1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/tests/hadrons/Test_hadrons_distil.cc

714 lines
24 KiB
C++
Raw Normal View History

2019-01-21 10:39:28 +00:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Tests/Hadrons/Test_hadrons_distil.cc
Copyright (C) 2015-2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
2019-02-06 09:25:24 +00:00
#include <typeinfo>
2019-01-21 10:39:28 +00:00
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
2019-01-22 13:19:39 +00:00
/////////////////////////////////////////////////////////////
2019-01-24 18:50:18 +00:00
// Test creation of laplacian eigenvectors
2019-01-22 13:19:39 +00:00
/////////////////////////////////////////////////////////////
2019-01-21 10:39:28 +00:00
2019-01-24 18:50:18 +00:00
void test_Global(Application &application)
2019-01-21 10:39:28 +00:00
{
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
}
2019-01-22 13:19:39 +00:00
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_LapEvec(Application &application)
{
const char szGaugeName[] = "gauge";
2019-01-22 13:19:39 +00:00
// gauge field
2019-01-24 13:26:05 +00:00
application.createModule<MGauge::Random>(szGaugeName);
2019-01-22 13:19:39 +00:00
// Now make an instance of the LapEvec object
MDistil::LapEvecPar p;
p.gauge = szGaugeName;
2019-01-24 16:12:19 +00:00
//p.EigenPackName = "ePack";
2019-01-24 18:50:18 +00:00
//p.Distil.TI = 8;
//p.Distil.LI = 3;
//p.Distil.Nnoise = 2;
//p.Distil.tSrc = 0;
p.Stout.steps = 3;
p.Stout.parm = 0.2;
p.Cheby.PolyOrder = 11;
p.Cheby.alpha = 0.3;
p.Cheby.beta = 12.5;
p.Lanczos.Nvec = 5;
p.Lanczos.Nk = 6;
p.Lanczos.Np = 2;
2019-01-24 13:26:05 +00:00
p.Lanczos.MaxIt = 1000;
p.Lanczos.resid = 1e-2;
application.createModule<MDistil::LapEvec>("LapEvec",p);
2019-01-22 13:19:39 +00:00
}
/////////////////////////////////////////////////////////////
2019-01-23 12:49:20 +00:00
// Perambulators
2019-01-22 13:19:39 +00:00
/////////////////////////////////////////////////////////////
2019-01-23 12:49:20 +00:00
void test_Perambulators(Application &application)
2019-01-22 13:19:39 +00:00
{
2019-01-23 13:58:20 +00:00
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
2019-01-24 18:50:18 +00:00
PerambPar.eigenPack="LapEvec";
PerambPar.PerambFileName="peramb.bin";
2019-02-11 17:39:42 +00:00
PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
PerambPar.ConfigFileName="ckpoint_lat.3000";
PerambPar.UniqueIdentifier="full_dilution";
2019-01-31 12:24:32 +00:00
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.Distil.LI=5;
PerambPar.Distil.SI=4;
PerambPar.Distil.TI=8;
2019-01-25 13:44:19 +00:00
PerambPar.nvec=5;
2019-01-31 12:24:32 +00:00
PerambPar.Distil.Ns=4;
PerambPar.Distil.Nt=8;
PerambPar.Distil.Nt_inv=1;
PerambPar.Solver.mass=0.005;
PerambPar.Solver.M5=1.8;
2019-01-23 13:58:20 +00:00
PerambPar.Ls=16;
2019-01-31 12:24:32 +00:00
PerambPar.Solver.CGPrecision=1e-8;
PerambPar.Solver.MaxIterations=10000;
2019-01-24 16:12:19 +00:00
application.createModule<MDistil::PerambLight>("Peramb",PerambPar);
2019-01-24 18:50:18 +00:00
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectors(Application &application)
{
2019-01-23 13:58:20 +00:00
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
2019-01-24 16:12:19 +00:00
DistilVecPar.noise="Peramb_noise";
DistilVecPar.perambulator="Peramb_perambulator_light";
2019-01-25 13:44:19 +00:00
DistilVecPar.eigenPack="LapEvec";
2019-01-23 13:58:20 +00:00
DistilVecPar.tsrc = 0;
DistilVecPar.nnoise = 1;
