorldComm = 0;
 | 
			
		||||
  WorldRank = 0;
 | 
			
		||||
  WorldSize = 1;
 | 
			
		||||
  WorldShmComm = 0 ;
 | 
			
		||||
  WorldShmRank = 0 ;
 | 
			
		||||
  WorldShmSize = 1 ;
 | 
			
		||||
  WorldNodes   = 1 ;
 | 
			
		||||
  WorldNode    = 0 ;
 | 
			
		||||
  WorldShmRanks.resize(WorldSize); WorldShmRanks[0] = 0;
 | 
			
		||||
  WorldShmCommBufs.resize(1);
 | 
			
		||||
  _ShmSetup=1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
{
 | 
			
		||||
  optimal_comm = WorldComm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Hugetlbfs mapping intended, use anonymous mmap
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  int mmap_flag =0;
 | 
			
		||||
#ifdef MAP_ANONYMOUS
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_ANON
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
  if ( flags ) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
  ShmCommBuf =(void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag, -1, 0); 
 | 
			
		||||
  if (ShmCommBuf == (void *)MAP_FAILED) {
 | 
			
		||||
    perror("mmap failed ");
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
#ifdef MADV_HUGEPAGE
 | 
			
		||||
  if (!Hugepages ) madvise(ShmCommBuf,bytes,MADV_HUGEPAGE);
 | 
			
		||||
#endif
 | 
			
		||||
  bzero(ShmCommBuf,bytes);
 | 
			
		||||
  WorldShmCommBufs[0] = ShmCommBuf;
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  ShmRanks.resize(1);
 | 
			
		||||
  ShmCommBufs.resize(1);
 | 
			
		||||
  ShmRanks[0] = 0;
 | 
			
		||||
  ShmRank     = 0;
 | 
			
		||||
  ShmSize     = 1;
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map ShmRank to WorldShmRank and use the right buffer
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ShmCommBufs[0] = GlobalSharedMemory::WorldShmCommBufs[0];
 | 
			
		||||
  heap_size      = GlobalSharedMemory::ShmAllocBytes();
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
// On node barrier
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::ShmBarrier(void){ return ; }
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Test the shared memory is working
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SharedMemoryTest(void) { return; }
 | 
			
		||||
 | 
			
		||||
void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
{
 | 
			
		||||
  return NULL;
 | 
			
		||||
}
 | 
			
		||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
 | 
			
		||||
{
 | 
			
		||||
  return NULL;
 | 
			
		||||
}
 | 
			
		||||
SharedMemory::~SharedMemory()
 | 
			
		||||
{};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
@@ -1,397 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cshift/Cshift_common.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask = 0x3;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int ent = 0;
 | 
			
		||||
 | 
			
		||||
  static Vector<std::pair<int,int> > table; table.resize(e1*e2);
 | 
			
		||||
  int stride=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  if ( cbmask == 0x3 ) { 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o  = n*stride;
 | 
			
		||||
	int bo = n*e2;
 | 
			
		||||
	table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } else { 
 | 
			
		||||
     int bo=0;
 | 
			
		||||
     for(int n=0;n<e1;n++){
 | 
			
		||||
       for(int b=0;b<e2;b++){
 | 
			
		||||
	 int o  = n*stride;
 | 
			
		||||
	 int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
	 if ( ocb &cbmask ) {
 | 
			
		||||
	   table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
  }
 | 
			
		||||
  thread_for(i,ent,{
 | 
			
		||||
    buffer[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there *is* need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
		     ExtractPointerArray<typename vobj::scalar_object> pointers,
 | 
			
		||||
		     int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask = 0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  if ( cbmask ==0x3){
 | 
			
		||||
    thread_for_collapse(2,n,e1,{
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
 | 
			
		||||
	int o      =   n*n1;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
	
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  } else { 
 | 
			
		||||
 | 
			
		||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
			
		||||
    // Test_cshift_red_black code.
 | 
			
		||||
    std::cout << " Dense packed buffer WARNING " <<std::endl;
 | 
			
		||||
    thread_for_collapse(2,n,e1,{
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
 | 
			
		||||
	int o=n*n1;
 | 
			
		||||
	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there is no need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
    
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int stride=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
 | 
			
		||||
  int ent    =0;
 | 
			
		||||
 | 
			
		||||
  if ( cbmask ==0x3 ) {
 | 
			
		||||
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o   =n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int bo  =n*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
	table[ent++] = std::pair<int,int>(so+o+b,bo+b);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  } else { 
 | 
			
		||||
    int bo=0;
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o   =n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  table[ent++]=std::pair<int,int> (so+o+b,bo++);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  thread_for(i,ent,{
 | 
			
		||||
    rhs_v[table[i].first]=buffer[table[i].second];
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there *is* need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
    
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
 | 
			
		||||
  if(cbmask ==0x3 ) {
 | 
			
		||||
    auto rhs_v = rhs.View();
 | 
			
		||||
    thread_for_collapse(2,n,e1,{
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o      = n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int offset = b+n*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  } else { 
 | 
			
		||||
 | 
			
		||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
			
		||||
    // Test_cshift_red_black code.
 | 
			
		||||
    //    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
 | 
			
		||||
    std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
 | 
			
		||||
    auto rhs_v = rhs.View();
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o      = n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int offset = b+n*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
	if ( ocb&cbmask ) {
 | 
			
		||||
	  merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// local to node block strided copies
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
  int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
  static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
 | 
			
		||||
  int ent=0;
 | 
			
		||||
 | 
			
		||||
  if(cbmask == 0x3 ){
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int o =n*stride+b;
 | 
			
		||||
	table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } else { 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int o =n*stride+b;
 | 
			
		||||
        int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
 | 
			
		||||
        if ( ocb&cbmask ) {
 | 
			
		||||
	  table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  thread_for(i,ent,{
 | 
			
		||||
    lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
  int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block [dimension];
 | 
			
		||||
  int stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  static std::vector<std::pair<int,int> > table;  table.resize(e1*e2);
 | 
			
		||||
  int ent=0;
 | 
			
		||||
 | 
			
		||||
  if ( cbmask == 0x3 ) {
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
    for(int b=0;b<e2;b++){
 | 
			
		||||
      int o  =n*stride;
 | 
			
		||||
      table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
			
		||||
    }}
 | 
			
		||||
  } else {
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
    for(int b=0;b<e2;b++){
 | 
			
		||||
      int o  =n*stride;
 | 
			
		||||
      int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
      if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
			
		||||
    }}
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  thread_for(i,ent,{
 | 
			
		||||
    permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Local to node Cshift
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  int sshift[2];
 | 
			
		||||
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = rhs.Grid();
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int gd = grid->_gdimensions[dimension];
 | 
			
		||||
  int ly = grid->_simd_layout[dimension];
 | 
			
		||||
 | 
			
		||||
  // Map to always positive shift modulo global full dimension.
 | 
			
		||||
  shift = (shift+fd)%fd;
 | 
			
		||||
 | 
			
		||||
  // the permute type
 | 
			
		||||
  ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
			
		||||
  int permute_dim =grid->PermuteDim(dimension);
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
  int permute_type_dist;
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    //    int o   = 0;
 | 
			
		||||
    int bo  = x * grid->_ostride[dimension];
 | 
			
		||||
    int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
 | 
			
		||||
    int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
    int sx     = (x+sshift)%rd;
 | 
			
		||||
    
 | 
			
		||||
    // wrap is whether sshift > rd.
 | 
			
		||||
    //  num is sshift mod rd.
 | 
			
		||||
    // 
 | 
			
		||||
    //  shift 7
 | 
			
		||||
    //
 | 
			
		||||
    //  XoXo YcYc 
 | 
			
		||||
    //  oXoX cYcY
 | 
			
		||||
    //  XoXo YcYc
 | 
			
		||||
    //  oXoX cYcY
 | 
			
		||||
    //
 | 
			
		||||
    //  sshift -- 
 | 
			
		||||
    //
 | 
			
		||||
    //  XX YY ; 3
 | 
			
		||||
    //  XX YY ; 0
 | 
			
		||||
    //  XX YY ; 3
 | 
			
		||||
    //  XX YY ; 0
 | 
			
		||||
    //
 | 
			
		||||
    int permute_slice=0;
 | 
			
		||||
    if(permute_dim){
 | 
			
		||||
      int wrap = sshift/rd; wrap=wrap % ly;
 | 
			
		||||
      int  num = sshift%rd;
 | 
			
		||||
 | 
			
		||||
      if ( x< rd-num ) permute_slice=wrap;
 | 
			
		||||
      else permute_slice = (wrap+1)%ly;
 | 
			
		||||
 | 
			
		||||
      if ( (ly>2) && (permute_slice) ) {
 | 
			
		||||
	assert(permute_type & RotateBit);
 | 
			
		||||
	permute_type_dist = permute_type|permute_slice;
 | 
			
		||||
      } else {
 | 
			
		||||
	permute_type_dist = permute_type;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type_dist);
 | 
			
		||||
    else                 Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
  
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										18922
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										18922
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,407 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/lattice/Lattice_ET.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_ET_H
 | 
			
		||||
#define GRID_LATTICE_ET_H
 | 
			
		||||
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <tuple>
 | 
			
		||||
#include <typeinfo>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
// Predicated where support
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
template <class iobj, class vobj, class robj>
 | 
			
		||||
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
 | 
			
		||||
                            const robj &iffalse) {
 | 
			
		||||
  typename std::remove_const<vobj>::type ret;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<Integer> mask(Nsimd);
 | 
			
		||||
  ExtractBuffer<scalar_object> truevals(Nsimd);
 | 
			
		||||
  ExtractBuffer<scalar_object> falsevals(Nsimd);
 | 
			
		||||
 | 
			
		||||
  extract(iftrue, truevals);
 | 
			
		||||
  extract(iffalse, falsevals);
 | 
			
		||||
  extract<vInteger, Integer>(TensorRemove(predicate), mask);
 | 
			
		||||
 | 
			
		||||
  for (int s = 0; s < Nsimd; s++) {
 | 
			
		||||
    if (mask[s]) falsevals[s] = truevals[s];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  merge(ret, falsevals);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
//Specialization of getVectorType for lattices
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
template<typename T>
 | 
			
		||||
struct getVectorType<Lattice<T> >{
 | 
			
		||||
  typedef typename Lattice<T>::vector_object type;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
//--  recursive evaluation of expressions; --
 | 
			
		||||
// handle leaves of syntax tree
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
template<class sobj> accelerator_inline 
 | 
			
		||||
sobj eval(const uint64_t ss, const sobj &arg)
 | 
			
		||||
{
 | 
			
		||||
  return arg;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class lobj> accelerator_inline 
 | 
			
		||||
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg) 
 | 
			
		||||
{
 | 
			
		||||
  return arg[ss];
 | 
			
		||||
}
 | 
			
		||||
template <class lobj> accelerator_inline 
 | 
			
		||||
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg) 
 | 
			
		||||
{
 | 
			
		||||
  auto view = arg.View();
 | 
			
		||||
  return view[ss];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
// handle nodes in syntax tree- eval one operand
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
template <typename Op, typename T1> accelerator_inline 
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func( eval(ss, expr.arg1)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func( eval(ss, expr.arg1) );
 | 
			
		||||
}
 | 
			
		||||
///////////////////////
 | 
			
		||||
// eval two operands
 | 
			
		||||
///////////////////////
 | 
			
		||||
template <typename Op, typename T1, typename T2> accelerator_inline
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
 | 
			
		||||
}
 | 
			
		||||
///////////////////////
 | 
			
		||||
// eval three operands
 | 
			
		||||
///////////////////////
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Obtain the grid from an expression, ensuring conformable. This must follow a
 | 
			
		||||
// tree recursion; must retain grid pointer in the LatticeView class which sucks
 | 
			
		||||
// Use a different method, and make it void *.
 | 
			
		||||
// Perhaps a conformable method.
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  lat.Conformable(grid);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid,const T1 ¬lat)  // non-lattice leaf
 | 
			
		||||
{}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  GridFromExpression(grid, expr.arg1);  // recurse
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1, typename T2>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  GridFromExpression(grid, expr.arg1);  // recurse
 | 
			
		||||
  GridFromExpression(grid, expr.arg2);
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  GridFromExpression(grid, expr.arg1);  // recurse
 | 
			
		||||
  GridFromExpression(grid, expr.arg2);  // recurse
 | 
			
		||||
  GridFromExpression(grid, expr.arg3);  // recurse
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Obtain the CB from an expression, ensuring conformable. This must follow a
 | 
			
		||||
// tree recursion
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  if ((cb == Odd) || (cb == Even)) {
 | 
			
		||||
    assert(cb == lat.Checkerboard());
 | 
			
		||||
  }
 | 
			
		||||
  cb = lat.Checkerboard();
 | 
			
		||||
}
 | 
			
		||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void CBFromExpression(int &cb, const T1 ¬lat)  // non-lattice leaf
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1> inline 
 | 
			
		||||
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  CBFromExpression(cb, expr.arg1);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1, typename T2> inline 
 | 
			
		||||
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  CBFromExpression(cb, expr.arg1);  // recurse AST
 | 
			
		||||
  CBFromExpression(cb, expr.arg2);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3>
 | 
			
		||||
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  CBFromExpression(cb, expr.arg1);  // recurse AST
 | 
			
		||||
  CBFromExpression(cb, expr.arg2);  // recurse AST
 | 
			
		||||
  CBFromExpression(cb, expr.arg3);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Unary operators and funcs
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#define GridUnopClass(name, ret)					\
 | 
			
		||||
  template <class arg>							\
 | 
			
		||||
  struct name {								\
 | 
			
		||||
    static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
GridUnopClass(UnarySub, -a);
 | 
			
		||||
GridUnopClass(UnaryNot, Not(a));
 | 
			
		||||
GridUnopClass(UnaryAdj, adj(a));
 | 
			
		||||
GridUnopClass(UnaryConj, conjugate(a));
 | 
			
		||||
GridUnopClass(UnaryTrace, trace(a));
 | 
			
		||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
			
		||||
GridUnopClass(UnaryTa, Ta(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
			
		||||
GridUnopClass(UnaryReal, real(a));
 | 
			
		||||
GridUnopClass(UnaryImag, imag(a));
 | 
			
		||||
GridUnopClass(UnaryToReal, toReal(a));
 | 
			
		||||
GridUnopClass(UnaryToComplex, toComplex(a));
 | 
			
		||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
			
		||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
			
		||||
GridUnopClass(UnaryAbs, abs(a));
 | 
			
		||||
GridUnopClass(UnarySqrt, sqrt(a));
 | 
			
		||||
GridUnopClass(UnaryRsqrt, rsqrt(a));
 | 
			
		||||
GridUnopClass(UnarySin, sin(a));
 | 
			
		||||
GridUnopClass(UnaryCos, cos(a));
 | 
			
		||||
GridUnopClass(UnaryAsin, asin(a));
 | 
			
		||||
GridUnopClass(UnaryAcos, acos(a));
 | 
			
		||||
GridUnopClass(UnaryLog, log(a));
 | 
			
		||||
GridUnopClass(UnaryExp, exp(a));
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Binary operators
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#define GridBinOpClass(name, combination)			\
 | 
			
		||||
  template <class left, class right>				\
 | 
			
		||||
  struct name {							\
 | 
			
		||||
    static auto accelerator_inline				\
 | 
			
		||||
    func(const left &lhs, const right &rhs)			\
 | 
			
		||||
      -> decltype(combination) const				\
 | 
			
		||||
    {								\
 | 
			
		||||
      return combination;					\
 | 
			
		||||
    }								\
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
GridBinOpClass(BinaryAdd, lhs + rhs);
 | 
			
		||||
GridBinOpClass(BinarySub, lhs - rhs);
 | 
			
		||||
GridBinOpClass(BinaryMul, lhs *rhs);
 | 
			
		||||
GridBinOpClass(BinaryDiv, lhs /rhs);
 | 
			
		||||
GridBinOpClass(BinaryAnd, lhs &rhs);
 | 
			
		||||
GridBinOpClass(BinaryOr, lhs | rhs);
 | 
			
		||||
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
 | 
			
		||||
GridBinOpClass(BinaryOrOr, lhs || rhs);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
// Trinary conditional op
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
#define GridTrinOpClass(name, combination)				\
 | 
			
		||||
  template <class predicate, class left, class right>			\
 | 
			
		||||
  struct name {								\
 | 
			
		||||
    static auto accelerator_inline					\
 | 
			
		||||
    func(const predicate &pred, const left &lhs, const right &rhs)	\
 | 
			
		||||
      -> decltype(combination) const					\
 | 
			
		||||
    {									\
 | 
			
		||||
      return combination;						\
 | 
			
		||||
    }									\
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
GridTrinOpClass(TrinaryWhere,
 | 
			
		||||
		(predicatedWhere<predicate, 
 | 
			
		||||
		 typename std::remove_reference<left>::type,
 | 
			
		||||
		 typename std::remove_reference<right>::type>(pred, lhs,rhs)));
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Operator syntactical glue
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#define GRID_UNOP(name)   name<decltype(eval(0, arg))>
 | 
			
		||||
#define GRID_BINOP(name)  name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
 | 
			
		||||
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
 | 
			
		||||
 | 
			
		||||
#define GRID_DEF_UNOP(op, name)						\
 | 
			
		||||
  template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
 | 
			
		||||
  inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return     LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define GRID_BINOP_LEFT(op, name)					\
 | 
			
		||||
  template <typename T1, typename T2,					\
 | 
			
		||||
            typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
 | 
			
		||||
  inline auto op(const T1 &lhs, const T2 &rhs)				\
 | 
			
		||||
    ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define GRID_BINOP_RIGHT(op, name)					\
 | 
			
		||||
  template <typename T1, typename T2,					\
 | 
			
		||||
            typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
 | 
			
		||||
            typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
 | 
			
		||||
  inline auto op(const T1 &lhs, const T2 &rhs)				\
 | 
			
		||||
    ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define GRID_DEF_BINOP(op, name)		\
 | 
			
		||||
  GRID_BINOP_LEFT(op, name);			\
 | 
			
		||||
  GRID_BINOP_RIGHT(op, name);
 | 
			
		||||
 | 
			
		||||
#define GRID_DEF_TRINOP(op, name)					\
 | 
			
		||||
  template <typename T1, typename T2, typename T3>			\
 | 
			
		||||
  inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs)		\
 | 
			
		||||
    ->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
////////////////////////
 | 
			
		||||
// Operator definitions
 | 
			
		||||
////////////////////////
 | 
			
		||||
GRID_DEF_UNOP(operator-, UnarySub);
 | 
			
		||||
GRID_DEF_UNOP(Not, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(operator!, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(adj, UnaryAdj);
 | 
			
		||||
GRID_DEF_UNOP(conjugate, UnaryConj);
 | 
			
		||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
			
		||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
			
		||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
			
		||||
GRID_DEF_UNOP(real, UnaryReal);
 | 
			
		||||
GRID_DEF_UNOP(imag, UnaryImag);
 | 
			
		||||
GRID_DEF_UNOP(toReal, UnaryToReal);
 | 
			
		||||
GRID_DEF_UNOP(toComplex, UnaryToComplex);
 | 
			
		||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
			
		||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
			
		||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
			
		||||
                               // abs-fabs-dabs-labs thing
 | 
			
		||||
GRID_DEF_UNOP(sqrt, UnarySqrt);
 | 
			
		||||
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
 | 
			
		||||
GRID_DEF_UNOP(sin, UnarySin);
 | 
			
		||||
GRID_DEF_UNOP(cos, UnaryCos);
 | 
			
		||||
GRID_DEF_UNOP(asin, UnaryAsin);
 | 
			
		||||
GRID_DEF_UNOP(acos, UnaryAcos);
 | 
			
		||||
GRID_DEF_UNOP(log, UnaryLog);
 | 
			
		||||
GRID_DEF_UNOP(exp, UnaryExp);
 | 
			
		||||
 | 
			
		||||
GRID_DEF_BINOP(operator+, BinaryAdd);
 | 
			
		||||
GRID_DEF_BINOP(operator-, BinarySub);
 | 
			
		||||
GRID_DEF_BINOP(operator*, BinaryMul);
 | 
			
		||||
GRID_DEF_BINOP(operator/, BinaryDiv);
 | 
			
		||||
 | 
			
		||||
GRID_DEF_BINOP(operator&, BinaryAnd);
 | 
			
		||||
GRID_DEF_BINOP(operator|, BinaryOr);
 | 
			
		||||
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
 | 
			
		||||
GRID_DEF_BINOP(operator||, BinaryOrOr);
 | 
			
		||||
 | 
			
		||||
GRID_DEF_TRINOP(where, TrinaryWhere);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Closure convenience to force expression to evaluate
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Op, class T1>
 | 
			
		||||
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
 | 
			
		||||
  -> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> 
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template <class Op, class T1, class T2>
 | 
			
		||||
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
 | 
			
		||||
  -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> 
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template <class Op, class T1, class T2, class T3>
 | 
			
		||||
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
 | 
			
		||||
  -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
 | 
			
		||||
				   eval(0, expr.arg2),
 | 
			
		||||
				   eval(0, expr.arg3)))> 
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(expr.op.func(eval(0, expr.arg1),
 | 
			
		||||
				eval(0, expr.arg2),
 | 
			
		||||
				eval(0, expr.arg3)))>  ret(expr);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#undef GRID_UNOP
 | 
			
		||||
#undef GRID_BINOP
 | 
			
		||||
#undef GRID_TRINOP
 | 
			
		||||
 | 
			
		||||
#undef GRID_DEF_UNOP
 | 
			
		||||
#undef GRID_DEF_BINOP
 | 
			
		||||
#undef GRID_DEF_TRINOP
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,257 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_arith.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_ARITH_H
 | 
			
		||||
#define GRID_LATTICE_ARITH_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  avoid copy back routines for mult, mac, sub, add
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t = lhs_v(ss);
 | 
			
		||||
    auto rhs_t = rhs_v(ss);
 | 
			
		||||
    mult(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    mac(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    sub(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    add(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  avoid copy back routines for mult, mac, sub, add
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    mult(&tmp,&lhs_v(ss),&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    mac(&tmp,&lhs_t,&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    sub(&tmp,&lhs_t,&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    add(&tmp,&lhs_t,&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  avoid copy back routines for mult, mac, sub, add
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto rhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    mult(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto rhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    mac(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto rhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    sub(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto rhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    add(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto x_v = x.View();
 | 
			
		||||
  auto y_v = y.View();
 | 
			
		||||
  accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    auto tmp = a*x_v(ss)+y_v(ss);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto x_v = x.View();
 | 
			
		||||
  auto y_v = y.View();
 | 
			
		||||
  accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
    return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,469 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/lattice/Lattice_base.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
#define STREAMING_STORES
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern int GridCshiftPermuteMap[4][16];
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Base class which can be used by traits to pick up behaviour
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
class LatticeBase {};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Conformable checks; same instance of Grid required
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
 | 
			
		||||
{
 | 
			
		||||
  assert(lhs == rhs);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Minimal base class containing only data valid to access from accelerator
 | 
			
		||||
// _odata will be a managed pointer in CUDA
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Force access to lattice through a view object.
 | 
			
		||||
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
 | 
			
		||||
// strict since host could could in principle direct access through the lattice object
 | 
			
		||||
// Need to decide programming model.
 | 
			
		||||
#define LATTICE_VIEW_STRICT
 | 
			
		||||
template<class vobj> class LatticeAccelerator : public LatticeBase
 | 
			
		||||
{
 | 
			
		||||
protected:
 | 
			
		||||
  GridBase *_grid;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  vobj     *_odata;    // A managed pointer
 | 
			
		||||
  uint64_t _odata_size;    
 | 
			
		||||
public:
 | 
			
		||||
  accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { }; 
 | 
			
		||||
  accelerator_inline uint64_t oSites(void) const { return _odata_size; };
 | 
			
		||||
  accelerator_inline int  Checkerboard(void) const { return checkerboard; };
 | 
			
		||||
  accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
 | 
			
		||||
  accelerator_inline void Conformable(GridBase * &grid) const
 | 
			
		||||
  { 
 | 
			
		||||
    if (grid) conformable(grid, _grid);
 | 
			
		||||
    else      grid = _grid;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// A View class which provides accessor to the data.
 | 
			
		||||
// This will be safe to call from accelerator_for and is trivially copy constructible
 | 
			
		||||
// The copy constructor for this will need to be used by device lambda functions
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> 
 | 
			
		||||
class LatticeView : public LatticeAccelerator<vobj>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // Rvalue
 | 
			
		||||
#ifdef __CUDA_ARCH__
 | 
			
		||||
  accelerator_inline const typename vobj::scalar_object operator()(size_t i) const { return coalescedRead(this->_odata[i]); }
 | 
			
		||||
#else 
 | 
			
		||||
  accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
 | 
			
		||||
  accelerator_inline vobj       & operator[](size_t i)       { return this->_odata[i]; };
 | 
			
		||||
 | 
			
		||||
  accelerator_inline uint64_t begin(void) const { return 0;};
 | 
			
		||||
  accelerator_inline uint64_t end(void)   const { return this->_odata_size; };
 | 
			
		||||
  accelerator_inline uint64_t size(void)  const { return this->_odata_size; };
 | 
			
		||||
 | 
			
		||||
  LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Lattice expression types used by ET to assemble the AST
 | 
			
		||||
// 
 | 
			
		||||
// Need to be able to detect code paths according to the whether a lattice object or not
 | 
			
		||||
// so introduce some trait type things
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class LatticeExpressionBase {};
 | 
			
		||||
 | 
			
		||||
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
 | 
			
		||||
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
 | 
			
		||||
 | 
			
		||||
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
 | 
			
		||||
template<class T>                 struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
 | 
			
		||||
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename _T1>                           
 | 
			
		||||
class LatticeUnaryExpression : public  LatticeExpressionBase 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename ViewMap<_T1>::Type T1;
 | 
			
		||||
  Op op;
 | 
			
		||||
  T1 arg1;
 | 
			
		||||
  LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename _T1, typename _T2>              
 | 
			
		||||
class LatticeBinaryExpression : public LatticeExpressionBase 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename ViewMap<_T1>::Type T1;
 | 
			
		||||
  typedef typename ViewMap<_T2>::Type T2;
 | 
			
		||||
  Op op;
 | 
			
		||||
  T1 arg1;
 | 
			
		||||
  T2 arg2;
 | 
			
		||||
  LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename _T1, typename _T2, typename _T3> 
 | 
			
		||||
class LatticeTrinaryExpression : public LatticeExpressionBase 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename ViewMap<_T1>::Type T1;
 | 
			
		||||
  typedef typename ViewMap<_T2>::Type T2;
 | 
			
		||||
  typedef typename ViewMap<_T3>::Type T3;
 | 
			
		||||
  Op op;
 | 
			
		||||
  T1 arg1;
 | 
			
		||||
  T2 arg2;
 | 
			
		||||
  T3 arg3;
 | 
			
		||||
  LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// The real lattice class, with normal copy and assignment semantics.
 | 
			
		||||
// This contains extra (host resident) grid pointer data that may be accessed by host code
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
class Lattice : public LatticeAccelerator<vobj>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *Grid(void) const { return this->_grid; }
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Member types
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef vobj vector_object;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  void dealloc(void)
 | 
			
		||||
  {
 | 
			
		||||
    if( this->_odata_size ) {
 | 
			
		||||
      alignedAllocator<vobj> alloc;
 | 
			
		||||
      alloc.deallocate(this->_odata,this->_odata_size);
 | 
			
		||||
      this->_odata=nullptr;
 | 
			
		||||
      this->_odata_size=0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void resize(uint64_t size)
 | 
			
		||||
  {
 | 
			
		||||
    if ( this->_odata_size != size ) {
 | 
			
		||||
      alignedAllocator<vobj> alloc;
 | 
			
		||||
 | 
			
		||||
      dealloc();
 | 
			
		||||
      
 | 
			
		||||
      this->_odata_size = size;
 | 
			
		||||
      if ( size ) 
 | 
			
		||||
	this->_odata      = alloc.allocate(this->_odata_size);
 | 
			
		||||
      else 
 | 
			
		||||
	this->_odata      = nullptr;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
public:
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Return a view object that may be dereferenced in site loops.
 | 
			
		||||
  // The view is trivially copy constructible and may be copied to an accelerator device
 | 
			
		||||
  // in device lambdas
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  LatticeView<vobj> View (void) const 
 | 
			
		||||
  {
 | 
			
		||||
    LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
 | 
			
		||||
    return accessor;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ~Lattice() { 
 | 
			
		||||
    if ( this->_odata_size ) {
 | 
			
		||||
      dealloc();
 | 
			
		||||
    }
 | 
			
		||||
   }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Expression Template closure support
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    auto me  = View();
 | 
			
		||||
    accelerator_for(ss,me.size(),1,{
 | 
			
		||||
      auto tmp = eval(ss,expr);
 | 
			
		||||
      vstream(me[ss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    auto me  = View();
 | 
			
		||||
    accelerator_for(ss,me.size(),1,{
 | 
			
		||||
      auto tmp = eval(ss,expr);
 | 
			
		||||
      vstream(me[ss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
    auto me  = View();
 | 
			
		||||
    accelerator_for(ss,me.size(),1,{
 | 
			
		||||
      auto tmp = eval(ss,expr);
 | 
			
		||||
      vstream(me[ss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  //GridFromExpression is tricky to do
 | 
			
		||||
  template<class Op,class T1>
 | 
			
		||||
  Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
 | 
			
		||||
    *this = expr;
 | 
			
		||||
  }
 | 
			
		||||
  template<class Op,class T1, class T2>
 | 
			
		||||
  Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
 | 
			
		||||
    *this = expr;
 | 
			
		||||
  }
 | 
			
		||||
  template<class Op,class T1, class T2, class T3>
 | 
			
		||||
  Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
 | 
			
		||||
    *this = expr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
			
		||||
    auto me  = View();
 | 
			
		||||
    thread_for(ss,me.size(),{
 | 
			
		||||
      me[ss] = r;
 | 
			
		||||
    });
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Follow rule of five, with Constructor requires "grid" passed
 | 
			
		||||
  // to user defined constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // user defined constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(GridBase *grid) { 
 | 
			
		||||
    this->_grid = grid;
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
    assert((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
			
		||||
    this->checkerboard=0;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //  virtual ~Lattice(void) = default;
 | 
			
		||||
    
 | 
			
		||||
  void reset(GridBase* grid) {
 | 
			
		||||
    if (this->_grid != grid) {
 | 
			
		||||
      this->_grid = grid;
 | 
			
		||||
      this->resize(grid->oSites());
 | 
			
		||||
      this->checkerboard = 0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // copy constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(const Lattice& r){ 
 | 
			
		||||
    //    std::cout << "Lattice constructor(const Lattice &) "<<this<<std::endl; 
 | 
			
		||||
    this->_grid = r.Grid();
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
    *this = r;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // move constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(Lattice && r){ 
 | 
			
		||||
    this->_grid = r.Grid();
 | 
			
		||||
    this->_odata      = r._odata;
 | 
			
		||||
    this->_odata_size = r._odata_size;
 | 
			
		||||
    this->checkerboard= r.Checkerboard();
 | 
			
		||||
    r._odata      = nullptr;
 | 
			
		||||
    r._odata_size = 0;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // assignment template
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
 | 
			
		||||
    typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
 | 
			
		||||
    conformable(*this,r);
 | 
			
		||||
    this->checkerboard = r.Checkerboard();
 | 
			
		||||
    auto me =   View();
 | 
			
		||||
    auto him= r.View();
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(me[ss],him(ss));
 | 
			
		||||
    });
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Copy assignment 
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
 | 
			
		||||
    this->checkerboard = r.Checkerboard();
 | 
			
		||||
    conformable(*this,r);
 | 
			
		||||
    auto me =   View();
 | 
			
		||||
    auto him= r.View();
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(me[ss],him(ss));
 | 
			
		||||
    });
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Move assignment possible if same type
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  inline Lattice<vobj> & operator = (Lattice<vobj> && r){
 | 
			
		||||
 | 
			
		||||
    resize(0); // deletes if appropriate
 | 
			
		||||
    this->_grid       = r.Grid();
 | 
			
		||||
    this->_odata      = r._odata;
 | 
			
		||||
    this->_odata_size = r._odata_size;
 | 
			
		||||
    this->checkerboard= r.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    r._odata      = nullptr;
 | 
			
		||||
    r._odata_size = 0;
 | 
			
		||||
    
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // *=,+=,-= operators inherit behvour from correspond */+/- operation
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class T> inline Lattice<vobj> &operator *=(const T &r) {
 | 
			
		||||
    *this = (*this)*r;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template<class T> inline Lattice<vobj> &operator -=(const T &r) {
 | 
			
		||||
    *this = (*this)-r;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  template<class T> inline Lattice<vobj> &operator +=(const T &r) {
 | 
			
		||||
    *this = (*this)+r;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  friend inline void swap(Lattice &l, Lattice &r) { 
 | 
			
		||||
    conformable(l,r);
 | 
			
		||||
    LatticeAccelerator<vobj> tmp;
 | 
			
		||||
    LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
 | 
			
		||||
    LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
 | 
			
		||||
    tmp = *lp;    *lp=*rp;    *rp=tmp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}; // class Lattice
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 | 
			
		||||
    sobj ss;
 | 
			
		||||
    peekSite(ss,o,gcoor);
 | 
			
		||||
    stream<<"[";
 | 
			
		||||
    for(int d=0;d<gcoor.size();d++){
 | 
			
		||||
      stream<<gcoor[d];
 | 
			
		||||
      if(d!=gcoor.size()-1) stream<<",";
 | 
			
		||||
    }
 | 
			
		||||
    stream<<"]\t";
 | 
			
		||||
    stream<<ss<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  return stream;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,207 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_comparison.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_COMPARISON_H
 | 
			
		||||
#define GRID_LATTICE_COMPARISON_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// relational operators
 | 
			
		||||
// 
 | 
			
		||||
// Support <,>,<=,>=,==,!=
 | 
			
		||||
//
 | 
			
		||||
//Query supporting bitwise &, |, ^, !
 | 
			
		||||
//Query supporting logical &&, ||, 
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
typedef iScalar<vInteger> vPredicate ;
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template <class iobj, class vobj, class robj> accelerator_inline 
 | 
			
		||||
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse) 
 | 
			
		||||
{
 | 
			
		||||
  typename std::remove_const<vobj>::type ret;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<Integer> mask(Nsimd);
 | 
			
		||||
  ExtractBuffer<scalar_object> truevals(Nsimd);
 | 
			
		||||
  ExtractBuffer<scalar_object> falsevals(Nsimd);
 | 
			
		||||
 | 
			
		||||
  extract(iftrue, truevals);
 | 
			
		||||
  extract(iffalse, falsevals);
 | 
			
		||||
  extract<vInteger, Integer>(TensorRemove(predicate), mask);
 | 
			
		||||
 | 
			
		||||
  for (int s = 0; s < Nsimd; s++) {
 | 
			
		||||
    if (mask[s]) falsevals[s] = truevals[s];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  merge(ret, falsevals);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare lattice to lattice
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vfunctor,class lobj,class robj>  
 | 
			
		||||
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  Lattice<vPredicate> ret(rhs.Grid());
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  thread_for( ss, rhs_v.size(), {
 | 
			
		||||
      ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare lattice to scalar
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vfunctor,class lobj,class robj> 
 | 
			
		||||
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
 | 
			
		||||
{
 | 
			
		||||
  Lattice<vPredicate> ret(lhs.Grid());
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  thread_for( ss, lhs_v.size(), {
 | 
			
		||||
    ret_v[ss]=op(lhs_v[ss],rhs);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare scalar to lattice
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vfunctor,class lobj,class robj> 
 | 
			
		||||
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  Lattice<vPredicate> ret(rhs.Grid());
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  thread_for( ss, rhs_v.size(), {
 | 
			
		||||
    ret_v[ss]=op(lhs,rhs_v[ss]);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map to functors
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less than
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vlt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vlt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vlt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// Less than equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vle<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vle<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vle<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// Greater than 
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vgt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vgt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vgt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
// Greater than equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vge<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vge<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vge<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
   
 | 
			
		||||
// equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(veq<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(veq<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(veq<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
   
 | 
			
		||||
   
 | 
			
		||||
// not equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vne<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vne<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vne<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,73 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_coordinate.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename iobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
  int Nsimd = grid->iSites();
 | 
			
		||||
 | 
			
		||||
  auto l_v = l.View();
 | 
			
		||||
  thread_for( o, grid->oSites(), {
 | 
			
		||||
    vector_type vI;
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    ExtractBuffer<scalar_type> mergebuf(Nsimd);
 | 
			
		||||
    for(int i=0;i<grid->iSites();i++){
 | 
			
		||||
      grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
 | 
			
		||||
      mergebuf[i]=(Integer)gcoor[mu];
 | 
			
		||||
    }
 | 
			
		||||
    merge<vector_type,scalar_type>(vI,mergebuf);
 | 
			
		||||
    l_v[o]=vI;
 | 
			
		||||
  });
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// LatticeCoordinate();
 | 
			
		||||
// FIXME for debug; deprecate this; made obscelete by 
 | 
			
		||||
template<class vobj> void lex_sites(Lattice<vobj> &l){
 | 
			
		||||
  auto l_v = l.View();
 | 
			
		||||
  Real *v_ptr = (Real *)&l_v[0];
 | 
			
		||||
  size_t o_len = l.Grid()->oSites();
 | 
			
		||||
  size_t v_len = sizeof(vobj)/sizeof(vRealF);
 | 
			
		||||
  size_t vec_len = vRealF::Nsimd();
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<o_len;i++){
 | 
			
		||||
    for(int j=0;j<v_len;j++){
 | 
			
		||||
      for(int vv=0;vv<vec_len;vv+=2){
 | 
			
		||||
	v_ptr[i*v_len*vec_len+j*vec_len+vv  ]= i+vv*500;
 | 
			
		||||
	v_ptr[i*v_len*vec_len+j*vec_len+vv+1]= i+vv*500;
 | 
			
		||||
      }
 | 
			
		||||
    }}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,87 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_local.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_LOCALREDUCTION_H
 | 
			
		||||
#define GRID_LATTICE_LOCALREDUCTION_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// localInner, localNorm, outerProduct
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
// Non site, reduced locally reduced routines
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
// localNorm2,
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// localInnerProduct
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// outerProduct Scalar x Scalar -> Scalar
 | 
			
		||||
//              Vector x Vector -> Matrix
 | 
			
		||||
template<class ll,class rr>
 | 
			
		||||
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(coalescedRead(ll())) sll;
 | 
			
		||||
  typedef decltype(coalescedRead(rr())) srr;
 | 
			
		||||
  Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),1,{
 | 
			
		||||
    // FIXME had issues with scalar version of outer 
 | 
			
		||||
    // Use vector [] operator and don't read coalesce this loop
 | 
			
		||||
    ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,202 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_reduction.h
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_WARN_SUBOPTIMAL
 | 
			
		||||
#warning "Optimisation alert all these reduction loops are NOT threaded "
 | 
			
		||||
#endif     
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
  auto X_v = X.View();
 | 
			
		||||
  auto Y_v = Y.View();
 | 
			
		||||
  auto R_v = R.View();
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_loop_collapse2( (int n=0;n<nblock;n++),{
 | 
			
		||||
      for(int b=0;b<block;b++){
 | 
			
		||||
	int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	vobj dot;
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  dot = Y_v[o+i*ostride];
 | 
			
		||||
	  for(int j=0;j<Nblock;j++){
 | 
			
		||||
	    dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	  }
 | 
			
		||||
	  R_v[o+i*ostride]=dot;
 | 
			
		||||
	}
 | 
			
		||||
      }});
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  auto X_v = X.View();
 | 
			
		||||
  auto R_v = R.View();
 | 
			
		||||
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
    
 | 
			
		||||
    thread_loop_collapse2( (int n=0;n<nblock;n++),{
 | 
			
		||||
      for(int b=0;b<block;b++){
 | 
			
		||||
	int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	vobj dot;
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  dot = s_x[0]*(scale*aa(0,i));
 | 
			
		||||
	  for(int j=1;j<Nblock;j++){
 | 
			
		||||
	    dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	  }
 | 
			
		||||
	  R_v[o+i*ostride]=dot;
 | 
			
		||||
	}
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
			
		||||
  
 | 
			
		||||
  //  Lattice<vobj> Lslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_typeD;
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  thread_region {
 | 
			
		||||
    std::vector<vobj> Left(Nblock);
 | 
			
		||||
    std::vector<vobj> Right(Nblock);
 | 
			
		||||
    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_loop_collapse2((int n=0;n<nblock;n++),{
 | 
			
		||||
      for(int b=0;b<block;b++){
 | 
			
		||||
 | 
			
		||||
	int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  Left [i] = lhs_v[o+i*ostride];
 | 
			
		||||
	  Right[i] = rhs_v[o+i*ostride];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  for(int j=0;j<Nblock;j++){
 | 
			
		||||
	    auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	    auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	    ComplexD z = Reduce(rtmp);
 | 
			
		||||
	    mat_thread(i,j) += std::complex<double>(real(z),imag(z));
 | 
			
		||||
	  }}
 | 
			
		||||
    }});
 | 
			
		||||
    thread_critical {
 | 
			
		||||
      mat += mat_thread;
 | 
			
		||||
    }  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<Nblock;i++){
 | 
			
		||||
    for(int j=0;j<Nblock;j++){
 | 
			
		||||
      ComplexD sum = mat(i,j);
 | 
			
		||||
      FullGrid->GlobalSum(sum);
 | 
			
		||||
      mat(i,j)=sum;
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,217 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_peekpoke.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_PEEK_H
 | 
			
		||||
#define GRID_LATTICE_PEEK_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Peeking and poking around
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// FIXME accelerator_loop and accelerator_inline these
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Peek internal indices of a Lattice object
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj> 
 | 
			
		||||
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
 | 
			
		||||
  ret.Checkerboard()=lhs.Checkerboard();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  thread_for( ss, lhs_v.size(), {
 | 
			
		||||
    ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
template<int Index,class vobj> 
 | 
			
		||||
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
 | 
			
		||||
  ret.Checkerboard()=lhs.Checkerboard();
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  thread_for( ss, lhs_v.size(), {
 | 
			
		||||
    ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Poke internal indices of a Lattice object
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj>  
 | 
			
		||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
 | 
			
		||||
{
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  thread_for( ss, lhs_v.size(), {
 | 
			
		||||
    pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj> 
 | 
			
		||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
 | 
			
		||||
{
 | 
			
		||||
  auto rhs_v = rhs.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  thread_for( ss, lhs_v.size(), {
 | 
			
		||||
    pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Poke a scalar object into the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj,class sobj> 
 | 
			
		||||
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  int rank,odx,idx;
 | 
			
		||||
  // Optional to broadcast from node 0.
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
  grid->Broadcast(grid->BossRank(),s);
 | 
			
		||||
 | 
			
		||||
  // extract-modify-merge cycle is easiest way and this is not perf critical
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  auto l_v = l.View();
 | 
			
		||||
  if ( rank == grid->ThisRank() ) {
 | 
			
		||||
    extract(l_v[odx],buf);
 | 
			
		||||
    buf[idx] = s;
 | 
			
		||||
    merge(l_v[odx],buf);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
        
