mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-18 07:47:06 +01:00
Compare commits
169 Commits
gauge-grou
...
feature/gp
Author | SHA1 | Date | |
---|---|---|---|
4fefae1745 | |||
758e2edcad | |||
1538b15f3b | |||
deac621c2c | |||
63dbaeefaa | |||
e8c187b323 | |||
0c1618197f | |||
f49d5c2d22 | |||
a3b022d469 | |||
ba974960e6 | |||
48772f0976 | |||
c322420580 | |||
86f4e17928 | |||
215df671be | |||
1b6b12589f | |||
3082ab8252 | |||
add86cd7f4 | |||
0b6fd20c54 | |||
e83423fee6 | |||
b4f8e87982 | |||
6755dc57f8 | |||
aa620ca52c | |||
2c46c942cc | |||
adeba8059a | |||
c4ac528126 | |||
551b93ba8e | |||
135808dcfa | |||
7f7d06d963 | |||
2bf3b4d576 | |||
ddf7540510 | |||
de68d12c3d | |||
f34d34bd17 | |||
e32d5141b4 | |||
6d5277f2d7 | |||
14d82777e0 | |||
2a4e739513 | |||
8079dc2a14 | |||
6ceb556684 | |||
76cde73705 | |||
6d26a2a1ad | |||
a1211cdcce | |||
cc094366a9 | |||
41a575ff9b | |||
12ef413065 | |||
829a328451 | |||
402523c62e | |||
d7bef70b5c | |||
2ad1811642 | |||
e78acf77ff | |||
a65a497bae | |||
b27b12828e | |||
fe9edf8526 | |||
44204c7e06 | |||
33b3789598 | |||
195ab2888d | |||
85f750d753 | |||
a4ce6e42c7 | |||
5398b7e7e3 | |||
fd13a3f2be | |||
c144b32368 | |||
ba7e371b90 | |||
99e7a5d18a | |||
f7e9621492 | |||
f824d99059 | |||
749b8022a4 | |||
7e0057d2c4 | |||
cfe9e870d3 | |||
f14be15f8b | |||
e9c4f06cbf | |||
1f9688417a | |||
6a3aaa52ef | |||
16c2a99965 | |||
cda915a345 | |||
7c16189e16 | |||
ecbfccea43 | |||
a8eda8f6da | |||
9b1a0653cf | |||
7cb1ff7395 | |||
ab6ea29913 | |||
b5c81a02b6 | |||
d899ee80fc | |||
4016e705fc | |||
2f4e85e5d6 | |||
8ed0b57b09 | |||
9ba47b4696 | |||
e85af80c39 | |||
0b91e90dd4 | |||
7e130076d6 | |||
6efdad6f21 | |||
a822c48565 | |||
014fb76e88 | |||
30e5311b43 | |||
d184b8c921 | |||
c92e390b08 | |||
11ee8a1061 | |||
770680669d | |||
0cdfc5cf22 | |||
5b36a8af54 | |||
75a1f85162 | |||
428b8ba907 | |||
ac4f2d9798 | |||
c3b99de33f | |||
e1a02bb80a | |||
86f08c6b9a | |||
9f0271039f | |||
24df770f74 | |||
45b6c7effc | |||
1c70d8c4d9 | |||
f0e9a5299f | |||
f1b8ba45e7 | |||
fe998ab578 | |||
c2ee2b5fd1 | |||
3b734ee397 | |||
8637a9512a | |||
7f6e2ee03e | |||
7b02acb2bd | |||
86948c6ea0 | |||
53d226924a | |||
80176b1b39 | |||
29ddafd0fc | |||
0f08364e4f | |||
a198d59381 | |||
3a4f5f2324 | |||
824d84473f | |||
38964a4076 | |||
0d9aa87228 | |||
0e959d9b94 | |||
752f70cd48 | |||
54c6b1376d | |||
f3f11b586f | |||
8083e3f7e8 | |||
e0e42873c1 | |||
364793154b | |||
3e2ae1e9af | |||
d38ae2fd18 | |||
030e7754e4 | |||
3b7fce1e76 | |||
4d15417f93 | |||
ab3c855f65 | |||
92e2c517d8 | |||
0ff3bf6dc5 | |||
351eab02ae | |||
feee5ccde2 | |||
e0f6a146d8 | |||
daa095c519 | |||
c2676853ca | |||
6a824033f8 | |||
cee6a37639 | |||
6cc3ad110c | |||
e6c6f82c52 | |||
d10d0c4e7f | |||
9c106d625a | |||
6795bbca31 | |||
d161c2dc35 | |||
7a06826cf1 | |||
c3712b8e06 | |||
901ee77b84 | |||
1b84f59273 | |||
1fb41a4300 | |||
287bac946f | |||
80c14be65e | |||
d7a2a4852d | |||
d185f2eaa7 | |||
813d4cd900 | |||
75c6c6b173 | |||
220ad5e3ee | |||
ba5dc670a5 | |||
a0ca362690 | |||
249b6e61ec |
@ -34,6 +34,9 @@ directory
|
||||
|
||||
#if defined __GNUC__ && __GNUC__>=6
|
||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||||
#endif
|
||||
#if defined __GNUC__
|
||||
#pragma GCC diagnostic ignored "-Wpsabi"
|
||||
#endif
|
||||
|
||||
//disables and intel compiler specific warning (in json.hpp)
|
||||
|
@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/qcd/QCD.h>
|
||||
#include <Grid/qcd/spin/Spin.h>
|
||||
#include <Grid/qcd/gparity/Gparity.h>
|
||||
#include <Grid/qcd/utils/Utils.h>
|
||||
#include <Grid/qcd/representations/Representations.h>
|
||||
NAMESPACE_CHECK(GridQCDCore);
|
||||
|
@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
|
@ -358,7 +358,7 @@ public:
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
auto& geom_v = geom;
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
@ -380,7 +380,7 @@ public:
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
for(int point=0;point<geom_v.npoint;point++){
|
||||
for(int point=0;point<npoint;point++){
|
||||
|
||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||
|
||||
@ -424,7 +424,7 @@ public:
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
auto& geom_v = geom;
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
@ -454,7 +454,7 @@ public:
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
for(int p=0;p<geom_v.npoint;p++){
|
||||
for(int p=0;p<npoint;p++){
|
||||
int point = points_p[p];
|
||||
|
||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||
|
@ -52,6 +52,7 @@ public:
|
||||
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
|
||||
virtual void HermOp(const Field &in, Field &out)=0;
|
||||
virtual ~LinearOperatorBase(){};
|
||||
};
|
||||
|
||||
|
||||
@ -507,7 +508,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
virtual void MpcDag (const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
virtual void MpcDagMpc(const Field &in, Field &out) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
@ -585,6 +586,7 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||
@ -598,6 +600,7 @@ public:
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
|
@ -30,13 +30,19 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field> using Preconditioner = LinearFunction<Field> ;
|
||||
|
||||
/*
|
||||
template<class Field> class Preconditioner : public LinearFunction<Field> {
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field & psi)=0;
|
||||
};
|
||||
*/
|
||||
|
||||
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
|
||||
public:
|
||||
void operator()(const Field &src, Field & psi){
|
||||
using Preconditioner<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field & psi){
|
||||
psi = src;
|
||||
}
|
||||
TrivialPrecon(void){};
|
||||
|
@ -48,6 +48,7 @@ public:
|
||||
virtual void Mdiag (const Field &in, Field &out)=0;
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
|
||||
virtual ~SparseMatrixBase() {};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -72,7 +73,7 @@ public:
|
||||
virtual void MeooeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeInvDag (const Field &in, Field &out)=0;
|
||||
|
||||
virtual ~CheckerBoardedSparseMatrixBase() {};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -292,6 +292,7 @@ public:
|
||||
template<class Field>
|
||||
class ChebyshevLanczos : public Chebyshev<Field> {
|
||||
private:
|
||||
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD alpha;
|
||||
|
@ -37,6 +37,7 @@ template<class FieldD, class FieldF, typename std::enable_if< getPrecision<Field
|
||||
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<FieldD>::operator();
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
|
@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
||||
public:
|
||||
using LinearFunction<FieldD>::operator();
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
@ -48,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
RealD TrueResidual;
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
@ -67,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
@ -79,6 +82,11 @@ NAMESPACE_BEGIN(Grid);
|
||||
RealD stop = src_norm * Tolerance*Tolerance;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in.Grid();
|
||||
|
||||
//Generate precision change workspaces
|
||||
precisionChangeWorkspace wk_dp_from_sp(DoublePrecGrid, SinglePrecGrid);
|
||||
precisionChangeWorkspace wk_sp_from_dp(SinglePrecGrid, DoublePrecGrid);
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
@ -96,6 +104,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
@ -119,7 +128,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
precisionChange(src_f, src_d, wk_sp_from_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
@ -129,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
(*guesser)(src_f, sol_f);
|
||||
|
||||
//Inner CG
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
@ -137,7 +147,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
precisionChange(tmp_d, sol_f, wk_dp_from_sp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
@ -149,6 +159,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
TrueResidual = CG_d.TrueResidual;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
|
@ -52,7 +52,7 @@ public:
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
||||
MaxIterations(maxit),
|
||||
shifts(_shifts)
|
||||
{
|
||||
@ -183,6 +183,9 @@ public:
|
||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
|
411
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
411
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
@ -0,0 +1,411 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||
//Every update_freq iterations the residual is corrected in double precision.
|
||||
|
||||
//For safety the a final regular CG is applied to clean up if necessary
|
||||
|
||||
//Linop to add shift to input linop, used in cleanup CG
|
||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
||||
template<typename Field>
|
||||
class ShiftedLinop: public LinearOperatorBase<Field>{
|
||||
public:
|
||||
LinearOperatorBase<Field> &linop_base;
|
||||
RealD shift;
|
||||
|
||||
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
|
||||
void HermOp(const Field &in, Field &out){
|
||||
linop_base.HermOp(in, out);
|
||||
axpy(out, shift, in, out);
|
||||
}
|
||||
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
template<class FieldD, class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
||||
public OperatorFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq
|
||||
) :
|
||||
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<FieldD> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||
{
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
precisionChangeWorkspace wk_f_from_d(SinglePrecGrid, DoublePrecGrid);
|
||||
precisionChangeWorkspace wk_d_from_f(DoublePrecGrid, SinglePrecGrid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
|
||||
//Double precision search directions
|
||||
FieldD p_d(DoublePrecGrid);
|
||||
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
FieldF p_f(SinglePrecGrid);
|
||||
FieldF tmp_f(SinglePrecGrid);
|
||||
FieldF mmp_f(SinglePrecGrid);
|
||||
FieldF src_f(SinglePrecGrid);
|
||||
precisionChange(src_f, src_d, wk_f_from_d);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src_d);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi_d[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
ps_d[s] = src_d;
|
||||
}
|
||||
// r and p for primary
|
||||
r_f=src_f; //residual maintained in single
|
||||
p_f=src_f;
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
|
||||
//MdagM+m[0]
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||
RealD rn = norm2(p_f);
|
||||
d += rn*mass[0];
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r_f,b,mmp_f,r_f);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
a = c /cp;
|
||||
|
||||
//Update double precision search direction by residual
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_d, r_f, wk_d_from_f);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(p_d,a,p_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps_d[s],a,ps_d[s],r_d);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(p_f, p_d, wk_f_from_d); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
d=real(innerProduct(p_f,mmp_f));
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||
AXPYTimer.Stop();
|
||||
RealD rn = norm2(p_f);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
//Update double precision solutions
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
||||
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
c = c_f;
|
||||
|
||||
if(k % ReliableUpdateFreq == 0){
|
||||
//Replace r with true residual
|
||||
MatrixTimer.Start();
|
||||
Linop_d.HermOp(psi_d[0],mmp_d);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
||||
|
||||
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r_d, wk_f_from_d);
|
||||
PrecChangeTimer.Stop();
|
||||
c = c_d;
|
||||
}
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsq[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged ){
|
||||
|
||||
SolverTimer.Stop();
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||
RealD rn = norm2(r_d);
|
||||
RealD cn = norm2(src_d);
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||
|
||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||
if(rn >= rsq[s]){
|
||||
CleanupTimer.Start();
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
||||
|
||||
//Setup linear operators for final cleanup
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||
cg(src_d, psi_d[s]);
|
||||
|
||||
TrueResidualShift[s] = cg.TrueResidual;
|
||||
CleanupTimer.Stop();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
// ugly hack
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -33,16 +33,19 @@ namespace Grid {
|
||||
template<class Field>
|
||||
class ZeroGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
|
||||
};
|
||||
template<class Field>
|
||||
class DoNothingGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field &guess) { };
|
||||
};
|
||||
template<class Field>
|
||||
class SourceGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = src; };
|
||||
};
|
||||
|
||||
@ -57,6 +60,7 @@ private:
|
||||
const unsigned int N;
|
||||
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
|
||||
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
|
||||
: DeflatedGuesser(_evec, _eval, _evec.size())
|
||||
@ -87,6 +91,7 @@ private:
|
||||
const std::vector<RealD> &eval_coarse;
|
||||
public:
|
||||
|
||||
using LinearFunction<FineField>::operator();
|
||||
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
|
||||
const std::vector<CoarseField> &_evec_coarse,
|
||||
const std::vector<RealD> &_eval_coarse)
|
||||
|
@ -44,6 +44,7 @@ public:
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
//This class is the input parameter class for some testing programs
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
@ -67,6 +68,7 @@ public:
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
@ -97,6 +99,7 @@ public:
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
@ -153,6 +156,7 @@ public:
|
||||
_coarse_relax_tol(coarse_relax_tol)
|
||||
{ };
|
||||
|
||||
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
@ -179,8 +183,16 @@ public:
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
|
||||
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
||||
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
||||
|
||||
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
||||
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
||||
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
evalMaxApprox = 1.0; //cf above
|
||||
GridBase *FineGrid = _subspace[0].Grid();
|
||||
int checkerboard = _subspace[0].Checkerboard();
|
||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||
@ -199,13 +211,13 @@ public:
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
@ -283,6 +295,10 @@ public:
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
|
||||
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
||||
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
||||
//vectors under the block inner product. This step must be performed after computing the fine grid
|
||||
//eigenvectors and before computing the coarse grid eigenvectors.
|
||||
void Orthogonalise(void ) {
|
||||
CoarseScalar InnerProd(_CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
@ -326,6 +342,8 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
||||
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
@ -374,18 +392,23 @@ public:
|
||||
evals_fine.resize(nbasis);
|
||||
subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
|
||||
|
||||
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
||||
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
||||
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
||||
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
@ -393,6 +416,7 @@ public:
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
@ -403,6 +427,14 @@ public:
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Get the fine eigenvector 'i' by reconstruction
|
||||
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
||||
blockPromote(evec_coarse[i],evec,subspace);
|
||||
eval = evals_coarse[i];
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -30,6 +30,8 @@ template<class Field> class PowerMethod
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
|
@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
template<class Field>
|
||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
|
||||
public:
|
||||
|
||||
using LinearFunction<Field>::operator();
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
|
@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
template<class Field>
|
||||
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
|
||||
public:
|
||||
|
||||
using LinearFunction<Field>::operator();
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
@ -119,7 +119,8 @@ public:
|
||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||
|
||||
RealD cp;
|
||||
ComplexD a, b, zAz;
|
||||
ComplexD a, b;
|
||||
// ComplexD zAz;
|
||||
RealD zAAz;
|
||||
ComplexD rq;
|
||||
|
||||
@ -146,7 +147,7 @@ public:
|
||||
//////////////////////////////////
|
||||
MatTimer.Start();
|
||||
Linop.Op(psi,Az);
|
||||
zAz = innerProduct(Az,psi);
|
||||
// zAz = innerProduct(Az,psi);
|
||||
zAAz= norm2(Az);
|
||||
MatTimer.Stop();
|
||||
|
||||
@ -170,7 +171,7 @@ public:
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
zAz = innerProduct(Az,psi);
|
||||
// zAz = innerProduct(Az,psi);
|
||||
zAAz= norm2(Az);
|
||||
|
||||
//p[0],q[0],qq[0]
|
||||
@ -212,7 +213,7 @@ public:
|
||||
MatTimer.Start();
|
||||
Linop.Op(z,Az);
|
||||
MatTimer.Stop();
|
||||
zAz = innerProduct(Az,psi);
|
||||
// zAz = innerProduct(Az,psi);
|
||||
zAAz= norm2(Az);
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
@ -9,14 +9,30 @@ NAMESPACE_BEGIN(Grid);
|
||||
#define AccSmall (3)
|
||||
#define Shared (4)
|
||||
#define SharedSmall (5)
|
||||
#undef GRID_MM_VERBOSE
|
||||
uint64_t total_shared;
|
||||
uint64_t total_device;
|
||||
uint64_t total_host;;
|
||||
void MemoryManager::PrintBytes(void)
|
||||
{
|
||||
std::cout << " MemoryManager : "<<total_shared<<" shared bytes "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<total_host <<" cpu bytes "<<std::endl;
|
||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
||||
std::cout << " MemoryManager : PrintBytes "<<std::endl;
|
||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared Mbytes "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<(total_host>>20) <<" cpu Mbytes "<<std::endl;
|
||||
uint64_t cacheBytes;
|
||||
cacheBytes = CacheBytes[Cpu];
|
||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
|
||||
cacheBytes = CacheBytes[Acc];
|
||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
|
||||
cacheBytes = CacheBytes[Shared];
|
||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
cuda_mem();
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
@ -24,86 +40,114 @@ void MemoryManager::PrintBytes(void)
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
|
||||
int MemoryManager::Victim[MemoryManager::NallocType];
|
||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
|
||||
|
||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 8, 2, 8, 2, 8 };
|
||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Actual allocation and deallocation utils
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
void *MemoryManager::AcceleratorAllocate(size_t bytes)
|
||||
{
|
||||
total_device+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Acc);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocDevice(bytes);
|
||||
total_device+=bytes;
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"AcceleratorAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
|
||||
{
|
||||
total_device-=bytes;
|
||||
void *__freeme = Insert(ptr,bytes,Acc);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeDevice(__freeme);
|
||||
total_device-=bytes;
|
||||
// PrintBytes();
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"AcceleratorFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
void *MemoryManager::SharedAllocate(size_t bytes)
|
||||
{
|
||||
total_shared+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Shared);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocShared(bytes);
|
||||
total_shared+=bytes;
|
||||
// std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
|
||||
// PrintBytes();
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"SharedAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::SharedFree (void *ptr,size_t bytes)
|
||||
{
|
||||
total_shared-=bytes;
|
||||
void *__freeme = Insert(ptr,bytes,Shared);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeShared(__freeme);
|
||||
total_shared-=bytes;
|
||||
// PrintBytes();
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"SharedFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
#ifdef GRID_UVM
|
||||
void *MemoryManager::CpuAllocate(size_t bytes)
|
||||
{
|
||||
total_host+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Cpu);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocShared(bytes);
|
||||
total_host+=bytes;
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
||||
{
|
||||
total_host-=bytes;
|
||||
NotifyDeletion(_ptr);
|
||||
void *__freeme = Insert(_ptr,bytes,Cpu);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeShared(__freeme);
|
||||
total_host-=bytes;
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
void *MemoryManager::CpuAllocate(size_t bytes)
|
||||
{
|
||||
total_host+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Cpu);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocCpu(bytes);
|
||||
total_host+=bytes;
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
||||
{
|
||||
total_host-=bytes;
|
||||
NotifyDeletion(_ptr);
|
||||
void *__freeme = Insert(_ptr,bytes,Cpu);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeCpu(__freeme);
|
||||
total_host-=bytes;
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -115,7 +159,6 @@ void MemoryManager::Init(void)
|
||||
|
||||
char * str;
|
||||
int Nc;
|
||||
int NcS;
|
||||
|
||||
str= getenv("GRID_ALLOC_NCACHE_LARGE");
|
||||
if ( str ) {
|
||||
@ -181,13 +224,13 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
||||
#ifdef ALLOCATION_CACHE
|
||||
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
|
||||
int cache = type + small;
|
||||
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);
|
||||
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
|
||||
#else
|
||||
return ptr;
|
||||
#endif
|
||||
}
|
||||
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
|
||||
{
|
||||
assert(ncache>0);
|
||||
#ifdef GRID_OMP
|
||||
@ -211,6 +254,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
|
||||
|
||||
if ( entries[v].valid ) {
|
||||
ret = entries[v].address;
|
||||
cacheBytes -= entries[v].bytes;
|
||||
entries[v].valid = 0;
|
||||
entries[v].address = NULL;
|
||||
entries[v].bytes = 0;
|
||||
@ -219,6 +263,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
|
||||
entries[v].address=ptr;
|
||||
entries[v].bytes =bytes;
|
||||
entries[v].valid =1;
|
||||
cacheBytes += bytes;
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -228,13 +273,13 @@ void *MemoryManager::Lookup(size_t bytes,int type)
|
||||
#ifdef ALLOCATION_CACHE
|
||||
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
|
||||
int cache = type+small;
|
||||
return Lookup(bytes,Entries[cache],Ncache[cache]);
|
||||
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
|
||||
#else
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)
|
||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
|
||||
{
|
||||
assert(ncache>0);
|
||||
#ifdef GRID_OMP
|
||||
@ -243,6 +288,7 @@ void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncach
|
||||
for(int e=0;e<ncache;e++){
|
||||
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
|
||||
entries[e].valid = 0;
|
||||
cacheBytes -= entries[e].bytes;
|
||||
return entries[e].address;
|
||||
}
|
||||
}
|
||||
|
@ -82,14 +82,15 @@ private:
|
||||
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
|
||||
static int Victim[NallocType];
|
||||
static int Ncache[NallocType];
|
||||
static uint64_t CacheBytes[NallocType];
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Free pool
|
||||
/////////////////////////////////////////////////
|
||||
static void *Insert(void *ptr,size_t bytes,int type) ;
|
||||
static void *Lookup(size_t bytes,int type) ;
|
||||
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
|
||||
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
|
||||
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
|
||||
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
|
||||
|
||||
static void PrintBytes(void);
|
||||
public:
|
||||
@ -169,6 +170,7 @@ private:
|
||||
|
||||
public:
|
||||
static void Print(void);
|
||||
static void PrintState( void* CpuPtr);
|
||||
static int isOpen (void* CpuPtr);
|
||||
static void ViewClose(void* CpuPtr,ViewMode mode);
|
||||
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
#warning "Using explicit device memory copies"
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
//define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
|
||||
//#define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
|
||||
#define dprintf(...)
|
||||
|
||||
|
||||
@ -429,6 +429,7 @@ void MemoryManager::NotifyDeletion(void *_ptr)
|
||||
}
|
||||
void MemoryManager::Print(void)
|
||||
{
|
||||
PrintBytes();
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogDebug << "Memory Manager " << std::endl;
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
@ -473,6 +474,32 @@ int MemoryManager::isOpen (void* _CpuPtr)
|
||||
}
|
||||
}
|
||||
|
||||
void MemoryManager::PrintState(void* _CpuPtr)
|
||||
{
|
||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||
|
||||
if ( EntryPresent(CpuPtr) ){
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
std::string str;
|
||||
if ( AccCache.state==Empty ) str = std::string("Empty");
|
||||
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
|
||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
|
||||
|
||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t" << AccCache.cpuLock
|
||||
<< "\t" << AccCache.accLock
|
||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
||||
|
||||
} else {
|
||||
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -16,6 +16,10 @@ uint64_t MemoryManager::DeviceToHostXfer;
|
||||
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
|
||||
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
|
||||
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
|
||||
void MemoryManager::PrintState(void* CpuPtr)
|
||||
{
|
||||
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
|
||||
};
|
||||
void MemoryManager::Print(void){};
|
||||
void MemoryManager::NotifyDeletion(void *ptr){};
|
||||
|
||||
|
@ -388,8 +388,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
// TODO : make a OMP loop on CPU, call threaded bcopy
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
|
||||
acceleratorCopySynchronise(); // MPI prob slower
|
||||
}
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
|
||||
@ -400,6 +400,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
// std::cout << "Copy Synchronised\n"<<std::endl;
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
int nreq=list.size();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
|
@ -88,6 +88,13 @@ public:
|
||||
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
|
||||
accessor.ViewClose();
|
||||
}
|
||||
|
||||
// Helper function to print the state of this object in the AccCache
|
||||
void PrintCacheState(void)
|
||||
{
|
||||
MemoryManager::PrintState(this->_odata);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// Return a view object that may be dereferenced in site loops.
|
||||
// The view is trivially copy constructible and may be copied to an accelerator device
|
||||
|
42
Grid/lattice/Lattice_crc.h
Normal file
42
Grid/lattice/Lattice_crc.h
Normal file
@ -0,0 +1,42 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_crc.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -42,7 +42,6 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
|
||||
|
||||
if (warpSize != WARP_SIZE) {
|
||||
@ -52,6 +51,10 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
|
||||
// let the number of threads in a block be a multiple of 2, starting from warpSize
|
||||
threads = warpSize;
|
||||
if ( threads*sizeofsobj > sharedMemPerBlock ) {
|
||||
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
|
||||
// keep all the streaming multiprocessors busy
|
||||
blocks = nextPow2(multiProcessorCount);
|
||||
|
@ -32,8 +32,9 @@
|
||||
#include <random>
|
||||
|
||||
#ifdef RNG_SITMO
|
||||
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
|
||||
#include <Grid/random/sitmo_prng_engine.hpp>
|
||||
#endif
|
||||
#include <Grid/random/gaussian.h>
|
||||
|
||||
#if defined(RNG_SITMO)
|
||||
#define RNG_FAST_DISCARD
|
||||
@ -142,8 +143,8 @@ public:
|
||||
|
||||
std::vector<RngEngine> _generators;
|
||||
std::vector<std::uniform_real_distribution<RealD> > _uniform;
|
||||
std::vector<std::normal_distribution<RealD> > _gaussian;
|
||||
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
|
||||
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
|
||||
// std::vector<std::discrete_distribution<int32_t> > _bernoulli;
|
||||
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
|
||||
|
||||
///////////////////////
|
||||
@ -243,8 +244,8 @@ public:
|
||||
GridSerialRNG() : GridRNGbase() {
|
||||
_generators.resize(1);
|
||||
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
|
||||
_gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
|
||||
// _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
@ -357,8 +358,8 @@ public:
|
||||
|
||||
_generators.resize(_vol);
|
||||
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
|
||||
// _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
@ -515,11 +516,11 @@ public:
|
||||
|
||||
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
|
||||
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
|
||||
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
|
||||
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
|
||||
|
||||
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
|
||||
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
|
||||
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
|
||||
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -85,6 +85,76 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
|
||||
{
|
||||
half.Checkerboard() = cb;
|
||||
autoView(half_v, half, AcceleratorWrite);
|
||||
autoView(full_v, full, AcceleratorRead);
|
||||
Coordinate rdim_full = full.Grid()->_rdimensions;
|
||||
Coordinate rdim_half = half.Grid()->_rdimensions;
|
||||
unsigned long ndim_half = half.Grid()->_ndimension;
|
||||
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
|
||||
Coordinate ostride_half = half.Grid()->_ostride;
|
||||
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
|
||||
|
||||
Coordinate coor;
|
||||
int cbos;
|
||||
int linear=0;
|
||||
|
||||
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
|
||||
assert(coor.size()==ndim_half);
|
||||
|
||||
for(int d=0;d<ndim_half;d++){
|
||||
if(checker_dim_mask_half[d]) linear += coor[d];
|
||||
}
|
||||
cbos = (linear&0x1);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=0;
|
||||
for(int d=0;d<ndim_half;d++) {
|
||||
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
|
||||
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
|
||||
}
|
||||
coalescedWrite(half_v[ssh],full_v(ss));
|
||||
}
|
||||
});
|
||||
}
|
||||
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
|
||||
{
|
||||
int cb = half.Checkerboard();
|
||||
autoView(half_v , half, AcceleratorRead);
|
||||
autoView(full_v , full, AcceleratorWrite);
|
||||
Coordinate rdim_full = full.Grid()->_rdimensions;
|
||||
Coordinate rdim_half = half.Grid()->_rdimensions;
|
||||
unsigned long ndim_half = half.Grid()->_ndimension;
|
||||
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
|
||||
Coordinate ostride_half = half.Grid()->_ostride;
|
||||
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
|
||||
|
||||
Coordinate coor;
|
||||
int cbos;
|
||||
int linear=0;
|
||||
|
||||
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
|
||||
assert(coor.size()==ndim_half);
|
||||
|
||||
for(int d=0;d<ndim_half;d++){
|
||||
if(checker_dim_mask_half[d]) linear += coor[d];
|
||||
}
|
||||
cbos = (linear&0x1);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=0;
|
||||
for(int d=0;d<ndim_half;d++){
|
||||
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
|
||||
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
|
||||
}
|
||||
coalescedWrite(full_v[ss],half_v(ssh));
|
||||
}
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Flexible Type Conversion for internal promotion to double as well as graceful
|
||||
// treatment of scalar-compatible types
|
||||
@ -785,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
@ -1010,54 +1080,96 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
|
||||
});
|
||||
}
|
||||
|
||||
//Convert a Lattice from one precision to another
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
{
|
||||
assert(out.Grid()->Nd() == in.Grid()->Nd());
|
||||
for(int d=0;d<out.Grid()->Nd();d++){
|
||||
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
|
||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
|
||||
class precisionChangeWorkspace{
|
||||
std::pair<Integer,Integer>* fmap_device; //device pointer
|
||||
public:
|
||||
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid){
|
||||
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
|
||||
assert(out_grid->Nd() == in_grid->Nd());
|
||||
for(int d=0;d<out_grid->Nd();d++){
|
||||
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
|
||||
}
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
GridBase *in_grid=in.Grid();
|
||||
GridBase *out_grid = out.Grid();
|
||||
int Nsimd_out = out_grid->Nsimd();
|
||||
|
||||
typedef typename VobjOut::scalar_object SobjOut;
|
||||
typedef typename VobjIn::scalar_object SobjIn;
|
||||
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
|
||||
for(int lane=0; lane < out_grid->Nsimd(); lane++)
|
||||
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
|
||||
|
||||
int ndim = out.Grid()->Nd();
|
||||
int out_nsimd = out_grid->Nsimd();
|
||||
|
||||
std::vector<Coordinate > out_icoor(out_nsimd);
|
||||
|
||||
for(int lane=0; lane < out_nsimd; lane++){
|
||||
out_icoor[lane].resize(ndim);
|
||||
out_grid->iCoorFromIindex(out_icoor[lane], lane);
|
||||
}
|
||||
|
||||
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
|
||||
unvectorizeToLexOrdArray(in_slex_conv, in);
|
||||
|
||||
autoView( out_v , out, CpuWrite);
|
||||
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
|
||||
thread_for(out_oidx,out_grid->oSites(),{
|
||||
Coordinate out_ocoor(ndim);
|
||||
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
|
||||
Coordinate out_ocorr;
|
||||
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
|
||||
|
||||
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
|
||||
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
|
||||
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
|
||||
|
||||
Coordinate lcoor(out_grid->Nd());
|
||||
|
||||
for(int lane=0; lane < out_nsimd; lane++){
|
||||
for(int mu=0;mu<ndim;mu++)
|
||||
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
|
||||
|
||||
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
|
||||
ptrs[lane] = &in_slex_conv[llex];
|
||||
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
|
||||
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
|
||||
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
|
||||
int in_oidx = 0, in_lane = 0;
|
||||
for(int d=0;d<in_grid->_ndimension;d++){
|
||||
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
|
||||
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
|
||||
}
|
||||
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
|
||||
}
|
||||
});
|
||||
|
||||
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
|
||||
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
|
||||
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
|
||||
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
|
||||
}
|
||||
|
||||
//Prevent moving or copying
|
||||
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
|
||||
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
|
||||
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
|
||||
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
|
||||
|
||||
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
|
||||
|
||||
~precisionChangeWorkspace(){
|
||||
acceleratorFreeDevice(fmap_device);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//Convert a lattice of one precision to another. The input workspace contains the mapping data.
