1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-22 17:52:02 +01:00

Compare commits

...

32 Commits

Author SHA1 Message Date
0417b96896 Merge pull request #391 from giltirn/feature/dirichlet-gparity-stage
First stage of import
2022-05-03 08:50:18 -04:00
81fe4c937e Hopefully fix link errors on Intel compilers due to having no function body for MomentumFilterBase::apply_phase 2022-04-12 09:51:59 -04:00
f77f3a6598 Imported G-parity flavor algebra + tester from feature/gparity_HMC branch 2022-04-06 10:21:04 -04:00
239afb18fb Merge branch 'feature/dirichlet' into feature/dirichlet-gparity 2022-04-05 16:49:32 -04:00
ef820a26cd Bcopy on crusher compile 2022-04-05 16:49:02 -04:00
65abe4d0d3 Merge branch 'feature/dirichlet' into feature/dirichlet-gparity 2022-04-05 16:26:54 -04:00
5012adfebf Merge branch 'develop' into feature/dirichlet 2022-04-05 16:26:19 -04:00
b808d48fa1 Tone down printing in integrator 2022-04-05 16:25:22 -04:00
83f818a99d Updates for DDHMC 2022-04-05 16:24:34 -04:00
387397374a Current run options 2022-03-23 16:35:11 -04:00
605cf401e1 Merge branch 'feature/sumd-npr' into develop 2022-03-16 22:43:12 +00:00
f99c3660d2 Merge branch 'feature/cpu-threaded-smp' into develop 2022-03-16 22:07:54 +00:00
b615fa0f35 Merge pull request #388 from fjosw/feature/sumd-npr
Feature/sumd npr
2022-03-15 09:05:57 -04:00
bb5c16b97f New scripts 2022-03-03 17:00:37 -05:00
0d80eeb545 small DDHMC update 2022-03-03 16:56:02 -05:00
d1decee4cc Cleaned up unused variables in Lattice_reduction_gpu.h 2022-03-02 16:54:23 +00:00
d4ae71b880 sum_gpu_large and sum_gpu templates added. 2022-03-02 15:40:18 +00:00
b0f4eee78b New files 2022-03-01 19:09:13 -05:00
5340e50427 HMC running with new formulation 2022-03-01 17:10:25 -05:00
9aac1e6d64 Merge branch 'develop' into feature/sumd-npr 2022-03-01 10:51:38 -05:00
3e882f555d Large / small sumD options 2022-03-01 08:54:45 -05:00
0f1c5b08a1 Dirichlet filters running on AMD and now integrated in Fermion op 2022-02-23 19:29:28 -05:00
70988e43d2 Passes multinode dirichlet test with boundaries at
node boundary or at the single rank boundary
2022-02-23 01:42:14 -05:00
aab3bcb46f Dirichlet first cut - wrong answers on dagger multiply.
Struggling to get a compute node so changing systems
2022-02-22 19:58:33 +00:00
da06d15f73 Merge branch 'feature/feature/staggered-comms' into develop 2022-02-17 04:58:50 +00:00
e8b1251b8c Staggered fix finished 2022-02-17 04:51:13 +00:00
fad5a74a4b Bug fix to detection case 2022-02-15 10:27:39 -05:00
e83f6a6ae9 Merge branch 'develop' into feature/feature/staggered-comms 2022-02-15 08:52:39 -05:00
6283d11d50 Add the comment line to tell the existance of copied data/buffer 2022-02-08 15:22:06 +00:00
6616d5d090 Commit 2022-02-02 16:38:24 -05:00
42d56ea6b6 Verbosity 2021-10-29 02:23:08 +01:00
0b905a72dd Better reduction for GPUs 2021-10-29 02:22:22 +01:00
58 changed files with 3042 additions and 549 deletions

View File

@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);

View File

@ -16,6 +16,7 @@
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>

View File

@ -53,10 +53,11 @@ public:
// Communicator should know nothing of the physics grid, only processor grid.
////////////////////////////////////////////
int _Nprocessors; // How many in all
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
int _processor; // linear processor rank
Coordinate _processor_coor; // linear processor coordinate
unsigned long _ndimension;
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processor_coor; // linear processor coordinate
static Grid_MPI_Comm communicator_world;
Grid_MPI_Comm communicator;
std::vector<Grid_MPI_Comm> communicator_halo;
@ -97,8 +98,9 @@ public:
int BossRank(void) ;
int ThisRank(void) ;
const Coordinate & ThisProcessorCoor(void) ;
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
const Coordinate & ProcessorGrid(void) ;
int ProcessorCount(void) ;
int ProcessorCount(void) ;
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
@ -142,16 +144,16 @@ public:
int bytes);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,
int recv_from_rank,int do_recv,
int bytes,int dir);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,
int recv_from_rank,int do_recv,
int bytes,int dir);

View File

@ -106,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
// Remap using the shared memory optimising routine
// The remap creates a comm which must be freed
////////////////////////////////////////////////////
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors);
InitFromMPICommunicator(processors,optimal_comm);
SetCommunicator(optimal_comm);
///////////////////////////////////////////////////
@ -124,12 +124,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1);
Coordinate shm_processors (_ndimension,1);
// Can make 5d grid from 4d etc...
int pad = _ndimension-parent_ndimension;
for(int d=0;d<parent_ndimension;d++){
parent_processor_coor[pad+d]=parent._processor_coor[d];
parent_processors [pad+d]=parent._processors[d];
shm_processors [pad+d]=parent._shm_processors[d];
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
@ -154,6 +155,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
ccoor[d] = parent_processor_coor[d] % processors[d];
scoor[d] = parent_processor_coor[d] / processors[d];
ssize[d] = parent_processors[d] / processors[d];
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
@ -335,22 +337,22 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest,
int dest, int dox,
void *recv,
int from,
int from, int dor,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
int dest,int dox,
void *recv,
int from,
int from,int dor,
int bytes,int dir)
{
int ncomm =communicator_halo.size();
@ -370,28 +372,32 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
double off_node_bytes=0.0;
int tag;
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
if ( dox ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
}
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
} else {
if (dor) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
} else {
// TODO : make a OMP loop on CPU, call threaded bcopy
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
}
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
}

View File

@ -45,12 +45,14 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors)
{
_shm_processors = Coordinate(processors.size(),1);
srank=0;
SetCommunicator(communicator_world);
}
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
_shm_processors = Coordinate(processors.size(),1);
_processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1);
_processor_coor.resize(_ndimension);
@ -111,18 +113,18 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
}
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int xmit_to_rank,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,
int recv_from_rank,int dor,
int bytes, int dir)
{
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,
int recv_from_rank,int dor,
int bytes, int dir)
{
return 2.0*bytes;

View File

@ -93,9 +93,10 @@ public:
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
//////////////////////////////////////////////////////////////////////////////////////
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
// Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
///////////////////////////////////////////////////
// Provide shared memory facilities off comm world

View File

@ -152,7 +152,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
}
return log2size;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
//////////////////////////////////////////////////////////////////////////////
// Look and see if it looks like an HPE 8600 based on hostname conventions
@ -165,8 +165,8 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
gethostname(name,namelen);
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
}
static inline int divides(int a,int b)
{
@ -221,7 +221,7 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
dim=(dim+1) %ndimension;
}
}
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
@ -294,7 +294,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
Coordinate HyperCoor(ndimension);
GetShmDims(WorldDims,ShmDims);
SHM = ShmDims;
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
////////////////////////////////////////////////////////////////
@ -341,7 +342,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
}
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
////////////////////////////////////////////////////////////////
// Identify subblock of ranks on node spreading across dims
@ -353,6 +354,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
GetShmDims(WorldDims,ShmDims);
SHM=ShmDims;
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
////////////////////////////////////////////////////////////////

View File

@ -48,9 +48,10 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
_ShmSetup=1;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
optimal_comm = WorldComm;
SHM = Coordinate(processors.size(),1);
}
////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>

View File

@ -0,0 +1,55 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
typedef typename vobj::tensor_reduced normtype;
typedef typename normtype::scalar_object scalar;
std::vector<scalar> sff;
sliceSum(ff,sff,mu);
for(int t=0;t<sff.size();t++){
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
}
}
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -142,6 +142,15 @@ inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
@ -159,6 +168,22 @@ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -23,7 +23,7 @@ unsigned int nextPow2(Iterator x) {
}
template <class Iterator>
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
#ifdef GRID_CUDA
@ -37,13 +37,13 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
/*
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
*/
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
@ -53,12 +53,12 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
exit(EXIT_FAILURE);
return 0;
}
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
return 1;
}
template <class sobj, class Iterator>
@ -198,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator;
@ -207,7 +207,9 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks);
@ -218,6 +220,54 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
auto result = buffer_v[0];
return result;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
scalarD *ret_p = (scalarD *)&ret;
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
ret_p[w] = sumD_gpu_small(tbuf,osites);
}
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
if ( ok ) {
ret = sumD_gpu_small(lat,osites);
} else {
ret = sumD_gpu_large(lat,osites);
}
return ret;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -230,6 +280,13 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
return result;
}
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid);

View File

@ -69,6 +69,7 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(0);
@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogPerformance.Active(0);
GridLogIntegrator.Active(1);
GridLogColours.Active(0);
GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
}
}

View File

@ -182,6 +182,7 @@ extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;
extern Colours GridLogColours;
std::string demangle(const char* name) ;

View File

@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
#define ColourIndex (2)
#define SpinIndex (1)
#define LorentzIndex (0)
#define GparityFlavourIndex (0)
// Also should make these a named enum type
static constexpr int DaggerNo=0;
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
// Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix;
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
//G-parity flavour matrix
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
// Spin vector
typedef iSpinVector<Complex > SpinVector;
typedef iSpinVector<ComplexF> SpinVectorF;
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
//G-parity flavour vector
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
// singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.

View File

@ -40,6 +40,29 @@ class Action
public:
bool is_smeared = false;
RealD deriv_norm_sum;
RealD deriv_max_sum;
int deriv_num;
RealD deriv_us;
RealD S_us;
RealD refresh_us;
void reset_timer(void) {
deriv_us = S_us = refresh_us = 0.0;
deriv_num=0;
deriv_norm_sum = deriv_max_sum=0.0;
}
void deriv_log(RealD nrm, RealD max) { deriv_max_sum+=max; deriv_norm_sum+=nrm; deriv_num++;}
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return deriv_us; };
RealD refresh_timer(void) { return deriv_us; };
void deriv_timer_start(void) { deriv_us-=usecond(); }
void deriv_timer_stop(void) { deriv_us+=usecond(); }
void refresh_timer_start(void) { refresh_us-=usecond(); }
void refresh_timer_stop(void) { refresh_us+=usecond(); }
void S_timer_start(void) { S_us-=usecond(); }
void S_timer_stop(void) { S_us+=usecond(); }
// Heatbath?
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action

View File

@ -37,6 +37,10 @@ NAMESPACE_CHECK(ActionSet);
#include <Grid/qcd/action/ActionParams.h>
NAMESPACE_CHECK(ActionParams);
#include <Grid/qcd/action/filters/MomentumFilter.h>
#include <Grid/qcd/action/filters/DirichletFilter.h>
#include <Grid/qcd/action/filters/DDHMCFilter.h>
////////////////////////////////////////////
// Gauge Actions
////////////////////////////////////////////

View File

@ -63,6 +63,7 @@ struct StaggeredImplParams {
RealD, hi,
int, MaxIter,
RealD, tolerance,
RealD, mdtolerance,
int, degree,
int, precision,
int, BoundsCheckFreq);
@ -76,11 +77,13 @@ struct StaggeredImplParams {
RealD tol = 1.0e-8,
int _degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
int _BoundsCheckFreq=20,
RealD mdtol = 1.0e-6)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
mdtolerance(mdtol),
degree(_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};

View File

@ -68,7 +68,7 @@ public:
///////////////////////////////////////////////////////////////
// Support for MADWF tricks
///////////////////////////////////////////////////////////////
RealD Mass(void) { return mass; };
virtual RealD Mass(void) { return mass; };
void SetMass(RealD _mass) {
mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs

View File

@ -49,6 +49,8 @@ public:
virtual FermionField &tmp(void) = 0;
virtual void DirichletBlock(Coordinate & _Block) { assert(0); };
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };

View File

@ -75,6 +75,10 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
int Dirichlet;
Coordinate Block;
/********** Deprecate timers **********/
void Report(void);
void ZeroCounters(void);
double DhopCalls;
@ -173,7 +177,18 @@ public:
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
virtual void DirichletBlock(Coordinate & block)
{
assert(block.size()==Nd+1);
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
Dirichlet = 1;
Block = block;
Stencil.DirichletBlock(block);
StencilEven.DirichletBlock(block);
StencilOdd.DirichletBlock(block);
}
}
// Constructors
/*
WilsonFermion5D(int simd,