DistilVecPar.LI=5;
2019-01-23 13:58:20 +00:00
DistilVecPar.SI=4;
DistilVecPar.TI=8;
DistilVecPar.nvec=5;
2019-01-23 13:58:20 +00:00
DistilVecPar.Ns=4;
DistilVecPar.Nt=8;
2019-01-23 13:58:20 +00:00
DistilVecPar.Nt_inv=1;
application.createModule<MDistil::DistilVectors>("DistilVecs",DistilVecPar);
}
void test_PerambulatorsS(Application &application)
{
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
PerambPar.eigenPack="LapEvec";
PerambPar.PerambFileName="perambS.bin";
2019-02-11 17:39:42 +00:00
PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
PerambPar.ConfigFileName="ckpoint_lat.3000";
PerambPar.UniqueIdentifier="full_dilution";
2019-01-31 15:11:12 +00:00
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.Distil.LI=3;
PerambPar.Distil.SI=4;
PerambPar.Distil.TI=8;
PerambPar.nvec=3;
2019-01-31 15:11:12 +00:00
PerambPar.Distil.Ns=4;
PerambPar.Distil.Nt=8;
PerambPar.Distil.Nt_inv=1;
PerambPar.Solver.mass=0.04; //strange mass???
PerambPar.Solver.M5=1.8;
PerambPar.Ls=16;
2019-01-31 15:11:12 +00:00
PerambPar.Solver.CGPrecision=1e-8;
PerambPar.Solver.MaxIterations=10000;
application.createModule<MDistil::PerambLight>("PerambS",PerambPar);
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectorsS(Application &application)
{
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise="PerambS_noise";
DistilVecPar.perambulator="PerambS_perambulator_light";
DistilVecPar.eigenPack="LapEvec";
DistilVecPar.tsrc = 0;
DistilVecPar.nnoise = 1;
DistilVecPar.LI=3;
DistilVecPar.SI=4;
DistilVecPar.TI=8;
DistilVecPar.nvec=3;
DistilVecPar.Ns=4;
DistilVecPar.Nt=8;
DistilVecPar.Nt_inv=1;
application.createModule<MDistil::DistilVectors>("DistilVecsS",DistilVecPar);
}
/////////////////////////////////////////////////////////////
// MesonSink
/////////////////////////////////////////////////////////////
void test_MesonSink(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="Peramb_unsmeared_sink";
A2AMesonFieldPar.right="Peramb_unsmeared_sink";
A2AMesonFieldPar.output="DistilFields";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
2019-01-30 18:03:34 +00:00
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonSink",A2AMesonFieldPar);
2019-01-22 13:19:39 +00:00
}
/////////////////////////////////////////////////////////////
// MesonFields
/////////////////////////////////////////////////////////////
void test_MesonFieldSL(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecsS_phi";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_phi";
A2AMesonFieldPar.output="DistilFieldsS";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldS",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields
/////////////////////////////////////////////////////////////
void test_MesonField(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs_phi";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_phi";
A2AMesonFieldPar.output="MesonSinks";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonField",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
2019-02-08 15:49:52 +00:00
// BaryonFields - phiphiphi
/////////////////////////////////////////////////////////////
2019-02-08 15:49:52 +00:00
void test_BaryonFieldPhi(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_phi";
BContractionPar.two="DistilVecs_phi";
BContractionPar.three="DistilVecs_phi";
2019-02-08 15:49:52 +00:00
BContractionPar.output="BaryonFieldPhi";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
2019-02-08 15:49:52 +00:00