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
|
||||
static_assert( std::is_same<typename VobjOut::DoublePrecision, typename VobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
constexpr int Nsimd_out = VobjOut::Nsimd();
|
||||
|
||||
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
|
||||
|
||||
//Do the copy/precision change
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
|
||||
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
|
||||
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
|
||||
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||
int in_oidx = fmap_osite[out_lane].first;
|
||||
int in_lane = fmap_osite[out_lane].second;
|
||||
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
|
||||
}
|
||||
merge(out_v[out_oidx], ptrs, 0);
|
||||
});
|
||||
}
|
||||
|
||||
//Convert a Lattice from one precision to another
|
||||
//Generate the workspace in place; if multiple calls with the same mapping are performed, consider pregenerating the workspace and reusing
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
|
||||
precisionChange(out, in, workspace);
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -69,6 +69,7 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
|
||||
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
|
||||
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogError.Active(0);
|
||||
@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogPerformance.Active(0);
|
||||
GridLogIntegrator.Active(1);
|
||||
GridLogColours.Active(0);
|
||||
GridLogHMC.Active(1);
|
||||
|
||||
for (int i = 0; i < logstreams.size(); i++) {
|
||||
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
|
||||
@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
|
||||
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
|
||||
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
|
||||
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
|
||||
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
|
||||
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
|
||||
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
|
||||
}
|
||||
}
|
||||
|
@ -182,6 +182,7 @@ extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
@ -576,6 +576,8 @@ class ScidacReader : public GridLimeReader {
|
||||
std::string rec_name(ILDG_BINARY_DATA);
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
|
||||
// in principle should do the line below, but that breaks backard compatibility with old data
|
||||
// skipPastObjectRecord(std::string(GRID_FIELD_NORM));
|
||||
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
|
||||
return;
|
||||
}
|
||||
|
@ -39,9 +39,11 @@ using namespace Grid;
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
class NerscIO : public BinaryIO {
|
||||
public:
|
||||
|
||||
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
||||
|
||||
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
|
||||
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
|
||||
|
||||
static inline void truncate(std::string file){
|
||||
std::ofstream fout(file,std::ios::out);
|
||||
}
|
||||
@ -198,7 +200,7 @@ public:
|
||||
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
||||
exit(0);
|
||||
}
|
||||
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
||||
assert(nersc_csum == header.checksum );
|
||||
|
||||
|
@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
|
||||
#define ColourIndex (2)
|
||||
#define SpinIndex (1)
|
||||
#define LorentzIndex (0)
|
||||
#define GparityFlavourIndex (0)
|
||||
|
||||
// Also should make these a named enum type
|
||||
static constexpr int DaggerNo=0;
|
||||
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
|
||||
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
||||
|
||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
|
||||
|
||||
// ChrisK very keen to add extra space for Gparity doubling.
|
||||
//
|
||||
// Also add domain wall index, in a way where Wilson operator
|
||||
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
|
||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||
|
||||
|
||||
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
|
||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
|
||||
|
||||
// Spin matrix
|
||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||
|
||||
//G-parity flavour matrix
|
||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
|
||||
|
||||
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
|
||||
|
||||
|
||||
// Spin vector
|
||||
typedef iSpinVector<Complex > SpinVector;
|
||||
typedef iSpinVector<ComplexF> SpinVectorF;
|
||||
@ -221,6 +236,16 @@ typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||
|
||||
//G-parity flavour vector
|
||||
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
|
||||
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
|
||||
|
||||
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
|
||||
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
|
||||
|
||||
|
||||
// singlets
|
||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||
typedef iSinglet<ComplexF> TComplexF; // FIXME This is painful. Tensor singlet complex type.
|
||||
|
@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// These can move into a params header and be given MacroMagic serialisation
|
||||
struct GparityWilsonImplParams {
|
||||
Coordinate twists;
|
||||
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
GparityWilsonImplParams() : twists(Nd, 0) {};
|
||||
};
|
||||
|
||||
@ -65,7 +66,8 @@ struct StaggeredImplParams {
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
int, BoundsCheckFreq,
|
||||
RealD, BoundsCheckTol);
|
||||
|
||||
// MaxIter and tolerance, vectors??
|
||||
|
||||
@ -76,16 +78,62 @@ struct StaggeredImplParams {
|
||||
RealD tol = 1.0e-8,
|
||||
int _degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
int _BoundsCheckFreq=20,
|
||||
double _BoundsCheckTol=1e-6)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
degree(_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq),
|
||||
BoundsCheckTol(_BoundsCheckTol){};
|
||||
};
|
||||
|
||||
|
||||
/*Action parameters for the generalized rational action
|
||||
The approximation is for (M^dag M)^{1/inv_pow}
|
||||
where inv_pow is the denominator of the fractional power.
|
||||
Default inv_pow=2 for square root, making this equivalent to
|
||||
the OneFlavourRational action
|
||||
*/
|
||||
struct RationalActionParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
|
||||
int, inv_pow,
|
||||
RealD, lo, //low eigenvalue bound of rational approx
|
||||
RealD, hi, //high eigenvalue bound of rational approx
|
||||
int, MaxIter, //maximum iterations in msCG
|
||||
RealD, action_tolerance, //msCG tolerance in action evaluation
|
||||
int, action_degree, //rational approx tolerance in action evaluation
|
||||
RealD, md_tolerance, //msCG tolerance in MD integration
|
||||
int, md_degree, //rational approx tolerance in MD integration
|
||||
int, precision, //precision of floating point arithmetic
|
||||
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
|
||||
// constructor
|
||||
RationalActionParams(int _inv_pow = 2,
|
||||
RealD _lo = 0.0,
|
||||
RealD _hi = 1.0,
|
||||
int _maxit = 1000,
|
||||
RealD _action_tolerance = 1.0e-8,
|
||||
int _action_degree = 10,
|
||||
RealD _md_tolerance = 1.0e-8,
|
||||
int _md_degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: inv_pow(_inv_pow),
|
||||
lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
action_tolerance(_action_tolerance),
|
||||
action_degree(_action_degree),
|
||||
md_tolerance(_md_tolerance),
|
||||
md_degree(_md_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
240
Grid/qcd/action/fermion/CompactWilsonCloverFermion.h
Normal file
240
Grid/qcd/action/fermion/CompactWilsonCloverFermion.h
Normal file
@ -0,0 +1,240 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
|
||||
|
||||
Copyright (C) 2020 - 2022
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
Author: Nils Meyer <nils.meyer@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
|
||||
//
|
||||
// Modifications done here:
|
||||
//
|
||||
// Original: clover term = 12x12 matrix per site
|
||||
//
|
||||
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
|
||||
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
|
||||
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
|
||||
//
|
||||
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
|
||||
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
|
||||
//
|
||||
// Words per site and improvement compared to original (combined with the input and output spinors):
|
||||
//
|
||||
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
|
||||
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
|
||||
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
|
||||
//
|
||||
// These improvements directly translate to wall-clock time
|
||||
//
|
||||
// Data layout:
|
||||
//
|
||||
// - diagonal and triangle part as separate lattice fields,
|
||||
// this was faster than as 1 combined field on all tested machines
|
||||
// - diagonal: as expected
|
||||
// - triangle: store upper right triangle in row major order
|
||||
// - graphical:
|
||||
// 0 1 2 3 4
|
||||
// 5 6 7 8
|
||||
// 9 10 11 = upper right triangle indices
|
||||
// 12 13
|
||||
// 14
|
||||
// 0
|
||||
// 1
|
||||
// 2
|
||||
// 3 = diagonal indices
|
||||
// 4
|
||||
// 5
|
||||
// 0
|
||||
// 1 5
|
||||
// 2 6 9 = lower left triangle indices
|
||||
// 3 7 10 12
|
||||
// 4 8 11 13 14
|
||||
//
|
||||
// Impact on total memory consumption:
|
||||
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
|
||||
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
|
||||
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
|
||||
// = 84 complex words per site
|
||||
|
||||
template<class Impl>
|
||||
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
|
||||
public WilsonCloverHelpers<Impl>,
|
||||
public CompactWilsonCloverHelpers<Impl> {
|
||||
/////////////////////////////////////////////
|
||||
// Sizes
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
INHERIT_COMPACT_CLOVER_SIZES(Impl);
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Type definitions
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
INHERIT_COMPACT_CLOVER_TYPES(Impl);
|
||||
|
||||
typedef WilsonFermion<Impl> WilsonBase;
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Constructors
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
CompactWilsonCloverFermion(GaugeField& _Umu,
|
||||
GridCartesian& Fgrid,
|
||||
GridRedBlackCartesian& Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r = 0.0,
|
||||
const RealD _csw_t = 0.0,
|
||||
const RealD _cF = 1.0,
|
||||
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
|
||||
const ImplParams& impl_p = ImplParams());
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Member functions (implementing interface)
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
virtual void Instantiatable() {};
|
||||
int ConstEE() override { return 0; };
|
||||
int isTrivialEE() override { return 0; };
|
||||
|
||||
void Dhop(const FermionField& in, FermionField& out, int dag) override;
|
||||
|
||||
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
|
||||
|
||||
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
|
||||
|
||||
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
|
||||
|
||||
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
|
||||
|
||||
void M(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Mdag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Meooe(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MeooeDag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Mooee(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MooeeDag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MooeeInv(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void MooeeInvDag(const FermionField& in, FermionField& out) override;
|
||||
|
||||
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
|
||||
|
||||
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
|
||||
|
||||
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
|
||||
|
||||
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
|
||||
|
||||
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Member functions (internals)
|
||||
/////////////////////////////////////////////
|
||||
|
||||
void MooeeInternal(const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle);
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Helpers
|
||||
/////////////////////////////////////////////
|
||||
|
||||
void ImportGauge(const GaugeField& _Umu) override;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Helpers
|
||||
/////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
|
||||
template<class Field>
|
||||
const MaskField* getCorrectMaskField(const Field &in) const {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
return &this->BoundaryMaskOdd;
|
||||
} else {
|
||||
return &this->BoundaryMaskEven;
|
||||
}
|
||||
} else {
|
||||
return &this->BoundaryMask;
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void ApplyBoundaryMask(Field& f) {
|
||||
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
|
||||
assert(m != nullptr);
|
||||
CompactHelpers::ApplyBoundaryMask(f, *m);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Member Data
|
||||
/////////////////////////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
RealD csw_r;
|
||||
RealD csw_t;
|
||||
RealD cF;
|
||||
|
||||
bool open_boundaries;
|
||||
|
||||
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
|
||||
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
|
||||
|
||||
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
|
||||
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
|
||||
|
||||
FermionField Tmp;
|
||||
|
||||
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -53,6 +53,7 @@ NAMESPACE_CHECK(Wilson);
|
||||
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
|
||||
NAMESPACE_CHECK(WilsonTM);
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
|
||||
NAMESPACE_CHECK(WilsonClover);
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
|
||||
NAMESPACE_CHECK(Wilson5D);
|
||||
@ -153,6 +154,23 @@ typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoInd
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Compact Clover fermions
|
||||
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
|
||||
|
||||
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
|
||||
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
|
||||
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Domain Wall fermions
|
||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
|
||||
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
|
||||
|
@ -30,6 +30,18 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
Policy implementation for G-parity boundary conditions
|
||||
|
||||
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
|
||||
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
|
||||
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
|
||||
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
|
||||
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
|
||||
|
||||
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
*/
|
||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||
public:
|
||||
@ -113,7 +125,7 @@ public:
|
||||
|| ((distance== 1)&&(icoor[direction]==1))
|
||||
|| ((distance==-1)&&(icoor[direction]==0));
|
||||
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
|
||||
|
||||
//Apply the links
|
||||
int f_upper = permute_lane ? 1 : 0;
|
||||
@ -139,10 +151,10 @@ public:
|
||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||
assert((sl == 1) || (sl == 2));
|
||||
|
||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
|
||||
//If this site is an global boundary site, perform the G-parity flavor twist
|
||||
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
if ( sl == 2 ) {
|
||||
|
||||
//Only do the twist for lanes on the edge of the physical node
|
||||
ExtractBuffer<sobj> vals(Nsimd);
|
||||
|
||||
extract(chi,vals);
|
||||
@ -197,6 +209,19 @@ public:
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
|
||||
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
|
||||
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
|
||||
autoView(poke_f0_v, poke_f0, CpuRead);
|
||||
autoView(poke_f1_v, poke_f1, CpuRead);
|
||||
autoView(Uds_v, Uds, CpuWrite);
|
||||
thread_foreach(ss,poke_f0_v,{
|
||||
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
|
||||
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds.Grid(),GaugeGrid);
|
||||
@ -208,13 +233,18 @@ public:
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Uconj = conjugate(U);
|
||||
|
||||
// Implement the isospin rotation sign on the boundary between f=1 and f=0
|
||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||
if ( Params.twists[mu] ) {
|
||||
@ -260,6 +290,38 @@ public:
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
{ //periodic / antiperiodic temporal BCs
|
||||
int mu = Nd-1;
|
||||
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||
int Lmu = L - 1;
|
||||
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
|
||||
|
||||
GaugeLinkField *Upoke = &U;
|
||||
|
||||
if(Params.twists[mu]){ //antiperiodic
|
||||
Utmp = where(coor == Lmu, -U, U);
|
||||
Upoke = &Utmp;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
|
||||
|
||||
//Get the barrel-shifted field
|
||||
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
|
||||
Upoke = &Utmp;
|
||||
|
||||
if(Params.twists[mu]){
|
||||
U = where(coor == 0, -Utmp, Utmp); //boundary phase
|
||||
Upoke = &U;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke);
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||
@ -300,27 +362,47 @@ public:
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
GaugeLinkField tmp(mat.Grid());
|
||||
tmp = Zero();
|
||||
{
|
||||
autoView( tmp_v , tmp, CpuWrite);
|
||||
autoView( Atilde_v , Atilde, CpuRead);
|
||||
autoView( Btilde_v , Btilde, CpuRead);
|
||||
thread_for(ss,tmp.Grid()->oSites(),{
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
int sF = s + Ls * ss;
|
||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
||||
GridBase *GaugeGrid = mat.Grid();
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
autoView( mat_v , mat, AcceleratorWrite);
|
||||
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
|
||||
int sU=sss;
|
||||
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||
ColorMatrixType sum;
|
||||
zeroit(sum);
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sF = s+Ls*sU;
|
||||
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||
//Flavor 0
|
||||
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
|
||||
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
|
||||
sum = sum + outerProduct(bb,aa);
|
||||
|
||||
//Flavor 1
|
||||
bb = coalescedRead(Btilde_v[sF](1)(spn) );
|
||||
aa = coalescedRead(Atilde_v[sF](1)(spn) );
|
||||
sum = sum + conjugate(outerProduct(bb,aa));
|
||||
}
|
||||
}
|
||||
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||
});
|
||||
}
|
||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
|
||||
|
@ -4,10 +4,11 @@
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
Copyright (C) 2017 - 2022
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: David Preti <>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -29,7 +30,8 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -50,18 +52,15 @@ NAMESPACE_BEGIN(Grid);
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
class WilsonCloverFermion : public WilsonFermion<Impl>
|
||||
class WilsonCloverFermion : public WilsonFermion<Impl>,
|
||||
public WilsonCloverHelpers<Impl>
|
||||
{
|
||||
public:
|
||||
// Types definitions
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
template <typename vtype>
|
||||
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
typedef iImplClover<Simd> SiteCloverType;
|
||||
typedef Lattice<SiteCloverType> CloverFieldType;
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
|
||||
public:
|
||||
typedef WilsonFermion<Impl> WilsonBase;
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
|
||||
virtual int ConstEE(void) { return 0; };
|
||||
virtual void Instantiatable(void){};
|
||||
@ -72,42 +71,7 @@ public:
|
||||
const RealD _csw_r = 0.0,
|
||||
const RealD _csw_t = 0.0,
|
||||
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
|
||||
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
|
||||
Fgrid,
|
||||
Hgrid,
|
||||
_mass, impl_p, clover_anisotropy),
|
||||
CloverTerm(&Fgrid),
|
||||
CloverTermInv(&Fgrid),
|
||||
CloverTermEven(&Hgrid),
|
||||
CloverTermOdd(&Hgrid),
|
||||
CloverTermInvEven(&Hgrid),
|
||||
CloverTermInvOdd(&Hgrid),
|
||||
CloverTermDagEven(&Hgrid),
|
||||
CloverTermDagOdd(&Hgrid),
|
||||
CloverTermInvDagEven(&Hgrid),
|
||||
CloverTermInvDagOdd(&Hgrid)
|
||||
{
|
||||
assert(Nd == 4); // require 4 dimensions
|
||||
|
||||
if (clover_anisotropy.isAnisotropic)
|
||||
{
|
||||
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
|
||||
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
|
||||
}
|
||||
else
|
||||
{
|
||||
csw_r = _csw_r * 0.5;
|
||||
diag_mass = 4.0 + _mass;
|
||||
}
|
||||
csw_t = _csw_t * 0.5;
|
||||
|
||||
if (csw_r == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
|
||||
if (csw_t == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
}
|
||||
const ImplParams &impl_p = ImplParams());
|
||||
|
||||
virtual void M(const FermionField &in, FermionField &out);
|
||||
virtual void Mdag(const FermionField &in, FermionField &out);
|
||||
@ -124,250 +88,21 @@ public:
|
||||
void ImportGauge(const GaugeField &_Umu);
|
||||
|
||||
// Derivative parts unpreconditioned pseudofermions
|
||||
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
conformable(X.Grid(), force.Grid());
|
||||
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
|
||||
GaugeField clover_force(force.Grid());
|
||||
PropagatorField Lambda(force.Grid());
|
||||
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag);
|
||||
|
||||
// Guido: Here we are hitting some performance issues:
|
||||
// need to extract the components of the DoubledGaugeField
|
||||
// for each call
|
||||
// Possible solution
|
||||
// Create a vector object to store them? (cons: wasting space)
|
||||
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
|
||||
|
||||
Impl::extractLinkField(U, this->Umu);
|
||||
|
||||
force = Zero();
|
||||
// Derivative of the Wilson hopping term
|
||||
this->DhopDeriv(force, X, Y, dag);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Clover term derivative
|
||||
///////////////////////////////////////////////////////////
|
||||
Impl::outerProductImpl(Lambda, X, Y);
|
||||
//std::cout << "Lambda:" << Lambda << std::endl;
|
||||
|
||||
Gamma::Algebra sigma[] = {
|
||||
Gamma::Algebra::SigmaXY,
|
||||
Gamma::Algebra::SigmaXZ,
|
||||
Gamma::Algebra::SigmaXT,
|
||||
Gamma::Algebra::MinusSigmaXY,
|
||||
Gamma::Algebra::SigmaYZ,
|
||||
Gamma::Algebra::SigmaYT,
|
||||
Gamma::Algebra::MinusSigmaXZ,
|
||||
Gamma::Algebra::MinusSigmaYZ,
|
||||
Gamma::Algebra::SigmaZT,
|
||||
Gamma::Algebra::MinusSigmaXT,
|
||||
Gamma::Algebra::MinusSigmaYT,
|
||||
Gamma::Algebra::MinusSigmaZT};
|
||||
|
||||
/*
|
||||
sigma_{\mu \nu}=
|
||||
| 0 sigma[0] sigma[1] sigma[2] |
|
||||
| sigma[3] 0 sigma[4] sigma[5] |
|
||||
| sigma[6] sigma[7] 0 sigma[8] |
|
||||
| sigma[9] sigma[10] sigma[11] 0 |
|
||||
*/
|
||||
|
||||
int count = 0;
|
||||
clover_force = Zero();
|
||||
for (int mu = 0; mu < 4; mu++)
|
||||
{
|
||||
force_mu = Zero();
|
||||
for (int nu = 0; nu < 4; nu++)
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
else
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
||||
}
|
||||
//clover_force *= csw;
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
|
||||
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
|
||||
{
|
||||
conformable(lambda.Grid(), U[0].Grid());
|
||||
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
|
||||
// insertion in upper staple
|
||||
// please check redundancy of shift operations
|
||||
|
||||
// C1+
|
||||
tmp = lambda * U[nu];
|
||||
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C2+
|
||||
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C3+
|
||||
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
|
||||
|
||||
// C4+
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
|
||||
|
||||
// insertion in lower staple
|
||||
// C1-
|
||||
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C2-
|
||||
tmp = adj(lambda) * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C3-
|
||||
tmp = lambda * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
|
||||
|
||||
// C4-
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
protected:
|
||||
public:
|
||||
// here fixing the 4 dimensions, make it more general?