View File

@ -60,7 +60,8 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid)
_tmp(&FiveDimRedBlackGrid),
Dirichlet(0)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
@ -218,6 +219,14 @@ void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu.Grid());
HUmu = _Umu*(-0.5);
if ( Dirichlet ) {
std::cout << GridLogMessage << " Dirichlet BCs 5d " <<Block<<std::endl;
Coordinate GaugeBlock(Nd);
for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
std::cout << GridLogMessage << " Dirichlet BCs 4d " <<GaugeBlock<<std::endl;
DirichletFilter<GaugeField> Filter(GaugeBlock);
Filter.applyFilter(HUmu);
}
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);

View File

@ -0,0 +1,102 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// DDHMC filter with sub-block size B[mu]
////////////////////////////////////////////////////
template<typename GaugeField>
struct DDHMCFilter: public MomentumFilterBase<GaugeField>
{
Coordinate Block;
int Width;
DDHMCFilter(const Coordinate &_Block,int _Width=2): Block(_Block) { Width=_Width; }
void applyFilter(GaugeField &U) const override
{
GridBase *grid = U.Grid();
Coordinate Global=grid->GlobalDimensions();
GaugeField zzz(grid); zzz = Zero();
LatticeInteger coor(grid);
auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
////////////////////////////////////////////////////
// Zero BDY layers
////////////////////////////////////////////////////
std::cout<<GridLogMessage<<" DDHMC Force Filter Block "<<Block<<" width " <<Width<<std::endl;
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
LatticeCoordinate(coor,mu);
////////////////////////////////
// OmegaBar - zero all links contained in slice B-1,0 and
// mu links connecting to Omega
////////////////////////////////
if ( Width==1) {
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
if ( Width==2) {
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-3),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
if ( Width==3) {
U = where(mod(coor,B1)==Integer(B1-3),zzz,U);
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
U = where(mod(coor,B1)==Integer(2) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-4),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,71 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#pragma once
NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct DirichletFilter: public MomentumFilterBase<MomentaField>
{
typedef typename MomentaField::vector_type vector_type; //SIMD-vectorized complex type
typedef typename MomentaField::scalar_type scalar_type; //scalar complex type
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
Coordinate Block;
DirichletFilter(const Coordinate &_Block): Block(_Block){}
void applyFilter(MomentaField &P) const override
{
GridBase *grid = P.Grid();
typedef decltype(PeekIndex<LorentzIndex>(P, 0)) LatCM;
////////////////////////////////////////////////////
// Zero strictly links crossing between domains
////////////////////////////////////////////////////
LatticeInteger coor(grid);
LatCM zz(grid); zz = Zero();
for(int mu=0;mu<Nd;mu++) {
if ( (Block[mu]) && (Block[mu] < grid->GlobalDimensions()[mu] ) ) {
// If costly could provide Grid earlier and precompute masks
std::cout << " Dirichlet in mu="<<mu<<std::endl;
LatticeCoordinate(coor,mu);
auto P_mu = PeekIndex<LorentzIndex>(P, mu);
P_mu = where(mod(coor,Block[mu])==Integer(Block[mu]-1),zz,P_mu);
PokeIndex<LorentzIndex>(P, P_mu, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct MomentumFilterBase{
virtual void applyFilter(MomentaField &P) const;
virtual void applyFilter(MomentaField &P) const = 0;
};
//Do nothing

View File

@ -13,6 +13,31 @@ NAMESPACE_BEGIN(Grid);
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
}
template<class Field> void ChebyBoundsCheck(LinearOperatorBase<Field> &HermOp,
Field &GaussNoise,
RealD lo,RealD hi)
{
int orderfilter = 1000;
Chebyshev<Field> Cheb(lo,hi,orderfilter);
GridBase *FermionGrid = GaussNoise.Grid();
Field X(FermionGrid);
Field Z(FermionGrid);
X=GaussNoise;
RealD Nx = norm2(X);
Cheb(HermOp,X,Z);
RealD Nz = norm2(Z);
std::cout << "************************* "<<std::endl;
std::cout << " noise = "<<Nx<<std::endl;
std::cout << " Cheb x noise = "<<Nz<<std::endl;
std::cout << " Ratio = "<<Nz/Nx<<std::endl;
std::cout << "************************* "<<std::endl;
assert( ((Nz/Nx)<1.0) && " ChebyBoundsCheck ");
}
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
LinearOperatorBase<Field> &HermOp,

View File

@ -0,0 +1,163 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundaryBoson.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
RealD InnerStoppingCondition;
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
: NumOp(_NumOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_NumOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag P^dag P phi}
//
// NumOp == P
//
// Take phi = P^{-1} eta ; eta = P Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=ActionStoppingCondition;
NumOp.ImportGauge(U);
FermionField eta(NumOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
NumOp.ProjectBoundaryBar(eta);
//DumpSliceNorm("eta",eta);
NumOp.RInv(eta,Phi);
//DumpSliceNorm("Phi",Phi);
};
//////////////////////////////////////////////////////
// S = phi^dag Pdag P phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=ActionStoppingCondition;
NumOp.ImportGauge(U);
FermionField Y(NumOp.FermionGrid());
NumOp.R(Phi,Y);
RealD action = norm2(Y);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=DerivativeStoppingCondition;
NumOp.ImportGauge(U);
GridBase *fgrid = NumOp.FermionGrid();
GridBase *ugrid = NumOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DoidP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// P^dag P term
NumOp.dOmegaDagInv(P_Phi,DoidP_Phi); // Vector E
NumOp.dBoundaryDag(DoidP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidP_Phi); // Vector F
NumOp.dBoundaryBarDag(DobidDddDoidP_Phi,tmp);
X = DobiDdbPhi;
Y = DobidDddDoidP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DoiDdDobiDdbPhi;
Y = DoidP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,158 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
RealD InnerStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
RealD refresh_action;
public:
DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
: DenOp(_DenOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_DenOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
//
// DenOp == R
//
// Take phi = R eta ; eta = R^-1 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol =ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField eta(DenOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
DenOp.ProjectBoundaryBar(eta);
DenOp.R(eta,Phi);
//DumpSliceNorm("Phi",Phi);
refresh_action = norm2(eta);
};
//////////////////////////////////////////////////////
// S = phi^dag Rdag^-1 R^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField X(DenOp.FermionGrid());
DenOp.RInv(Phi,X);
RealD action = norm2(X);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=DerivativeStoppingCondition;
DenOp.ImportGauge(U);
GridBase *fgrid = DenOp.FermionGrid();
GridBase *ugrid = DenOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DiDdb_Phi(fgrid); // Vector C in my notes
FermionField DidRinv_Phi(fgrid); // Vector D in my notes
FermionField Rinv_Phi(fgrid);
// FermionField RinvDagRinv_Phi(fgrid);
// FermionField DdbdDidRinv_Phi(fgrid);
// R^-1 term
DenOp.dBoundaryBar(Phi,tmp);
DenOp.Dinverse(tmp,DiDdb_Phi); // Vector C
Rinv_Phi = Phi - DiDdb_Phi;
DenOp.ProjectBoundaryBar(Rinv_Phi);
// R^-dagger R^-1 term
DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
/*
DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
*/
X = DiDdb_Phi;
Y = DidRinv_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
DumpSliceNorm("force",dSdU);
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,237 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD InnerStoppingCondition;
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,
SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,
RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
: NumOp(_NumOp), DenOp(_DenOp),
Phi(_NumOp.PeriodicFermOpD.FermionGrid()),
InnerStoppingCondition(_InnerTol),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol)
{};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField eta(NumOp.PeriodicFermOpD.FermionGrid());
FermionField tmp(NumOp.PeriodicFermOpD.FermionGrid());
// P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
//
// NumOp == P
// DenOp == R
//
// Take phi = P^{-1} R eta ; eta = R^-1 P Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
NumOp.ProjectBoundaryBar(eta);
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = ActionStoppingCondition;
NumOp.tol = ActionStoppingCondition;
DenOp.R(eta,tmp);
NumOp.RInv(tmp,Phi);
DumpSliceNorm("Phi",Phi);
};
//////////////////////////////////////////////////////
// S = phi^dag Pdag Rdag^-1 R^-1 P phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.PeriodicFermOpD.FermionGrid());
FermionField Y(NumOp.PeriodicFermOpD.FermionGrid());
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = ActionStoppingCondition;
NumOp.tol = ActionStoppingCondition;
NumOp.R(Phi,Y);
DenOp.RInv(Y,X);
RealD action = norm2(X);
// std::cout << " DD boundary action is " <<action<<std::endl;
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GridBase *fgrid = NumOp.PeriodicFermOpD.FermionGrid();
GridBase *ugrid = NumOp.PeriodicFermOpD.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
FermionField DdbdDidRinvP_Phi(fgrid);
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
FermionField RinvP_Phi(fgrid);
FermionField RinvDagRinvP_Phi(fgrid);
FermionField PdagRinvDagRinvP_Phi(fgrid);
// RealD action = S(U);
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = DerivativeStoppingCondition;
NumOp.tol = DerivativeStoppingCondition;
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// R^-1 P term
DenOp.dBoundaryBar(P_Phi,tmp);
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
RinvP_Phi = P_Phi - DiDdbP_Phi;
DenOp.ProjectBoundaryBar(RinvP_Phi); // Correct to here
// R^-dagger R^-1 P term
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
DenOp.dBoundaryBarDag(DidRinvP_Phi,DdbdDidRinvP_Phi);
RinvDagRinvP_Phi = RinvP_Phi - DdbdDidRinvP_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
// P^dag R^-dagger R^-1 P term
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
NumOp.dBoundaryBarDag(DobidDddDoidRinvDagRinvP_Phi,tmp);
PdagRinvDagRinvP_Phi = RinvDagRinvP_Phi- tmp;
NumOp.ProjectBoundaryBar(PdagRinvDagRinvP_Phi);
/*
std::cout << "S eval "<< action << std::endl;
std::cout << "S - IP1 "<< innerProduct(Phi,PdagRinvDagRinvP_Phi) << std::endl;
std::cout << "S - IP2 "<< norm2(RinvP_Phi) << std::endl;
NumOp.R(Phi,tmp);
tmp = tmp - P_Phi;
std::cout << "diff1 "<<norm2(tmp) <<std::endl;
DenOp.RInv(P_Phi,tmp);
tmp = tmp - RinvP_Phi;
std::cout << "diff2 "<<norm2(tmp) <<std::endl;
DenOp.RDagInv(RinvP_Phi,tmp);
tmp = tmp - RinvDagRinvP_Phi;
std::cout << "diff3 "<<norm2(tmp) <<std::endl;
DenOp.RDag(RinvDagRinvP_Phi,tmp);
tmp = tmp - PdagRinvDagRinvP_Phi;
std::cout << "diff4 "<<norm2(tmp) <<std::endl;
*/
dSdU=Zero();
X = DobiDdbPhi;
Y = DobidDddDoidRinvDagRinvP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DoiDdDobiDdbPhi;
Y = DoidRinvDagRinvP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DiDdbP_Phi;
Y = DidRinvP_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@ -59,6 +59,7 @@ NAMESPACE_BEGIN(Grid);
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField Noise; // spare noise field for bounds check
public:
@ -70,6 +71,7 @@ NAMESPACE_BEGIN(Grid);
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
Noise(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
@ -87,7 +89,11 @@ NAMESPACE_BEGIN(Grid);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string action_name(){
std::stringstream sstream;
sstream<< "OneFlavourEvenOddRatioRationalPseudoFermionAction det("<< DenOp.Mass() << ") / det("<<NumOp.Mass()<<")";
return sstream.str();
}
virtual std::string LogParameters(){
std::stringstream sstream;
@ -128,6 +134,7 @@ NAMESPACE_BEGIN(Grid);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
Noise = etaOdd;
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
@ -175,9 +182,10 @@ NAMESPACE_BEGIN(Grid);
grid->Broadcast(0,r);
if ( (r%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
gauss = Noise;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
ChebyBoundsCheck(MdagM,Noise,param.lo,param.hi);
}
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi