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
			
		||||
 | 
			
		||||
  int rank,odx,idx;
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  auto l_v = l.View();
 | 
			
		||||
  extract(l_v[odx],buf);
 | 
			
		||||
 | 
			
		||||
  s = buf[idx];
 | 
			
		||||
 | 
			
		||||
  grid->Broadcast(rank,s);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
accelerator_inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
 | 
			
		||||
        
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  int odx,idx;
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
  
 | 
			
		||||
  auto l_v = l.View();
 | 
			
		||||
  scalar_type * vp = (scalar_type *)&l_v[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
      
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    pt[w] = vp[idx+w*Nsimd];
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
accelerator_inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  int odx,idx;
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
 | 
			
		||||
  auto l_v = l.View();
 | 
			
		||||
  scalar_type * vp = (scalar_type *)&l_v[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    vp[idx+w*Nsimd] = pt[w];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -1,677 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_reduction.h
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
#include <Grid/lattice/Lattice_reduction_gpu.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// FIXME this should promote to double and accumulate
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object  sobj;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::Nsimd();
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  thread_for(thr,nthread, {
 | 
			
		||||
    int nwork, mywork, myoff;
 | 
			
		||||
    nwork = osites;
 | 
			
		||||
    GridThread::GetWork(nwork,thr,mywork,myoff);
 | 
			
		||||
    vobj vvsum=Zero();
 | 
			
		||||
    for(int ss=myoff;ss<mywork+myoff; ss++){
 | 
			
		||||
      vvsum = vvsum + arg[ss];
 | 
			
		||||
    }
 | 
			
		||||
    sumarray[thr]=Reduce(vvsum);
 | 
			
		||||
  });
 | 
			
		||||
  
 | 
			
		||||
  sobj ssum=Zero();  // sum across threads
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    ssum = ssum+sumarray[i];
 | 
			
		||||
  } 
 | 
			
		||||
  
 | 
			
		||||
  return ssum;
 | 
			
		||||
}
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
  return sum_gpu(arg,osites);
 | 
			
		||||
#else
 | 
			
		||||
  return sum_cpu(arg,osites);
 | 
			
		||||
#endif  
 | 
			
		||||
}
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
  auto arg_v = arg.View();
 | 
			
		||||
  Integer osites = arg.Grid()->oSites();
 | 
			
		||||
  auto ssum= sum(&arg_v[0],osites);
 | 
			
		||||
  arg.Grid()->GlobalSum(ssum);
 | 
			
		||||
  return ssum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Deterministic Reduction operations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
 | 
			
		||||
  ComplexD nrm = innerProduct(arg,arg);
 | 
			
		||||
  return real(nrm); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Double inner product
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  ComplexD  nrm;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
  
 | 
			
		||||
  // Might make all code paths go this way.
 | 
			
		||||
  auto left_v = left.View();
 | 
			
		||||
  auto right_v=right.View();
 | 
			
		||||
 | 
			
		||||
  const uint64_t nsimd = grid->Nsimd();
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
  // GPU - SIMT lane compliance...
 | 
			
		||||
  typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto x_l = left_v(ss);
 | 
			
		||||
      auto y_l = right_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
			
		||||
  })
 | 
			
		||||
 | 
			
		||||
  // This is in single precision and fails some tests
 | 
			
		||||
  // Need a sumD that sums in double
 | 
			
		||||
  nrm = TensorRemove(sumD_gpu(inner_tmp_v,sites));  
 | 
			
		||||
#else
 | 
			
		||||
  // CPU 
 | 
			
		||||
  typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto x_l = left_v[ss];
 | 
			
		||||
      auto y_l = right_v[ss];
 | 
			
		||||
      inner_tmp_v[ss]=innerProductD(x_l,y_l);
 | 
			
		||||
  })
 | 
			
		||||
  nrm = TensorRemove(sum(inner_tmp_v,sites));
 | 
			
		||||
#endif
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////
 | 
			
		||||
// Fast axpby_norm
 | 
			
		||||
// z = a x + b y
 | 
			
		||||
// return norm z
 | 
			
		||||
/////////////////////////
 | 
			
		||||
template<class sobj,class vobj> strong_inline RealD 
 | 
			
		||||
axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) 
 | 
			
		||||
{
 | 
			
		||||
  sobj one(1.0);
 | 
			
		||||
  return axpby_norm_fast(z,a,one,x,y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class sobj,class vobj> strong_inline RealD 
 | 
			
		||||
axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) 
 | 
			
		||||
{
 | 
			
		||||
  z.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(z,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  RealD  nrm;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid = x.Grid();
 | 
			
		||||
 | 
			
		||||
  auto x_v=x.View();
 | 
			
		||||
  auto y_v=y.View();
 | 
			
		||||
  auto z_v=z.View();
 | 
			
		||||
 | 
			
		||||
  const uint64_t nsimd = grid->Nsimd();
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
#ifdef GRID_NVCC
 | 
			
		||||
  // GPU
 | 
			
		||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  nrm = real(TensorRemove(sumD_gpu(inner_tmp_v,sites)));
 | 
			
		||||
#else
 | 
			
		||||
  // CPU 
 | 
			
		||||
  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      inner_tmp_v[ss]=innerProductD(tmp,tmp);
 | 
			
		||||
      z_v[ss]=tmp;
 | 
			
		||||
  });
 | 
			
		||||
  // Already promoted to double
 | 
			
		||||
  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
			
		||||
#endif
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  return nrm; 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
template<class Op,class T1>
 | 
			
		||||
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
 | 
			
		||||
  ->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object
 | 
			
		||||
{
 | 
			
		||||
  return sum(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1,class T2>
 | 
			
		||||
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
 | 
			
		||||
      ->typename decltype(expr.op.func(eval(0,expr.arg1),eval(0,expr.arg2)))::scalar_object
 | 
			
		||||
{
 | 
			
		||||
  return sum(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1,class T2,class T3>
 | 
			
		||||
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
			
		||||
  ->typename decltype(expr.op.func(eval(0,expr.arg1),
 | 
			
		||||
				      eval(0,expr.arg2),
 | 
			
		||||
				      eval(0,expr.arg3)
 | 
			
		||||
				      ))::scalar_object
 | 
			
		||||
{
 | 
			
		||||
  return sum(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // FIXME precision promoted summation
 | 
			
		||||
  // may be important for correlation functions
 | 
			
		||||
  // But easily avoided by using double precision fields
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  GridBase  *grid = Data.Grid();
 | 
			
		||||
  assert(grid!=NULL);
 | 
			
		||||
 | 
			
		||||
  const int    Nd = grid->_ndimension;
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert(orthogdim >= 0);
 | 
			
		||||
  assert(orthogdim < Nd);
 | 
			
		||||
 | 
			
		||||
  int fd=grid->_fdimensions[orthogdim];
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
			
		||||
  for(int r=0;r<rd;r++){
 | 
			
		||||
    lvSum[r]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
			
		||||
  int e2=    grid->_slice_block [orthogdim];
 | 
			
		||||
  int stride=grid->_slice_stride[orthogdim];
 | 
			
		||||
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
  auto Data_v=Data.View();
 | 
			
		||||
  thread_for( r,rd, {
 | 
			
		||||
    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int ss= so+n*stride+b;
 | 
			
		||||
	lvSum[r]=lvSum[r]+Data_v[ss];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
			
		||||
  Coordinate icoor(Nd);
 | 
			
		||||
 | 
			
		||||
  for(int rt=0;rt<rd;rt++){
 | 
			
		||||
 | 
			
		||||
    extract(lvSum[rt],extracted);
 | 
			
		||||
 | 
			
		||||
    for(int idx=0;idx<Nsimd;idx++){
 | 
			
		||||
 | 
			
		||||
      grid->iCoorFromIindex(icoor,idx);
 | 
			
		||||
 | 
			
		||||
      int ldx =rt+icoor[orthogdim]*rd;
 | 
			
		||||
 | 
			
		||||
      lsSum[ldx]=lsSum[ldx]+extracted[idx];
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // sum over nodes.
 | 
			
		||||
  sobj gsum;
 | 
			
		||||
  for(int t=0;t<fd;t++){
 | 
			
		||||
    int pt = t/ld; // processor plane
 | 
			
		||||
    int lt = t%ld;
 | 
			
		||||
    if ( pt == grid->_processor_coor[orthogdim] ) {
 | 
			
		||||
      gsum=lsSum[lt];
 | 
			
		||||
    } else {
 | 
			
		||||
      gsum=Zero();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    grid->GlobalSum(gsum);
 | 
			
		||||
 | 
			
		||||
    result[t]=gsum;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type   vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type   scalar_type;
 | 
			
		||||
  GridBase  *grid = lhs.Grid();
 | 
			
		||||
  assert(grid!=NULL);
 | 
			
		||||
  conformable(grid,rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  const int    Nd = grid->_ndimension;
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert(orthogdim >= 0);
 | 
			
		||||
  assert(orthogdim < Nd);
 | 
			
		||||
 | 
			
		||||
  int fd=grid->_fdimensions[orthogdim];
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
			
		||||
  for(int r=0;r<rd;r++){
 | 
			
		||||
    lvSum[r]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
			
		||||
  int e2=    grid->_slice_block [orthogdim];
 | 
			
		||||
  int stride=grid->_slice_stride[orthogdim];
 | 
			
		||||
 | 
			
		||||
  auto lhv=lhs.View();
 | 
			
		||||
  auto rhv=rhs.View();
 | 
			
		||||
  thread_for( r,rd,{
 | 
			
		||||
 | 
			
		||||
    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int ss= so+n*stride+b;
 | 
			
		||||
	vector_type vv = TensorRemove(innerProduct(lhv[ss],rhv[ss]));
 | 
			
		||||
	lvSum[r]=lvSum[r]+vv;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
			
		||||
  Coordinate icoor(Nd);
 | 
			
		||||
  for(int rt=0;rt<rd;rt++){
 | 
			
		||||
 | 
			
		||||
    iScalar<vector_type> temp; 
 | 
			
		||||
    temp._internal = lvSum[rt];
 | 
			
		||||
    extract(temp,extracted);
 | 
			
		||||
 | 
			
		||||
    for(int idx=0;idx<Nsimd;idx++){
 | 
			
		||||
 | 
			
		||||
      grid->iCoorFromIindex(icoor,idx);
 | 
			
		||||
 | 
			
		||||
      int ldx =rt+icoor[orthogdim]*rd;
 | 
			
		||||
 | 
			
		||||
      lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // sum over nodes.
 | 
			
		||||
  scalar_type gsum;
 | 
			
		||||
  for(int t=0;t<fd;t++){
 | 
			
		||||
    int pt = t/ld; // processor plane
 | 
			
		||||
    int lt = t%ld;
 | 
			
		||||
    if ( pt == grid->_processor_coor[orthogdim] ) {
 | 
			
		||||
      gsum=lsSum[lt];
 | 
			
		||||
    } else {
 | 
			
		||||
      gsum=scalar_type(0.0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    grid->GlobalSum(gsum);
 | 
			
		||||
 | 
			
		||||
    result[t]=gsum;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = rhs.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  std::vector<ComplexD> ip(Nblock);
 | 
			
		||||
  sn.resize(Nblock);
 | 
			
		||||
  
 | 
			
		||||
  sliceInnerProductVector(ip,rhs,rhs,Orthog);
 | 
			
		||||
  for(int ss=0;ss<Nblock;ss++){
 | 
			
		||||
    sn[ss] = real(ip[ss]);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
 | 
			
		||||
			    int orthogdim,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::tensor_reduced tensor_reduced;
 | 
			
		||||
  
 | 
			
		||||
  scalar_type zscale(scale);
 | 
			
		||||
 | 
			
		||||
  GridBase *grid  = X.Grid();
 | 
			
		||||
 | 
			
		||||
  int Nsimd  =grid->Nsimd();
 | 
			
		||||
  int Nblock =grid->GlobalDimensions()[orthogdim];
 | 
			
		||||
 | 
			
		||||
  int fd     =grid->_fdimensions[orthogdim];
 | 
			
		||||
  int ld     =grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd     =grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  int e1     =grid->_slice_nblock[orthogdim];
 | 
			
		||||
  int e2     =grid->_slice_block [orthogdim];
 | 
			
		||||
  int stride =grid->_slice_stride[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  for(int r=0;r<rd;r++){
 | 
			
		||||
 | 
			
		||||
    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
    vector_type    av;
 | 
			
		||||
 | 
			
		||||
    for(int l=0;l<Nsimd;l++){
 | 
			
		||||
      grid->iCoorFromIindex(icoor,l);
 | 
			
		||||
      int ldx =r+icoor[orthogdim]*rd;
 | 
			
		||||
      scalar_type *as =(scalar_type *)&av;
 | 
			
		||||
      as[l] = scalar_type(a[ldx])*zscale;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    tensor_reduced at; at=av;
 | 
			
		||||
 | 
			
		||||
    auto Rv=R.View();
 | 
			
		||||
    auto Xv=X.View();
 | 
			
		||||
    auto Yv=Y.View();
 | 
			
		||||
    thread_for_collapse(2, n, e1, {
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int ss= so+n*stride+b;
 | 
			
		||||
	Rv[ss] = at*Xv[ss]+Yv[ss];
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
			
		||||
{
 | 
			
		||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
			
		||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> latt_phys(0);
 | 
			
		||||
  std::vector<int> simd_phys(0);
 | 
			
		||||
  std::vector<int>  mpi_phys(0);
 | 
			
		||||
  
 | 
			
		||||
  for(int d=0;d<NN;d++){
 | 
			
		||||
    if( d!=Orthog ) { 
 | 
			
		||||
      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
			
		||||
      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
			
		||||
      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  auto X_v=X.View();
 | 
			
		||||
  auto Y_v=Y.View();
 | 
			
		||||
  auto R_v=R.View();
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    Vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region(2, n,nblock, {
 | 
			
		||||
     for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = Y_v[o+i*ostride];
 | 
			
		||||
	for(int j=0;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl=1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
  auto R_v = R.View();
 | 
			
		||||
  auto X_v = X.View();
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = s_x[0]*(scale*aa(0,i));
 | 
			
		||||
	for(int j=1;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
			
		||||
  
 | 
			
		||||
  //  Lattice<vobj> Lslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_typeD;
 | 
			
		||||
 | 
			
		||||
  auto lhs_v=lhs.View();
 | 
			
		||||
  auto rhs_v=rhs.View();
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> Left(Nblock);
 | 
			
		||||
    std::vector<vobj> Right(Nblock);
 | 
			
		||||
    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2, n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	Left [i] = lhs_v[o+i*ostride];
 | 
			
		||||
	Right[i] = rhs_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
      for(int j=0;j<Nblock;j++){
 | 
			
		||||
	auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	auto red  =  Reduce(rtmp);
 | 
			
		||||
	mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
			
		||||
      }}
 | 
			
		||||
    }});
 | 
			
		||||
    thread_critical
 | 
			
		||||
    {
 | 
			
		||||
      mat += mat_thread;
 | 
			
		||||
    }  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<Nblock;i++){
 | 
			
		||||
  for(int j=0;j<Nblock;j++){
 | 
			
		||||
    ComplexD sum = mat(i,j);
 | 
			
		||||
    FullGrid->GlobalSum(sum);
 | 
			
		||||
    mat(i,j)=sum;
 | 
			
		||||
  }}
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,226 +0,0 @@
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define WARP_SIZE 32
 | 
			
		||||
extern cudaDeviceProp *gpu_props;
 | 
			
		||||
__device__ unsigned int retirementCount = 0;
 | 
			
		||||
 | 
			
		||||
template <class Iterator>
 | 
			
		||||
unsigned int nextPow2(Iterator x) {
 | 
			
		||||
  --x;
 | 
			
		||||
  x |= x >> 1;
 | 
			
		||||
  x |= x >> 2;
 | 
			
		||||
  x |= x >> 4;
 | 
			
		||||
  x |= x >> 8;
 | 
			
		||||
  x |= x >> 16;
 | 
			
		||||
  return ++x;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Iterator>
 | 
			
		||||
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
 | 
			
		||||
  
 | 
			
		||||
  int device;
 | 
			
		||||
  cudaGetDevice(&device);
 | 
			
		||||
  
 | 
			
		||||
  Iterator warpSize            = gpu_props[device].warpSize;
 | 
			
		||||
  Iterator sharedMemPerBlock   = gpu_props[device].sharedMemPerBlock;
 | 
			
		||||
  Iterator maxThreadsPerBlock  = gpu_props[device].maxThreadsPerBlock;
 | 
			
		||||
  Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogDebug << "GPU has:" << std::endl;
 | 
			
		||||
  std::cout << GridLogDebug << "\twarpSize            = " << warpSize << std::endl;
 | 
			
		||||
  std::cout << GridLogDebug << "\tsharedMemPerBlock   = " << sharedMemPerBlock << std::endl;
 | 
			
		||||
  std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << maxThreadsPerBlock << std::endl;
 | 
			
		||||
  std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << warpSize << std::endl;
 | 
			
		||||
  std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  if (warpSize != WARP_SIZE) {
 | 
			
		||||
    std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // let the number of threads in a block be a multiple of 2, starting from warpSize
 | 
			
		||||
  threads = warpSize;
 | 
			
		||||
  while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
 | 
			
		||||
  // keep all the streaming multiprocessors busy
 | 
			
		||||
  blocks = nextPow2(multiProcessorCount);
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class sobj, class Iterator>
 | 
			
		||||
__device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) {
 | 
			
		||||
  
 | 
			
		||||
  Iterator blockSize = blockDim.x;
 | 
			
		||||
  
 | 
			
		||||
  // cannot use overloaded operators for sobj as they are not volatile-qualified
 | 
			
		||||
  memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
 | 
			
		||||
  __syncwarp();
 | 
			
		||||
  
 | 
			
		||||
  const Iterator VEC = WARP_SIZE;
 | 
			
		||||
  const Iterator vid = tid & (VEC-1);
 | 
			
		||||
  
 | 
			
		||||
  sobj beta, temp;
 | 
			
		||||
  memcpy((void *)&beta, (void *)&mySum, sizeof(sobj));
 | 
			
		||||
  
 | 
			
		||||
  for (int i = VEC/2; i > 0; i>>=1) {
 | 
			
		||||
    if (vid < i) {
 | 
			
		||||
      memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj));
 | 
			
		||||
      beta += temp;
 | 
			
		||||
      memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
 | 
			
		||||
    }
 | 
			
		||||
    __syncwarp();
 | 
			
		||||
  }
 | 
			
		||||
  __syncthreads();
 | 
			
		||||
  
 | 
			
		||||
  if (threadIdx.x == 0) {
 | 
			
		||||
    beta  = Zero();
 | 
			
		||||
    for (Iterator i = 0; i < blockSize; i += VEC) {
 | 
			
		||||
      memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj));
 | 
			
		||||
      beta  += temp;
 | 
			
		||||
    }
 | 
			
		||||
    memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
 | 
			
		||||
  }
 | 
			
		||||
  __syncthreads();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class vobj, class sobj, class Iterator>
 | 
			
		||||
__device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n) 
 | 
			
		||||
{
 | 
			
		||||
  constexpr Iterator nsimd = vobj::Nsimd();
 | 
			
		||||
  
 | 
			
		||||
  Iterator blockSize = blockDim.x;
 | 
			
		||||
  
 | 
			
		||||
  // force shared memory alignment
 | 
			
		||||
  extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
 | 
			
		||||
  // it's not possible to have two extern __shared__ arrays with same name
 | 
			
		||||
  // but different types in different scopes -- need to cast each time
 | 
			
		||||
  sobj *sdata = (sobj *)shmem_pointer;
 | 
			
		||||
  
 | 
			
		||||
  // first level of reduction,
 | 
			
		||||
  // each thread writes result in mySum
 | 
			
		||||
  Iterator tid = threadIdx.x;
 | 
			
		||||
  Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x;
 | 
			
		||||
  Iterator gridSize = blockSize*2*gridDim.x;
 | 
			
		||||
  sobj mySum = Zero();
 | 
			
		||||
  
 | 
			
		||||
  while (i < n) {
 | 
			
		||||
    Iterator lane = i % nsimd;
 | 
			
		||||
    Iterator ss   = i / nsimd;
 | 
			
		||||
    auto tmp = extractLane(lane,g_idata[ss]);
 | 
			
		||||
    sobj tmpD;
 | 
			
		||||
    tmpD=tmp;
 | 
			
		||||
    mySum   +=tmpD;
 | 
			
		||||
    
 | 
			
		||||
    if (i + blockSize < n) {
 | 
			
		||||
      lane = (i+blockSize) % nsimd;
 | 
			
		||||
      ss   = (i+blockSize) / nsimd;
 | 
			
		||||
      tmp = extractLane(lane,g_idata[ss]);
 | 
			
		||||
      tmpD = tmp;
 | 
			
		||||
      mySum += tmpD;
 | 
			
		||||
    }
 | 
			
		||||
    i += gridSize;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // copy mySum to shared memory and perform
 | 
			
		||||
  // reduction for all threads in this block
 | 
			
		||||
  reduceBlock(sdata, mySum, tid);
 | 
			
		||||
  if (tid == 0) g_odata[blockIdx.x] = sdata[0];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vobj, class sobj,class Iterator>
 | 
			
		||||
__global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
 | 
			
		||||
  
 | 
			
		||||
  Iterator blockSize = blockDim.x;
 | 
			
		||||
  
 | 
			
		||||
  // perform reduction for this block and
 | 
			
		||||
  // write result to global memory buffer
 | 
			
		||||
  reduceBlocks(lat, buffer, n);
 | 
			
		||||
  
 | 
			
		||||
  if (gridDim.x > 1) {
 | 
			
		||||
    
 | 
			
		||||
    const Iterator tid = threadIdx.x;
 | 
			
		||||
    __shared__ bool amLast;
 | 
			
		||||
    // force shared memory alignment
 | 
			
		||||
    extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
 | 
			
		||||
    // it's not possible to have two extern __shared__ arrays with same name
 | 
			
		||||
    // but different types in different scopes -- need to cast each time
 | 
			
		||||
    sobj *smem = (sobj *)shmem_pointer;
 | 
			
		||||
    
 | 
			
		||||
    // wait until all outstanding memory instructions in this thread are finished
 | 
			
		||||
    __threadfence();
 | 
			
		||||
    
 | 
			
		||||
    if (tid==0) {
 | 
			
		||||
      unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
 | 
			
		||||
      // true if this block is the last block to be done
 | 
			
		||||
      amLast = (ticket == gridDim.x-1);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // each thread must read the correct value of amLast
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    
 | 
			
		||||
    if (amLast) {
 | 
			
		||||
      // reduce buffer[0], ..., buffer[gridDim.x-1]
 | 
			
		||||
      Iterator i = tid;
 | 
			
		||||
      sobj mySum = Zero();
 | 
			
		||||
      
 | 
			
		||||
      while (i < gridDim.x) {
 | 
			
		||||
        mySum += buffer[i];
 | 
			
		||||
        i += blockSize;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      reduceBlock(smem, mySum, tid);
 | 
			
		||||
      
 | 
			
		||||
      if (tid==0) {
 | 
			
		||||
        buffer[0] = smem[0];
 | 
			
		||||
        // reset count variable
 | 
			
		||||
        retirementCount = 0;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Possibly promote to double and sum
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobj;
 | 
			
		||||
  typedef decltype(lat) Iterator;
 | 
			
		||||
  
 | 
			
		||||
  Integer nsimd= vobj::Nsimd();
 | 
			
		||||
  Integer size = osites*nsimd;
 | 
			
		||||
 | 
			
		||||
  Integer numThreads, numBlocks;
 | 
			
		||||
  getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
			
		||||
  Integer smemSize = numThreads * sizeof(sobj);
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
 | 
			
		||||
  cudaDeviceSynchronize();
 | 
			
		||||
  
 | 
			
		||||
  cudaError err = cudaGetLastError();
 | 
			
		||||
  if ( cudaSuccess != err ) {
 | 
			
		||||
    printf("Cuda error %s\n",cudaGetErrorString( err ));
 | 
			
		||||
    exit(0);
 | 
			
		||||
  }
 | 
			
		||||
  auto result = buffer_v[0];
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Return as same precision as input performing reduction in double precision though
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  sobj result;
 | 
			
		||||
  result = sumD_gpu(lat,osites);
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,525 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_rng.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_RNG_H
 | 
			
		||||
#define GRID_LATTICE_RNG_H
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
 | 
			
		||||
#ifdef RNG_SITMO
 | 
			
		||||
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
#if defined(RNG_SITMO)
 | 
			
		||||
#define RNG_FAST_DISCARD
 | 
			
		||||
#else 
 | 
			
		||||
#undef  RNG_FAST_DISCARD
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////
 | 
			
		||||
// Allow the RNG state to be less dense than the fine grid
 | 
			
		||||
//////////////////////////////////////////////////////////////
 | 
			
		||||
inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
			
		||||
  assert(lowerdims >= 0);
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    assert(fine->_simd_layout[d]==1);
 | 
			
		||||
    assert(fine->_processors[d]==1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int multiplicity=1;
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    multiplicity=multiplicity*fine->_rdimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
  for(int d=0;d<rngdims;d++){
 | 
			
		||||
    int fd= d+lowerdims;
 | 
			
		||||
    assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
    assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
    assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
 | 
			
		||||
    multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
			
		||||
  }
 | 
			
		||||
  return multiplicity;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
// merge of April 11 2017
 | 
			
		||||
// this function is necessary for the LS vectorised field
 | 
			
		||||
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;  assert(lowerdims >= 0);
 | 
			
		||||
  // assumes that the higher dimensions are not using more processors
 | 
			
		||||
  // all further divisions are local
 | 
			
		||||
  for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
 | 
			
		||||
  for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
 | 
			
		||||
 | 
			
		||||
  // then divide the number of local sites
 | 
			
		||||
  // check that the total number of sims agree, meanse the iSites are the same
 | 
			
		||||
  assert(fine->Nsimd() == coarse->Nsimd());
 | 
			
		||||
 | 
			
		||||
  // check that the two grids divide cleanly
 | 
			
		||||
  assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
 | 
			
		||||
 | 
			
		||||
  return fine->lSites() / coarse->lSites();
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// real scalars are one component
 | 
			
		||||
template<class scalar,class distribution,class generator> 
 | 
			
		||||
void fillScalar(scalar &s,distribution &dist,generator & gen)
 | 
			
		||||
{
 | 
			
		||||
  s=dist(gen);
 | 
			
		||||
}
 | 
			
		||||
template<class distribution,class generator> 
 | 
			
		||||
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
 | 
			
		||||
{
 | 
			
		||||
  //  s=ComplexF(dist(gen),dist(gen));
 | 
			
		||||
  s.real(dist(gen));
 | 
			
		||||
  s.imag(dist(gen));
 | 
			
		||||
}
 | 
			
		||||
template<class distribution,class generator> 
 | 
			
		||||
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
 | 
			
		||||
{
 | 
			
		||||
  //  s=ComplexD(dist(gen),dist(gen));
 | 
			
		||||
  s.real(dist(gen));
 | 
			
		||||
  s.imag(dist(gen));
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
class GridRNGbase {
 | 
			
		||||
public:
 | 
			
		||||
  // One generator per site.
 | 
			
		||||
  // Uniform and Gaussian distributions from these generators.
 | 
			
		||||
#ifdef RNG_RANLUX
 | 
			
		||||
  typedef std::ranlux48 RngEngine;
 | 
			
		||||
  typedef uint64_t      RngStateType;
 | 
			
		||||
  static const int RngStateCount = 15;
 | 
			
		||||
#endif 
 | 
			
		||||
#ifdef RNG_MT19937 
 | 
			
		||||
  typedef std::mt19937 RngEngine;
 | 
			
		||||
  typedef uint32_t     RngStateType;
 | 
			
		||||
  static const int     RngStateCount = std::mt19937::state_size;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_SITMO
 | 
			
		||||
  typedef sitmo::prng_engine 	RngEngine;
 | 
			
		||||
  typedef uint64_t    	RngStateType;
 | 
			
		||||
  static const int    	RngStateCount = 13;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  std::vector<RngEngine>                             _generators;
 | 
			
		||||
  std::vector<std::uniform_real_distribution<RealD> > _uniform;
 | 
			
		||||
  std::vector<std::normal_distribution<RealD> >       _gaussian;
 | 
			
		||||
  std::vector<std::discrete_distribution<int32_t> >   _bernoulli;
 | 
			
		||||
  std::vector<std::uniform_int_distribution<uint32_t> > _uid;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // support for parallel init
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
#ifdef RNG_FAST_DISCARD
 | 
			
		||||
  static void Skip(RngEngine &eng,uint64_t site)
 | 
			
		||||
  {
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Skip by 2^40 elements between successive lattice sites
 | 
			
		||||
    // This goes by 10^12.
 | 
			
		||||
    // Consider quenched updating; likely never exceeding rate of 1000 sweeps
 | 
			
		||||
    // per second on any machine. This gives us of order 10^9 seconds, or 100 years
 | 
			
		||||
    // skip ahead.
 | 
			
		||||
    // For HMC unlikely to go at faster than a solve per second, and 
 | 
			
		||||
    // tens of seconds per trajectory so this is clean in all reasonable cases,
 | 
			
		||||
    // and margin of safety is orders of magnitude.
 | 
			
		||||
    // We could hack Sitmo to skip in the higher order words of state if necessary
 | 
			
		||||
      //
 | 
			
		||||
      // Replace with 2^30 ; avoid problem on large volumes
 | 
			
		||||
      //
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //      uint64_t skip = site+1;  //   Old init Skipped then drew.  Checked compat with faster init
 | 
			
		||||
    const int shift = 30;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Weird compiler bug in Intel 2018.1 under O3 was generating 32bit and not 64 bit left shift.
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    volatile uint64_t skip = site;
 | 
			
		||||
 | 
			
		||||
    skip = skip<<shift;
 | 
			
		||||
 | 
			
		||||
    assert((skip >> shift)==site); // check for overflow
 | 
			
		||||
 | 
			
		||||
    eng.discard(skip);
 | 
			
		||||
    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
			
		||||
  } 
 | 
			
		||||
#endif
 | 
			
		||||
  static RngEngine Reseed(RngEngine &eng)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<uint32_t> newseed;
 | 
			
		||||
    std::uniform_int_distribution<uint32_t> uid;
 | 
			
		||||
    return Reseed(eng,newseed,uid);
 | 
			
		||||
  }
 | 
			
		||||
  static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed,
 | 
			
		||||
			  std::uniform_int_distribution<uint32_t> &uid)
 | 
			
		||||
  {
 | 
			
		||||
    const int reseeds=4;
 | 
			
		||||
      
 | 
			
		||||
    newseed.resize(reseeds);
 | 
			
		||||
    for(int i=0;i<reseeds;i++){
 | 
			
		||||
      newseed[i] = uid(eng);
 | 
			
		||||
    }
 | 
			
		||||
    std::seed_seq sseq(newseed.begin(),newseed.end());
 | 
			
		||||
    return RngEngine(sseq);
 | 
			
		||||
  }    
 | 
			
		||||
 | 
			
		||||
  void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
 | 
			
		||||
    saved.resize(RngStateCount);
 | 
			
		||||
    std::stringstream ss;
 | 
			
		||||
    ss<<eng;
 | 
			
		||||
    ss.seekg(0,ss.beg);
 | 
			
		||||
    for(int i=0;i<RngStateCount;i++){
 | 
			
		||||
      ss>>saved[i];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void GetState(std::vector<RngStateType> & saved,int gen) {
 | 
			
		||||
    GetState(saved,_generators[gen]);
 | 
			
		||||
  }
 | 
			
		||||
  void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
 | 
			
		||||
    assert(saved.size()==RngStateCount);
 | 
			
		||||
    std::stringstream ss;
 | 
			
		||||
    for(int i=0;i<RngStateCount;i++){
 | 
			
		||||
      ss<< saved[i]<<" ";
 | 
			
		||||
    }
 | 
			
		||||
    ss.seekg(0,ss.beg);
 | 
			
		||||
    ss>>eng;
 | 
			
		||||
  }
 | 
			
		||||
  void SetState(std::vector<RngStateType> & saved,int gen){
 | 
			
		||||
    SetState(saved,_generators[gen]);
 | 
			
		||||
  }
 | 
			
		||||
  void SetEngine(RngEngine &Eng, int gen){
 | 
			
		||||
    _generators[gen]=Eng;
 | 
			
		||||
  }
 | 
			
		||||
  void GetEngine(RngEngine &Eng, int gen){
 | 
			
		||||
    Eng=_generators[gen];
 | 
			
		||||
  }
 | 
			
		||||
  template<class source> void Seed(source &src, int gen)
 | 
			
		||||
  {
 | 
			
		||||
    _generators[gen] = RngEngine(src);
 | 
			
		||||
  }    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class GridSerialRNG : public GridRNGbase {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  GridSerialRNG() : GridRNGbase() {
 | 
			
		||||
    _generators.resize(1);
 | 
			
		||||
    _uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
 | 
			
		||||
    _gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
 | 
			
		||||
    _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(1,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
 | 
			
		||||
 | 
			
		||||
    typedef typename sobj::scalar_type scalar_type;
 | 
			
		||||
 
 | 
			
		||||
    int words = sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
 | 
			
		||||
    scalar_type *buf = (scalar_type *) & l;
 | 
			
		||||
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    for(int idx=0;idx<words;idx++){
 | 
			
		||||
      fillScalar(buf[idx],dist[0],_generators[0]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class distribution>  inline void fill(ComplexF &l,std::vector<distribution> &dist){
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    fillScalar(l,dist[0],_generators[0]);
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  template <class distribution>  inline void fill(ComplexD &l,std::vector<distribution> &dist){
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    fillScalar(l,dist[0],_generators[0]);
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  template <class distribution>  inline void fill(RealF &l,std::vector<distribution> &dist){
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    fillScalar(l,dist[0],_generators[0]);
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  template <class distribution>  inline void fill(RealD &l,std::vector<distribution> &dist){
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    fillScalar(l,dist[0],_generators[0]);
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  // vector fill
 | 
			
		||||
  template <class distribution>  inline void fill(vComplexF &l,std::vector<distribution> &dist){
 | 
			
		||||
    RealF *pointer=(RealF *)&l;
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    for(int i=0;i<2*vComplexF::Nsimd();i++){
 | 
			
		||||
      fillScalar(pointer[i],dist[0],_generators[0]);
 | 
			
		||||
    }
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  template <class distribution>  inline void fill(vComplexD &l,std::vector<distribution> &dist){
 | 
			
		||||
    RealD *pointer=(RealD *)&l;
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    for(int i=0;i<2*vComplexD::Nsimd();i++){
 | 
			
		||||
      fillScalar(pointer[i],dist[0],_generators[0]);
 | 
			
		||||
    }
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  template <class distribution>  inline void fill(vRealF &l,std::vector<distribution> &dist){
 | 
			
		||||
    RealF *pointer=(RealF *)&l;
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    for(int i=0;i<vRealF::Nsimd();i++){
 | 
			
		||||
      fillScalar(pointer[i],dist[0],_generators[0]);
 | 
			
		||||
    }
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
  template <class distribution>  inline void fill(vRealD &l,std::vector<distribution> &dist){
 | 
			
		||||
    RealD *pointer=(RealD *)&l;
 | 
			
		||||
    dist[0].reset();
 | 
			
		||||
    for(int i=0;i<vRealD::Nsimd();i++){
 | 
			
		||||
      fillScalar(pointer[i],dist[0],_generators[0]);
 | 
			
		||||
    }
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  void SeedFixedIntegers(const std::vector<int> &seeds){
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
			
		||||
    std::seed_seq src(seeds.begin(),seeds.end());
 | 
			
		||||
    Seed(src,0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    void SeedUniqueString(const std::string &s){
 | 
			
		||||
      std::vector<int> seeds;
 | 
			
		||||
      std::stringstream sha;
 | 
			
		||||
      seeds = GridChecksum::sha256_seeds(s);
 | 
			
		||||
      for(int i=0;i<seeds.size();i++) { 
 | 
			
		||||
        sha << std::hex << seeds[i];
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << "Intialising serial RNG with unique string '" 
 | 
			
		||||
                << s << "'" << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl;
 | 
			
		||||
      SeedFixedIntegers(seeds);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class GridParallelRNG : public GridRNGbase {
 | 
			
		||||
private:
 | 
			
		||||
  double _time_counter;
 | 
			
		||||
  GridBase *_grid;
 | 
			
		||||
  unsigned int _vol;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *Grid(void) const { return _grid; }
 | 
			
		||||
  int generator_idx(int os,int is) {
 | 
			
		||||
    return is*_grid->oSites()+os;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  GridParallelRNG(GridBase *grid) : GridRNGbase() {
 | 
			
		||||
    _grid = grid;
 | 
			
		||||
    _vol  =_grid->iSites()*_grid->oSites();
 | 
			
		||||
 | 
			
		||||
    _generators.resize(_vol);
 | 
			
		||||
    _uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
 | 
			
		||||
    _gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
 | 
			
		||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
			
		||||
 | 
			
		||||
    typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    double inner_time_counter = usecond();
 | 
			
		||||
 | 
			
		||||
    int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
 | 
			
		||||
    int Nsimd  = _grid->Nsimd();  // guaranteed to be the same for l.Grid() too
 | 
			
		||||
    int osites = _grid->oSites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
 | 
			