|
||||
|
||||
RealD csw_r; // Clover coefficient - spatial
|
||||
RealD csw_t; // Clover coefficient - temporal
|
||||
RealD diag_mass; // Mass term
|
||||
CloverFieldType CloverTerm, CloverTermInv; // Clover term
|
||||
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
|
||||
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
|
||||
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
|
||||
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
|
||||
|
||||
public:
|
||||
// eventually these can be compressed into 6x6 blocks instead of the 12x12
|
||||
// using the DeGrand-Rossi basis for the gamma matrices
|
||||
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
autoView(T_v,T,AcceleratorWrite);
|
||||
autoView(F_v,F,AcceleratorRead);
|
||||
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
|
||||
{
|
||||
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView(T_v, T,AcceleratorWrite);
|
||||
autoView(F_v, F,AcceleratorRead);
|
||||
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
|
||||
{
|
||||
T_v[i]()(0, 1) = -F_v[i]()();
|
||||
T_v[i]()(1, 0) = F_v[i]()();
|
||||
T_v[i]()(2, 3) = -F_v[i]()();
|
||||
T_v[i]()(3, 2) = F_v[i]()();
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXY(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView(T_v,T,AcceleratorWrite);
|
||||
autoView(F_v,F,AcceleratorRead);
|
||||
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
|
||||
{
|
||||
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(1, 1) = timesI(F_v[i]()());
|
||||
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 3) = timesI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView( T_v , T, AcceleratorWrite);
|
||||
autoView( F_v , F, AcceleratorRead);
|
||||
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
|
||||
{
|
||||
T_v[i]()(0, 1) = timesI(F_v[i]()());
|
||||
T_v[i]()(1, 0) = timesI(F_v[i]()());
|
||||
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverYT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView( T_v ,T,AcceleratorWrite);
|
||||
autoView( F_v ,F,AcceleratorRead);
|
||||
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
|
||||
{
|
||||
T_v[i]()(0, 1) = -(F_v[i]()());
|
||||
T_v[i]()(1, 0) = (F_v[i]()());
|
||||
T_v[i]()(2, 3) = (F_v[i]()());
|
||||
T_v[i]()(3, 2) = -(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverZT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
|
||||
T = Zero();
|
||||
|
||||
autoView( T_v , T,AcceleratorWrite);
|
||||
autoView( F_v , F,AcceleratorRead);
|
||||
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
|
||||
{
|
||||
T_v[i]()(0, 0) = timesI(F_v[i]()());
|
||||
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 3) = timesI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
CloverField CloverTerm, CloverTermInv; // Clover term
|
||||
CloverField CloverTermEven, CloverTermOdd; // Clover term EO
|
||||
CloverField CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
|
||||
CloverField CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
|
||||
CloverField CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
761
Grid/qcd/action/fermion/WilsonCloverHelpers.h
Normal file
761
Grid/qcd/action/fermion/WilsonCloverHelpers.h
Normal file
@ -0,0 +1,761 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverHelpers.h
|
||||
|
||||
Copyright (C) 2021 - 2022
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
// Helper routines that implement common clover functionality
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl> class WilsonCloverHelpers {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
|
||||
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
|
||||
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
|
||||
{
|
||||
conformable(lambda.Grid(), U[0].Grid());
|
||||
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
|
||||
// insertion in upper staple
|
||||
// please check redundancy of shift operations
|
||||
|
||||
// C1+
|
||||
tmp = lambda * U[nu];
|
||||
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C2+
|
||||
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C3+
|
||||
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
|
||||
|
||||
// C4+
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
|
||||
|
||||
// insertion in lower staple
|
||||
// C1-
|
||||
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C2-
|
||||
tmp = adj(lambda) * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C3-
|
||||
tmp = lambda * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
|
||||
|
||||
// C4-
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static CloverField fillCloverYZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverField T(F.Grid());
|
||||
T = Zero();
|
||||
autoView(T_v,T,AcceleratorWrite);
|
||||
autoView(F_v,F,AcceleratorRead);
|
||||
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
|
||||
{
|
||||
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
static CloverField fillCloverXZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverField T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView(T_v, T,AcceleratorWrite);
|
||||
autoView(F_v, F,AcceleratorRead);
|
||||
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
|
||||
{
|
||||
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-F_v[i]()()));
|
||||
coalescedWrite(T_v[i]()(1, 0), coalescedRead(F_v[i]()()));
|
||||
coalescedWrite(T_v[i]()(2, 3), coalescedRead(-F_v[i]()()));
|
||||
coalescedWrite(T_v[i]()(3, 2), coalescedRead(F_v[i]()()));
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
static CloverField fillCloverXY(const GaugeLinkField &F)
|
||||
{
|
||||
CloverField T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView(T_v,T,AcceleratorWrite);
|
||||
autoView(F_v,F,AcceleratorRead);
|
||||
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
|
||||
{
|
||||
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
static CloverField fillCloverXT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverField T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView( T_v , T, AcceleratorWrite);
|
||||
autoView( F_v , F, AcceleratorRead);
|
||||
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
|
||||
{
|
||||
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
static CloverField fillCloverYT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverField T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
autoView( T_v ,T,AcceleratorWrite);
|
||||
autoView( F_v ,F,AcceleratorRead);
|
||||
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
|
||||
{
|
||||
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(1, 0), coalescedRead((F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(2, 3), coalescedRead((F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(3, 2), coalescedRead(-(F_v[i]()())));
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
static CloverField fillCloverZT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverField T(F.Grid());
|
||||
|
||||
T = Zero();
|
||||
|
||||
autoView( T_v , T,AcceleratorWrite);
|
||||
autoView( F_v , F,AcceleratorRead);
|
||||
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
|
||||
{
|
||||
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
|
||||
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multClover(_Spinor& phi, const SiteClover& C, const _Spinor& chi) {
|
||||
auto CC = coalescedRead(C);
|
||||
mult(&phi, &CC, &chi);
|
||||
}
|
||||
|
||||
template<class _SpinorField>
|
||||
inline void multCloverField(_SpinorField& out, const CloverField& C, const _SpinorField& phi) {
|
||||
const int Nsimd = SiteSpinor::Nsimd();
|
||||
autoView(out_v, out, AcceleratorWrite);
|
||||
autoView(phi_v, phi, AcceleratorRead);
|
||||
autoView(C_v, C, AcceleratorRead);
|
||||
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
|
||||
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
|
||||
calcSpinor tmp;
|
||||
multClover(tmp,C_v[sss],phi_v(sss));
|
||||
coalescedWrite(out_v[sss],tmp);
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Impl> class CompactWilsonCloverHelpers {
|
||||
public:
|
||||
|
||||
INHERIT_COMPACT_CLOVER_SIZES(Impl);
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
INHERIT_COMPACT_CLOVER_TYPES(Impl);
|
||||
|
||||
#if 0
|
||||
static accelerator_inline typename SiteCloverTriangle::vector_type triangle_elem(const SiteCloverTriangle& triangle, int block, int i, int j) {
|
||||
assert(i != j);
|
||||
if(i < j) {
|
||||
return triangle()(block)(triangle_index(i, j));
|
||||
} else { // i > j
|
||||
return conjugate(triangle()(block)(triangle_index(i, j)));
|
||||
}
|
||||
}
|
||||
#else
|
||||
template<typename vobj>
|
||||
static accelerator_inline vobj triangle_elem(const iImplCloverTriangle<vobj>& triangle, int block, int i, int j) {
|
||||
assert(i != j);
|
||||
if(i < j) {
|
||||
return triangle()(block)(triangle_index(i, j));
|
||||
} else { // i > j
|
||||
return conjugate(triangle()(block)(triangle_index(i, j)));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static accelerator_inline int triangle_index(int i, int j) {
|
||||
if(i == j)
|
||||
return 0;
|
||||
else if(i < j)
|
||||
return Nred * (Nred - 1) / 2 - (Nred - i) * (Nred - i - 1) / 2 + j - i - 1;
|
||||
else // i > j
|
||||
return Nred * (Nred - 1) / 2 - (Nred - j) * (Nred - j - 1) / 2 + i - j - 1;
|
||||
}
|
||||
|
||||
static void MooeeKernel_gpu(int Nsite,
|
||||
int Ls,
|
||||
const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle) {
|
||||
autoView(diagonal_v, diagonal, AcceleratorRead);
|
||||
autoView(triangle_v, triangle, AcceleratorRead);
|
||||
autoView(in_v, in, AcceleratorRead);
|
||||
autoView(out_v, out, AcceleratorWrite);
|
||||
|
||||
typedef decltype(coalescedRead(out_v[0])) CalcSpinor;
|
||||
|
||||
const uint64_t NN = Nsite * Ls;
|
||||
|
||||
accelerator_for(ss, NN, Simd::Nsimd(), {
|
||||
int sF = ss;
|
||||
int sU = ss/Ls;
|
||||
CalcSpinor res;
|
||||
CalcSpinor in_t = in_v(sF);
|
||||
auto diagonal_t = diagonal_v(sU);
|
||||
auto triangle_t = triangle_v(sU);
|
||||
for(int block=0; block<Nhs; block++) {
|
||||
int s_start = block*Nhs;
|
||||
for(int i=0; i<Nred; i++) {
|
||||
int si = s_start + i/Nc, ci = i%Nc;
|
||||
res()(si)(ci) = diagonal_t()(block)(i) * in_t()(si)(ci);
|
||||
for(int j=0; j<Nred; j++) {
|
||||
if (j == i) continue;
|
||||
int sj = s_start + j/Nc, cj = j%Nc;
|
||||
res()(si)(ci) = res()(si)(ci) + triangle_elem(triangle_t, block, i, j) * in_t()(sj)(cj);
|
||||
};
|
||||
};
|
||||
};
|
||||
coalescedWrite(out_v[sF], res);
|
||||
});
|
||||
}
|
||||
|
||||
static void MooeeKernel_cpu(int Nsite,
|
||||
int Ls,
|
||||
const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle) {
|
||||
autoView(diagonal_v, diagonal, CpuRead);
|
||||
autoView(triangle_v, triangle, CpuRead);
|
||||
autoView(in_v, in, CpuRead);
|
||||
autoView(out_v, out, CpuWrite);
|
||||
|
||||
typedef SiteSpinor CalcSpinor;
|
||||
|
||||
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
|
||||
#define PREFETCH_CLOVER(BASE) { \
|
||||
uint64_t base; \
|
||||
int pf_dist_L1 = 1; \
|
||||
int pf_dist_L2 = -5; /* -> penalty -> disable */ \
|
||||
\
|
||||
if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
|
||||
base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL1STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL1STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL1STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL1STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL1STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL1STRM); \
|
||||
} \
|
||||
\
|
||||
if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
|
||||
base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL2STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL2STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL2STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL2STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL2STRM); \
|
||||
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL2STRM); \
|
||||
} \
|
||||
}
|
||||
// TODO: Implement/generalize this for other architectures
|
||||
// I played around a bit on KNL (see below) but didn't bring anything
|
||||
// #elif defined(AVX512)
|
||||
// #define PREFETCH_CLOVER(BASE) { \
|
||||
// uint64_t base; \
|
||||
// int pf_dist_L1 = 1; \
|
||||
// int pf_dist_L2 = +4; \
|
||||
// \
|
||||
// if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
|
||||
// base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
|
||||
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T0); \
|
||||
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T0); \
|
||||
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T0); \
|
||||
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T0); \
|
||||
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T0); \
|
||||
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T0); \
|
||||
// } \
|
||||
// \
|
||||
// if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
|
||||
// base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
|
||||
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T1); \
|
||||
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T1); \
|
||||
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T1); \
|
||||
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T1); \
|
||||
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T1); \
|
||||
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T1); \
|
||||
// } \
|
||||
// }
|
||||
#else
|
||||
#define PREFETCH_CLOVER(BASE)
|
||||
#endif
|
||||
|
||||
const uint64_t NN = Nsite * Ls;
|
||||
|
||||
thread_for(ss, NN, {
|
||||
int sF = ss;
|
||||
int sU = ss/Ls;
|
||||
CalcSpinor res;
|
||||
CalcSpinor in_t = in_v[sF];
|
||||
auto diag_t = diagonal_v[sU]; // "diag" instead of "diagonal" here to make code below easier to read
|
||||
auto triangle_t = triangle_v[sU];
|
||||
|
||||
// upper half
|
||||
PREFETCH_CLOVER(0);
|
||||
|
||||
auto in_cc_0_0 = conjugate(in_t()(0)(0)); // Nils: reduces number
|
||||
auto in_cc_0_1 = conjugate(in_t()(0)(1)); // of conjugates from
|
||||
auto in_cc_0_2 = conjugate(in_t()(0)(2)); // 30 to 20
|
||||
auto in_cc_1_0 = conjugate(in_t()(1)(0));
|
||||
auto in_cc_1_1 = conjugate(in_t()(1)(1));
|
||||
|
||||
res()(0)(0) = diag_t()(0)( 0) * in_t()(0)(0)
|
||||
+ triangle_t()(0)( 0) * in_t()(0)(1)
|
||||
+ triangle_t()(0)( 1) * in_t()(0)(2)
|
||||
+ triangle_t()(0)( 2) * in_t()(1)(0)
|
||||
+ triangle_t()(0)( 3) * in_t()(1)(1)
|
||||
+ triangle_t()(0)( 4) * in_t()(1)(2);
|
||||
|
||||
res()(0)(1) = triangle_t()(0)( 0) * in_cc_0_0;
|
||||
res()(0)(1) = diag_t()(0)( 1) * in_t()(0)(1)
|
||||
+ triangle_t()(0)( 5) * in_t()(0)(2)
|
||||
+ triangle_t()(0)( 6) * in_t()(1)(0)
|
||||
+ triangle_t()(0)( 7) * in_t()(1)(1)
|
||||
+ triangle_t()(0)( 8) * in_t()(1)(2)
|
||||
+ conjugate( res()(0)( 1));
|
||||
|
||||
res()(0)(2) = triangle_t()(0)( 1) * in_cc_0_0
|
||||
+ triangle_t()(0)( 5) * in_cc_0_1;
|
||||
res()(0)(2) = diag_t()(0)( 2) * in_t()(0)(2)
|
||||
+ triangle_t()(0)( 9) * in_t()(1)(0)
|
||||
+ triangle_t()(0)(10) * in_t()(1)(1)
|
||||
+ triangle_t()(0)(11) * in_t()(1)(2)
|
||||
+ conjugate( res()(0)( 2));
|
||||
|
||||
res()(1)(0) = triangle_t()(0)( 2) * in_cc_0_0
|
||||
+ triangle_t()(0)( 6) * in_cc_0_1
|
||||
+ triangle_t()(0)( 9) * in_cc_0_2;
|
||||
res()(1)(0) = diag_t()(0)( 3) * in_t()(1)(0)
|
||||
+ triangle_t()(0)(12) * in_t()(1)(1)
|
||||
+ triangle_t()(0)(13) * in_t()(1)(2)
|
||||
+ conjugate( res()(1)( 0));
|
||||
|
||||
res()(1)(1) = triangle_t()(0)( 3) * in_cc_0_0
|
||||
+ triangle_t()(0)( 7) * in_cc_0_1
|
||||
+ triangle_t()(0)(10) * in_cc_0_2
|
||||
+ triangle_t()(0)(12) * in_cc_1_0;
|
||||
res()(1)(1) = diag_t()(0)( 4) * in_t()(1)(1)
|
||||
+ triangle_t()(0)(14) * in_t()(1)(2)
|
||||
+ conjugate( res()(1)( 1));
|
||||
|
||||
res()(1)(2) = triangle_t()(0)( 4) * in_cc_0_0
|
||||
+ triangle_t()(0)( 8) * in_cc_0_1
|
||||
+ triangle_t()(0)(11) * in_cc_0_2
|
||||
+ triangle_t()(0)(13) * in_cc_1_0
|
||||
+ triangle_t()(0)(14) * in_cc_1_1;
|
||||
res()(1)(2) = diag_t()(0)( 5) * in_t()(1)(2)
|
||||
+ conjugate( res()(1)( 2));
|
||||
|
||||
vstream(out_v[sF]()(0)(0), res()(0)(0));
|
||||
vstream(out_v[sF]()(0)(1), res()(0)(1));
|
||||
vstream(out_v[sF]()(0)(2), res()(0)(2));
|
||||
vstream(out_v[sF]()(1)(0), res()(1)(0));
|
||||
vstream(out_v[sF]()(1)(1), res()(1)(1));
|
||||
vstream(out_v[sF]()(1)(2), res()(1)(2));
|
||||
|
||||
// lower half
|
||||
PREFETCH_CLOVER(1);
|
||||
|
||||
auto in_cc_2_0 = conjugate(in_t()(2)(0));
|
||||
auto in_cc_2_1 = conjugate(in_t()(2)(1));
|
||||
auto in_cc_2_2 = conjugate(in_t()(2)(2));
|
||||
auto in_cc_3_0 = conjugate(in_t()(3)(0));
|
||||
auto in_cc_3_1 = conjugate(in_t()(3)(1));
|
||||
|
||||
res()(2)(0) = diag_t()(1)( 0) * in_t()(2)(0)
|
||||
+ triangle_t()(1)( 0) * in_t()(2)(1)
|
||||
+ triangle_t()(1)( 1) * in_t()(2)(2)
|
||||
+ triangle_t()(1)( 2) * in_t()(3)(0)
|
||||
+ triangle_t()(1)( 3) * in_t()(3)(1)
|
||||
+ triangle_t()(1)( 4) * in_t()(3)(2);
|
||||
|
||||
res()(2)(1) = triangle_t()(1)( 0) * in_cc_2_0;
|
||||
res()(2)(1) = diag_t()(1)( 1) * in_t()(2)(1)
|
||||
+ triangle_t()(1)( 5) * in_t()(2)(2)
|
||||
+ triangle_t()(1)( 6) * in_t()(3)(0)
|
||||
+ triangle_t()(1)( 7) * in_t()(3)(1)
|
||||
+ triangle_t()(1)( 8) * in_t()(3)(2)
|
||||
+ conjugate( res()(2)( 1));
|
||||
|
||||
res()(2)(2) = triangle_t()(1)( 1) * in_cc_2_0
|
||||
+ triangle_t()(1)( 5) * in_cc_2_1;
|
||||
res()(2)(2) = diag_t()(1)( 2) * in_t()(2)(2)
|
||||
+ triangle_t()(1)( 9) * in_t()(3)(0)
|
||||
+ triangle_t()(1)(10) * in_t()(3)(1)
|
||||
+ triangle_t()(1)(11) * in_t()(3)(2)
|
||||
+ conjugate( res()(2)( 2));
|
||||
|
||||
res()(3)(0) = triangle_t()(1)( 2) * in_cc_2_0
|
||||
+ triangle_t()(1)( 6) * in_cc_2_1
|
||||
+ triangle_t()(1)( 9) * in_cc_2_2;
|
||||
res()(3)(0) = diag_t()(1)( 3) * in_t()(3)(0)
|
||||
+ triangle_t()(1)(12) * in_t()(3)(1)
|
||||
+ triangle_t()(1)(13) * in_t()(3)(2)
|
||||
+ conjugate( res()(3)( 0));
|
||||
|
||||
res()(3)(1) = triangle_t()(1)( 3) * in_cc_2_0
|
||||
+ triangle_t()(1)( 7) * in_cc_2_1
|
||||
+ triangle_t()(1)(10) * in_cc_2_2
|
||||
+ triangle_t()(1)(12) * in_cc_3_0;
|
||||
res()(3)(1) = diag_t()(1)( 4) * in_t()(3)(1)
|
||||
+ triangle_t()(1)(14) * in_t()(3)(2)
|
||||
+ conjugate( res()(3)( 1));
|
||||
|
||||
res()(3)(2) = triangle_t()(1)( 4) * in_cc_2_0
|
||||
+ triangle_t()(1)( 8) * in_cc_2_1
|
||||
+ triangle_t()(1)(11) * in_cc_2_2
|
||||
+ triangle_t()(1)(13) * in_cc_3_0
|
||||
+ triangle_t()(1)(14) * in_cc_3_1;
|
||||
res()(3)(2) = diag_t()(1)( 5) * in_t()(3)(2)
|
||||
+ conjugate( res()(3)( 2));
|
||||
|
||||
vstream(out_v[sF]()(2)(0), res()(2)(0));
|
||||
vstream(out_v[sF]()(2)(1), res()(2)(1));
|
||||
vstream(out_v[sF]()(2)(2), res()(2)(2));
|
||||
vstream(out_v[sF]()(3)(0), res()(3)(0));
|
||||
vstream(out_v[sF]()(3)(1), res()(3)(1));
|
||||
vstream(out_v[sF]()(3)(2), res()(3)(2));
|
||||
});
|
||||
}
|
||||
|
||||
static void MooeeKernel(int Nsite,
|
||||
int Ls,
|
||||
const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle) {
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
MooeeKernel_gpu(Nsite, Ls, in, out, diagonal, triangle);
|
||||
#else
|
||||
MooeeKernel_cpu(Nsite, Ls, in, out, diagonal, triangle);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void Invert(const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle,
|
||||
CloverDiagonalField& diagonalInv,
|
||||
CloverTriangleField& triangleInv) {
|
||||
conformable(diagonal, diagonalInv);
|
||||
conformable(triangle, triangleInv);
|
||||
conformable(diagonal, triangle);
|
||||
|
||||
diagonalInv.Checkerboard() = diagonal.Checkerboard();
|
||||
triangleInv.Checkerboard() = triangle.Checkerboard();
|
||||
|
||||
GridBase* grid = diagonal.Grid();
|
||||
|
||||
long lsites = grid->lSites();
|
||||
|
||||
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
|
||||
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
|
||||
|
||||
autoView(diagonal_v, diagonal, CpuRead);
|
||||
autoView(triangle_v, triangle, CpuRead);
|
||||
autoView(diagonalInv_v, diagonalInv, CpuWrite);
|
||||
autoView(triangleInv_v, triangleInv, CpuWrite);
|
||||
|
||||
thread_for(site, lsites, { // NOTE: Not on GPU because of Eigen & (peek/poke)LocalSite
|
||||
Eigen::MatrixXcd clover_inv_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
|
||||
Eigen::MatrixXcd clover_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
|
||||
|
||||
scalar_object_diagonal diagonal_tmp = Zero();
|
||||
scalar_object_diagonal diagonal_inv_tmp = Zero();
|
||||
scalar_object_triangle triangle_tmp = Zero();
|
||||
scalar_object_triangle triangle_inv_tmp = Zero();
|
||||
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
|
||||
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
|
||||
peekLocalSite(triangle_tmp, triangle_v, lcoor);
|
||||
|
||||
// TODO: can we save time here by inverting the two 6x6 hermitian matrices separately?
|
||||
for (long s_row=0;s_row<Ns;s_row++) {
|
||||
for (long s_col=0;s_col<Ns;s_col++) {
|
||||
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
|
||||
int block = s_row / Nhs;
|
||||
int s_row_block = s_row % Nhs;
|
||||
int s_col_block = s_col % Nhs;
|
||||
for (long c_row=0;c_row<Nc;c_row++) {
|
||||
for (long c_col=0;c_col<Nc;c_col++) {
|
||||
int i = s_row_block * Nc + c_row;
|
||||
int j = s_col_block * Nc + c_col;
|
||||
if(i == j)
|
||||
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
|
||||
else
|
||||
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(triangle_elem(triangle_tmp, block, i, j)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clover_inv_eigen = clover_eigen.inverse();
|
||||
|
||||
for (long s_row=0;s_row<Ns;s_row++) {
|
||||
for (long s_col=0;s_col<Ns;s_col++) {
|
||||
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
|
||||
int block = s_row / Nhs;
|
||||
int s_row_block = s_row % Nhs;
|
||||
int s_col_block = s_col % Nhs;
|
||||
for (long c_row=0;c_row<Nc;c_row++) {
|
||||
for (long c_col=0;c_col<Nc;c_col++) {
|
||||
int i = s_row_block * Nc + c_row;
|
||||
int j = s_col_block * Nc + c_col;
|
||||
if(i == j)
|
||||
diagonal_inv_tmp()(block)(i) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
|
||||
else if(i < j)
|
||||
triangle_inv_tmp()(block)(triangle_index(i, j)) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
|
||||
else
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pokeLocalSite(diagonal_inv_tmp, diagonalInv_v, lcoor);
|
||||
pokeLocalSite(triangle_inv_tmp, triangleInv_v, lcoor);
|
||||
});
|
||||
}
|
||||
|
||||
static void ConvertLayout(const CloverField& full,
|
||||
CloverDiagonalField& diagonal,
|
||||
CloverTriangleField& triangle) {
|
||||
conformable(full, diagonal);
|
||||
conformable(full, triangle);
|
||||
|
||||
diagonal.Checkerboard() = full.Checkerboard();
|
||||
triangle.Checkerboard() = full.Checkerboard();
|
||||
|
||||
autoView(full_v, full, AcceleratorRead);
|
||||
autoView(diagonal_v, diagonal, AcceleratorWrite);
|
||||
autoView(triangle_v, triangle, AcceleratorWrite);
|
||||
|
||||
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
|
||||
accelerator_for(ss, full.Grid()->oSites(), 1, {
|
||||
for(int s_row = 0; s_row < Ns; s_row++) {
|
||||
for(int s_col = 0; s_col < Ns; s_col++) {
|
||||
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
|
||||
int block = s_row / Nhs;
|
||||
int s_row_block = s_row % Nhs;
|
||||
int s_col_block = s_col % Nhs;
|
||||
for(int c_row = 0; c_row < Nc; c_row++) {
|
||||
for(int c_col = 0; c_col < Nc; c_col++) {
|
||||
int i = s_row_block * Nc + c_row;
|
||||
int j = s_col_block * Nc + c_col;
|
||||
if(i == j)
|
||||
diagonal_v[ss]()(block)(i) = full_v[ss]()(s_row, s_col)(c_row, c_col);
|
||||
else if(i < j)
|
||||
triangle_v[ss]()(block)(triangle_index(i, j)) = full_v[ss]()(s_row, s_col)(c_row, c_col);
|
||||
else
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
static void ConvertLayout(const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle,
|
||||
CloverField& full) {
|
||||
conformable(full, diagonal);
|
||||
conformable(full, triangle);
|
||||
|
||||
full.Checkerboard() = diagonal.Checkerboard();
|
||||
|
||||
full = Zero();
|
||||
|
||||
autoView(diagonal_v, diagonal, AcceleratorRead);
|
||||
autoView(triangle_v, triangle, AcceleratorRead);
|
||||
autoView(full_v, full, AcceleratorWrite);
|
||||
|
||||
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
|
||||
accelerator_for(ss, full.Grid()->oSites(), 1, {
|
||||
for(int s_row = 0; s_row < Ns; s_row++) {
|
||||
for(int s_col = 0; s_col < Ns; s_col++) {
|
||||
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
|
||||
int block = s_row / Nhs;
|
||||
int s_row_block = s_row % Nhs;
|
||||
int s_col_block = s_col % Nhs;
|
||||
for(int c_row = 0; c_row < Nc; c_row++) {
|
||||
for(int c_col = 0; c_col < Nc; c_col++) {
|
||||
int i = s_row_block * Nc + c_row;
|
||||
int j = s_col_block * Nc + c_col;
|
||||
if(i == j)
|
||||
full_v[ss]()(s_row, s_col)(c_row, c_col) = diagonal_v[ss]()(block)(i);
|
||||
else
|
||||
full_v[ss]()(s_row, s_col)(c_row, c_col) = triangle_elem(triangle_v[ss], block, i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
static void ModifyBoundaries(CloverDiagonalField& diagonal, CloverTriangleField& triangle, RealD csw_t, RealD cF, RealD diag_mass) {
|
||||
// Checks/grid
|
||||
double t0 = usecond();
|
||||
conformable(diagonal, triangle);
|
||||
GridBase* grid = diagonal.Grid();
|
||||
|
||||
// Determine the boundary coordinates/sites
|
||||
double t1 = usecond();
|
||||
int t_dir = Nd - 1;
|
||||
Lattice<iScalar<vInteger>> t_coor(grid);
|
||||
LatticeCoordinate(t_coor, t_dir);
|
||||
int T = grid->GlobalDimensions()[t_dir];
|
||||
|
||||
// Set off-diagonal parts at boundary to zero -- OK
|
||||
double t2 = usecond();
|
||||
CloverTriangleField zeroTriangle(grid);
|
||||
zeroTriangle.Checkerboard() = triangle.Checkerboard();
|
||||
zeroTriangle = Zero();
|
||||
triangle = where(t_coor == 0, zeroTriangle, triangle);
|
||||
triangle = where(t_coor == T-1, zeroTriangle, triangle);
|
||||
|
||||
// Set diagonal to unity (scaled correctly) -- OK
|
||||
double t3 = usecond();
|
||||
CloverDiagonalField tmp(grid);
|
||||
tmp.Checkerboard() = diagonal.Checkerboard();
|
||||
tmp = -1.0 * csw_t + diag_mass;
|
||||
diagonal = where(t_coor == 0, tmp, diagonal);
|
||||
diagonal = where(t_coor == T-1, tmp, diagonal);
|
||||
|
||||
// Correct values next to boundary
|
||||
double t4 = usecond();
|
||||
if(cF != 1.0) {
|
||||
tmp = cF - 1.0;
|
||||
tmp += diagonal;
|
||||
diagonal = where(t_coor == 1, tmp, diagonal);
|
||||
diagonal = where(t_coor == T-2, tmp, diagonal);
|
||||
}
|
||||
|
||||
// Report timings
|
||||
double t5 = usecond();
|
||||
#if 0
|
||||
std::cout << GridLogMessage << "CompactWilsonCloverHelpers::ModifyBoundaries timings:"
|
||||
<< " checks = " << (t1 - t0) / 1e6
|
||||
<< ", coordinate = " << (t2 - t1) / 1e6
|
||||
<< ", off-diag zero = " << (t3 - t2) / 1e6
|
||||
<< ", diagonal unity = " << (t4 - t3) / 1e6
|
||||
<< ", near-boundary = " << (t5 - t4) / 1e6
|
||||
<< ", total = " << (t5 - t0) / 1e6
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class Field, class Mask>
|
||||
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
|
||||
conformable(f, m);
|
||||
auto grid = f.Grid();
|
||||
const uint32_t Nsite = grid->oSites();
|
||||
const uint32_t Nsimd = grid->Nsimd();
|
||||
autoView(f_v, f, AcceleratorWrite);
|
||||
autoView(m_v, m, AcceleratorRead);
|
||||
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
|
||||
accelerator_for(ss, Nsite, Nsimd, {
|
||||
coalescedWrite(f_v[ss], m_v(ss) * f_v(ss));
|
||||
});
|
||||
}
|
||||
|
||||
template<class MaskField>
|
||||
static void SetupMasks(MaskField& full, MaskField& even, MaskField& odd) {
|
||||
assert(even.Grid()->_isCheckerBoarded && even.Checkerboard() == Even);
|
||||
assert(odd.Grid()->_isCheckerBoarded && odd.Checkerboard() == Odd);
|
||||
assert(!full.Grid()->_isCheckerBoarded);
|
||||
|
||||
GridBase* grid = full.Grid();
|
||||
int t_dir = Nd-1;
|
||||
Lattice<iScalar<vInteger>> t_coor(grid);
|
||||
LatticeCoordinate(t_coor, t_dir);
|
||||
int T = grid->GlobalDimensions()[t_dir];
|
||||
|
||||
MaskField zeroMask(grid); zeroMask = Zero();
|
||||
full = 1.0;
|
||||
full = where(t_coor == 0, zeroMask, full);
|
||||
full = where(t_coor == T-1, zeroMask, full);
|
||||
|
||||
pickCheckerboard(Even, even, full);
|
||||
pickCheckerboard(Odd, odd, full);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
92
Grid/qcd/action/fermion/WilsonCloverTypes.h
Normal file
92
Grid/qcd/action/fermion/WilsonCloverTypes.h
Normal file
@ -0,0 +1,92 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverTypes.h
|
||||
|
||||
Copyright (C) 2021 - 2022
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class WilsonCloverTypes {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
|
||||
typedef iImplClover<Simd> SiteClover;
|
||||
|
||||
typedef Lattice<SiteClover> CloverField;
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
class CompactWilsonCloverTypes {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
|
||||
|
||||
static constexpr int Nred = Nc * Nhs; // 6
|
||||
static constexpr int Nblock = Nhs; // 2
|
||||
static constexpr int Ndiagonal = Nred; // 6
|
||||
static constexpr int Ntriangle = (Nred - 1) * Nc; // 15
|
||||
|
||||
template<typename vtype> using iImplCloverDiagonal = iScalar<iVector<iVector<vtype, Ndiagonal>, Nblock>>;
|
||||
template<typename vtype> using iImplCloverTriangle = iScalar<iVector<iVector<vtype, Ntriangle>, Nblock>>;
|
||||
|
||||
typedef iImplCloverDiagonal<Simd> SiteCloverDiagonal;
|
||||
typedef iImplCloverTriangle<Simd> SiteCloverTriangle;
|
||||
typedef iSinglet<Simd> SiteMask;
|
||||
|
||||
typedef Lattice<SiteCloverDiagonal> CloverDiagonalField;
|
||||
typedef Lattice<SiteCloverTriangle> CloverTriangleField;
|
||||
typedef Lattice<SiteMask> MaskField;
|
||||
};
|
||||
|
||||
#define INHERIT_CLOVER_TYPES(Impl) \
|
||||
typedef typename WilsonCloverTypes<Impl>::SiteClover SiteClover; \
|
||||
typedef typename WilsonCloverTypes<Impl>::CloverField CloverField;
|
||||
|
||||
#define INHERIT_COMPACT_CLOVER_TYPES(Impl) \
|
||||
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverDiagonal SiteCloverDiagonal; \
|
||||