application.createModule<MDistil::BContraction>("BaryonFieldPhi",BContractionPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - rhorhorho
/////////////////////////////////////////////////////////////
void test_BaryonFieldRho(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_rho";
BContractionPar.two="DistilVecs_rho";
BContractionPar.three="DistilVecs_rho";
BContractionPar.output="BaryonFieldRho";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldRho",BContractionPar);
}
2019-01-22 13:19:39 +00:00
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
{
if( bGobbleWhiteSpace )
while( std::isspace(static_cast<unsigned char>(*pstr)) )
pstr++;
const char * p = pstr;
bool bMinus = false;
char c = * p++;
if( c == '+' )
c = * p++;
else if( c == '-' ) {
bMinus = true;
c = * p++;
}
int n = c - '0';
if( n < 0 || n > 9 )
return false;
while( * p >= '0' && * p <= '9' ) {
n = n * 10 + ( * p ) - '0';
p++;
}
if( bMinus )
n *= -1;
ri = n;
pstr = p;
return true;
}
2019-01-30 21:16:09 +00:00
#ifdef DEBUG
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
2019-01-30 21:16:09 +00:00
void DebugShowTensor(MyTensor &x, const char * n)
2019-01-30 21:16:09 +00:00
{
const MyTensor::Index s{x.size()};
std::cout << n << ".size() = " << s << std::endl;
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
2019-01-30 21:16:09 +00:00
const MyTensor::Dimensions & d{x.dimensions()};
std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
2019-01-30 21:16:09 +00:00
std::cout << "Dimensions are ";
for(auto i : d ) std::cout << "[" << i << "]";
std::cout << std::endl;
MyTensor::Index SizeCalculated{1};
std::cout << "Dimensions again";
for(int i=0 ; i < d.size() ; i++ ) {
std::cout << " : [" << i << ", " << x.IndexNames[i] << "]=" << d[i];
2019-01-30 21:16:09 +00:00
SizeCalculated *= d[i];
}
std::cout << std::endl;
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
assert( SizeCalculated == s );
// Initialise
assert( d.size() == 3 );
for( int i = 0 ; i < d[0] ; i++ )
2019-02-01 15:20:35 +00:00
for( int j = 0 ; j < d[1] ; j++ )
for( int k = 0 ; k < d[2] ; k++ ) {
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
2019-02-01 15:20:35 +00:00
SizeCalculated--;
}
2019-01-30 21:16:09 +00:00
// Show raw data
std::cout << "Data follow : " << std::endl;
Complex * p = x.data();
for( auto i = 0 ; i < s ; i++ ) {
if( i ) std::cout << ", ";
std::cout << n << ".data()[" << i << "]=" << * p++;
2019-01-30 21:16:09 +00:00
}
std::cout << std::endl;
2019-02-01 15:20:35 +00:00
}
2019-02-06 09:25:24 +00:00
// Test whether typedef and underlying types are the same
void DebugTestTypeEqualities(void)
{
Real r1;
RealD r2;
double r3;
const std::type_info &tr1{typeid(r1)};
const std::type_info &tr2{typeid(r2)};
const std::type_info &tr3{typeid(r3)};
if( tr1 == tr2 && tr2 == tr3 )
std::cout << "r1, r2 and r3 are the same type" << std::endl;
else
std::cout << "r1, r2 and r3 are different types" << std::endl;
std::cout << "r1 is a " << tr1.name() << std::endl;
std::cout << "r2 is a " << tr2.name() << std::endl;
std::cout << "r3 is a " << tr3.name() << std::endl;
// These are the same
Complex c1;
std::complex<Real> c2;
const std::type_info &tc1{typeid(c1)};
const std::type_info &tc2{typeid(c2)};
const std::type_info &tc3{typeid(SpinVector::scalar_type)};
if( tc1 == tc2 && tc2 == tc3)
std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl;
else
std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl;
std::cout << "c1 is a " << tc1.name() << std::endl;