View File

@ -49,10 +49,12 @@ NAMESPACE_BEGIN(Grid);
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerNegQuarter;
MultiShiftFunction MDPowerQuarter;
MultiShiftFunction MDPowerNegHalf;
private:
FermionOperator<Impl> & NumOp;// the basic operator
@ -79,6 +81,10 @@ NAMESPACE_BEGIN(Grid);
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
// Derive solves different tol
MDPowerQuarter.Init(remez,param.mdtolerance,false);
MDPowerNegHalf.Init(remez,param.mdtolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
@ -204,8 +210,8 @@ NAMESPACE_BEGIN(Grid);
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
const int n_f = MDPowerNegHalf.poles.size();
const int n_pv = MDPowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
@ -224,8 +230,8 @@ NAMESPACE_BEGIN(Grid);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,MDPowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,MDPowerNegHalf);
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
@ -244,7 +250,7 @@ NAMESPACE_BEGIN(Grid);
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
ak = MDPowerNegHalf.residues[k];
DenOp.M(MfMpvPhi_k[k],Y);
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
@ -254,7 +260,7 @@ NAMESPACE_BEGIN(Grid);
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
ak = MDPowerQuarter.residues[k];
NumOp.M(MpvPhi_k[k],Y);
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;

View File

@ -75,11 +75,15 @@ NAMESPACE_BEGIN(Grid);
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
};
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
virtual std::string action_name(){
std::stringstream sstream;
sstream<<"TwoFlavourEvenOddRatioPseudoFermionAction det("<<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
return sstream.str();
}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
sstream<< GridLogMessage << "["<<action_name()<<"] -- No further parameters "<<std::endl;
return sstream.str();
}

View File

@ -0,0 +1,203 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
typedef FermionOperator<Impl> FermOp;
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &DerivativeDagSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &HeatbathSolver;
FermionField phi4; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS ) :
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & DDS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
DerivativeDagSolver(DDS),
ActionSolver(AS),
HeatbathSolver(HS),
phi4(_NumOp.GaugeGrid())
{};
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta4(NumOp.GaugeGrid());
FermionField eta5(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
gaussian(pRNG,eta4);
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
DenOp.M(eta5,tmp); // M eta
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
phi5=phi5*scale;
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
// Project to 4d
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
};
//////////////////////////////////////////////////////
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField Y4(NumOp.GaugeGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
NumOp.M(phi5,X); // X= V phi
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
NumOp.ExportFourDimPseudoFermion(Y,Y4);
RealD action = norm2(Y4);
return action;
};
//////////////////////////////////////////////////////
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi(NumOp.FermionGrid());
FermionField Vphi(NumOp.FermionGrid());
FermionField MinvVphi(NumOp.FermionGrid());
FermionField tmp4(NumOp.GaugeGrid());
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=V phi
//X = (Mdag V phi
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
NumOp.ImportFourDimPseudoFermion(phi4,phi);
NumOp.M(phi,Vphi); // V phi
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
// Projects onto the physical space and back
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
// X = proj M^-dag V phi
// Need an adjoint solve
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,6 @@
#ifndef GRID_GPARITY_H_
#define GRID_GPARITY_H_
#include<Grid/qcd/gparity/GparityFlavour.h>
#endif

View File

@ -0,0 +1,34 @@
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
}};
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
GparityFlavour(GparityFlavour::Algebra::Identity),
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
}};
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
"SigmaX",
"MinusSigmaX",
"SigmaY",
"MinusSigmaY",
"SigmaZ",
"MinusSigmaZ",
"Identity",
"MinusIdentity",
"ProjPlus",
"MinusProjPlus",
"ProjMinus",
"MinusProjMinus"}};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,475 @@
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
#define GRID_QCD_GPARITY_FLAVOUR_H
//Support for flavour-matrix operations acting on the G-parity flavour index
#include <array>
NAMESPACE_BEGIN(Grid);
class GparityFlavour {
public:
GRID_SERIALIZABLE_ENUM(Algebra, undef,
SigmaX, 0,
MinusSigmaX, 1,
SigmaY, 2,
MinusSigmaY, 3,
SigmaZ, 4,
MinusSigmaZ, 5,
Identity, 6,
MinusIdentity, 7,
ProjPlus, 8,
MinusProjPlus, 9,
ProjMinus, 10,
MinusProjMinus, 11
);
static constexpr unsigned int nSigma = 12;
static const std::array<const char *, nSigma> name;
static const std::array<const GparityFlavour, 3> sigma_mu;
static const std::array<const GparityFlavour, 6> sigma_all;
Algebra g;
public:
accelerator GparityFlavour(Algebra initg): g(initg) {}
};
// 0 1 x vector
// 1 0
template<class vtype>
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(1);
ret(1) = rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(1,0);
ret(0,1) = rhs(1,1);
ret(1,0) = rhs(0,0);
ret(1,1) = rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,1);
ret(0,1) = rhs(0,0);
ret(1,0) = rhs(1,1);
ret(1,1) = rhs(1,0);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(1);
ret(1) = -rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(1,0);
ret(0,1) = -rhs(1,1);
ret(1,0) = -rhs(0,0);
ret(1,1) = -rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,1);
ret(0,1) = -rhs(0,0);
ret(1,0) = -rhs(1,1);
ret(1,1) = -rhs(1,0);
};
// 0 -i x vector
// i 0
template<class vtype>
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesMinusI(rhs(1));
ret(1) = timesI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(1,0));
ret(0,1) = timesMinusI(rhs(1,1));
ret(1,0) = timesI(rhs(0,0));
ret(1,1) = timesI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(0,1));
ret(0,1) = timesMinusI(rhs(0,0));
ret(1,0) = timesI(rhs(1,1));
ret(1,1) = timesMinusI(rhs(1,0));
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesI(rhs(1));
ret(1) = timesMinusI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(1,0));
ret(0,1) = timesI(rhs(1,1));
ret(1,0) = timesMinusI(rhs(0,0));
ret(1,1) = timesMinusI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(0,1));
ret(0,1) = timesI(rhs(0,0));
ret(1,0) = timesMinusI(rhs(1,1));
ret(1,1) = timesI(rhs(1,0));
};
// 1 0 x vector
// 0 -1
template<class vtype>
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
//G-parity flavour projection 1/2(1+\sigma_2)
//1 -i
//i 1
template<class vtype>
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
};
//G-parity flavour projection 1/2(1-\sigma_2)
//1 i
//-i 1
template<class vtype>
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
{
iVector<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
multFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
multFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
multFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
multFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
multFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
multFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
multFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
multFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
multFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
multFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
multFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
multFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
lmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
lmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
lmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
lmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
lmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
lmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
lmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
lmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
lmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
lmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
lmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
lmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
rmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
rmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
rmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
rmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
rmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
rmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
rmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
rmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
rmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
rmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
rmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
rmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
NAMESPACE_END(Grid);
#endif // include guard

View File

@ -129,18 +129,10 @@ public:
Runner(S);
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Resources.AddRNGs();
Field U(UGrid);
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
void initializeGaugeFieldAndRNGs(Field &U){
if(!Resources.haveRNGs()) Resources.AddRNGs();
if (Parameters.StartingType == "HotStart") {
// Hot start
@ -167,6 +159,25 @@ private:
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
exit(1);
}
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
// Sets the momentum filter
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
Smearing.set_Field(U);

View File

@ -34,6 +34,7 @@ directory
* @brief Classes for Hybrid Monte Carlo update
*
* @author Guido Cossu
* @author Peter Boyle
*/
//--------------------------------------------------------------------
#pragma once
@ -115,22 +116,17 @@ private:
random(sRNG, rn_test);
std::cout << GridLogMessage
<< "--------------------------------------------------\n";
std::cout << GridLogMessage << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n";
std::cout << GridLogMessage
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogMessage
<< "--------------------------------------------------\n";
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
return true;
} else { // rejected
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
std::cout << GridLogMessage
<< "--------------------------------------------------\n";
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
return false;
}
}
@ -139,19 +135,68 @@ private:
// Evolution
/////////////////////////////////////////////////////////
RealD evolve_hmc_step(Field &U) {
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
RealD H0 = TheIntegrator.S(U); // initial state action
GridBase *Grid = U.Grid();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Mainly for DDHMC perform a random translation of U modulo volume
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Random shifting gauge field by [";
for(int d=0;d<Grid->Nd();d++) {
int L = Grid->GlobalDimensions()[d];
RealD rn_uniform; random(sRNG, rn_uniform);
int shift = (int) (rn_uniform*L);
std::cout << shift;
if(d<Grid->Nd()-1) std::cout <<",";
else std::cout <<"]\n";
U = Cshift(U,d,shift);
}
std::cout << GridLogMessage << "--------------------------------------------------\n";
TheIntegrator.reset_timer();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// set U and initialize P and phi's
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
TheIntegrator.refresh(U, sRNG, pRNG);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// initial state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute initial action";
RealD H0 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::streamsize current_precision = std::cout.precision();
std::cout.precision(15);
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
TheIntegrator.integrate(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
RealD H1 = TheIntegrator.S(U); // updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
// updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute final action";
RealD H1 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
///////////////////////////////////////////////////////////
if(0){
std::cout << "------------------------- Reversibility test" << std::endl;
@ -163,17 +208,16 @@ private:
}
///////////////////////////////////////////////////////////
std::cout.precision(15);
std::cout << GridLogMessage << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout.precision(current_precision);
return (H1 - H0);
}
public:
/////////////////////////////////////////
@ -195,10 +239,13 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}
double t0=usecond();
@ -207,20 +254,19 @@ public:
DeltaH = evolve_hmc_step(Ucopy);
// Metropolis-Hastings test
bool accept = true;
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
accept = metropolis_test(DeltaH);
} else {
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
}
if (accept)
Ucur = Ucopy;
double t1=usecond();
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
TheIntegrator.print_timer();
for (int obs = 0; obs < Observables.size(); obs++) {
std::cout << GridLogDebug << "Observables # " << obs << std::endl;
@ -228,7 +274,7 @@ public:
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
}
}

View File

@ -72,6 +72,8 @@ class HMCResourceManager {
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
typedef typename ImplementationPolicy::Field MomentaField;
typedef typename ImplementationPolicy::Field Field;
// Named storage for grid pairs (std + red-black)
std::unordered_map<std::string, GridModule> Grids;
@ -80,6 +82,9 @@ class HMCResourceManager {
// SmearingModule<ImplementationPolicy> Smearing;
std::unique_ptr<CheckpointerBaseModule> CP;
// Momentum filter
std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
// A vector of HmcObservable modules
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
@ -90,6 +95,7 @@ class HMCResourceManager {
bool have_RNG;
bool have_CheckPointer;
bool have_Filter;
// NOTE: operator << is not overloaded for std::vector<string>
// so this function is necessary
@ -101,7 +107,7 @@ class HMCResourceManager {
public:
HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
template <class ReaderClass, class vector_type = vComplex >
void initialize(ReaderClass &Read){
@ -129,6 +135,7 @@ public:
RNGModuleParameters RNGpar(Read);
SetRNGSeeds(RNGpar);
// Observables
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
Read.push(observable_string);// here must check if existing...
@ -208,6 +215,16 @@ public:
AddGrid(s, Mod);
}
void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
assert(have_Filter==false);
Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
have_Filter = true;
}
MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
if ( !have_Filter)
SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
return Filter.get();
}
GridCartesian* GetCartesian(std::string s = "") {
if (s.empty()) s = Grids.begin()->first;
@ -226,6 +243,9 @@ public:
//////////////////////////////////////////////////////
// Random number generators
//////////////////////////////////////////////////////
//Return true if the RNG objects have been instantiated
bool haveRNGs() const{ return have_RNG; }
void AddRNGs(std::string s = "") {
// Couple the RNGs to the GridModule tagged by s

View File

@ -33,7 +33,6 @@ directory
#define INTEGRATOR_INCLUDED
#include <memory>
#include "MomentumFilter.h"
NAMESPACE_BEGIN(Grid);
@ -67,6 +66,7 @@ public:
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
typedef typename FieldImplementation::Field MomentaField; //for readability
typedef typename FieldImplementation::Field Field;
@ -119,36 +119,58 @@ protected:
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<< std::endl;
// DumpSliceNorm("force ",force,Nd-1);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
MomFilter->applyFilter(Mom);
}
void update_U(Field& U, double ep)
@ -162,8 +184,12 @@ protected:
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(Mom, U, ep);
FieldImplementation::update_field(MomFiltered, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
@ -206,6 +232,66 @@ public:
const MomentaField & getMomentum() const{ return P; }
void reset_timer(void)
{
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
as[level].actions.at(actionID)->reset_timer();
}
}
}
void print_timer(void)
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force average size "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] : "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void print_parameters()
{
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
@ -224,7 +310,6 @@ public:
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void reverse_momenta()
@ -267,15 +352,19 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
auto name = as[level].actions.at(actionID)->action_name();
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop();
}
// Refresh the higher representation actions
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
}
MomFilter->applyFilter(P);
}
// to be used by the actionlevel class to iterate
@ -310,7 +399,9 @@ public:
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}