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverTriangle SiteCloverTriangle; \
|
||||
typedef typename CompactWilsonCloverTypes<Impl>::SiteMask SiteMask; \
|
||||
typedef typename CompactWilsonCloverTypes<Impl>::CloverDiagonalField CloverDiagonalField; \
|
||||
typedef typename CompactWilsonCloverTypes<Impl>::CloverTriangleField CloverTriangleField; \
|
||||
typedef typename CompactWilsonCloverTypes<Impl>::MaskField MaskField; \
|
||||
/* ugly duplication but needed inside functionality classes */ \
|
||||
template<typename vtype> using iImplCloverDiagonal = \
|
||||
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ndiagonal>, CompactWilsonCloverTypes<Impl>::Nblock>>; \
|
||||
template<typename vtype> using iImplCloverTriangle = \
|
||||
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ntriangle>, CompactWilsonCloverTypes<Impl>::Nblock>>;
|
||||
|
||||
#define INHERIT_COMPACT_CLOVER_SIZES(Impl) \
|
||||
static constexpr int Nred = CompactWilsonCloverTypes<Impl>::Nred; \
|
||||
static constexpr int Nblock = CompactWilsonCloverTypes<Impl>::Nblock; \
|
||||
static constexpr int Ndiagonal = CompactWilsonCloverTypes<Impl>::Ndiagonal; \
|
||||
static constexpr int Ntriangle = CompactWilsonCloverTypes<Impl>::Ntriangle;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -828,6 +828,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
|
||||
#if (!defined(GRID_HIP))
|
||||
int tshift = (mu == Nd-1) ? 1 : 0;
|
||||
unsigned int LLt = GridDefaultLatt()[Tp];
|
||||
////////////////////////////////////////////////
|
||||
// GENERAL CAYLEY CASE
|
||||
////////////////////////////////////////////////
|
||||
@ -880,7 +881,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
}
|
||||
|
||||
std::vector<RealD> G_s(Ls,1.0);
|
||||
RealD sign = 1; // sign flip for vector/tadpole
|
||||
RealD sign = 1.0; // sign flip for vector/tadpole
|
||||
if ( curr_type == Current::Axial ) {
|
||||
for(int s=0;s<Ls/2;s++){
|
||||
G_s[s] = -1.0;
|
||||
@ -890,7 +891,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
auto b=this->_b;
|
||||
auto c=this->_c;
|
||||
if ( b == 1 && c == 0 ) {
|
||||
sign = -1;
|
||||
sign = -1.0;
|
||||
}
|
||||
else {
|
||||
std::cerr << "Error: Tadpole implementation currently unavailable for non-Shamir actions." << std::endl;
|
||||
@ -934,7 +935,13 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
tmp = Cshift(tmp,mu,-1);
|
||||
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
|
||||
tmp = -G_s[s]*( Utmp + gmu*Utmp );
|
||||
tmp = where((lcoor>=tmin+tshift),tmp,zz); // Mask the time
|
||||
// Mask the time
|
||||
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
|
||||
unsigned int t0 = 0;
|
||||
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
|
||||
} else {
|
||||
tmp = where((lcoor>=tmin+tshift),tmp,zz);
|
||||
}
|
||||
L_Q += where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
|
||||
|
||||
InsertSlice(L_Q, q_out, s , 0);
|
||||
|
@ -0,0 +1,363 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermionImplementation.h
|
||||
|
||||
Copyright (C) 2017 - 2022
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
template<class Impl>
|
||||
CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
|
||||
GridCartesian& Fgrid,
|
||||
GridRedBlackCartesian& Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r,
|
||||
const RealD _csw_t,
|
||||
const RealD _cF,
|
||||
const WilsonAnisotropyCoefficients& clover_anisotropy,
|
||||
const ImplParams& impl_p)
|
||||
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
|
||||
, csw_r(_csw_r)
|
||||
, csw_t(_csw_t)
|
||||
, cF(_cF)
|
||||
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
|
||||
, Diagonal(&Fgrid), Triangle(&Fgrid)
|
||||
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
|
||||
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
|
||||
, DiagonalInv(&Fgrid), TriangleInv(&Fgrid)
|
||||
, DiagonalInvEven(&Hgrid), TriangleInvEven(&Hgrid)
|
||||
, DiagonalInvOdd(&Hgrid), TriangleInvOdd(&Hgrid)
|
||||
, Tmp(&Fgrid)
|
||||
, BoundaryMask(&Fgrid)
|
||||
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
|
||||
{
|
||||
csw_r *= 0.5;
|
||||
csw_t *= 0.5;
|
||||
if (clover_anisotropy.isAnisotropic)
|
||||
csw_r /= clover_anisotropy.xi_0;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
if (open_boundaries)
|
||||
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::Dhop(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopOE(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopEO(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
WilsonBase::DhopDir(in, out, dir, disp);
|
||||
if(this->open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
WilsonBase::DhopDirAll(in, out);
|
||||
if(this->open_boundaries) {
|
||||
for(auto& o : out) ApplyBoundaryMask(o);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
|
||||
Mooee(in, Tmp);
|
||||
axpy(out, 1.0, out, Tmp);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
|
||||
MooeeDag(in, Tmp);
|
||||
axpy(out, 1.0, out, Tmp);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::Meooe(in, out);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::MeooeDag(in, out);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalEven, TriangleEven);
|
||||
}
|
||||
} else {
|
||||
MooeeInternal(in, out, Diagonal, Triangle);
|
||||
}
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
|
||||
Mooee(in, out); // blocks are hermitian
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
|
||||
}
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalInv, TriangleInv);
|
||||
}
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
|
||||
MooeeInv(in, out); // blocks are hermitian
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
DhopDir(in, out, dir, disp);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
DhopDirAll(in, out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
|
||||
assert(!open_boundaries); // TODO check for changes required for open bc
|
||||
|
||||
// NOTE: code copied from original clover term
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
conformable(X.Grid(), force.Grid());
|
||||
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
|
||||
GaugeField clover_force(force.Grid());
|
||||
PropagatorField Lambda(force.Grid());
|
||||
|
||||
// Guido: Here we are hitting some performance issues:
|
||||
// need to extract the components of the DoubledGaugeField
|
||||
// for each call
|
||||
// Possible solution
|
||||
// Create a vector object to store them? (cons: wasting space)
|
||||
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
|
||||
|
||||
Impl::extractLinkField(U, this->Umu);
|
||||
|
||||
force = Zero();
|
||||
// Derivative of the Wilson hopping term
|
||||
this->DhopDeriv(force, X, Y, dag);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Clover term derivative
|
||||
///////////////////////////////////////////////////////////
|
||||
Impl::outerProductImpl(Lambda, X, Y);
|
||||
//std::cout << "Lambda:" << Lambda << std::endl;
|
||||
|
||||
Gamma::Algebra sigma[] = {
|
||||
Gamma::Algebra::SigmaXY,
|
||||
Gamma::Algebra::SigmaXZ,
|
||||
Gamma::Algebra::SigmaXT,
|
||||
Gamma::Algebra::MinusSigmaXY,
|
||||
Gamma::Algebra::SigmaYZ,
|
||||
Gamma::Algebra::SigmaYT,
|
||||
Gamma::Algebra::MinusSigmaXZ,
|
||||
Gamma::Algebra::MinusSigmaYZ,
|
||||
Gamma::Algebra::SigmaZT,
|
||||
Gamma::Algebra::MinusSigmaXT,
|
||||
Gamma::Algebra::MinusSigmaYT,
|
||||
Gamma::Algebra::MinusSigmaZT};
|
||||
|
||||
/*
|
||||
sigma_{\mu \nu}=
|
||||
| 0 sigma[0] sigma[1] sigma[2] |
|
||||
| sigma[3] 0 sigma[4] sigma[5] |
|
||||
| sigma[6] sigma[7] 0 sigma[8] |
|
||||
| sigma[9] sigma[10] sigma[11] 0 |
|
||||
*/
|
||||
|
||||
int count = 0;
|
||||
clover_force = Zero();
|
||||
for (int mu = 0; mu < 4; mu++)
|
||||
{
|
||||
force_mu = Zero();
|
||||
for (int nu = 0; nu < 4; nu++)
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
else
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
||||
}
|
||||
//clover_force *= csw;
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle) {
|
||||
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
conformable(in, out);
|
||||
conformable(in, diagonal);
|
||||
conformable(in, triangle);
|
||||
|
||||
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
|
||||
// NOTE: parts copied from original implementation
|
||||
|
||||
// Import gauge into base class
|
||||
double t0 = usecond();
|
||||
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
|
||||
|
||||
// Initialize temporary variables
|
||||
double t1 = usecond();
|
||||
conformable(_Umu.Grid(), this->GaugeGrid());
|
||||
GridBase* grid = _Umu.Grid();
|
||||
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
||||
CloverField TmpOriginal(grid);
|
||||
|
||||
// Compute the field strength terms mu>nu
|
||||
double t2 = usecond();
|
||||
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
|
||||
|
||||
// Compute the Clover Operator acting on Colour and Spin
|
||||
// multiply here by the clover coefficients for the anisotropy
|
||||
double t3 = usecond();
|
||||
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
|
||||
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
|
||||
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
|
||||
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
|
||||
TmpOriginal += this->diag_mass;
|
||||
|
||||
// Convert the data layout of the clover term
|
||||
double t4 = usecond();
|
||||
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
|
||||
|
||||
// Possible modify the boundary values
|
||||
double t5 = usecond();
|
||||
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
|
||||
|
||||
// Invert the clover term in the improved layout
|
||||
double t6 = usecond();
|
||||
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
|
||||
|
||||
// Fill the remaining clover fields
|
||||
double t7 = usecond();
|
||||
pickCheckerboard(Even, DiagonalEven, Diagonal);
|
||||
pickCheckerboard(Even, TriangleEven, Triangle);
|
||||
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
|
||||
pickCheckerboard(Odd, TriangleOdd, Triangle);
|
||||
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
|
||||
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
|
||||
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
|
||||
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
|
||||
|
||||
// Report timings
|
||||
double t8 = usecond();
|
||||
#if 0
|
||||
std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
|
||||
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
|
||||
<< ", allocations = " << (t2 - t1) / 1e6
|
||||
<< ", field strength = " << (t3 - t2) / 1e6
|
||||
<< ", fill clover = " << (t4 - t3) / 1e6
|
||||
<< ", convert = " << (t5 - t4) / 1e6
|
||||
<< ", boundaries = " << (t6 - t5) / 1e6
|
||||
<< ", inversions = " << (t7 - t6) / 1e6
|
||||
<< ", pick cbs = " << (t8 - t7) / 1e6
|
||||
<< ", total = " << (t8 - t0) / 1e6
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -2,12 +2,13 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
|
||||
|
||||
Copyright (C) 2017
|
||||
Copyright (C) 2017 - 2022
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,6 +34,45 @@
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
|
||||
GridCartesian& Fgrid,
|
||||
GridRedBlackCartesian& Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r,
|
||||
const RealD _csw_t,
|
||||
const WilsonAnisotropyCoefficients& clover_anisotropy,
|
||||
const ImplParams& impl_p)
|
||||
: WilsonFermion<Impl>(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
|
||||
, CloverTerm(&Fgrid)
|
||||
, CloverTermInv(&Fgrid)
|
||||
, CloverTermEven(&Hgrid)
|
||||
, CloverTermOdd(&Hgrid)
|
||||
, CloverTermInvEven(&Hgrid)
|
||||
, CloverTermInvOdd(&Hgrid)
|
||||
, CloverTermDagEven(&Hgrid)
|
||||
, CloverTermDagOdd(&Hgrid)
|
||||
, CloverTermInvDagEven(&Hgrid)
|
||||
, CloverTermInvDagOdd(&Hgrid) {
|
||||
assert(Nd == 4); // require 4 dimensions
|
||||
|
||||
if(clover_anisotropy.isAnisotropic) {
|
||||
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
|
||||
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
|
||||
} else {
|
||||
csw_r = _csw_r * 0.5;
|
||||
diag_mass = 4.0 + _mass;
|
||||
}
|
||||
csw_t = _csw_t * 0.5;
|
||||
|
||||
if(csw_r == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
|
||||
if(csw_t == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
}
|
||||
|
||||
// *NOT* EO
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
|
||||
@ -67,10 +107,13 @@ void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
{
|
||||
double t0 = usecond();
|
||||
WilsonFermion<Impl>::ImportGauge(_Umu);
|
||||
double t1 = usecond();
|
||||
GridBase *grid = _Umu.Grid();
|
||||
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
||||
|
||||
double t2 = usecond();
|
||||
// Compute the field strength terms mu>nu
|
||||
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
|
||||
@ -79,19 +122,22 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
|
||||
|
||||
double t3 = usecond();
|
||||
// Compute the Clover Operator acting on Colour and Spin
|
||||
// multiply here by the clover coefficients for the anisotropy
|
||||
CloverTerm = fillCloverYZ(Bx) * csw_r;
|
||||
CloverTerm += fillCloverXZ(By) * csw_r;
|
||||
CloverTerm += fillCloverXY(Bz) * csw_r;
|
||||
CloverTerm += fillCloverXT(Ex) * csw_t;
|
||||
CloverTerm += fillCloverYT(Ey) * csw_t;
|
||||
CloverTerm += fillCloverZT(Ez) * csw_t;
|
||||
CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r;
|
||||
CloverTerm += Helpers::fillCloverXZ(By) * csw_r;
|
||||
CloverTerm += Helpers::fillCloverXY(Bz) * csw_r;
|
||||
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
|
||||
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
|
||||
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
|
||||
CloverTerm += diag_mass;
|
||||
|
||||
double t4 = usecond();
|
||||
int lvol = _Umu.Grid()->lSites();
|
||||
int DimRep = Impl::Dimension;
|
||||
|
||||
double t5 = usecond();
|
||||
{
|
||||
autoView(CTv,CloverTerm,CpuRead);
|
||||
autoView(CTIv,CloverTermInv,CpuWrite);
|
||||
@ -100,7 +146,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
|
||||
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
|
||||
peekLocalSite(Qx, CTv, lcoor);
|
||||
//if (csw!=0){
|
||||
for (int j = 0; j < Ns; j++)
|
||||
@ -125,6 +171,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
});
|
||||
}
|
||||
|
||||
double t6 = usecond();
|
||||
// Separate the even and odd parts
|
||||
pickCheckerboard(Even, CloverTermEven, CloverTerm);
|
||||
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
|
||||
@ -137,6 +184,20 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
|
||||
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
|
||||
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
|
||||
double t7 = usecond();
|
||||
|
||||
#if 0
|
||||
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
|
||||
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
|
||||
<< ", allocations = " << (t2 - t1) / 1e6
|
||||
<< ", field strength = " << (t3 - t2) / 1e6
|
||||
<< ", fill clover = " << (t4 - t3) / 1e6
|
||||
<< ", misc = " << (t5 - t4) / 1e6
|
||||
<< ", inversions = " << (t6 - t5) / 1e6
|
||||
<< ", pick cbs = " << (t7 - t6) / 1e6
|
||||
<< ", total = " << (t7 - t0) / 1e6
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
@ -167,7 +228,7 @@ template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
CloverFieldType *Clover;
|
||||
CloverField *Clover;
|
||||
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||
|
||||
if (dag)
|
||||
@ -182,12 +243,12 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
|
||||
}
|
||||
out = *Clover * in;
|
||||
Helpers::multCloverField(out, *Clover, in);
|
||||
}
|
||||
else
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
||||
out = adj(*Clover) * in;
|
||||
Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -205,18 +266,98 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
|
||||
// std::cout << "Calling clover term Even" << std::endl;
|
||||
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
|
||||
}
|
||||
out = *Clover * in;
|
||||
Helpers::multCloverField(out, *Clover, in);
|
||||
// std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
||||
out = *Clover * in;
|
||||
Helpers::multCloverField(out, *Clover, in);
|
||||
}
|
||||
}
|
||||
|
||||
} // MooeeInternal
|
||||
|
||||
// Derivative parts unpreconditioned pseudofermions
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
conformable(X.Grid(), force.Grid());
|
||||
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
|
||||
GaugeField clover_force(force.Grid());
|
||||
PropagatorField Lambda(force.Grid());
|
||||
|
||||
// Guido: Here we are hitting some performance issues:
|
||||
// need to extract the components of the DoubledGaugeField
|
||||
// for each call
|
||||
// Possible solution
|
||||
// Create a vector object to store them? (cons: wasting space)
|
||||
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
|
||||
|
||||
Impl::extractLinkField(U, this->Umu);
|
||||
|
||||
force = Zero();
|
||||
// Derivative of the Wilson hopping term
|
||||
this->DhopDeriv(force, X, Y, dag);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Clover term derivative
|
||||
///////////////////////////////////////////////////////////
|
||||
Impl::outerProductImpl(Lambda, X, Y);
|
||||
//std::cout << "Lambda:" << Lambda << std::endl;
|
||||
|
||||
Gamma::Algebra sigma[] = {
|
||||
Gamma::Algebra::SigmaXY,
|
||||
Gamma::Algebra::SigmaXZ,
|
||||
Gamma::Algebra::SigmaXT,
|
||||
Gamma::Algebra::MinusSigmaXY,
|
||||
Gamma::Algebra::SigmaYZ,
|
||||
Gamma::Algebra::SigmaYT,
|
||||
Gamma::Algebra::MinusSigmaXZ,
|
||||
Gamma::Algebra::MinusSigmaYZ,
|
||||
Gamma::Algebra::SigmaZT,
|
||||
Gamma::Algebra::MinusSigmaXT,
|
||||
Gamma::Algebra::MinusSigmaYT,
|
||||
Gamma::Algebra::MinusSigmaZT};
|
||||
|
||||
/*
|
||||
sigma_{\mu \nu}=
|
||||
| 0 sigma[0] sigma[1] sigma[2] |
|
||||
| sigma[3] 0 sigma[4] sigma[5] |
|
||||
| sigma[6] sigma[7] 0 sigma[8] |
|
||||
| sigma[9] sigma[10] sigma[11] 0 |
|
||||
*/
|
||||
|
||||
int count = 0;
|
||||
clover_force = Zero();
|
||||
for (int mu = 0; mu < 4; mu++)
|
||||
{
|
||||
force_mu = Zero();
|
||||
for (int nu = 0; nu < 4; nu++)
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
else
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
||||
}
|
||||
//clover_force *= csw;
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
// Derivative parts
|
||||
template <class Impl>
|
||||
|
@ -77,23 +77,23 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#define REGISTER
|
||||
|
||||
#ifdef GRID_SIMT
|
||||
#define LOAD_CHIMU(ptype) \
|
||||
#define LOAD_CHIMU(Ptype) \
|
||||
{const SiteSpinor & ref (in[offset]); \
|
||||
Chimu_00=coalescedReadPermute<ptype>(ref()(0)(0),perm,lane); \
|
||||
Chimu_01=coalescedReadPermute<ptype>(ref()(0)(1),perm,lane); \
|
||||
Chimu_02=coalescedReadPermute<ptype>(ref()(0)(2),perm,lane); \
|
||||
Chimu_10=coalescedReadPermute<ptype>(ref()(1)(0),perm,lane); \
|
||||
Chimu_11=coalescedReadPermute<ptype>(ref()(1)(1),perm,lane); \
|
||||
Chimu_12=coalescedReadPermute<ptype>(ref()(1)(2),perm,lane); \
|
||||
Chimu_20=coalescedReadPermute<ptype>(ref()(2)(0),perm,lane); \
|
||||
Chimu_21=coalescedReadPermute<ptype>(ref()(2)(1),perm,lane); \
|
||||
Chimu_22=coalescedReadPermute<ptype>(ref()(2)(2),perm,lane); \
|
||||
Chimu_30=coalescedReadPermute<ptype>(ref()(3)(0),perm,lane); \
|
||||
Chimu_31=coalescedReadPermute<ptype>(ref()(3)(1),perm,lane); \
|
||||
Chimu_32=coalescedReadPermute<ptype>(ref()(3)(2),perm,lane); }
|
||||
Chimu_00=coalescedReadPermute<Ptype>(ref()(0)(0),perm,lane); \
|
||||
Chimu_01=coalescedReadPermute<Ptype>(ref()(0)(1),perm,lane); \
|
||||
Chimu_02=coalescedReadPermute<Ptype>(ref()(0)(2),perm,lane); \
|
||||
Chimu_10=coalescedReadPermute<Ptype>(ref()(1)(0),perm,lane); \
|
||||
Chimu_11=coalescedReadPermute<Ptype>(ref()(1)(1),perm,lane); \
|
||||
Chimu_12=coalescedReadPermute<Ptype>(ref()(1)(2),perm,lane); \
|
||||
Chimu_20=coalescedReadPermute<Ptype>(ref()(2)(0),perm,lane); \
|
||||
Chimu_21=coalescedReadPermute<Ptype>(ref()(2)(1),perm,lane); \
|
||||
Chimu_22=coalescedReadPermute<Ptype>(ref()(2)(2),perm,lane); \
|
||||
Chimu_30=coalescedReadPermute<Ptype>(ref()(3)(0),perm,lane); \
|
||||
Chimu_31=coalescedReadPermute<Ptype>(ref()(3)(1),perm,lane); \
|
||||
Chimu_32=coalescedReadPermute<Ptype>(ref()(3)(2),perm,lane); }
|
||||
#define PERMUTE_DIR(dir) ;
|
||||
#else
|
||||
#define LOAD_CHIMU(ptype) \
|
||||
#define LOAD_CHIMU(Ptype) \
|
||||
{const SiteSpinor & ref (in[offset]); \
|
||||
Chimu_00=ref()(0)(0);\
|
||||
Chimu_01=ref()(0)(1);\
|
||||
@ -371,10 +371,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
result_32-= UChi_12;
|
||||
|
||||
#define HAND_STENCIL_LEGB(PROJ,PERM,DIR,RECON) \
|
||||
{int ptype; \
|
||||
SE=st.GetEntry(ptype,DIR,ss); \
|
||||
offset = SE->_offset; \
|
||||
local = SE->_is_local; \
|
||||
perm = SE->_permute; \
|
||||
auto offset = SE->_offset; \
|
||||
auto local = SE->_is_local; \
|
||||
auto perm = SE->_permute; \
|
||||
if ( local ) { \
|
||||
LOAD_CHIMU(PERM); \
|
||||
PROJ; \
|
||||
@ -386,14 +387,14 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
} \
|
||||
acceleratorSynchronise(); \
|
||||
MULT_2SPIN(DIR); \
|
||||
RECON;
|
||||
RECON; }
|
||||
|
||||
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
|
||||
SE=&st_p[DIR+8*ss]; \
|
||||
ptype=st_perm[DIR]; \
|
||||
offset = SE->_offset; \
|
||||
local = SE->_is_local; \
|
||||
perm = SE->_permute; \
|
||||
{ SE=&st_p[DIR+8*ss]; \
|
||||
auto ptype=st_perm[DIR]; \
|
||||
auto offset = SE->_offset; \
|
||||
auto local = SE->_is_local; \
|
||||
auto perm = SE->_permute; \
|
||||
if ( local ) { \
|
||||
LOAD_CHIMU(PERM); \
|
||||
PROJ; \
|
||||
@ -405,24 +406,25 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
} \
|
||||
acceleratorSynchronise(); \
|
||||
MULT_2SPIN(DIR); \
|
||||
RECON;
|
||||
RECON; }
|
||||
|
||||
#define HAND_STENCIL_LEGA(PROJ,PERM,DIR,RECON) \
|
||||
SE=&st_p[DIR+8*ss]; \
|
||||
ptype=st_perm[DIR]; \
|
||||
{ SE=&st_p[DIR+8*ss]; \
|
||||
auto ptype=st_perm[DIR]; \
|
||||
/*SE=st.GetEntry(ptype,DIR,ss);*/ \
|
||||
offset = SE->_offset; \
|
||||
perm = SE->_permute; \
|
||||
auto offset = SE->_offset; \
|
||||
auto perm = SE->_permute; \
|
||||
LOAD_CHIMU(PERM); \
|
||||
PROJ; \
|
||||
MULT_2SPIN(DIR); \
|
||||
RECON;
|
||||
RECON; }
|
||||
|
||||
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
|
||||
{ int ptype; \
|
||||
SE=st.GetEntry(ptype,DIR,ss); \
|
||||
offset = SE->_offset; \
|
||||
local = SE->_is_local; \
|
||||
perm = SE->_permute; \
|
||||
auto offset = SE->_offset; \
|
||||
auto local = SE->_is_local; \
|
||||
auto perm = SE->_permute; \
|
||||
if ( local ) { \
|
||||
LOAD_CHIMU(PERM); \
|
||||
PROJ; \
|
||||
@ -437,18 +439,19 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
MULT_2SPIN(DIR); \
|
||||
RECON; \
|
||||
} \
|
||||
acceleratorSynchronise();
|
||||
acceleratorSynchronise(); }
|
||||
|
||||
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
|
||||
{ int ptype; \
|
||||
SE=st.GetEntry(ptype,DIR,ss); \
|
||||
offset = SE->_offset; \
|
||||
auto offset = SE->_offset; \
|
||||
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
|
||||
LOAD_CHI; \
|
||||
MULT_2SPIN(DIR); \
|
||||
RECON; \
|
||||
nmu++; \
|
||||
} \
|
||||
acceleratorSynchronise();
|
||||
acceleratorSynchronise(); }
|
||||
|
||||
#define HAND_RESULT(ss) \
|
||||
{ \
|
||||
@ -563,7 +566,6 @@ WilsonKernels<Impl>::HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p,
|
||||
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
int offset,local,perm, ptype;
|
||||
StencilEntry *SE;
|
||||
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
|
||||
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
|
||||
@ -593,9 +595,7 @@ WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,Site
|
||||
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
int offset,local,perm, ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
|
||||
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
|
||||
@ -623,8 +623,6 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
StencilEntry *SE;
|
||||
int offset,local,perm, ptype;
|
||||
|
||||
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
|
||||
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
|
||||
@ -640,8 +638,8 @@ template<class Impl> accelerator_inline void
|
||||
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
|
||||
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
auto st_p = st._entries_p;
|
||||
auto st_perm = st._permute_type;
|
||||
// auto st_p = st._entries_p;
|
||||
// auto st_perm = st._permute_type;
|
||||
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
|
||||
typedef typename Simd::scalar_type S;
|
||||
typedef typename Simd::vector_type V;
|
||||
@ -652,7 +650,6 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,Si
|
||||
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
int offset,local,perm, ptype;
|
||||
StencilEntry *SE;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
|
||||
@ -670,8 +667,8 @@ template<class Impl> accelerator_inline
|
||||
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
|
||||
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
auto st_p = st._entries_p;
|
||||
auto st_perm = st._permute_type;
|
||||
// auto st_p = st._entries_p;
|
||||
// auto st_perm = st._permute_type;
|
||||
typedef typename Simd::scalar_type S;
|
||||
typedef typename Simd::vector_type V;
|
||||
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
|
||||
@ -682,7 +679,6 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldVi
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
StencilEntry *SE;
|
||||
int offset,local,perm, ptype;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
|
||||
@ -699,8 +695,8 @@ template<class Impl> accelerator_inline void
|
||||
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
|
||||
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
auto st_p = st._entries_p;
|
||||
auto st_perm = st._permute_type;
|
||||
// auto st_p = st._entries_p;
|
||||
// auto st_perm = st._permute_type;
|
||||
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
|
||||
typedef typename Simd::scalar_type S;
|
||||
typedef typename Simd::vector_type V;
|
||||
@ -711,7 +707,7 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,Si
|
||||
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
int offset, ptype;
|
||||
// int offset, ptype;
|
||||
StencilEntry *SE;
|
||||
int nmu=0;
|
||||
ZERO_RESULT;
|
||||
@ -730,8 +726,8 @@ template<class Impl> accelerator_inline
|
||||
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
|
||||
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
|
||||
{
|
||||
auto st_p = st._entries_p;
|
||||
auto st_perm = st._permute_type;
|
||||
// auto st_p = st._entries_p;
|
||||
// auto st_perm = st._permute_type;
|
||||
typedef typename Simd::scalar_type S;
|
||||
typedef typename Simd::vector_type V;
|
||||
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
|
||||
@ -742,7 +738,7 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldVi
|
||||
HAND_DECLARATIONS(Simt);
|
||||
|
||||
StencilEntry *SE;
|
||||
int offset, ptype;
|
||||
// int offset, ptype;
|
||||
int nmu=0;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
|
||||
|
@ -0,0 +1,41 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation.cc.master
|
||||
|
||||
Copyright (C) 2017 - 2022
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class CompactWilsonCloverFermion<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../CompactWilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../CompactWilsonCloverFermionInstantiation.cc.master
|
@ -40,7 +40,7 @@ EOF
|
||||
|
||||
done
|
||||
|
||||
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
|
||||
CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
|
||||
|
||||
for impl in $WILSON_IMPL_LIST
|
||||
do
|
||||
|
@ -69,6 +69,11 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Same as Cshift for periodic BCs
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||
};
|
||||
|
||||
@ -110,6 +115,11 @@ public:
|
||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||
}
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//Out(x) = U^dag_\mu(x-mu mod L)
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
@ -129,6 +139,13 @@ public:
|
||||
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
||||
}
|
||||
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
|
||||
// = S*_\mu(x+mu) | x_\mu == L-1
|
||||
//else
|
||||
//Out(x) = S_\mu(x+mu mod L)
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
assert(_conjDirs.size() == Nd);
|
||||
@ -138,6 +155,27 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//For conjugate BC direction
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu mod L)
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-\hat\mu mod L)
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
assert(_conjDirs.size() == Nd);
|
||||
if(_conjDirs[mu])
|
||||
return ConjugateBC::CshiftLink(Link,mu,shift);
|
||||
else
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||
|
@ -40,13 +40,66 @@ NAMESPACE_BEGIN(Grid);
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
|
||||
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
|
||||
for noise X (aka GaussNoise).
|
||||
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
|
||||
*/
|
||||
template<class Field> void InversePowerBoundsCheck(int inv_pow,
|
||||
int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &ApproxNegPow)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise.Grid();
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
Field tmp1(FermionGrid), tmp2(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
|
||||
|
||||
tmp1 = X;
|
||||
|
||||
Field* in = &tmp1;
|
||||
Field* out = &tmp2;
|
||||
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
|
||||
msCG(HermOp, *in, *out); //backwards conventions!
|
||||
if(i!=inv_pow-1) std::swap(in, out);
|
||||
}
|
||||
Z = *out;
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
//Note: using mixed prec CG for the heatbath solver in this action class will not work
|
||||
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
|
||||
// You will find that the heatbath solver simply won't converge.
