1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-16 23:07:05 +01:00

Compare commits

..

151 Commits

Author SHA1 Message Date
de8b2dcca3 Hadrons: faster A2A matrix load 2019-01-11 16:12:49 +00:00
efe000341d Hadrons: contractor fixes 2019-01-11 16:12:16 +00:00
11086c5c25 Hadrons: first stab at MPI contractor 2019-01-10 16:29:57 +00:00
91a7fe247b Merge branch 'DanielRichtmann-feature/wilsonmg' into develop 2019-01-02 14:40:31 +00:00
8a1be021d3 Merge branch 'feature/wilsonmg' of https://github.com/DanielRichtmann/Grid into DanielRichtmann-feature/wilsonmg 2019-01-02 14:39:59 +00:00
fd66325321 pure QED test and copyright update 2018-12-14 17:39:11 +00:00
c637c0c48c James H.'s code for general size Wilson loops 2018-12-14 17:37:09 +00:00
c4b472176c Photon code fix 2018-12-14 17:36:38 +00:00
856476a890 big cleanup of the Photon class + QED Coulomb gauge 2018-12-13 21:52:38 +00:00
c509bd3fe2 Merge branch 'feature/resilient-io' into develop 2018-12-01 12:57:43 +00:00
2881b3e8e5 WilsonMG: Remove unnecessary static assertions 2018-06-26 14:42:30 +02:00
cc5d025ea4 WilsonMG: Adapt staggered GMRES/MR tests to "new" constructor 2018-06-18 16:20:20 +02:00
ddcb53bce2 Merge remote-tracking branch 'upstream/develop' into feature/wilsonmg 2018-06-13 09:50:37 +02:00
d1c80e1d46 WilsonMG: Correct years in copyright line 2018-06-13 09:44:09 +02:00
c73cc7d354 WilsonMG: Add tests with MG preconditioner running single precision, outer solver running in double 2018-06-12 16:10:48 +02:00
49fdc324a0 WilsonMG: Make MG correctness checks abort on failing tests 2018-06-12 16:10:48 +02:00
f32714a2d1 WilsonMG: Make running MG correctness checks optional via commandline 2018-06-12 16:10:48 +02:00
73a955be20 WilsonMG: Move tests for Wilson & WilsonClover into separate files 2018-06-12 16:10:48 +02:00
66b7a0f871 WilsonMG: Move multigrid class to separate file 2018-06-12 16:10:48 +02:00
2ab9d4bc56 WilsonMG: Fix random behavior in GMRES
From time to time I saw random since the basis vectors were not initialized
properly.
2018-06-12 15:01:31 +02:00
4f41cd114d WilsonMG: Add a mixed precision version of FGMRES
This version does everything in double prec but accepts a preconditioner working
in single precision.
2018-06-12 15:01:31 +02:00
11c4f5e32c WilsonMG: Provide command line switch for reading in input xml + move default params to constructor of MultiGridParams 2018-06-12 15:01:31 +02:00
e9b9550298 WilsonMG: Fix incompatibility with single prec MG in construction of simd layout on coarser grids 2018-06-12 15:01:31 +02:00
7564fedf68 WilsonMG: Set subspace to zero to avoid random behavior 2018-06-12 15:01:31 +02:00
6c27c72585 WilsonMG: Provide more sensible default values for MG parameters 2018-05-16 17:26:09 +02:00
9c003d2d72 WilsonMG: Base wilson mg preconditioner entirely on existing infrastructure 2018-05-16 17:26:09 +02:00
4b8710970c WilsonMG: Switch to Galerkin coarsening in CoarsenedMatrix 2018-05-16 17:26:09 +02:00
68d686ec38 WilsonMG: Add functionality for applying G5 on coarse grids 2018-05-16 16:17:14 +02:00
c48b69ca81 WilsonMG: Implement Mdir & Mdiag in CoarsenedMatrix 2018-05-16 16:08:05 +02:00
df8c208f5c WilsonMG: Revert CoarsenedMatrix.h and Lattice_transfer.h back to state of develop branch 2018-05-16 16:02:54 +02:00
61812ab7f1 Merge remote-tracking branch 'upstream/develop' into feature/wilsonmg 2018-05-15 14:57:18 +02:00
73ced656eb Merge remote-tracking branch 'upstream/develop' into feature/wilsonmg 2018-04-03 17:51:11 +02:00
f69008edf1 WilsonMG: Add functionality to report timings to MG preconditioner 2018-04-03 17:26:49 +02:00
57a49ed22f WilsonMG: Read in MG parameters from xml in test 2018-04-03 16:03:11 +02:00
ff6413a764 WilsonMG: Make number of levels chooseable at runtime
I don't like this solution though :(
2018-04-03 15:57:33 +02:00
2530bfed01 WilsonMG: Move params instance from global scope to test main function 2018-04-03 14:50:48 +02:00
74f79c5ac7 Revert "Add function to return full type as std::string"
This reverts commit 1cb745c8dc.
2018-03-29 12:03:50 +02:00
58c30c0cb1 WilsonMG: Add conformability checks in MG preconditioner 2018-03-28 13:24:39 +02:00
917a92118a WilsonMG: Move operator test to MG testing routine 2018-03-28 12:19:25 +02:00
04f9cf088d WilsonMG: Add more parameters to MultiGridParams struct 2018-03-27 17:13:11 +02:00
99107038f9 WilsonMG: Rationalize the level counting strategy 2018-03-27 17:06:33 +02:00
b78456bdf4 WilsonMG: Get rid of explicit include of GCR header 2018-03-26 15:41:53 +02:00
08543b6b11 WilsonMG: Provide a switch between V- and K-cycle 2018-03-26 15:37:17 +02:00
63ba33371f WilsonMG: Some minor refactoring 2018-03-26 15:34:53 +02:00
683a7d2ddd WilsonMG: Move comment to make clang-format happy 2018-03-26 14:59:40 +02:00
afdcbf79d1 Merge remote-tracking branch 'upstream/develop' into feature/wilsonmg 2018-03-23 21:13:50 +01:00
3c3ec4e267 WilsonMG: Move tests for Wilson & WilsonClover into the same file 2018-03-23 21:12:27 +01:00
bbe1d5b49e WilsonMG: Temporarily use GMRES in construction of basis vectors
This can go back to CG once Mdag in CoarsenedMatrix works.
2018-03-23 20:02:27 +01:00
0f6009a29f WilsonMG: Huge refactor into something that could be considered an algorithm 2018-03-23 19:55:43 +01:00
1cfed3de7c WilsonMG: Add new logger for MG 2018-03-23 19:55:16 +01:00
edbc0d49d7 WilsonMG: Get rid of explicit GridTypeMappers in CoarsenedMatrix 2018-03-22 16:38:24 +01:00
ee5cf6c8c5 WilsonMG: Some minor changes to GMRES implementations 2018-03-16 13:10:45 +01:00
a66cecc509 WilsonMG: Fix invalid call to MR ctor 2018-03-09 17:34:29 +01:00
0f6cdf3d4b WilsonMG: Implement missing parts of CoarsenedMatrix 2018-03-09 16:56:16 +01:00
1e63b73a14 WilsonMG: Some cleanup/formatting 2018-03-09 16:50:19 +01:00
6ab60c5b70 Merge remote-tracking branch 'upstream/develop' into feature/wilsonmg 2018-02-08 23:59:07 +01:00
8c692b7ffd WilsonMG: Comment assertion on hermiticity of coarse operator for now
TODO: Think of a way to not break dwf_hdcr by doing that. It's only an assertion
but it still interferes with it.
2018-02-08 23:55:05 +01:00
2976132bdd Add first version of multigrid for wilson clover analogous to wilson one
Just like the wilson one, this algorithm