		||||
    int words  = sizeof(scalar_object) / sizeof(scalar_type);
 | 
			
		||||
 | 
			
		||||
    auto l_v = l.View();
 | 
			
		||||
    thread_for( ss, osites, {
 | 
			
		||||
      ExtractBuffer<scalar_object> buf(Nsimd);
 | 
			
		||||
      for (int m = 0; m < multiplicity; m++) {  // Draw from same generator multiplicity times
 | 
			
		||||
 | 
			
		||||
	int sm = multiplicity * ss + m;  // Maps the generator site to the fine site
 | 
			
		||||
 | 
			
		||||
	for (int si = 0; si < Nsimd; si++) {
 | 
			
		||||
            
 | 
			
		||||
	  int gdx = generator_idx(ss, si);  // index of generator state
 | 
			
		||||
	  scalar_type *pointer = (scalar_type *)&buf[si];
 | 
			
		||||
	  dist[gdx].reset();
 | 
			
		||||
	  for (int idx = 0; idx < words; idx++) 
 | 
			
		||||
	    fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
 | 
			
		||||
	}
 | 
			
		||||
	// merge into SIMD lanes, FIXME suboptimal implementation
 | 
			
		||||
	merge(l_v[sm], buf);
 | 
			
		||||
      }
 | 
			
		||||
      });
 | 
			
		||||
    //    });
 | 
			
		||||
 | 
			
		||||
    _time_counter += usecond()- inner_time_counter;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    void SeedUniqueString(const std::string &s){
 | 
			
		||||
      std::vector<int> seeds;
 | 
			
		||||
      seeds = GridChecksum::sha256_seeds(s);
 | 
			
		||||
      std::cout << GridLogMessage << "Intialising parallel RNG with unique string '" 
 | 
			
		||||
                << s << "'" << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
 | 
			
		||||
      SeedFixedIntegers(seeds);
 | 
			
		||||
    }
 | 
			
		||||
  void SeedFixedIntegers(const std::vector<int> &seeds){
 | 
			
		||||
 | 
			
		||||
    // Everyone generates the same seed_seq based on input seeds
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
			
		||||
 | 
			
		||||
    std::seed_seq source(seeds.begin(),seeds.end());
 | 
			
		||||
 | 
			
		||||
    RngEngine master_engine(source);
 | 
			
		||||
 | 
			
		||||
#ifdef RNG_FAST_DISCARD
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    // Skip ahead through a single stream.
 | 
			
		||||
    // Applicable to SITMO and other has based/crypto RNGs
 | 
			
		||||
    // Should be applicable to Mersenne Twister, but the C++11
 | 
			
		||||
    // MT implementation does not implement fast discard even though
 | 
			
		||||
    // in principle this is possible
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // Everybody loops over global volume.
 | 
			
		||||
    thread_for( gidx, _grid->_gsites, {
 | 
			
		||||
	// Where is it?
 | 
			
		||||
	int rank;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
 | 
			
		||||
	Coordinate gcoor;
 | 
			
		||||
	_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
 | 
			
		||||
	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
			
		||||
	
 | 
			
		||||
	// If this is one of mine we take it
 | 
			
		||||
	if( rank == _grid->ThisRank() ){
 | 
			
		||||
	  int l_idx=generator_idx(o_idx,i_idx);
 | 
			
		||||
	  _generators[l_idx] = master_engine;
 | 
			
		||||
	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
#else 
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Machine and thread decomposition dependent seeding is efficient
 | 
			
		||||
    // and maximally parallel; but NOT reproducible from machine to machine. 
 | 
			
		||||
    // Not ideal, but fastest way to reseed all nodes.
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    {
 | 
			
		||||
      // Obtain one Reseed per processor
 | 
			
		||||
      int Nproc = _grid->ProcessorCount();
 | 
			
		||||
      std::vector<RngEngine> seeders(Nproc);
 | 
			
		||||
      int me= _grid->ThisRank();
 | 
			
		||||
      for(int p=0;p<Nproc;p++){
 | 
			
		||||
	seeders[p] = Reseed(master_engine);
 | 
			
		||||
      }
 | 
			
		||||
      master_engine = seeders[me];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      // Obtain one reseeded generator per thread
 | 
			
		||||
      int Nthread = GridThread::GetThreads();
 | 
			
		||||
      std::vector<RngEngine> seeders(Nthread);
 | 
			
		||||
      for(int t=0;t<Nthread;t++){
 | 
			
		||||
	seeders[t] = Reseed(master_engine);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      thread_for( t, Nthread, {
 | 
			
		||||
	// set up one per local site in threaded fashion
 | 
			
		||||
	std::vector<uint32_t> newseeds;
 | 
			
		||||
	std::uniform_int_distribution<uint32_t> uid;	
 | 
			
		||||
	for(int l=0;l<_grid->lSites();l++) {
 | 
			
		||||
	  if ( (l%Nthread)==t ) {
 | 
			
		||||
	    _generators[l] = Reseed(seeders[t],newseeds,uid);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Report(){
 | 
			
		||||
    std::cout << GridLogMessage << "Time spent in the fill() routine by GridParallelRNG: "<< _time_counter/1e3 << " ms" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Support for rigorous test of RNG's
 | 
			
		||||
  // Return uniform random uint32_t from requested site generator
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  uint32_t GlobalU01(int gsite){
 | 
			
		||||
 | 
			
		||||
    uint32_t the_number;
 | 
			
		||||
    // who
 | 
			
		||||
    int rank,o_idx,i_idx;
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    _grid->GlobalIndexToGlobalCoor(gsite,gcoor);
 | 
			
		||||
    _grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
			
		||||
 | 
			
		||||
    // draw
 | 
			
		||||
    int l_idx=generator_idx(o_idx,i_idx);
 | 
			
		||||
    if( rank == _grid->ThisRank() ){
 | 
			
		||||
      the_number = _uid[l_idx](_generators[l_idx]);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // share & return
 | 
			
		||||
    _grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
 | 
			
		||||
    return the_number;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l)   { rng.fill(l,rng._uniform);  }
 | 
			
		||||
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
 | 
			
		||||
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
 | 
			
		||||
 | 
			
		||||
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l)   { rng.fill(l,rng._uniform  ); }
 | 
			
		||||
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
 | 
			
		||||
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,69 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_trace.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_TRACE_H
 | 
			
		||||
#define GRID_LATTICE_TRACE_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Tracing, transposing, peeking, poking
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Trace
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline auto trace(const Lattice<vobj> &lhs)  -> Lattice<decltype(trace(vobj()))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
 | 
			
		||||
    coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Trace Index level dependent operation
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj>
 | 
			
		||||
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
 | 
			
		||||
    coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,68 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_transpose.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_TRANSPOSE_H
 | 
			
		||||
#define GRID_LATTICE_TRANSPOSE_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Transpose
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Transpose
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
 | 
			
		||||
  Lattice<vobj> ret(lhs.Grid());
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret_v[ss], transpose(lhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Index level dependent transpose
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj>
 | 
			
		||||
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid());
 | 
			
		||||
  auto ret_v = ret.View();
 | 
			
		||||
  auto lhs_v = lhs.View();
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,80 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_unary.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_UNARY_H
 | 
			
		||||
#define GRID_LATTICE_UNARY_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
 | 
			
		||||
  Lattice<obj> ret_i(rhs_i.Grid());
 | 
			
		||||
  auto rhs = rhs_i.View();
 | 
			
		||||
  auto ret = ret_i.View();
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs.size(),1,{
 | 
			
		||||
      ret[ss]=pow(rhs[ss],y);
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
 | 
			
		||||
  Lattice<obj> ret_i(rhs_i.Grid());
 | 
			
		||||
  auto rhs = rhs_i.View();
 | 
			
		||||
  auto ret = ret_i.View();
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs.size(),obj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret[ss],mod(rhs(ss),y));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
 | 
			
		||||
  Lattice<obj> ret_i(rhs_i.Grid());
 | 
			
		||||
  auto ret = ret_i.View();
 | 
			
		||||
  auto rhs = rhs_i.View();
 | 
			
		||||
  ret.Checkerboard() = rhs_i.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs.size(),obj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret[ss],div(rhs(ss),y));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
 | 
			
		||||
  Lattice<obj> ret_i(rhs_i.Grid());
 | 
			
		||||
  auto rhs = rhs_i.View();
 | 
			
		||||
  auto ret = ret_i.View();
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs.size(),obj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,3 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
 | 
			
		||||
@@ -1,753 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/parallelIO/BinaryIO.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: Guido Cossu<guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPIT) 
 | 
			
		||||
#define USE_MPI_IO
 | 
			
		||||
#else
 | 
			
		||||
#undef  USE_MPI_IO
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_ENDIAN_H
 | 
			
		||||
#include <endian.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include <arpa/inet.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Byte reversal garbage
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
inline uint32_t byte_reverse32(uint32_t f) { 
 | 
			
		||||
      f = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ; 
 | 
			
		||||
      return f;
 | 
			
		||||
}
 | 
			
		||||
inline uint64_t byte_reverse64(uint64_t f) { 
 | 
			
		||||
  uint64_t g;
 | 
			
		||||
  g = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ; 
 | 
			
		||||
  g = g << 32;
 | 
			
		||||
  f = f >> 32;
 | 
			
		||||
  g|= ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ; 
 | 
			
		||||
  return g;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if BYTE_ORDER == BIG_ENDIAN 
 | 
			
		||||
inline uint64_t Grid_ntohll(uint64_t A) { return A; }
 | 
			
		||||
#else
 | 
			
		||||
inline uint64_t Grid_ntohll(uint64_t A) { 
 | 
			
		||||
  return byte_reverse64(A);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// A little helper
 | 
			
		||||
inline void removeWhitespace(std::string &key)
 | 
			
		||||
{
 | 
			
		||||
  key.erase(std::remove_if(key.begin(), key.end(), ::isspace),key.end());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Static class holding the parallel IO code
 | 
			
		||||
// Could just use a namespace
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class BinaryIO {
 | 
			
		||||
 public:
 | 
			
		||||
  static int latticeWriteMaxRetry;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // more byte manipulation helpers
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  template<class vobj> static inline void Uint32Checksum(Lattice<vobj> &lat,uint32_t &nersc_csum)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = lat.Grid();
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
 | 
			
		||||
    std::vector<sobj> scalardata(lsites); 
 | 
			
		||||
    unvectorizeToLexOrdArray(scalardata,lat);    
 | 
			
		||||
 | 
			
		||||
    NerscChecksum(grid,scalardata,nersc_csum);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class fobj>
 | 
			
		||||
  static inline void NerscChecksum(GridBase *grid, std::vector<fobj> &fbuf, uint32_t &nersc_csum)
 | 
			
		||||
  {
 | 
			
		||||
    const uint64_t size32 = sizeof(fobj) / sizeof(uint32_t);
 | 
			
		||||
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
    if (fbuf.size() == 1)
 | 
			
		||||
    {
 | 
			
		||||
      lsites = 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    thread_region
 | 
			
		||||
    {
 | 
			
		||||
      uint32_t nersc_csum_thr = 0;
 | 
			
		||||
 | 
			
		||||
      thread_for_in_region( local_site, lsites, 
 | 
			
		||||
      {
 | 
			
		||||
        uint32_t *site_buf = (uint32_t *)&fbuf[local_site];
 | 
			
		||||
        for (uint64_t j = 0; j < size32; j++)
 | 
			
		||||
        {
 | 
			
		||||
          nersc_csum_thr = nersc_csum_thr + site_buf[j];
 | 
			
		||||
        }
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
      thread_critical
 | 
			
		||||
      {
 | 
			
		||||
        nersc_csum += nersc_csum_thr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class fobj> static inline void ScidacChecksum(GridBase *grid,std::vector<fobj> &fbuf,uint32_t &scidac_csuma,uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    int nd = grid->_ndimension;
 | 
			
		||||
 | 
			
		||||
    uint64_t lsites              =grid->lSites();
 | 
			
		||||
    if (fbuf.size()==1) {
 | 
			
		||||
      lsites=1;
 | 
			
		||||
    }
 | 
			
		||||
    Coordinate local_vol   =grid->LocalDimensions();
 | 
			
		||||
    Coordinate local_start =grid->LocalStarts();
 | 
			
		||||
    Coordinate global_vol  =grid->FullDimensions();
 | 
			
		||||
 | 
			
		||||
    thread_region
 | 
			
		||||
    { 
 | 
			
		||||
      Coordinate coor(nd);
 | 
			
		||||
      uint32_t scidac_csuma_thr=0;
 | 
			
		||||
      uint32_t scidac_csumb_thr=0;
 | 
			
		||||
      uint32_t site_crc=0;
 | 
			
		||||
 | 
			
		||||
      thread_for_in_region( local_site, lsites, 
 | 
			
		||||
      {
 | 
			
		||||
 | 
			
		||||
	uint32_t * site_buf = (uint32_t *)&fbuf[local_site];
 | 
			
		||||
 | 
			
		||||
	/* 
 | 
			
		||||
	 * Scidac csum  is rather more heavyweight
 | 
			
		||||
	 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
			
		||||
	 */
 | 
			
		||||
	
 | 
			
		||||
	int global_site;
 | 
			
		||||
 | 
			
		||||
	Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
			
		||||
 | 
			
		||||
	for(int d=0;d<nd;d++) {
 | 
			
		||||
	  coor[d] = coor[d]+local_start[d];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
			
		||||
 | 
			
		||||
	uint32_t gsite29   = global_site%29;
 | 
			
		||||
	uint32_t gsite31   = global_site%31;
 | 
			
		||||
	
 | 
			
		||||
	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
			
		||||
	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
			
		||||
	//	std::cout << "Site "<<local_site << std::hex<<site_buf[0] <<site_buf[1]<<std::dec <<std::endl;
 | 
			
		||||
	scidac_csuma_thr ^= site_crc<<gsite29 | site_crc>>(32-gsite29);
 | 
			
		||||
	scidac_csumb_thr ^= site_crc<<gsite31 | site_crc>>(32-gsite31);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
      thread_critical
 | 
			
		||||
      {
 | 
			
		||||
	scidac_csuma^= scidac_csuma_thr;
 | 
			
		||||
	scidac_csumb^= scidac_csumb_thr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Network is big endian
 | 
			
		||||
  static inline void htobe32_v(void *file_object,uint32_t bytes){ be32toh_v(file_object,bytes);} 
 | 
			
		||||
  static inline void htobe64_v(void *file_object,uint32_t bytes){ be64toh_v(file_object,bytes);} 
 | 
			
		||||
  static inline void htole32_v(void *file_object,uint32_t bytes){ le32toh_v(file_object,bytes);} 
 | 
			
		||||
  static inline void htole64_v(void *file_object,uint32_t bytes){ le64toh_v(file_object,bytes);} 
 | 
			
		||||
 | 
			
		||||
  static inline void be32toh_v(void *file_object,uint64_t bytes)
 | 
			
		||||
  {
 | 
			
		||||
    uint32_t * f = (uint32_t *)file_object;
 | 
			
		||||
    uint64_t count = bytes/sizeof(uint32_t);
 | 
			
		||||
    thread_for( i, count, {  
 | 
			
		||||
      f[i] = ntohl(f[i]);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  // LE must Swap and switch to host
 | 
			
		||||
  static inline void le32toh_v(void *file_object,uint64_t bytes)
 | 
			
		||||
  {
 | 
			
		||||
    uint32_t *fp = (uint32_t *)file_object;
 | 
			
		||||
 | 
			
		||||
    uint64_t count = bytes/sizeof(uint32_t);
 | 
			
		||||
    thread_for(i,count,{
 | 
			
		||||
      uint32_t f;
 | 
			
		||||
      f = fp[i];
 | 
			
		||||
      // got network order and the network to host
 | 
			
		||||
      f = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ; 
 | 
			
		||||
      fp[i] = ntohl(f);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // BE is same as network
 | 
			
		||||
  static inline void be64toh_v(void *file_object,uint64_t bytes)
 | 
			
		||||
  {
 | 
			
		||||
    uint64_t * f = (uint64_t *)file_object;
 | 
			
		||||
    uint64_t count = bytes/sizeof(uint64_t);
 | 
			
		||||
    thread_for( i, count, {
 | 
			
		||||
      f[i] = Grid_ntohll(f[i]);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // LE must swap and switch;
 | 
			
		||||
  static inline void le64toh_v(void *file_object,uint64_t bytes)
 | 
			
		||||
  {
 | 
			
		||||
    uint64_t *fp = (uint64_t *)file_object;
 | 
			
		||||
    uint64_t count = bytes/sizeof(uint64_t);
 | 
			
		||||
    thread_for( i, count, {
 | 
			
		||||
      uint64_t f,g;
 | 
			
		||||
      f = fp[i];
 | 
			
		||||
      // got network order and the network to host
 | 
			
		||||
      g = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ; 
 | 
			
		||||
      g = g << 32;
 | 
			
		||||
      f = f >> 32;
 | 
			
		||||
      g|= ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ; 
 | 
			
		||||
      fp[i] = Grid_ntohll(g);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Real action:
 | 
			
		||||
  // Read or Write distributed lexico array of ANY object to a specific location in file 
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  static const int BINARYIO_MASTER_APPEND = 0x10;
 | 
			
		||||
  static const int BINARYIO_UNORDERED     = 0x08;
 | 
			
		||||
  static const int BINARYIO_LEXICOGRAPHIC = 0x04;
 | 
			
		||||
  static const int BINARYIO_READ          = 0x02;
 | 
			
		||||
  static const int BINARYIO_WRITE         = 0x01;
 | 
			
		||||
 | 
			
		||||
  template<class word,class fobj>
 | 
			
		||||
  static inline void IOobject(word w,
 | 
			
		||||
			      GridBase *grid,
 | 
			
		||||
			      std::vector<fobj> &iodata,
 | 
			
		||||
			      std::string file,
 | 
			
		||||
			      uint64_t& offset,
 | 
			
		||||
			      const std::string &format, int control,
 | 
			
		||||
			      uint32_t &nersc_csum,
 | 
			
		||||
			      uint32_t &scidac_csuma,
 | 
			
		||||
			      uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
    GridStopWatch timer; 
 | 
			
		||||
    GridStopWatch bstimer;
 | 
			
		||||
    
 | 
			
		||||
    nersc_csum=0;
 | 
			
		||||
    scidac_csuma=0;
 | 
			
		||||
    scidac_csumb=0;
 | 
			
		||||
 | 
			
		||||
    int ndim                 = grid->Dimensions();
 | 
			
		||||
    int nrank                = grid->ProcessorCount();
 | 
			
		||||
    int myrank               = grid->ThisRank();
 | 
			
		||||
 | 
			
		||||
    Coordinate  psizes = grid->ProcessorGrid(); 
 | 
			
		||||
    Coordinate  pcoor  = grid->ThisProcessorCoor();
 | 
			
		||||
    Coordinate gLattice= grid->GlobalDimensions();
 | 
			
		||||
    Coordinate lLattice= grid->LocalDimensions();
 | 
			
		||||
 | 
			
		||||
    Coordinate lStart(ndim);
 | 
			
		||||
    Coordinate gStart(ndim);
 | 
			
		||||
 | 
			
		||||
    // Flatten the file
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
    if ( control & BINARYIO_MASTER_APPEND )  {
 | 
			
		||||
      assert(iodata.size()==1);
 | 
			
		||||
    } else {
 | 
			
		||||
      assert(lsites==iodata.size());
 | 
			
		||||
    }
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      gStart[d] = lLattice[d]*pcoor[d];
 | 
			
		||||
      lStart[d] = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef USE_MPI_IO
 | 
			
		||||
    std::vector<int> distribs(ndim,MPI_DISTRIBUTE_BLOCK);
 | 
			
		||||
    std::vector<int> dargs   (ndim,MPI_DISTRIBUTE_DFLT_DARG);
 | 
			
		||||
    MPI_Datatype mpiObject;
 | 
			
		||||
    MPI_Datatype fileArray;
 | 
			
		||||
    MPI_Datatype localArray;
 | 
			
		||||
    MPI_Datatype mpiword;
 | 
			
		||||
    MPI_Offset disp = offset;
 | 
			
		||||
    MPI_File fh ;
 | 
			
		||||
    MPI_Status status;
 | 
			
		||||
    int numword;
 | 
			
		||||
 | 
			
		||||
    if ( sizeof( word ) == sizeof(float ) ) {
 | 
			
		||||
      numword = sizeof(fobj)/sizeof(float);
 | 
			
		||||
      mpiword = MPI_FLOAT;
 | 
			
		||||
    } else {
 | 
			
		||||
      numword = sizeof(fobj)/sizeof(double);
 | 
			
		||||
      mpiword = MPI_DOUBLE;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Sobj in MPI phrasing
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int ierr;
 | 
			
		||||
    ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject);    assert(ierr==0);
 | 
			
		||||
    ierr = MPI_Type_commit(&mpiObject);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // File global array data type
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray);    assert(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_commit(&fileArray);    assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // local lattice array
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray);    assert(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_commit(&localArray);    assert(ierr==0);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Byte order
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int ieee32big = (format == std::string("IEEE32BIG"));
 | 
			
		||||
    int ieee32    = (format == std::string("IEEE32"));
 | 
			
		||||
    int ieee64big = (format == std::string("IEEE64BIG"));
 | 
			
		||||
    int ieee64    = (format == std::string("IEEE64"));
 | 
			
		||||
    assert(ieee64||ieee32|ieee64big||ieee32big);
 | 
			
		||||
    assert((ieee64+ieee32+ieee64big+ieee32big)==1);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Do the I/O
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    if ( control & BINARYIO_READ ) { 
 | 
			
		||||
 | 
			
		||||
      timer.Start();
 | 
			
		||||
 | 
			
		||||
      if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
 | 
			
		||||
#ifdef USE_MPI_IO
 | 
			
		||||
	std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl;
 | 
			
		||||
	ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);    assert(ierr==0);
 | 
			
		||||
	ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);    assert(ierr==0);
 | 
			
		||||
	ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status);    assert(ierr==0);
 | 
			
		||||
	MPI_File_close(&fh);
 | 
			
		||||
	MPI_Type_free(&fileArray);
 | 
			
		||||
	MPI_Type_free(&localArray);
 | 
			
		||||
#else 
 | 
			
		||||
	assert(0);
 | 
			
		||||
#endif
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << GridLogMessage <<"IOobject: C++ read I/O " << file << " : "
 | 
			
		||||
                  << iodata.size() * sizeof(fobj) << " bytes and offset " << offset << std::endl;
 | 
			
		||||
        std::ifstream fin;
 | 
			
		||||
	fin.open(file, std::ios::binary | std::ios::in);
 | 
			
		||||
        if (control & BINARYIO_MASTER_APPEND)
 | 
			
		||||
        {
 | 
			
		||||
          fin.seekg(-sizeof(fobj), fin.end);
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
          fin.seekg(offset + myrank * lsites * sizeof(fobj));
 | 
			
		||||
        }
 | 
			
		||||
        fin.read((char *)&iodata[0], iodata.size() * sizeof(fobj));
 | 
			
		||||
        assert(fin.fail() == 0);
 | 
			
		||||
        fin.close();
 | 
			
		||||
      }
 | 
			
		||||
      timer.Stop();
 | 
			
		||||
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      bstimer.Start();
 | 
			
		||||
      ScidacChecksum(grid,iodata,scidac_csuma,scidac_csumb);
 | 
			
		||||
      if (ieee32big) be32toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      if (ieee32)    le32toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      if (ieee64big) be64toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      if (ieee64)    le64toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      NerscChecksum(grid,iodata,nersc_csum);
 | 
			
		||||
      bstimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if ( control & BINARYIO_WRITE ) { 
 | 
			
		||||
 | 
			
		||||
      bstimer.Start();
 | 
			
		||||
      NerscChecksum(grid,iodata,nersc_csum);
 | 
			
		||||
      if (ieee32big) htobe32_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      if (ieee32)    htole32_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      if (ieee64big) htobe64_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      if (ieee64)    htole64_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
      ScidacChecksum(grid,iodata,scidac_csuma,scidac_csumb);
 | 
			
		||||
      bstimer.Stop();
 | 
			
		||||
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      timer.Start();
 | 
			
		||||
      if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
 | 
			
		||||
#ifdef USE_MPI_IO
 | 
			
		||||
        std::cout << GridLogMessage <<"IOobject: MPI write I/O " << file << std::endl;
 | 
			
		||||
        ierr = MPI_File_open(grid->communicator, (char *)file.c_str(), MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
 | 
			
		||||
	//        std::cout << GridLogMessage << "Checking for errors" << std::endl;
 | 
			
		||||
        if (ierr != MPI_SUCCESS)
 | 
			
		||||
        {
 | 
			
		||||
          char error_string[BUFSIZ];
 | 
			
		||||
          int length_of_error_string, error_class;
 | 
			
		||||
 | 
			
		||||
          MPI_Error_class(ierr, &error_class);
 | 
			
		||||
          MPI_Error_string(error_class, error_string, &length_of_error_string);
 | 
			
		||||
          fprintf(stderr, "%3d: %s\n", myrank, error_string);
 | 
			
		||||
          MPI_Error_string(ierr, error_string, &length_of_error_string);
 | 
			
		||||
          fprintf(stderr, "%3d: %s\n", myrank, error_string);
 | 
			
		||||
          MPI_Abort(MPI_COMM_WORLD, 1); //assert(ierr == 0);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogDebug << "MPI write I/O set view " << file << std::endl;
 | 
			
		||||
        ierr = MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);
 | 
			
		||||
        assert(ierr == 0);
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogDebug << "MPI write I/O write all " << file << std::endl;
 | 
			
		||||
        ierr = MPI_File_write_all(fh, &iodata[0], 1, localArray, &status);
 | 
			
		||||
        assert(ierr == 0);
 | 
			
		||||
 | 
			
		||||
        MPI_Offset os;
 | 
			
		||||
        MPI_File_get_position(fh, &os);
 | 
			
		||||
        MPI_File_get_byte_offset(fh, os, &disp);
 | 
			
		||||
        offset = disp;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        MPI_File_close(&fh);
 | 
			
		||||
        MPI_Type_free(&fileArray);
 | 
			
		||||
        MPI_Type_free(&localArray);
 | 
			
		||||
#else 
 | 
			
		||||
	assert(0);
 | 
			
		||||
#endif
 | 
			
		||||
      } else { 
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "IOobject: C++ write I/O " << file << " : "
 | 
			
		||||
                  << iodata.size() * sizeof(fobj) << " bytes and offset " << offset << std::endl;
 | 
			
		||||
        
 | 
			
		||||
	std::ofstream fout; 
 | 
			
		||||
	fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
 | 
			
		||||
	try {
 | 
			
		||||
	  if (offset) { // Must already exist and contain data
 | 
			
		||||
	    fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
 | 
			
		||||
	  } else {     // Allow create
 | 
			
		||||
	    fout.open(file,std::ios::binary|std::ios::out);
 | 
			
		||||
	  }
 | 
			
		||||
	} catch (const std::fstream::failure& exc) {
 | 
			
		||||
	  std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
 | 
			
		||||
	  std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
 | 
			
		||||
	  //	  std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
 | 
			
		||||
#ifdef USE_MPI_IO
 | 
			
		||||
	  MPI_Abort(MPI_COMM_WORLD,1);
 | 
			
		||||
#else
 | 
			
		||||
	  exit(1);
 | 
			
		||||
#endif
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	if ( control & BINARYIO_MASTER_APPEND )  {
 | 
			
		||||
	  try {
 | 
			
		||||
	    fout.seekp(0,fout.end);
 | 
			
		||||
	  } catch (const std::fstream::failure& exc) {
 | 
			
		||||
	    std::cout << "Exception in seeking file end " << file << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	} else {
 | 
			
		||||
	  try { 
 | 
			
		||||
	    fout.seekp(offset+myrank*lsites*sizeof(fobj));
 | 
			
		||||
	  } catch (const std::fstream::failure& exc) {
 | 
			
		||||
	    std::cout << "Exception in seeking file " << file <<" offset "<< offset << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	try {
 | 
			
		||||
	  fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
 | 
			
		||||
	}
 | 
			
		||||
	catch (const std::fstream::failure& exc) {
 | 
			
		||||
	  std::cout << "Exception in writing file " << file << std::endl;
 | 
			
		||||
	  std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
 | 
			
		||||
#ifdef USE_MPI_IO
 | 
			
		||||
	  MPI_Abort(MPI_COMM_WORLD,1);
 | 
			
		||||
#else
 | 
			
		||||
	  exit(1);
 | 
			
		||||
#endif
 | 
			
		||||
	}
 | 
			
		||||
  offset  = fout.tellp();
 | 
			
		||||
	fout.close();
 | 
			
		||||
      }
 | 
			
		||||
      timer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage<<"IOobject: ";
 | 
			
		||||
    if ( control & BINARYIO_READ) std::cout << " read  ";
 | 
			
		||||
    else                          std::cout << " write ";
 | 
			
		||||
    uint64_t bytes = sizeof(fobj)*iodata.size()*nrank;
 | 
			
		||||
    std::cout<< bytes <<" bytes in "<<timer.Elapsed() <<" "
 | 
			
		||||
	     << (double)bytes/ (double)timer.useconds() <<" MB/s "<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed()  <<std::endl;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Safety check
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // if the data size is 1 we do not want to sum over the MPI ranks
 | 
			
		||||
    if (iodata.size() != 1){
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      grid->GlobalSum(nersc_csum);
 | 
			
		||||
      grid->GlobalXOR(scidac_csuma);
 | 
			
		||||
      grid->GlobalXOR(scidac_csumb);
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Read a Lattice of object
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj,class fobj,class munger>
 | 
			
		||||
  static inline void readLatticeObject(Lattice<vobj> &Umu,
 | 
			
		||||
				       std::string file,
 | 
			
		||||
				       munger munge,
 | 
			
		||||
				       uint64_t offset,
 | 
			
		||||
				       const std::string &format,
 | 
			
		||||
				       uint32_t &nersc_csum,
 | 
			
		||||
				       uint32_t &scidac_csuma,
 | 
			
		||||
				       uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
 | 
			
		||||
    std::vector<sobj> scalardata(lsites); 
 | 
			
		||||
    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
			
		||||
    
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch timer; 
 | 
			
		||||
    timer.Start();
 | 
			
		||||
 | 
			
		||||
    thread_for(x,lsites, { munge(iodata[x], scalardata[x]); });
 | 
			
		||||
 | 
			
		||||
    vectorizeFromLexOrdArray(scalardata,Umu);    
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"readLatticeObject: vectorize overhead "<<timer.Elapsed()  <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Write a Lattice of object
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj,class fobj,class munger>
 | 
			
		||||
    static inline void writeLatticeObject(Lattice<vobj> &Umu,
 | 
			
		||||
					  std::string file,
 | 
			
		||||
					  munger munge,
 | 
			
		||||
					  uint64_t offset,
 | 
			
		||||
					  const std::string &format,
 | 
			
		||||
					  uint32_t &nersc_csum,
 | 
			
		||||
					  uint32_t &scidac_csuma,
 | 
			
		||||
					  uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    uint64_t lsites = grid->lSites(), offsetCopy = offset;
 | 
			
		||||
    int attemptsLeft = std::max(0, BinaryIO::latticeWriteMaxRetry);
 | 
			
		||||
    bool checkWrite = (BinaryIO::latticeWriteMaxRetry >= 0);
 | 
			
		||||
 | 
			
		||||
    std::vector<sobj> scalardata(lsites); 
 | 
			
		||||
    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Munge [ .e.g 3rd row recon ]
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    GridStopWatch timer; timer.Start();
 | 
			
		||||
    unvectorizeToLexOrdArray(scalardata,Umu);    
 | 
			
		||||
 | 
			
		||||
    thread_for(x, lsites, { munge(scalardata[x],iodata[x]); });
 | 
			
		||||
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
    while (attemptsLeft >= 0)
 | 
			
		||||
    {
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	             nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      if (checkWrite)
 | 
			
		||||
      {
 | 
			
		||||
        std::vector<fobj> ckiodata(lsites);
 | 
			
		||||
        uint32_t          cknersc_csum, ckscidac_csuma, ckscidac_csumb;
 | 
			
		||||
        uint64_t          ckoffset = offsetCopy;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
			
		||||
        grid->Barrier();
 | 
			
		||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
			
		||||
        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
			
		||||
        {
 | 
			
		||||
          std::cout << GridLogMessage << "writeLatticeObject: read test checksum failure, re-writing (" << attemptsLeft << " attempt(s) remaining)" << std::endl;
 | 
			
		||||
          offset = offsetCopy;
 | 
			
		||||
          thread_for(x,lsites, { munge(scalardata[x],iodata[x]); });
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
          std::cout << GridLogMessage << "writeLatticeObject: read test checksum correct" << std::endl;
 | 
			
		||||
          break;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      attemptsLeft--;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"writeLatticeObject: unvectorize overhead "<<timer.Elapsed()  <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Read a RNG;  use IOobject and lexico map to an array of state 
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static inline void readRNG(GridSerialRNG &serial_rng,
 | 
			
		||||
			     GridParallelRNG ¶llel_rng,
 | 
			
		||||
			     std::string file,
 | 
			
		||||
			     uint64_t offset,
 | 
			
		||||
			     uint32_t &nersc_csum,
 | 
			
		||||
			     uint32_t &scidac_csuma,
 | 
			
		||||
			     uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename GridSerialRNG::RngStateType RngStateType;
 | 
			
		||||
    const int RngStateCount = GridSerialRNG::RngStateCount;
 | 
			
		||||
    typedef std::array<RngStateType,RngStateCount> RNGstate;
 | 
			
		||||
    typedef RngStateType word;    word w=0;
 | 
			
		||||
 | 
			
		||||
    std::string format = "IEEE32BIG";
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = parallel_rng.Grid();
 | 
			
		||||
    uint64_t gsites = grid->gSites();
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
 | 
			
		||||
    uint32_t nersc_csum_tmp   = 0;
 | 
			
		||||
    uint32_t scidac_csuma_tmp = 0;
 | 
			
		||||
    uint32_t scidac_csumb_tmp = 0;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "RNG read I/O on file " << file << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::vector<RNGstate> iodata(lsites);
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    timer.Start();
 | 
			
		||||
    thread_for(lidx,lsites,{
 | 
			
		||||
      std::vector<RngStateType> tmp(RngStateCount);
 | 
			
		||||
      std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin());
 | 
			
		||||
      parallel_rng.SetState(tmp,lidx);
 | 
			
		||||
      });
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
 | 
			
		||||
    iodata.resize(1);
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_MASTER_APPEND,
 | 
			
		||||
	     nersc_csum_tmp,scidac_csuma_tmp,scidac_csumb_tmp);
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      std::vector<RngStateType> tmp(RngStateCount);
 | 
			
		||||
      std::copy(iodata[0].begin(),iodata[0].end(),tmp.begin());
 | 
			
		||||
      serial_rng.SetState(tmp,0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    nersc_csum   = nersc_csum   + nersc_csum_tmp;
 | 
			
		||||
    scidac_csuma = scidac_csuma ^ scidac_csuma_tmp;
 | 
			
		||||
    scidac_csumb = scidac_csumb ^ scidac_csumb_tmp;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "RNG file nersc_checksum   " << std::hex << nersc_csum << std::dec << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "RNG file scidac_checksuma " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "RNG file scidac_checksumb " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "RNG state overhead " << timer.Elapsed() << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Write a RNG; lexico map to an array of state and use IOobject
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static inline void writeRNG(GridSerialRNG &serial_rng,
 | 
			
		||||
			      GridParallelRNG ¶llel_rng,
 | 
			
		||||
			      std::string file,
 | 
			
		||||
			      uint64_t offset,
 | 
			
		||||
			      uint32_t &nersc_csum,
 | 
			
		||||
			      uint32_t &scidac_csuma,
 | 
			
		||||
			      uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename GridSerialRNG::RngStateType RngStateType;
 | 
			
		||||
    typedef RngStateType word; word w=0;
 | 
			
		||||
    const int RngStateCount = GridSerialRNG::RngStateCount;
 | 
			
		||||
    typedef std::array<RngStateType,RngStateCount> RNGstate;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = parallel_rng.Grid();
 | 
			
		||||
    uint64_t gsites = grid->gSites();
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
 | 
			
		||||
    uint32_t nersc_csum_tmp;
 | 
			
		||||
    uint32_t scidac_csuma_tmp;
 | 
			
		||||
    uint32_t scidac_csumb_tmp;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
    std::string format = "IEEE32BIG";
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "RNG write I/O on file " << file << std::endl;
 | 
			
		||||
 | 
			
		||||
    timer.Start();
 | 
			
		||||
    std::vector<RNGstate> iodata(lsites);
 | 
			
		||||
    thread_for(lidx,lsites,{
 | 
			
		||||
      std::vector<RngStateType> tmp(RngStateCount);
 | 
			
		||||
      parallel_rng.GetState(tmp,lidx);
 | 
			
		||||
      std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin());
 | 
			
		||||
    });
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    iodata.resize(1);
 | 
			
		||||
    {
 | 
			
		||||
      std::vector<RngStateType> tmp(RngStateCount);
 | 
			
		||||
      serial_rng.GetState(tmp,0);
 | 
			
		||||
      std::copy(tmp.begin(),tmp.end(),iodata[0].begin());
 | 
			
		||||
    }
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_MASTER_APPEND,
 | 
			
		||||
	     nersc_csum_tmp,scidac_csuma_tmp,scidac_csumb_tmp);
 | 
			
		||||
 | 
			
		||||
    nersc_csum   = nersc_csum   + nersc_csum_tmp;
 | 
			
		||||
    scidac_csuma = scidac_csuma ^ scidac_csuma_tmp;
 | 
			
		||||
    scidac_csumb = scidac_csumb ^ scidac_csumb_tmp;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage << "RNG file checksum " << std::hex << nersc_csum    << std::dec << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "RNG file checksuma " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "RNG file checksumb " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "RNG state overhead " << timer.Elapsed() << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,937 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/parallelIO/IldgIO.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_LIME
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
#include <iomanip>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <map>
 | 
			
		||||
 | 
			
		||||
#include <pwd.h>
 | 
			
		||||
#include <sys/utsname.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
 | 
			
		||||
//C-Lime is a must have for this functionality
 | 
			
		||||
extern "C" {  
 | 
			
		||||
#include "lime.h"
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define GRID_FIELD_NORM "FieldNormMetaData"
 | 
			
		||||
#define GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) \
 | 
			
		||||
0.5*fabs(FieldNormMetaData_.norm2 - n2ck)/(FieldNormMetaData_.norm2 + n2ck)
 | 
			
		||||
#define GRID_FIELD_NORM_CHECK(FieldNormMetaData_, n2ck) \
 | 
			
		||||
assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  // Encode word types as strings
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
 template<class word> inline std::string ScidacWordMnemonic(void){ return std::string("unknown"); }
 | 
			
		||||
 template<> inline std::string ScidacWordMnemonic<double>  (void){ return std::string("D"); }
 | 
			
		||||
 template<> inline std::string ScidacWordMnemonic<float>   (void){ return std::string("F"); }
 | 
			
		||||
 template<> inline std::string ScidacWordMnemonic< int32_t>(void){ return std::string("I32_t"); }
 | 
			
		||||
 template<> inline std::string ScidacWordMnemonic<uint32_t>(void){ return std::string("U32_t"); }
 | 
			
		||||
 template<> inline std::string ScidacWordMnemonic< int64_t>(void){ return std::string("I64_t"); }
 | 
			
		||||
 template<> inline std::string ScidacWordMnemonic<uint64_t>(void){ return std::string("U64_t"); }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////
 | 
			
		||||
  // Encode a generic tensor as a string
 | 
			
		||||
  /////////////////////////////////////////
 | 
			
		||||
 template<class vobj> std::string ScidacRecordTypeString(int &colors, int &spins, int & typesize,int &datacount) { 
 | 
			