std::cout << "c2 is a " << tc2.name() << std::endl;
std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl;
// These are the same
SpinVector s1;
iSpinVector<Complex > s2;
iScalar<iVector<iScalar<Complex>, Ns> > s3;
const std::type_info &ts1{typeid(s1)};
const std::type_info &ts2{typeid(s2)};
const std::type_info &ts3{typeid(s3)};
if( ts1 == ts2 && ts2 == ts3 )
std::cout << "s1, s2 and s3 are the same type" << std::endl;
else
std::cout << "s1, s2 and s3 are different types" << std::endl;
std::cout << "s1 is a " << ts1.name() << std::endl;
std::cout << "s2 is a " << ts2.name() << std::endl;
std::cout << "s3 is a " << ts3.name() << std::endl;
// These are the same
SpinColourVector sc1;
iSpinColourVector<Complex > sc2;
const std::type_info &tsc1{typeid(sc1)};
const std::type_info &tsc2{typeid(sc2)};
if( tsc1 == tsc2 )
std::cout << "sc1 and sc2 are the same type" << std::endl;
else
std::cout << "sc1 and sc2 are different types" << std::endl;
std::cout << "sc1 is a " << tsc1.name() << std::endl;
std::cout << "sc2 is a " << tsc2.name() << std::endl;
}
2019-02-01 15:20:35 +00:00
bool DebugEigenTest()
{
const char pszTestFileName[] = "test_tensor.bin";
2019-02-01 15:20:35 +00:00
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
2019-02-03 20:58:58 +00:00
MyTensor x(as, 2,1,4);
DebugShowTensor(x, "x");
x.WriteBinary(pszTestFileName);
DebugShowTensor(x, "x");
// Test initialisation of an array of strings
2019-02-01 15:20:35 +00:00
for( auto a : as )
std::cout << a << std::endl;
Grid::Hadrons::MDistil::Perambulator<Complex,3,sizeof(Real)> p{as,2,7,2};
DebugShowTensor(p, "p");
2019-02-01 15:20:35 +00:00
std::cout << "p.IndexNames follow" << std::endl;
for( auto a : p.IndexNames )
std::cout << a << std::endl;
// Now see whether we can read a tensor back
2019-02-06 09:25:24 +00:00
std::array<std::string,3> Names2={"Alpha", "Gamma", "Delta"};
MyTensor y(Names2, 2,4,1);
y.ReadBinary(pszTestFileName);
DebugShowTensor(y, "y");
2019-02-06 09:25:24 +00:00
// Testing whether typedef produces the same type - yes it does
DebugTestTypeEqualities();
std::cout << std::endl;
// How to access members of SpinColourVector
SpinColourVector sc;
for( int s = 0 ; s < Ns ; s++ ) {
auto cv{sc()(s)};
iVector<Complex,Nc> c2{sc()(s)};
std::cout << " cv is a " << typeid(cv).name() << std::endl;
std::cout << " c2 is a " << typeid(c2).name() << std::endl;
for( int c = 0 ; c < Nc ; c++ ) {
Complex & z{cv(c)};
std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl;
}
}
// We could have removed the Lorentz index independently, but much easier to do as we do above
iVector<iVector<Complex,Nc>,Ns> sc2{sc()};
std::cout << "sc() is a " << typeid(sc()).name() << std::endl;
std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl;
// Or you can access elements directly
std::complex<Real> z = sc()(0)(0);
std::cout << "z = " << z << std::endl;
sc()(3)(2) = std::complex<Real>{3.141,-3.141};
std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl;
2019-01-30 21:16:09 +00:00
return true;
}
template <typename W, typename R, typename O>
bool ioTest(const std::string &filename, const O &object, const std::string &name)
{
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
write(writer, "testobject", object);
}
/*R reader(filename);
O buf;
bool good;
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
std::cout << std::endl;
return good;*/
return true;
}
//typedef int TestScalar;
typedef std::complex<double> TestScalar;