View File

@ -131,8 +131,11 @@ class CartesianStencilAccelerator {
int _checkerboard;
int _npoints; // Move to template param?
int _osites;
int _dirichlet;
StencilVector _directions;
StencilVector _distances;
StencilVector _comms_send;
StencilVector _comms_recv;
StencilVector _comm_buf_size;
StencilVector _permute_type;
StencilVector same_node;
@ -226,6 +229,8 @@ public:
void * recv_buf;
Integer to_rank;
Integer from_rank;
Integer do_send;
Integer do_recv;
Integer bytes;
};
struct Merge {
@ -240,7 +245,20 @@ public:
cobj * mpi_p;
Integer buffer_size;
};
struct CopyReceiveBuffer {
void * from_p;
void * to_p;
Integer bytes;
};
struct CachedTransfer {
Integer direction;
Integer OrthogPlane;
Integer DestProc;
Integer bytes;
Integer lane;
Integer cb;
void *recv_buf;
};
protected:
GridBase * _grid;
@ -271,7 +289,8 @@ public:
std::vector<Merge> MergersSHM;
std::vector<Decompress> Decompressions;
std::vector<Decompress> DecompressionsSHM;
std::vector<CopyReceiveBuffer> CopyReceiveBuffers ;
std::vector<CachedTransfer> CachedTransfers;
///////////////////////////////////////////////////////////
// Unified Comms buffers for all directions
///////////////////////////////////////////////////////////
@ -284,29 +303,6 @@ public:
int u_comm_offset;
int _unified_buffer_size;
/////////////////////////////////////////
// Timing info; ugly; possibly temporary
/////////////////////////////////////////
double commtime;
double mpi3synctime;
double mpi3synctime_g;
double shmmergetime;
double gathertime;
double gathermtime;
double halogtime;
double mergetime;
double decompresstime;
double comms_bytes;
double shm_bytes;
double splicetime;
double nosplicetime;
double calls;
std::vector<double> comm_bytes_thr;
std::vector<double> shm_bytes_thr;
std::vector<double> comm_time_thr;
std::vector<double> comm_enter_thr;
std::vector<double> comm_leave_thr;
////////////////////////////////////////
// Stencil query
////////////////////////////////////////
@ -333,11 +329,12 @@ public:
//////////////////////////////////////////
// Comms packet queue for asynch thread
// Use OpenMP Tasks for cleaner ???
// must be called *inside* parallel region
//////////////////////////////////////////
/*
void CommunicateThreaded()
{
#ifdef GRID_OMP
// must be called in parallel region
int mythread = omp_get_thread_num();
int nthreads = CartesianCommunicator::nCommThreads;
#else
@ -346,65 +343,29 @@ public:
#endif
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
comm_enter_thr[mythread] = usecond();
for (int i = mythread; i < Packets.size(); i += nthreads) {
uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comm_bytes_thr[mythread] += bytes;
shm_bytes_thr[mythread] += 2*Packets[i].bytes-bytes; // Send + Recv.
}
comm_leave_thr[mythread]= usecond();
comm_time_thr[mythread] += comm_leave_thr[mythread] - comm_enter_thr[mythread];
}
}
void CollateThreads(void)
{
int nthreads = CartesianCommunicator::nCommThreads;
double first=0.0;
double last =0.0;
for(int t=0;t<nthreads;t++) {
double t0 = comm_enter_thr[t];
double t1 = comm_leave_thr[t];
comms_bytes+=comm_bytes_thr[t];
shm_bytes +=shm_bytes_thr[t];
comm_enter_thr[t] = 0.0;
comm_leave_thr[t] = 0.0;
comm_time_thr[t] = 0.0;
comm_bytes_thr[t]=0;
shm_bytes_thr[t]=0;
if ( first == 0.0 ) first = t0; // first is t0
if ( (t0 > 0.0) && ( t0 < first ) ) first = t0; // min time seen
if ( t1 > last ) last = t1; // max time seen
}
commtime+= last-first;
}
*/
////////////////////////////////////////////////////////////////////////
// Non blocking send and receive. Necessarily parallel.
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
reqs.resize(Packets.size());
commtime-=usecond();
for(int i=0;i<Packets.size();i++){
uint64_t bytes=_grid->StencilSendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comms_bytes+=bytes;
shm_bytes +=2*Packets[i].bytes-bytes;
_grid->StencilSendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].bytes,i);
}
}
@ -413,7 +374,6 @@ public:
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromComplete(reqs[i],i);
}
commtime+=usecond();
}
////////////////////////////////////////////////////////////////////////
// Blocking send and receive. Either sequential or parallel.
@ -421,28 +381,27 @@ public:
void Communicate(void)
{
if ( CartesianCommunicator::CommunicatorPolicy == CartesianCommunicator::CommunicatorPolicySequential ){
thread_region {
// must be called in parallel region
int mythread = thread_num();
int maxthreads= thread_max();
int nthreads = CartesianCommunicator::nCommThreads;
assert(nthreads <= maxthreads);
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
for (int i = mythread; i < Packets.size(); i += nthreads) {
double start = usecond();
uint64_t bytes= _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comm_bytes_thr[mythread] += bytes;
shm_bytes_thr[mythread] += Packets[i].bytes - bytes;
comm_time_thr[mythread] += usecond() - start;
}
}
}
} else { // Concurrent and non-threaded asynch calls to MPI
/////////////////////////////////////////////////////////
// several way threaded on different communicators.
// Cannot combine with Dirichlet operators
// This scheme is needed on Intel Omnipath for best performance
// Deprecate once there are very few omnipath clusters
/////////////////////////////////////////////////////////
int nthreads = CartesianCommunicator::nCommThreads;
int old = GridThread::GetThreads();
GridThread::SetThreads(nthreads);
thread_for(i,Packets.size(),{
_grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].bytes,i);
});
GridThread::SetThreads(old);
} else {
/////////////////////////////////////////////////////////
// Concurrent and non-threaded asynch calls to MPI
/////////////////////////////////////////////////////////
std::vector<std::vector<CommsRequest_t> > reqs;
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
@ -484,31 +443,23 @@ public:
sshift[1] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
splicetime-=usecond();
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx,point);
is_same_node = is_same_node && tmp;
splicetime+=usecond();
} else {
nosplicetime-=usecond();
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx);
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx,point);
is_same_node = is_same_node && tmp;
nosplicetime+=usecond();
}
} else {
if(splice_dim){
splicetime-=usecond();
// if checkerboard is unfavourable take two passes
// both with block stride loop iteration
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx);
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx,point);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx,point);
is_same_node = is_same_node && tmp1 && tmp2;
splicetime+=usecond();
} else {
nosplicetime-=usecond();
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx);
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx,point);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx,point);
is_same_node = is_same_node && tmp1 && tmp2;
nosplicetime+=usecond();
}
}
}
@ -518,13 +469,10 @@ public:
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
mpi3synctime_g-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime_g+=usecond();
// conformable(source.Grid(),_grid);
assert(source.Grid()==_grid);
halogtime-=usecond();
u_comm_offset=0;
@ -538,7 +486,6 @@ public:
assert(u_comm_offset==_unified_buffer_size);
accelerator_barrier();
halogtime+=usecond();
}
/////////////////////////
@ -551,14 +498,72 @@ public:
Mergers.resize(0);
MergersSHM.resize(0);
Packets.resize(0);
calls++;
CopyReceiveBuffers.resize(0);
CachedTransfers.resize(0);
}
void AddPacket(void *xmit,void * rcv, Integer to,Integer from,Integer bytes){
void AddCopy(void *from,void * to, Integer bytes)
{
// std::cout << "Adding CopyReceiveBuffer "<<std::hex<<from<<" "<<to<<std::dec<<" "<<bytes<<std::endl;
CopyReceiveBuffer obj;
obj.from_p = from;
obj.to_p = to;
obj.bytes= bytes;
CopyReceiveBuffers.push_back(obj);
}
void CommsCopy()
{
// These are device resident MPI buffers.
for(int i=0;i<CopyReceiveBuffers.size();i++){
cobj *from=(cobj *)CopyReceiveBuffers[i].from_p;
cobj *to =(cobj *)CopyReceiveBuffers[i].to_p;
Integer words = CopyReceiveBuffers[i].bytes/sizeof(cobj);
// std::cout << "CopyReceiveBuffer "<<std::hex<<from<<" "<<to<<std::dec<<" "<<words*sizeof(cobj)<<std::endl;
accelerator_forNB(j, words, cobj::Nsimd(), {
coalescedWrite(to[j] ,coalescedRead(from [j]));
});
}
}
Integer CheckForDuplicate(Integer direction, Integer OrthogPlane, Integer DestProc, void *recv_buf,Integer lane,Integer bytes,Integer cb)
{
CachedTransfer obj;
obj.direction = direction;
obj.OrthogPlane = OrthogPlane;
obj.DestProc = DestProc;
obj.recv_buf = recv_buf;
obj.lane = lane;
obj.bytes = bytes;
obj.cb = cb;
for(int i=0;i<CachedTransfers.size();i++){
if ( (CachedTransfers[i].direction ==direction)
&&(CachedTransfers[i].OrthogPlane==OrthogPlane)
&&(CachedTransfers[i].DestProc ==DestProc)
&&(CachedTransfers[i].bytes ==bytes)
&&(CachedTransfers[i].lane ==lane)
&&(CachedTransfers[i].cb ==cb)
){
// std::cout << "Found duplicate plane dir "<<direction<<" plane "<< OrthogPlane<< " simd "<<lane << " relproc "<<DestProc<< " bytes "<<bytes <<std::endl;
AddCopy(CachedTransfers[i].recv_buf,recv_buf,bytes);
return 1;
}
}
// std::cout << "No duplicate plane dir "<<direction<<" plane "<< OrthogPlane<< " simd "<<lane << " relproc "<<DestProc<<" bytes "<<bytes<<std::endl;
CachedTransfers.push_back(obj);
return 0;
}
void AddPacket(void *xmit,void * rcv,
Integer to, Integer do_send,
Integer from, Integer do_recv,
Integer bytes){
Packet p;
p.send_buf = xmit;
p.recv_buf = rcv;
p.to_rank = to;
p.from_rank= from;
p.do_send = do_send;
p.do_recv = do_recv;
p.bytes = bytes;
Packets.push_back(p);
}
@ -578,22 +583,17 @@ public:
mv.push_back(m);
}
template<class decompressor> void CommsMerge(decompressor decompress) {
CommsCopy();
CommsMerge(decompress,Mergers,Decompressions);
}
template<class decompressor> void CommsMergeSHM(decompressor decompress) {
mpi3synctime-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime+=usecond();
shmmergetime-=usecond();
CommsMerge(decompress,MergersSHM,DecompressionsSHM);
shmmergetime+=usecond();
}
template<class decompressor>
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd) {
mergetime-=usecond();
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd)
{
for(int i=0;i<mm.size();i++){
auto mp = &mm[i].mpointer[0];
auto vp0= &mm[i].vpointers[0][0];
@ -603,9 +603,7 @@ public:
decompress.Exchange(mp,vp0,vp1,type,o);
});
}
mergetime+=usecond();
decompresstime-=usecond();
for(int i=0;i<dd.size();i++){
auto kp = dd[i].kernel_p;
auto mp = dd[i].mpi_p;
@ -613,7 +611,6 @@ public:
decompress.Decompress(kp,mp,o);
});
}
decompresstime+=usecond();
}
////////////////////////////////////////
// Set up routines
@ -650,19 +647,58 @@ public:
}
}
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)
{
this->_dirichlet = 1;
for(int ii=0;ii<this->_npoints;ii++){
int dimension = this->_directions[ii];
int displacement = this->_distances[ii];
int shift = displacement;
int gd = _grid->_gdimensions[dimension];
int fd = _grid->_fdimensions[dimension];
int pd = _grid->_processors [dimension];
int ld = gd/pd;
int pc = _grid->_processor_coor[dimension];
///////////////////////////////////////////
// Figure out dirichlet send and receive
// on this leg of stencil.
///////////////////////////////////////////
int comm_dim = _grid->_processors[dimension] >1 ;
int block = dirichlet_block[dimension];
this->_comms_send[ii] = comm_dim;
this->_comms_recv[ii] = comm_dim;
if ( block ) {
assert(abs(displacement) < ld );
if( displacement > 0 ) {
// High side, low side
// | <--B--->|
// | | |
// noR
// noS
if ( (ld*(pc+1) ) % block == 0 ) this->_comms_recv[ii] = 0;
if ( ( ld*pc ) % block == 0 ) this->_comms_send[ii] = 0;
} else {
// High side, low side
// | <--B--->|
// | | |
// noS
// noR
if ( (ld*(pc+1) ) % block == 0 ) this->_comms_send[ii] = 0;
if ( ( ld*pc ) % block == 0 ) this->_comms_recv[ii] = 0;
}
}
}
}
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p)
: shm_bytes_thr(npoints),
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
comm_leave_thr(npoints),
comm_time_thr(npoints)
{
this->_dirichlet = 0;
face_table_computed=0;
_grid = grid;
this->parameters=p;
@ -675,6 +711,8 @@ public:
this->_simd_layout = _grid->_simd_layout; // copy simd_layout to give access to Accelerator Kernels
this->_directions = StencilVector(directions);
this->_distances = StencilVector(distances);
this->_comms_send.resize(npoints);
this->_comms_recv.resize(npoints);
this->same_node.resize(npoints);
_unified_buffer_size=0;
@ -693,24 +731,27 @@ public:
int displacement = distances[i];
int shift = displacement;
int gd = _grid->_gdimensions[dimension];
int fd = _grid->_fdimensions[dimension];
int pd = _grid->_processors [dimension];
int ld = gd/pd;
int rd = _grid->_rdimensions[dimension];
int pc = _grid->_processor_coor[dimension];
this->_permute_type[point]=_grid->PermuteType(dimension);
this->_checkerboard = checkerboard;
//////////////////////////
// the permute type
//////////////////////////
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int rotate_dim = _grid->_simd_layout[dimension]>2;
this->_comms_send[ii] = comm_dim;
this->_comms_recv[ii] = comm_dim;
assert ( (rotate_dim && comm_dim) == false) ; // Do not think spread out is supported
int sshift[2];
//////////////////////////
// Underlying approach. For each local site build
// up a table containing the npoint "neighbours" and whether they
@ -811,6 +852,7 @@ public:
GridBase *grid=_grid;
const int Nsimd = grid->Nsimd();
int comms_recv = this->_comms_recv[point];
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
@ -867,7 +909,9 @@ public:
if ( (shiftpm== 1) && (sx<x) && (grid->_processor_coor[dimension]==grid->_processors[dimension]-1) ) {
wraparound = 1;
}
if (!offnode) {
// Wrap locally dirichlet support case OR node local
if ( (offnode==0) || (comms_recv==0) ) {
int permute_slice=0;
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
@ -984,11 +1028,14 @@ public:
}
template<class compressor>
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx)
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx, int point)
{
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
int comms_send = this->_comms_send[point] ;
int comms_recv = this->_comms_recv[point] ;
assert(rhs.Grid()==_grid);
// conformable(_grid,rhs.Grid());
@ -1011,9 +1058,11 @@ public:
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc) {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
@ -1045,44 +1094,53 @@ public:
recv_buf=this->u_recv_buf_p;
}
cobj *send_buf;
send_buf = this->u_send_buf_p; // Gather locally, must send
////////////////////////////////////////////////////////
// Gather locally
////////////////////////////////////////////////////////
gathertime-=usecond();
assert(send_buf!=NULL);
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,u_comm_offset,so); face_idx++;
gathertime+=usecond();
if ( comms_send )
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,u_comm_offset,so);
face_idx++;
///////////////////////////////////////////////////////////
// Build a list of things to do after we synchronise GPUs
// Start comms now???
///////////////////////////////////////////////////////////
AddPacket((void *)&send_buf[u_comm_offset],
(void *)&recv_buf[u_comm_offset],
xmit_to_rank,
recv_from_rank,
bytes);
int duplicate = CheckForDuplicate(dimension,sx,comm_proc,(void *)&recv_buf[u_comm_offset],0,bytes,cbmask);
if ( (!duplicate) ) { // Force comms for now
if ( compress.DecompressionStep() ) {
///////////////////////////////////////////////////////////
// Build a list of things to do after we synchronise GPUs
// Start comms now???
///////////////////////////////////////////////////////////
AddPacket((void *)&send_buf[u_comm_offset],
(void *)&recv_buf[u_comm_offset],
xmit_to_rank, comms_send,
recv_from_rank, comms_recv,
bytes);
}
if ( compress.DecompressionStep() ) {
AddDecompress(&this->u_recv_buf_p[u_comm_offset],
&recv_buf[u_comm_offset],
words,Decompressions);
}
u_comm_offset+=words;
}
}
}
return 0;
}
template<class compressor>
int GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx)
int GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx,int point)
{
const int Nsimd = _grid->Nsimd();
const int maxl =2;// max layout in a direction
int comms_send = this->_comms_send[point] ;
int comms_recv = this->_comms_recv[point] ;
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
@ -1147,12 +1205,11 @@ public:
&face_table[face_idx][0],
face_table[face_idx].size()*sizeof(face_table_host[0]));
}
gathermtime-=usecond();
// if ( comms_send )
Gather_plane_exchange_table(face_table[face_idx],rhs,spointers,dimension,sx,cbmask,compress,permute_type);
face_idx++;
gathermtime+=usecond();
//spointers[0] -- low
//spointers[1] -- high
@ -1181,8 +1238,13 @@ public:
rpointers[i] = rp;
AddPacket((void *)sp,(void *)rp,xmit_to_rank,recv_from_rank,bytes);
int duplicate = CheckForDuplicate(dimension,sx,nbr_proc,(void *)rp,i,bytes,cbmask);
if ( !duplicate ) {
AddPacket((void *)sp,(void *)rp,
xmit_to_rank,comms_send,
recv_from_rank,comms_recv,
bytes);
}
} else {