|
||||
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
|
||||
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
|
||||
public:
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
}
|
||||
|
||||
|
||||
//Use the same solver for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& CG,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
//Use the same solver for L,R in the heatbath but different solvers elsewhere
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
|
||||
|
||||
//Use different solvers for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
use_heatbath_forecasting(use_fc),
|
||||
initial_action(false)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
const FermionField &getPhi() const{ return Phi; }
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
@ -160,15 +195,16 @@ NAMESPACE_BEGIN(Grid);
|
||||
tmp[1] = Zero();
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
heatbathRefreshShiftCoefficients(0, -gamma_l);
|
||||
//Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
@ -187,15 +223,16 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
|
||||
//Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero();
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
@ -205,49 +242,119 @@ NAMESPACE_BEGIN(Grid);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
//Lop.RefreshShiftCoefficients(0.0);
|
||||
//Rop.RefreshShiftCoefficients(-1.0);
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
|
||||
//Mark that the next call to S is the first after refresh
|
||||
initial_action = true;
|
||||
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
norm2_eta = EtaDagEta;
|
||||
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
FermionField spProj_in(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
out = in;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
spProj(in, spProj_in, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_in, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
|
||||
out = out - Lop.k * tmp[1];
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(in, spProj_in, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_in, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
|
||||
out = out + Rop.k * tmp[1];
|
||||
}
|
||||
|
||||
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
|
||||
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
|
||||
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
|
||||
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
// = 1 * \eta
|
||||
out = in;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
spProj(in, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
|
||||
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = Lop.k * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(in, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
|
||||
|
||||
CG_soln = Zero();
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = - Rop.k * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
@ -271,7 +378,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
@ -281,6 +388,26 @@ NAMESPACE_BEGIN(Grid);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
if(initial_action){
|
||||
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
|
||||
RealD diff = action - norm2_eta;
|
||||
|
||||
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
|
||||
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
|
||||
|
||||
//If approximate solution
|
||||
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
|
||||
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
|
||||
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
|
||||
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
|
||||
|
||||
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
|
||||
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
|
||||
|
||||
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
|
||||
initial_action = false;
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
@ -329,6 +456,40 @@ NAMESPACE_BEGIN(Grid);
|
||||
};
|
||||
};
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
|
||||
private:
|
||||
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
|
||||
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
|
||||
|
||||
public:
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
|
||||
}
|
||||
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
|
||||
AbstractEOFAFermion<ImplF>& _RopF,
|
||||
AbstractEOFAFermion<ImplD>& _LopD,
|
||||
AbstractEOFAFermion<ImplD>& _RopD,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
@ -0,0 +1,372 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
|
||||
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
|
||||
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
|
||||
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
|
||||
|
||||
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
|
||||
BIG WARNING:
|
||||
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
|
||||
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
|
||||
Thus for DWF the numerator operator is the Pauli-Villars operator
|
||||
|
||||
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
|
||||
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
|
||||
*/
|
||||
|
||||
template<class Impl>
|
||||
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef RationalActionParams Params;
|
||||
Params param;
|
||||
|
||||
//For action evaluation
|
||||
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
//For the MD integration
|
||||
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
|
||||
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
|
||||
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
|
||||
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
|
||||
double error = remez.generateApprox(approx_degree,1,inv_pow);
|
||||
if(error > CG_tolerance)
|
||||
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
|
||||
|
||||
approx.Init(remez, CG_tolerance,false);
|
||||
approx_inv.Init(remez, CG_tolerance,true);
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
static constexpr bool Numerator = true;
|
||||
static constexpr bool Denominator = false;
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const GaugeField &U){
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
//Generate approximations for action eval
|
||||
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
|
||||
//Generate approximations for MD
|
||||
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
|
||||
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
}else{
|
||||
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
|
||||
ApproxPowerMD = ApproxPowerAction;
|
||||
ApproxNegPowerMD = ApproxNegPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
|
||||
|
||||
ApproxHalfPowerMD = ApproxHalfPowerAction;
|
||||
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
//Access the fermion field
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
// P(eta) \propto e^{- eta^dag eta}
|
||||
//
|
||||
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
|
||||
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
//Allow for manual specification of random field for testing
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
|
||||
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
// MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
|
||||
|
||||
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
|
||||
ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
|
||||
|
||||
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
int rcheck = rand();
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
|
||||
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
|
||||
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
RealD action = norm2(Y);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
|
||||
const int n_f = ApproxNegPowerMD.poles.size();
|
||||
const int n_pv = ApproxHalfPowerMD.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = ApproxNegPowerMD.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = ApproxHalfPowerMD.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -0,0 +1,93 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
|
||||
// cf. GeneralEvenOddRational.h for details
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
|
||||
private:
|
||||
typedef typename ImplD::FermionField FermionFieldD;
|
||||
typedef typename ImplF::FermionField FermionFieldF;
|
||||
|
||||
FermionOperator<ImplD> & NumOpD;
|
||||
FermionOperator<ImplD> & DenOpD;
|
||||
|
||||
FermionOperator<ImplF> & NumOpF;
|
||||
FermionOperator<ImplF> & DenOpF;
|
||||
|
||||
Integer ReliableUpdateFreq;
|
||||
protected:
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
|
||||
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
|
||||
precisionChange(Uf, Ud);
|
||||
|
||||
NumOpD.ImportGauge(Ud);
|
||||
DenOpD.ImportGauge(Ud);
|
||||
|
||||
NumOpF.ImportGauge(Uf);
|
||||
DenOpF.ImportGauge(Uf);
|
||||
}
|
||||
|
||||
public:
|
||||
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
|
||||
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
|
||||
const RationalActionParams & p, Integer _ReliableUpdateFreq
|
||||
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
|
||||
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
static RationalActionParams transcribe(const Params &in){
|
||||
RationalActionParams out;
|
||||
out.inv_pow = 2;
|
||||
out.lo = in.lo;
|
||||
out.hi = in.hi;
|
||||
out.MaxIter = in.MaxIter;
|
||||
out.action_tolerance = out.md_tolerance = in.tolerance;
|
||||
out.action_degree = out.md_degree = in.degree;
|
||||
out.precision = in.precision;
|
||||
out.BoundsCheckFreq = in.BoundsCheckFreq;
|
||||
return out;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
const Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
|
||||
// MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
if ( (r%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -40,6 +40,8 @@ directory
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||
|
||||
|
@ -83,16 +83,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
//Access the fermion field
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
//
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
@ -100,12 +94,22 @@ NAMESPACE_BEGIN(Grid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (NumOp.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
@ -125,8 +129,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
DenOp.MooeeDag(etaEven,tmp);
|
||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
//PhiOdd =PhiOdd*scale;
|
||||
//PhiEven=PhiEven*scale;
|
||||
|
||||
};
|
||||
|
||||
|
6
Grid/qcd/gparity/Gparity.h
Normal file
6
Grid/qcd/gparity/Gparity.h
Normal file
@ -0,0 +1,6 @@
|
||||
#ifndef GRID_GPARITY_H_
|
||||
#define GRID_GPARITY_H_
|
||||
|
||||
#include<Grid/qcd/gparity/GparityFlavour.h>
|
||||
|
||||
#endif
|
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
@ -0,0 +1,34 @@
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
|
||||
}};
|
||||
|
||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::Identity),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
|
||||
}};
|
||||
|
||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
|
||||
"SigmaX",
|
||||
"MinusSigmaX",
|
||||
"SigmaY",
|
||||
"MinusSigmaY",
|
||||
"SigmaZ",
|
||||
"MinusSigmaZ",
|
||||
"Identity",
|
||||
"MinusIdentity",
|
||||
"ProjPlus",
|
||||
"MinusProjPlus",
|
||||
"ProjMinus",
|
||||
"MinusProjMinus"}};
|
||||
|
||||
NAMESPACE_END(Grid);
|
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
@ -0,0 +1,475 @@
|
||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
|
||||
#define GRID_QCD_GPARITY_FLAVOUR_H
|
||||
|
||||
//Support for flavour-matrix operations acting on the G-parity flavour index
|
||||
|
||||
#include <array>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class GparityFlavour {
|
||||
public:
|
||||
GRID_SERIALIZABLE_ENUM(Algebra, undef,
|
||||
SigmaX, 0,
|
||||
MinusSigmaX, 1,
|
||||
SigmaY, 2,
|
||||
MinusSigmaY, 3,
|
||||
SigmaZ, 4,
|
||||
MinusSigmaZ, 5,
|
||||
Identity, 6,
|
||||
MinusIdentity, 7,
|
||||
ProjPlus, 8,
|
||||
MinusProjPlus, 9,
|
||||
ProjMinus, 10,
|
||||
MinusProjMinus, 11
|
||||
);
|
||||
static constexpr unsigned int nSigma = 12;
|
||||
static const std::array<const char *, nSigma> name;
|
||||
static const std::array<const GparityFlavour, 3> sigma_mu;
|
||||
static const std::array<const GparityFlavour, 6> sigma_all;
|
||||
Algebra g;
|
||||
public:
|
||||
accelerator GparityFlavour(Algebra initg): g(initg) {}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// 0 1 x vector
|
||||
// 1 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(1);
|
||||
ret(1) = rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(1,0);
|
||||
ret(0,1) = rhs(1,1);
|
||||
ret(1,0) = rhs(0,0);
|
||||
ret(1,1) = rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,1);
|
||||
ret(0,1) = rhs(0,0);
|
||||
ret(1,0) = rhs(1,1);
|
||||
ret(1,1) = rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(1);
|
||||
ret(1) = -rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(1,0);
|
||||
ret(0,1) = -rhs(1,1);
|
||||
ret(1,0) = -rhs(0,0);
|
||||
ret(1,1) = -rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,1);
|
||||
ret(0,1) = -rhs(0,0);
|
||||
ret(1,0) = -rhs(1,1);
|
||||
ret(1,1) = -rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 0 -i x vector
|
||||
// i 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesMinusI(rhs(1));
|
||||
ret(1) = timesI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(1,0));
|
||||
ret(0,1) = timesMinusI(rhs(1,1));
|
||||
ret(1,0) = timesI(rhs(0,0));
|
||||
ret(1,1) = timesI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(0,1));
|
||||
ret(0,1) = timesMinusI(rhs(0,0));
|
||||
ret(1,0) = timesI(rhs(1,1));
|
||||
ret(1,1) = timesMinusI(rhs(1,0));
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesI(rhs(1));
|
||||
ret(1) = timesMinusI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(1,0));
|
||||
ret(0,1) = timesI(rhs(1,1));
|
||||
ret(1,0) = timesMinusI(rhs(0,0));
|
||||
ret(1,1) = timesMinusI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(0,1));
|
||||
ret(0,1) = timesI(rhs(0,0));
|
||||
ret(1,0) = timesMinusI(rhs(1,1));
|
||||
ret(1,1) = timesI(rhs(1,0));
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 1 0 x vector
|
||||
// 0 -1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1+\sigma_2)
|
||||
//1 -i
|
||||
//i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1-\sigma_2)
|
||||
//1 i
|
||||
//-i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
|
||||
{
|
||||
iVector<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
multFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
multFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
multFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
multFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
multFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
multFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
multFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
multFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
multFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
multFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
multFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
multFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
lmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
lmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
lmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
lmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
lmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
lmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
lmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
lmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
lmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
lmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
lmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
lmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
rmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
rmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
rmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
rmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
rmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
rmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
rmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
rmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
rmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
rmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
rmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
rmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // include guard
|
@ -129,18 +129,10 @@ public:
|
||||
Runner(S);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
template <class SmearingPolicy>
|
||||
void Runner(SmearingPolicy &Smearing) {
|
||||
auto UGrid = Resources.GetCartesian();
|
||||
Resources.AddRNGs();
|
||||
Field U(UGrid);
|
||||
|
||||
// Can move this outside?
|
||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
|
||||
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
|
||||
void initializeGaugeFieldAndRNGs(Field &U){
|
||||
if(!Resources.haveRNGs()) Resources.AddRNGs();
|
||||
|
||||
if (Parameters.StartingType == "HotStart") {
|
||||
// Hot start
|
||||
@ -159,14 +151,40 @@ private:
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
} else if (Parameters.StartingType == "CheckpointStartReseed") {
|
||||
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
|
||||
// Useful for creating new evolution streams from an existing stream
|
||||
|
||||
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
|
||||
// an existing RNG checkpoint first; make sure one is available and named correctly
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
Resources.SeedFixedIntegers();
|
||||
} else {
|
||||
// others
|
||||
std::cout << GridLogError << "Unrecognized StartingType\n";
|
||||
std::cout
|
||||
<< GridLogError
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
template <class SmearingPolicy>
|
||||
void Runner(SmearingPolicy &Smearing) {
|
||||
auto UGrid = Resources.GetCartesian();
|
||||
Field U(UGrid);
|
||||
|
||||
initializeGaugeFieldAndRNGs(U);
|
||||
|
||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||
|
||||
Smearing.set_Field(U);
|
||||
|
||||
|
@ -115,21 +115,21 @@ private:
|
||||
|
||||
random(sRNG, rn_test);
|
||||
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "exp(-dH) = " << prob
|
||||
std::cout << GridLogHMC << "exp(-dH) = " << prob
|
||||
<< " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC
|
||||
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
|
||||
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
||||
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
return true;
|
||||
} else { // rejected
|
||||
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
return false;
|
||||
}
|
||||
@ -145,7 +145,7 @@ private:
|
||||
|
||||
std::streamsize current_precision = std::cout.precision();
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
TheIntegrator.integrate(U);
|
||||
@ -165,7 +165,7 @@ private:
|
||||
|
||||
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogMessage << "Total H after trajectory = " << H1
|
||||
std::cout << GridLogHMC << "Total H after trajectory = " << H1
|
||||
<< " dH = " << H1 - H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
@ -196,9 +196,9 @@ public:
|
||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
|
||||
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
|
||||
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
|
||||
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
|
||||
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
|
||||
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
|
||||
}
|
||||
|
||||
double t0=usecond();
|
||||
@ -207,10 +207,10 @@ public:
|
||||
DeltaH = evolve_hmc_step(Ucopy);
|
||||
// Metropolis-Hastings test
|
||||
bool accept = true;
|
||||
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
accept = metropolis_test(DeltaH);
|
||||
} else {
|
||||
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
|
||||
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
|
||||
}
|
||||
|
||||
if (accept)
|
||||
@ -219,7 +219,7 @@ public:
|
||||
|
||||
|
||||
double t1=usecond();
|
||||
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
|
||||
|
||||
for (int obs = 0; obs < Observables.size(); obs++) {
|
||||
@ -228,7 +228,7 @@ public:
|
||||
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
|
||||
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -80,7 +80,9 @@ public:
|
||||
std::cout << GridLogError << "Seeds not initialized" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
|
||||
sRNG_.SeedFixedIntegers(SerialSeeds);
|
||||
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
|
||||
pRNG_->SeedFixedIntegers(ParallelSeeds);
|
||||
}
|
||||
};
|
||||
|
@ -227,6 +227,9 @@ public:
|
||||
// Random number generators
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
//Return true if the RNG objects have been instantiated
|
||||
bool haveRNGs() const{ return have_RNG; }
|
||||
|
||||
void AddRNGs(std::string s = "") {
|
||||
// Couple the RNGs to the GridModule tagged by s
|
||||
// the default is the first grid registered
|
||||
|
@ -1,61 +1,63 @@
|
||||
Using HMC in Grid version 0.5.1
|
||||
# Using HMC in Grid
|
||||
|
||||
These are the instructions to use the Generalised HMC on Grid version 0.5.1.
|
||||
Disclaimer: GRID is still under active development so any information here can be changed in future releases.
|
||||
These are the instructions to use the Generalised HMC on Grid as of commit `749b802`.
|
||||
Disclaimer: Grid is still under active development so any information here can be changed in future releases.
|
||||
|
||||
|
||||
Command line options
|
||||
===================
|
||||
(relevant file GenericHMCrunner.h)
|
||||
## Command line options
|
||||
|
||||
(relevant file `GenericHMCrunner.h`)
|
||||
The initial configuration can be changed at the command line using
|
||||
--StartType <your choice>
|
||||
valid choices, one among these
|
||||
HotStart, ColdStart, TepidStart, CheckpointStart
|
||||
default: HotStart
|
||||
`--StartingType STARTING_TYPE`, where `STARTING_TYPE` is one of
|
||||
`HotStart`, `ColdStart`, `TepidStart`, and `CheckpointStart`.
|
||||
Default: `--StartingType HotStart`
|
||||
|
||||
example
|
||||
./My_hmc_exec --StartType HotStart
|
||||
Example:
|
||||
```
|
||||
./My_hmc_exec --StartingType HotStart
|
||||
```
|
||||
|
||||
The CheckpointStart option uses the prefix for the configurations and rng seed files defined in your executable and the initial configuration is specified by
|
||||
--StartTrajectory <integer>
|
||||
default: 0
|
||||
The `CheckpointStart` option uses the prefix for the configurations and rng seed files defined in your executable and the initial configuration is specified by
|
||||
`--StartingTrajectory STARTING_TRAJECTORY`, where `STARTING_TRAJECTORY` is an integer.
|
||||
Default: `--StartingTrajectory 0`
|
||||
|
||||
The number of trajectories for a specific run are specified at command line by
|
||||
--Trajectories <integer>
|
||||
default: 1
|
||||
`--Trajectories TRAJECTORIES`, where `TRAJECTORIES` is an integer.
|
||||
Default: `--Trajectories 1`
|
||||
|
||||
The number of thermalization steps (i.e. steps when the Metropolis acceptance check is turned off) is specified by
|
||||
--Thermalizations <integer>
|
||||
default: 10
|
||||
|
||||
`--Thermalizations THERMALIZATIONS`, where `THERMALIZATIONS` is an integer.
|
||||
Default: `--Thermalizations 10`
|
||||
|
||||
Any other parameter is defined in the source for the executable.
|
||||
|
||||
HMC controls
|
||||
===========
|
||||
## HMC controls
|
||||
|
||||
The lines
|
||||
|
||||
```
|
||||
std::vector<int> SerSeed({1, 2, 3, 4, 5});
|
||||
std::vector<int> ParSeed({6, 7, 8, 9, 10});
|
||||
```
|
||||
|
||||
define the seeds for the serial and the parallel RNG.
|
||||
|
||||
The line
|
||||
|
||||
```
|
||||
TheHMC.MDparameters.set(20, 1.0);// MDsteps, traj length
|
||||
```
|
||||
|
||||
declares the number of molecular dynamics steps and the total trajectory length.
|
||||
|
||||
|
||||
Actions
|
||||
======
|
||||
## Actions
|
||||
|
||||
Action names are defined in the file
|
||||
lib/qcd/Actions.h
|
||||
Action names are defined in the directory `Grid/qcd/action`.
|
||||
|
||||
Gauge actions list:
|
||||
Gauge actions list (from `Grid/qcd/action/gauge/Gauge.h`):
|
||||
|
||||
```
|
||||
WilsonGaugeActionR;
|
||||
WilsonGaugeActionF;
|
||||
WilsonGaugeActionD;
|
||||
@ -68,8 +70,9 @@ IwasakiGaugeActionD;
|
||||
SymanzikGaugeActionR;
|
||||
SymanzikGaugeActionF;
|
||||
SymanzikGaugeActionD;
|
||||
```
|
||||
|
||||
|
||||
```
|
||||
ConjugateWilsonGaugeActionR;
|
||||
ConjugateWilsonGaugeActionF;
|
||||
ConjugateWilsonGaugeActionD;
|
||||
@ -82,26 +85,23 @@ ConjugateIwasakiGaugeActionD;
|
||||
ConjugateSymanzikGaugeActionR;
|
||||
ConjugateSymanzikGaugeActionF;
|
||||
ConjugateSymanzikGaugeActionD;
|
||||
```
|
||||
|
||||
Each of these action accepts one single parameter at creation time (beta).
|
||||
Example for creating a Symanzik action with beta=4.0
|
||||
|
||||
```
|
||||
SymanzikGaugeActionR(4.0)
|
||||
```
|
||||
|
||||
Scalar actions list (from `Grid/qcd/action/scalar/Scalar.h`):
|
||||
|
||||
```
|
||||
ScalarActionR;
|
||||
ScalarActionF;
|
||||
ScalarActionD;
|
||||
```
|
||||
|
||||
|
||||
each of these action accept one single parameter at creation time (beta).
|
||||
Example for creating a Symanzik action with beta=4.0
|
||||
|
||||
SymanzikGaugeActionR(4.0)
|
||||
|
||||
The suffixes R,F,D in the action names refer to the Real
|
||||
(the precision is defined at compile time by the --enable-precision flag in the configure),
|
||||
Float and Double, that force the precision of the action to be 32, 64 bit respectively.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
The suffixes `R`, `F`, `D` in the action names refer to the `Real`
|
||||
(the precision is defined at compile time by the `--enable-precision` flag in the configure),
|
||||
`Float` and `Double`, that force the precision of the action to be 32, 64 bit respectively.
|
||||
|
@ -136,8 +136,14 @@ protected:
|
||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||
double end_force = usecond();
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
|
||||
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
|
||||
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
@ -249,15 +255,19 @@ public:
|
||||
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
assert(P.Grid() == U.Grid());
|
||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
||||
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
|
||||
|
||||
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
|
||||
FieldImplementation::generate_momenta(P, sRNG, pRNG);
|
||||
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
// necessary to keep the fields updated even after a reject
|
||||
// of the Metropolis
|
||||
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
|
||||
Smearer.set_Field(U);
|
||||
// Set the (eventual) representations gauge fields
|
||||
|
||||
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
|
||||
Representations.update(U);
|
||||
|
||||
// The Smearer is attached to a pointer of the gauge field
|
||||
@ -267,6 +277,7 @@ public:
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
|
||||
}
|
||||
|
@ -99,7 +99,7 @@ public:
|
||||
// using wilson flow by default here
|
||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
||||
Real T0 = WF.energyDensityPlaquette(Usmear);
|
||||
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Gimpl>
|
||||
class WilsonFlow: public Smear<Gimpl>{
|
||||
unsigned int Nstep;
|
||||
unsigned int measure_interval;
|
||||
mutable RealD epsilon, taus;
|
||||
public:
|
||||
//Store generic measurements to take during smearing process using std::function
|
||||
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||
|
||||
private:
|
||||
unsigned int Nstep;
|
||||
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
|
||||
|
||||
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||
|
||||
mutable WilsonGaugeAction<Gimpl> SG;
|
||||
|
||||
void evolve_step(typename Gimpl::GaugeField&) const;
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
|
||||
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
|
||||
//Evolve the gauge field by 1 step and update tau
|
||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
void resetActions(){ functions.clear(); }
|
||||
|
||||
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||
|
||||
//Set the class to perform the default measurements:
|
||||
//the plaquette energy density every step
|
||||
//the plaquette topological charge every 'topq_meas_interval' steps
|
||||
//and output to stdout
|
||||
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||
|
||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
||||
Nstep(Nstep),
|
||||
epsilon(epsilon),
|
||||
measure_interval(interval),
|
||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||
// WilsonGaugeAction with beta 3.0
|
||||
assert(epsilon > 0.0);
|
||||
LogMessage();
|
||||
setDefaultMeasurements(interval);
|
||||
}
|
||||
|
||||
void LogMessage() {
|
||||
@ -73,9 +90,29 @@ public:
|
||||
// undefined for WilsonFlow
|
||||
}
|
||||
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
|
||||
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
|
||||
RealD energyDensityPlaquette(const GaugeField& U) const;
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the plaquette
|
||||
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
|
||||
//t is the Wilson flow time
|
||||
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||
};
|
||||
|
||||
|
||||
@ -83,7 +120,7 @@ public:
|
||||
// Implementations
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField tmp(U.Grid());
|
||||
SG.deriv(U, Z);
|
||||
@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
tau += epsilon;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
|
||||
if (maxTau - taus < epsilon){
|
||||
epsilon = maxTau-taus;
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
|
||||
if (maxTau - tau < eps){
|
||||
eps = maxTau-tau;
|
||||
}
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U.Grid());
|
||||
@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
|
||||
SG.deriv(U, Z);
|
||||
Zprime = -Z;
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Zprime += 2.0*tmp;
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||
|
||||
// Ramos
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||
// Compute distance as norm^2 of the difference
|
||||
GaugeField diffU = U - Uprime;
|
||||
RealD diff = norm2(diffU);
|
||||
// adjust integration step
|
||||
|
||||
taus += epsilon;
|
||||
tau += eps;
|
||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
|
||||
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
||||
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
|
||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
|
||||
RealD td = tau(step);
|
||||
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||
}
|
||||
|
||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
assert(Nd == 4);
|
||||
//E = 1/2 tr( F_munu F_munu )
|
||||
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
|
||||
//F_01 F_02 F_03 F_12 F_13 F_23
|
||||
GaugeMat F(U.Grid());
|
||||
LatticeComplexD R(U.Grid());
|
||||
R = Zero();
|
||||
|
||||
for(int mu=0;mu<3;mu++){
|
||||
for(int nu=mu+1;nu<4;nu++){
|
||||
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
|
||||
R = R + trace(F*F);
|
||||
}
|
||||
}
|
||||
ComplexD out = sum(R);
|
||||
out = t*t*out / RealD(U.Grid()->gSites());
|
||||
return -real(out); //minus sign necessary for +ve energy
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityPlaquette(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
|
||||
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityCloverleaf(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//#define WF_TIMING
|
||||
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
out = in;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) {
|
||||
RealD taus = 0.;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
evolve_step(out);
|
||||
evolve_step(out, taus);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> diff = end - start;
|
||||
#ifdef WF_TIMING
|
||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||
#endif
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << tau(step) << " "
|
||||
<< energyDensityPlaquette(step,out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
|
||||
out = in;
|
||||
taus = epsilon;
|
||||
RealD taus = 0.;
|
||||
RealD eps = epsilon;
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
step++;
|
||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
evolve_step_adaptive(out, maxTau);
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << taus << " "
|
||||
<< energyDensityPlaquette(out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
evolve_step_adaptive(out, taus, eps, maxTau);
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
} while (taus < maxTau);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -88,6 +88,12 @@ namespace PeriodicBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
return Cshift(Link, mu, shift);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -158,6 +164,9 @@ namespace ConjugateBC {
|
||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
||||
GridBase *grid = Link.Grid();
|
||||
@ -176,6 +185,9 @@ namespace ConjugateBC {
|
||||
return Link;
|
||||
}
|
||||
|
||||
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = S*_\mu(0) | x_\mu == L-1
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
@ -208,6 +220,35 @@ namespace ConjugateBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
GridBase *grid = Link.Grid();
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
Lattice<gauge> tmp(grid);
|
||||
if(shift == 1){
|
||||
tmp = Cshift(Link, mu, 1);
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return tmp;
|
||||
}else if(shift == -1){
|
||||
tmp = Link;
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return Cshift(tmp, mu, -1);
|
||||
}else assert(0 && "Invalid shift value");
|
||||
return tmp; //shuts up the compiler fussing about the return type
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -40,27 +40,46 @@ public:
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
|
||||
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
|
||||
Complex cmi(0.0,-1.0);
|
||||
A[mu] = Ta(U[mu]) * cmi;
|
||||
A = Ta(U) * cmi;
|
||||
}
|
||||
}
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
||||
|
||||
//The derivative of the Lie algebra field
|
||||
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase* grid = U[0].Grid();
|
||||
GaugeMat Ax(grid);
|
||||
GaugeMat Axm1(grid);
|
||||
GaugeMat Utmp(grid);
|
||||
|
||||
dmuAmu=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
if ( mu != orthog ) {
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
|
||||
//Ax = A_\mu(x)
|
||||
GaugeLinkToLieAlgebraField(U[mu], Ax);
|
||||
|
||||
//Axm1 = A_\mu(x_\mu-1)
|
||||
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
|
||||
GaugeLinkToLieAlgebraField(Utmp, Axm1);
|
||||
|
||||
//Derivative
|
||||
dmuAmu = dmuAmu + Ax - Axm1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
//Fix the gauge field Umu
|
||||
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
GaugeMat xform(grid);
|
||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
|
||||
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
@ -122,27 +141,24 @@ public:
|
||||
|
||||
}
|
||||
}
|
||||
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
|
||||
};
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
GaugeMat g(grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
||||
|
||||
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
|
||||
|
||||
Real vol = grid->gSites();
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
@ -157,11 +173,7 @@ public:
|
||||
|
||||
GaugeMat g(grid);
|
||||
GaugeMat dmuAmu_p(grid);
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
DmuAmu(U,dmuAmu,orthog);
|
||||
|
||||
std::vector<int> mask(Nd,1);
|
||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||
@ -205,16 +217,16 @@ public:
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase *grid = g.Grid();
|
||||
Complex cialpha(0.0,-alpha);
|
||||
GaugeMat ciadmam(grid);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
DmuAmu(U,dmuAmu,orthog);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
}
|
||||
|
@ -694,32 +694,32 @@ public:
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid,g.Grid());
|
||||
|
||||
GaugeMat U(grid);
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
typename Gimpl::GaugeLinkField U(grid);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
U = g*U*Cshift(ag, mu, 1);
|
||||
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeMat>
|
||||
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = g.Grid();
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
|
||||
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
}
|
||||
}
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
LieRandomize(pRNG,g,1.0);
|
||||
GaugeTransform(Umu,g);
|
||||
GaugeTransform<Gimpl>(Umu,g);
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||
|
@ -125,6 +125,56 @@ public:
|
||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static void siteSpatialPlaquette(ComplexField &Plaq,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
ComplexField sitePlaq(U[0].Grid());
|
||||
Plaq = Zero();
|
||||
for (int mu = 1; mu < Nd-1; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// sum over all x,y,z and over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
// inefficient here
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
ComplexField Plaq(Umu.Grid());
|
||||
|
||||
siteSpatialPlaquette(Plaq, U);
|
||||
typedef typename ComplexField::scalar_object sobj;
|
||||
std::vector<sobj> Tq;
|
||||
sliceSum(Plaq, Tq, Nd-1);
|
||||
|
||||
std::vector<Real> out(Tq.size());
|
||||
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||
return out;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z and over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
|
||||
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
|
||||
assert(sumplaq.size() == Lt);
|
||||
double vol = Umu.Grid()->gSites() / Lt;
|
||||
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
|
||||
for(int t=0;t<Lt;t++)
|
||||
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
return sumplaq;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z the temporal loop
|
||||
@ -363,11 +413,11 @@ public:
|
||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||
GaugeMat vu = v*u;
|
||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
|
||||
FS = 0.125*(FS - adj(FS));
|
||||
}
|
||||
|
||||
static Real TopologicalCharge(GaugeLorentz &U){
|
||||
static Real TopologicalCharge(const GaugeLorentz &U){
|
||||
// 4d topological charge
|
||||
assert(Nd==4);
|
||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||
@ -390,6 +440,203 @@ public:
|
||||
}
|
||||
|
||||
|
||||
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
|
||||
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
|
||||
//Clockwise ordering
|
||||
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
|
||||
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
|
||||
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
|
||||
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
|
||||
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
|
||||
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
|
||||
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
|
||||
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
|
||||
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
|
||||
|
||||
//Upper right loop
|
||||
GaugeMat tmp = BmuI;
|
||||
for(int i=1;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
|
||||
FS = tmp;
|
||||
|
||||
//Upper left loop
|
||||
tmp = BnuI;
|
||||
for(int j=1;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
//Lower right loop
|
||||
tmp = FnuI;
|
||||
for(int j=1;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
//Lower left loop
|
||||
tmp = FmuI;
|
||||
for(int i=1;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
#undef Fmu
|
||||
#undef Bmu
|
||||
#undef Fnu
|
||||
#undef Bnu
|
||||
#undef FmuI
|
||||
#undef BmuI
|
||||
#undef FnuI
|
||||
#undef BnuI
|
||||
}
|
||||
|
||||
//Field strength from MxN Wilson loop
|
||||
//Note F_numu = - F_munu
|
||||
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
|
||||
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
|
||||
if(M == N){
|
||||
GaugeMat F(Umu.Grid());
|
||||
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
|
||||
FS = 0.125 * ( F - adj(F) );
|
||||
}else{
|
||||
//Average over both orientations
|
||||
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
|
||||
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
|
||||
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
|
||||
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
|
||||
}
|
||||
}
|
||||
|
||||
//Topological charge contribution from MxN Wilson loops
|
||||
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
|
||||
//output is the charge by timeslice: sum over timeslices to obtain the total
|
||||
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||
assert(Nd == 4);
|
||||
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
|
||||
//Note F_numu = - F_munu
|
||||
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
|
||||
//Use nu > mu
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
for(int nu=mu+1; nu<Nd; nu++){
|
||||
F[mu][nu] = new GaugeMat(U.Grid());
|
||||
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
|
||||
}
|
||||
}
|
||||
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
|
||||
|
||||
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
|
||||
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
|
||||
|
||||
ComplexField fsum(U.Grid());
|
||||
fsum = Zero();
|
||||
for(int c=0;c<3;c++){
|
||||
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
|
||||
int eps = signs[c];
|
||||
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
|
||||
}
|
||||
|
||||
for(int mu=0;mu<Nd-1;mu++)
|
||||
for(int nu=mu+1; nu<Nd; nu++)
|
||||
delete F[mu][nu];
|
||||
|
||||
typedef typename ComplexField::scalar_object sobj;
|
||||
std::vector<sobj> Tq;
|
||||
sliceSum(fsum, Tq, Nd-1);
|
||||
|
||||
std::vector<Real> out(Tq.size());
|
||||
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||
return out;
|
||||
}
|
||||
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
|
||||
Real out(0);
|
||||
for(int t=0;t<Tq.size();t++) out += Tq[t];
|
||||
return out;
|
||||
}
|
||||
|
||||
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
|
||||
//Use coefficients from hep-lat/9701012
|
||||
//1x1 : c1=(19.-55.*c5)/9.
|
||||
//2x2 : c2=(1-64.*c5)/9.
|
||||
//1x2 : c3=(-64.+640.*c5)/45.
|
||||
//1x3 : c4=1./5.-2.*c5
|
||||
//3x3 : c5=1./20.
|
||||
//Output array outer index contains the loops in the above order
|
||||
//Inner index is the time coordinate
|
||||
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||
std::vector<std::vector<Real> > out(5);
|
||||
for(int i=0;i<5;i++){
|
||||
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||
std::vector<Real> out(5);
|
||||
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
|
||||
for(int i=0;i<5;i++){
|
||||
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
//Compute the 5Li topological charge
|
||||
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
|
||||
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
|
||||
|
||||
double c5=1./20.;
|
||||
double c4=1./5.-2.*c5;
|
||||
double c3=(-64.+640.*c5)/45.;
|
||||
double c2=(1-64.*c5)/9.;
|
||||
double c1=(19.-55.*c5)/9.;
|
||||
|
||||
int Lt = loops[0].size();
|
||||
std::vector<Real> out(Lt,0.);
|
||||
for(int t=0;t<Lt;t++)
|
||||
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
|
||||
return out;
|
||||
}
|
||||
|
||||
static Real TopologicalCharge5Li(const GaugeLorentz &U){
|
||||
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
|
||||
Real Q = 0.;
|
||||
for(int t=0;t<Qt.size();t++) Q += Qt[t];
|
||||
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
|
||||
return Q;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Similar to above for rectangle is required
|
||||
//////////////////////////////////////////////////////
|
||||
|
200
Grid/random/gaussian.h
Normal file
200
Grid/random/gaussian.h
Normal file
@ -0,0 +1,200 @@
|
||||
// -*- C++ -*-
|
||||
//===--------------------------- random -----------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Peter Boyle: Taken from libc++ in Clang/LLVM.
|
||||
// Reason is that libstdc++ and clang differ in their return order in the normal_distribution / box mueller type step.
|
||||
// standardise on one and call it "gaussian_distribution".