		||||
 | 
			
		||||
   typedef typename getPrecision<vobj>::real_scalar_type stype;
 | 
			
		||||
 | 
			
		||||
   int _ColourN       = indexRank<ColourIndex,vobj>();
 | 
			
		||||
   int _ColourScalar  =  isScalar<ColourIndex,vobj>();
 | 
			
		||||
   int _ColourVector  =  isVector<ColourIndex,vobj>();
 | 
			
		||||
   int _ColourMatrix  =  isMatrix<ColourIndex,vobj>();
 | 
			
		||||
 | 
			
		||||
   int _SpinN       = indexRank<SpinIndex,vobj>();
 | 
			
		||||
   int _SpinScalar  =  isScalar<SpinIndex,vobj>();
 | 
			
		||||
   int _SpinVector  =  isVector<SpinIndex,vobj>();
 | 
			
		||||
   int _SpinMatrix  =  isMatrix<SpinIndex,vobj>();
 | 
			
		||||
 | 
			
		||||
   int _LorentzN       = indexRank<LorentzIndex,vobj>();
 | 
			
		||||
   int _LorentzScalar  =  isScalar<LorentzIndex,vobj>();
 | 
			
		||||
   int _LorentzVector  =  isVector<LorentzIndex,vobj>();
 | 
			
		||||
   int _LorentzMatrix  =  isMatrix<LorentzIndex,vobj>();
 | 
			
		||||
 | 
			
		||||
   std::stringstream stream;
 | 
			
		||||
 | 
			
		||||
   stream << "GRID_";
 | 
			
		||||
   stream << ScidacWordMnemonic<stype>();
 | 
			
		||||
 | 
			
		||||
   if ( _LorentzVector )   stream << "_LorentzVector"<<_LorentzN;
 | 
			
		||||
   if ( _LorentzMatrix )   stream << "_LorentzMatrix"<<_LorentzN;
 | 
			
		||||
 | 
			
		||||
   if ( _SpinVector )   stream << "_SpinVector"<<_SpinN;
 | 
			
		||||
   if ( _SpinMatrix )   stream << "_SpinMatrix"<<_SpinN;
 | 
			
		||||
 | 
			
		||||
   if ( _ColourVector )   stream << "_ColourVector"<<_ColourN;
 | 
			
		||||
   if ( _ColourMatrix )   stream << "_ColourMatrix"<<_ColourN;
 | 
			
		||||
 | 
			
		||||
   if ( _ColourScalar && _LorentzScalar && _SpinScalar )   stream << "_Complex";
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
   typesize = sizeof(typename vobj::scalar_type);
 | 
			
		||||
 | 
			
		||||
   if ( _ColourMatrix ) typesize*= _ColourN*_ColourN;
 | 
			
		||||
   else                 typesize*= _ColourN;
 | 
			
		||||
 | 
			
		||||
   if ( _SpinMatrix )   typesize*= _SpinN*_SpinN;
 | 
			
		||||
   else                 typesize*= _SpinN;
 | 
			
		||||
 | 
			
		||||
   colors    = _ColourN;
 | 
			
		||||
   spins     = _SpinN;
 | 
			
		||||
   datacount = _LorentzN;
 | 
			
		||||
 | 
			
		||||
   return stream.str();
 | 
			
		||||
 }
 | 
			
		||||
 
 | 
			
		||||
 template<class vobj> std::string ScidacRecordTypeString(Lattice<vobj> & lat,int &colors, int &spins, int & typesize,int &datacount) { 
 | 
			
		||||
   return ScidacRecordTypeString<vobj>(colors,spins,typesize,datacount);
 | 
			
		||||
 };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 ////////////////////////////////////////////////////////////
 | 
			
		||||
 // Helper to fill out metadata
 | 
			
		||||
 ////////////////////////////////////////////////////////////
 | 
			
		||||
 template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
 | 
			
		||||
					  FieldMetaData &header,
 | 
			
		||||
					  scidacRecord & _scidacRecord,
 | 
			
		||||
					  scidacFile   & _scidacFile) 
 | 
			
		||||
 {
 | 
			
		||||
   typedef typename getPrecision<vobj>::real_scalar_type stype;
 | 
			
		||||
 | 
			
		||||
   /////////////////////////////////////
 | 
			
		||||
   // Pull Grid's metadata
 | 
			
		||||
   /////////////////////////////////////
 | 
			
		||||
   PrepareMetaData(field,header);
 | 
			
		||||
 | 
			
		||||
   /////////////////////////////////////
 | 
			
		||||
   // Scidac Private File structure
 | 
			
		||||
   /////////////////////////////////////
 | 
			
		||||
   _scidacFile              = scidacFile(field.Grid());
 | 
			
		||||
 | 
			
		||||
   /////////////////////////////////////
 | 
			
		||||
   // Scidac Private Record structure
 | 
			
		||||
   /////////////////////////////////////
 | 
			
		||||
   scidacRecord sr;
 | 
			
		||||
   sr.datatype   = ScidacRecordTypeString(field,sr.colors,sr.spins,sr.typesize,sr.datacount);
 | 
			
		||||
   sr.date       = header.creation_date;
 | 
			
		||||
   sr.precision  = ScidacWordMnemonic<stype>();
 | 
			
		||||
   sr.recordtype = GRID_IO_FIELD;
 | 
			
		||||
 | 
			
		||||
   _scidacRecord = sr;
 | 
			
		||||
 | 
			
		||||
   //   std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
 | 
			
		||||
 }
 | 
			
		||||
 
 | 
			
		||||
 ///////////////////////////////////////////////////////
 | 
			
		||||
 // Scidac checksum
 | 
			
		||||
 ///////////////////////////////////////////////////////
 | 
			
		||||
 static int scidacChecksumVerify(scidacChecksum &scidacChecksum_,uint32_t scidac_csuma,uint32_t scidac_csumb)
 | 
			
		||||
 {
 | 
			
		||||
   uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
			
		||||
   uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
			
		||||
   if ( scidac_csuma !=scidac_checksuma) return 0;
 | 
			
		||||
   if ( scidac_csumb !=scidac_checksumb) return 0;
 | 
			
		||||
   return 1;
 | 
			
		||||
 }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Lime, ILDG and Scidac I/O classes
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class GridLimeReader : public BinaryIO {
 | 
			
		||||
 public:
 | 
			
		||||
   ///////////////////////////////////////////////////
 | 
			
		||||
   // FIXME: format for RNG? Now just binary out instead
 | 
			
		||||
   ///////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
   FILE       *File;
 | 
			
		||||
   LimeReader *LimeR;
 | 
			
		||||
   std::string filename;
 | 
			
		||||
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   // Open the file
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   void open(const std::string &_filename) 
 | 
			
		||||
   {
 | 
			
		||||
     filename= _filename;
 | 
			
		||||
     File = fopen(filename.c_str(), "r");
 | 
			
		||||
     if (File == nullptr)
 | 
			
		||||
     {
 | 
			
		||||
       std::cerr << "cannot open file '" << filename << "'" << std::endl;
 | 
			
		||||
       abort();
 | 
			
		||||
     }
 | 
			
		||||
     LimeR = limeCreateReader(File);
 | 
			
		||||
   }
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   // Close the file
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   void close(void){
 | 
			
		||||
     fclose(File);
 | 
			
		||||
     //     limeDestroyReader(LimeR);
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Read a generic lattice field and verify checksum
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    scidacChecksum scidacChecksum_;
 | 
			
		||||
    FieldNormMetaData  FieldNormMetaData_;
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
 | 
			
		||||
    std::string format = getFormatString<vobj>();
 | 
			
		||||
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
 | 
			
		||||
      uint64_t file_bytes =limeReaderBytes(LimeR);
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage << limeReaderType(LimeR) << " "<< file_bytes <<" bytes "<<std::endl;
 | 
			
		||||
      //      std::cout << GridLogMessage<< " readLimeObject seeking "<<  record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) )  ) {
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<< " readLimeLatticeBinaryObject matches ! " <<std::endl;
 | 
			
		||||
 | 
			
		||||
	uint64_t PayloadSize = sizeof(sobj) * field.Grid()->_gsites;
 | 
			
		||||
 | 
			
		||||
	//	std::cout << "R sizeof(sobj)= " <<sizeof(sobj)<<std::endl;
 | 
			
		||||
	//	std::cout << "R Gsites " <<field.Grid()->_gsites<<std::endl;
 | 
			
		||||
	//	std::cout << "R Payload expected " <<PayloadSize<<std::endl;
 | 
			
		||||
	//	std::cout << "R file size " <<file_bytes <<std::endl;
 | 
			
		||||
 | 
			
		||||
	assert(PayloadSize == file_bytes);// Must match or user error
 | 
			
		||||
 | 
			
		||||
	uint64_t offset= ftello(File);
 | 
			
		||||
	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
			
		||||
	BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	// Insist checksum is next record
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	readScidacChecksum(scidacChecksum_,FieldNormMetaData_);
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	// Verify checksums
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	if(FieldNormMetaData_.norm2 != 0.0){ 
 | 
			
		||||
	  RealD n2ck = norm2(field);
 | 
			
		||||
	  std::cout << GridLogMessage << "Field norm: metadata= " << FieldNormMetaData_.norm2 
 | 
			
		||||
              << " / field= " << n2ck << " / rdiff= " << GRID_FIELD_NORM_CALC(FieldNormMetaData_,n2ck) << std::endl;
 | 
			
		||||
	  GRID_FIELD_NORM_CHECK(FieldNormMetaData_,n2ck);
 | 
			
		||||
	}
 | 
			
		||||
	assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1);
 | 
			
		||||
 | 
			
		||||
	// find out if next field is a GridFieldNorm
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void readScidacChecksum(scidacChecksum     &scidacChecksum_,
 | 
			
		||||
			  FieldNormMetaData  &FieldNormMetaData_)
 | 
			
		||||
  {
 | 
			
		||||
    FieldNormMetaData_.norm2 =0.0;
 | 
			
		||||
    std::string scidac_str(SCIDAC_CHECKSUM);
 | 
			
		||||
    std::string field_norm_str(GRID_FIELD_NORM);
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
      uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
 | 
			
		||||
      std::vector<char> xmlc(nbytes+1,'\0');
 | 
			
		||||
      limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);    
 | 
			
		||||
      std::string xmlstring = std::string(&xmlc[0]);
 | 
			
		||||
      XmlReader RD(xmlstring, true, "");
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), field_norm_str.c_str(),strlen(field_norm_str.c_str()) )  ) {
 | 
			
		||||
	//	std::cout << "FieldNormMetaData "<<xmlstring<<std::endl;
 | 
			
		||||
	read(RD,field_norm_str,FieldNormMetaData_);
 | 
			
		||||
      }
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), scidac_str.c_str(),strlen(scidac_str.c_str()) )  ) {
 | 
			
		||||
	//	std::cout << SCIDAC_CHECKSUM << " " <<xmlstring<<std::endl;
 | 
			
		||||
	read(RD,std::string("scidacChecksum"),scidacChecksum_);
 | 
			
		||||
	return;
 | 
			
		||||
      }      
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Read a generic serialisable object
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  void readLimeObject(std::string &xmlstring,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    // should this be a do while; can we miss a first record??
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
 | 
			
		||||
      uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
 | 
			
		||||
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) )  ) {
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<< " readLimeObject matches ! " << record_name <<std::endl;
 | 
			
		||||
	std::vector<char> xmlc(nbytes+1,'\0');
 | 
			
		||||
	limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);    
 | 
			
		||||
	//	std::cout << GridLogMessage<< " readLimeObject matches XML " << &xmlc[0] <<std::endl;
 | 
			
		||||
 | 
			
		||||
	xmlstring = std::string(&xmlc[0]);
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }  
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class serialisable_object>
 | 
			
		||||
  void readLimeObject(serialisable_object &object,std::string object_name,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    std::string xmlstring;
 | 
			
		||||
 | 
			
		||||
    readLimeObject(xmlstring, record_name);
 | 
			
		||||
    XmlReader RD(xmlstring, true, "");
 | 
			
		||||
    read(RD,object_name,object);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class GridLimeWriter : public BinaryIO 
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
   ///////////////////////////////////////////////////
 | 
			
		||||
   // FIXME: format for RNG? Now just binary out instead
 | 
			
		||||
   // FIXME: collective calls or not ?
 | 
			
		||||
   //      : must know if I am the I/O boss
 | 
			
		||||
   ///////////////////////////////////////////////////
 | 
			
		||||
   FILE       *File;
 | 
			
		||||
   LimeWriter *LimeW;
 | 
			
		||||
   std::string filename;
 | 
			
		||||
   bool        boss_node;
 | 
			
		||||
   GridLimeWriter( bool isboss = true) {
 | 
			
		||||
     boss_node = isboss;
 | 
			
		||||
   }
 | 
			
		||||
   void open(const std::string &_filename) { 
 | 
			
		||||
     filename= _filename;
 | 
			
		||||
     if ( boss_node ) {
 | 
			
		||||
       File = fopen(filename.c_str(), "w");
 | 
			
		||||
       LimeW = limeCreateWriter(File); assert(LimeW != NULL );
 | 
			
		||||
     }
 | 
			
		||||
   }
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   // Close the file
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   void close(void) {
 | 
			
		||||
     if ( boss_node ) {
 | 
			
		||||
       fclose(File);
 | 
			
		||||
     }
 | 
			
		||||
     //  limeDestroyWriter(LimeW);
 | 
			
		||||
   }
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // Lime utility functions
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  int createLimeRecordHeader(std::string message, int MB, int ME, size_t PayloadSize)
 | 
			
		||||
  {
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      LimeRecordHeader *h;
 | 
			
		||||
      h = limeCreateHeader(MB, ME, const_cast<char *>(message.c_str()), PayloadSize);
 | 
			
		||||
      assert(limeWriteRecordHeader(h, LimeW) >= 0);
 | 
			
		||||
      limeDestroyHeader(h);
 | 
			
		||||
    }
 | 
			
		||||
    return LIME_SUCCESS;
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Write a generic serialisable object
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  void writeLimeObject(int MB,int ME,XmlWriter &writer,std::string object_name,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      std::string xmlstring = writer.docString();
 | 
			
		||||
 | 
			
		||||
      //    std::cout << "WriteLimeObject" << record_name <<std::endl;
 | 
			
		||||
      uint64_t nbytes = xmlstring.size();
 | 
			
		||||
      //    std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl;
 | 
			
		||||
      int err;
 | 
			
		||||
      LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes); 
 | 
			
		||||
      assert(h!= NULL);
 | 
			
		||||
      
 | 
			
		||||
      err=limeWriteRecordHeader(h, LimeW);                    assert(err>=0);
 | 
			
		||||
      err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
 | 
			
		||||
      err=limeWriterCloseRecord(LimeW);                       assert(err>=0);
 | 
			
		||||
      limeDestroyHeader(h);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class serialisable_object>
 | 
			
		||||
  void writeLimeObject(int MB,int ME,serialisable_object &object,std::string object_name,std::string record_name, const unsigned int scientificPrec = 0)
 | 
			
		||||
  {
 | 
			
		||||
    XmlWriter WR("","");
 | 
			
		||||
 | 
			
		||||
    if (scientificPrec)
 | 
			
		||||
    {
 | 
			
		||||
      WR.scientificFormat(true);
 | 
			
		||||
      WR.setPrecision(scientificPrec);
 | 
			
		||||
    }
 | 
			
		||||
    write(WR,object_name,object);
 | 
			
		||||
    writeLimeObject(MB, ME, WR, object_name, record_name);
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  // Write a generic lattice field and csum
 | 
			
		||||
  // This routine is Collectively called by all nodes
 | 
			
		||||
  // in communicator used by the field.Grid()
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
			
		||||
    // the same file through different file handles (integer units).
 | 
			
		||||
    // 
 | 
			
		||||
    // These are both buffered, so why I think this code is right is as follows.
 | 
			
		||||
    //
 | 
			
		||||
    // i)  write record header to FILE *File, telegraphing the size; flush
 | 
			
		||||
    // ii) ftello reads the offset from FILE *File . 
 | 
			
		||||
    // iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
 | 
			
		||||
    //      Closes iostream and flushes.
 | 
			
		||||
    // iv) fseek on FILE * to end of this disjoint section.
 | 
			
		||||
    //  v) Continue writing scidac record.
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    
 | 
			
		||||
    GridBase *grid = field.Grid();
 | 
			
		||||
    assert(boss_node == field.Grid()->IsBoss() );
 | 
			
		||||
 | 
			
		||||
    FieldNormMetaData FNMD; FNMD.norm2 = norm2(field);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    // Create record header
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    int err;
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    uint64_t PayloadSize = sizeof(sobj) * grid->_gsites;
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      createLimeRecordHeader(record_name, 0, 0, PayloadSize);
 | 
			
		||||
      fflush(File);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //    std::cout << "W sizeof(sobj)"      <<sizeof(sobj)<<std::endl;
 | 
			
		||||
    //    std::cout << "W Gsites "           <<field.Grid()->_gsites<<std::endl;
 | 
			
		||||
    //    std::cout << "W Payload expected " <<PayloadSize<<std::endl;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    // Check all nodes agree on file position
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    uint64_t offset1;
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      offset1 = ftello(File);    
 | 
			
		||||
    }
 | 
			
		||||
    grid->Broadcast(0,(void *)&offset1,sizeof(offset1));
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    // The above is collective. Write by other means into the binary record
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    std::string format = getFormatString<vobj>();
 | 
			
		||||
    BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    // Wind forward and close the record
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      fseek(File,0,SEEK_END);             
 | 
			
		||||
      uint64_t offset2 = ftello(File);     //    std::cout << " now at offset "<<offset2 << std::endl;
 | 
			
		||||
      assert( (offset2-offset1) == PayloadSize);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Check MPI-2 I/O did what we expect to file
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    if ( boss_node ) { 
 | 
			
		||||
      err=limeWriterCloseRecord(LimeW);  assert(err>=0);
 | 
			
		||||
    }
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // Write checksum element, propagaing forward from the BinaryIO
 | 
			
		||||
    // Always pair a checksum with a binary object, and close message
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    scidacChecksum checksum;
 | 
			
		||||
    std::stringstream streama; streama << std::hex << scidac_csuma;
 | 
			
		||||
    std::stringstream streamb; streamb << std::hex << scidac_csumb;
 | 
			
		||||
    checksum.suma= streama.str();
 | 
			
		||||
    checksum.sumb= streamb.str();
 | 
			
		||||
    if ( boss_node ) { 
 | 
			
		||||
      writeLimeObject(0,0,FNMD,std::string(GRID_FIELD_NORM),std::string(GRID_FIELD_NORM));
 | 
			
		||||
      writeLimeObject(0,1,checksum,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  ScidacWriter(bool isboss =true ) : GridLimeWriter(isboss)  { };
 | 
			
		||||
 | 
			
		||||
  template<class SerialisableUserFile>
 | 
			
		||||
  void writeScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
 | 
			
		||||
  {
 | 
			
		||||
    scidacFile    _scidacFile(grid);
 | 
			
		||||
    if ( this->boss_node ) {
 | 
			
		||||
      writeLimeObject(1,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
 | 
			
		||||
      writeLimeObject(0,1,_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Write generic lattice field in scidac format
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
			
		||||
                              const unsigned int recordScientificPrec = 0) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase * grid = field.Grid();
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // fill the Grid header
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    scidacRecord  _scidacRecord;
 | 
			
		||||
    scidacFile    _scidacFile;
 | 
			
		||||
 | 
			
		||||
    ScidacMetaData(field,header,_scidacRecord,_scidacFile);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    // Fill the Lime file record by record
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    if ( this->boss_node ) {
 | 
			
		||||
      writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
			
		||||
      writeLimeObject(0,0,_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML), recordScientificPrec);
 | 
			
		||||
      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    }
 | 
			
		||||
    // Collective call
 | 
			
		||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ScidacReader : public GridLimeReader {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
   template<class SerialisableUserFile>
 | 
			
		||||
   void readScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
 | 
			
		||||
   {
 | 
			
		||||
     scidacFile    _scidacFile(grid);
 | 
			
		||||
     readLimeObject(_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
 | 
			
		||||
     readLimeObject(_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
 | 
			
		||||
   }
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Write generic lattice field in scidac format
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord) 
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    GridBase * grid = field.Grid();
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // fill the Grid header
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    scidacRecord  _scidacRecord;
 | 
			
		||||
    scidacFile    _scidacFile;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    // Fill the Lime file record by record
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
			
		||||
    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
 | 
			
		||||
  }
 | 
			
		||||
  void skipPastBinaryRecord(void) {
 | 
			
		||||
    std::string rec_name(ILDG_BINARY_DATA);
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) {
 | 
			
		||||
	skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
  void skipPastObjectRecord(std::string rec_name) {
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) {
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void skipScidacFieldRecord() {
 | 
			
		||||
    skipPastObjectRecord(std::string(GRID_FORMAT));
 | 
			
		||||
    skipPastObjectRecord(std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    skipPastObjectRecord(std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    skipPastBinaryRecord();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IldgWriter : public ScidacWriter {
 | 
			
		||||
 public:
 | 
			
		||||
  
 | 
			
		||||
  IldgWriter(bool isboss) : ScidacWriter(isboss) {};
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // A little helper
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  void writeLimeIldgLFN(std::string &LFN)
 | 
			
		||||
  {
 | 
			
		||||
    uint64_t PayloadSize = LFN.size();
 | 
			
		||||
    int err;
 | 
			
		||||
    createLimeRecordHeader(ILDG_DATA_LFN, 0 , 0, PayloadSize);
 | 
			
		||||
    err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); assert(err>=0);
 | 
			
		||||
    err=limeWriterCloseRecord(LimeW); assert(err>=0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Special ILDG operations ; gauge configs only.
 | 
			
		||||
  // Don't require scidac records EXCEPT checksum
 | 
			
		||||
  // Use Grid MetaData object if present.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vsimd>
 | 
			
		||||
  void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase * grid = Umu.Grid();
 | 
			
		||||
    typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
 | 
			
		||||
    typedef iLorentzColourMatrix<vsimd> vobj;
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // fill the Grid header
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    scidacRecord  _scidacRecord;
 | 
			
		||||
    scidacFile    _scidacFile;
 | 
			
		||||
 | 
			
		||||
    ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
 | 
			
		||||
 | 
			
		||||
    std::string format = header.floating_point;
 | 
			
		||||
    header.ensemble_id    = description;
 | 
			
		||||
    header.ensemble_label = description;
 | 
			
		||||
    header.sequence_number = sequence;
 | 
			
		||||
    header.ildg_lfn = LFN;
 | 
			
		||||
 | 
			
		||||
    assert ( (format == std::string("IEEE32BIG"))  
 | 
			
		||||
           ||(format == std::string("IEEE64BIG")) );
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Fill ILDG header data struct
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    ildgFormat ildgfmt ;
 | 
			
		||||
    ildgfmt.field     = std::string("su3gauge");
 | 
			
		||||
 | 
			
		||||
    if ( format == std::string("IEEE32BIG") ) { 
 | 
			
		||||
      ildgfmt.precision = 32;
 | 
			
		||||
    } else { 
 | 
			
		||||
      ildgfmt.precision = 64;
 | 
			
		||||
    }
 | 
			
		||||
    ildgfmt.version = 1.0;
 | 
			
		||||
    ildgfmt.lx = header.dimension[0];
 | 
			
		||||
    ildgfmt.ly = header.dimension[1];
 | 
			
		||||
    ildgfmt.lz = header.dimension[2];
 | 
			
		||||
    ildgfmt.lt = header.dimension[3];
 | 
			
		||||
    assert(header.nd==4);
 | 
			
		||||
    assert(header.nd==header.dimension.size());
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Field norm tests
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FieldNormMetaData FieldNormMetaData_;
 | 
			
		||||
    FieldNormMetaData_.norm2 = norm2(Umu);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Fill the USQCD info field
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    usqcdInfo info;
 | 
			
		||||
    info.version=1.0;
 | 
			
		||||
    info.plaq   = header.plaquette;
 | 
			
		||||
    info.linktr = header.link_trace;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << GridLogMessage << " Writing config; IldgIO n2 "<< FieldNormMetaData_.norm2<<std::endl;
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    // Fill the Lime file record by record
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
			
		||||
    writeLimeObject(0,0,FieldNormMetaData_,FieldNormMetaData_.SerialisableClassName(),std::string(GRID_FIELD_NORM));
 | 
			
		||||
    writeLimeObject(0,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
 | 
			
		||||
    writeLimeObject(0,1,info,info.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
 | 
			
		||||
    writeLimeObject(1,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    writeLimeObject(0,0,info,info.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    writeLimeObject(0,0,ildgfmt,std::string("ildgFormat")   ,std::string(ILDG_FORMAT)); // rec
 | 
			
		||||
    writeLimeIldgLFN(header.ildg_lfn);                                                 // rec
 | 
			
		||||
    writeLimeLatticeBinaryObject(Umu,std::string(ILDG_BINARY_DATA));      // Closes message with checksum
 | 
			
		||||
    //    limeDestroyWriter(LimeW);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class IldgReader : public GridLimeReader {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Read either Grid/SciDAC/ILDG configuration
 | 
			
		||||
  // Don't require scidac records EXCEPT checksum
 | 
			
		||||
  // Use Grid MetaData object if present.
 | 
			
		||||
  // Else use ILDG MetaData object if present.
 | 
			
		||||
  // Else use SciDAC MetaData object if present.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vsimd>
 | 
			
		||||
  void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
 | 
			
		||||
    typedef typename GaugeField::vector_object  vobj;
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    typedef LorentzColourMatrixF fobj;
 | 
			
		||||
    typedef LorentzColourMatrixD dobj;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
    Coordinate dims = Umu.Grid()->FullDimensions();
 | 
			
		||||
 | 
			
		||||
    assert(dims.size()==4);
 | 
			
		||||
 | 
			
		||||
    // Metadata holders
 | 
			
		||||
    ildgFormat     ildgFormat_    ;
 | 
			
		||||
    std::string    ildgLFN_       ;
 | 
			
		||||
    scidacChecksum scidacChecksum_; 
 | 
			
		||||
    usqcdInfo      usqcdInfo_     ;
 | 
			
		||||
    FieldNormMetaData FieldNormMetaData_;
 | 
			
		||||
 | 
			
		||||
    // track what we read from file
 | 
			
		||||
    int found_ildgFormat    =0;
 | 
			
		||||
    int found_ildgLFN       =0;
 | 
			
		||||
    int found_scidacChecksum=0;
 | 
			
		||||
    int found_usqcdInfo     =0;
 | 
			
		||||
    int found_ildgBinary =0;
 | 
			
		||||
    int found_FieldMetaData =0;
 | 
			
		||||
    int found_FieldNormMetaData =0;
 | 
			
		||||
    uint32_t nersc_csum;
 | 
			
		||||
    uint32_t scidac_csuma;
 | 
			
		||||
    uint32_t scidac_csumb;
 | 
			
		||||
 | 
			
		||||
    // Binary format
 | 
			
		||||
    std::string format;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Loop over all records
 | 
			
		||||
    // -- Order is poorly guaranteed except ILDG header preceeds binary section.
 | 
			
		||||
    // -- Run like an event loop.
 | 
			
		||||
    // -- Impose trust hierarchy. Grid takes precedence & look for ILDG, and failing
 | 
			
		||||
    //    that Scidac. 
 | 
			
		||||
    // -- Insist on Scidac checksum record.
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
 | 
			
		||||
      uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
 | 
			
		||||
      
 | 
			
		||||
      //////////////////////////////////////////////////////////////////
 | 
			
		||||
      // If not BINARY_DATA read a string and parse
 | 
			
		||||
      //////////////////////////////////////////////////////////////////
 | 
			
		||||
      if ( strncmp(limeReaderType(LimeR), ILDG_BINARY_DATA,strlen(ILDG_BINARY_DATA) )  ) {
 | 
			
		||||
	
 | 
			
		||||
	// Copy out the string
 | 
			
		||||
	std::vector<char> xmlc(nbytes+1,'\0');
 | 
			
		||||
	limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);    
 | 
			
		||||
	//	std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
 | 
			
		||||
 | 
			
		||||
	//////////////////////////////////
 | 
			
		||||
	// ILDG format record
 | 
			
		||||
 | 
			
		||||
	std::string xmlstring(&xmlc[0]);
 | 
			
		||||
	if ( !strncmp(limeReaderType(LimeR), ILDG_FORMAT,strlen(ILDG_FORMAT)) ) { 
 | 
			
		||||
 | 
			
		||||
	  XmlReader RD(xmlstring, true, "");
 | 
			
		||||
	  read(RD,"ildgFormat",ildgFormat_);
 | 
			
		||||
 | 
			
		||||
	  if ( ildgFormat_.precision == 64 ) format = std::string("IEEE64BIG");
 | 
			
		||||
	  if ( ildgFormat_.precision == 32 ) format = std::string("IEEE32BIG");
 | 
			
		||||
 | 
			
		||||
	  assert( ildgFormat_.lx == dims[0]);
 | 
			
		||||
	  assert( ildgFormat_.ly == dims[1]);
 | 
			
		||||
	  assert( ildgFormat_.lz == dims[2]);
 | 
			
		||||
	  assert( ildgFormat_.lt == dims[3]);
 | 
			
		||||
 | 
			
		||||
	  found_ildgFormat = 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if ( !strncmp(limeReaderType(LimeR), ILDG_DATA_LFN,strlen(ILDG_DATA_LFN)) ) {
 | 
			
		||||
	  FieldMetaData_.ildg_lfn = xmlstring;
 | 
			
		||||
	  found_ildgLFN = 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if ( !strncmp(limeReaderType(LimeR), GRID_FORMAT,strlen(ILDG_FORMAT)) ) { 
 | 
			
		||||
 | 
			
		||||
	  XmlReader RD(xmlstring, true, "");
 | 
			
		||||
	  read(RD,"FieldMetaData",FieldMetaData_);
 | 
			
		||||
 | 
			
		||||
	  format = FieldMetaData_.floating_point;
 | 
			
		||||
 | 
			
		||||
	  assert(FieldMetaData_.dimension[0] == dims[0]);
 | 
			
		||||
	  assert(FieldMetaData_.dimension[1] == dims[1]);
 | 
			
		||||
	  assert(FieldMetaData_.dimension[2] == dims[2]);
 | 
			
		||||
	  assert(FieldMetaData_.dimension[3] == dims[3]);
 | 
			
		||||
 | 
			
		||||
	  found_FieldMetaData = 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if ( !strncmp(limeReaderType(LimeR), SCIDAC_RECORD_XML,strlen(SCIDAC_RECORD_XML)) ) { 
 | 
			
		||||
	  // is it a USQCD info field
 | 
			
		||||
	  if ( xmlstring.find(std::string("usqcdInfo")) != std::string::npos ) { 
 | 
			
		||||
	    //	    std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
 | 
			
		||||
	    XmlReader RD(xmlstring, true, "");
 | 
			
		||||
	    read(RD,"usqcdInfo",usqcdInfo_);
 | 
			
		||||
	    found_usqcdInfo = 1;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if ( !strncmp(limeReaderType(LimeR), SCIDAC_CHECKSUM,strlen(SCIDAC_CHECKSUM)) ) { 
 | 
			
		||||
	  XmlReader RD(xmlstring, true, "");
 | 
			
		||||
	  read(RD,"scidacChecksum",scidacChecksum_);
 | 
			
		||||
	  found_scidacChecksum = 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if ( !strncmp(limeReaderType(LimeR), GRID_FIELD_NORM,strlen(GRID_FIELD_NORM)) ) { 
 | 
			
		||||
	  XmlReader RD(xmlstring, true, "");
 | 
			
		||||
	  read(RD,GRID_FIELD_NORM,FieldNormMetaData_);
 | 
			
		||||
	  found_FieldNormMetaData = 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
      } else {  
 | 
			
		||||
	/////////////////////////////////
 | 
			
		||||
	// Binary data
 | 
			
		||||
	/////////////////////////////////
 | 
			
		||||
	//	std::cout << GridLogMessage << "ILDG Binary record found : "  ILDG_BINARY_DATA << std::endl;
 | 
			
		||||
	uint64_t offset= ftello(File);
 | 
			
		||||
	if ( format == std::string("IEEE64BIG") ) {
 | 
			
		||||
	  GaugeSimpleMunger<dobj, sobj> munge;
 | 
			
		||||
	  BinaryIO::readLatticeObject< vobj, dobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
	} else { 
 | 
			
		||||
	  GaugeSimpleMunger<fobj, sobj> munge;
 | 
			
		||||
	  BinaryIO::readLatticeObject< vobj, fobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	found_ildgBinary = 1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Minimally must find binary segment and checksum
 | 
			
		||||
    // Since this is an ILDG reader require ILDG format
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    assert(found_ildgLFN);
 | 
			
		||||
    assert(found_ildgBinary);
 | 
			
		||||
    assert(found_ildgFormat);
 | 
			
		||||
    assert(found_scidacChecksum);
 | 
			
		||||
 | 
			
		||||
    // Must find something with the lattice dimensions
 | 
			
		||||
    assert(found_FieldMetaData||found_ildgFormat);
 | 
			
		||||
 | 
			
		||||
    if ( found_FieldMetaData ) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"Grid MetaData was record found: configuration was probably written by Grid ! Yay ! "<<std::endl;
 | 
			
		||||
 | 
			
		||||
    } else { 
 | 
			
		||||
 | 
			
		||||
      assert(found_ildgFormat);
 | 
			
		||||
      assert ( ildgFormat_.field == std::string("su3gauge") );
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Populate our Grid metadata as best we can
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
      std::ostringstream vers; vers << ildgFormat_.version;
 | 
			
		||||
      FieldMetaData_.hdr_version = vers.str();
 | 
			
		||||
      FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
 | 
			
		||||
 | 
			
		||||
      FieldMetaData_.nd=4;
 | 
			
		||||
      FieldMetaData_.dimension.resize(4);
 | 
			
		||||
 | 
			
		||||
      FieldMetaData_.dimension[0] = ildgFormat_.lx ;
 | 
			
		||||
      FieldMetaData_.dimension[1] = ildgFormat_.ly ;
 | 
			
		||||
      FieldMetaData_.dimension[2] = ildgFormat_.lz ;
 | 
			
		||||
      FieldMetaData_.dimension[3] = ildgFormat_.lt ;
 | 
			
		||||
 | 
			
		||||
      if ( found_usqcdInfo ) { 
 | 
			
		||||
	FieldMetaData_.plaquette = usqcdInfo_.plaq;
 | 
			
		||||
	FieldMetaData_.link_trace= usqcdInfo_.linktr;
 | 
			
		||||
	std::cout << GridLogMessage <<"This configuration was probably written by USQCD "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage <<"USQCD xml record Plaquette : "<<FieldMetaData_.plaquette<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage <<"USQCD xml record LinkTrace : "<<FieldMetaData_.link_trace<<std::endl;
 | 
			
		||||
      } else { 
 | 
			
		||||
	FieldMetaData_.plaquette = 0.0;
 | 
			
		||||
	FieldMetaData_.link_trace= 0.0;
 | 
			
		||||
	std::cout << GridLogWarning << "This configuration is unsafe with no plaquette records that can verify it !!! "<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    // Really really want to mandate a scidac checksum
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    if ( found_FieldNormMetaData ) { 
 | 
			
		||||
      RealD nn = norm2(Umu);
 | 
			
		||||
      GRID_FIELD_NORM_CHECK(FieldNormMetaData_,nn);
 | 
			
		||||
      std::cout << GridLogMessage<<"FieldNormMetaData matches " << std::endl;
 | 
			
		||||
    }  else { 
 | 
			
		||||
      std::cout << GridLogWarning<<"FieldNormMetaData not found. " << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    if ( found_scidacChecksum ) {
 | 
			
		||||
      FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
			
		||||
      FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
			
		||||
      scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
 | 
			
		||||
      assert( scidac_csuma ==FieldMetaData_.scidac_checksuma);
 | 
			
		||||
      assert( scidac_csumb ==FieldMetaData_.scidac_checksumb);
 | 
			
		||||
      std::cout << GridLogMessage<<"SciDAC checksums match " << std::endl;
 | 
			
		||||
    } else { 
 | 
			
		||||
      std::cout << GridLogWarning<<"SciDAC checksums not found. This is unsafe. " << std::endl;
 | 
			
		||||
      assert(0); // Can I insist always checksum ?
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ( found_FieldMetaData || found_usqcdInfo ) {
 | 
			
		||||
      FieldMetaData checker;
 | 
			
		||||
      GaugeStatistics(Umu,checker);
 | 
			
		||||
      assert(fabs(checker.plaquette  - FieldMetaData_.plaquette )<1.0e-5);
 | 
			
		||||
      assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
 | 
			
		||||
      std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//HAVE_LIME
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -1,237 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/parallelIO/IldgIO.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_ILDGTYPES_IO_H
 | 
			
		||||
#define GRID_ILDGTYPES_IO_H
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_LIME
 | 
			
		||||
extern "C" { // for linkage
 | 
			
		||||
#include "lime.h"
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Data representation of records that enter ILDG and SciDac formats
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#define GRID_FORMAT      "grid-format"
 | 
			
		||||
#define ILDG_FORMAT      "ildg-format"
 | 
			
		||||
#define ILDG_BINARY_DATA "ildg-binary-data"
 | 
			
		||||
#define ILDG_DATA_LFN    "ildg-data-lfn"
 | 
			
		||||
#define SCIDAC_CHECKSUM           "scidac-checksum"
 | 
			
		||||
#define SCIDAC_PRIVATE_FILE_XML   "scidac-private-file-xml"
 | 
			
		||||
#define SCIDAC_FILE_XML           "scidac-file-xml"
 | 
			
		||||
#define SCIDAC_PRIVATE_RECORD_XML "scidac-private-record-xml"
 | 
			
		||||
#define SCIDAC_RECORD_XML         "scidac-record-xml"
 | 
			
		||||
#define SCIDAC_BINARY_DATA        "scidac-binary-data"
 | 
			
		||||
// Unused SCIDAC records names; could move to support this functionality
 | 
			
		||||
#define SCIDAC_SITELIST           "scidac-sitelist"
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
const int GRID_IO_SINGLEFILE = 0; // hardcode lift from QIO compat
 | 
			
		||||
const int GRID_IO_MULTIFILE  = 1; // hardcode lift from QIO compat
 | 
			
		||||
const int GRID_IO_FIELD      = 0; // hardcode lift from QIO compat
 | 
			
		||||
const int GRID_IO_GLOBAL     = 1; // hardcode lift from QIO compat
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// QIO uses mandatory "private" records fixed format
 | 
			
		||||
// Private is in principle "opaque" however it can't be changed now because that would break existing 
 | 
			
		||||
// file compatability, so should be correct to assume the undocumented but defacto file structure.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
struct emptyUserRecord : Serializable { 
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(emptyUserRecord,int,dummy);
 | 
			
		||||
  emptyUserRecord() { dummy=0; };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////
 | 
			
		||||
// Scidac private file xml
 | 
			
		||||
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile>
 | 
			
		||||
////////////////////////
 | 
			
		||||
struct scidacFile : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(scidacFile,
 | 
			
		||||
                                  double, version,
 | 
			
		||||
                                  int, spacetime,
 | 
			
		||||
				  std::string, dims, // must convert to int
 | 
			
		||||
                                  int, volfmt);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> getDimensions(void) { 
 | 
			
		||||
    std::stringstream stream(dims);
 | 
			
		||||
    std::vector<int> dimensions;
 | 
			
		||||
    int n;
 | 
			
		||||
    while(stream >> n){
 | 
			
		||||
      dimensions.push_back(n);
 | 
			
		||||
    }
 | 
			
		||||
    return dimensions;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void setDimensions(Coordinate dimensions) { 
 | 
			
		||||
    char delimiter = ' ';
 | 
			
		||||
    std::stringstream stream;
 | 
			
		||||
    for(int i=0;i<dimensions.size();i++){ 
 | 
			
		||||
      stream << dimensions[i];
 | 
			
		||||
      if ( i != dimensions.size()-1) { 
 | 
			
		||||
	stream << delimiter <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    dims = stream.str();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Constructor provides Grid
 | 
			
		||||
  scidacFile() =default; // default constructor
 | 
			
		||||
  scidacFile(GridBase * grid){
 | 
			
		||||
    version      = 1.0;
 | 
			
		||||
    spacetime    = grid->_ndimension;
 | 
			
		||||
    setDimensions(grid->FullDimensions()); 
 | 
			
		||||
    volfmt       = GRID_IO_SINGLEFILE;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////
 | 
			
		||||
// scidac-private-record-xml : example
 | 
			
		||||
// <scidacRecord>
 | 
			
		||||
// <version>1.1</version><date>Tue Jul 26 21:14:44 2011 UTC</date><recordtype>0</recordtype>
 | 
			
		||||
// <datatype>QDP_D3_ColorMatrix</datatype><precision>D</precision><colors>3</colors><spins>4</spins>
 | 
			
		||||
// <typesize>144</typesize><datacount>4</datacount>
 | 
			
		||||
// </scidacRecord>
 | 
			
		||||
///////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
struct scidacRecord : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(scidacRecord,
 | 
			