View File

@ -55,7 +55,7 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
// Specialisation: Cayley-Hamilton exponential for SU(3)
#ifndef GRID_CUDA
#ifndef GRID_ACCELERATED
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha , Integer Nexp = DEFAULT_MAT_EXP )
{

View File

@ -441,7 +441,7 @@ inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(bas
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToDevice,copyStream);
hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);
}
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
@ -461,6 +461,8 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
accelerator_for2dNB(iter1, num1, iter2, num2, nsimd, { __VA_ARGS__ } ); \
accelerator_barrier(dummy);
#define GRID_ACCELERATED
#endif
//////////////////////////////////////////////

265
HMC/Mobius2p1f_DD_RHMC.cc Normal file
View File

@ -0,0 +1,265 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 4;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 17;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_DDHMC_lat";
CPparams.rng_prefix = "ckpoint_DDHMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real pv_mass = 1.0;
std::vector<Real> hasenbusch({ light_mass, 0.04, 0.25, 0.4, 0.7 , pv_mass });
// FIXME:
// Same in MC and MD
// Need to mix precision too
OneFlavourRationalParams SFRp;
SFRp.lo = 4.0e-3;
SFRp.hi = 30.0;
SFRp.MaxIter = 10000;
SFRp.tolerance= 1.0e-8;
SFRp.mdtolerance= 1.0e-6;
SFRp.degree = 16;
SFRp.precision= 50;
SFRp.BoundsCheckFreq=5;
OneFlavourRationalParams OFRp;
OFRp.lo = 1.0e-4;
OFRp.hi = 30.0;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-8;
OFRp.mdtolerance= 1.0e-6;
OFRp.degree = 16;
OFRp.precision= 50;
OFRp.BoundsCheckFreq=5;
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
////////////////////////////////////////////////////////////////
// Domain decomposed
////////////////////////////////////////////////////////////////
Coordinate latt4 = GridPtr->GlobalDimensions();
Coordinate mpi = GridPtr->ProcessorGrid();
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
Coordinate CommDim(Nd);
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Coordinate Dirichlet(Nd+1,0);
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Coordinate Block4(Nd);
Block4[0] = Dirichlet[1];
Block4[1] = Dirichlet[2];
Block4[2] = Dirichlet[3];
Block4[3] = Dirichlet[4];
int Width=3;
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block4,Width));
//////////////////////////
// Fermion Grid
//////////////////////////
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
double StoppingCondition = 1e-8;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(4);
ActionLevel<HMCWrapper::Field> Level3(6);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
FermionAction StrangeOpDir (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOpDir(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
StrangeOpDir.DirichletBlock(Dirichlet);
StrangePauliVillarsOpDir.DirichletBlock(Dirichlet);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionBdy(StrangeOpDir,StrangeOp,SFRp);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionLocal(StrangePauliVillarsOpDir,StrangeOpDir,SFRp);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionPVBdy(StrangePauliVillarsOp,StrangePauliVillarsOpDir,SFRp);
Level1.push_back(&StrangePseudoFermionBdy);
Level2.push_back(&StrangePseudoFermionLocal);
Level1.push_back(&StrangePseudoFermionPVBdy);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
std::vector<int> dirichlet_den;
std::vector<int> dirichlet_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass); dirichlet_den.push_back(0);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]); dirichlet_den.push_back(1);
}
for(int h=0;h<n_hasenbusch;h++){
light_num.push_back(hasenbusch[h]); dirichlet_num.push_back(1);
}
light_num.push_back(pv_mass); dirichlet_num.push_back(0);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> *> Bdys;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage
<< " 2f quotient Action ";
std::cout << "det D("<<light_den[h]<<")";
if ( dirichlet_den[h] ) std::cout << "^dirichlet ";
std::cout << "/ det D("<<light_num[h]<<")";
if ( dirichlet_num[h] ) std::cout << "^dirichlet ";
std::cout << std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
if(h!=0) {
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
} else {
Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
}
if ( dirichlet_den[h]==1) Denominators[h]->DirichletBlock(Dirichlet);
if ( dirichlet_num[h]==1) Numerators[h]->DirichletBlock(Dirichlet);
}
int nquo=Quotients.size();
Level1.push_back(Bdys[0]);
Level1.push_back(Bdys[1]);
for(int h=0;h<nquo-1;h++){
Level2.push_back(Quotients[h]);
}
Level1.push_back(Quotients[nquo-1]); // PV dirichlet fix on coarse timestep
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@ -217,9 +217,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,
xmit_to_rank,1,
(void *)&rbuf[mu][0],
recv_from_rank,
recv_from_rank,1,
bytes,mu);
comm_proc = mpi_layout[mu]-1;
@ -228,9 +228,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,
xmit_to_rank,1,
(void *)&rbuf[mu+4][0],
recv_from_rank,
recv_from_rank,1,
bytes,mu+4);
}
@ -309,9 +309,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,
xmit_to_rank,1,
(void *)&rbuf[mu][0],
recv_from_rank,
recv_from_rank,1,
bytes,mu);
Grid.StencilSendToRecvFromComplete(requests,mu);
requests.resize(0);
@ -322,9 +322,9 @@ int main (int argc, char ** argv)
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,
xmit_to_rank,1,
(void *)&rbuf[mu+4][0],
recv_from_rank,
recv_from_rank,1,
bytes,mu+4);
Grid.StencilSendToRecvFromComplete(requests,mu+4);
requests.resize(0);
@ -411,8 +411,8 @@ int main (int argc, char ** argv)
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
int tid = omp_get_thread_num();
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes,tid);
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,1,
(void *)&rbuf[dir][0], recv_from_rank,1, bytes,tid);
thread_critical { dbytes+=tbytes; }
}