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
#include <initializer_list>
|
||||
#include <limits>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <istream>
|
||||
#include <ostream>
|
||||
#include <random>
|
||||
|
||||
// normal_distribution -> gaussian distribution
|
||||
namespace Grid {
|
||||
|
||||
template<class _RealType = double>
|
||||
class gaussian_distribution
|
||||
{
|
||||
public:
|
||||
// types
|
||||
typedef _RealType result_type;
|
||||
|
||||
class param_type
|
||||
{
|
||||
result_type __mean_;
|
||||
result_type __stddev_;
|
||||
public:
|
||||
typedef gaussian_distribution distribution_type;
|
||||
|
||||
strong_inline
|
||||
explicit param_type(result_type __mean = 0, result_type __stddev = 1)
|
||||
: __mean_(__mean), __stddev_(__stddev) {}
|
||||
|
||||
strong_inline
|
||||
result_type mean() const {return __mean_;}
|
||||
strong_inline
|
||||
result_type stddev() const {return __stddev_;}
|
||||
|
||||
friend strong_inline
|
||||
bool operator==(const param_type& __x, const param_type& __y)
|
||||
{return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
|
||||
friend strong_inline
|
||||
bool operator!=(const param_type& __x, const param_type& __y)
|
||||
{return !(__x == __y);}
|
||||
};
|
||||
|
||||
private:
|
||||
param_type __p_;
|
||||
result_type _V_;
|
||||
bool _V_hot_;
|
||||
|
||||
public:
|
||||
// constructors and reset functions
|
||||
strong_inline
|
||||
explicit gaussian_distribution(result_type __mean = 0, result_type __stddev = 1)
|
||||
: __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
|
||||
strong_inline
|
||||
explicit gaussian_distribution(const param_type& __p)
|
||||
: __p_(__p), _V_hot_(false) {}
|
||||
strong_inline
|
||||
void reset() {_V_hot_ = false;}
|
||||
|
||||
// generating functions
|
||||
template<class _URNG>
|
||||
strong_inline
|
||||
result_type operator()(_URNG& __g)
|
||||
{return (*this)(__g, __p_);}
|
||||
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
|
||||
|
||||
// property functions
|
||||
strong_inline
|
||||
result_type mean() const {return __p_.mean();}
|
||||
strong_inline
|
||||
result_type stddev() const {return __p_.stddev();}
|
||||
|
||||
strong_inline
|
||||
param_type param() const {return __p_;}
|
||||
strong_inline
|
||||
void param(const param_type& __p) {__p_ = __p;}
|
||||
|
||||
strong_inline
|
||||
result_type min() const {return -std::numeric_limits<result_type>::infinity();}
|
||||
strong_inline
|
||||
result_type max() const {return std::numeric_limits<result_type>::infinity();}
|
||||
|
||||
friend strong_inline
|
||||
bool operator==(const gaussian_distribution& __x,
|
||||
const gaussian_distribution& __y)
|
||||
{return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
|
||||
(!__x._V_hot_ || __x._V_ == __y._V_);}
|
||||
friend strong_inline
|
||||
bool operator!=(const gaussian_distribution& __x,
|
||||
const gaussian_distribution& __y)
|
||||
{return !(__x == __y);}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
std::basic_ostream<_CharT, _Traits>&
|
||||
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
||||
const gaussian_distribution<_RT>& __x);
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
std::basic_istream<_CharT, _Traits>&
|
||||
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
||||
gaussian_distribution<_RT>& __x);
|
||||
};
|
||||
|
||||
template <class _RealType>
|
||||
template<class _URNG>
|
||||
_RealType
|
||||
gaussian_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
|
||||
{
|
||||
result_type _Up;
|
||||
if (_V_hot_)
|
||||
{
|
||||
_V_hot_ = false;
|
||||
_Up = _V_;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::uniform_real_distribution<result_type> _Uni(-1, 1);
|
||||
result_type __u;
|
||||
result_type __v;
|
||||
result_type __s;
|
||||
do
|
||||
{
|
||||
__u = _Uni(__g);
|
||||
__v = _Uni(__g);
|
||||
__s = __u * __u + __v * __v;
|
||||
} while (__s > 1 || __s == 0);
|
||||
result_type _Fp = std::sqrt(-2 * std::log(__s) / __s);
|
||||
_V_ = __v * _Fp;
|
||||
_V_hot_ = true;
|
||||
_Up = __u * _Fp;
|
||||
}
|
||||
return _Up * __p.stddev() + __p.mean();
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
std::basic_ostream<_CharT, _Traits>&
|
||||
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
||||
const gaussian_distribution<_RT>& __x)
|
||||
{
|
||||
auto __save_flags = __os.flags();
|
||||
__os.flags(std::ios_base::dec | std::ios_base::left | std::ios_base::fixed |
|
||||
std::ios_base::scientific);
|
||||
_CharT __sp = __os.widen(' ');
|
||||
__os.fill(__sp);
|
||||
__os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
|
||||
if (__x._V_hot_)
|
||||
__os << __sp << __x._V_;
|
||||
__os.flags(__save_flags);
|
||||
return __os;
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
std::basic_istream<_CharT, _Traits>&
|
||||
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
||||
gaussian_distribution<_RT>& __x)
|
||||
{
|
||||
typedef gaussian_distribution<_RT> _Eng;
|
||||
typedef typename _Eng::result_type result_type;
|
||||
typedef typename _Eng::param_type param_type;
|
||||
auto __save_flags = __is.flags();
|
||||
__is.flags(std::ios_base::dec | std::ios_base::skipws);
|
||||
result_type __mean;
|
||||
result_type __stddev;
|
||||
result_type _Vp = 0;
|
||||
bool _V_hot = false;
|
||||
__is >> __mean >> __stddev >> _V_hot;
|
||||
if (_V_hot)
|
||||
__is >> _Vp;
|
||||
if (!__is.fail())
|
||||
{
|
||||
__x.param(param_type(__mean, __stddev));
|
||||
__x._V_hot_ = _V_hot;
|
||||
__x._V_ = _Vp;
|
||||
}
|
||||
__is.flags(__save_flags);
|
||||
return __is;
|
||||
}
|
||||
}
|
@ -322,8 +322,8 @@ public:
|
||||
int simd_layout = _grid->_simd_layout[dimension];
|
||||
int comm_dim = _grid->_processors[dimension] >1 ;
|
||||
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
// int recv_from_rank;
|
||||
// int xmit_to_rank;
|
||||
|
||||
if ( ! comm_dim ) return 1;
|
||||
if ( displacement == 0 ) return 1;
|
||||
|
@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//Copy a single lane of a SIMD tensor type from one object to another
|
||||
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobjOut, class vobjIn>
|
||||
accelerator_inline
|
||||
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
|
||||
{
|
||||
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||
|
||||
typedef typename vobjOut::vector_type ovector_type;
|
||||
typedef typename vobjIn::vector_type ivector_type;
|
||||
constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
|
||||
constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
|
||||
static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
|
||||
|
||||
typedef typename vobjOut::scalar_type oscalar_type;
|
||||
typedef typename vobjIn::scalar_type iscalar_type;
|
||||
typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
|
||||
typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
|
||||
|
||||
typedef oextract_type * opointer;
|
||||
typedef iextract_type * ipointer;
|
||||
|
||||
constexpr int oNsimd=ovector_type::Nsimd();
|
||||
constexpr int iNsimd=ivector_type::Nsimd();
|
||||
|
||||
iscalar_type itmp;
|
||||
oscalar_type otmp;
|
||||
|
||||
opointer __restrict__ op = (opointer)&vecOut;
|
||||
ipointer __restrict__ ip = (ipointer)&vecIn;
|
||||
for(int w=0;w<owords;w++){
|
||||
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
|
||||
otmp = itmp; //potential precision change
|
||||
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -47,20 +47,20 @@ NAMESPACE_BEGIN(Grid);
|
||||
class TypePair {
|
||||
public:
|
||||
T _internal[2];
|
||||
TypePair<T>& operator=(const Grid::Zero& o) {
|
||||
accelerator TypePair<T>& operator=(const Grid::Zero& o) {
|
||||
_internal[0] = Zero();
|
||||
_internal[1] = Zero();
|
||||
return *this;
|
||||
}
|
||||
|
||||
TypePair<T> operator+(const TypePair<T>& o) const {
|
||||
accelerator TypePair<T> operator+(const TypePair<T>& o) const {
|
||||
TypePair<T> r;
|
||||
r._internal[0] = _internal[0] + o._internal[0];
|
||||
r._internal[1] = _internal[1] + o._internal[1];
|
||||
return r;
|
||||
}
|
||||
|
||||
TypePair<T>& operator+=(const TypePair<T>& o) {
|
||||
accelerator TypePair<T>& operator+=(const TypePair<T>& o) {
|
||||
_internal[0] += o._internal[0];
|
||||
_internal[1] += o._internal[1];
|
||||
return *this;
|
||||
|
@ -74,29 +74,43 @@ void acceleratorInit(void)
|
||||
// GPU_PROP(singleToDoublePrecisionPerfRatio);
|
||||
}
|
||||
}
|
||||
|
||||
MemoryManager::DeviceMaxBytes = (8*totalDeviceMem)/10; // Assume 80% ours
|
||||
#undef GPU_PROP_FMT
|
||||
#undef GPU_PROP
|
||||
|
||||
#ifdef GRID_DEFAULT_GPU
|
||||
int device = 0;
|
||||
// IBM Jsrun makes cuda Device numbering screwy and not match rank
|
||||
if ( world_rank == 0 ) {
|
||||
printf("AcceleratorCudaInit: using default device \n");
|
||||
printf("AcceleratorCudaInit: assume user either uses a) IBM jsrun, or \n");
|
||||
printf("AcceleratorCudaInit: assume user either uses\n");
|
||||
printf("AcceleratorCudaInit: a) IBM jsrun, or \n");
|
||||
printf("AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
|
||||
printf("AcceleratorCudaInit: Configure options --enable-setdevice=no \n");
|
||||
}
|
||||
#else
|
||||
int device = rank;
|
||||
printf("AcceleratorCudaInit: rank %d setting device to node rank %d\n",world_rank,rank);
|
||||
printf("AcceleratorCudaInit: Configure options --enable-setdevice=yes \n");
|
||||
cudaSetDevice(rank);
|
||||
#endif
|
||||
|
||||
cudaSetDevice(device);
|
||||
cudaStreamCreate(©Stream);
|
||||
const int len=64;
|
||||
char busid[len];
|
||||
if( rank == world_rank ) {
|
||||
cudaDeviceGetPCIBusId(busid, len, device);
|
||||
printf("local rank %d device %d bus id: %s\n", rank, device, busid);
|
||||
}
|
||||
|
||||
if ( world_rank == 0 ) printf("AcceleratorCudaInit: ================================================\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GRID_HIP
|
||||
hipDeviceProp_t *gpu_props;
|
||||
hipStream_t copyStream;
|
||||
void acceleratorInit(void)
|
||||
{
|
||||
int nDevices = 1;
|
||||
@ -154,16 +168,25 @@ void acceleratorInit(void)
|
||||
#ifdef GRID_DEFAULT_GPU
|
||||
if ( world_rank == 0 ) {
|
||||
printf("AcceleratorHipInit: using default device \n");
|
||||
printf("AcceleratorHipInit: assume user either uses a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
|
||||
printf("AcceleratorHipInit: Configure options --enable-summit, --enable-select-gpu=no \n");
|
||||
printf("AcceleratorHipInit: assume user or srun sets ROCR_VISIBLE_DEVICES and numa binding \n");
|
||||
printf("AcceleratorHipInit: Configure options --enable-setdevice=no \n");
|
||||
}
|
||||
int device = 0;
|
||||
#else
|
||||
if ( world_rank == 0 ) {
|
||||
printf("AcceleratorHipInit: rank %d setting device to node rank %d\n",world_rank,rank);
|
||||
printf("AcceleratorHipInit: Configure options --enable-select-gpu=yes \n");
|
||||
printf("AcceleratorHipInit: Configure options --enable-setdevice=yes \n");
|
||||
}
|
||||
hipSetDevice(rank);
|
||||
int device = rank;
|
||||
#endif
|
||||
hipSetDevice(device);
|
||||
hipStreamCreate(©Stream);
|
||||
const int len=64;
|
||||
char busid[len];
|
||||
if( rank == world_rank ) {
|
||||
hipDeviceGetPCIBusId(busid, len, device);
|
||||
printf("local rank %d device %d bus id: %s\n", rank, device, busid);
|
||||
}
|
||||
if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n");
|
||||
}
|
||||
#endif
|
||||
|
@ -95,6 +95,7 @@ void acceleratorInit(void);
|
||||
//////////////////////////////////////////////
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
|
||||
#include <cuda.h>
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
@ -115,6 +116,14 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
|
||||
#endif
|
||||
} // CUDA specific
|
||||
|
||||
inline void cuda_mem(void)
|
||||
{
|
||||
size_t free_t,total_t,used_t;
|
||||
cudaMemGetInfo(&free_t,&total_t);
|
||||
used_t=total_t-free_t;
|
||||
std::cout << " MemoryManager : GPU used "<<used_t<<" free "<<free_t<< " total "<<total_t<<std::endl;
|
||||
}
|
||||
|
||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
|
||||
{ \
|
||||
int nt=acceleratorThreads(); \
|
||||
@ -197,7 +206,8 @@ inline void *acceleratorAllocShared(size_t bytes)
|
||||
auto err = cudaMallocManaged((void **)&ptr,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
|
||||
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
@ -207,20 +217,53 @@ inline void *acceleratorAllocDevice(size_t bytes)
|
||||
auto err = cudaMalloc((void **)&ptr,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
|
||||
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
|
||||
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
|
||||
inline void acceleratorFreeShared(void *ptr){
|
||||
auto err = cudaFree(ptr);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
};
|
||||
inline void acceleratorFreeDevice(void *ptr){
|
||||
auto err = cudaFree(ptr);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) {
|
||||
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
|
||||
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
}
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
|
||||
auto err = cudaMemset(base,value,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
}
|
||||
|
||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
|
||||
{
|
||||
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
|
||||
}
|
||||
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
|
||||
|
||||
inline int acceleratorIsCommunicable(void *ptr)
|
||||
{
|
||||
// int uvm=0;
|
||||
@ -297,7 +340,7 @@ inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
|
||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) {
|
||||
theGridAccelerator->memcpy(to,from,bytes);
|
||||
}
|
||||
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); }
|
||||
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); std::cout<<"acceleratorCopySynchronise() wait "<<std::endl; }
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theGridAccelerator->memset(base,value,bytes); theGridAccelerator->wait();}
|
||||
@ -328,10 +371,11 @@ NAMESPACE_BEGIN(Grid);
|
||||
#define accelerator __host__ __device__
|
||||
#define accelerator_inline __host__ __device__ inline
|
||||
|
||||
extern hipStream_t copyStream;
|
||||
/*These routines define mapping from thread grid to loop & vector lane indexing */
|
||||
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
|
||||
#ifdef GRID_SIMT
|
||||
return hipThreadIdx_z;
|
||||
return hipThreadIdx_x;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@ -345,19 +389,41 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
|
||||
{ __VA_ARGS__;} \
|
||||
}; \
|
||||
int nt=acceleratorThreads(); \
|
||||
dim3 hip_threads(nt,1,nsimd); \
|
||||
dim3 hip_threads(nsimd, nt, 1); \
|
||||
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
if(hip_threads.x * hip_threads.y * hip_threads.z <= 64){ \
|
||||
hipLaunchKernelGGL(LambdaApply64,hip_blocks,hip_threads, \
|
||||
0,0, \
|
||||
num1,num2,nsimd, lambda); \
|
||||
} else { \
|
||||
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
|
||||
0,0, \
|
||||
num1,num2,nsimd, lambda); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
template<typename lambda> __global__
|
||||
__launch_bounds__(64,1)
|
||||
void LambdaApply64(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
|
||||
{
|
||||
// Following the same scheme as CUDA for now
|
||||
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
|
||||
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
|
||||
uint64_t z = threadIdx.x;
|
||||
if ( (x < numx) && (y<numy) && (z<numz) ) {
|
||||
Lambda(x,y,z);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename lambda> __global__
|
||||
__launch_bounds__(1024,1)
|
||||
void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
|
||||
{
|
||||
uint64_t x = hipThreadIdx_x + hipBlockDim_x*hipBlockIdx_x;
|
||||
uint64_t y = hipThreadIdx_y + hipBlockDim_y*hipBlockIdx_y;
|
||||
uint64_t z = hipThreadIdx_z ;//+ hipBlockDim_z*hipBlockIdx_z;
|
||||
// Following the same scheme as CUDA for now
|
||||
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
|
||||
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
|
||||
uint64_t z = threadIdx.x;
|
||||
if ( (x < numx) && (y<numy) && (z<numz) ) {
|
||||
Lambda(x,y,z);
|
||||
}
|
||||
@ -402,10 +468,16 @@ inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
|
||||
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
|
||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
|
||||
inline void acceleratorCopySynchronise(void) { }
|
||||
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
|
||||
//inline void acceleratorCopySynchronise(void) { }
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(base,value,bytes);}
|
||||
|
||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
|
||||
{
|
||||
hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToDevice,copyStream);
|
||||
}
|
||||
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////
|
||||
@ -476,18 +548,12 @@ inline void acceleratorFreeCpu (void *ptr){free(ptr);};
|
||||
///////////////////////////////////////////////////
|
||||
// Synchronise across local threads for divergence resynch
|
||||
///////////////////////////////////////////////////
|
||||
accelerator_inline void acceleratorSynchronise(void)
|
||||
accelerator_inline void acceleratorSynchronise(void) // Only Nvidia needs
|
||||
{
|
||||
#ifdef GRID_SIMT
|
||||
#ifdef GRID_CUDA
|
||||
__syncwarp();
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//cl::sycl::detail::workGroupBarrier();
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
__syncthreads();
|
||||
#endif
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
@ -88,7 +88,7 @@ public:
|
||||
// Coordinate class, maxdims = 8 for now.
|
||||
////////////////////////////////////////////////////////////////
|
||||
#define GRID_MAX_LATTICE_DIMENSION (8)
|
||||
#define GRID_MAX_SIMD (16)
|
||||
#define GRID_MAX_SIMD (32)
|
||||
|
||||
static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;
|
||||
|
||||
|
@ -167,6 +167,13 @@ void GridCmdOptionInt(std::string &str,int & val)
|
||||
return;
|
||||
}
|
||||
|
||||
void GridCmdOptionFloat(std::string &str,float & val)
|
||||
{
|
||||
std::stringstream ss(str);
|
||||
ss>>val;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
void GridParseLayout(char **argv,int argc,
|
||||
Coordinate &latt_c,
|
||||
@ -527,6 +534,7 @@ void Grid_init(int *argc,char ***argv)
|
||||
void Grid_finalize(void)
|
||||
{
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
MPI_Finalize();
|
||||
Grid_unquiesce_nodes();
|
||||
#endif
|
||||
|
@ -57,6 +57,7 @@ void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
|
||||
template<class VectorInt>
|
||||
void GridCmdOptionIntVector(const std::string &str,VectorInt & vec);
|
||||
void GridCmdOptionInt(std::string &str,int & val);
|
||||
void GridCmdOptionFloat(std::string &str,float & val);
|
||||
|
||||
|
||||
void GridParseLayout(char **argv,int argc,
|
||||
|
473
HMC/DWF2p1fIwasakiGparity.cc
Normal file
473
HMC/DWF2p1fIwasakiGparity.cc
Normal file
@ -0,0 +1,473 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//2+1f DWF+I ensemble with G-parity BCs
|
||||
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
RatQuoParameters, rat_quo_l,
|
||||
RatQuoParameters, rat_quo_s);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr){
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef GparityDomainWallFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityDomainWallFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.032;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
|
||||
//Setup the Grids
|
||||
auto GridPtrD = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
|
||||
|
||||
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(GridPtrD);
|
||||
LatticeGaugeFieldF Uf(GridPtrF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light action
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
|
||||
FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
|
||||
FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_l;
|
||||
rat_act_params_l.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_l.precision= 60;
|
||||
rat_act_params_l.MaxIter = 10000;
|
||||
user_params.rat_quo_l.Export(rat_act_params_l);
|
||||
std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
|
||||
//DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
|
||||
Level1.push_back(&Quotient_l);
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
//DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false;
|
||||
std::string lanc_params_l, lanc_params_s;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
|
||||
else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
|
||||
else if(sarg == "--eigenrange_l"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_l=true;
|
||||
lanc_params_l = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
||||
|
473
HMC/DWF2p1fIwasakiGparityRHMCdouble.cc
Normal file
473
HMC/DWF2p1fIwasakiGparityRHMCdouble.cc
Normal file
@ -0,0 +1,473 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//2+1f DWF+I ensemble with G-parity BCs
|
||||
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
RatQuoParameters, rat_quo_l,
|
||||
RatQuoParameters, rat_quo_s);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr){
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef GparityDomainWallFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityDomainWallFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.032;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
|
||||
//Setup the Grids
|
||||
auto GridPtrD = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
|
||||
|
||||
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(GridPtrD);
|
||||
LatticeGaugeFieldF Uf(GridPtrF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light action
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
|
||||
FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
|
||||
FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_l;
|
||||
rat_act_params_l.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_l.precision= 60;
|
||||
rat_act_params_l.MaxIter = 10000;
|
||||
user_params.rat_quo_l.Export(rat_act_params_l);
|
||||
std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
|
||||
Level1.push_back(&Quotient_l);
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false;
|
||||
std::string lanc_params_l, lanc_params_s;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
|
||||
else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
|
||||
else if(sarg == "--eigenrange_l"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_l=true;
|
||||
lanc_params_l = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
||||
|
765
HMC/Mobius2p1fIDSDRGparityEOFA.cc
Normal file
765
HMC/Mobius2p1fIDSDRGparityEOFA.cc
Normal file
@ -0,0 +1,765 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//We try to reproduce with G-parity BCs the 246 MeV 1.37 GeV ensemble
|
||||
//To speed things up we will use Mobius DWF with b+c=32/12 and Ls=12 to match the Ls=32 of the original
|
||||
//These parameters match those used in the 2020 K->pipi paper
|
||||
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
struct EOFAparameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
||||
OneFlavourRationalParams, rat_params,
|
||||
double, action_tolerance,
|
||||
double, action_mixcg_inner_tolerance,
|
||||
double, md_tolerance,
|
||||
double, md_mixcg_inner_tolerance);
|
||||
|
||||
EOFAparameters() {
|
||||
action_mixcg_inner_tolerance = 1e-8;
|
||||
action_tolerance = 1e-10;
|
||||
md_tolerance = 1e-8;
|
||||
md_mixcg_inner_tolerance = 1e-8;
|
||||
|
||||
rat_params.lo = 0.1;
|
||||
rat_params.hi = 25.0;
|
||||
rat_params.MaxIter = 10000;
|
||||
rat_params.tolerance= 1.0e-9;
|
||||
rat_params.degree = 14;
|
||||
rat_params.precision= 50;
|
||||
}
|
||||
};
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
EOFAparameters, eofa_l,
|
||||
RatQuoParameters, rat_quo_s,
|
||||
RatQuoParameters, rat_quo_DSDR);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr, int action_or_md){
|
||||
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
PowerMethod<FermionFieldD> power_method;
|
||||
RealD lambda_max;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
||||
|
||||
lambda_max = power_method(MdagM,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
||||
lambda_max = power_method(VdagV,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
if(action_or_md == 0 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
if(action_or_md == 1 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(rng,eta); eta = eta * scale;
|
||||
|
||||
//Use the inbuilt check
|
||||
EOFA.refresh(latt, eta);
|
||||
EOFA.S(latt);
|
||||
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
||||
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
||||
}
|
||||
|
||||
//Applications of M^{-1} cost the same as M for EOFA!
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
||||
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
{
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
}
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
||||
typedef GparityMobiusFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
||||
typedef GparityMobiusFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 12;
|
||||
Real beta = 1.75;
|
||||
Real light_mass = 0.0042; //240 MeV
|
||||
Real strange_mass = 0.045;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD mobius_scale = 32./12.; //b+c
|
||||
|
||||
RealD mob_bmc = 1.0;
|
||||
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
||||
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
||||
|
||||
//Setup the Grids
|
||||
auto UGridD = TheHMC.Resources.GetCartesian();
|
||||
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
||||
|
||||
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(1); //DSDR
|
||||
ActionLevel<HMCWrapper::Field> Level3(8); //gauge (8 increments per step)
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light EOFA action
|
||||
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
EOFAactionD LopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF LopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionD RopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF RopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
|
||||
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
||||
|
||||
EOFAschuropD linopL_D(LopD);
|
||||
EOFAschuropD linopR_D(RopD);
|
||||
|
||||
EOFAschuropF linopL_F(LopF);
|
||||
EOFAschuropF linopR_F(RopF);
|
||||
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
|
||||
EOFA_mxCG ActionMCG_L(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
|
||||
ActionMCG_L.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG ActionMCG_R(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
|
||||
ActionMCG_R.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG DerivMCG_L(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
|
||||
DerivMCG_L.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG DerivMCG_R(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
|
||||
DerivMCG_R.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
|
||||
|
||||
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
ConjugateGradient<FermionFieldD> ActionCG(user_params.eofa_l.action_tolerance, 10000);
|
||||
ConjugateGradient<FermionFieldD> DerivativeCG(user_params.eofa_l.md_tolerance, 10000);
|
||||
|
||||
// ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD,
|
||||
// ActionCG, ActionCG, ActionCG,
|
||||
// DerivativeCG, DerivativeCG,
|
||||
// user_params.eofa_l.rat_params, true);
|
||||
|
||||
// ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD,
|
||||
// ActionMCG_L, ActionMCG_R,
|
||||
// ActionMCG_L, ActionMCG_R,
|
||||
// DerivMCG_L, DerivMCG_R,
|
||||
// user_params.eofa_l.rat_params, true);
|
||||
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFA(LopF, RopF,
|
||||
LopD, RopD,
|
||||
ActionMCG_L, ActionMCG_R,
|
||||
ActionMCG_L, ActionMCG_R,
|
||||
DerivMCG_L, DerivMCG_R,
|
||||
user_params.eofa_l.rat_params, true);
|
||||
|
||||
|
||||
Level1.push_back(&EOFA);
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
///////////////////////////////////
|
||||
// DSDR action
|
||||
///////////////////////////////////
|
||||
RealD dsdr_mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD dsdr_epsilon_b = 0.5;
|
||||
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
|
||||
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
|
||||
RationalActionParams rat_act_params_DSDR;
|
||||
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_DSDR.precision= 60;
|
||||
rat_act_params_DSDR.MaxIter = 10000;
|
||||
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
||||
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
||||
Level2.push_back(&Quotient_DSDR);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level3.push_back(&GaugeAction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
TheHMC.TheAction.push_back(Level3);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool
|
||||
tune_rhmc_s=false, eigenrange_s=false,
|
||||
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
||||
check_eofa=false,
|
||||
upper_bound_eofa=false, lower_bound_eofa(false);
|
||||
|
||||
std::string lanc_params_s;
|
||||
std::string lanc_params_DSDR;
|
||||
int tune_rhmc_s_action_or_md;
|
||||
int tune_rhmc_DSDR_action_or_md;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_s"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_s=true;
|
||||
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--tune_rhmc_DSDR"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_DSDR=true;
|
||||
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_DSDR"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_DSDR=true;
|
||||
lanc_params_DSDR = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--check_eofa") check_eofa = true;
|
||||
else if(sarg == "--upper_bound_eofa") upper_bound_eofa = true;
|
||||
else if(sarg == "--lower_bound_eofa") lower_bound_eofa = true;
|
||||
}
|
||||
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
||||
std::cout << GridLogMessage << "Running checks" << std::endl;
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
|
||||
std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
|
||||
if(check_eofa) checkEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(upper_bound_eofa) upperBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(lower_bound_eofa) lowerBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
||||
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
918
HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
Normal file
918
HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
Normal file
@ -0,0 +1,918 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//Production binary for the 40ID G-parity ensemble
|
||||
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
struct EOFAparameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
||||
OneFlavourRationalParams, rat_params,
|
||||
double, action_tolerance,
|
||||
double, action_mixcg_inner_tolerance,
|
||||
double, md_tolerance,
|
||||
double, md_mixcg_inner_tolerance);
|
||||
|
||||
EOFAparameters() {
|
||||
action_mixcg_inner_tolerance = 1e-8;
|
||||
action_tolerance = 1e-10;
|
||||
md_tolerance = 1e-8;
|
||||
md_mixcg_inner_tolerance = 1e-8;
|
||||
|
||||
rat_params.lo = 1.0;
|
||||
rat_params.hi = 25.0;
|
||||
rat_params.MaxIter = 50000;
|
||||
rat_params.tolerance= 1.0e-9;
|
||||
rat_params.degree = 14;
|
||||
rat_params.precision= 50;
|
||||
}
|
||||
};
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
RealD, TrajectoryLength,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
std::vector<EOFAparameters>, eofa_l,
|
||||
RatQuoParameters, rat_quo_s,
|
||||
RatQuoParameters, rat_quo_DSDR);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
TrajectoryLength = 1.0;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 50000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr, int action_or_md){
|
||||
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
PowerMethod<FermionFieldD> power_method;
|
||||
RealD lambda_max;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
||||
|
||||
lambda_max = power_method(MdagM,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
||||
lambda_max = power_method(VdagV,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
if(action_or_md == 0 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
if(action_or_md == 1 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(rng,eta); eta = eta * scale;
|
||||
|
||||
//Use the inbuilt check
|
||||
EOFA.refresh(latt, eta);
|
||||
EOFA.S(latt);
|
||||
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
||||
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
||||
}
|
||||
|
||||
//Applications of M^{-1} cost the same as M for EOFA!