		||||
                                  double, version,
 | 
			
		||||
                                  std::string, date,
 | 
			
		||||
				  int, recordtype,
 | 
			
		||||
				  std::string, datatype,
 | 
			
		||||
				  std::string, precision,
 | 
			
		||||
				  int, colors,
 | 
			
		||||
				  int, spins,
 | 
			
		||||
				  int, typesize,
 | 
			
		||||
				  int, datacount);
 | 
			
		||||
 | 
			
		||||
  scidacRecord()
 | 
			
		||||
  : version(1.0), recordtype(0), colors(0), spins(0), typesize(0), datacount(0)
 | 
			
		||||
  {}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////
 | 
			
		||||
// ILDG format
 | 
			
		||||
////////////////////////
 | 
			
		||||
struct ildgFormat : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(ildgFormat,
 | 
			
		||||
				  double, version,
 | 
			
		||||
				  std::string, field,
 | 
			
		||||
				  int, precision,
 | 
			
		||||
				  int, lx,
 | 
			
		||||
				  int, ly,
 | 
			
		||||
				  int, lz,
 | 
			
		||||
				  int, lt);
 | 
			
		||||
  ildgFormat() { version=1.0; };
 | 
			
		||||
};
 | 
			
		||||
////////////////////////
 | 
			
		||||
// USQCD info
 | 
			
		||||
////////////////////////
 | 
			
		||||
struct usqcdInfo : Serializable { 
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdInfo,
 | 
			
		||||
				  double, version,
 | 
			
		||||
				  double, plaq,
 | 
			
		||||
				  double, linktr,
 | 
			
		||||
				  std::string, info);
 | 
			
		||||
  usqcdInfo() { 
 | 
			
		||||
    version=1.0; 
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
////////////////////////
 | 
			
		||||
// Scidac Checksum
 | 
			
		||||
////////////////////////
 | 
			
		||||
struct scidacChecksum : Serializable { 
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(scidacChecksum,
 | 
			
		||||
				  double, version,
 | 
			
		||||
				  std::string, suma,
 | 
			
		||||
				  std::string, sumb);
 | 
			
		||||
  scidacChecksum() { 
 | 
			
		||||
    version=1.0; 
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Type:           scidac-file-xml         <title>MILC ILDG archival gauge configuration</title>
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Type:           
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
////////////////////////
 | 
			
		||||
// Scidac private file xml 
 | 
			
		||||
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile> 
 | 
			
		||||
////////////////////////                                                                                                                                                                              
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// From http://www.physics.utah.edu/~detar/scidac/qio_2p3.pdf
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
struct usqcdPropFile : Serializable { 
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdPropFile,
 | 
			
		||||
				  double, version,
 | 
			
		||||
				  std::string, type,
 | 
			
		||||
				  std::string, info);
 | 
			
		||||
  usqcdPropFile() { 
 | 
			
		||||
    version=1.0; 
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
struct usqcdSourceInfo : Serializable { 
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdSourceInfo,
 | 
			
		||||
				  double, version,
 | 
			
		||||
				  std::string, info);
 | 
			
		||||
  usqcdSourceInfo() { 
 | 
			
		||||
    version=1.0; 
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
struct usqcdPropInfo : Serializable { 
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdPropInfo,
 | 
			
		||||
				  double, version,
 | 
			
		||||
				  int, spin,
 | 
			
		||||
				  int, color,
 | 
			
		||||
				  std::string, info);
 | 
			
		||||
  usqcdPropInfo() { 
 | 
			
		||||
    version=1.0; 
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,330 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/parallelIO/NerscIO.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <iomanip>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
#include <map>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
#include <sys/utsname.h>
 | 
			
		||||
#include <pwd.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////
 | 
			
		||||
// Precision mapping
 | 
			
		||||
///////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> static std::string getFormatString (void)
 | 
			
		||||
{
 | 
			
		||||
  std::string format;
 | 
			
		||||
  typedef typename getPrecision<vobj>::real_scalar_type stype;
 | 
			
		||||
  if ( sizeof(stype) == sizeof(float) ) {
 | 
			
		||||
    format = std::string("IEEE32BIG");
 | 
			
		||||
  }
 | 
			
		||||
  if ( sizeof(stype) == sizeof(double) ) {
 | 
			
		||||
    format = std::string("IEEE64BIG");
 | 
			
		||||
  }
 | 
			
		||||
  return format;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // header specification/interpretation
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    class FieldNormMetaData : Serializable {
 | 
			
		||||
    public:
 | 
			
		||||
      GRID_SERIALIZABLE_CLASS_MEMBERS(FieldNormMetaData, double, norm2);
 | 
			
		||||
    };
 | 
			
		||||
    class FieldMetaData : Serializable {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      GRID_SERIALIZABLE_CLASS_MEMBERS(FieldMetaData,
 | 
			
		||||
				      int, nd,
 | 
			
		||||
				      std::vector<int>, dimension,
 | 
			
		||||
				      std::vector<std::string>, boundary,
 | 
			
		||||
				      int, data_start,
 | 
			
		||||
				      std::string, hdr_version,
 | 
			
		||||
				      std::string, storage_format,
 | 
			
		||||
				      double, link_trace,
 | 
			
		||||
				      double, plaquette,
 | 
			
		||||
				      uint32_t, checksum,
 | 
			
		||||
				      uint32_t, scidac_checksuma,
 | 
			
		||||
				      uint32_t, scidac_checksumb,
 | 
			
		||||
				      unsigned int, sequence_number,
 | 
			
		||||
				      std::string, data_type,
 | 
			
		||||
				      std::string, ensemble_id,
 | 
			
		||||
				      std::string, ensemble_label,
 | 
			
		||||
				      std::string, ildg_lfn,
 | 
			
		||||
				      std::string, creator,
 | 
			
		||||
				      std::string, creator_hardware,
 | 
			
		||||
				      std::string, creation_date,
 | 
			
		||||
				      std::string, archive_date,
 | 
			
		||||
				      std::string, floating_point);
 | 
			
		||||
      // WARNING: non-initialised values might lead to twisted parallel IO
 | 
			
		||||
      // issues, std::string are fine because they initliase to size 0
 | 
			
		||||
      // as per C++ standard.
 | 
			
		||||
      FieldMetaData(void) 
 | 
			
		||||
      : nd(4), dimension(4,0), boundary(4, ""), data_start(0),
 | 
			
		||||
      link_trace(0.), plaquette(0.), checksum(0),
 | 
			
		||||
      scidac_checksuma(0), scidac_checksumb(0), sequence_number(0)
 | 
			
		||||
      {}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
// PB disable using namespace - this is a header and forces namesapce visibility for all 
 | 
			
		||||
// including files
 | 
			
		||||
//using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Bit and Physical Checksumming and QA of data
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
inline void GridMetaData(GridBase *grid,FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
  int nd = grid->_ndimension;
 | 
			
		||||
  header.nd = nd;
 | 
			
		||||
  header.dimension.resize(nd);
 | 
			
		||||
  header.boundary.resize(nd);
 | 
			
		||||
  header.data_start = 0;
 | 
			
		||||
  for(int d=0;d<nd;d++) {
 | 
			
		||||
    header.dimension[d] = grid->_fdimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  for(int d=0;d<nd;d++) {
 | 
			
		||||
    header.boundary[d] = std::string("PERIODIC");
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void MachineCharacteristics(FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
  // Who
 | 
			
		||||
  struct passwd *pw = getpwuid (getuid());
 | 
			
		||||
  if (pw) header.creator = std::string(pw->pw_name); 
 | 
			
		||||
 | 
			
		||||
  // When
 | 
			
		||||
  std::time_t t = std::time(nullptr);
 | 
			
		||||
  std::tm tm_ = *std::localtime(&t);
 | 
			
		||||
  std::ostringstream oss; 
 | 
			
		||||
  //      oss << std::put_time(&tm_, "%c %Z");
 | 
			
		||||
  header.creation_date = oss.str();
 | 
			
		||||
  header.archive_date  = header.creation_date;
 | 
			
		||||
 | 
			
		||||
  // What
 | 
			
		||||
  struct utsname name;  uname(&name);
 | 
			
		||||
  header.creator_hardware = std::string(name.nodename)+"-";
 | 
			
		||||
  header.creator_hardware+= std::string(name.machine)+"-";
 | 
			
		||||
  header.creator_hardware+= std::string(name.sysname)+"-";
 | 
			
		||||
  header.creator_hardware+= std::string(name.release);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define dump_meta_data(field, s)					\
 | 
			
		||||
  s << "BEGIN_HEADER"      << std::endl;				\
 | 
			
		||||
  s << "HDR_VERSION = "    << field.hdr_version    << std::endl;	\
 | 
			
		||||
  s << "DATATYPE = "       << field.data_type      << std::endl;	\
 | 
			
		||||
  s << "STORAGE_FORMAT = " << field.storage_format << std::endl;	\
 | 
			
		||||
  for(int i=0;i<4;i++){							\
 | 
			
		||||
    s << "DIMENSION_" << i+1 << " = " << field.dimension[i] << std::endl ; \
 | 
			
		||||
  }									\
 | 
			
		||||
  s << "LINK_TRACE = " << std::setprecision(10) << field.link_trace << std::endl; \
 | 
			
		||||
  s << "PLAQUETTE  = " << std::setprecision(10) << field.plaquette  << std::endl; \
 | 
			
		||||
  for(int i=0;i<4;i++){							\
 | 
			
		||||
    s << "BOUNDARY_"<<i+1<<" = " << field.boundary[i] << std::endl;	\
 | 
			
		||||
  }									\
 | 
			
		||||
									\
 | 
			
		||||
  s << "CHECKSUM = "<< std::hex << std::setw(10) << field.checksum << std::dec<<std::endl; \
 | 
			
		||||
  s << "SCIDAC_CHECKSUMA = "<< std::hex << std::setw(10) << field.scidac_checksuma << std::dec<<std::endl; \
 | 
			
		||||
  s << "SCIDAC_CHECKSUMB = "<< std::hex << std::setw(10) << field.scidac_checksumb << std::dec<<std::endl; \
 | 
			
		||||
  s << "ENSEMBLE_ID = "     << field.ensemble_id      << std::endl;	\
 | 
			
		||||
  s << "ENSEMBLE_LABEL = "  << field.ensemble_label   << std::endl;	\
 | 
			
		||||
  s << "SEQUENCE_NUMBER = " << field.sequence_number  << std::endl;	\
 | 
			
		||||
  s << "CREATOR = "         << field.creator          << std::endl;	\
 | 
			
		||||
  s << "CREATOR_HARDWARE = "<< field.creator_hardware << std::endl;	\
 | 
			
		||||
  s << "CREATION_DATE = "   << field.creation_date    << std::endl;	\
 | 
			
		||||
  s << "ARCHIVE_DATE = "    << field.archive_date     << std::endl;	\
 | 
			
		||||
  s << "FLOATING_POINT = "  << field.floating_point   << std::endl;	\
 | 
			
		||||
  s << "END_HEADER"         << std::endl;
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = field.Grid();
 | 
			
		||||
  std::string format = getFormatString<vobj>();
 | 
			
		||||
  header.floating_point = format;
 | 
			
		||||
  header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
 | 
			
		||||
  GridMetaData(grid,header); 
 | 
			
		||||
  MachineCharacteristics(header);
 | 
			
		||||
}
 | 
			
		||||
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
  // How to convert data precision etc...
 | 
			
		||||
  header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
 | 
			
		||||
  header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
 | 
			
		||||
}
 | 
			
		||||
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
  // How to convert data precision etc...
 | 
			
		||||
  header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
 | 
			
		||||
  header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
 | 
			
		||||
}
 | 
			
		||||
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
   
 | 
			
		||||
  GridBase *grid = field.Grid();
 | 
			
		||||
  std::string format = getFormatString<vLorentzColourMatrixF>();
 | 
			
		||||
  header.floating_point = format;
 | 
			
		||||
  header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
 | 
			
		||||
  GridMetaData(grid,header); 
 | 
			
		||||
  GaugeStatistics(field,header);
 | 
			
		||||
  MachineCharacteristics(header);
 | 
			
		||||
}
 | 
			
		||||
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = field.Grid();
 | 
			
		||||
  std::string format = getFormatString<vLorentzColourMatrixD>();
 | 
			
		||||
  header.floating_point = format;
 | 
			
		||||
  header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
 | 
			
		||||
  GridMetaData(grid,header); 
 | 
			
		||||
  GaugeStatistics(field,header);
 | 
			
		||||
  MachineCharacteristics(header);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Utilities ; these are QCD aware
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
inline void reconstruct3(LorentzColourMatrix & cm)
 | 
			
		||||
{
 | 
			
		||||
  const int x=0;
 | 
			
		||||
  const int y=1;
 | 
			
		||||
  const int z=2;
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
 | 
			
		||||
    cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
 | 
			
		||||
    cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Some data types for intermediate storage
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
 | 
			
		||||
 | 
			
		||||
typedef iLorentzColour2x3<Complex>  LorentzColour2x3;
 | 
			
		||||
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
 | 
			
		||||
typedef iLorentzColour2x3<ComplexD> LorentzColour2x3D;
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Simple classes for precision conversion
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class fobj, class sobj>
 | 
			
		||||
struct BinarySimpleUnmunger {
 | 
			
		||||
  typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
 | 
			
		||||
  typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
 | 
			
		||||
  
 | 
			
		||||
  void operator()(sobj &in, fobj &out) {
 | 
			
		||||
    // take word by word and transform accoding to the status
 | 
			
		||||
    fobj_stype *out_buffer = (fobj_stype *)&out;
 | 
			
		||||
    sobj_stype *in_buffer = (sobj_stype *)∈
 | 
			
		||||
    size_t fobj_words = sizeof(out) / sizeof(fobj_stype);
 | 
			
		||||
    size_t sobj_words = sizeof(in) / sizeof(sobj_stype);
 | 
			
		||||
    assert(fobj_words == sobj_words);
 | 
			
		||||
    
 | 
			
		||||
    for (unsigned int word = 0; word < sobj_words; word++)
 | 
			
		||||
      out_buffer[word] = in_buffer[word];  // type conversion on the fly
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class fobj, class sobj>
 | 
			
		||||
struct BinarySimpleMunger {
 | 
			
		||||
  typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
 | 
			
		||||
  typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
 | 
			
		||||
 | 
			
		||||
  void operator()(fobj &in, sobj &out) {
 | 
			
		||||
    // take word by word and transform accoding to the status
 | 
			
		||||
    fobj_stype *in_buffer = (fobj_stype *)∈
 | 
			
		||||
    sobj_stype *out_buffer = (sobj_stype *)&out;
 | 
			
		||||
    size_t fobj_words = sizeof(in) / sizeof(fobj_stype);
 | 
			
		||||
    size_t sobj_words = sizeof(out) / sizeof(sobj_stype);
 | 
			
		||||
    assert(fobj_words == sobj_words);
 | 
			
		||||
    
 | 
			
		||||
    for (unsigned int word = 0; word < sobj_words; word++)
 | 
			
		||||
      out_buffer[word] = in_buffer[word];  // type conversion on the fly
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class fobj,class sobj>
 | 
			
		||||
struct GaugeSimpleMunger{
 | 
			
		||||
  void operator()(fobj &in, sobj &out) {
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      for (int i = 0; i < Nc; i++) {
 | 
			
		||||
	for (int j = 0; j < Nc; j++) {
 | 
			
		||||
	  out(mu)()(i, j) = in(mu)()(i, j);
 | 
			
		||||
	}}
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class fobj, class sobj>
 | 
			
		||||
struct GaugeSimpleUnmunger {
 | 
			
		||||
 | 
			
		||||
  void operator()(sobj &in, fobj &out) {
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      for (int i = 0; i < Nc; i++) {
 | 
			
		||||
	for (int j = 0; j < Nc; j++) {
 | 
			
		||||
	  out(mu)()(i, j) = in(mu)()(i, j);
 | 
			
		||||
	}}
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class fobj,class sobj>
 | 
			
		||||
struct Gauge3x2munger{
 | 
			
		||||
  void operator() (fobj &in,sobj &out){
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      for(int i=0;i<2;i++){
 | 
			
		||||
	for(int j=0;j<3;j++){
 | 
			
		||||
	  out(mu)()(i,j) = in(mu)(i)(j);
 | 
			
		||||
	}}
 | 
			
		||||
    }
 | 
			
		||||
    reconstruct3(out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class fobj,class sobj>
 | 
			
		||||
struct Gauge3x2unmunger{
 | 
			
		||||
  void operator() (sobj &in,fobj &out){
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      for(int i=0;i<2;i++){
 | 
			
		||||
	for(int j=0;j<3;j++){
 | 
			
		||||
	  out(mu)(i)(j) = in(mu)()(i,j);
 | 
			
		||||
	}}
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,359 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/parallelIO/NerscIO.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Matt Spraggs <matthew.spraggs@gmail.com>
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_NERSC_IO_H
 | 
			
		||||
#define GRID_NERSC_IO_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Write and read from fstream; comput header offset for payload
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class NerscIO : public BinaryIO { 
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  static inline void truncate(std::string file){
 | 
			
		||||
    std::ofstream fout(file,std::ios::out);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  static inline unsigned int writeHeader(FieldMetaData &field,std::string file)
 | 
			
		||||
  {
 | 
			
		||||
    std::ofstream fout(file,std::ios::out|std::ios::in);
 | 
			
		||||
    fout.seekp(0,std::ios::beg);
 | 
			
		||||
    dump_meta_data(field, fout);
 | 
			
		||||
    field.data_start = fout.tellp();
 | 
			
		||||
    return field.data_start;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // for the header-reader
 | 
			
		||||
  static inline int readHeader(std::string file,GridBase *grid,  FieldMetaData &field)
 | 
			
		||||
  {
 | 
			
		||||
    std::map<std::string,std::string> header;
 | 
			
		||||
    std::string line;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    // read the header
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    std::ifstream fin(file);
 | 
			
		||||
 | 
			
		||||
    getline(fin,line); // read one line and insist is 
 | 
			
		||||
 | 
			
		||||
    removeWhitespace(line);
 | 
			
		||||
    std::cout << GridLogMessage << "* " << line << std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(line==std::string("BEGIN_HEADER"));
 | 
			
		||||
 | 
			
		||||
    do {
 | 
			
		||||
      getline(fin,line); // read one line
 | 
			
		||||
      std::cout << GridLogMessage << "* "<<line<< std::endl;
 | 
			
		||||
      int eq = line.find("=");
 | 
			
		||||
      if(eq >0) {
 | 
			
		||||
	std::string key=line.substr(0,eq);
 | 
			
		||||
	std::string val=line.substr(eq+1);
 | 
			
		||||
	removeWhitespace(key);
 | 
			
		||||
	removeWhitespace(val);
 | 
			
		||||
      
 | 
			
		||||
	header[key] = val;
 | 
			
		||||
      }
 | 
			
		||||
    } while( line.find("END_HEADER") == std::string::npos );
 | 
			
		||||
 | 
			
		||||
    field.data_start = fin.tellg();
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    // chomp the values
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    field.hdr_version    = header["HDR_VERSION"];
 | 
			
		||||
    field.data_type      = header["DATATYPE"];
 | 
			
		||||
    field.storage_format = header["STORAGE_FORMAT"];
 | 
			
		||||
  
 | 
			
		||||
    field.dimension[0] = std::stol(header["DIMENSION_1"]);
 | 
			
		||||
    field.dimension[1] = std::stol(header["DIMENSION_2"]);
 | 
			
		||||
    field.dimension[2] = std::stol(header["DIMENSION_3"]);
 | 
			
		||||
    field.dimension[3] = std::stol(header["DIMENSION_4"]);
 | 
			
		||||
 | 
			
		||||
    assert(grid->_ndimension == 4);
 | 
			
		||||
    for(int d=0;d<4;d++){
 | 
			
		||||
      assert(grid->_fdimensions[d]==field.dimension[d]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    field.link_trace = std::stod(header["LINK_TRACE"]);
 | 
			
		||||
    field.plaquette  = std::stod(header["PLAQUETTE"]);
 | 
			
		||||
 | 
			
		||||
    field.boundary[0] = header["BOUNDARY_1"];
 | 
			
		||||
    field.boundary[1] = header["BOUNDARY_2"];
 | 
			
		||||
    field.boundary[2] = header["BOUNDARY_3"];
 | 
			
		||||
    field.boundary[3] = header["BOUNDARY_4"];
 | 
			
		||||
 | 
			
		||||
    field.checksum = std::stoul(header["CHECKSUM"],0,16);
 | 
			
		||||
    field.ensemble_id      = header["ENSEMBLE_ID"];
 | 
			
		||||
    field.ensemble_label   = header["ENSEMBLE_LABEL"];
 | 
			
		||||
    field.sequence_number  = std::stol(header["SEQUENCE_NUMBER"]);
 | 
			
		||||
    field.creator          = header["CREATOR"];
 | 
			
		||||
    field.creator_hardware = header["CREATOR_HARDWARE"];
 | 
			
		||||
    field.creation_date    = header["CREATION_DATE"];
 | 
			
		||||
    field.archive_date     = header["ARCHIVE_DATE"];
 | 
			
		||||
    field.floating_point   = header["FLOATING_POINT"];
 | 
			
		||||
 | 
			
		||||
    return field.data_start;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Now the meat: the object readers
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  template<class vsimd>
 | 
			
		||||
  static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
 | 
			
		||||
				       FieldMetaData& header,
 | 
			
		||||
				       std::string file)
 | 
			
		||||
  {
 | 
			
		||||
    typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    uint64_t offset = readHeader(file,Umu.Grid(),header);
 | 
			
		||||
 | 
			
		||||
    FieldMetaData clone(header);
 | 
			
		||||
 | 
			
		||||
    std::string format(header.floating_point);
 | 
			
		||||
 | 
			
		||||
    int ieee32big = (format == std::string("IEEE32BIG"));
 | 
			
		||||
    int ieee32    = (format == std::string("IEEE32"));
 | 
			
		||||
    int ieee64big = (format == std::string("IEEE64BIG"));
 | 
			
		||||
    int ieee64    = (format == std::string("IEEE64"));
 | 
			
		||||
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    // depending on datatype, set up munger;
 | 
			
		||||
    // munger is a function of <floating point, Real, data_type>
 | 
			
		||||
    if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
 | 
			
		||||
      if ( ieee32 || ieee32big ) {
 | 
			
		||||
	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F> 
 | 
			
		||||
	  (Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
 | 
			
		||||
	   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      }
 | 
			
		||||
      if ( ieee64 || ieee64big ) {
 | 
			
		||||
	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D> 
 | 
			
		||||
	  (Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
 | 
			
		||||
	   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      }
 | 
			
		||||
    } else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
 | 
			
		||||
      if ( ieee32 || ieee32big ) {
 | 
			
		||||
	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
 | 
			
		||||
	  (Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
 | 
			
		||||
	   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      }
 | 
			
		||||
      if ( ieee64 || ieee64big ) {
 | 
			
		||||
	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
 | 
			
		||||
	  (Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
 | 
			
		||||
	   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    GaugeStatistics(Umu,clone);
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
 | 
			
		||||
	     <<" header   "<<std::hex<<header.checksum<<std::dec <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette
 | 
			
		||||
	     <<" header    "<<header.plaquette<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace
 | 
			
		||||
	     <<" header    "<<header.link_trace<<std::endl;
 | 
			
		||||
 | 
			
		||||
    if ( fabs(clone.plaquette -header.plaquette ) >=  1.0e-5 ) { 
 | 
			
		||||
      std::cout << " Plaquette mismatch "<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    if ( nersc_csum != header.checksum ) { 
 | 
			
		||||
      std::cerr << " checksum mismatch " << std::endl;
 | 
			
		||||
      std::cerr << " plaqs " << clone.plaquette << " " << header.plaquette << std::endl;
 | 
			
		||||
      std::cerr << " trace " << clone.link_trace<< " " << header.link_trace<< std::endl;
 | 
			
		||||
      std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
      
 | 
			
		||||
    std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class vsimd>
 | 
			
		||||
  static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
 | 
			
		||||
					std::string file, 
 | 
			
		||||
					int two_row,
 | 
			
		||||
					int bits32)
 | 
			
		||||
  {
 | 
			
		||||
    typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
 | 
			
		||||
 | 
			
		||||
    typedef iLorentzColourMatrix<vsimd> vobj;
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    // Following should become arguments
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    header.sequence_number = 1;
 | 
			
		||||
    header.ensemble_id     = "UKQCD";
 | 
			
		||||
    header.ensemble_label  = "DWF";
 | 
			
		||||
 | 
			
		||||
    typedef LorentzColourMatrixD fobj3D;
 | 
			
		||||
    typedef LorentzColour2x3D    fobj2D;
 | 
			
		||||
  
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
    GridMetaData(grid,header);
 | 
			
		||||
    assert(header.nd==4);
 | 
			
		||||
    GaugeStatistics(Umu,header);
 | 
			
		||||
    MachineCharacteristics(header);
 | 
			
		||||
 | 
			
		||||
	uint64_t offset;
 | 
			
		||||
 | 
			
		||||
    // Sod it -- always write 3x3 double
 | 
			
		||||
    header.floating_point = std::string("IEEE64BIG");
 | 
			
		||||
    header.data_type      = std::string("4D_SU3_GAUGE_3x3");
 | 
			
		||||
    GaugeSimpleUnmunger<fobj3D,sobj> munge;
 | 
			
		||||
	if ( grid->IsBoss() ) { 
 | 
			
		||||
	  truncate(file);
 | 
			
		||||
    offset = writeHeader(header,file);
 | 
			
		||||
	}
 | 
			
		||||
	grid->Broadcast(0,(void *)&offset,sizeof(offset));
 | 
			
		||||
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
 | 
			
		||||
					      nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    header.checksum = nersc_csum;
 | 
			
		||||
	if ( grid->IsBoss() ) { 
 | 
			
		||||
    writeHeader(header,file);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
 | 
			
		||||
	     <<std::hex<<header.checksum
 | 
			
		||||
	     <<std::dec<<" plaq "<< header.plaquette <<std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  // RNG state
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG ¶llel,std::string file)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename GridParallelRNG::RngStateType RngStateType;
 | 
			
		||||
 | 
			
		||||
    // Following should become arguments
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    header.sequence_number = 1;
 | 
			
		||||
    header.ensemble_id     = "UKQCD";
 | 
			
		||||
    header.ensemble_label  = "DWF";
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = parallel.Grid();
 | 
			
		||||
 | 
			
		||||
    GridMetaData(grid,header);
 | 
			
		||||
    assert(header.nd==4);
 | 
			
		||||
    header.link_trace=0.0;
 | 
			
		||||
    header.plaquette=0.0;
 | 
			
		||||
    MachineCharacteristics(header);
 | 
			
		||||
 | 
			
		||||
	uint64_t offset;
 | 
			
		||||
  
 | 
			
		||||
#ifdef RNG_RANLUX
 | 
			
		||||
    header.floating_point = std::string("UINT64");
 | 
			
		||||
    header.data_type      = std::string("RANLUX48");
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_MT19937
 | 
			
		||||
    header.floating_point = std::string("UINT32");
 | 
			
		||||
    header.data_type      = std::string("MT19937");
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_SITMO
 | 
			
		||||
    header.floating_point = std::string("UINT64");
 | 
			
		||||
    header.data_type      = std::string("SITMO");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	if ( grid->IsBoss() ) { 
 | 
			
		||||
    truncate(file);
 | 
			
		||||
    offset = writeHeader(header,file);
 | 
			
		||||
	}
 | 
			
		||||
	grid->Broadcast(0,(void *)&offset,sizeof(offset));
 | 
			
		||||
	
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::writeRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    header.checksum = nersc_csum;
 | 
			
		||||
	if ( grid->IsBoss() ) { 
 | 
			
		||||
    offset = writeHeader(header,file);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage 
 | 
			
		||||
	     <<"Written NERSC RNG STATE "<<file<< " checksum "
 | 
			
		||||
	     <<std::hex<<header.checksum
 | 
			
		||||
	     <<std::dec<<std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,FieldMetaData& header,std::string file)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename GridParallelRNG::RngStateType RngStateType;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = parallel.Grid();
 | 
			
		||||
 | 
			
		||||
	uint64_t offset = readHeader(file,grid,header);
 | 
			
		||||
 | 
			
		||||
    FieldMetaData clone(header);
 | 
			
		||||
 | 
			
		||||
    std::string format(header.floating_point);
 | 
			
		||||
    std::string data_type(header.data_type);
 | 
			
		||||
 | 
			
		||||
#ifdef RNG_RANLUX
 | 
			
		||||
    assert(format == std::string("UINT64"));
 | 
			
		||||
    assert(data_type == std::string("RANLUX48"));
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_MT19937
 | 
			
		||||
    assert(format == std::string("UINT32"));
 | 
			
		||||
    assert(data_type == std::string("MT19937"));
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_SITMO
 | 
			
		||||
    assert(format == std::string("UINT64"));
 | 
			
		||||
    assert(data_type == std::string("SITMO"));
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    // depending on datatype, set up munger;
 | 
			
		||||
    // munger is a function of <floating point, Real, data_type>
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::readRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    if ( nersc_csum != header.checksum ) { 
 | 
			
		||||
      std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,105 +0,0 @@
 | 
			
		||||
#ifndef _GRID_STAT_H
 | 
			
		||||
#define _GRID_STAT_H
 | 
			
		||||
 | 
			
		||||
#ifdef AVX512
 | 
			
		||||
#define _KNIGHTS_LANDING_ROOTONLY
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Extra KNL counters from MCDRAM
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef _KNIGHTS_LANDING_
 | 
			
		||||
#define NMC 6
 | 
			
		||||
#define NEDC 8
 | 
			
		||||
struct ctrs
 | 
			
		||||
{
 | 
			
		||||
  uint64_t mcrd[NMC];
 | 
			
		||||
  uint64_t mcwr[NMC];
 | 
			
		||||
  uint64_t edcrd[NEDC]; 
 | 
			
		||||
  uint64_t edcwr[NEDC];
 | 
			
		||||
  uint64_t edchite[NEDC];
 | 
			
		||||
  uint64_t edchitm[NEDC];
 | 
			
		||||
  uint64_t edcmisse[NEDC];
 | 
			
		||||
  uint64_t edcmissm[NEDC];
 | 
			
		||||
};
 | 
			
		||||
// Peter/Azusa:
 | 
			
		||||
// Our modification of a code provided by Larry Meadows from Intel
 | 
			
		||||
// Verified by email exchange non-NDA, ok for github. Should be as uses /sys/devices/ FS
 | 
			
		||||
// so is already public and in the linux kernel for KNL.
 | 
			
		||||
struct knl_gbl_
 | 
			
		||||
{
 | 
			
		||||
  int mc_rd[NMC];
 | 
			
		||||
  int mc_wr[NMC];
 | 
			
		||||
  int edc_rd[NEDC];
 | 
			
		||||
  int edc_wr[NEDC];
 | 
			
		||||
  int edc_hite[NEDC];
 | 
			
		||||
  int edc_hitm[NEDC];
 | 
			
		||||
  int edc_misse[NEDC];
 | 
			
		||||
  int edc_missm[NEDC];
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class PmuStat
 | 
			
		||||
{
 | 
			
		||||
  uint64_t counters[8][256];
 | 
			
		||||
#ifdef _KNIGHTS_LANDING_
 | 
			
		||||
  static struct knl_gbl_ gbl;
 | 
			
		||||
#endif
 | 
			
		||||
  const char *name;
 | 
			
		||||
 | 
			
		||||
  uint64_t reads;     // memory reads
 | 
			
		||||
  uint64_t writes;    // memory writes
 | 
			
		||||
  uint64_t mrstart;   // memory read counter at start of parallel region
 | 
			
		||||
  uint64_t mrend;     // memory read counter at end of parallel region
 | 
			
		||||
  uint64_t mwstart;   // memory write counter at start of parallel region
 | 
			
		||||
  uint64_t mwend;     // memory write counter at end of parallel region
 | 
			
		||||
 | 
			
		||||
  // cumulative counters
 | 
			
		||||
  uint64_t count;     // number of invocations
 | 
			
		||||
  uint64_t tregion;   // total time in parallel region (from thread 0)
 | 
			
		||||
  uint64_t tcycles;   // total cycles inside parallel region
 | 
			
		||||
  uint64_t inst, ref, cyc;   // fixed counters
 | 
			
		||||
  uint64_t pmc0, pmc1;// pmu
 | 
			
		||||
  // add memory counters here
 | 
			
		||||
  // temp variables
 | 
			
		||||
  uint64_t tstart;    // tsc at start of parallel region
 | 
			
		||||
  uint64_t tend;      // tsc at end of parallel region
 | 
			
		||||
  // map for ctrs values
 | 
			
		||||
  // 0 pmc0 start
 | 
			
		||||
  // 1 pmc0 end
 | 
			
		||||
  // 2 pmc1 start
 | 
			
		||||
  // 3 pmc1 end
 | 
			
		||||
  // 4 tsc start
 | 
			
		||||
  // 5 tsc end
 | 
			
		||||
  static bool pmu_initialized;
 | 
			
		||||
public:
 | 
			
		||||
  static bool is_init(void){ return pmu_initialized;}
 | 
			
		||||
  static void pmu_init(void);
 | 
			
		||||
  static void pmu_fini(void);
 | 
			
		||||
  static void pmu_start(void);
 | 
			
		||||
  static void pmu_stop(void);
 | 
			
		||||
  void accum(int nthreads);
 | 
			
		||||
  static void xmemctrs(uint64_t *mr, uint64_t *mw);
 | 
			
		||||
  void start(void);
 | 
			
		||||
  void enter(int t);
 | 
			
		||||
  void exit(int t);
 | 
			
		||||
  void print(void);
 | 
			
		||||
  void init(const char *regname);
 | 
			
		||||
  void clear(void);
 | 
			
		||||
#ifdef _KNIGHTS_LANDING_
 | 
			
		||||
  static void     KNLsetup(void);
 | 
			
		||||
  static uint64_t KNLreadctr(int fd);
 | 
			
		||||
  static void     KNLreadctrs(ctrs &c);
 | 
			
		||||
  static void     KNLevsetup(const char *ename, int &fd, int event, int umask);
 | 
			
		||||
#endif
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,124 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/QCD.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LT_H
 | 
			
		||||
#define GRID_LT_H
 | 
			
		||||
namespace Grid{
 | 
			
		||||
 | 
			
		||||
// First steps in the complete generalization of the Physics part
 | 
			
		||||
// Design not final
 | 
			
		||||
namespace LatticeTheories {
 | 
			
		||||
 | 
			
		||||
template <int Dimensions>
 | 
			
		||||
struct LatticeTheory {
 | 
			
		||||
  static const int Nd = Dimensions;
 | 
			
		||||
  static const int Nds = Dimensions * 2;  // double stored field
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSinglet = iScalar<iScalar<iScalar<vtype> > >;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <int Dimensions, int Colours>
 | 
			
		||||
struct LatticeGaugeTheory : public LatticeTheory<Dimensions> {
 | 
			
		||||
  static const int Nds = Dimensions * 2;
 | 
			
		||||
  static const int Nd = Dimensions;
 | 
			
		||||
  static const int Nc = Colours;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype> 
 | 
			
		||||
  using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd>;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds>;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <int Dimensions, int Colours, int Spin>
 | 
			
		||||
struct FermionicLatticeGaugeTheory
 | 
			
		||||
    : public LatticeGaugeTheory<Dimensions, Colours> {
 | 
			
		||||
  static const int Nd = Dimensions;
 | 
			
		||||
  static const int Nds = Dimensions * 2;
 | 
			
		||||
  static const int Nc = Colours;
 | 
			
		||||
  static const int Ns = Spin;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSpinMatrix = iScalar<iMatrix<iScalar<vtype>, Ns> >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Ns> >;
 | 
			
		||||
  // These 2 only if Spin is a multiple of 2
 | 
			
		||||
  static const int Nhs = Spin / 2;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iHalfSpinVector = iScalar<iVector<iScalar<vtype>, Nhs> >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iHalfSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
 | 
			
		||||
 | 
			
		||||
  //tests
 | 
			
		||||
  typedef iColourMatrix<Complex> ColourMatrix;
 | 
			
		||||
  typedef iColourMatrix<ComplexF> ColourMatrixF;
 | 
			
		||||
  typedef iColourMatrix<ComplexD> ColourMatrixD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Examples, not complete now.
 | 
			
		||||
struct QCD : public FermionicLatticeGaugeTheory<4, 3, 4> {
 | 
			
		||||
    static const int Xp = 0;
 | 
			
		||||
    static const int Yp = 1;
 | 
			
		||||
    static const int Zp = 2;
 | 
			
		||||
    static const int Tp = 3;
 | 
			
		||||
    static const int Xm = 4;
 | 
			
		||||
    static const int Ym = 5;
 | 
			
		||||
    static const int Zm = 6;
 | 
			
		||||
    static const int Tm = 7;
 | 
			
		||||
 | 
			
		||||
    typedef FermionicLatticeGaugeTheory FLGT;
 | 
			
		||||
 | 
			
		||||
    typedef FLGT::iSpinMatrix<Complex  >          SpinMatrix;
 | 
			
		||||
    typedef FLGT::iSpinMatrix<ComplexF >          SpinMatrixF;
 | 
			
		||||
    typedef FLGT::iSpinMatrix<ComplexD >          SpinMatrixD;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
struct QED : public FermionicLatticeGaugeTheory<4, 1, 4> {//fill
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <int Dimensions>
 | 
			
		||||
struct Scalar : public LatticeTheory<Dimensions> {};
 | 
			
		||||
 | 
			
		||||
};  // LatticeTheories
 | 
			
		||||
 | 
			
		||||
} // Grid
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										529
									
								
								Grid/qcd/QCD.h
									
									
									
									
									
								
							
							
						
						
									
										529
									
								
								Grid/qcd/QCD.h
									
									
									
									
									