View File

@ -32,18 +32,18 @@
using namespace std;
using namespace Grid;
template<class d>
struct scal {
d internal;
////////////////////////
/// Move to domains ////
////////////////////////
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
void Benchmark(int Ls, Coordinate Dirichlet);
int main (int argc, char ** argv)
{
@ -52,24 +52,82 @@ int main (int argc, char ** argv)
int threads = GridThread::GetThreads();
Coordinate latt4 = GridDefaultLatt();
int Ls=16;
for(int i=0;i<argc;i++)
for(int i=0;i<argc;i++) {
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
}
//////////////////
// With comms
//////////////////
Coordinate Dirichlet(Nd+1,0);
std::cout << "\n\n\n\n\n\n" <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
std::cout << GridLogMessage<< " Testing with full communication " <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
Benchmark(Ls,Dirichlet);
//////////////////
// Domain decomposed
//////////////////
Coordinate latt4 = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate CommDim(Nd);
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
//////////////////////
// Node level
//////////////////////
std::cout << "\n\n\n\n\n\n" <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
std::cout << GridLogMessage<< " Testing without internode communication " <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Dirichlet[0] = 0;
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Benchmark(Ls,Dirichlet);
std::cout << "\n\n\n\n\n\n" <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
std::cout << GridLogMessage<< " Testing without intranode communication " <<std::endl;
std::cout << GridLogMessage<< "++++++++++++++++++++++++++++++++++++++++++++++++" <<std::endl;
for(int d=0;d<Nd;d++) CommDim[d]= mpi[d]>1 ? 1 : 0;
Dirichlet[0] = 0;
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3];
Benchmark(Ls,Dirichlet);
Grid_finalize();
exit(0);
}
void Benchmark(int Ls, Coordinate Dirichlet)
{
Coordinate latt4 = GridDefaultLatt();
GridLogLayout();
long unsigned int single_site_flops = 8*Nc*(7+16*Nc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::cout << GridLogMessage << "Making s innermost grids"<<std::endl;
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
@ -80,9 +138,9 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString(std::string("The 4D RNG"));
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedUniqueString(std::string("The 5D RNG"));
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
LatticeFermionF src (FGrid); random(RNG5,src);
#if 0
@ -100,7 +158,6 @@ int main (int argc, char ** argv)
src = src*N2;
#endif
LatticeFermionF result(FGrid); result=Zero();
LatticeFermionF ref(FGrid); ref=Zero();
LatticeFermionF tmp(FGrid);
@ -108,29 +165,31 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
LatticeGaugeFieldF UmuCopy(UGrid);
SU<Nc>::HotConfiguration(RNG4,Umu);
UmuCopy=Umu;
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
#if 0
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
LatticeColourMatrixF ttmp(UGrid);
ttmp = PeekIndex<LorentzIndex>(Umu,mu);
// if (mu !=2 ) ttmp = 0;
// ttmp = ttmp* pow(10.0,mu);
PokeIndex<LorentzIndex>(Umu,ttmp,mu);
}
std::cout << GridLogMessage << "Forced to diagonal " << std::endl;
#endif
////////////////////////////////////
// Apply BCs
////////////////////////////////////
Coordinate Block(4);
for(int d=0;d<4;d++) Block[d]= Dirichlet[d+1];
std::cout << GridLogMessage << "Applying BCs for Dirichlet Block5 " << Dirichlet << std::endl;
std::cout << GridLogMessage << "Applying BCs for Dirichlet Block4 " << Block << std::endl;
DirichletFilter<LatticeGaugeFieldF> Filter(Block);
Filter.applyFilter(Umu);
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
// replicate across fifth dimension
// LatticeGaugeFieldF Umu5d(FGrid);
std::vector<LatticeColourMatrixF> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
if (1)
@ -191,11 +250,13 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Dw.DirichletBlock(Dirichlet);
Dw.ImportGauge(Umu);
int ncall =300;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
@ -220,29 +281,20 @@ int main (int argc, char ** argv)
double data_mem = (volume * (2*Nd+1)*Nd*Nc + (volume/Ls) *2*Nd*Nc*Nc) * simdwidth / nsimd * ncall / (1024.*1024.*1024.);
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
std::cout<<GridLogMessage << "RF GiB/s (base 2) = "<< 1000000. * data_rf/((t1-t0))<<std::endl;
std::cout<<GridLogMessage << "mem GiB/s (base 2) = "<< 1000000. * data_mem/((t1-t0))<<std::endl;
// std::cout<<GridLogMessage << "RF GiB/s (base 2) = "<< 1000000. * data_rf/((t1-t0))<<std::endl;
// std::cout<<GridLogMessage << "mem GiB/s (base 2) = "<< 1000000. * data_mem/((t1-t0))<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
//exit(0);
if(( norm2(err)>1.0e-4) ) {
/*
std::cout << "RESULT\n " << result<<std::endl;
std::cout << "REF \n " << ref <<std::endl;
std::cout << "ERR \n " << err <<std::endl;
*/
std::cout<<GridLogMessage << "WRONG RESULT" << std::endl;
FGrid->Barrier();
exit(-1);
}
assert (norm2(err)< 1.0e-4 );
Dw.Report();
}
if (1)
@ -286,21 +338,20 @@ int main (int argc, char ** argv)
}
ref = -0.5*ref;
}
// dump=1;
Dw.Dhop(src,result,1);
Dw.Dhop(src,result,DaggerYes);
std::cout << GridLogMessage << "----------------------------------------------------------------" << std::endl;
std::cout << GridLogMessage << "Compare to naive wilson implementation Dag to verify correctness" << std::endl;
std::cout << GridLogMessage << "----------------------------------------------------------------" << std::endl;
std::cout<<GridLogMessage << "Called DwDag"<<std::endl;
std::cout<<GridLogMessage << "norm dag result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm dag ref "<< norm2(ref)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm dag diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){
/*
std::cout<< "DAG RESULT\n " <<ref << std::endl;
std::cout<< "DAG sRESULT\n " <<result << std::endl;
std::cout<< "DAG ERR \n " << err <<std::endl;
*/
}
assert((norm2(err)<1.0e-4));
LatticeFermionF src_e (FrbGrid);
LatticeFermionF src_o (FrbGrid);
LatticeFermionF r_e (FrbGrid);
@ -330,7 +381,6 @@ int main (int argc, char ** argv)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
{
Dw.ZeroCounters();
FGrid->Barrier();
Dw.DhopEO(src_o,r_e,DaggerNo);
double t0=usecond();
@ -352,7 +402,6 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);
@ -367,13 +416,7 @@ int main (int argc, char ** argv)
err = r_eo-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){
/*
std::cout<< "Deo RESULT\n " <<r_eo << std::endl;
std::cout<< "Deo REF\n " <<result << std::endl;
std::cout<< "Deo ERR \n " << err <<std::endl;
*/
}
assert(norm2(err)<1.0e-4);
pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err);
@ -382,6 +425,4 @@ int main (int argc, char ** argv)
assert(norm2(src_e)<1.0e-4);
assert(norm2(src_o)<1.0e-4);
Grid_finalize();
exit(0);
}

View File

@ -0,0 +1,26 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -p ecp
#SBATCH -J comms
#SBATCH -o comms.%J
#SBATCH -e comms.%J
#SBATCH -N 1
#SBATCH -n 2
DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export MPICH_SMP_SINGLE_COPY_MODE=NONE
export OMP_NUM_THREADS=8
AT=8
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads ${AT} --grid 64.64.32.32 --mpi 2.1.1.1 "
srun -n2 --label -c$OMP_NUM_THREADS --gpus-per-task=1 ./mpiwrapper.sh ./benchmarks/Benchmark_comms_host_device $PARAMS

View File

@ -5,6 +5,8 @@
--enable-gen-simd-width=64 \
--enable-simd=GPU \
--disable-fermion-reps \
--with-gmp=$OLCF_GMP_ROOT \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
--disable-gparity \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I/opt/rocm-4.5.0/include/ -std=c++14 -I${MPICH_DIR}/include " \

View File

@ -3,28 +3,28 @@
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
##SBATCH -p ecp
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 1
#SBATCH --exclusive
#SBATCH -n 8
#SBATCH --exclusive
#SBATCH --gpu-bind=map_gpu:0,1,2,3,7,6,5,4
DIR=.
module list
#export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=1
AT=8
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads ${AT} --grid 24.24.24.24 --shm-mpi 0 --mpi 1.1.1.1"
srun --gpus-per-task 1 -n1 ./benchmarks/Benchmark_dwf_fp32 $PARAMS
PARAMS=" --accelerator-threads 16 --grid 32.32.32.256 --mpi 1.1.1.8 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
srun --gpus-per-task 1 -n8 ./benchmarks/Benchmark_dwf_fp32 $PARAMS

View File

@ -6,22 +6,43 @@
#SBATCH -J DWF
#SBATCH -o DWF.%J
#SBATCH -e DWF.%J
#SBATCH -N 1
#SBATCH -n 8
#SBATCH -N 8
#SBATCH -n 64
#SBATCH --exclusive
#SBATCH --gpu-bind=map_gpu:0,1,2,3,7,6,5,4
DIR=.
module list
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export MPICH_SMP_SINGLE_COPY_MODE=NONE
export OMP_NUM_THREADS=1
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads 8 --grid 32.64.64.64 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun --gpus-per-task 1 -n8 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS
PARAMS=" --accelerator-threads 16 --grid 64.64.64.256 --mpi 2.2.2.8 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_dwf_fp32 $PARAMS > dwf.64.64.64.256.8node
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 4.4.4.1 --comms-overlap --shm 2048 --shm-mpi 1"
echo $PARAMS
srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_dwf_fp32 $PARAMS > dwf.64.64.64.32.8node
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 4.4.4.1 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_dwf_fp32 $PARAMS > dwf.64.64.64.32.8node.shm0
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 2.2.2.8 --comms-overlap --shm 2048 --shm-mpi 1"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_ITT $PARAMS > itt.8node
PARAMS=" --accelerator-threads 16 --grid 64.64.64.32 --mpi 2.2.2.8 --comms-overlap --shm 2048 --shm-mpi 0"
echo $PARAMS
#srun --gpus-per-task 1 -N8 -n64 ./benchmarks/Benchmark_ITT $PARAMS > itt.8node_shm0

View File

@ -1,10 +1,11 @@
#!/bin/bash
lrank=$SLURM_LOCALID
lgpu=(0 1 2 3 7 6 5 4)
export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID
export ROCR_VISIBLE_DEVICES=${lgpu[$lrank]}
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES binding=$BINDING"
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES "
$*

View File

@ -3,3 +3,4 @@ module load rocm/4.5.0
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx90a
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH

View File

@ -6,6 +6,8 @@
--enable-simd=GPU \
--disable-fermion-reps \
--disable-gparity \
--with-gmp=$OLCF_GMP_ROOT \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I/opt/rocm-4.3.0/include/ -std=c++14 -I${MPICH_DIR}/include " \
--prefix=/ccs/home/chulwoo/Grid \

View File

@ -1,8 +1,7 @@
#!/bin/bash
# Begin LSF Directives
#SBATCH -A LGT104
#SBATCH -t 01:00:00
##SBATCH -U openmpThu
#SBATCH -t 3:00:00
#SBATCH -p ecp
#SBATCH -J DWF
#SBATCH -o DWF.%J
@ -14,13 +13,12 @@ DIR=.
module list
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export MPICH_SMP_SINGLE_COPY_MODE=NONE
#export MPICH_SMP_SINGLE_COPY_MODE=CMA
export MPICH_SMP_SINGLE_COPY_MODE=CMA
export OMP_NUM_THREADS=8
AT=8
echo MPICH_SMP_SINGLE_COPY_MODE $MPICH_SMP_SINGLE_COPY_MODE
PARAMS=" --accelerator-threads ${AT} --grid 32.64.64.64 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun -n8 --label -c$OMP_NUM_THREADS --gpus-per-task=1 ./mpiwrapper.sh ./benchmarks/Benchmark_dwf_fp32 $PARAMS
PARAMS=" --accelerator-threads ${AT} --grid 16.16.16.48 --mpi 1.2.2.2 --comms-overlap --shm 2048 --shm-mpi 0"
srun -N2 -n8 --label -c$OMP_NUM_THREADS --gpus-per-task=1 ./mpiwrapper.sh ./HMC/Mobius2p1f_DD_RHMC $PARAMS

View File

@ -1,5 +1,9 @@
module load emacs
module load PrgEnv-gnu
module load rocm/4.3.0
module load rocm/4.5.0
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx908
export MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0
export MPICH_GPU_SUPPORT_ENABLED=1
export LD_LIBRARY_PATH=/opt/cray/pe/gcc/mpfr/3.1.4/lib/:$LD_LIBRARY_PATH