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
||||
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
|
||||
RealD Delta; //reliable update parameter
|
||||
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
|
||||
RealD delta,
|
||||
Integer maxit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
Delta(delta),
|
||||
MaxIterations(maxit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
|
||||
std::string serial_seeds = "1 2 3 4 5";
|
||||
std::string parallel_seeds = "6 7 8 9 10";
|
||||
|
||||
int i=1;
|
||||
while(i < argc){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
i+=2;
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
i++;
|
||||
}else if(sarg == "--set_seeds"){ //set the rng seeds. Expects two vector args, e.g. --set_seeds 1.2.3.4 5.6.7.8
|
||||
assert(i < argc-2);
|
||||
std::vector<int> tmp;
|
||||
GridCmdOptionIntVector(argv[i+1],tmp);
|
||||
{
|
||||
std::stringstream ss;
|
||||
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
|
||||
ss << tmp.back();
|
||||
serial_seeds = ss.str();
|
||||
}
|
||||
GridCmdOptionIntVector(argv[i+2],tmp);
|
||||
{
|
||||
std::stringstream ss;
|
||||
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
|
||||
ss << tmp.back();
|
||||
parallel_seeds = ss.str();
|
||||
}
|
||||
i+=3;
|
||||
std::cout << GridLogMessage << "Set serial seeds to " << serial_seeds << std::endl;
|
||||
std::cout << GridLogMessage << "Set parallel seeds to " << parallel_seeds << std::endl;
|
||||
|
||||
}else{
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
{
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
}
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
||||
typedef GparityMobiusFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
||||
typedef GparityMobiusFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
|
||||
// typedef ConjugateHMCRunnerD<ForceGradient> HMCWrapper;
|
||||
// MD.name = std::string("ForceGradient");
|
||||
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = user_params.TrajectoryLength;
|
||||
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = serial_seeds;
|
||||
RNGpar.parallel_seeds = parallel_seeds;
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
//aiming for ainv=1.723 GeV
|
||||
// me bob
|
||||
//Estimated a(ml+mres) [40ID] = 0.001305 0.00131
|
||||
// a(mh+mres) [40ID] = 0.035910 0.03529
|
||||
//Estimate Ls=12, b+c=2 mres~0.0011
|
||||
|
||||
//1/24/2022 initial mres measurement gives mres=0.001, adjusted light quark mass to 0.0003 from 0.0001
|
||||
|
||||
const int Ls = 12;
|
||||
Real beta = 1.848;
|
||||
Real light_mass = 0.0003;
|
||||
Real strange_mass = 0.0342;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD mobius_scale = 2.; //b+c
|
||||
|
||||
RealD mob_bmc = 1.0;
|
||||
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
||||
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
||||
|
||||
std::cout << GridLogMessage
|
||||
<< "Ensemble parameters:" << std::endl
|
||||
<< "Ls=" << Ls << std::endl
|
||||
<< "beta=" << beta << std::endl
|
||||
<< "light_mass=" << light_mass << std::endl
|
||||
<< "strange_mass=" << strange_mass << std::endl
|
||||
<< "mobius_scale=" << mobius_scale << std::endl;
|
||||
|
||||
//Setup the Grids
|
||||
auto UGridD = TheHMC.Resources.GetCartesian();
|
||||
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
||||
|
||||
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
|
||||
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light EOFA action
|
||||
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
||||
/////////////////////////////////////////////////////////////
|
||||
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
||||
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
|
||||
|
||||
|
||||
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
|
||||
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
|
||||
int n_light_hsb = 5;
|
||||
assert(user_params.eofa_l.size() == n_light_hsb);
|
||||
|
||||
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
|
||||
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
RealD iml = eofa_light_masses[i];
|
||||
RealD ipv = eofa_pv_masses[i];
|
||||
|
||||
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
|
||||
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
|
||||
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
|
||||
|
||||
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
|
||||
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
|
||||
|
||||
#if 1
|
||||
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
|
||||
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
#else
|
||||
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
|
||||
#endif
|
||||
|
||||
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
|
||||
*LopD, *RopD,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*DerivMCG_L, *DerivMCG_R,
|
||||
user_params.eofa_l[i].rat_params, true);
|
||||
EOFA_pfactions[i] = EOFA;
|
||||
Level1.push_back(EOFA);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 50000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
///////////////////////////////////
|
||||
// DSDR action
|
||||
///////////////////////////////////
|
||||
RealD dsdr_mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD dsdr_epsilon_b = 0.5;
|
||||
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
|
||||
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
|
||||
RationalActionParams rat_act_params_DSDR;
|
||||
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_DSDR.precision= 60;
|
||||
rat_act_params_DSDR.MaxIter = 50000;
|
||||
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
||||
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
||||
Level2.push_back(&Quotient_DSDR);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level3.push_back(&GaugeAction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
TheHMC.TheAction.push_back(Level3);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool
|
||||
tune_rhmc_s=false, eigenrange_s=false,
|
||||
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
||||
check_eofa=false,
|
||||
upper_bound_eofa=false, lower_bound_eofa(false);
|
||||
|
||||
std::string lanc_params_s;
|
||||
std::string lanc_params_DSDR;
|
||||
int tune_rhmc_s_action_or_md;
|
||||
int tune_rhmc_DSDR_action_or_md;
|
||||
int eofa_which_hsb;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_s"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_s=true;
|
||||
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--tune_rhmc_DSDR"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_DSDR=true;
|
||||
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_DSDR"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_DSDR=true;
|
||||
lanc_params_DSDR = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--check_eofa"){
|
||||
assert(i < argc-1);
|
||||
check_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
|
||||
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
|
||||
}
|
||||
else if(sarg == "--upper_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
upper_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
else if(sarg == "--lower_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
lower_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
||||
std::cout << GridLogMessage << "Running checks" << std::endl;
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
|
||||
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
if(check_eofa){
|
||||
if(eofa_which_hsb >= 0){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
}else{
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
||||
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
873
HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
Normal file
873
HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
Normal file
@ -0,0 +1,873 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//Production binary for the 40ID G-parity ensemble
|
||||
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
struct EOFAparameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
||||
OneFlavourRationalParams, rat_params,
|
||||
double, action_tolerance,
|
||||
double, action_mixcg_inner_tolerance,
|
||||
double, md_tolerance,
|
||||
double, md_mixcg_inner_tolerance);
|
||||
|
||||
EOFAparameters() {
|
||||
action_mixcg_inner_tolerance = 1e-8;
|
||||
action_tolerance = 1e-10;
|
||||
md_tolerance = 1e-8;
|
||||
md_mixcg_inner_tolerance = 1e-8;
|
||||
|
||||
rat_params.lo = 1.0;
|
||||
rat_params.hi = 25.0;
|
||||
rat_params.MaxIter = 10000;
|
||||
rat_params.tolerance= 1.0e-9;
|
||||
rat_params.degree = 14;
|
||||
rat_params.precision= 50;
|
||||
}
|
||||
};
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
RealD, TrajectoryLength,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
std::vector<EOFAparameters>, eofa_l,
|
||||
RatQuoParameters, rat_quo_s,
|
||||
RatQuoParameters, rat_quo_DSDR);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
TrajectoryLength = 1.0;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr, int action_or_md){
|
||||
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
PowerMethod<FermionFieldD> power_method;
|
||||
RealD lambda_max;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
||||
|
||||
lambda_max = power_method(MdagM,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
||||
lambda_max = power_method(VdagV,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
if(action_or_md == 0 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
if(action_or_md == 1 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(rng,eta); eta = eta * scale;
|
||||
|
||||
//Use the inbuilt check
|
||||
EOFA.refresh(latt, eta);
|
||||
EOFA.S(latt);
|
||||
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
||||
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
||||
}
|
||||
|
||||
//Applications of M^{-1} cost the same as M for EOFA!
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
||||
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
|
||||
RealD Delta; //reliable update parameter
|
||||
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
|
||||
RealD delta,
|
||||
Integer maxit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
Delta(delta),
|
||||
MaxIterations(maxit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
{
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
}
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
||||
typedef GparityMobiusFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
||||
typedef GparityMobiusFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = user_params.TrajectoryLength;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
//aiming for ainv=2.068 me Bob
|
||||
//Estimated a(ml+mres) [48ID] = 0.001048 0.00104
|
||||
// a(mh+mres) [48ID] = 0.028847 0.02805
|
||||
//Estimate Ls=12, b+c=2 mres~0.0003
|
||||
|
||||
const int Ls = 12;
|
||||
Real beta = 1.946;
|
||||
Real light_mass = 0.00074; //0.00104 - mres_approx;
|
||||
Real strange_mass = 0.02775; //0.02805 - mres_approx
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD mobius_scale = 2.; //b+c
|
||||
|
||||
RealD mob_bmc = 1.0;
|
||||
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
||||
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
||||
|
||||
//Setup the Grids
|
||||
auto UGridD = TheHMC.Resources.GetCartesian();
|
||||
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
||||
|
||||
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
|
||||
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light EOFA action
|
||||
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
||||
/////////////////////////////////////////////////////////////
|
||||
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
||||
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
|
||||
|
||||
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
|
||||
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
|
||||
int n_light_hsb = 5;
|
||||
assert(user_params.eofa_l.size() == n_light_hsb);
|
||||
|
||||
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
|
||||
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
RealD iml = eofa_light_masses[i];
|
||||
RealD ipv = eofa_pv_masses[i];
|
||||
|
||||
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
|
||||
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
|
||||
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
|
||||
|
||||
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
|
||||
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
|
||||
|
||||
#if 1
|
||||
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
|
||||
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
#else
|
||||
|
||||
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
|
||||
#endif
|
||||
|
||||
|
||||
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
|
||||
*LopD, *RopD,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*DerivMCG_L, *DerivMCG_R,
|
||||
user_params.eofa_l[i].rat_params, true);
|
||||
EOFA_pfactions[i] = EOFA;
|
||||
Level1.push_back(EOFA);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
///////////////////////////////////
|
||||
// DSDR action
|
||||
///////////////////////////////////
|
||||
RealD dsdr_mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD dsdr_epsilon_b = 0.5;
|
||||
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
|
||||
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
|
||||
RationalActionParams rat_act_params_DSDR;
|
||||
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_DSDR.precision= 60;
|
||||
rat_act_params_DSDR.MaxIter = 10000;
|
||||
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
||||
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
||||
Level2.push_back(&Quotient_DSDR);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level3.push_back(&GaugeAction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
TheHMC.TheAction.push_back(Level3);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool
|
||||
tune_rhmc_s=false, eigenrange_s=false,
|
||||
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
||||
check_eofa=false,
|
||||
upper_bound_eofa=false, lower_bound_eofa(false);
|
||||
|
||||
std::string lanc_params_s;
|
||||
std::string lanc_params_DSDR;
|
||||
int tune_rhmc_s_action_or_md;
|
||||
int tune_rhmc_DSDR_action_or_md;
|
||||
int eofa_which_hsb;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_s"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_s=true;
|
||||
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--tune_rhmc_DSDR"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_DSDR=true;
|
||||
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_DSDR"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_DSDR=true;
|
||||
lanc_params_DSDR = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--check_eofa"){
|
||||
assert(i < argc-1);
|
||||
check_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
|
||||
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
|
||||
}
|
||||
else if(sarg == "--upper_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
upper_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
else if(sarg == "--lower_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
lower_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
||||
std::cout << GridLogMessage << "Running checks" << std::endl;
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
|
||||
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
|
||||
if(check_eofa){
|
||||
if(eofa_which_hsb >= 0){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
}else{
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
||||
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
@ -137,7 +137,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
Eigen::MatrixXd mean(nVol, 4), stdDev(nVol, 4), rob(nVol, 4);
|
||||
Eigen::VectorXd avMean(4), avStdDev(4), avRob(4);
|
||||
double n = BENCH_IO_NPASS;
|
||||
// double n = BENCH_IO_NPASS;
|
||||
|
||||
stats(mean, stdDev, perf);
|
||||
stats(avMean, avStdDev, avPerf);
|
||||
@ -164,7 +164,7 @@ int main (int argc, char ** argv)
|
||||
mean(volInd(l), gWrite), stdDev(volInd(l), gWrite));
|
||||
}
|
||||
MSG << std::endl;
|
||||
MSG << "Robustness of individual results, in \%. (rob = 100\% - std dev / mean)" << std::endl;
|
||||
MSG << "Robustness of individual results, in %. (rob = 100% - std dev / mean)" << std::endl;
|
||||
MSG << std::endl;
|
||||
grid_printf("%4s %12s %12s %12s %12s\n",
|
||||
"L", "std read", "std write", "Grid read", "Grid write");
|
||||
@ -185,7 +185,7 @@ int main (int argc, char ** argv)
|
||||
avMean(sRead), avStdDev(sRead), avMean(sWrite), avStdDev(sWrite),
|
||||
avMean(gRead), avStdDev(gRead), avMean(gWrite), avStdDev(gWrite));
|
||||
MSG << std::endl;
|
||||
MSG << "Robustness of volume-averaged results, in \%. (rob = 100\% - std dev / mean)" << std::endl;
|
||||
MSG << "Robustness of volume-averaged results, in %. (rob = 100% - std dev / mean)" << std::endl;
|
||||
MSG << std::endl;
|
||||
grid_printf("%12s %12s %12s %12s\n",
|
||||
"std read", "std write", "Grid read", "Grid write");
|
||||
|
@ -142,7 +142,7 @@ public:
|
||||
// bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
|
||||
}
|
||||
|
||||
int ncomm;
|
||||
// int ncomm;
|
||||
double dbytes;
|
||||
|
||||
for(int dir=0;dir<8;dir++) {
|
||||
@ -290,7 +290,7 @@ public:
|
||||
LatticeSU4 z(&Grid); z=Zero();
|
||||
LatticeSU4 x(&Grid); x=Zero();
|
||||
LatticeSU4 y(&Grid); y=Zero();
|
||||
double a=2.0;
|
||||
// double a=2.0;
|
||||
|
||||
uint64_t Nloop=NLOOP;
|
||||
|
||||
|
@ -72,7 +72,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
std::cout << GridLogMessage << "Number of iterations to average: "<< Nloop << std::endl;
|
||||
std::vector<double> t_time(Nloop);
|
||||
time_statistics timestat;
|
||||
// time_statistics timestat;
|
||||
|
||||
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= Benchmarking sequential halo exchange from host memory "<<std::endl;
|
||||
|
@ -126,19 +126,10 @@ int main (int argc, char ** argv)
|
||||
// Naive wilson implementation
|
||||
////////////////////////////////////
|
||||
// replicate across fifth dimension
|
||||
LatticeGaugeFieldF Umu5d(FGrid);
|
||||
std::vector<LatticeColourMatrixF> U(4,FGrid);
|
||||
{
|
||||
autoView( Umu5d_v, Umu5d, CpuWrite);
|
||||
autoView( Umu_v , Umu , CpuRead);
|
||||
for(int ss=0;ss<Umu.Grid()->oSites();ss++){
|
||||
for(int s=0;s<Ls;s++){
|
||||
Umu5d_v[Ls*ss+s] = Umu_v[ss];
|
||||
}
|
||||
}
|
||||
}
|
||||
// LatticeGaugeFieldF Umu5d(FGrid);
|
||||
std::vector<LatticeColourMatrixF> U(4,UGrid);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu5d,mu);
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
}
|
||||
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
|
||||
|
||||
@ -147,10 +138,28 @@ int main (int argc, char ** argv)
|
||||
ref = Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
tmp = U[mu]*Cshift(src,mu+1,1);
|
||||
tmp = Cshift(src,mu+1,1);
|
||||
{
|
||||
autoView( tmp_v , tmp , CpuWrite);
|
||||
autoView( U_v , U[mu] , CpuRead);
|
||||
for(int ss=0;ss<U[mu].Grid()->oSites();ss++){
|
||||
for(int s=0;s<Ls;s++){
|
||||
tmp_v[Ls*ss+s] = U_v[ss]*tmp_v[Ls*ss+s];
|
||||
}
|
||||
}
|
||||
}
|
||||
ref=ref + tmp - Gamma(Gmu[mu])*tmp;
|
||||
|
||||
tmp =adj(U[mu])*src;
|
||||
{
|
||||
autoView( tmp_v , tmp , CpuWrite);
|
||||
autoView( U_v , U[mu] , CpuRead);
|
||||
autoView( src_v, src , CpuRead);
|
||||
for(int ss=0;ss<U[mu].Grid()->oSites();ss++){
|
||||
for(int s=0;s<Ls;s++){
|
||||
tmp_v[Ls*ss+s] = adj(U_v[ss])*src_v[Ls*ss+s];
|
||||
}
|
||||
}
|
||||
}
|
||||
tmp =Cshift(tmp,mu+1,-1);
|
||||
ref=ref + tmp + Gamma(Gmu[mu])*tmp;
|
||||
}
|
||||
@ -182,7 +191,7 @@ int main (int argc, char ** argv)
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
|
||||
DomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
int ncall =3000;
|
||||
int ncall =300;
|
||||
|
||||
if (1) {
|
||||
FGrid->Barrier();
|
||||
@ -242,16 +251,30 @@ int main (int argc, char ** argv)
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
// ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x
|
||||
tmp = U[mu]*Cshift(src,mu+1,1);
|
||||
tmp = Cshift(src,mu+1,1);
|
||||
{
|
||||
autoView( ref_v, ref, CpuWrite);
|
||||
autoView( tmp_v, tmp, CpuRead);
|
||||
for(int i=0;i<ref_v.size();i++){
|
||||
ref_v[i]+= tmp_v[i] + Gamma(Gmu[mu])*tmp_v[i]; ;
|
||||
autoView( U_v , U[mu] , CpuRead);
|
||||
for(int ss=0;ss<U[mu].Grid()->oSites();ss++){
|
||||
for(int s=0;s<Ls;s++){
|
||||
int i=s+Ls*ss;
|
||||
ref_v[i]+= U_v[ss]*(tmp_v[i] + Gamma(Gmu[mu])*tmp_v[i]); ;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tmp =adj(U[mu])*src;
|
||||
{
|
||||
autoView( tmp_v , tmp , CpuWrite);
|
||||
autoView( U_v , U[mu] , CpuRead);
|
||||
autoView( src_v, src , CpuRead);
|
||||
for(int ss=0;ss<U[mu].Grid()->oSites();ss++){
|
||||
for(int s=0;s<Ls;s++){
|
||||
tmp_v[Ls*ss+s] = adj(U_v[ss])*src_v[Ls*ss+s];
|
||||
}
|
||||
}
|
||||
}
|
||||
// tmp =adj(U[mu])*src;
|
||||
tmp =Cshift(tmp,mu+1,-1);
|
||||
{
|
||||
autoView( ref_v, ref, CpuWrite);
|
||||
|
@ -184,8 +184,10 @@ int main (int argc, char ** argv)
|
||||
|
||||
double bytes=1.0*vol*Nvec*sizeof(Real);
|
||||
double flops=vol*Nvec*2;// mul,add
|
||||
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<< "\t\t"<<(stop-start)/1000./1000.<< "\t\t " <<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"
|
||||
<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<< "\t\t"
|
||||
<<(stop-start)/1000./1000.<< "\t\t " <<std::endl;
|
||||
assert(nn==nn);
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
|
@ -4,7 +4,7 @@ using namespace Grid;
|
||||
template<class Field>
|
||||
void SimpleConjugateGradient(LinearOperatorBase<Field> &HPDop,const Field &b, Field &x)
|
||||
{
|
||||
RealD cp, c, alpha, d, beta, ssq, qq;
|
||||
RealD cp, c, alpha, d, beta, ssq;
|
||||
RealD Tolerance=1.0e-10;
|
||||
int MaxIterations=10000;
|
||||
|
||||
|
539
examples/Example_wall_wall_3pt.cc
Normal file
539
examples/Example_wall_wall_3pt.cc
Normal file
@ -0,0 +1,539 @@
|
||||
/*
|
||||
* Warning: This code illustrative only: not well tested, and not meant for production use
|
||||
* without regression / tests being applied
|
||||
*/
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
typedef SpinColourMatrix Propagator;
|
||||
typedef SpinColourVector Fermion;
|
||||
typedef PeriodicGimplR GimplR;
|
||||
|
||||
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
|
||||
{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
GridBase *grid;
|
||||
GaugeField U;
|
||||
|
||||
CovariantLaplacianCshift(GaugeField &_U) :
|
||||
grid(_U.Grid()),
|
||||
U(_U) { };
|
||||
|
||||
virtual GridBase *Grid(void) { return grid; };
|
||||
|
||||
virtual void M (const Field &in, Field &out)
|
||||
{
|
||||
out=Zero();
|
||||
for(int mu=0;mu<Nd-1;mu++) {
|
||||
GaugeLinkField Umu = PeekIndex<LorentzIndex>(U, mu); // NB: Inefficent
|
||||
out = out - Gimpl::CovShiftForward(Umu,mu,in);
|
||||
out = out - Gimpl::CovShiftBackward(Umu,mu,in);
|
||||
out = out + 2.0*in;
|
||||
}
|
||||
};
|
||||
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
|
||||
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
|
||||
};
|
||||
|
||||
void MakePhase(Coordinate mom,LatticeComplex &phase)
|
||||
{
|
||||
GridBase *grid = phase.Grid();
|
||||
auto latt_size = grid->GlobalDimensions();
|
||||
ComplexD ci(0.0,1.0);
|
||||
phase=Zero();
|
||||
|
||||
LatticeComplex coor(phase.Grid());
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
LatticeCoordinate(coor,mu);
|
||||
phase = phase + (TwoPiL * mom[mu]) * coor;
|
||||
}
|
||||
phase = exp(phase*ci);
|
||||
}
|
||||
void LinkSmear(int nstep, RealD rho,LatticeGaugeField &Uin,LatticeGaugeField &Usmr)
|
||||
{
|
||||
Smear_Stout<GimplR> Stout(rho);
|
||||
LatticeGaugeField Utmp(Uin.Grid());
|
||||
Utmp = Uin;
|
||||
for(int i=0;i<nstep;i++){
|
||||
Stout.smear(Usmr,Utmp);
|
||||
Utmp = Usmr;
|
||||
}
|
||||
}
|
||||
void PointSource(Coordinate &coor,LatticePropagator &source)
|
||||
{
|
||||
// Coordinate coor({0,0,0,0});
|
||||
source=Zero();
|
||||
SpinColourMatrix kronecker; kronecker=1.0;
|
||||
pokeSite(kronecker,source,coor);
|
||||
}
|
||||
void GFWallSource(int tslice,LatticePropagator &source)
|
||||
{
|
||||
GridBase *grid = source.Grid();
|
||||
LatticeComplex one(grid); one = ComplexD(1.0,0.0);
|
||||
LatticeComplex zz(grid); zz=Zero();
|
||||
LatticeInteger t(grid);
|
||||
LatticeCoordinate(t,Tdir);
|
||||
one = where(t==Integer(tslice), one, zz);
|
||||
source = 1.0;
|
||||
source = source * one;
|
||||
}
|
||||
|
||||
void Z2WallSource(GridParallelRNG &RNG,int tslice,LatticePropagator &source)
|
||||
{
|
||||
GridBase *grid = source.Grid();
|
||||
LatticeComplex noise(grid);
|
||||
LatticeComplex zz(grid); zz=Zero();
|
||||
LatticeInteger t(grid);
|
||||
|
||||
RealD nrm=1.0/sqrt(2);
|
||||
bernoulli(RNG, noise); // 0,1 50:50
|
||||
|
||||
noise = (2.*noise - Complex(1,1))*nrm;
|
||||
|
||||
LatticeCoordinate(t,Tdir);
|
||||
noise = where(t==Integer(tslice), noise, zz);
|
||||
|
||||
source = 1.0;
|
||||
source = source*noise;
|
||||
std::cout << " Z2 wall " << norm2(source) << std::endl;
|
||||
}
|
||||
void GaugeFix(LatticeGaugeField &U,LatticeGaugeField &Ufix)
|
||||
{
|
||||
Real alpha=0.05;
|
||||
|
||||
Real plaq=WilsonLoops<GimplR>::avgPlaquette(U);
|
||||
|
||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
||||
|
||||
LatticeColourMatrix xform(U.Grid());
|
||||
Ufix = U;
|
||||
int orthog=Nd-1;
|
||||
FourierAcceleratedGaugeFixer<GimplR>::SteepestDescentGaugeFix(Ufix,xform,alpha,100000,1.0e-14, 1.0e-14,true,orthog);
|
||||
|
||||
plaq=WilsonLoops<GimplR>::avgPlaquette(Ufix);
|
||||
|
||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
||||
}
|
||||
template<class Field>
|
||||
void GaussianSmear(LatticeGaugeField &U,Field &unsmeared,Field &smeared)
|
||||
{
|
||||
typedef CovariantLaplacianCshift <GimplR,Field> Laplacian_t;
|
||||
Laplacian_t Laplacian(U);
|
||||
|
||||
Integer Iterations = 40;
|
||||
Real width = 2.0;
|
||||
Real coeff = (width*width) / Real(4*Iterations);
|
||||
|
||||
Field tmp(U.Grid());
|
||||
smeared=unsmeared;
|
||||
// chi = (1-p^2/2N)^N kronecker
|
||||
for(int n = 0; n < Iterations; ++n) {
|
||||
Laplacian.M(smeared,tmp);
|
||||
smeared = smeared - coeff*tmp;
|
||||
std::cout << " smear iter " << n<<" " <<norm2(smeared)<<std::endl;
|
||||
}
|
||||
}
|
||||
void GaussianSource(Coordinate &site,LatticeGaugeField &U,LatticePropagator &source)
|
||||
{
|
||||
LatticePropagator tmp(source.Grid());
|
||||
PointSource(site,source);
|
||||
std::cout << " GaussianSource Kronecker "<< norm2(source)<<std::endl;
|
||||
tmp = source;
|
||||
GaussianSmear(U,tmp,source);
|
||||
std::cout << " GaussianSource Smeared "<< norm2(source)<<std::endl;
|
||||
}
|
||||
void GaussianWallSource(GridParallelRNG &RNG,int tslice,LatticeGaugeField &U,LatticePropagator &source)
|
||||
{
|
||||
Z2WallSource(RNG,tslice,source);
|
||||
auto tmp = source;
|
||||
GaussianSmear(U,tmp,source);
|
||||
}
|
||||
void SequentialSource(int tslice,Coordinate &mom,LatticePropagator &spectator,LatticePropagator &source)
|
||||
{
|
||||
assert(mom.size()==Nd);
|
||||
assert(mom[Tdir] == 0);
|
||||
|
||||
GridBase * grid = spectator.Grid();
|
||||
|
||||
LatticeInteger ts(grid);
|
||||
LatticeCoordinate(ts,Tdir);
|
||||
source = Zero();
|
||||
source = where(ts==Integer(tslice),spectator,source); // Stick in a slice of the spectator, zero everywhere else
|
||||
|
||||
LatticeComplex phase(grid);
|
||||
MakePhase(mom,phase);
|
||||
|
||||
source = source *phase;
|
||||
}
|
||||
template<class Action>
|
||||
void Solve(Action &D,LatticePropagator &source,LatticePropagator &propagator)
|
||||
{
|
||||
GridBase *UGrid = D.GaugeGrid();
|
||||
GridBase *FGrid = D.FermionGrid();
|
||||
|
||||
LatticeFermion src4 (UGrid);
|
||||
LatticeFermion src5 (FGrid);
|
||||
LatticeFermion result5(FGrid);
|
||||
LatticeFermion result4(UGrid);
|
||||
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12,100000);
|
||||
SchurRedBlackDiagTwoSolve<LatticeFermion> schur(CG);
|
||||
ZeroGuesser<LatticeFermion> ZG; // Could be a DeflatedGuesser if have eigenvectors
|
||||
for(int s=0;s<Nd;s++){
|
||||
for(int c=0;c<Nc;c++){
|
||||
PropToFerm<Action>(src4,source,s,c);
|
||||
|
||||
D.ImportPhysicalFermionSource(src4,src5);
|
||||
|
||||
result5=Zero();
|
||||
schur(D,src5,result5,ZG);
|
||||
std::cout<<GridLogMessage
|
||||
<<"spin "<<s<<" color "<<c
|
||||
<<" norm2(src5d) " <<norm2(src5)
|
||||
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
|
||||
|
||||
D.ExportPhysicalFermionSolution(result5,result4);
|
||||
|
||||
FermToProp<Action>(propagator,result4,s,c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class MesonFile: Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFile, std::vector<std::vector<Complex> >, data);
|
||||
};
|
||||
|
||||
void MesonTrace(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
|
||||
{
|
||||
const int nchannel=4;
|
||||
Gamma::Algebra Gammas[nchannel][2] = {
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::Gamma5},
|
||||
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::GammaTGamma5},
|
||||
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::Gamma5},
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaTGamma5}
|
||||
};
|
||||
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
|
||||
LatticeComplex meson_CF(q1.Grid());
|
||||
MesonFile MF;
|
||||
|
||||
for(int ch=0;ch<nchannel;ch++){
|
||||
|
||||
Gamma Gsrc(Gammas[ch][0]);
|
||||
Gamma Gsnk(Gammas[ch][1]);
|
||||
|
||||
meson_CF = trace(G5*adj(q1)*G5*Gsnk*q2*adj(Gsrc));
|
||||
|
||||
std::vector<TComplex> meson_T;
|
||||
sliceSum(meson_CF,meson_T, Tdir);
|
||||
|
||||
int nt=meson_T.size();
|
||||
|
||||
std::vector<Complex> corr(nt);
|
||||
for(int t=0;t<nt;t++){
|
||||
corr[t] = TensorRemove(meson_T[t]); // Yes this is ugly, not figured a work around
|
||||
std::cout << " channel "<<ch<<" t "<<t<<" " <<corr[t]<<std::endl;
|
||||
}
|
||||
MF.data.push_back(corr);
|
||||
}
|
||||
|
||||
{
|
||||
XmlWriter WR(file);
|
||||
write(WR,"MesonFile",MF);
|
||||
}
|
||||
}
|
||||
|
||||
void Meson3pt(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
|
||||
{
|
||||
const int nchannel=4;
|
||||
Gamma::Algebra Gammas[nchannel][2] = {
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaX},
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaY},
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaZ},
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaT}
|
||||
};
|
||||
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
|
||||
LatticeComplex meson_CF(q1.Grid());
|
||||
MesonFile MF;
|
||||
|
||||
for(int ch=0;ch<nchannel;ch++){
|
||||
|
||||
Gamma Gsrc(Gammas[ch][0]);
|
||||
Gamma Gsnk(Gammas[ch][1]);
|
||||
|
||||
meson_CF = trace(G5*adj(q1)*G5*Gsnk*q2*adj(Gsrc));
|
||||
|
||||
std::vector<TComplex> meson_T;
|
||||
sliceSum(meson_CF,meson_T, Tdir);
|
||||
|
||||
int nt=meson_T.size();
|
||||
|
||||
std::vector<Complex> corr(nt);
|
||||
for(int t=0;t<nt;t++){
|
||||
corr[t] = TensorRemove(meson_T[t]); // Yes this is ugly, not figured a work around
|
||||
std::cout << " channel "<<ch<<" t "<<t<<" " <<corr[t]<<std::endl;
|
||||
}
|
||||
MF.data.push_back(corr);
|
||||
}
|
||||
|
||||
{
|
||||
XmlWriter WR(file);
|
||||
write(WR,"MesonFile",MF);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void WallSinkMesonTrace(std::string file,std::vector<Propagator> &q1,std::vector<Propagator> &q2)
|
||||
{
|
||||
const int nchannel=4;
|
||||
Gamma::Algebra Gammas[nchannel][2] = {
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::Gamma5},
|
||||
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::GammaTGamma5},
|
||||
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::Gamma5},
|
||||
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaTGamma5}
|
||||
};
|
||||
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
int nt=q1.size();
|
||||
std::vector<Complex> meson_CF(nt);
|
||||
MesonFile MF;
|
||||
|
||||
for(int ch=0;ch<nchannel;ch++){
|
||||
|
||||
Gamma Gsrc(Gammas[ch][0]);
|
||||
Gamma Gsnk(Gammas[ch][1]);
|
||||
|
||||
std::vector<Complex> corr(nt);
|
||||
for(int t=0;t<nt;t++){
|
||||
meson_CF[t] = trace(G5*adj(q1[t])*G5*Gsnk*q2[t]*adj(Gsrc));
|
||||
corr[t] = TensorRemove(meson_CF[t]); // Yes this is ugly, not figured a work around
|
||||
std::cout << " channel "<<ch<<" t "<<t<<" " <<corr[t]<<std::endl;
|
||||
}
|
||||
MF.data.push_back(corr);
|
||||
}
|
||||
|
||||
{
|
||||
XmlWriter WR(file);
|
||||
write(WR,"MesonFile",MF);
|
||||
}
|
||||
}
|
||||
int make_idx(int p, int m,int nmom)
|
||||
{
|
||||
if (m==0) return p;
|
||||
assert(p==0);
|
||||
return nmom + m - 1;
|
||||
}
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
// Double precision grids
|
||||
auto latt = GridDefaultLatt();
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
LatticeGaugeField Utmp(UGrid);
|
||||
LatticeGaugeField Usmr(UGrid);
|
||||
std::string config;
|
||||
if( argc > 1 && argv[1][0] != '-' )
|
||||
{
|
||||
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration(Umu, header, argv[1]);
|
||||
config=argv[1];
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout<<GridLogMessage <<"Using hot configuration"<<std::endl;
|
||||
SU<Nc>::ColdConfiguration(Umu);
|
||||
config="ColdConfig";
|
||||
}
|
||||
// GaugeFix(Umu,Utmp);
|
||||
// Umu=Utmp;
|
||||
|
||||
int nsmr=3;
|
||||
RealD rho=0.1;
|
||||
LinkSmear(nsmr,rho,Umu,Usmr);
|
||||
|
||||
|
||||
std::vector<int> smeared_link({ 0,0,1} );
|
||||
std::vector<RealD> masses({ 0.004,0.02477,0.447} ); // u/d, s, c ??