								
							@@ -1,529 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/QCD.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
static constexpr int Xdir = 0;
 | 
			
		||||
static constexpr int Ydir = 1;
 | 
			
		||||
static constexpr int Zdir = 2;
 | 
			
		||||
static constexpr int Tdir = 3;
 | 
			
		||||
 | 
			
		||||
static constexpr int Xp = 0;
 | 
			
		||||
static constexpr int Yp = 1;
 | 
			
		||||
static constexpr int Zp = 2;
 | 
			
		||||
static constexpr int Tp = 3;
 | 
			
		||||
static constexpr int Xm = 4;
 | 
			
		||||
static constexpr int Ym = 5;
 | 
			
		||||
static constexpr int Zm = 6;
 | 
			
		||||
static constexpr int Tm = 7;
 | 
			
		||||
 | 
			
		||||
static constexpr int Nc=3;
 | 
			
		||||
static constexpr int Ns=4;
 | 
			
		||||
static constexpr int Nd=4;
 | 
			
		||||
static constexpr int Nhs=2; // half spinor
 | 
			
		||||
static constexpr int Nds=8; // double stored gauge field
 | 
			
		||||
static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// QCD iMatrix types
 | 
			
		||||
// Index conventions:                            Lorentz x Spin x Colour
 | 
			
		||||
// note: static constexpr int or constexpr will work for type deductions
 | 
			
		||||
//       with the intel compiler (up to version 17)
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#define ColourIndex  (2)
 | 
			
		||||
#define SpinIndex    (1)
 | 
			
		||||
#define LorentzIndex (0)
 | 
			
		||||
 | 
			
		||||
// Also should make these a named enum type
 | 
			
		||||
static constexpr int DaggerNo=0;
 | 
			
		||||
static constexpr int DaggerYes=1;
 | 
			
		||||
static constexpr int InverseNo=0;
 | 
			
		||||
static constexpr int InverseYes=1;
 | 
			
		||||
 | 
			
		||||
// Useful traits is this a spin index
 | 
			
		||||
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
 | 
			
		||||
 | 
			
		||||
const int SpinorIndex = 2;
 | 
			
		||||
template<typename T> struct isSpinor {
 | 
			
		||||
  static constexpr bool value = (SpinorIndex==T::TensorLevel);
 | 
			
		||||
};
 | 
			
		||||
template <typename T> using IfSpinor    = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
 | 
			
		||||
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
 | 
			
		||||
 | 
			
		||||
// ChrisK very keen to add extra space for Gparity doubling.
 | 
			
		||||
//
 | 
			
		||||
// Also add domain wall index, in a way where Wilson operator 
 | 
			
		||||
// naturally distributes across the 5th dimensions.
 | 
			
		||||
//
 | 
			
		||||
// That probably makes for GridRedBlack4dCartesian grid.
 | 
			
		||||
 | 
			
		||||
// s,sp,c,spc,lc
 | 
			
		||||
 | 
			
		||||
template<typename vtype> using iSinglet                   = iScalar<iScalar<iScalar<vtype> > >;
 | 
			
		||||
template<typename vtype> using iSpinMatrix                = iScalar<iMatrix<iScalar<vtype>, Ns> >;
 | 
			
		||||
template<typename vtype> using iColourMatrix              = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
 | 
			
		||||
template<typename vtype> using iSpinColourMatrix          = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
 | 
			
		||||
template<typename vtype> using iLorentzColourMatrix       = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
 | 
			
		||||
template<typename vtype> using iDoubleStoredColourMatrix  = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
 | 
			
		||||
template<typename vtype> using iSpinVector                = iScalar<iVector<iScalar<vtype>, Ns> >;
 | 
			
		||||
template<typename vtype> using iColourVector              = iScalar<iScalar<iVector<vtype, Nc> > >;
 | 
			
		||||
template<typename vtype> using iSpinColourVector          = iScalar<iVector<iVector<vtype, Nc>, Ns> >;
 | 
			
		||||
template<typename vtype> using iHalfSpinVector            = iScalar<iVector<iScalar<vtype>, Nhs> >;
 | 
			
		||||
template<typename vtype> using iHalfSpinColourVector      = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
 | 
			
		||||
    template<typename vtype> using iSpinColourSpinColourMatrix  = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename vtype> using iGparitySpinColourVector       = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityHalfSpinColourVector   = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
 | 
			
		||||
 | 
			
		||||
// Spin matrix
 | 
			
		||||
typedef iSpinMatrix<Complex  >          SpinMatrix;
 | 
			
		||||
typedef iSpinMatrix<ComplexF >          SpinMatrixF;
 | 
			
		||||
typedef iSpinMatrix<ComplexD >          SpinMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iSpinMatrix<vComplex >          vSpinMatrix;
 | 
			
		||||
typedef iSpinMatrix<vComplexF>          vSpinMatrixF;
 | 
			
		||||
typedef iSpinMatrix<vComplexD>          vSpinMatrixD;
 | 
			
		||||
 | 
			
		||||
// Colour Matrix
 | 
			
		||||
typedef iColourMatrix<Complex  >        ColourMatrix;
 | 
			
		||||
typedef iColourMatrix<ComplexF >        ColourMatrixF;
 | 
			
		||||
typedef iColourMatrix<ComplexD >        ColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iColourMatrix<vComplex >        vColourMatrix;
 | 
			
		||||
typedef iColourMatrix<vComplexF>        vColourMatrixF;
 | 
			
		||||
typedef iColourMatrix<vComplexD>        vColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// SpinColour matrix
 | 
			
		||||
typedef iSpinColourMatrix<Complex  >    SpinColourMatrix;
 | 
			
		||||
typedef iSpinColourMatrix<ComplexF >    SpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourMatrix<ComplexD >    SpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iSpinColourMatrix<vComplex >    vSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexF>    vSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexD>    vSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
    // SpinColourSpinColour matrix
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<Complex  >    SpinColourSpinColourMatrix;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<ComplexF >    SpinColourSpinColourMatrixF;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<ComplexD >    SpinColourSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<vComplex >    vSpinColourSpinColourMatrix;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<vComplexF>    vSpinColourSpinColourMatrixF;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<vComplexD>    vSpinColourSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
    // SpinColourSpinColour matrix
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<Complex  >    SpinColourSpinColourMatrix;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<ComplexF >    SpinColourSpinColourMatrixF;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<ComplexD >    SpinColourSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<vComplex >    vSpinColourSpinColourMatrix;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<vComplexF>    vSpinColourSpinColourMatrixF;
 | 
			
		||||
    typedef iSpinColourSpinColourMatrix<vComplexD>    vSpinColourSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// LorentzColour
 | 
			
		||||
typedef iLorentzColourMatrix<Complex  > LorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// DoubleStored gauge field
 | 
			
		||||
typedef iDoubleStoredColourMatrix<Complex  > DoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// Spin vector
 | 
			
		||||
typedef iSpinVector<Complex >           SpinVector;
 | 
			
		||||
typedef iSpinVector<ComplexF>           SpinVectorF;
 | 
			
		||||
typedef iSpinVector<ComplexD>           SpinVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iSpinVector<vComplex >           vSpinVector;
 | 
			
		||||
typedef iSpinVector<vComplexF>           vSpinVectorF;
 | 
			
		||||
typedef iSpinVector<vComplexD>           vSpinVectorD;
 | 
			
		||||
 | 
			
		||||
// Colour vector
 | 
			
		||||
typedef iColourVector<Complex >         ColourVector;
 | 
			
		||||
typedef iColourVector<ComplexF>         ColourVectorF;
 | 
			
		||||
typedef iColourVector<ComplexD>         ColourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iColourVector<vComplex >         vColourVector;
 | 
			
		||||
typedef iColourVector<vComplexF>         vColourVectorF;
 | 
			
		||||
typedef iColourVector<vComplexD>         vColourVectorD;
 | 
			
		||||
 | 
			
		||||
// SpinColourVector
 | 
			
		||||
typedef iSpinColourVector<Complex >     SpinColourVector;
 | 
			
		||||
typedef iSpinColourVector<ComplexF>     SpinColourVectorF;
 | 
			
		||||
typedef iSpinColourVector<ComplexD>     SpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iSpinColourVector<vComplex >     vSpinColourVector;
 | 
			
		||||
typedef iSpinColourVector<vComplexF>     vSpinColourVectorF;
 | 
			
		||||
typedef iSpinColourVector<vComplexD>     vSpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
// HalfSpin vector
 | 
			
		||||
typedef iHalfSpinVector<Complex >       HalfSpinVector;
 | 
			
		||||
typedef iHalfSpinVector<ComplexF>       HalfSpinVectorF;
 | 
			
		||||
typedef iHalfSpinVector<ComplexD>       HalfSpinVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iHalfSpinVector<vComplex >       vHalfSpinVector;
 | 
			
		||||
typedef iHalfSpinVector<vComplexF>       vHalfSpinVectorF;
 | 
			
		||||
typedef iHalfSpinVector<vComplexD>       vHalfSpinVectorD;
 | 
			
		||||
 | 
			
		||||
// HalfSpinColour vector
 | 
			
		||||
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
 | 
			
		||||
    
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
 | 
			
		||||
    
 | 
			
		||||
// singlets
 | 
			
		||||
typedef iSinglet<Complex >         TComplex;     // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
typedef iSinglet<ComplexF>         TComplexF;    // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
typedef iSinglet<ComplexD>         TComplexD;    // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
 | 
			
		||||
typedef iSinglet<vComplex >        vTComplex ;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexF>        vTComplexF;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexD>        vTComplexD;   // what if we don't know the tensor structure
 | 
			
		||||
 | 
			
		||||
typedef iSinglet<Real >            TReal;        // Shouldn't need these; can I make it work without?
 | 
			
		||||
typedef iSinglet<RealF>            TRealF;       // Shouldn't need these; can I make it work without?
 | 
			
		||||
typedef iSinglet<RealD>            TRealD;       // Shouldn't need these; can I make it work without?
 | 
			
		||||
 | 
			
		||||
typedef iSinglet<vReal >           vTReal;      
 | 
			
		||||
typedef iSinglet<vRealF>           vTRealF;      
 | 
			
		||||
typedef iSinglet<vRealD>           vTRealD;      
 | 
			
		||||
 | 
			
		||||
typedef iSinglet<vInteger>         vTInteger;
 | 
			
		||||
typedef iSinglet<Integer >         TInteger;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Lattices of these
 | 
			
		||||
typedef Lattice<vColourMatrix>          LatticeColourMatrix;
 | 
			
		||||
typedef Lattice<vColourMatrixF>         LatticeColourMatrixF;
 | 
			
		||||
typedef Lattice<vColourMatrixD>         LatticeColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinMatrix>            LatticeSpinMatrix;
 | 
			
		||||
typedef Lattice<vSpinMatrixF>           LatticeSpinMatrixF;
 | 
			
		||||
typedef Lattice<vSpinMatrixD>           LatticeSpinMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourMatrix>      LatticeSpinColourMatrix;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixF>     LatticeSpinColourMatrixF;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixD>     LatticeSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrix>      LatticeSpinColourSpinColourMatrix;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixF>     LatticeSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixD>     LatticeSpinColourSpinColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vLorentzColourMatrix>  LatticeLorentzColourMatrix;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
// DoubleStored gauge field
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrix>  LatticeDoubleStoredColourMatrix;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinVector>            LatticeSpinVector;
 | 
			
		||||
typedef Lattice<vSpinVectorF>           LatticeSpinVectorF;
 | 
			
		||||
typedef Lattice<vSpinVectorD>           LatticeSpinVectorD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vColourVector>          LatticeColourVector;
 | 
			
		||||
typedef Lattice<vColourVectorF>         LatticeColourVectorF;
 | 
			
		||||
typedef Lattice<vColourVectorD>         LatticeColourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourVector>      LatticeSpinColourVector;
 | 
			
		||||
typedef Lattice<vSpinColourVectorF>     LatticeSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vSpinColourVectorD>     LatticeSpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vHalfSpinVector>        LatticeHalfSpinVector;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorF>       LatticeHalfSpinVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorD>       LatticeHalfSpinVectorD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vHalfSpinColourVector>  LatticeHalfSpinColourVector;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTReal>            LatticeReal;
 | 
			
		||||
typedef Lattice<vTRealF>           LatticeRealF;
 | 
			
		||||
typedef Lattice<vTRealD>           LatticeRealD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTComplex>         LatticeComplex;
 | 
			
		||||
typedef Lattice<vTComplexF>        LatticeComplexF;
 | 
			
		||||
typedef Lattice<vTComplexD>        LatticeComplexD;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTInteger>         LatticeInteger; // Predicates for "where"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Physical names for things
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
typedef LatticeHalfSpinColourVector  LatticeHalfFermion;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
 | 
			
		||||
 | 
			
		||||
typedef LatticeSpinColourVector      LatticeFermion;
 | 
			
		||||
typedef LatticeSpinColourVectorF     LatticeFermionF;
 | 
			
		||||
typedef LatticeSpinColourVectorD     LatticeFermionD;
 | 
			
		||||
 | 
			
		||||
typedef LatticeSpinColourMatrix                LatticePropagator;
 | 
			
		||||
typedef LatticeSpinColourMatrixF               LatticePropagatorF;
 | 
			
		||||
typedef LatticeSpinColourMatrixD               LatticePropagatorD;
 | 
			
		||||
 | 
			
		||||
typedef LatticeLorentzColourMatrix             LatticeGaugeField;
 | 
			
		||||
typedef LatticeLorentzColourMatrixF            LatticeGaugeFieldF;
 | 
			
		||||
typedef LatticeLorentzColourMatrixD            LatticeGaugeFieldD;
 | 
			
		||||
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrix        LatticeDoubledGaugeField;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixF       LatticeDoubledGaugeFieldF;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixD       LatticeDoubledGaugeFieldD;
 | 
			
		||||
 | 
			
		||||
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
 | 
			
		||||
 | 
			
		||||
// Uhgg... typing this hurt  ;)
 | 
			
		||||
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
 | 
			
		||||
typedef Lattice<vColourVector>          LatticeStaggeredFermion;    
 | 
			
		||||
typedef Lattice<vColourVectorF>         LatticeStaggeredFermionF;    
 | 
			
		||||
typedef Lattice<vColourVectorD>         LatticeStaggeredFermionD;    
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vColourMatrix>          LatticeStaggeredPropagator; 
 | 
			
		||||
typedef Lattice<vColourMatrixF>         LatticeStaggeredPropagatorF; 
 | 
			
		||||
typedef Lattice<vColourMatrixD>         LatticeStaggeredPropagatorD; 
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Peek and Poke named after physics attributes
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
//spin
 | 
			
		||||
template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(PeekIndex<SpinIndex>(rhs,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<SpinIndex>(rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekSpin(const vobj &rhs,int i,int j) -> decltype(PeekIndex<SpinIndex>(rhs,0,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<SpinIndex>(rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekSpin(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<SpinIndex>(rhs,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<SpinIndex>(rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekSpin(const Lattice<vobj> &rhs,int i,int j) -> decltype(PeekIndex<SpinIndex>(rhs,0,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<SpinIndex>(rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
//colour
 | 
			
		||||
template<class vobj> auto peekColour(const vobj &rhs,int i) -> decltype(PeekIndex<ColourIndex>(rhs,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<ColourIndex>(rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekColour(const vobj &rhs,int i,int j) -> decltype(PeekIndex<ColourIndex>(rhs,0,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<ColourIndex>(rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekColour(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<ColourIndex>(rhs,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<ColourIndex>(rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekColour(const Lattice<vobj> &rhs,int i,int j) -> decltype(PeekIndex<ColourIndex>(rhs,0,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<ColourIndex>(rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
//lorentz
 | 
			
		||||
template<class vobj> auto peekLorentz(const vobj &rhs,int i) -> decltype(PeekIndex<LorentzIndex>(rhs,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<LorentzIndex>(rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<LorentzIndex>(rhs,0))
 | 
			
		||||
{
 | 
			
		||||
  return PeekIndex<LorentzIndex>(rhs,i);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
// Poke lattice
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
template<class vobj> 
 | 
			
		||||
void pokeColour(Lattice<vobj> &lhs,
 | 
			
		||||
		const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0))> & rhs,
 | 
			
		||||
		int i)
 | 
			
		||||
{
 | 
			
		||||
  PokeIndex<ColourIndex>(lhs,rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> 
 | 
			
		||||
void pokeColour(Lattice<vobj> &lhs,
 | 
			
		||||
		const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0,0))> & rhs,
 | 
			
		||||
		int i,int j)
 | 
			
		||||
{
 | 
			
		||||
  PokeIndex<ColourIndex>(lhs,rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> 
 | 
			
		||||
void pokeSpin(Lattice<vobj> &lhs,
 | 
			
		||||
              const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0))> & rhs,
 | 
			
		||||
              int i)
 | 
			
		||||
{
 | 
			
		||||
  PokeIndex<SpinIndex>(lhs,rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> 
 | 
			
		||||
void pokeSpin(Lattice<vobj> &lhs,
 | 
			
		||||
              const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0,0))> & rhs,
 | 
			
		||||
              int i,int j)
 | 
			
		||||
{
 | 
			
		||||
  PokeIndex<SpinIndex>(lhs,rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> 
 | 
			
		||||
void pokeLorentz(Lattice<vobj> &lhs,
 | 
			
		||||
		 const Lattice<decltype(peekIndex<LorentzIndex>(vobj(),0))> & rhs,
 | 
			
		||||
		 int i)
 | 
			
		||||
{
 | 
			
		||||
  PokeIndex<LorentzIndex>(lhs,rhs,i);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
// Poke scalars
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0)) & rhs,int i)
 | 
			
		||||
{
 | 
			
		||||
  pokeIndex<SpinIndex>(lhs,rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0,0)) & rhs,int i,int j)
 | 
			
		||||
{
 | 
			
		||||
  pokeIndex<SpinIndex>(lhs,rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0)) & rhs,int i)
 | 
			
		||||
{
 | 
			
		||||
  pokeIndex<ColourIndex>(lhs,rhs,i);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0,0)) & rhs,int i,int j)
 | 
			
		||||
{
 | 
			
		||||
  pokeIndex<ColourIndex>(lhs,rhs,i,j);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<LorentzIndex>(lhs,0)) & rhs,int i)
 | 
			
		||||
{
 | 
			
		||||
  pokeIndex<LorentzIndex>(lhs,rhs,i);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
// Fermion <-> propagator assignements
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
    //template <class Prop, class Ferm>
 | 
			
		||||
    template <class Fimpl>
 | 
			
		||||
      void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
 | 
			
		||||
{
 | 
			
		||||
  for(int j = 0; j < Ns; ++j)
 | 
			
		||||
    {
 | 
			
		||||
      auto pjs = peekSpin(p, j, s);
 | 
			
		||||
      auto fj  = peekSpin(f, j);
 | 
			
		||||
            
 | 
			
		||||
            for(int i = 0; i < Fimpl::Dimension; ++i)
 | 
			
		||||
	{
 | 
			
		||||
	  pokeColour(pjs, peekColour(fj, i), i, c);
 | 
			
		||||
	}
 | 
			
		||||
      pokeSpin(p, pjs, j, s);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
    //template <class Prop, class Ferm>
 | 
			
		||||
    template <class Fimpl>
 | 
			
		||||
      void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
 | 
			
		||||
{
 | 
			
		||||
  for(int j = 0; j < Ns; ++j)
 | 
			
		||||
    {
 | 
			
		||||
      auto pjs = peekSpin(p, j, s);
 | 
			
		||||
      auto fj  = peekSpin(f, j);
 | 
			
		||||
            
 | 
			
		||||
            for(int i = 0; i < Fimpl::Dimension; ++i)
 | 
			
		||||
	{
 | 
			
		||||
	  pokeColour(fj, peekColour(pjs, i, c), i);
 | 
			
		||||
	}
 | 
			
		||||
      pokeSpin(f, fj, j);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
// transpose array and scalar
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj> inline Lattice<vobj> transposeSpin(const Lattice<vobj> &lhs){
 | 
			
		||||
  return transposeIndex<SpinIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj> inline Lattice<vobj> transposeColour(const Lattice<vobj> &lhs){
 | 
			
		||||
  return transposeIndex<ColourIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj> inline vobj transposeSpin(const vobj &lhs){
 | 
			
		||||
  return transposeIndex<SpinIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj> inline vobj transposeColour(const vobj &lhs){
 | 
			
		||||
  return transposeIndex<ColourIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////
 | 
			
		||||
// Trace lattice and non-lattice
 | 
			
		||||
//////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj>
 | 
			
		||||
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(vobj()))>
 | 
			
		||||
{
 | 
			
		||||
  return traceIndex<SpinIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj>
 | 
			
		||||
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(vobj()))>
 | 
			
		||||
{
 | 
			
		||||
  return traceIndex<ColourIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj>
 | 
			
		||||
inline auto traceSpin(const vobj &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs))>
 | 
			
		||||
{
 | 
			
		||||
  return traceIndex<SpinIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj>
 | 
			
		||||
inline auto traceColour(const vobj &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs))>
 | 
			
		||||
{
 | 
			
		||||
  return traceIndex<ColourIndex>(lhs);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////
 | 
			
		||||
// Current types
 | 
			
		||||
//////////////////////////////////////////
 | 
			
		||||
GRID_SERIALIZABLE_ENUM(Current, undef,
 | 
			
		||||
		       Vector,  0,
 | 
			
		||||
		       Axial,   1,
 | 
			
		||||
		       Tadpole, 2);
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,54 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/ActionBase.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef ACTION_BASE_H
 | 
			
		||||
#define ACTION_BASE_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class GaugeField >
 | 
			
		||||
class Action 
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  bool is_smeared = false;
 | 
			
		||||
  // Heatbath?
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) = 0;                             // evaluate the action
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0;        // evaluate the action derivative
 | 
			
		||||
  virtual std::string action_name()    = 0;                             // return the action name
 | 
			
		||||
  virtual std::string LogParameters()  = 0;                             // prints action parameters
 | 
			
		||||
  virtual ~Action(){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // ACTION_BASE_H
 | 
			
		||||
@@ -1,69 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/ActionCore.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef QCD_ACTION_CORE
 | 
			
		||||
#define QCD_ACTION_CORE
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/ActionBase.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionBase);
 | 
			
		||||
#include <Grid/qcd/action/ActionSet.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionSet);
 | 
			
		||||
#include <Grid/qcd/action/ActionParams.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionParams);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Gauge Actions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/gauge/Gauge.h>
 | 
			
		||||
NAMESPACE_CHECK(Gauge);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Fermion prereqs
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionFermionCore);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Scalar Actions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/scalar/Scalar.h>
 | 
			
		||||
NAMESPACE_CHECK(Scalar);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Utility functions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/utils/Metric.h>
 | 
			
		||||
NAMESPACE_CHECK(Metric);
 | 
			
		||||
#include <Grid/qcd/utils/CovariantLaplacian.h>
 | 
			
		||||
NAMESPACE_CHECK(CovariantLaplacian);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,91 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/ActionParams.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef GRID_QCD_ACTION_PARAMS_H
 | 
			
		||||
#define GRID_QCD_ACTION_PARAMS_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// These can move into a params header and be given MacroMagic serialisation
 | 
			
		||||
struct GparityWilsonImplParams {
 | 
			
		||||
  Coordinate twists;
 | 
			
		||||
  GparityWilsonImplParams() : twists(Nd, 0) {};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
struct WilsonImplParams {
 | 
			
		||||
  bool overlapCommsCompute;
 | 
			
		||||
  AcceleratorVector<Real,Nd> twist_n_2pi_L;
 | 
			
		||||
  AcceleratorVector<Complex,Nd> boundary_phases;
 | 
			
		||||
  WilsonImplParams()  {
 | 
			
		||||
    boundary_phases.resize(Nd, 1.0);
 | 
			
		||||
      twist_n_2pi_L.resize(Nd, 0.0);
 | 
			
		||||
  };
 | 
			
		||||
  WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
 | 
			
		||||
    twist_n_2pi_L.resize(Nd, 0.0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct StaggeredImplParams {
 | 
			
		||||
  StaggeredImplParams()  {};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
  struct OneFlavourRationalParams : Serializable {
 | 
			
		||||
    GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams, 
 | 
			
		||||
				    RealD, lo, 
 | 
			
		||||
				    RealD, hi, 
 | 
			
		||||
				    int,   MaxIter, 
 | 
			
		||||
				    RealD, tolerance, 
 | 
			
		||||
				    int,   degree, 
 | 
			
		||||
				    int,   precision,
 | 
			
		||||
				    int,   BoundsCheckFreq);
 | 
			
		||||
    
 | 
			
		||||
  // MaxIter and tolerance, vectors??
 | 
			
		||||
    
 | 
			
		||||
  // constructor 
 | 
			
		||||
  OneFlavourRationalParams(	RealD _lo      = 0.0, 
 | 
			
		||||
				RealD _hi      = 1.0, 
 | 
			
		||||
				int _maxit     = 1000,
 | 
			
		||||
				RealD tol      = 1.0e-8, 
 | 
			
		||||
                           	int _degree    = 10,
 | 
			
		||||
				int _precision = 64,
 | 
			
		||||
				int _BoundsCheckFreq=20)
 | 
			
		||||
      : lo(_lo),
 | 
			
		||||
	hi(_hi),
 | 
			
		||||
	MaxIter(_maxit),
 | 
			
		||||
	tolerance(tol),
 | 
			
		||||
	degree(_degree),
 | 
			
		||||
        precision(_precision),
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,100 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_ABSTRACT_EOFA_FERMION_H
 | 
			
		||||
#define  GRID_QCD_ABSTRACT_EOFA_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// DJM: Abstract base class for EOFA fermion types.
 | 
			
		||||
// Defines layout of additional EOFA-specific parameters and operators.
 | 
			
		||||
// Use to construct EOFA pseudofermion actions that are agnostic to
 | 
			
		||||
// Shamir / Mobius / etc., and ensure that no one can construct EOFA
 | 
			
		||||
// pseudofermion action with non-EOFA fermion type.
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  // Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
 | 
			
		||||
  RealD mq1;
 | 
			
		||||
  RealD mq2;
 | 
			
		||||
  RealD mq3;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
  int pm;
 | 
			
		||||
 | 
			
		||||
  RealD alpha; // Mobius scale
 | 
			
		||||
  RealD k;     // EOFA normalization constant
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable(void) = 0;
 | 
			
		||||
 | 
			
		||||
  // EOFA-specific operations
 | 
			
		||||
  // Force user to implement in derived classes
 | 
			
		||||
  virtual void  Omega    (const FermionField& in, FermionField& out, int sign, int dag) = 0;
 | 
			
		||||
  virtual void  Dtilde   (const FermionField& in, FermionField& out) = 0;
 | 
			
		||||
  virtual void  DtildeInv(const FermionField& in, FermionField& out) = 0;
 | 
			
		||||
 | 
			
		||||
  // Implement derivatives in base class:
 | 
			
		||||
  // for EOFA both DWF and Mobius just need d(Dw)/dU
 | 
			
		||||
  virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
 | 
			
		||||
    this->DhopDeriv(mat, U, V, dag);
 | 
			
		||||
  };
 | 
			
		||||
  virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
 | 
			
		||||
    this->DhopDerivOE(mat, U, V, dag);
 | 
			
		||||
  };
 | 
			
		||||
  virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
 | 
			
		||||
    this->DhopDerivEO(mat, U, V, dag);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Recompute 5D coefficients for different value of shift constant
 | 
			
		||||
  // (needed for heatbath loop over poles)
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
 | 
			
		||||
		      GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
 | 
			
		||||
		      RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
 | 
			
		||||
		      RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
 | 
			
		||||
    : CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
 | 
			
		||||
			    _mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    this->alpha = _b + _c;
 | 
			
		||||
    this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
 | 
			
		||||
      ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
 | 
			
		||||
      ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,170 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class CayleyFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // override multiply
 | 
			
		||||
  virtual RealD  M    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual RealD  Mdag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operations
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Meo5D (const FermionField &psi, FermionField &chi);
 | 
			
		||||
 | 
			
		||||
  virtual void   M5D   (const FermionField &psi, FermionField &chi);
 | 
			
		||||
  virtual void   M5Ddag(const FermionField &psi, FermionField &chi);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Physical surface field utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void Dminus(const FermionField &psi, FermionField &chi);
 | 
			
		||||
  virtual void DminusDag(const FermionField &psi, FermionField &chi);
 | 
			
		||||
  virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
 | 
			
		||||
  virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
 | 
			
		||||
  virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);
 | 
			
		||||
  virtual void ImportUnphysicalFermion(const FermionField &solution5d, FermionField &exported4d);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Support for MADWF tricks
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  RealD Mass(void) { return mass; };
 | 
			
		||||
  void  SetMass(RealD _mass) { 
 | 
			
		||||
    mass=_mass; 
 | 
			
		||||
    SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c);  // Reset coeffs
 | 
			
		||||
  } ;
 | 
			
		||||
  void  P(const FermionField &psi, FermionField &chi);
 | 
			
		||||
  void  Pdag(const FermionField &psi, FermionField &chi);
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField &psi,
 | 
			
		||||
	   const FermionField &phi,
 | 
			
		||||
	   FermionField &chi,
 | 
			
		||||
	   Vector<Coeff_t> &lower,
 | 
			
		||||
	   Vector<Coeff_t> &diag,
 | 
			
		||||
	   Vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField &psi,
 | 
			
		||||
	      const FermionField &phi,
 | 
			
		||||
	      FermionField &chi,
 | 
			
		||||
	      Vector<Coeff_t> &lower,
 | 
			
		||||
	      Vector<Coeff_t> &diag,
 | 
			
		||||
	      Vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void)=0;
 | 
			
		||||
 | 
			
		||||
  // force terms; five routines; default to Dhop on diagonal
 | 
			
		||||
  virtual void MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
 | 
			
		||||
  // Efficient support for multigrid coarsening
 | 
			
		||||
  virtual void  Mdir   (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
 | 
			
		||||
  void   Meooe5D       (const FermionField &in, FermionField &out);
 | 
			
		||||
  void   MeooeDag5D    (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  //    protected:
 | 
			
		||||
  RealD mass;
 | 
			
		||||
 | 
			
		||||
  // Save arguments to SetCoefficientsInternal
 | 
			
		||||
  Vector<Coeff_t> _gamma;
 | 
			
		||||
  RealD                _zolo_hi;
 | 
			
		||||
  RealD                _b;
 | 
			
		||||
  RealD                _c;
 | 
			
		||||
 | 
			
		||||
  // Cayley form Moebius (tanh and zolotarev)
 | 
			
		||||
  Vector<Coeff_t> omega;
 | 
			
		||||
  Vector<Coeff_t> bs;    // S dependent coeffs
 | 
			
		||||
  Vector<Coeff_t> cs;
 | 
			
		||||
  Vector<Coeff_t> as;
 | 
			
		||||
  // For preconditioning Cayley form
 | 
			
		||||
  Vector<Coeff_t> bee;
 | 
			
		||||
  Vector<Coeff_t> cee;
 | 
			
		||||
  Vector<Coeff_t> aee;
 | 
			
		||||
  Vector<Coeff_t> beo;
 | 
			
		||||
  Vector<Coeff_t> ceo;
 | 
			
		||||
  Vector<Coeff_t> aeo;
 | 
			
		||||
  // LDU factorisation of the eeoo matrix
 | 
			
		||||
  Vector<Coeff_t> lee;
 | 
			
		||||
  Vector<Coeff_t> leem;
 | 
			
		||||
  Vector<Coeff_t> uee;
 | 
			
		||||
  Vector<Coeff_t> ueem;
 | 
			
		||||
  Vector<Coeff_t> dee;
 | 
			
		||||
 | 
			
		||||
  // Matrices of 5d ee inverse params
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatpInv;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatmInv;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatpInvDag;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatmInvDag;
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  CayleyFermion5D(GaugeField &_Umu,
 | 
			
		||||
		  GridCartesian         &FiveDimGrid,
 | 
			
		||||
		  GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
		  GridCartesian         &FourDimGrid,
 | 
			
		||||
		  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		  RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  void CayleyReport(void);
 | 
			
		||||
  void CayleyZeroCounters(void);
 | 
			
		||||
 | 
			
		||||
  double M5Dflops;
 | 
			
		||||
  double M5Dcalls;
 | 
			
		||||
  double M5Dtime;
 | 
			
		||||
 | 
			
		||||
  double MooeeInvFlops;
 | 
			
		||||
  double MooeeInvCalls;
 | 
			
		||||
  double MooeeInvTime;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,105 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/ContinuedFractionFermion5D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_CONTINUED_FRACTION_H
 | 
			
		||||
#define  GRID_QCD_CONTINUED_FRACTION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class ContinuedFractionFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // override multiply
 | 
			
		||||
  virtual RealD  M    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual RealD  Mdag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operaions
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  // force terms; five routines; default to Dhop on diagonal
 | 
			
		||||
  virtual void MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
 | 
			
		||||
  //      virtual void   Instantiatable(void)=0;
 | 
			
		||||
  virtual void   Instantiatable(void) =0;
 | 
			
		||||
 | 
			
		||||
  // Efficient support for multigrid coarsening
 | 
			
		||||
  virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Physical surface field utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  //      virtual void Dminus(const FermionField &psi, FermionField &chi);     // Inherit trivial case
 | 
			
		||||
  //      virtual void DminusDag(const FermionField &psi, FermionField &chi);  // Inherit trivial case
 | 
			
		||||
  virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
 | 
			
		||||
  virtual void ImportPhysicalFermionSource  (const FermionField &input4d,FermionField &imported5d);
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  ContinuedFractionFermion5D(GaugeField &_Umu,
 | 
			
		||||
			     GridCartesian         &FiveDimGrid,
 | 
			
		||||
			     GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			     GridCartesian         &FourDimGrid,
 | 
			
		||||
			     GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			     RealD _mass,RealD M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
 | 
			
		||||
  void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);;
 | 
			
		||||
 | 
			
		||||
  // Cont frac
 | 
			
		||||
  RealD dw_diag;
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD R;
 | 
			
		||||
  RealD ZoloHiInv;
 | 
			
		||||
  Vector<double> Beta;
 | 
			
		||||
  Vector<double> cc;;
 | 
			
		||||
  Vector<double> cc_d;;
 | 
			
		||||
  Vector<double> sqrt_cc;
 | 
			
		||||
  Vector<double> See;
 | 
			
		||||
  Vector<double> Aee;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,90 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  // Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
 | 
			
		||||
  // for red-black preconditioned Shamir EOFA
 | 
			
		||||
  Coeff_t dm;
 | 
			
		||||
  Coeff_t dp;
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable(void) {};
 | 
			
		||||
 | 
			
		||||
  // EOFA-specific operations
 | 
			
		||||
  virtual void  Omega      (const FermionField& in, FermionField& out, int sign, int dag);
 | 
			
		||||
  virtual void  Dtilde     (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  DtildeInv  (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
  // override multiply
 | 
			
		||||
  virtual RealD M          (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual RealD Mdag       (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operations
 | 
			
		||||
  virtual void  Mooee      (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeDag   (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeInv   (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeInvDag(const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
  virtual void   M5D       (const FermionField& psi, FermionField& chi);
 | 
			
		||||
  virtual void   M5Ddag    (const FermionField& psi, FermionField& chi);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
 | 
			
		||||
			GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
 | 
			
		||||
			RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
 | 
			
		||||
			RealD _M5, const ImplParams& p=ImplParams());
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,139 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/DomainWallFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_DOMAIN_WALL_FERMION_H
 | 
			
		||||
#define  GRID_QCD_DOMAIN_WALL_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class DomainWallFermion : public CayleyFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist, bool fiveD) {
 | 
			
		||||
	FermionField in_k(in.Grid());
 | 
			
		||||
	FermionField prop_k(in.Grid());
 | 
			
		||||
 | 
			
		||||
	FFT theFFT((GridCartesian *) in.Grid());
 | 
			
		||||
 | 
			
		||||
	//phase for boundary condition
 | 
			
		||||
	ComplexField coor(in.Grid());
 | 
			
		||||
	ComplexField ph(in.Grid());  ph = Zero();
 | 
			
		||||
	FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
			
		||||
	typedef typename Simd::scalar_type Scalar;
 | 
			
		||||
	Scalar ci(0.0,1.0);
 | 
			
		||||
	assert(twist.size() == Nd);//check that twist is Nd
 | 
			
		||||
	assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
			
		||||
	int shift = 0;
 | 
			
		||||
	if(fiveD) shift = 1;
 | 
			
		||||
	for(unsigned int nu = 0; nu < Nd; nu++)
 | 
			
		||||
	{
 | 
			
		||||
	  // Shift coordinate lattice index by 1 to account for 5th dimension.
 | 
			
		||||
          LatticeCoordinate(coor, nu + shift);
 | 
			
		||||
	  double boundary_phase = ::acos(real(boundary[nu]));
 | 
			
		||||
	  ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
 | 
			
		||||
	  //momenta for propagator shifted by twist+boundary
 | 
			
		||||
	  twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
			
		||||
	}
 | 
			
		||||
	in_buf = exp(ci*ph*(-1.0))*in;
 | 
			
		||||
 | 
			
		||||
	if(fiveD){//FFT only on temporal and spatial dimensions
 | 
			
		||||
          std::vector<int> mask(Nd+1,1); mask[0] = 0;
 | 
			
		||||
	  theFFT.FFT_dim_mask(in_k,in_buf,mask,FFT::forward);
 | 
			
		||||
          this->MomentumSpacePropagatorHt_5d(prop_k,in_k,mass,twist);
 | 
			
		||||
          theFFT.FFT_dim_mask(out,prop_k,mask,FFT::backward);
 | 
			
		||||
        }
 | 
			
		||||
	else{
 | 
			
		||||
	  theFFT.FFT_all_dim(in_k,in,FFT::forward);
 | 
			
		||||
          this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
 | 
			
		||||
	  theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
			
		||||
        }
 | 
			
		||||
	//phase for boundary condition
 | 
			
		||||
	out = out * exp(ci*ph);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
 | 
			
		||||
        bool fiveD = true; //5d propagator by default
 | 
			
		||||
	FreePropagator(in,out,mass,boundary,twist,fiveD);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
 | 
			
		||||
	std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
			
		||||
	std::vector<Complex> boundary;
 | 
			
		||||
	for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
			
		||||
	FreePropagator(in,out,mass,boundary,twist,fiveD);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
			
		||||
        bool fiveD = true; //5d propagator by default
 | 
			
		||||
	std::vector<double> twist(Nd,0.0); //default: twist angle 0
 | 
			
		||||
	std::vector<Complex> boundary;
 | 
			
		||||
	for(int i=0;i<Nd;i++) boundary.push_back(1); //default: periodic boundary conditions
 | 
			
		||||
	FreePropagator(in,out,mass,boundary,twist,fiveD);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void) {};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  DomainWallFermion(GaugeField &_Umu,
 | 
			
		||||
		    GridCartesian         &FiveDimGrid,
 | 
			
		||||
		    GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
		    GridCartesian         &FourDimGrid,
 | 
			
		||||
		    GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		    RealD _mass,RealD _M5,const ImplParams &p= ImplParams()) : 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    CayleyFermion5D<Impl>(_Umu,
 | 
			
		||||
			  FiveDimGrid,
 | 
			
		||||
			  FiveDimRedBlackGrid,
 | 
			
		||||
			  FourDimGrid,
 | 
			
		||||
			  FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    RealD eps = 1.0;
 | 
			
		||||
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
 | 
			
		||||
    assert(zdata->n==this->Ls);
 | 
			
		||||
	
 | 
			
		||||
    //    std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<this->Ls<<std::endl;
 | 
			
		||||
    // Call base setter
 | 
			
		||||
    this->SetCoefficientsTanh(zdata,1.0,0.0);
 | 
			
		||||
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,213 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class S,class Representation = FundamentalRepresentation, class Options=CoeffReal>
 | 
			
		||||
class DomainWallVec5dImpl :  public PeriodicGaugeImpl< GaugeImplTypes< S,Representation::Dimension> > { 
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > Gimpl;
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl);
 | 
			
		||||
 | 
			
		||||
  static const int Dimension = Representation::Dimension;
 | 
			
		||||
  static const bool isFundamental = Representation::isFundamental;
 | 
			
		||||
  static const bool LsVectorised=true;
 | 
			
		||||
  static const int Nhcs = Options::Nhcs;
 | 
			
		||||
      
 | 
			
		||||
  typedef typename Options::_Coeff_t Coeff_t;      
 | 
			
		||||
  typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
 | 
			
		||||
  
 | 
			
		||||
  template <typename vtype> using iImplSpinor            = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
 | 
			
		||||
  template <typename vtype> using iImplPropagator        = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
 | 
			
		||||
  template <typename vtype> using iImplHalfSpinor        = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
 | 
			
		||||
  template <typename vtype> using iImplHalfCommSpinor    = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
 | 
			
		||||
  template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
 | 
			
		||||
  template <typename vtype> using iImplGaugeField        = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
 | 
			
		||||
  template <typename vtype> using iImplGaugeLink         = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
  
 | 
			
		||||
  typedef iImplSpinor<Simd>            SiteSpinor;
 | 
			
		||||
  typedef iImplPropagator<Simd>        SitePropagator;
 | 
			
		||||
  typedef iImplHalfSpinor<Simd>        SiteHalfSpinor;
 | 
			
		||||
  typedef iImplHalfCommSpinor<SimdL>   SiteHalfCommSpinor;
 | 
			
		||||
  typedef Lattice<SiteSpinor>          FermionField;
 | 
			
		||||
  typedef Lattice<SitePropagator>      PropagatorField;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  // Make the doubled gauge field a *scalar*
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  typedef iImplDoubledGaugeField<typename Simd::scalar_type>  SiteDoubledGaugeField;  // This is a scalar
 | 
			
		||||
  typedef iImplGaugeField<typename Simd::scalar_type>         SiteScalarGaugeField;  // scalar
 | 
			
		||||
  typedef iImplGaugeLink<typename Simd::scalar_type>          SiteScalarGaugeLink;  // scalar
 | 
			
		||||
  typedef Lattice<SiteDoubledGaugeField>                      DoubledGaugeField;
 | 
			
		||||
      
 | 
			
		||||
  typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
 | 
			
		||||
  typedef WilsonImplParams ImplParams;
 | 
			
		||||
  typedef WilsonStencil<SiteSpinor, SiteHalfSpinor,ImplParams> StencilImpl;
 | 
			
		||||
  typedef typename StencilImpl::View_type StencilView;
 | 
			
		||||
  
 | 
			
		||||
  ImplParams Params;
 | 
			
		||||
 | 
			
		||||
  DomainWallVec5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
 | 
			
		||||
      
 | 
			
		||||
  template <class ref>
 | 
			
		||||
  static accelerator_inline void loadLinkElement(Simd ®, ref &memory) 
 | 
			
		||||
  {
 | 
			
		||||
    vsplat(reg, memory);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class _Spinor>
 | 
			