View File

@ -1,25 +1,25 @@
tu-c0r0n00 - 0 device=0 binding=--interleave=0,1
tu-c0r0n00 - 1 device=1 binding=--interleave=2,3
tu-c0r0n09 - 1 device=1 binding=--interleave=2,3
tu-c0r0n00 - 2 device=2 binding=--interleave=4,5
tu-c0r0n06 - 0 device=0 binding=--interleave=0,1
tu-c0r0n06 - 1 device=1 binding=--interleave=2,3
tu-c0r0n09 - 0 device=0 binding=--interleave=0,1
tu-c0r0n09 - 2 device=2 binding=--interleave=4,5
tu-c0r0n03 - 1 device=1 binding=--interleave=2,3
tu-c0r0n06 - 2 device=2 binding=--interleave=4,5
tu-c0r0n09 - 3 device=3 binding=--interleave=6,7
tu-c0r0n00 - 3 device=3 binding=--interleave=6,7
tu-c0r0n03 - 0 device=0 binding=--interleave=0,1
tu-c0r0n03 - 2 device=2 binding=--interleave=4,5
tu-c0r0n06 - 3 device=3 binding=--interleave=6,7
tu-c0r0n03 - 3 device=3 binding=--interleave=6,7
tu-c0r3n00 - 0 device=0 binding=--interleave=0,1
tu-c0r3n00 - 1 device=1 binding=--interleave=2,3
tu-c0r3n00 - 2 device=2 binding=--interleave=4,5
tu-c0r3n00 - 3 device=3 binding=--interleave=6,7
tu-c0r3n06 - 1 device=1 binding=--interleave=2,3
tu-c0r3n06 - 3 device=3 binding=--interleave=6,7
tu-c0r3n06 - 0 device=0 binding=--interleave=0,1
tu-c0r3n06 - 2 device=2 binding=--interleave=4,5
tu-c0r3n03 - 1 device=1 binding=--interleave=2,3
tu-c0r3n03 - 2 device=2 binding=--interleave=4,5
tu-c0r3n03 - 0 device=0 binding=--interleave=0,1
tu-c0r3n03 - 3 device=3 binding=--interleave=6,7
tu-c0r3n09 - 0 device=0 binding=--interleave=0,1
tu-c0r3n09 - 1 device=1 binding=--interleave=2,3
tu-c0r3n09 - 2 device=2 binding=--interleave=4,5
tu-c0r3n09 - 3 device=3 binding=--interleave=6,7
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit[0]: ========================
AcceleratorCudaInit[0]: Device Number : 0
@ -33,11 +33,41 @@ AcceleratorCudaInit[0]: pciBusID: 3
AcceleratorCudaInit[0]: pciDeviceID: 0
AcceleratorCudaInit[0]: maxGridSize (2147483647,65535,65535)
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-setdevice=no
AcceleratorCudaInit[0]: ========================
AcceleratorCudaInit[0]: Device Number : 0
AcceleratorCudaInit[0]: ========================
@ -50,43 +80,25 @@ AcceleratorCudaInit[0]: pciBusID: 3
AcceleratorCudaInit[0]: pciDeviceID: 0
AcceleratorCudaInit[0]: maxGridSize (2147483647,65535,65535)
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: assume user either uses
AcceleratorCudaInit: a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: Configure options --enable-setdevice=no
local rank 1 device 0 bus id: 0000:44:00.0
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
local rank 0 device 0 bus id: 0000:03:00.0
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
OPENMPI detected
AcceleratorCudaInit: using default device
AcceleratorCudaInit: assume user either uses a) IBM jsrun, or
AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding
AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no
AcceleratorCudaInit: ================================================
local rank 0 device 0 bus id: 0000:03:00.0
AcceleratorCudaInit: ================================================
AcceleratorCudaInit: ================================================
local rank 2 device 0 bus id: 0000:84:00.0
SharedMemoryMpi: World communicator of size 16
SharedMemoryMpi: Node communicator of size 4
0SharedMemoryMpi: SharedMemoryMPI.cc acceleratorAllocDevice 2147483648bytes at 0x7fcd80000000 for comms buffers
0SharedMemoryMpi: SharedMemoryMPI.cc acceleratorAllocDevice 2147483648bytes at 0x153960000000 for comms buffers
Setting up IPC
__|__|__|__|__|__|__|__|__|__|__|__|__|__|__
@ -116,7 +128,7 @@ This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Current Grid git commit hash=9d2238148c56e3fbadfa95dcabf2b83d4bde14cd: (HEAD -> develop) uncommited changes
Current Grid git commit hash=da06d15f73184ceb15d66d4e7e702b02fed7b940: (HEAD -> feature/dirichlet, develop) uncommited changes
Grid : Message : ================================================
Grid : Message : MPI is initialised and logging filters activated
@ -124,122 +136,102 @@ Grid : Message : ================================================
Grid : Message : Requested 2147483648 byte stencil comms buffers
Grid : Message : MemoryManager Cache 34004218675 bytes
Grid : Message : MemoryManager::Init() setting up
Grid : Message : MemoryManager::Init() cache pool for recent allocations: SMALL 32 LARGE 8
Grid : Message : MemoryManager::Init() cache pool for recent allocations: SMALL 8 LARGE 2
Grid : Message : MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory
Grid : Message : MemoryManager::Init() Using cudaMalloc
Grid : Message : 1.198523 s : Grid Layout
Grid : Message : 1.198530 s : Global lattice size : 64 64 64 64
Grid : Message : 1.198534 s : OpenMP threads : 4
Grid : Message : 1.198535 s : MPI tasks : 2 2 2 2
Grid : Message : 1.397615 s : Making s innermost grids
Grid : Message : 1.441828 s : Initialising 4d RNG
Grid : Message : 1.547973 s : Intialising parallel RNG with unique string 'The 4D RNG'
Grid : Message : 1.547998 s : Seed SHA256: 49db4542db694e3b1a74bf2592a8c1b83bfebbe18401693c2609a4c3af1
Grid : Message : 1.954777 s : Initialising 5d RNG
Grid : Message : 3.633825 s : Intialising parallel RNG with unique string 'The 5D RNG'
Grid : Message : 3.633869 s : Seed SHA256: b6316f2fac44ce14111f93e0296389330b077bfd0a7b359f781c58589f8a
Grid : Message : 12.162710 s : Initialised RNGs
Grid : Message : 15.882520 s : Drawing gauge field
Grid : Message : 15.816362 s : Random gauge initialised
Grid : Message : 17.279671 s : Setting up Cshift based reference
Grid : Message : 26.331426 s : *****************************************************************
Grid : Message : 26.331452 s : * Kernel options --dslash-generic, --dslash-unroll, --dslash-asm
Grid : Message : 26.331454 s : *****************************************************************
Grid : Message : 26.331456 s : *****************************************************************
Grid : Message : 26.331458 s : * Benchmarking DomainWallFermionR::Dhop
Grid : Message : 26.331459 s : * Vectorising space-time by 8
Grid : Message : 26.331463 s : * VComplexF size is 64 B
Grid : Message : 26.331465 s : * SINGLE precision
Grid : Message : 26.331467 s : * Using Overlapped Comms/Compute
Grid : Message : 26.331468 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 26.331469 s : *****************************************************************
Grid : Message : 28.413717 s : Called warmup
Grid : Message : 56.418423 s : Called Dw 3000 times in 2.80047e+07 us
Grid : Message : 56.418476 s : mflop/s = 3.79581e+07
Grid : Message : 56.418479 s : mflop/s per rank = 2.37238e+06
Grid : Message : 56.418481 s : mflop/s per node = 9.48953e+06
Grid : Message : 56.418483 s : RF GiB/s (base 2) = 77130
Grid : Message : 56.418485 s : mem GiB/s (base 2) = 48206.3
Grid : Message : 56.422076 s : norm diff 1.03481e-13
Grid : Message : 56.456894 s : #### Dhop calls report
Grid : Message : 56.456899 s : WilsonFermion5D Number of DhopEO Calls : 6002
Grid : Message : 56.456903 s : WilsonFermion5D TotalTime /Calls : 4710.93 us
Grid : Message : 56.456905 s : WilsonFermion5D CommTime /Calls : 3196.15 us
Grid : Message : 56.456908 s : WilsonFermion5D FaceTime /Calls : 494.392 us
Grid : Message : 56.456910 s : WilsonFermion5D ComputeTime1/Calls : 44.4107 us
Grid : Message : 56.456912 s : WilsonFermion5D ComputeTime2/Calls : 1037.75 us
Grid : Message : 56.456921 s : Average mflops/s per call : 3.55691e+09
Grid : Message : 56.456925 s : Average mflops/s per call per rank : 2.22307e+08
Grid : Message : 56.456928 s : Average mflops/s per call per node : 8.89228e+08
Grid : Message : 56.456930 s : Average mflops/s per call (full) : 3.82915e+07
Grid : Message : 56.456933 s : Average mflops/s per call per rank (full): 2.39322e+06
Grid : Message : 56.456952 s : Average mflops/s per call per node (full): 9.57287e+06
Grid : Message : 56.456954 s : WilsonFermion5D Stencil
Grid : Message : 56.457016 s : Stencil calls 3001
Grid : Message : 56.457022 s : Stencil halogtime 0
Grid : Message : 56.457024 s : Stencil gathertime 55.9154
Grid : Message : 56.457026 s : Stencil gathermtime 20.1073
Grid : Message : 56.457028 s : Stencil mergetime 18.5585
Grid : Message : 56.457030 s : Stencil decompresstime 0.0639787
Grid : Message : 56.457032 s : Stencil comms_bytes 4.02653e+08
Grid : Message : 56.457034 s : Stencil commtime 6379.93
Grid : Message : 56.457036 s : Stencil 63.1124 GB/s per rank
Grid : Message : 56.457038 s : Stencil 252.45 GB/s per node
Grid : Message : 56.457040 s : WilsonFermion5D StencilEven
Grid : Message : 56.457048 s : WilsonFermion5D StencilOdd
Grid : Message : 56.457062 s : WilsonFermion5D Stencil Reporti()
Grid : Message : 56.457065 s : WilsonFermion5D StencilEven Reporti()
Grid : Message : 56.457066 s : WilsonFermion5D StencilOdd Reporti()
Grid : Message : 79.259261 s : Compare to naive wilson implementation Dag to verify correctness
Grid : Message : 79.259287 s : Called DwDag
Grid : Message : 79.259288 s : norm dag result 12.0421
Grid : Message : 79.271740 s : norm dag ref 12.0421
Grid : Message : 79.287759 s : norm dag diff 7.63236e-14
Grid : Message : 79.328100 s : Calling Deo and Doe and //assert Deo+Doe == Dunprec
Grid : Message : 79.955951 s : src_e0.499997
Grid : Message : 80.633620 s : src_o0.500003
Grid : Message : 80.164163 s : *********************************************************
Grid : Message : 80.164168 s : * Benchmarking DomainWallFermionF::DhopEO
Grid : Message : 80.164170 s : * Vectorising space-time by 8
Grid : Message : 80.164172 s : * SINGLE precision
Grid : Message : 80.164174 s : * Using Overlapped Comms/Compute
Grid : Message : 80.164177 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 80.164178 s : *********************************************************
Grid : Message : 93.797635 s : Deo mflop/s = 3.93231e+07
Grid : Message : 93.797670 s : Deo mflop/s per rank 2.45769e+06
Grid : Message : 93.797672 s : Deo mflop/s per node 9.83077e+06
Grid : Message : 93.797674 s : #### Dhop calls report
Grid : Message : 93.797675 s : WilsonFermion5D Number of DhopEO Calls : 3001
Grid : Message : 93.797677 s : WilsonFermion5D TotalTime /Calls : 4542.83 us
Grid : Message : 93.797679 s : WilsonFermion5D CommTime /Calls : 2978.97 us
Grid : Message : 93.797681 s : WilsonFermion5D FaceTime /Calls : 602.287 us
Grid : Message : 93.797683 s : WilsonFermion5D ComputeTime1/Calls : 67.1416 us
Grid : Message : 93.797685 s : WilsonFermion5D ComputeTime2/Calls : 1004.07 us
Grid : Message : 93.797713 s : Average mflops/s per call : 3.30731e+09
Grid : Message : 93.797717 s : Average mflops/s per call per rank : 2.06707e+08
Grid : Message : 93.797719 s : Average mflops/s per call per node : 8.26827e+08
Grid : Message : 93.797721 s : Average mflops/s per call (full) : 3.97084e+07
Grid : Message : 93.797727 s : Average mflops/s per call per rank (full): 2.48178e+06
Grid : Message : 93.797732 s : Average mflops/s per call per node (full): 9.92711e+06
Grid : Message : 93.797735 s : WilsonFermion5D Stencil
Grid : Message : 93.797746 s : WilsonFermion5D StencilEven
Grid : Message : 93.797758 s : WilsonFermion5D StencilOdd
Grid : Message : 93.797769 s : Stencil calls 3001
Grid : Message : 93.797773 s : Stencil halogtime 0
Grid : Message : 93.797776 s : Stencil gathertime 56.7458
Grid : Message : 93.797780 s : Stencil gathermtime 22.6504
Grid : Message : 93.797782 s : Stencil mergetime 21.1913
Grid : Message : 93.797786 s : Stencil decompresstime 0.0556481
Grid : Message : 93.797788 s : Stencil comms_bytes 2.01327e+08
Grid : Message : 93.797791 s : Stencil commtime 2989.33
Grid : Message : 93.797795 s : Stencil 67.3484 GB/s per rank
Grid : Message : 93.797798 s : Stencil 269.394 GB/s per node
Grid : Message : 93.797801 s : WilsonFermion5D Stencil Reporti()
Grid : Message : 93.797803 s : WilsonFermion5D StencilEven Reporti()
Grid : Message : 93.797805 s : WilsonFermion5D StencilOdd Reporti()
Grid : Message : 93.873429 s : r_e6.02111
Grid : Message : 93.879931 s : r_o6.02102
Grid : Message : 93.885912 s : res12.0421
Grid : Message : 94.876555 s : norm diff 0
Grid : Message : 95.485643 s : norm diff even 0
Grid : Message : 95.581236 s : norm diff odd 0
Grid : Message : 1.875883 s : Grid Layout
Grid : Message : 1.875893 s : Global lattice size : 64 64 64 64
Grid : Message : 1.875897 s : OpenMP threads : 4
Grid : Message : 1.875898 s : MPI tasks : 2 2 2 2
Grid : Message : 1.993571 s : Initialising 4d RNG
Grid : Message : 2.881990 s : Intialising parallel RNG with unique string 'The 4D RNG'
Grid : Message : 2.882370 s : Seed SHA256: 49db4542db694e3b1a74bf2592a8c1b83bfebbe18401693c2609a4c3af1
Grid : Message : 2.495044 s : Initialising 5d RNG
Grid : Message : 4.120900 s : Intialising parallel RNG with unique string 'The 5D RNG'
Grid : Message : 4.121350 s : Seed SHA256: b6316f2fac44ce14111f93e0296389330b077bfd0a7b359f781c58589f8a
Grid : Message : 15.268010 s : Drawing gauge field
Grid : Message : 16.234025 s : Random gauge initialised
Grid : Message : 16.234057 s : Applying BCs
Grid : Message : 16.365565 s : Setting up Cshift based reference
Grid : Message : 44.512418 s : *****************************************************************
Grid : Message : 44.512448 s : * Kernel options --dslash-generic, --dslash-unroll, --dslash-asm
Grid : Message : 44.512450 s : *****************************************************************
Grid : Message : 44.512451 s : *****************************************************************
Grid : Message : 44.512452 s : * Benchmarking DomainWallFermionR::Dhop
Grid : Message : 44.512453 s : * Vectorising space-time by 8
Grid : Message : 44.512454 s : * VComplexF size is 64 B
Grid : Message : 44.512456 s : * SINGLE precision
Grid : Message : 44.512459 s : * Using Overlapped Comms/Compute
Grid : Message : 44.512460 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 44.512461 s : *****************************************************************
Grid : Message : 46.389070 s : Called warmup
Grid : Message : 49.211265 s : Called Dw 300 times in 2.82203e+06 us
Grid : Message : 49.211295 s : mflop/s = 3.76681e+07
Grid : Message : 49.211297 s : mflop/s per rank = 2.35425e+06
Grid : Message : 49.211299 s : mflop/s per node = 9.41702e+06
Grid : Message : 49.211301 s : RF GiB/s (base 2) = 76540.6
Grid : Message : 49.211308 s : mem GiB/s (base 2) = 47837.9
Grid : Message : 49.214868 s : norm diff 1.06409e-13
Grid : Message : 92.647781 s : Compare to naive wilson implementation Dag to verify correctness
Grid : Message : 92.647816 s : Called DwDag
Grid : Message : 92.647817 s : norm dag result 12.0421
Grid : Message : 92.801806 s : norm dag ref 12.0421
Grid : Message : 92.817724 s : norm dag diff 7.21921e-14
Grid : Message : 92.858973 s : Calling Deo and Doe and //assert Deo+Doe == Dunprec
Grid : Message : 93.210378 s : src_e0.499997
Grid : Message : 93.583286 s : src_o0.500003
Grid : Message : 93.682468 s : *********************************************************
Grid : Message : 93.682471 s : * Benchmarking DomainWallFermionF::DhopEO
Grid : Message : 93.682472 s : * Vectorising space-time by 8
Grid : Message : 93.682473 s : * SINGLE precision
Grid : Message : 93.682475 s : * Using Overlapped Comms/Compute
Grid : Message : 93.682476 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 93.682477 s : *********************************************************
Grid : Message : 95.162342 s : Deo mflop/s = 3.92487e+07
Grid : Message : 95.162387 s : Deo mflop/s per rank 2.45305e+06
Grid : Message : 95.162389 s : Deo mflop/s per node 9.81219e+06
Grid : Message : 95.232801 s : r_e6.02111
Grid : Message : 95.240061 s : r_o6.02102
Grid : Message : 95.245975 s : res12.0421
Grid : Message : 95.833402 s : norm diff 0
Grid : Message : 96.573829 s : norm diff even 0
Grid : Message : 96.868272 s : norm diff odd 0
Dirichlet block [0 64 64 32 32]
Grid : Message : 97.756909 s : Grid Layout
Grid : Message : 97.756911 s : Global lattice size : 64 64 64 64
Grid : Message : 97.756921 s : OpenMP threads : 4
Grid : Message : 97.756922 s : MPI tasks : 2 2 2 2
Grid : Message : 97.897085 s : Initialising 4d RNG
Grid : Message : 97.965061 s : Intialising parallel RNG with unique string 'The 4D RNG'
Grid : Message : 97.965097 s : Seed SHA256: 49db4542db694e3b1a74bf2592a8c1b83bfebbe18401693c2609a4c3af1
Grid : Message : 98.367431 s : Initialising 5d RNG
Grid : Message : 99.752745 s : Intialising parallel RNG with unique string 'The 5D RNG'
Grid : Message : 99.752790 s : Seed SHA256: b6316f2fac44ce14111f93e0296389330b077bfd0a7b359f781c58589f8a
Grid : Message : 111.290148 s : Drawing gauge field
Grid : Message : 112.349289 s : Random gauge initialised
Grid : Message : 112.349320 s : Applying BCs
Grid : Message : 113.948740 s : Setting up Cshift based reference
Grid : Message : 140.320415 s : *****************************************************************
Grid : Message : 140.320443 s : * Kernel options --dslash-generic, --dslash-unroll, --dslash-asm
Grid : Message : 140.320444 s : *****************************************************************
Grid : Message : 140.320445 s : *****************************************************************
Grid : Message : 140.320446 s : * Benchmarking DomainWallFermionR::Dhop
Grid : Message : 140.320447 s : * Vectorising space-time by 8
Grid : Message : 140.320448 s : * VComplexF size is 64 B
Grid : Message : 140.320450 s : * SINGLE precision
Grid : Message : 140.320451 s : * Using Overlapped Comms/Compute
Grid : Message : 140.320452 s : * Using GENERIC Nc WilsonKernels
Grid : Message : 140.320453 s : *****************************************************************
Grid : Message : 142.296150 s : Called warmup
Grid : Message : 144.397678 s : Called Dw 300 times in 2.36719e+06 us
Grid : Message : 144.397700 s : mflop/s = 4.49058e+07
Grid : Message : 144.397702 s : mflop/s per rank = 2.80661e+06
Grid : Message : 144.397704 s : mflop/s per node = 1.12265e+07
Grid : Message : 144.397706 s : RF GiB/s (base 2) = 91247.6
Grid : Message : 144.397708 s : mem GiB/s (base 2) = 57029.7
Grid : Message : 144.401269 s : norm diff 9.78944e-14
Grid : Message : 186.885460 s : Compare to naive wilson implementation Dag to verify correctness
Grid : Message : 186.885492 s : Called DwDag
Grid : Message : 186.885493 s : norm dag result 10.4157
Grid : Message : 186.897154 s : norm dag ref 11.2266
Grid : Message : 186.912538 s : norm dag diff 0.484633