|
||||
std::vector<RealD> M5s ({ 1.8,1.8,1.0} );
|
||||
std::vector<RealD> bs ({ 1.0,1.0,1.5} ); // DDM
|
||||
std::vector<RealD> cs ({ 0.0,0.0,0.5} ); // DDM
|
||||
std::vector<int> Ls_s ({ 16,16,12} );
|
||||
std::vector<GridCartesian *> FGrids;
|
||||
std::vector<GridRedBlackCartesian *> FrbGrids;
|
||||
|
||||
std::vector<Coordinate> momenta;
|
||||
momenta.push_back(Coordinate({0,0,0,0}));
|
||||
momenta.push_back(Coordinate({1,0,0,0}));
|
||||
momenta.push_back(Coordinate({2,0,0,0}));
|
||||
|
||||
int nmass = masses.size();
|
||||
int nmom = momenta.size();
|
||||
|
||||
std::vector<MobiusFermionR *> FermActs;
|
||||
|
||||
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
||||
std::cout<<GridLogMessage <<"MobiusFermion action as Scaled Shamir kernel"<<std::endl;
|
||||
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
||||
|
||||
std::vector<Complex> boundary = {1,1,1,-1};
|
||||
typedef MobiusFermionR FermionAction;
|
||||
FermionAction::ImplParams Params(boundary);
|
||||
|
||||
for(int m=0;m<masses.size();m++) {
|
||||
|
||||
RealD mass = masses[m];
|
||||
RealD M5 = M5s[m];
|
||||
RealD b = bs[m];
|
||||
RealD c = cs[m];
|
||||
int Ls = Ls_s[m];
|
||||
|
||||
if ( smeared_link[m] ) Utmp = Usmr;
|
||||
else Utmp = Umu;
|
||||
|
||||
FGrids.push_back(SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid));
|
||||
FrbGrids.push_back(SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid));
|
||||
|
||||
FermActs.push_back(new MobiusFermionR(Utmp,*FGrids[m],*FrbGrids[m],*UGrid,*UrbGrid,mass,M5,b,c,Params));
|
||||
}
|
||||
|
||||
LatticePropagator z2wall_source(UGrid);
|
||||
LatticePropagator gfwall_source(UGrid);
|
||||
LatticePropagator phased_prop(UGrid);
|
||||
|
||||
int tslice = 0;
|
||||
int tseq=(tslice+16)%latt[Nd-1];
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// RNG seeded for Z2 wall
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// You can manage seeds however you like.
|
||||
// Recommend SeedUniqueString.
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString("Study2-Source_Z2_p_0_0_0_t_0-880");
|
||||
Z2WallSource (RNG4,tslice,z2wall_source);
|
||||
GFWallSource (tslice,gfwall_source);
|
||||
|
||||
std::vector<LatticeComplex> phase(nmom,UGrid);
|
||||
for(int m=0;m<nmom;m++){
|
||||
MakePhase(momenta[m],phase[m]);
|
||||
}
|
||||
|
||||
std::vector<LatticePropagator> Z2Props (nmom+nmass-1,UGrid);
|
||||
std::vector<LatticePropagator> GFProps (nmom+nmass-1,UGrid);
|
||||
for(int p=0;p<nmom;p++) {
|
||||
int m=0;
|
||||
int idx = make_idx(p,m,nmom);
|
||||
phased_prop = z2wall_source * phase[p];
|
||||
Solve(*FermActs[m],phased_prop ,Z2Props[idx]);
|
||||
|
||||
phased_prop = gfwall_source * phase[p];
|
||||
Solve(*FermActs[m],phased_prop ,GFProps[idx]);
|
||||
}
|
||||
for(int m=1;m<nmass;m++) {
|
||||
int p=0;
|
||||
int idx = make_idx(p,m,nmom);
|
||||
phased_prop = z2wall_source;
|
||||
Solve(*FermActs[m],phased_prop ,Z2Props[idx]);
|
||||
|
||||
phased_prop = gfwall_source;
|
||||
Solve(*FermActs[m],phased_prop ,GFProps[idx]);
|
||||
}
|
||||
|
||||
std::vector<std::vector<Propagator> > wsnk_z2Props(nmom+nmass-1);
|
||||
std::vector<std::vector<Propagator> > wsnk_gfProps(nmom+nmass-1);
|
||||
|
||||
// Non-zero kaon and point and D two point
|
||||
// WW stick momentum on m1 (lighter)
|
||||
// zero momentum on m2
|
||||
for(int m1=0;m1<nmass;m1++) {
|
||||
for(int m2=m1;m2<nmass;m2++) {
|
||||
int pmax = (m1==0)? nmom:1;
|
||||
for(int p=0;p<pmax;p++){
|
||||
|
||||
std::stringstream ssg,ssz;
|
||||
std::stringstream wssg,wssz;
|
||||
|
||||
int idx1 = make_idx(p,m1,nmom);
|
||||
int idx2 = make_idx(0,m2,nmom);
|
||||
|
||||
/// Point sinks
|
||||
ssg<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_p_gf_meson.xml";
|
||||
ssz<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_p_z2_meson.xml";
|
||||
MesonTrace(ssz.str(),Z2Props[idx1],Z2Props[idx2],phase[p]); // Q1 is conjugated
|
||||
MesonTrace(ssg.str(),GFProps[idx1],GFProps[idx2],phase[p]);
|
||||
|
||||
/// Wall sinks
|
||||
wssg<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_w_gf_meson.xml";
|
||||
wssz<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_w_z2_meson.xml";
|
||||
|
||||
phased_prop = GFProps[m2] * phase[p];
|
||||
sliceSum(phased_prop,wsnk_gfProps[m1],Tdir);
|
||||
sliceSum(GFProps[m1],wsnk_gfProps[m2],Tdir);
|
||||
WallSinkMesonTrace(wssg.str(),wsnk_gfProps[m1],wsnk_gfProps[m2]);
|
||||
|
||||
phased_prop = Z2Props[m2] * phase[p];
|
||||
sliceSum(phased_prop,wsnk_gfProps[m1],Tdir);
|
||||
sliceSum(Z2Props[m1],wsnk_gfProps[m2],Tdir);
|
||||
WallSinkMesonTrace(wssz.str(),wsnk_z2Props[m1],wsnk_z2Props[m2]);
|
||||
}
|
||||
}}
|
||||
|
||||
|
||||
/////////////////////////////////////
|
||||
// Sequential solves
|
||||
/////////////////////////////////////
|
||||
LatticePropagator seq_wsnk_z2src(UGrid);
|
||||
LatticePropagator seq_wsnk_gfsrc(UGrid);
|
||||
LatticePropagator seq_psnk_z2src(UGrid);
|
||||
LatticePropagator seq_psnk_gfsrc(UGrid);
|
||||
LatticePropagator source(UGrid);
|
||||
for(int m=0;m<nmass-1;m++){
|
||||
int spect_idx = make_idx(0,m,nmom);
|
||||
int charm=nmass-1;
|
||||
|
||||
SequentialSource(tseq,momenta[0],GFProps[spect_idx],source);
|
||||
Solve(*FermActs[charm],source,seq_psnk_gfsrc);
|
||||
|
||||
SequentialSource(tseq,momenta[0],Z2Props[spect_idx],source);
|
||||
Solve(*FermActs[charm],source,seq_psnk_z2src);
|
||||
|
||||
// Todo need wall sequential solve
|
||||
for(int p=0;p<nmom;p++){
|
||||
int active_idx = make_idx(p,0,nmom);
|
||||
std::stringstream seq_3pt_p_z2;
|
||||
std::stringstream seq_3pt_p_gf;
|
||||
std::stringstream seq_3pt_w_z2;
|
||||
std::stringstream seq_3pt_w_gf;
|
||||
seq_3pt_p_z2 <<config<<"_3pt_p"<<p<< "_m" << m << "_p_z2_meson.xml";
|
||||
seq_3pt_p_gf <<config<<"_3pt_p"<<p<< "_m" << m << "_p_gf_meson.xml";
|
||||
seq_3pt_w_z2 <<config<<"_3pt_p"<<p<< "_m" << m << "_w_z2_meson.xml";
|
||||
seq_3pt_w_gf <<config<<"_3pt_p"<<p<< "_m" << m << "_w_gf_meson.xml";
|
||||
Meson3pt(seq_3pt_p_gf.str(),GFProps[active_idx],seq_psnk_gfsrc,phase[p]);
|
||||
Meson3pt(seq_3pt_p_z2.str(),Z2Props[active_idx],seq_psnk_z2src,phase[p]);
|
||||
}
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
||||
|
||||
|
@ -9,6 +9,7 @@ using namespace std;
|
||||
using namespace Grid;
|
||||
typedef SpinColourMatrix Propagator;
|
||||
typedef SpinColourVector Fermion;
|
||||
typedef PeriodicGimplR GimplR;
|
||||
|
||||
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
|
||||
{
|
||||
@ -55,6 +56,16 @@ void MakePhase(Coordinate mom,LatticeComplex &phase)
|
||||
}
|
||||
phase = exp(phase*ci);
|
||||
}
|
||||
void LinkSmear(int nstep, RealD rho,LatticeGaugeField &Uin,LatticeGaugeField &Usmr)
|
||||
{
|
||||
Smear_Stout<GimplR> Stout(rho);
|
||||
LatticeGaugeField Utmp(Uin.Grid());
|
||||
Utmp = Uin;
|
||||
for(int i=0;i<nstep;i++){
|
||||
Stout.smear(Usmr,Utmp);
|
||||
Utmp = Usmr;
|
||||
}
|
||||
}
|
||||
void PointSource(Coordinate &coor,LatticePropagator &source)
|
||||
{
|
||||
// Coordinate coor({0,0,0,0});
|
||||
@ -97,23 +108,23 @@ void GaugeFix(LatticeGaugeField &U,LatticeGaugeField &Ufix)
|
||||
{
|
||||
Real alpha=0.05;
|
||||
|
||||
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(U);
|
||||
Real plaq=WilsonLoops<GimplR>::avgPlaquette(U);
|
||||
|
||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
||||
|
||||
LatticeColourMatrix xform(U.Grid());
|
||||
Ufix = U;
|
||||
int orthog=Nd-1;
|
||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Ufix,xform,alpha,10000,1.0e-12, 1.0e-12,true,orthog);
|
||||
FourierAcceleratedGaugeFixer<GimplR>::SteepestDescentGaugeFix(Ufix,xform,alpha,100000,1.0e-14, 1.0e-14,true,orthog);
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Ufix);
|
||||
plaq=WilsonLoops<GimplR>::avgPlaquette(Ufix);
|
||||
|
||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
||||
}
|
||||
template<class Field>
|
||||
void GaussianSmear(LatticeGaugeField &U,Field &unsmeared,Field &smeared)
|
||||
{
|
||||
typedef CovariantLaplacianCshift <PeriodicGimplR,Field> Laplacian_t;
|
||||
typedef CovariantLaplacianCshift <GimplR,Field> Laplacian_t;
|
||||
Laplacian_t Laplacian(U);
|
||||
|
||||
Integer Iterations = 40;
|
||||
@ -167,19 +178,21 @@ void Solve(Action &D,LatticePropagator &source,LatticePropagator &propagator)
|
||||
GridBase *UGrid = D.GaugeGrid();
|
||||
GridBase *FGrid = D.FermionGrid();
|
||||
|
||||
LatticeFermion src4 (UGrid);
|
||||
LatticeFermion src4 (UGrid); src4 = Zero();
|
||||
LatticeFermion src5 (FGrid);
|
||||
LatticeFermion result5(FGrid);
|
||||
LatticeFermion result4(UGrid);
|
||||
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-8,100000);
|
||||
SchurRedBlackDiagMooeeSolve<LatticeFermion> schur(CG);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12,100000);
|
||||
SchurRedBlackDiagTwoSolve<LatticeFermion> schur(CG);
|
||||
ZeroGuesser<LatticeFermion> ZG; // Could be a DeflatedGuesser if have eigenvectors
|
||||
std::cout<<GridLogMessage<< " source4 "<<norm2(source)<<std::endl;
|
||||
for(int s=0;s<Nd;s++){
|
||||
for(int c=0;c<Nc;c++){
|
||||
PropToFerm<Action>(src4,source,s,c);
|
||||
|
||||
std::cout<<GridLogMessage<< s<<c<<" src4 "<<norm2(src4)<<std::endl;
|
||||
D.ImportPhysicalFermionSource(src4,src5);
|
||||
std::cout<<GridLogMessage<< s<<c<<" src5 "<<norm2(src5)<<std::endl;
|
||||
|
||||
result5=Zero();
|
||||
schur(D,src5,result5,ZG);
|
||||
@ -287,15 +300,10 @@ int main (int argc, char ** argv)
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// You can manage seeds however you like.
|
||||
// Recommend SeedUniqueString.
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
LatticeGaugeField Ufixed(UGrid);
|
||||
LatticeGaugeField Utmp(UGrid);
|
||||
LatticeGaugeField Usmr(UGrid);
|
||||
std::string config;
|
||||
if( argc > 1 && argv[1][0] != '-' )
|
||||
{
|
||||
@ -308,13 +316,20 @@ int main (int argc, char ** argv)
|
||||
{
|
||||
std::cout<<GridLogMessage <<"Using hot configuration"<<std::endl;
|
||||
SU<Nc>::ColdConfiguration(Umu);
|
||||
// SU<Nc>::HotConfiguration(RNG4,Umu);
|
||||
config="HotConfig";
|
||||
config="ColdConfig";
|
||||
}
|
||||
GaugeFix(Umu,Ufixed);
|
||||
Umu=Ufixed;
|
||||
// GaugeFix(Umu,Utmp);
|
||||
// Umu=Utmp;
|
||||
|
||||
int nsmr=3;
|
||||
RealD rho=0.1;
|
||||
RealD plaq_gf =WilsonLoops<GimplR>::avgPlaquette(Umu);
|
||||
LinkSmear(nsmr,rho,Umu,Usmr);
|
||||
RealD plaq_smr=WilsonLoops<GimplR>::avgPlaquette(Usmr);
|
||||
std::cout << GridLogMessage << " GF Plaquette " <<plaq_gf<<std::endl;
|
||||
std::cout << GridLogMessage << " SM Plaquette " <<plaq_smr<<std::endl;
|
||||
|
||||
std::vector<int> smeared_link({ 0,0,1} );
|
||||
std::vector<RealD> masses({ 0.004,0.02477,0.447} ); // u/d, s, c ??
|
||||
std::vector<RealD> M5s ({ 1.8,1.8,1.0} );
|
||||
std::vector<RealD> bs ({ 1.0,1.0,1.5} ); // DDM
|
||||
@ -330,6 +345,9 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
||||
std::cout<<GridLogMessage <<"MobiusFermion action as Scaled Shamir kernel"<<std::endl;
|
||||
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
||||
std::vector<Complex> boundary = {1,1,1,-1};
|
||||
typedef MobiusFermionR FermionAction;
|
||||
FermionAction::ImplParams Params(boundary);
|
||||
|
||||
for(int m=0;m<masses.size();m++) {
|
||||
|
||||
@ -339,31 +357,41 @@ int main (int argc, char ** argv)
|
||||
RealD c = cs[m];
|
||||
int Ls = Ls_s[m];
|
||||
|
||||
if ( smeared_link[m] ) Utmp = Usmr;
|
||||
else Utmp = Umu;
|
||||
|
||||
FGrids.push_back(SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid));
|
||||
FrbGrids.push_back(SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid));
|
||||
|
||||
FermActs.push_back(new MobiusFermionR(Umu,*FGrids[m],*FrbGrids[m],*UGrid,*UrbGrid,mass,M5,b,c));
|
||||
FermActs.push_back(new MobiusFermionR(Utmp,*FGrids[m],*FrbGrids[m],*UGrid,*UrbGrid,mass,M5,b,c,Params));
|
||||
}
|
||||
|
||||
LatticePropagator point_source(UGrid);
|
||||
LatticePropagator z2wall_source(UGrid);
|
||||
LatticePropagator gfwall_source(UGrid);
|
||||
|
||||
Coordinate Origin({0,0,0,0});
|
||||
PointSource (Origin,point_source);
|
||||
Z2WallSource (RNG4,0,z2wall_source);
|
||||
GFWallSource (0,gfwall_source);
|
||||
int tslice = 0;
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// RNG seeded for Z2 wall
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// You can manage seeds however you like.
|
||||
// Recommend SeedUniqueString.
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString("Study2-Source_Z2_p_0_0_0_t_0-880");
|
||||
Z2WallSource (RNG4,tslice,z2wall_source);
|
||||
GFWallSource (tslice,gfwall_source);
|
||||
|
||||
std::vector<LatticePropagator> PointProps(nmass,UGrid);
|
||||
std::vector<LatticePropagator> GaussProps(nmass,UGrid);
|
||||
std::vector<LatticePropagator> Z2Props (nmass,UGrid);
|
||||
std::vector<LatticePropagator> GFProps (nmass,UGrid);
|
||||
|
||||
for(int m=0;m<nmass;m++) {
|
||||
|
||||
std::cout << GridLogMessage << " Mass " <<m << " z2wall source "<<norm2(z2wall_source)<<std::endl;
|
||||
Solve(*FermActs[m],z2wall_source ,Z2Props[m]);
|
||||
std::cout << GridLogMessage << " Mass " <<m << " gfwall source "<<norm2(gfwall_source)<<std::endl;
|
||||
Solve(*FermActs[m],gfwall_source ,GFProps[m]);
|
||||
|
||||
std::cout << GridLogMessage << " Mass " <<m << " z2wall source "<<norm2(z2wall_source)<< " " << norm2(gfwall_source)<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
LatticeComplex phase(UGrid);
|
||||
@ -383,14 +411,15 @@ int main (int argc, char ** argv)
|
||||
std::stringstream wssg,wssz;
|
||||
|
||||
/// Point sinks
|
||||
ssg<<config<< "_m" << m1 << "_m"<< m2 << "p_gf_meson.xml";
|
||||
ssz<<config<< "_m" << m1 << "_m"<< m2 << "p_z2_meson.xml";
|
||||
ssg<<config<< "_m" << m1 << "_m"<< m2 << "_p_gf_meson.xml";
|
||||
ssz<<config<< "_m" << m1 << "_m"<< m2 << "_p_z2_meson.xml";
|
||||
|
||||
MesonTrace(ssz.str(),Z2Props[m1],Z2Props[m2],phase);
|
||||
MesonTrace(ssg.str(),GFProps[m1],GFProps[m2],phase);
|
||||
|
||||
/// Wall sinks
|
||||
wssg<<config<< "_m" << m1 << "_m"<< m2 << "w_gf_meson.xml";
|
||||
wssz<<config<< "_m" << m1 << "_m"<< m2 << "w_z2_meson.xml";
|
||||
wssg<<config<< "_m" << m1 << "_m"<< m2 << "_w_gf_meson.xml";
|
||||
wssz<<config<< "_m" << m1 << "_m"<< m2 << "_w_z2_meson.xml";
|
||||
|
||||
WallSinkMesonTrace(wssg.str(),wsnk_gfProps[m1],wsnk_gfProps[m2]);
|
||||
WallSinkMesonTrace(wssz.str(),wsnk_z2Props[m1],wsnk_z2Props[m2]);
|
||||
|
@ -1,19 +1,27 @@
|
||||
#!/bin/bash
|
||||
|
||||
LOG=$1
|
||||
SWEEPS=`grep dH $LOG | wc -l`
|
||||
SWEEPS=`expr $SWEEPS - 80`
|
||||
SWEEPS=`grep dH.= $LOG | wc -l`
|
||||
SWEEPS=`expr $SWEEPS - 100`
|
||||
echo
|
||||
echo $SWEEPS thermalised sweeps
|
||||
echo
|
||||
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10} END { print S/NR} ' `
|
||||
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
|
||||
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12} END { print S/NR} ' `
|
||||
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12 ; SS=SS+$12*$12 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
|
||||
echo "Plaquette: $plaq (${plaqe})"
|
||||
echo
|
||||
|
||||
dHv=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt(SS/NR) } ' `
|
||||
edH=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$10)} END { print S/NR} '`
|
||||
echo "<e-dH>: $edH"
|
||||
grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12/20; if(NR%20==0){ print NR/20, " ", S; S=0;} } ' > plaq.binned
|
||||
|
||||
plaq=`cat plaq.binned | awk '{ S=S+$2} END { print S/NR} ' `
|
||||
plaqe=`cat plaq.binned | awk '{ S=S+$2 ; SS=SS+$2*$2 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
|
||||
echo "Binned Plaquette: $plaq (${plaqe})"
|
||||
echo
|
||||
|
||||
dHv=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+$16 ; SS=SS+$16*$16 } END { print sqrt(SS/NR) } ' `
|
||||
edH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16)} END { print S/NR} '`
|
||||
dedH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16); SS=SS+exp(-$16)*exp(-$16)} END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } '`
|
||||
echo "<e-dH>: $edH (${dedH})"
|
||||
echo "<rms dH>: $dHv"
|
||||
|
||||
TRAJ=`grep Acc $LOG | wc -l`
|
||||
@ -22,12 +30,13 @@ PACC=`expr 100 \* ${ACC} / ${TRAJ} `
|
||||
echo
|
||||
echo "Acceptance $PACC % $ACC / $TRAJ "
|
||||
|
||||
grep Plaq $LOG | awk '{ print $10 }' | uniq > plaq.dat
|
||||
grep dH $LOG | awk '{ print $10 }' > dH.dat
|
||||
echo set yrange [-0.2:1.0] > plot.gnu
|
||||
grep Plaq $LOG | awk '{ print $12 }' | uniq > plaq.dat
|
||||
grep dH.= $LOG | awk '{ print $16 }' > dH.dat
|
||||
echo set yrange [0.58:0.60] > plot.gnu
|
||||
echo set terminal 'pdf' >> plot.gnu
|
||||
echo "f(x) =0.588" >> plot.gnu
|
||||
echo "set output 'plaq.${LOG}.pdf'" >> plot.gnu
|
||||
echo "plot 'plaq.dat' w l, 'dH.dat' w l " >> plot.gnu
|
||||
echo "plot 'plaq.dat' w l, f(x) " >> plot.gnu
|
||||
echo
|
||||
gnuplot plot.gnu >& gnu.errs
|
||||
open plaq.${LOG}.pdf
|
||||
|
12
systems/Crusher/config-command
Normal file
12
systems/Crusher/config-command
Normal file
@ -0,0 +1,12 @@
|
||||
../../configure --enable-comms=mpi-auto \
|
||||
--enable-unified=no \
|
||||
--enable-shm=nvlink \
|
||||
--enable-accelerator=hip \
|
||||
--enable-gen-simd-width=64 \
|
||||
--enable-simd=GPU \
|
||||
--disable-fermion-reps \
|
||||
--disable-gparity \
|
||||
CXX=hipcc MPICXX=mpicxx \
|
||||
CXXFLAGS="-fPIC -I/opt/rocm-4.5.0/include/ -std=c++14 -I${MPICH_DIR}/include " \
|
||||
LDFLAGS=" -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa "
|
||||
HIPFLAGS = --amdgpu-target=gfx90a
|
30
systems/Crusher/dwf.slurm
Normal file
30
systems/Crusher/dwf.slurm
Normal file
@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
# Begin LSF Directives
|
||||
#SBATCH -A LGT104
|
||||
#SBATCH -t 01:00:00
|
||||
##SBATCH -U openmpThu
|
||||
##SBATCH -p ecp
|
||||
#SBATCH -J DWF
|
||||
#SBATCH -o DWF.%J
|
||||
#SBATCH -e DWF.%J
|
||||
#SBATCH -N 1
|
||||
#SBATCH -n 1
|
||||
#SBATCH --exclusive
|
||||
|
||||
DIR=.
|
||||
module list
|
||||
#export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
|
||||
export MPICH_GPU_SUPPORT_ENABLED=1
|
||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=NONE
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
|
||||
export OMP_NUM_THREADS=1
|
||||
|
||||
AT=8
|
||||
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
|
||||
|
||||
PARAMS=" --accelerator-threads ${AT} --grid 24.24.24.24 --shm-mpi 0 --mpi 1.1.1.1"
|
||||
|
||||
srun --gpus-per-task 1 -n1 ./benchmarks/Benchmark_dwf_fp32 $PARAMS
|
||||
|
||||
|
27
systems/Crusher/dwf4.slurm
Normal file
27
systems/Crusher/dwf4.slurm
Normal file
@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
# Begin LSF Directives
|
||||
#SBATCH -A LGT104
|
||||
#SBATCH -t 01:00:00
|
||||
##SBATCH -U openmpThu
|
||||
#SBATCH -J DWF
|
||||
#SBATCH -o DWF.%J
|
||||
#SBATCH -e DWF.%J
|
||||
#SBATCH -N 1
|
||||
#SBATCH -n 4
|
||||
#SBATCH --exclusive
|
||||
|
||||
DIR=.
|
||||
module list
|
||||
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
|
||||
export MPICH_GPU_SUPPORT_ENABLED=1
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
|
||||
export MPICH_SMP_SINGLE_COPY_MODE=NONE
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
|
||||
export OMP_NUM_THREADS=4
|
||||
|
||||
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
|
||||
PARAMS=" --accelerator-threads 8 --grid 32.32.64.64 --mpi 1.1.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
|
||||
|
||||
srun --gpus-per-task 1 -n4 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS
|
||||
|
||||
|
27
systems/Crusher/dwf8.slurm
Normal file
27
systems/Crusher/dwf8.slurm
Normal file
@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
# Begin LSF Directives
|
||||
#SBATCH -A LGT104
|
||||
#SBATCH -t 01:00:00
|
||||
##SBATCH -U openmpThu
|
||||
#SBATCH -J DWF
|
||||
#SBATCH -o DWF.%J
|
||||
#SBATCH -e DWF.%J
|
||||
#SBATCH -N 1
|
||||
#SBATCH -n 8
|
||||
#SBATCH --exclusive
|
||||
|
||||
DIR=.
|
||||
module list
|
||||
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
|
||||
export MPICH_GPU_SUPPORT_ENABLED=1
|
||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=NONE
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
|
||||
export OMP_NUM_THREADS=1
|
||||
|
||||
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
|
||||
PARAMS=" --accelerator-threads 8 --grid 32.64.64.64 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
|
||||
|
||||
srun --gpus-per-task 1 -n8 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user