		||||
  static accelerator_inline void multLink(_Spinor &phi, const SiteDoubledGaugeField &U,
 | 
			
		||||
					  const _Spinor &chi, int mu, StencilEntry *SE,
 | 
			
		||||
					  StencilView &St) 
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GPU_VEC
 | 
			
		||||
    // Gauge link is scalarised
 | 
			
		||||
    mult(&phi(), &U(mu), &chi());
 | 
			
		||||
#else
 | 
			
		||||
    SiteGaugeLink UU;
 | 
			
		||||
    for (int i = 0; i < Dimension; i++) {
 | 
			
		||||
      for (int j = 0; j < Dimension; j++) {
 | 
			
		||||
        vsplat(UU()()(i, j), U(mu)()(i, j));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    mult(&phi(), &UU(), &chi());
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,const GaugeField &Umu) 
 | 
			
		||||
  {
 | 
			
		||||
    SiteScalarGaugeField  ScalarUmu;
 | 
			
		||||
    SiteDoubledGaugeField ScalarUds;
 | 
			
		||||
    
 | 
			
		||||
    GaugeLinkField U(Umu.Grid());
 | 
			
		||||
    GaugeField  Uadj(Umu.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      U = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
      U = adj(Cshift(U, mu, -1));
 | 
			
		||||
      PokeIndex<LorentzIndex>(Uadj, U, mu);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
 | 
			
		||||
      Coordinate lcoor;
 | 
			
		||||
      GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
 | 
			
		||||
      
 | 
			
		||||
      peekLocalSite(ScalarUmu, Umu, lcoor);
 | 
			
		||||
      for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
 | 
			
		||||
      
 | 
			
		||||
      peekLocalSite(ScalarUmu, Uadj, lcoor);
 | 
			
		||||
      for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
 | 
			
		||||
      
 | 
			
		||||
      pokeLocalSite(ScalarUds, Uds, lcoor);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  } 
 | 
			
		||||
 | 
			
		||||
  inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
 | 
			
		||||
 | 
			
		||||
    assert(0);
 | 
			
		||||
    // Following lines to be revised after Peter's addition of half prec
 | 
			
		||||
    // missing put lane...
 | 
			
		||||
    /*
 | 
			
		||||
      typedef decltype(traceIndex<SpinIndex>(outerProduct(Btilde[0], Atilde[0]))) result_type;
 | 
			
		||||
      unsigned int LLs = Btilde.Grid()->_rdimensions[0];
 | 
			
		||||
      conformable(Atilde.Grid(),Btilde.Grid());
 | 
			
		||||
      GridBase* grid = mat.Grid();
 | 
			
		||||
      GridBase* Bgrid = Btilde.Grid();
 | 
			
		||||
      unsigned int dimU = grid->Nd();
 | 
			
		||||
      unsigned int dimF = Bgrid->Nd();
 | 
			
		||||
      GaugeLinkField tmp(grid); 
 | 
			
		||||
      tmp = Zero();
 | 
			
		||||
    
 | 
			
		||||
      // FIXME 
 | 
			
		||||
      // Current implementation works, thread safe, probably suboptimal
 | 
			
		||||
      // Passing through the local coordinate for grid transformation
 | 
			
		||||
      // the force grid is in general very different from the Ls vectorized grid
 | 
			
		||||
 | 
			
		||||
      for (int so = 0; so < grid->oSites(); so++) {
 | 
			
		||||
      std::vector<typename result_type::scalar_object> vres(Bgrid->Nsimd());
 | 
			
		||||
      std::vector<int> ocoor;  grid->oCoorFromOindex(ocoor,so); 
 | 
			
		||||
      for (int si = 0; si < tmp.Grid()->iSites(); si++){
 | 
			
		||||
      typename result_type::scalar_object scalar_object; scalar_object = Zero();
 | 
			
		||||
      std::vector<int> local_coor;      
 | 
			
		||||
      std::vector<int> icoor; grid->iCoorFromIindex(icoor,si);
 | 
			
		||||
      grid->InOutCoorToLocalCoor(ocoor, icoor, local_coor);
 | 
			
		||||
      for (int s = 0; s < LLs; s++) {
 | 
			
		||||
      std::vector<int> slocal_coor(dimF);
 | 
			
		||||
      slocal_coor[0] = s;
 | 
			
		||||
      for (int s4d = 1; s4d< dimF; s4d++) slocal_coor[s4d] = local_coor[s4d-1];
 | 
			
		||||
      int sF = Bgrid->oIndexReduced(slocal_coor);  
 | 
			
		||||
      assert(sF < Bgrid->oSites());
 | 
			
		||||
 | 
			
		||||
      extract(traceIndex<SpinIndex>(outerProduct(Btilde[sF], Atilde[sF])), vres); 
 | 
			
		||||
      // sum across the 5d dimension
 | 
			
		||||
      for (auto v : vres) scalar_object += v;  
 | 
			
		||||
      }
 | 
			
		||||
      tmp[so].putlane(scalar_object, si);
 | 
			
		||||
      }
 | 
			
		||||
      }
 | 
			
		||||
      PokeIndex<LorentzIndex>(mat, tmp, mu);
 | 
			
		||||
    */
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplF; // Float
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplD; // Double
 | 
			
		||||
 
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
 | 
			
		||||
 
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplF; // Float
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplD; // Double
 | 
			
		||||
 
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
 | 
			
		||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,190 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/FermionOperator.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////
 | 
			
		||||
// Allow to select  between gauge representation rank bc's, flavours etc.
 | 
			
		||||
// and single/double precision.
 | 
			
		||||
////////////////////////////////////////////////////////////////
 | 
			
		||||
    
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class FermionOperator : public CheckerBoardedSparseMatrixBase<typename Impl::FermionField>, public Impl
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  FermionOperator(const ImplParams &p= ImplParams()) : Impl(p) {};
 | 
			
		||||
  virtual ~FermionOperator(void) = default;
 | 
			
		||||
 | 
			
		||||
  virtual FermionField &tmp(void) = 0;
 | 
			
		||||
 | 
			
		||||
  GridBase * Grid(void)   { return FermionGrid(); };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
 | 
			
		||||
 | 
			
		||||
  virtual GridBase *FermionGrid(void)         =0;
 | 
			
		||||
  virtual GridBase *FermionRedBlackGrid(void) =0;
 | 
			
		||||
  virtual GridBase *GaugeGrid(void)           =0;
 | 
			
		||||
  virtual GridBase *GaugeRedBlackGrid(void)   =0;
 | 
			
		||||
 | 
			
		||||
  // override multiply
 | 
			
		||||
  virtual RealD  M    (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
  virtual RealD  Mdag (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operaions
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
 | 
			
		||||
  // non-hermitian hopping term; half cb or both
 | 
			
		||||
  virtual void Dhop  (const FermionField &in, FermionField &out,int dag)=0;
 | 
			
		||||
  virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
 | 
			
		||||
  virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
 | 
			
		||||
  virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
 | 
			
		||||
 | 
			
		||||
  // force terms; five routines; default to Dhop on diagonal
 | 
			
		||||
  virtual void MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
 | 
			
		||||
  virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
 | 
			
		||||
  virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
 | 
			
		||||
  virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();}; // Clover can override these
 | 
			
		||||
  virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();};
 | 
			
		||||
 | 
			
		||||
  virtual void DhopDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
 | 
			
		||||
  virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
 | 
			
		||||
  virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void  Mdiag  (const FermionField &in, FermionField &out) { Mooee(in,out);};   // Same as Mooee applied to both CB's
 | 
			
		||||
  virtual void  Mdir   (const FermionField &in, FermionField &out,int dir,int disp)=0;   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
 | 
			
		||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out)=0;   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      virtual void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
 | 
			
		||||
 | 
			
		||||
      virtual void  FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) 
 | 
			
		||||
      {
 | 
			
		||||
	FFT theFFT((GridCartesian *) in.Grid());
 | 
			
		||||
 | 
			
		||||
	typedef typename Simd::scalar_type Scalar;
 | 
			
		||||
 | 
			
		||||
	FermionField in_k(in.Grid());
 | 
			
		||||
	FermionField prop_k(in.Grid());
 | 
			
		||||
 | 
			
		||||
	//phase for boundary condition
 | 
			
		||||
	ComplexField coor(in.Grid());
 | 
			
		||||
	ComplexField ph(in.Grid());  ph = Zero();
 | 
			
		||||
	FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
			
		||||
 | 
			
		||||
	Scalar ci(0.0,1.0);
 | 
			
		||||
	assert(twist.size() == Nd);//check that twist is Nd
 | 
			
		||||
	assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
			
		||||
	for(unsigned int nu = 0; nu < Nd; nu++)
 | 
			
		||||
	{
 | 
			
		||||
          LatticeCoordinate(coor, nu);
 | 
			
		||||
	  double boundary_phase = ::acos(real(boundary[nu]));
 | 
			
		||||
	  ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu])));
 | 
			
		||||
	  //momenta for propagator shifted by twist+boundary
 | 
			
		||||
	  twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
			
		||||
	}
 | 
			
		||||
	in_buf = exp(ci*ph*(-1.0))*in;
 | 
			
		||||
 | 
			
		||||
	theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
 | 
			
		||||
        this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
 | 
			
		||||
	theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
			
		||||
 | 
			
		||||
	//phase for boundary condition
 | 
			
		||||
        out = out * exp(Scalar(2.0*M_PI)*ci*ph);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
			
		||||
	std::vector<Complex> boundary;
 | 
			
		||||
	for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
			
		||||
	std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
			
		||||
	FreePropagator(in,out,mass,boundary,twist);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Updates gauge field during HMC
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  virtual void ImportGauge(const GaugeField & _U)=0;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved currents, either contract at sink or insert sequentially.
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void ContractConservedCurrent(PropagatorField &q_in_1,
 | 
			
		||||
					PropagatorField &q_in_2,
 | 
			
		||||
					PropagatorField &q_out,
 | 
			
		||||
					Current curr_type,
 | 
			
		||||
					unsigned int mu)=0;
 | 
			
		||||
  virtual void SeqConservedCurrent(PropagatorField &q_in, 
 | 
			
		||||
				   PropagatorField &q_out,
 | 
			
		||||
				   Current curr_type,
 | 
			
		||||
				   unsigned int mu,
 | 
			
		||||
				   unsigned int tmin, 
 | 
			
		||||
				   unsigned int tmax,
 | 
			
		||||
				   ComplexField &lattice_cmplx)=0;
 | 
			
		||||
 | 
			
		||||
      // Only reimplemented in Wilson5D 
 | 
			
		||||
      // Default to just a zero correlation function
 | 
			
		||||
  virtual void ContractJ5q(FermionField &q_in   ,ComplexField &J5q) { J5q=Zero(); };
 | 
			
		||||
  virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////
 | 
			
		||||
      // Physical field import/export
 | 
			
		||||
      ///////////////////////////////////////////////
 | 
			
		||||
      virtual void Dminus(const FermionField &psi, FermionField &chi)    { chi=psi; }
 | 
			
		||||
      virtual void DminusDag(const FermionField &psi, FermionField &chi) { chi=psi; }
 | 
			
		||||
      virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported)
 | 
			
		||||
      {
 | 
			
		||||
	imported = input;
 | 
			
		||||
      };
 | 
			
		||||
      virtual void ImportUnphysicalFermion(const FermionField &input,FermionField &imported)
 | 
			
		||||
      {
 | 
			
		||||
	imported=input;
 | 
			
		||||
      };
 | 
			
		||||
      virtual void ExportPhysicalFermionSolution(const FermionField &solution,FermionField &exported)
 | 
			
		||||
      {
 | 
			
		||||
	exported=solution;
 | 
			
		||||
      };
 | 
			
		||||
      virtual void ExportPhysicalFermionSource(const FermionField &solution,FermionField &exported)
 | 
			
		||||
      {
 | 
			
		||||
	exported=solution;
 | 
			
		||||
      };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,189 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
// Template parameter class constructs to package
 | 
			
		||||
// externally control Fermion implementations
 | 
			
		||||
// in orthogonal directions
 | 
			
		||||
//
 | 
			
		||||
// Ultimately need Impl to always define types where XXX is opaque
 | 
			
		||||
//
 | 
			
		||||
//    typedef typename XXX               Simd;
 | 
			
		||||
//    typedef typename XXX     GaugeLinkField;        
 | 
			
		||||
//    typedef typename XXX         GaugeField;
 | 
			
		||||
//    typedef typename XXX      GaugeActField;
 | 
			
		||||
//    typedef typename XXX       FermionField;
 | 
			
		||||
//    typedef typename XXX    PropagatorField;
 | 
			
		||||
//    typedef typename XXX  DoubledGaugeField;
 | 
			
		||||
//    typedef typename XXX         SiteSpinor;
 | 
			
		||||
//    typedef typename XXX     SitePropagator;
 | 
			
		||||
//    typedef typename XXX     SiteHalfSpinor;	
 | 
			
		||||
//    typedef typename XXX         Compressor;	
 | 
			
		||||
//
 | 
			
		||||
// and Methods:
 | 
			
		||||
//    void ImportGauge(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
//    void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
//    void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,StencilImpl::View_type &St)
 | 
			
		||||
//    void InsertForce4D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
 | 
			
		||||
//    void InsertForce5D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
// To acquire the typedefs from "Base" (either a base class or template param) use:
 | 
			
		||||
//
 | 
			
		||||
// INHERIT_GIMPL_TYPES(Base)
 | 
			
		||||
// INHERIT_FIMPL_TYPES(Base)
 | 
			
		||||
// INHERIT_IMPL_TYPES(Base)
 | 
			
		||||
//
 | 
			
		||||
// The Fermion operators will do the following:
 | 
			
		||||
//
 | 
			
		||||
// struct MyOpParams { 
 | 
			
		||||
//   RealD mass;
 | 
			
		||||
// };
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
// template<class Impl>
 | 
			
		||||
// class MyOp : public<Impl> { 
 | 
			
		||||
// public:
 | 
			
		||||
//
 | 
			
		||||
//    INHERIT_ALL_IMPL_TYPES(Impl);
 | 
			
		||||
//
 | 
			
		||||
//    MyOp(MyOpParams Myparm, ImplParams &ImplParam) :  Impl(ImplParam)
 | 
			
		||||
//    {
 | 
			
		||||
//
 | 
			
		||||
//    };
 | 
			
		||||
//    
 | 
			
		||||
//  }
 | 
			
		||||
//////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template <class T> struct SamePrecisionMapper {
 | 
			
		||||
  typedef T HigherPrecVector ;
 | 
			
		||||
  typedef T LowerPrecVector ;
 | 
			
		||||
};
 | 
			
		||||
template <class T> struct LowerPrecisionMapper {  };
 | 
			
		||||
template <> struct LowerPrecisionMapper<vRealF> {
 | 
			
		||||
  typedef vRealF HigherPrecVector ;
 | 
			
		||||
  typedef vRealH LowerPrecVector ;
 | 
			
		||||
};
 | 
			
		||||
template <> struct LowerPrecisionMapper<vRealD> {
 | 
			
		||||
  typedef vRealD HigherPrecVector ;
 | 
			
		||||
  typedef vRealF LowerPrecVector ;
 | 
			
		||||
};
 | 
			
		||||
template <> struct LowerPrecisionMapper<vComplexF> {
 | 
			
		||||
  typedef vComplexF HigherPrecVector ;
 | 
			
		||||
  typedef vComplexH LowerPrecVector ;
 | 
			
		||||
};
 | 
			
		||||
template <> struct LowerPrecisionMapper<vComplexD> {
 | 
			
		||||
  typedef vComplexD HigherPrecVector ;
 | 
			
		||||
  typedef vComplexF LowerPrecVector ;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct CoeffReal {
 | 
			
		||||
public:
 | 
			
		||||
  typedef RealD _Coeff_t;
 | 
			
		||||
  static const int Nhcs = 2;
 | 
			
		||||
  template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
 | 
			
		||||
};
 | 
			
		||||
struct CoeffRealHalfComms {
 | 
			
		||||
public:
 | 
			
		||||
  typedef RealD _Coeff_t;
 | 
			
		||||
  static const int Nhcs = 1;
 | 
			
		||||
  template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
 | 
			
		||||
};
 | 
			
		||||
struct CoeffComplex {
 | 
			
		||||
public:
 | 
			
		||||
  typedef ComplexD _Coeff_t;
 | 
			
		||||
  static const int Nhcs = 2;
 | 
			
		||||
  template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
 | 
			
		||||
};
 | 
			
		||||
struct CoeffComplexHalfComms {
 | 
			
		||||
public:
 | 
			
		||||
  typedef ComplexD _Coeff_t;
 | 
			
		||||
  static const int Nhcs = 1;
 | 
			
		||||
  template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Implementation dependent fermion types
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
#define INHERIT_FIMPL_TYPES(Impl)\
 | 
			
		||||
  typedef typename Impl::Coeff_t                     Coeff_t;           \
 | 
			
		||||
  typedef Impl Impl_t;							\
 | 
			
		||||
  typedef typename Impl::FermionField           FermionField;		\
 | 
			
		||||
  typedef typename Impl::PropagatorField     PropagatorField;		\
 | 
			
		||||
  typedef typename Impl::DoubledGaugeField DoubledGaugeField;		\
 | 
			
		||||
  typedef typename Impl::SiteDoubledGaugeField SiteDoubledGaugeField;	\
 | 
			
		||||
  typedef typename Impl::SiteSpinor               SiteSpinor;		\
 | 
			
		||||
  typedef typename Impl::SitePropagator       SitePropagator;		\
 | 
			
		||||
  typedef typename Impl::SiteHalfSpinor       SiteHalfSpinor;		\
 | 
			
		||||
  typedef typename Impl::Compressor               Compressor;		\
 | 
			
		||||
  typedef typename Impl::StencilImpl             StencilImpl;		\
 | 
			
		||||
  typedef typename Impl::ImplParams               ImplParams;	        \
 | 
			
		||||
  typedef typename Impl::StencilImpl::View_type  StencilView;		\
 | 
			
		||||
  typedef typename ViewMap<FermionField>::Type      FermionFieldView;	\
 | 
			
		||||
  typedef typename ViewMap<DoubledGaugeField>::Type DoubledGaugeFieldView;
 | 
			
		||||
 | 
			
		||||
#define INHERIT_IMPL_TYPES(Base)		\
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Base)			\
 | 
			
		||||
  INHERIT_FIMPL_TYPES(Base)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
NAMESPACE_CHECK(ImplBase);  
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Single flavour four spinors with colour index
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplWilson);  
 | 
			
		||||
   
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Flavour doubled spinors; is Gparity the only? what about C*?
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/GparityWilsonImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplGparityWilson);  
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Single flavour one component spinors with colour index
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/StaggeredImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplStaggered);  
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Single flavour one component spinors with colour index. 5d vec
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/StaggeredVec5dImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplStaggered5dVec);  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,238 +0,0 @@
 | 
			
		||||
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/FourierAcceleratedPV.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christoph Lehner (lifted with permission by Peter Boyle, brought back to Grid)
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<typename M>
 | 
			
		||||
    void get_real_const_bc(M& m, RealD& _b, RealD& _c) {
 | 
			
		||||
    ComplexD b,c;
 | 
			
		||||
    b=m.bs[0];
 | 
			
		||||
    c=m.cs[0];
 | 
			
		||||
    std::cout << GridLogMessage << "b=" << b << ", c=" << c << std::endl;
 | 
			
		||||
    for (size_t i=1;i<m.bs.size();i++) {
 | 
			
		||||
      assert(m.bs[i] == b);
 | 
			
		||||
      assert(m.cs[i] == c);
 | 
			
		||||
    }
 | 
			
		||||
    assert(b.imag() == 0.0);
 | 
			
		||||
    assert(c.imag() == 0.0);
 | 
			
		||||
    _b = b.real();
 | 
			
		||||
    _c = c.real();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename Vi, typename M, typename G>
 | 
			
		||||
class FourierAcceleratedPV {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  ConjugateGradient<Vi> &cg;
 | 
			
		||||
  M& dwfPV;
 | 
			
		||||
  G& Umu;
 | 
			
		||||
  GridCartesian* grid5D;
 | 
			
		||||
  GridRedBlackCartesian* gridRB5D;
 | 
			
		||||
  int group_in_s;
 | 
			
		||||
 | 
			
		||||
  FourierAcceleratedPV(M& _dwfPV, G& _Umu, ConjugateGradient<Vi> &_cg, int _group_in_s = 2) 
 | 
			
		||||
   : dwfPV(_dwfPV), Umu(_Umu), cg(_cg), group_in_s(_group_in_s) 
 | 
			
		||||
  {
 | 
			
		||||
    assert( dwfPV.FermionGrid()->_fdimensions[0] % (2*group_in_s) == 0);
 | 
			
		||||
    grid5D   = SpaceTimeGrid::makeFiveDimGrid(2*group_in_s, (GridCartesian*)Umu.Grid());
 | 
			
		||||
    gridRB5D = SpaceTimeGrid::makeFiveDimRedBlackGrid(2*group_in_s, (GridCartesian*)Umu.Grid());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void rotatePV(const Vi& _src, Vi& dst, bool forward) const {
 | 
			
		||||
 | 
			
		||||
    GridStopWatch gsw1, gsw2;
 | 
			
		||||
 | 
			
		||||
    typedef typename Vi::scalar_type Coeff_t;
 | 
			
		||||
    int Ls = dst.Grid()->_fdimensions[0];
 | 
			
		||||
 | 
			
		||||
    Vi _tmp(dst.Grid());
 | 
			
		||||
    double phase = M_PI / (double)Ls;
 | 
			
		||||
    Coeff_t bzero(0.0,0.0);
 | 
			
		||||
 | 
			
		||||
    FFT theFFT((GridCartesian*)dst.Grid());
 | 
			
		||||
 | 
			
		||||
    if (!forward) {
 | 
			
		||||
      gsw1.Start();
 | 
			
		||||
      for (int s=0;s<Ls;s++) {
 | 
			
		||||
	Coeff_t a(::cos(phase*s),-::sin(phase*s));
 | 
			
		||||
	axpby_ssp(_tmp,a,_src,bzero,_src,s,s);
 | 
			
		||||
      }
 | 
			
		||||
      gsw1.Stop();
 | 
			
		||||
 | 
			
		||||
      gsw2.Start();
 | 
			
		||||
      theFFT.FFT_dim(dst,_tmp,0,FFT::forward);
 | 
			
		||||
      gsw2.Stop();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      gsw2.Start();
 | 
			
		||||
      theFFT.FFT_dim(_tmp,_src,0,FFT::backward);
 | 
			
		||||
      gsw2.Stop();
 | 
			
		||||
 | 
			
		||||
      gsw1.Start();
 | 
			
		||||
      for (int s=0;s<Ls;s++) {
 | 
			
		||||
	Coeff_t a(::cos(phase*s),::sin(phase*s));
 | 
			
		||||
	axpby_ssp(dst,a,_tmp,bzero,_tmp,s,s);
 | 
			
		||||
      }
 | 
			
		||||
      gsw1.Stop();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Timing rotatePV: " << gsw1.Elapsed() << ", " << gsw2.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void pvInv(const Vi& _src, Vi& _dst) const {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Fourier-Accelerated Outer Pauli Villars"<<std::endl;
 | 
			
		||||
 | 
			
		||||
    typedef typename Vi::scalar_type Coeff_t;
 | 
			
		||||
    int Ls = _dst.Grid()->_fdimensions[0];
 | 
			
		||||
 | 
			
		||||
    GridStopWatch gswT;
 | 
			
		||||
    gswT.Start();
 | 
			
		||||
 | 
			
		||||
    RealD b,c;
 | 
			
		||||
    get_real_const_bc(dwfPV,b,c);
 | 
			
		||||
    RealD M5 = dwfPV.M5;
 | 
			
		||||
    
 | 
			
		||||
    // U(true) Rightinv TMinv U(false) = Minv
 | 
			
		||||
 | 
			
		||||
    Vi _src_diag(_dst.Grid());
 | 
			
		||||
    Vi _src_diag_slice(dwfPV.GaugeGrid());
 | 
			
		||||
    Vi _dst_diag_slice(dwfPV.GaugeGrid());
 | 
			
		||||
    Vi _src_diag_slices(grid5D);
 | 
			
		||||
    Vi _dst_diag_slices(grid5D);
 | 
			
		||||
    Vi _dst_diag(_dst.Grid());
 | 
			
		||||
 | 
			
		||||
    rotatePV(_src,_src_diag,false);
 | 
			
		||||
 | 
			
		||||
    // now do TM solves
 | 
			
		||||
    Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch gswA, gswB;
 | 
			
		||||
 | 
			
		||||
    gswA.Start();
 | 
			
		||||
 | 
			
		||||
    typedef typename M::Impl_t Impl;
 | 
			
		||||
    //WilsonTMFermion<Impl> tm(x.Umu,*x.UGridF,*x.UrbGridF,0.0,0.0,solver_outer.parent.par.wparams_f);
 | 
			
		||||
    std::vector<RealD> vmass(grid5D->_fdimensions[0],0.0);
 | 
			
		||||
    std::vector<RealD> vmu(grid5D->_fdimensions[0],0.0);
 | 
			
		||||
 | 
			
		||||
    WilsonTMFermion5D<Impl> tm(Umu,*grid5D,*gridRB5D,
 | 
			
		||||
			   *(GridCartesian*)dwfPV.GaugeGrid(),
 | 
			
		||||
			   *(GridRedBlackCartesian*)dwfPV.GaugeRedBlackGrid(),
 | 
			
		||||
			   vmass,vmu);
 | 
			
		||||
    
 | 
			
		||||
    //SchurRedBlackDiagTwoSolve<Vi> sol(cg);
 | 
			
		||||
    SchurRedBlackDiagMooeeSolve<Vi> sol(cg); // same performance as DiagTwo
 | 
			
		||||
    gswA.Stop();
 | 
			
		||||
 | 
			
		||||
    gswB.Start();
 | 
			
		||||
 | 
			
		||||
    for (int sgroup=0;sgroup<Ls/2/group_in_s;sgroup++) {
 | 
			
		||||
 | 
			
		||||
      for (int sidx=0;sidx<group_in_s;sidx++) {
 | 
			
		||||
 | 
			
		||||
	int s = sgroup*group_in_s + sidx;
 | 
			
		||||
	//	int sprime = Ls-s-1;
 | 
			
		||||
 | 
			
		||||
	RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
 | 
			
		||||
	RealD cosp = ::cos(phase);
 | 
			
		||||
	RealD sinp = ::sin(phase);
 | 
			
		||||
	RealD denom = b*b + c*c + 2.0*b*c*cosp;
 | 
			
		||||
	RealD mass = -(b*b*M5 + c*(1.0 - cosp + c*M5) + b*(-1.0 + cosp + 2.0*c*cosp*M5))/denom;
 | 
			
		||||
	RealD mu = (b+c)*sinp/denom;
 | 
			
		||||
 | 
			
		||||
	vmass[2*sidx + 0] = mass;
 | 
			
		||||
	vmass[2*sidx + 1] = mass;
 | 
			
		||||
	vmu[2*sidx + 0] = mu;
 | 
			
		||||
	vmu[2*sidx + 1] = -mu;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tm.update(vmass,vmu);
 | 
			
		||||
 | 
			
		||||
      for (int sidx=0;sidx<group_in_s;sidx++) {
 | 
			
		||||
 | 
			
		||||
	int s = sgroup*group_in_s + sidx;
 | 
			
		||||
	int sprime = Ls-s-1;
 | 
			
		||||
 | 
			
		||||
	ExtractSlice(_src_diag_slice,_src_diag,s,0);
 | 
			
		||||
	InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 0,0);
 | 
			
		||||
 | 
			
		||||
	ExtractSlice(_src_diag_slice,_src_diag,sprime,0);
 | 
			
		||||
	InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 1,0);
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      GridStopWatch gsw;
 | 
			
		||||
      gsw.Start();
 | 
			
		||||
      _dst_diag_slices = Zero(); // zero guess
 | 
			
		||||
      sol(tm,_src_diag_slices,_dst_diag_slices);
 | 
			
		||||
      gsw.Stop();
 | 
			
		||||
      std::cout << GridLogMessage << "Solve[sgroup=" << sgroup << "] completed in " << gsw.Elapsed() << ", " << gswA.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
      for (int sidx=0;sidx<group_in_s;sidx++) {
 | 
			
		||||
 | 
			
		||||
	int s = sgroup*group_in_s + sidx;
 | 
			
		||||
	int sprime = Ls-s-1;
 | 
			
		||||
 | 
			
		||||
	RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
 | 
			
		||||
	RealD cosp = ::cos(phase);
 | 
			
		||||
	RealD sinp = ::sin(phase);
 | 
			
		||||
 | 
			
		||||
	// now rotate with inverse of
 | 
			
		||||
	Coeff_t pA = b + c*cosp;
 | 
			
		||||
	Coeff_t pB = - Coeff_t(0.0,1.0)*Coeff_t(c*sinp);
 | 
			
		||||
	Coeff_t pABden = pA*pA - pB*pB;
 | 
			
		||||
	// (pA + pB * G5) * (pA - pB*G5) = (pA^2 - pB^2)
 | 
			
		||||
      
 | 
			
		||||
	ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 0,0);
 | 
			
		||||
	_dst_diag_slice = (pA/pABden) * _dst_diag_slice - (pB/pABden) * (G5 * _dst_diag_slice);
 | 
			
		||||
	InsertSlice(_dst_diag_slice,_dst_diag,s,0);
 | 
			
		||||
	
 | 
			
		||||
	ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 1,0);
 | 
			
		||||
	_dst_diag_slice = (pA/pABden) * _dst_diag_slice + (pB/pABden) * (G5 * _dst_diag_slice);
 | 
			
		||||
	InsertSlice(_dst_diag_slice,_dst_diag,sprime,0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    gswB.Stop();
 | 
			
		||||
 | 
			
		||||
    rotatePV(_dst_diag,_dst,true);
 | 
			
		||||
 | 
			
		||||
    gswT.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "PV completed in " << gswT.Elapsed() << " (Setup: " << gswA.Elapsed() << ", s-loop: " << gswB.Elapsed() << ")" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,321 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
 | 
			
		||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
 static const int Dimension = Representation::Dimension;
 | 
			
		||||
 static const bool isFundamental = Representation::isFundamental;
 | 
			
		||||
 static const int Nhcs = Options::Nhcs;
 | 
			
		||||
 static const bool LsVectorised=false;
 | 
			
		||||
 | 
			
		||||
 typedef ConjugateGaugeImpl< GaugeImplTypes<S,Dimension> > Gimpl;
 | 
			
		||||
 INHERIT_GIMPL_TYPES(Gimpl);
 | 
			
		||||
 
 | 
			
		||||
 typedef typename Options::_Coeff_t Coeff_t;
 | 
			
		||||
 typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
 | 
			
		||||
      
 | 
			
		||||
 template <typename vtype> using iImplSpinor            = iVector<iVector<iVector<vtype, Dimension>, Ns>,   Ngp>;
 | 
			
		||||
 template <typename vtype> using iImplPropagator        = iVector<iMatrix<iMatrix<vtype, Dimension>, Ns>,   Ngp>;
 | 
			
		||||
 template <typename vtype> using iImplHalfSpinor        = iVector<iVector<iVector<vtype, Dimension>, Nhs>,  Ngp>;
 | 
			
		||||
 template <typename vtype> using iImplHalfCommSpinor    = iVector<iVector<iVector<vtype, Dimension>, Nhcs>, Ngp>;
 | 
			
		||||
 template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>, Ngp>;
 | 
			
		||||
 | 
			
		||||
  typedef iImplSpinor<Simd>            SiteSpinor;
 | 
			
		||||
  typedef iImplPropagator<Simd>        SitePropagator;
 | 
			
		||||
  typedef iImplHalfSpinor<Simd>        SiteHalfSpinor;
 | 
			
		||||
  typedef iImplHalfCommSpinor<SimdL>   SiteHalfCommSpinor;
 | 
			
		||||
  typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<SiteSpinor> FermionField;
 | 
			
		||||
  typedef Lattice<SitePropagator> PropagatorField;
 | 
			
		||||
  typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
 | 
			
		||||
 
 | 
			
		||||
  typedef GparityWilsonImplParams ImplParams;
 | 
			
		||||
  typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
 | 
			
		||||
  typedef WilsonStencil<SiteSpinor, SiteHalfSpinor, ImplParams> StencilImpl;
 | 
			
		||||
  typedef typename StencilImpl::View_type StencilView;
 | 
			
		||||
      
 | 
			
		||||
  ImplParams Params;
 | 
			
		||||
 | 
			
		||||
  GparityWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){};
 | 
			
		||||
 | 
			
		||||
  // provide the multiply by link that is differentiated between Gparity (with
 | 
			
		||||
  // flavour index) and non-Gparity
 | 
			
		||||
  template<class _Spinor>
 | 
			
		||||
  static accelerator_inline void multLink(_Spinor &phi, 
 | 
			
		||||
					  const SiteDoubledGaugeField &U,
 | 
			
		||||
					  const _Spinor &chi, 
 | 
			
		||||
					  int mu) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  } 
 | 
			
		||||
  template<class _Spinor>
 | 
			
		||||
  static accelerator_inline void multLink(_Spinor &phi, 
 | 
			
		||||
					  const SiteDoubledGaugeField &U,
 | 
			
		||||
					  const _Spinor &chi, 
 | 
			
		||||
					  int mu, 
 | 
			
		||||
					  StencilEntry *SE,
 | 
			
		||||
					  StencilView &St) 
 | 
			
		||||
  {
 | 
			
		||||
    int direction = St._directions[mu];
 | 
			
		||||
    int distance  = St._distances[mu];
 | 
			
		||||
    int ptype     = St._permute_type[mu];
 | 
			
		||||
    int sl        = St._simd_layout[direction];
 | 
			
		||||
    Coordinate icoor;
 | 
			
		||||
 | 
			
		||||
#ifdef __CUDA_ARCH__
 | 
			
		||||
    _Spinor tmp;
 | 
			
		||||
 | 
			
		||||
    const int Nsimd =SiteDoubledGaugeField::Nsimd();
 | 
			
		||||
    int s = SIMTlane(Nsimd);
 | 
			
		||||
    St.iCoorFromIindex(icoor,s);
 | 
			
		||||
 | 
			
		||||
    int mmu = mu % Nd;
 | 
			
		||||
    if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
      
 | 
			
		||||
      int permute_lane = (sl==1) 
 | 
			
		||||
    	|| ((distance== 1)&&(icoor[direction]==1))
 | 
			
		||||
	|| ((distance==-1)&&(icoor[direction]==0));
 | 
			
		||||
 | 
			
		||||
      if ( permute_lane ) { 
 | 
			
		||||
	tmp(0) = chi(1);
 | 
			
		||||
	tmp(1) = chi(0);
 | 
			
		||||
      } else {
 | 
			
		||||
	tmp(0) = chi(0);
 | 
			
		||||
	tmp(1) = chi(1);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      auto UU0=coalescedRead(U(0)(mu));
 | 
			
		||||
      auto UU1=coalescedRead(U(1)(mu));
 | 
			
		||||
 | 
			
		||||
      mult(&phi(0),&UU0,&tmp(0));
 | 
			
		||||
      mult(&phi(1),&UU1,&tmp(1));
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      auto UU0=coalescedRead(U(0)(mu));
 | 
			
		||||
      auto UU1=coalescedRead(U(1)(mu));
 | 
			
		||||
 | 
			
		||||
      mult(&phi(0),&UU0,&chi(0));
 | 
			
		||||
      mult(&phi(1),&UU1,&chi(1));
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    typedef _Spinor vobj;
 | 
			
		||||
    typedef typename SiteHalfSpinor::scalar_object sobj;
 | 
			
		||||
    typedef typename SiteHalfSpinor::vector_type   vector_type;
 | 
			
		||||
	
 | 
			
		||||
    vobj vtmp;
 | 
			
		||||
    sobj stmp;
 | 
			
		||||
        
 | 
			
		||||
    const int Nsimd =vector_type::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    // Fixme X.Y.Z.T hardcode in stencil
 | 
			
		||||
    int mmu = mu % Nd;
 | 
			
		||||
        
 | 
			
		||||
    // assert our assumptions
 | 
			
		||||
    assert((distance == 1) || (distance == -1));  // nearest neighbour stencil hard code
 | 
			
		||||
    assert((sl == 1) || (sl == 2));
 | 
			
		||||
 | 
			
		||||
    if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
 | 
			
		||||
      if ( sl == 2 ) {
 | 
			
		||||
       
 | 
			
		||||
	ExtractBuffer<sobj> vals(Nsimd);
 | 
			
		||||
 | 
			
		||||
	extract(chi,vals);
 | 
			
		||||
	for(int s=0;s<Nsimd;s++){
 | 
			
		||||
 | 
			
		||||
	  St.iCoorFromIindex(icoor,s);
 | 
			
		||||
              
 | 
			
		||||
	  assert((icoor[direction]==0)||(icoor[direction]==1));
 | 
			
		||||
              
 | 
			
		||||
	  int permute_lane;
 | 
			
		||||
	  if ( distance == 1) {
 | 
			
		||||
	    permute_lane = icoor[direction]?1:0;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    permute_lane = icoor[direction]?0:1;
 | 
			
		||||
	  }
 | 
			
		||||
              
 | 
			
		||||
	  if ( permute_lane ) { 
 | 
			
		||||
	    stmp(0) = vals[s](1);
 | 
			
		||||
	    stmp(1) = vals[s](0);
 | 
			
		||||
	    vals[s] = stmp;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	merge(vtmp,vals);
 | 
			
		||||
            
 | 
			
		||||
      } else { 
 | 
			
		||||
	vtmp(0) = chi(1);
 | 
			
		||||
	vtmp(1) = chi(0);
 | 
			
		||||
      }
 | 
			
		||||
      mult(&phi(0),&U(0)(mu),&vtmp(0));
 | 
			
		||||
      mult(&phi(1),&U(1)(mu),&vtmp(1));
 | 
			
		||||
     
 | 
			
		||||
    } else { 
 | 
			
		||||
      mult(&phi(0),&U(0)(mu),&chi(0));
 | 
			
		||||
      mult(&phi(1),&U(1)(mu),&chi(1));
 | 
			
		||||
    }
 | 
			
		||||
#endif   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class ref>
 | 
			
		||||
  static accelerator_inline void loadLinkElement(Simd ®, ref &memory) 
 | 
			
		||||
  {
 | 
			
		||||
    reg = memory;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(Uds.Grid(),GaugeGrid);
 | 
			
		||||
    conformable(Umu.Grid(),GaugeGrid);
 | 
			
		||||
   
 | 
			
		||||
    GaugeLinkField Utmp (GaugeGrid);
 | 
			
		||||
    GaugeLinkField U    (GaugeGrid);
 | 
			
		||||
    GaugeLinkField Uconj(GaugeGrid);
 | 
			
		||||
   
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
        
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
          
 | 
			
		||||
      LatticeCoordinate(coor,mu);
 | 
			
		||||
          
 | 
			
		||||
      U     = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      Uconj = conjugate(U);
 | 
			
		||||
     
 | 
			
		||||
      // This phase could come from a simple bc 1,1,-1,1 ..
 | 
			
		||||
      int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
	Uconj = where(coor==neglink,-Uconj,Uconj);
 | 
			
		||||
      }
 | 
			
		||||
	  
 | 
			
		||||
      auto U_v = U.View();
 | 
			
		||||
      auto Uds_v = Uds.View();
 | 
			
		||||
      auto Uconj_v = Uconj.View();
 | 
			
		||||
      auto Utmp_v= Utmp.View();
 | 
			
		||||
      thread_foreach(ss,U_v,{
 | 
			
		||||
	Uds_v[ss](0)(mu) = U_v[ss]();
 | 
			
		||||
	Uds_v[ss](1)(mu) = Uconj_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
          
 | 
			
		||||
      U     = adj(Cshift(U    ,mu,-1));      // correct except for spanning the boundary
 | 
			
		||||
      Uconj = adj(Cshift(Uconj,mu,-1));
 | 
			
		||||
 
 | 
			
		||||
      Utmp = U;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
	Utmp = where(coor==0,Uconj,Utmp);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      thread_foreach(ss,Utmp_v,{
 | 
			