View File

@ -1,14 +1,13 @@
#!/bin/bash
#SBATCH -J dslash
#SBATCH -A tc002
#SBATCH -t 2:20:00
#SBATCH --nodelist=tu-c0r0n[00,03,06,09]
#SBATCH -A dp207
#SBATCH --exclusive
#SBATCH --nodes=4
#SBATCH --ntasks=16
#SBATCH --qos=standard
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --time=12:00:00
#SBATCH --time=0:05:00
#SBATCH --partition=gpu
#SBATCH --gres=gpu:4
#SBATCH --output=%x.%j.out

View File

@ -0,0 +1,177 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_gparity_flavour.cc
Copyright (C) 2015-2017
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
static constexpr double tolerance = 1.0e-6;
static std::array<GparityFlavourMatrix, GparityFlavour::nSigma> testAlgebra;
void print(const GparityFlavourMatrix &g)
{
for(int i = 0; i < Ngp; i++)
{
std::cout << GridLogMessage << "(";
for(int j=0;j<Ngp;j++){
if ( abs( g(i,j)()() ) == 0 ) {
std::cout<< " 0";
} else if ( abs(g(i,j)()() - Complex(0,1)) == 0){
std::cout<< " i";
} else if ( abs(g(i,j)()() + Complex(0,1)) == 0){
std::cout<< "-i";
} else if ( abs(g(i,j)()() - Complex(1,0)) == 0){
std::cout<< " 1";
} else if ( abs(g(i,j)()() + Complex(1,0)) == 0){
std::cout<< "-1";
}
std::cout<<((j == Ngp-1) ? ")" : "," );
}
std::cout << std::endl;
}
std::cout << GridLogMessage << std::endl;
}
void createTestAlgebra(void)
{
std::array<GparityFlavourMatrix, 3> testg;
const Complex I(0., 1.), mI(0., -1.);
// 0 1
// 1 0
testg[0] = Zero();
testg[0](0, 1)()() = 1.;
testg[0](1, 0)()() = 1.;
std::cout << GridLogMessage << "test SigmaX= " << std::endl;
print(testg[0]);
// 0 -i
// i 0
testg[1] = Zero();
testg[1](0, 1)()() = mI;
testg[1](1, 0)()() = I;
std::cout << GridLogMessage << "test SigmaY= " << std::endl;
print(testg[1]);
// 1 0
// 0 -1
testg[2] = Zero();
testg[2](0, 0)()() = 1.0;
testg[2](1, 1)()() = -1.0;
std::cout << GridLogMessage << "test SigmaZ= " << std::endl;
print(testg[2]);
#define DEFINE_TEST_G(g, exp)\
testAlgebra[GparityFlavour::Algebra::g] = exp; \
testAlgebra[GparityFlavour::Algebra::Minus##g] = -exp;
DEFINE_TEST_G(SigmaX , testg[0]);
DEFINE_TEST_G(SigmaY , testg[1]);
DEFINE_TEST_G(SigmaZ , testg[2]);
DEFINE_TEST_G(Identity , 1.);
GparityFlavourMatrix pplus;
pplus = 1.0;
pplus = pplus + testg[1];
pplus = pplus * 0.5;
DEFINE_TEST_G(ProjPlus , pplus);
GparityFlavourMatrix pminus;
pminus = 1.0;
pminus = pminus - testg[1];
pminus = pminus * 0.5;
DEFINE_TEST_G(ProjMinus , pminus);
#undef DEFINE_TEST_G
}
template <typename Expr>
void test(const Expr &a, const Expr &b)
{
if (norm2(a - b) < tolerance)
{
std::cout << "[OK] ";
}
else
{
std::cout << "[fail]" << std::endl;
std::cout << GridLogError << "a= " << a << std::endl;
std::cout << GridLogError << "is different (tolerance= " << tolerance << ") from " << std::endl;
std::cout << GridLogError << "b= " << b << std::endl;
exit(EXIT_FAILURE);
}
}
void checkSigma(const GparityFlavour::Algebra a, GridSerialRNG &rng)
{
GparityFlavourVector v;
GparityFlavourMatrix m, &testg = testAlgebra[a];
GparityFlavour g(a);
random(rng, v);
random(rng, m);
std::cout << GridLogMessage << "Checking " << GparityFlavour::name[a] << ": ";
std::cout << "vecmul ";
test(g*v, testg*v);
std::cout << "matlmul ";
test(g*m, testg*m);
std::cout << "matrmul ";
test(m*g, m*testg);
std::cout << std::endl;
}
int main(int argc, char *argv[])
{
Grid_init(&argc,&argv);
Coordinate latt_size = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridSerialRNG sRNG;
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
std::cout << GridLogMessage << "======== Test algebra" << std::endl;
createTestAlgebra();
std::cout << GridLogMessage << "======== Multiplication operators check" << std::endl;
for (int i = 0; i < GparityFlavour::nSigma; ++i)
{
checkSigma(i, sRNG);
}
std::cout << GridLogMessage << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}