typedef Eigen::Tensor<TestScalar, 3> TestTensor;
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>> TestTensorFixed;
typedef std::vector<TestTensorFixed> aTestTensorFixed;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<11,3,2>> LSCTensor;
typedef Eigen::TensorFixedSize<LorentzColourMatrix, Eigen::Sizes<5,7,2>> LCMTensor;
// From Test_serialisation.cc
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass
, SpinColourVector, scv
, SpinColourMatrix, scm
, TestTensor, Critter
, TestTensorFixed, FixedCritter
, aTestTensorFixed, aFixedCritter
, LSCTensor, MyLSCTensor
, LCMTensor, MyLCMTensor
);
myclass() : Critter(7,3,2), aFixedCritter(3) {}
};
bool DebugIOTest(void) {
SpinColourVector scv, scv2;
scv2 = scv;
ioTest<Hdf5Writer, Hdf5Reader, SpinColourVector>("iotest_vector.h5", scv, "SpinColourVector");
SpinColourMatrix scm;
ioTest<Hdf5Writer, Hdf5Reader, SpinColourMatrix>("iotest_matrix.h5", scm, "SpinColourMatrix");
constexpr TestScalar Inc{1,-1};
TestTensor t(3,6,2);
TestScalar Val{Inc};
for( int i = 0 ; i < t.dimension(0) ; i++)
for( int j = 0 ; j < t.dimension(1) ; j++)
for( int k = 0 ; k < t.dimension(2) ; k++) {
t(i,j,k) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, TestTensor>("iotest_tensor.h5", t, "eigen_tensor_instance_name");
// Now serialise a fixed size tensor
using FixedTensor = Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<8,4,3>>;
FixedTensor tf;
Val = Inc;
for( int i = 0 ; i < tf.dimension(0) ; i++)
for( int j = 0 ; j < tf.dimension(1) ; j++)
for( int k = 0 ; k < tf.dimension(2) ; k++) {
tf(i,j,k) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, FixedTensor>("iotest_tensor_fixed.h5", tf, "eigen_tensor_fixed_name");
myclass o;
ioTest<Hdf5Writer, Hdf5Reader, myclass>("iotest_object.h5", o, "myclass_object_instance_name");
2019-02-09 17:12:36 +00:00
// Tensor of spin colour
LSCTensor l;
Val = 0;
for( int i = 0 ; i < l.dimension(0) ; i++)
for( int j = 0 ; j < l.dimension(1) ; j++)
for( int k = 0 ; k < l.dimension(2) ; k++)
for( int s = 0 ; s < Ns ; s++ )
for( int c = 0 ; c < Nc ; c++ )
{
l(i,j,k)()(s)(c) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, LSCTensor>("iotest_LSCTensor.h5", l, "LSCTensor_object_instance_name");
// Tensor of spin colour
LCMTensor l2;
Val = 0;
for( int i = 0 ; i < l2.dimension(0) ; i++)
for( int j = 0 ; j < l2.dimension(1) ; j++)
for( int k = 0 ; k < l2.dimension(2) ; k++)
for( int l = 0 ; l < Ns ; l++ )
for( int c = 0 ; c < Nc ; c++ )
for( int c2 = 0 ; c2 < Nc ; c2++ )
{
l2(i,j,k)(l)()(c,c2) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, LCMTensor>("iotest_LCMTensor.h5", l2, "LCMTensor_object_instance_name");
std::cout << "Wow!" << std::endl;
return true;
}
//template <typename T> ReallyIsGridTensor struct {
//false_type;
//}
/*template<typename T>
struct GridSize : public std::integral_constant<std::size_t, 0> {};
template<typename T>
struct GridRank<iScalar<T>> : public std::integral_constant<std::size_t, rank<T>::value + 1> {};
template<class T, std::size_t N>
struct rank<T[N]> : public std::integral_constant<std::size_t, rank<T>::value + 1> {};
*/
template <typename T>
void DebugGridTensorTest_print( int i )
{
std::cout << i << " : " << is_grid_tensor<T>::value << ", depth" << grid_tensor_att<T>::depth << ", rank" << grid_tensor_att<T>::rank << ", count" << grid_tensor_att<T>::count << ", scalar_size" << grid_tensor_att<T>::scalar_size << ", size" << grid_tensor_att<T>::size << std::endl;
}