		||||
	Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
          
 | 
			
		||||
      Utmp = Uconj;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
	Utmp = where(coor==0,U,Utmp);
 | 
			
		||||
      }
 | 
			
		||||
	  
 | 
			
		||||
      thread_foreach(ss,Utmp_v,{
 | 
			
		||||
        Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
          
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
 | 
			
		||||
 | 
			
		||||
    // DhopDir provides U or Uconj depending on coor/flavour.
 | 
			
		||||
    GaugeLinkField link(mat.Grid());
 | 
			
		||||
    // use lorentz for flavour as hack.
 | 
			
		||||
    auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
 | 
			
		||||
    auto link_v = link.View();
 | 
			
		||||
    auto tmp_v = tmp.View();
 | 
			
		||||
    thread_foreach(ss,tmp_v,{
 | 
			
		||||
      link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
 | 
			
		||||
    });
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat, link, mu);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
 inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
 | 
			
		||||
   //mat = outerProduct(Btilde, A);
 | 
			
		||||
   assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    /*
 | 
			
		||||
    auto tmp = TraceIndex<SpinIndex>(P);
 | 
			
		||||
    parallel_for(auto ss = tmp.begin(); ss < tmp.end(); ss++) {
 | 
			
		||||
      mat[ss]() = tmp[ss](0, 0) + conjugate(tmp[ss](1, 1));
 | 
			
		||||
    }
 | 
			
		||||
    */
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
 | 
			
		||||
 | 
			
		||||
    int Ls = Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
        
 | 
			
		||||
    GaugeLinkField tmp(mat.Grid());
 | 
			
		||||
    tmp = Zero();
 | 
			
		||||
    auto tmp_v = tmp.View();
 | 
			
		||||
    auto Atilde_v = Atilde.View();
 | 
			
		||||
    auto Btilde_v = Btilde.View();
 | 
			
		||||
    thread_for(ss,tmp.Grid()->oSites(),{
 | 
			
		||||
      for (int s = 0; s < Ls; s++) {
 | 
			
		||||
	int sF = s + Ls * ss;
 | 
			
		||||
	auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
 | 
			
		||||
	tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat, tmp, mu);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffReal> GparityWilsonImplF;  // Float
 | 
			
		||||
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffReal> GparityWilsonImplD;  // Double
 | 
			
		||||
 
 | 
			
		||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplRL;  // Real.. whichever prec
 | 
			
		||||
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplFH;  // Float
 | 
			
		||||
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplDF;  // Double
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,204 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/ImprovedStaggered.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi, Peter Boyle
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_QCD_IMPR_STAG_FERMION_H
 | 
			
		||||
#define GRID_QCD_IMPR_STAG_FERMION_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
class ImprovedStaggeredFermionStatic {
 | 
			
		||||
public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static const int npoint = 16;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
class ImprovedStaggeredFermion : public StaggeredKernels<Impl>, public ImprovedStaggeredFermionStatic {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
  typedef StaggeredKernels<Impl> Kernels;
 | 
			
		||||
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *GaugeGrid(void) { return _grid; }
 | 
			
		||||
  GridBase *GaugeRedBlackGrid(void) { return _cbgrid; }
 | 
			
		||||
  GridBase *FermionGrid(void) { return _grid; }
 | 
			
		||||
  GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // override multiply; cut number routines if pass dagger argument
 | 
			
		||||
  // and also make interface more uniformly consistent
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  RealD M(const FermionField &in, FermionField &out);
 | 
			
		||||
  RealD Mdag(const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // half checkerboard operations
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  void Meooe(const FermionField &in, FermionField &out);
 | 
			
		||||
  void MeooeDag(const FermionField &in, FermionField &out);
 | 
			
		||||
  void Mooee(const FermionField &in, FermionField &out);
 | 
			
		||||
  void MooeeDag(const FermionField &in, FermionField &out);
 | 
			
		||||
  void MooeeInv(const FermionField &in, FermionField &out);
 | 
			
		||||
  void MooeeInvDag(const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////
 | 
			
		||||
  // Derivative interface
 | 
			
		||||
  ////////////////////////
 | 
			
		||||
  // Interface calls an internal routine
 | 
			
		||||
  void DhopDeriv  (GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
 | 
			
		||||
  void DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
 | 
			
		||||
  void DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // non-hermitian hopping term; half cb or both
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void Dhop  (const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopOE(const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopEO(const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Multigrid assistance; force term uses too
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
 | 
			
		||||
  void MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
  void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Extra methods added by derived
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void DerivInternal(StencilImpl &st, 
 | 
			
		||||
		     DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
		     GaugeField &mat, 
 | 
			
		||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Grid own interface Constructor
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ImprovedStaggeredFermion(GaugeField &_Uthin, GaugeField &_Ufat, GridCartesian &Fgrid,
 | 
			
		||||
			   GridRedBlackCartesian &Hgrid, RealD _mass,
 | 
			
		||||
			   RealD _c1, RealD _c2,RealD _u0,
 | 
			
		||||
			   const ImplParams &p = ImplParams());
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // MILC constructor no gauge fields
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ImprovedStaggeredFermion(GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid, RealD _mass,
 | 
			
		||||
			   RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
 | 
			
		||||
			   const ImplParams &p = ImplParams());
 | 
			
		||||
 | 
			
		||||
  // DoubleStore impl dependent
 | 
			
		||||
  void ImportGauge      (const GaugeField &_Uthin ) { assert(0); }
 | 
			
		||||
  void ImportGauge(const GaugeField &_Uthin, const GaugeField &_Ufat);
 | 
			
		||||
  void ImportGaugeSimple(const GaugeField &_UUU    ,const GaugeField &_U);
 | 
			
		||||
  void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
 | 
			
		||||
  DoubledGaugeField &GetU(void)   { return Umu ; } ;
 | 
			
		||||
  DoubledGaugeField &GetUUU(void) { return UUUmu; };
 | 
			
		||||
  void CopyGaugeCheckerboards(void);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Data members require to support the functionality
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  //    protected:
 | 
			
		||||
public:
 | 
			
		||||
  // any other parameters of action ???
 | 
			
		||||
  virtual int   isTrivialEE(void) { return 1; };
 | 
			
		||||
  virtual RealD Mass(void) { return mass; }
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD u0;
 | 
			
		||||
  RealD c1;
 | 
			
		||||
  RealD c2;
 | 
			
		||||
 | 
			
		||||
  GridBase *_grid;
 | 
			
		||||
  GridBase *_cbgrid;
 | 
			
		||||
 | 
			
		||||
  // Defines the stencils for even and odd
 | 
			
		||||
  StencilImpl Stencil;
 | 
			
		||||
  StencilImpl StencilEven;
 | 
			
		||||
  StencilImpl StencilOdd;
 | 
			
		||||
 | 
			
		||||
  // Copy of the gauge field , with even and odd subsets
 | 
			
		||||
  DoubledGaugeField Umu;
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
 | 
			
		||||
  DoubledGaugeField UUUmu;
 | 
			
		||||
  DoubledGaugeField UUUmuEven;
 | 
			
		||||
  DoubledGaugeField UUUmuOdd;
 | 
			
		||||
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void ContractConservedCurrent(PropagatorField &q_in_1,
 | 
			
		||||
                                PropagatorField &q_in_2,
 | 
			
		||||
                                PropagatorField &q_out,
 | 
			
		||||
                                Current curr_type,
 | 
			
		||||
                                unsigned int mu);
 | 
			
		||||
  void SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
                           PropagatorField &q_out,
 | 
			
		||||
                           Current curr_type,
 | 
			
		||||
                           unsigned int mu, 
 | 
			
		||||
                           unsigned int tmin,
 | 
			
		||||
                           unsigned int tmax,
 | 
			
		||||
			   ComplexField &lattice_cmplx);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,232 +0,0 @@
 | 
			
		||||
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion5D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: AzusaYamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// This is the 4d red black case appropriate to support
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class ImprovedStaggeredFermion5DStatic { 
 | 
			
		||||
public:
 | 
			
		||||
  // S-direction is INNERMOST and takes no part in the parity.
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  const int npoint = 16;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class ImprovedStaggeredFermion5D :  public StaggeredKernels<Impl>, public ImprovedStaggeredFermion5DStatic 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
  typedef StaggeredKernels<Impl> Kernels;
 | 
			
		||||
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
      double DhopComputeTime2;
 | 
			
		||||
      double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *GaugeGrid(void)              { return _FourDimGrid ;}
 | 
			
		||||
  GridBase *GaugeRedBlackGrid(void)      { return _FourDimRedBlackGrid ;}
 | 
			
		||||
  GridBase *FermionGrid(void)            { return _FiveDimGrid;}
 | 
			
		||||
  GridBase *FermionRedBlackGrid(void)    { return _FiveDimRedBlackGrid;}
 | 
			
		||||
 | 
			
		||||
  // full checkerboard operations; leave unimplemented as abstract for now
 | 
			
		||||
  RealD  M    (const FermionField &in, FermionField &out);
 | 
			
		||||
  RealD  Mdag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operations
 | 
			
		||||
  void   Meooe       (const FermionField &in, FermionField &out);
 | 
			
		||||
  void   Mooee       (const FermionField &in, FermionField &out);
 | 
			
		||||
  void   MooeeInv    (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  void   MeooeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  void   MooeeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  void   MooeeInvDag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  void Mdir   (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  void MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
  void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
 | 
			
		||||
  // These can be overridden by fancy 5d chiral action
 | 
			
		||||
  void DhopDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
 | 
			
		||||
  // Implement hopping term non-hermitian hopping term; half cb or both
 | 
			
		||||
  void Dhop  (const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void DhopOE(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void DhopEO(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // New methods added 
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void DerivInternal(StencilImpl & st,
 | 
			
		||||
		     DoubledGaugeField & U,
 | 
			
		||||
		     DoubledGaugeField & UUU,
 | 
			
		||||
		     GaugeField &mat,
 | 
			
		||||
		     const FermionField &A,
 | 
			
		||||
		     const FermionField &B,
 | 
			
		||||
		     int dag);
 | 
			
		||||
    
 | 
			
		||||
  void DhopInternal(StencilImpl & st,
 | 
			
		||||
		    LebesgueOrder &lo,
 | 
			
		||||
		    DoubledGaugeField &U,
 | 
			
		||||
		    DoubledGaugeField &UUU,
 | 
			
		||||
		    const FermionField &in, 
 | 
			
		||||
		    FermionField &out,
 | 
			
		||||
		    int dag);
 | 
			
		||||
    
 | 
			
		||||
    void DhopInternalOverlappedComms(StencilImpl & st,
 | 
			
		||||
		      LebesgueOrder &lo,
 | 
			
		||||
		      DoubledGaugeField &U,
 | 
			
		||||
		      DoubledGaugeField &UUU,
 | 
			
		||||
		      const FermionField &in, 
 | 
			
		||||
		      FermionField &out,
 | 
			
		||||
		      int dag);
 | 
			
		||||
 | 
			
		||||
    void DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
		      LebesgueOrder &lo,
 | 
			
		||||
		      DoubledGaugeField &U,
 | 
			
		||||
		      DoubledGaugeField &UUU,
 | 
			
		||||
		      const FermionField &in, 
 | 
			
		||||
		      FermionField &out,
 | 
			
		||||
		      int dag);
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
  // Constructors
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Grid internal interface -- Thin link and fat link, with coefficients
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ImprovedStaggeredFermion5D(GaugeField &_Uthin,
 | 
			
		||||
			     GaugeField &_Ufat,
 | 
			
		||||
			     GridCartesian         &FiveDimGrid,
 | 
			
		||||
			     GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			     GridCartesian         &FourDimGrid,
 | 
			
		||||
			     GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			     double _mass,
 | 
			
		||||
			       RealD _c1, RealD _c2,RealD _u0,
 | 
			
		||||
			       const ImplParams &p= ImplParams());
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // MILC constructor ; triple links, no rescale factors; must be externally pre multiplied
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    ImprovedStaggeredFermion5D(GridCartesian         &FiveDimGrid,
 | 
			
		||||
			       GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			       GridCartesian         &FourDimGrid,
 | 
			
		||||
			       GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			       double _mass,
 | 
			
		||||
			       RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
 | 
			
		||||
			     const ImplParams &p= ImplParams());
 | 
			
		||||
    
 | 
			
		||||
    // DoubleStore gauge field in operator
 | 
			
		||||
    void ImportGauge      (const GaugeField &_Uthin ) { assert(0); }
 | 
			
		||||
  void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
 | 
			
		||||
    void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
 | 
			
		||||
    void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
 | 
			
		||||
    // Give a reference; can be used to do an assignment or copy back out after import
 | 
			
		||||
    // if Carleton wants to cache them and not use the ImportSimple
 | 
			
		||||
    DoubledGaugeField &GetU(void)   { return Umu ; } ;
 | 
			
		||||
    DoubledGaugeField &GetUUU(void) { return UUUmu; };
 | 
			
		||||
    void CopyGaugeCheckerboards(void);
 | 
			
		||||
    
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Data members require to support the functionality
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
    virtual int   isTrivialEE(void) { return 1; };
 | 
			
		||||
    virtual RealD Mass(void) { return mass; }
 | 
			
		||||
    
 | 
			
		||||
  GridBase *_FourDimGrid;
 | 
			
		||||
  GridBase *_FourDimRedBlackGrid;
 | 
			
		||||
  GridBase *_FiveDimGrid;
 | 
			
		||||
  GridBase *_FiveDimRedBlackGrid;
 | 
			
		||||
    
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD c1;
 | 
			
		||||
  RealD c2;
 | 
			
		||||
  RealD u0;
 | 
			
		||||
  int Ls;
 | 
			
		||||
    
 | 
			
		||||
  //Defines the stencils for even and odd
 | 
			
		||||
  StencilImpl Stencil; 
 | 
			
		||||
  StencilImpl StencilEven; 
 | 
			
		||||
  StencilImpl StencilOdd; 
 | 
			
		||||
    
 | 
			
		||||
  // Copy of the gauge field , with even and odd subsets
 | 
			
		||||
  DoubledGaugeField Umu;
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
 | 
			
		||||
  DoubledGaugeField UUUmu;
 | 
			
		||||
  DoubledGaugeField UUUmuEven;
 | 
			
		||||
  DoubledGaugeField UUUmuOdd;
 | 
			
		||||
    
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
    
 | 
			
		||||
  // Comms buffer
 | 
			
		||||
  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf;
 | 
			
		||||
    
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void ContractConservedCurrent(PropagatorField &q_in_1,
 | 
			
		||||
				PropagatorField &q_in_2,
 | 
			
		||||
				PropagatorField &q_out,
 | 
			
		||||
				Current curr_type,
 | 
			
		||||
				unsigned int mu);
 | 
			
		||||
  void SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
			   PropagatorField &q_out,
 | 
			
		||||
			   Current curr_type,
 | 
			
		||||
			   unsigned int mu, 
 | 
			
		||||
			   unsigned int tmin,
 | 
			
		||||
                             unsigned int tmax,
 | 
			
		||||
                 	     ComplexField &lattice_cmplx);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,192 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/MADWF.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class Fieldi, class Fieldo,IfNotSame<Fieldi,Fieldo> X=0>
 | 
			
		||||
inline void convert(const Fieldi &from,Fieldo &to) 
 | 
			
		||||
{
 | 
			
		||||
  precisionChange(to,from);
 | 
			
		||||
}
 | 
			
		||||
template <class Fieldi, class Fieldo,IfSame<Fieldi,Fieldo> X=0>
 | 
			
		||||
inline void convert(const Fieldi &from,Fieldo &to) 
 | 
			
		||||
{
 | 
			
		||||
  to=from;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Matrixo,class Matrixi,class PVinverter,class SchurSolver, class Guesser> 
 | 
			
		||||
class MADWF 
 | 
			
		||||
{
 | 
			
		||||
 private:
 | 
			
		||||
  typedef typename Matrixo::FermionField FermionFieldo;
 | 
			
		||||
  typedef typename Matrixi::FermionField FermionFieldi;
 | 
			
		||||
 | 
			
		||||
  PVinverter  & PauliVillarsSolvero;// For the outer field
 | 
			
		||||
  SchurSolver & SchurSolveri;       // For the inner approx field
 | 
			
		||||
  Guesser     & Guesseri;           // To deflate the inner approx solves
 | 
			
		||||
 | 
			
		||||
  Matrixo & Mato;                   // Action object for outer
 | 
			
		||||
  Matrixi & Mati;                   // Action object for inner
 | 
			
		||||
 | 
			
		||||
  RealD target_resid;
 | 
			
		||||
  int   maxiter;
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  MADWF(Matrixo &_Mato,
 | 
			
		||||
	Matrixi &_Mati, 
 | 
			
		||||
	PVinverter &_PauliVillarsSolvero, 
 | 
			
		||||
	SchurSolver &_SchurSolveri,
 | 
			
		||||
	Guesser & _Guesseri,
 | 
			
		||||
	RealD resid,
 | 
			
		||||
	int _maxiter) :
 | 
			
		||||
 | 
			
		||||
  Mato(_Mato),Mati(_Mati),
 | 
			
		||||
    SchurSolveri(_SchurSolveri),
 | 
			
		||||
    PauliVillarsSolvero(_PauliVillarsSolvero),Guesseri(_Guesseri)
 | 
			
		||||
  {   
 | 
			
		||||
    target_resid=resid;
 | 
			
		||||
    maxiter     =_maxiter; 
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< " ************************************************" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<< "  MADWF-like algorithm                           " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<< " ************************************************" << std::endl;
 | 
			
		||||
 | 
			
		||||
    FermionFieldi    c0i(Mati.GaugeGrid()); // 4d 
 | 
			
		||||
    FermionFieldi    y0i(Mati.GaugeGrid()); // 4d
 | 
			
		||||
    FermionFieldo    c0 (Mato.GaugeGrid()); // 4d 
 | 
			
		||||
    FermionFieldo    y0 (Mato.GaugeGrid()); // 4d
 | 
			
		||||
 | 
			
		||||
    FermionFieldo    A(Mato.FermionGrid()); // Temporary outer
 | 
			
		||||
    FermionFieldo    B(Mato.FermionGrid()); // Temporary outer
 | 
			
		||||
    FermionFieldo    b(Mato.FermionGrid()); // 5d source
 | 
			
		||||
 | 
			
		||||
    FermionFieldo    c(Mato.FermionGrid()); // PVinv source; reused so store
 | 
			
		||||
    FermionFieldo    defect(Mato.FermionGrid()); // 5d source
 | 
			
		||||
 | 
			
		||||
    FermionFieldi   ci(Mati.FermionGrid()); 
 | 
			
		||||
    FermionFieldi   yi(Mati.FermionGrid()); 
 | 
			
		||||
    FermionFieldi   xi(Mati.FermionGrid()); 
 | 
			
		||||
    FermionFieldi srci(Mati.FermionGrid()); 
 | 
			
		||||
    FermionFieldi   Ai(Mati.FermionGrid()); 
 | 
			
		||||
 | 
			
		||||
    RealD m=Mati.Mass();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    //Import source, include Dminus factors
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    Mato.ImportPhysicalFermionSource(src4,b); 
 | 
			
		||||
    std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " b    " <<norm2(b)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    defect = b;
 | 
			
		||||
    sol5=Zero();
 | 
			
		||||
    for (int i=0;i<maxiter;i++) {
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////
 | 
			
		||||
      // Set up c0 from current defect
 | 
			
		||||
      ///////////////////////////////////////
 | 
			
		||||
      PauliVillarsSolvero(Mato,defect,A);
 | 
			
		||||
      Mato.Pdag(A,c);
 | 
			
		||||
      ExtractSlice(c0, c, 0 , 0);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Solve the inner system with surface term c0
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      ci = Zero();  
 | 
			
		||||
      convert(c0,c0i); // Possible precison change
 | 
			
		||||
      InsertSlice(c0i,ci,0, 0);
 | 
			
		||||
 | 
			
		||||
      // Dwm P y = Dwm x = D(1) P (c0,0,0,0)^T
 | 
			
		||||
      Mati.P(ci,Ai);
 | 
			
		||||
      Mati.SetMass(1.0);      Mati.M(Ai,srci);      Mati.SetMass(m);
 | 
			
		||||
      SchurSolveri(Mati,srci,xi,Guesseri); 
 | 
			
		||||
      Mati.Pdag(xi,yi);
 | 
			
		||||
      ExtractSlice(y0i, yi, 0 , 0);
 | 
			
		||||
      convert(y0i,y0); // Possible precision change
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////
 | 
			
		||||
      // Propagate solution back to outer system
 | 
			
		||||
      // Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
 | 
			
		||||
      //////////////////////////////////////
 | 
			
		||||
      c0 = - y0;
 | 
			
		||||
      InsertSlice(c0, c, 0   , 0);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////
 | 
			
		||||
      // Reconstruct the bulk solution Pdag PV^-1 Dm P 
 | 
			
		||||
      /////////////////////////////
 | 
			
		||||
      Mato.P(c,B);
 | 
			
		||||
      Mato.M(B,A);
 | 
			
		||||
      PauliVillarsSolvero(Mato,A,B);
 | 
			
		||||
      Mato.Pdag(B,A);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////
 | 
			
		||||
      // Reinsert surface prop
 | 
			
		||||
      //////////////////////////////
 | 
			
		||||
      InsertSlice(y0,A,0,0);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////
 | 
			
		||||
      // Convert from y back to x 
 | 
			
		||||
      //////////////////////////////
 | 
			
		||||
      Mato.P(A,B);
 | 
			
		||||
 | 
			
		||||
      //         sol5' = sol5 + M^-1 defect
 | 
			
		||||
      //               = sol5 + M^-1 src - M^-1 M sol5  ...
 | 
			
		||||
      sol5 = sol5 + B;
 | 
			
		||||
      std::cout << GridLogMessage << "***************************************" <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << " Sol5 update "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "***************************************" <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << " Sol5 now "<<norm2(sol5)<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << " delta    "<<norm2(B)<<std::endl;
 | 
			
		||||
 | 
			
		||||
       // New defect  = b - M sol5
 | 
			
		||||
       Mato.M(sol5,A);
 | 
			
		||||
       defect = b - A;
 | 
			
		||||
 | 
			
		||||
       std::cout << GridLogMessage << " defect   "<<norm2(defect)<<std::endl;
 | 
			
		||||
 | 
			
		||||
       double resid = ::sqrt(norm2(defect) / norm2(b));
 | 
			
		||||
       std::cout << GridLogMessage << "Residual " << i << ": " << resid  << std::endl;
 | 
			
		||||
       std::cout << GridLogMessage << "***************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
       if (resid < target_resid) {
 | 
			
		||||
	 return;
 | 
			
		||||
       }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "MADWF : Exceeded maxiter "<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,104 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_MOBIUS_EOFA_FERMION_H
 | 
			
		||||
#define  GRID_QCD_MOBIUS_EOFA_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  // Shift operator coefficients for red-black preconditioned Mobius EOFA
 | 
			
		||||
  Vector<Coeff_t> Mooee_shift;
 | 
			
		||||
  Vector<Coeff_t> MooeeInv_shift_lc;
 | 
			
		||||
  Vector<Coeff_t> MooeeInv_shift_norm;
 | 
			
		||||
  Vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
			
		||||
  Vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable(void) {};
 | 
			
		||||
 | 
			
		||||
  // EOFA-specific operations
 | 
			
		||||
  virtual void  Omega            (const FermionField& in, FermionField& out, int sign, int dag);
 | 
			
		||||
  virtual void  Dtilde           (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  DtildeInv        (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
  // override multiply
 | 
			
		||||
  virtual RealD M                (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual RealD Mdag             (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operations
 | 
			
		||||
  virtual void  Mooee            (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeDag         (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeInv         (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeInv_shift   (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeInvDag      (const FermionField& in, FermionField& out);
 | 
			
		||||
  virtual void  MooeeInvDag_shift(const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
  virtual void   M5D             (const FermionField& psi, FermionField& chi);
 | 
			
		||||
  virtual void   M5Ddag          (const FermionField& psi, FermionField& chi);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
		 Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
			
		||||
		 Vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
		    Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
			
		||||
		    Vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
 | 
			
		||||
		    GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
 | 
			
		||||
		    RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
 | 
			
		||||
		    RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  void SetCoefficientsPrecondShiftOps(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,77 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/MobiusFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_MOBIUS_FERMION_H
 | 
			
		||||
#define  GRID_QCD_MOBIUS_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class MobiusFermion : public CayleyFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void) {};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  MobiusFermion(GaugeField &_Umu,
 | 
			
		||||
		GridCartesian         &FiveDimGrid,
 | 
			
		||||
		GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
		GridCartesian         &FourDimGrid,
 | 
			
		||||
		GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		RealD _mass,RealD _M5,
 | 
			
		||||
		RealD b, RealD c,const ImplParams &p= ImplParams()) : 
 | 
			
		||||
      
 | 
			
		||||
    CayleyFermion5D<Impl>(_Umu,
 | 
			
		||||
			  FiveDimGrid,
 | 
			
		||||
			  FiveDimRedBlackGrid,
 | 
			
		||||
			  FourDimGrid,
 | 
			
		||||
			  FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    RealD eps = 1.0;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Tanh approx"<<std::endl;
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
 | 
			
		||||
    assert(zdata->n==this->Ls);
 | 
			
		||||
	
 | 
			
		||||
    // Call base setter
 | 
			
		||||
    this->SetCoefficientsTanh(zdata,b,c);
 | 
			
		||||
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,78 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/MobiusZolotarevFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
 | 
			
		||||
#define  GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class MobiusZolotarevFermion : public CayleyFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void) {};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  MobiusZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
			 GridCartesian         &FiveDimGrid,
 | 
			
		||||
			 GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			 GridCartesian         &FourDimGrid,
 | 
			
		||||
			 GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			 RealD _mass,RealD _M5,
 | 
			
		||||
			 RealD b, RealD c,
 | 
			
		||||
			 RealD lo, RealD hi,const ImplParams &p= ImplParams()) : 
 | 
			
		||||
      
 | 
			
		||||
    CayleyFermion5D<Impl>(_Umu,
 | 
			
		||||
			  FiveDimGrid,
 | 
			
		||||
			  FiveDimRedBlackGrid,
 | 
			
		||||
			  FourDimGrid,
 | 
			
		||||
			  FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    RealD eps = lo/hi;
 | 
			
		||||
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::zolotarev(eps,this->Ls,0);
 | 
			
		||||
    assert(zdata->n==this->Ls);
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
    // Call base setter
 | 
			
		||||
    this->SetCoefficientsZolotarev(hi,zdata,b,c);
 | 
			
		||||
 
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,70 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/OverlapWilsonContfracTanhFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
 | 
			
		||||
#define OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
 | 
			
		||||
				   GridCartesian         &FiveDimGrid,
 | 
			
		||||
				   GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
				   GridCartesian         &FourDimGrid,
 | 
			
		||||
				   GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
				   RealD _mass,RealD _M5,
 | 
			
		||||
				   RealD scale,const ImplParams &p= ImplParams()) :
 | 
			
		||||
      
 | 
			
		||||
    // b+c=scale, b-c = 0 <=> b =c = scale/2
 | 
			
		||||
    ContinuedFractionFermion5D<Impl>(_Umu,
 | 
			
		||||
				     FiveDimGrid,
 | 
			
		||||
				     FiveDimRedBlackGrid,
 | 
			
		||||
				     FourDimGrid,
 | 
			
		||||
				     FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
  {
 | 
			
		||||
    assert((this->Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
    int nrational=this->Ls-1;// Even rational order
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
 | 
			
		||||
    this->SetCoefficientsTanh(zdata,scale);
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,72 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
 | 
			
		||||
#define OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
					GridCartesian         &FiveDimGrid,
 | 
			
		||||
					GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
					GridCartesian         &FourDimGrid,
 | 
			
		||||
					GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
					RealD _mass,RealD _M5,
 | 
			
		||||
					RealD lo,RealD hi,const ImplParams &p= ImplParams()):
 | 
			
		||||
      
 | 
			
		||||
    // b+c=scale, b-c = 0 <=> b =c = scale/2
 | 
			
		||||
    ContinuedFractionFermion5D<Impl>(_Umu,
 | 
			
		||||
				     FiveDimGrid,
 | 
			
		||||
				     FiveDimRedBlackGrid,
 | 
			
		||||
				     FourDimGrid,
 | 
			
		||||
				     FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
  {
 | 
			
		||||
    assert((this->Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
 | 
			
		||||
    int nrational=this->Ls;// Odd rational order
 | 
			
		||||
    RealD eps = lo/hi;
 | 
			
		||||
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
 | 
			
		||||
    this->SetCoefficientsZolotarev(hi,zdata);
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,69 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
 | 
			
		||||
#define OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class OverlapWilsonPartialFractionTanhFermion : public PartialFractionFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
 | 
			
		||||
					  GridCartesian         &FiveDimGrid,
 | 
			
		||||
					  GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
					  GridCartesian         &FourDimGrid,
 | 
			
		||||
					  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
					  RealD _mass,RealD _M5,
 | 
			
		||||
					  RealD scale,const ImplParams &p= ImplParams()) :
 | 
			
		||||
      
 | 
			
		||||
    // b+c=scale, b-c = 0 <=> b =c = scale/2
 | 
			
		||||
    PartialFractionFermion5D<Impl>(_Umu,
 | 
			
		||||
				   FiveDimGrid,
 | 
			
		||||
				   FiveDimRedBlackGrid,
 | 
			
		||||
				   FourDimGrid,
 | 
			
		||||
				   FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
  {
 | 
			
		||||
    assert((this->Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
    int nrational=this->Ls-1;// Even rational order
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
 | 
			
		||||
    this->SetCoefficientsTanh(zdata,scale);
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,73 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
 | 
			
		||||
#define OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class OverlapWilsonPartialFractionZolotarevFermion : public PartialFractionFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
					       GridCartesian         &FiveDimGrid,
 | 
			
		||||
					       GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
					       GridCartesian         &FourDimGrid,
 | 
			
		||||
					       GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
					       RealD _mass,RealD _M5,
 | 
			
		||||
					       RealD lo,RealD hi,const ImplParams &p= ImplParams()):
 | 
			
		||||
      
 | 
			
		||||
    // b+c=scale, b-c = 0 <=> b =c = scale/2
 | 
			
		||||
    PartialFractionFermion5D<Impl>(_Umu,
 | 
			
		||||
				   FiveDimGrid,
 | 
			
		||||
				   FiveDimRedBlackGrid,
 | 
			
		||||
				   FourDimGrid,
 | 
			
		||||
				   FourDimRedBlackGrid,_mass,_M5,p)
 | 
			
		||||
  {
 | 
			
		||||
    assert((this->Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
 | 
			
		||||
    int nrational=this->Ls;// Odd rational order
 | 
			
		||||
    RealD eps = lo/hi;
 | 
			
		||||
 | 
			
		||||
    Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
 | 
			
		||||
    this->SetCoefficientsZolotarev(hi,zdata);
 | 
			
		||||
    Approx::zolotarev_free(zdata);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,104 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/PartialFractionFermion5D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_PARTIAL_FRACTION_H
 | 
			
		||||
#define  GRID_QCD_PARTIAL_FRACTION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class PartialFractionFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  const int part_frac_chroma_convention=1;
 | 
			
		||||
 | 
			
		||||
  void   Meooe_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void   Mooee_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void   MooeeInv_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void   M_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
 | 
			
		||||
  // override multiply
 | 
			
		||||
  virtual RealD  M    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual RealD  Mdag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operaions
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  // force terms; five routines; default to Dhop on diagonal
 | 
			
		||||
  virtual void MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void) =0; // ensure no make-eee
 | 
			
		||||
 | 
			
		||||
  // Efficient support for multigrid coarsening
 | 
			
		||||
  virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Physical surface field utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
 | 
			
		||||
  virtual void ImportPhysicalFermionSource  (const FermionField &input4d,FermionField &imported5d);
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  PartialFractionFermion5D(GaugeField &_Umu,
 | 
			
		||||
			   GridCartesian         &FiveDimGrid,
 | 
			
		||||
			   GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			   GridCartesian         &FourDimGrid,
 | 
			
		||||
			   GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			   RealD _mass,RealD M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
 | 
			
		||||
 | 
			
		||||
  // Part frac
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD dw_diag;
 | 
			
		||||
  RealD R;
 | 
			
		||||
  RealD amax;
 | 
			
		||||
  RealD scale;
 | 
			
		||||
  Vector<double> p; 
 | 
			
		||||
  Vector<double> q;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,92 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/SchurRedBlack.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class PauliVillarsSolverUnprec
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  ConjugateGradient<Field> & CG;
 | 
			
		||||
  PauliVillarsSolverUnprec(  ConjugateGradient<Field> &_CG) : CG(_CG){};
 | 
			
		||||
 | 
			
		||||
  template<class Matrix>
 | 
			
		||||
  void operator() (Matrix &_Matrix,const Field &src,Field &sol)
 | 
			
		||||
  {
 | 
			
		||||
    RealD m = _Matrix.Mass();
 | 
			
		||||
    Field A  (_Matrix.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    MdagMLinearOperator<Matrix,Field> HermOp(_Matrix);
 | 
			
		||||
 | 
			
		||||
    _Matrix.SetMass(1.0);
 | 
			
		||||
    _Matrix.Mdag(src,A);
 | 
			
		||||
    CG(HermOp,A,sol);
 | 
			
		||||
    _Matrix.SetMass(m);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field,class SchurSolverType>
 | 
			
		||||
class PauliVillarsSolverRBprec
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  SchurSolverType & SchurSolver;
 | 
			
		||||
  PauliVillarsSolverRBprec( SchurSolverType &_SchurSolver) : SchurSolver(_SchurSolver){};
 | 
			
		||||
 | 
			
		||||
  template<class Matrix>
 | 
			
		||||
  void operator() (Matrix &_Matrix,const Field &src,Field &sol)
 | 
			
		||||
  {
 | 
			
		||||
    RealD m = _Matrix.Mass();
 | 
			
		||||
    Field A  (_Matrix.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    _Matrix.SetMass(1.0);
 | 
			
		||||
    SchurSolver(_Matrix,src,sol);
 | 
			
		||||
    _Matrix.SetMass(m);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field,class GaugeField>
 | 
			
		||||
class PauliVillarsSolverFourierAccel
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  GaugeField      & Umu;
 | 
			
		||||
  ConjugateGradient<Field> & CG;
 | 
			
		||||
 | 
			
		||||
  PauliVillarsSolverFourierAccel(GaugeField &_Umu,ConjugateGradient<Field> &_CG) :  Umu(_Umu), CG(_CG)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class Matrix>
 | 
			
		||||
  void operator() (Matrix &_Matrix,const Field &src,Field &sol)
 | 
			
		||||
  {
 | 
			
		||||
    FourierAcceleratedPV<Field, Matrix, typename Matrix::GaugeField > faPV(_Matrix,Umu,CG) ;
 | 
			
		||||
    faPV.pvInv(src,sol);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,134 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/SchurRedBlack.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field,class PVinverter> class Reconstruct5DfromPhysical {
 | 
			
		||||
 private:
 | 
			
		||||
  PVinverter & PauliVillarsSolver;
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
 /////////////////////////////////////////////////////
 | 
			
		||||
 // First cut works, 10 Oct 2018.
 | 
			
		||||
 //
 | 
			
		||||
 // Must form a plan to get this into production for Zmobius acceleration
 | 
			
		||||
 // of the Mobius exact AMA corrections.
 | 
			
		||||
 //
 | 
			
		||||
 // TODO : understand absence of contact term in eqns in Hantao's thesis
 | 
			
		||||
 //        sol4 is contact term subtracted, but thesis & Brower's paper suggests not.
 | 
			
		||||
 //
 | 
			
		||||
 // Step 1: Localise PV inverse in a routine. [DONE]
 | 
			
		||||
 // Step 2: Schur based PV inverse            [DONE]
 | 
			
		||||
 // Step 3: Fourier accelerated PV inverse    [DONE]
 | 
			
		||||
 //
 | 
			
		||||
 /////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
  Reconstruct5DfromPhysical(PVinverter &_PauliVillarsSolver) 
 | 
			
		||||
    : PauliVillarsSolver(_PauliVillarsSolver) 
 | 
			
		||||
  { 
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
   template<class Matrix>
 | 
			
		||||
   void PV(Matrix &_Matrix,const Field &src,Field &sol)
 | 
			
		||||
   {
 | 
			
		||||
     RealD m = _Matrix.Mass();
 | 
			
		||||
     _Matrix.SetMass(1.0);
 | 
			
		||||
     _Matrix.M(src,sol);
 | 
			
		||||
     _Matrix.SetMass(m);
 | 
			
		||||
   }
 | 
			
		||||
   template<class Matrix>
 | 
			
		||||
   void PVdag(Matrix &_Matrix,const Field &src,Field &sol)
 | 
			
		||||
   {
 | 
			
		||||
     RealD m = _Matrix.Mass();
 | 
			
		||||
     _Matrix.SetMass(1.0);
 | 
			
		||||
     _Matrix.Mdag(src,sol);
 | 
			
		||||
     _Matrix.SetMass(m);
 | 
			
		||||
   }
 | 
			
		||||
  template<class Matrix>
 | 
			
		||||
  void operator() (Matrix & _Matrix,const Field &sol4,const Field &src4, Field &sol5){
 | 
			
		||||
 | 
			
		||||
    int Ls =  _Matrix.Ls;
 | 
			
		||||
 | 
			
		||||
    Field psi4(_Matrix.GaugeGrid());
 | 
			
		||||
    Field psi(_Matrix.FermionGrid());
 | 
			
		||||
    Field A  (_Matrix.FermionGrid());
 | 
			
		||||
    Field B  (_Matrix.FermionGrid());
 | 
			
		||||
    Field c  (_Matrix.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    typedef typename Matrix::Coeff_t Coeff_t;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< " ************************************************" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<< " Reconstruct5Dprop: c.f. MADWF algorithm         " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<< " ************************************************" << std::endl;
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    //Import source, include Dminus factors
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    _Matrix.ImportPhysicalFermionSource(src4,B); 
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Set up c from src4
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    PauliVillarsSolver(_Matrix,B,A);
 | 
			
		||||
    _Matrix.Pdag(A,c);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////
 | 
			
		||||
    // Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
 | 
			
		||||
    //////////////////////////////////////
 | 
			
		||||
    psi4 = - sol4;
 | 
			
		||||
    InsertSlice(psi4, psi, 0   , 0);
 | 
			
		||||
    for (int s=1;s<Ls;s++) {
 | 
			
		||||
      ExtractSlice(psi4,c,s,0);
 | 
			
		||||
       InsertSlice(psi4,psi,s,0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Pdag PV^-1 Dm P 
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    _Matrix.P(psi,B);
 | 
			
		||||
    _Matrix.M(B,A);
 | 
			
		||||
    PauliVillarsSolver(_Matrix,A,B);
 | 
			
		||||
    _Matrix.Pdag(B,A);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    // Reinsert surface prop
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    InsertSlice(sol4,A,0,0);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    // Convert from y back to x 
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    _Matrix.P(A,sol5);
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,66 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/ScaledShamirFermion.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_SCALED_SHAMIR_FERMION_H
 | 
			
		||||
#define  GRID_QCD_SCALED_SHAMIR_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class ScaledShamirFermion : public MobiusFermion<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  ScaledShamirFermion(GaugeField &_Umu,
 | 
			
		||||
		      GridCartesian         &FiveDimGrid,
 | 
			
		||||
		      GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
		      GridCartesian         &FourDimGrid,
 | 
			
		||||
		      GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		      RealD _mass,RealD _M5,
 | 
			
		||||
		      //			RealD scale):
 | 
			
		||||
		      RealD scale,const ImplParams &p= ImplParams()) :
 | 
			
		||||
      
 | 
			
		||||
    // b+c=scale, b-c = 1 <=> 2b = scale+1; 2c = scale-1
 | 
			
		||||
    MobiusFermion<Impl>(_Umu,
 | 
			
		||||
			FiveDimGrid,
 | 
			
		||||
			FiveDimRedBlackGrid,
 | 
			
		||||
			FourDimGrid,
 | 
			
		||||
			FourDimRedBlackGrid,_mass,_M5,0.5*(scale+1.0),0.5*(scale-1.0),p)
 | 
			
		||||
    //		    FourDimRedBlackGrid,_mass,_M5,0.5*(scale+1.0),0.5*(scale-1.0))
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user