bool DebugGridTensorTest( void )
{
typedef Complex t1;
typedef iScalar<t1> t2;
typedef iVector<t1, Ns> t3;
typedef iMatrix<t1, Nc> t4;
typedef iVector<iMatrix<t1,3>,4> t5;
typedef iScalar<t5> t6;
typedef iMatrix<iVector<iScalar<iMatrix<t6, 4>>,2>,7> t7;
int i = 1;
DebugGridTensorTest_print<t1>( i++ );
DebugGridTensorTest_print<t2>( i++ );
DebugGridTensorTest_print<t3>( i++ );
DebugGridTensorTest_print<t4>( i++ );
DebugGridTensorTest_print<t5>( i++ );
DebugGridTensorTest_print<t6>( i++ );
DebugGridTensorTest_print<t7>( i++ );
return true;
}
2019-01-30 21:16:09 +00:00
#endif
2019-01-21 10:39:28 +00:00
int main(int argc, char *argv[])
{
2019-01-30 21:16:09 +00:00
#ifdef DEBUG
// Debug only - test of Eigen::Tensor
std::cout << "sizeof(std::streamsize) = " << sizeof(std::streamsize) << std::endl;
std::cout << "sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl;
//if( DebugEigenTest() ) return 0;
//if(DebugGridTensorTest()) return 0;
if(DebugIOTest()) return 0;
2019-01-30 21:16:09 +00:00
#endif
2019-01-22 13:19:39 +00:00
// Decode command-line parameters. 1st one is which test to run
2019-01-25 19:21:12 +00:00
int iTestNum = -1;
2019-01-22 13:19:39 +00:00
for(int i = 1 ; i < argc ; i++ ) {
std::cout << "argv[" << i << "]=\"" << argv[i] << "\"" << std::endl;
const char * p = argv[i];
if( * p == '/' || * p == '-' ) {
p++;
char c = * p++;
switch(toupper(c)) {
case 'T':
if( bNumber( iTestNum, p ) ) {
std::cout << "Test " << iTestNum << " requested";
if( * p )
std::cout << " (ignoring trailer \"" << p << "\")";
std::cout << std::endl;
}
else
std::cout << "Invalid test \"" << &argv[i][2] << "\"" << std::endl;
break;
default:
std::cout << "Ignoring switch \"" << &argv[i][1] << "\"" << std::endl;
break;
}
}
}
2019-01-21 10:39:28 +00:00
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
// For now perform free propagator test - replace this with distillation test(s)
2019-01-22 13:19:39 +00:00
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
2019-01-24 18:50:18 +00:00
//const unsigned int nt = GridDefaultLatt()[Tp];
2019-01-23 12:49:20 +00:00
2019-01-24 18:50:18 +00:00
switch(iTestNum) {
2019-01-22 13:19:39 +00:00
case 1:
2019-01-24 18:50:18 +00:00
test_Global( application );
test_LapEvec( application );
break;
case 2:
test_Global( application );
2019-01-22 13:19:39 +00:00
test_LapEvec( application );
2019-01-24 18:50:18 +00:00
test_Perambulators( application );
2019-01-22 13:19:39 +00:00
break;
case 3: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
break;
2019-01-25 19:14:22 +00:00
default: // 4
2019-01-24 18:50:18 +00:00
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
2019-01-23 12:49:20 +00:00
test_DistilVectors( application );
test_MesonField( application );
2019-01-22 13:19:39 +00:00
break;
case 5: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_PerambulatorsS( application );
test_DistilVectorsS( application );
test_MesonFieldSL( application );
break;
case 6: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_MesonSink( application );
break;
case 7: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
2019-02-08 15:49:52 +00:00
test_BaryonFieldPhi( application );
test_BaryonFieldRho( application );
break;
2019-01-22 13:19:39 +00:00
}
LOG(Message) << "====== XML creation for test " << iTestNum << " complete ======" << std::endl;
2019-01-21 10:39:28 +00:00
// execution
application.saveParameterFile("test_hadrons_distil.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}