• is currently only a 2-level method since I don't have correct implementations
  for Mdir and Mdiag in CoarsenedMatrix yet (needed for further coarsening)
• needs levelization and refactoring into a proper algorithm
2018-02-08 23:52:10 +01:00
48177f2f2d Add tests for all MR|GMRES solvers with wilson clover action 2018-02-08 23:52:09 +01:00
c4ce70a821 WilsonMG: Major cleanup 2018-02-08 23:52:08 +01:00
a3e009ba54 Add tests for CAGMRES solvers with staggered action 2018-02-08 17:46:28 +01:00
eb7cf239d9 Print warning messages in CAGMRES solvers
Currently, the implementation of these algorithms doesn't differ from their non
communication-avoiding versions.
2018-02-08 17:43:47 +01:00
13ae371ef8 Make solver parameters match in all MR|GMRES solver tests 2018-02-08 17:33:10 +01:00
9f79a87102 Fix bugs in Flexible GMRES solvers
Somehow I got the left and right-preconditioned versions of GMRES mixed up. As
of now this is right-preconditioned version, which is what we want.
2018-02-08 16:00:31 +01:00
4ded1ceeb0 Make GMRES solvers perform no more than MaxIterations steps
I noticed that it was possible to overrun this number.
2018-02-08 15:29:44 +01:00
8bc12e0ce1 Remove superfluous comments in MR solver 2018-02-07 18:09:09 +01:00
cc2f00f827 Remove test for MR solver with dwf action as it doesn't converge 2018-02-07 18:09:08 +01:00
cd61e2e6d6 Increase max iterations in test of MR solver with staggered action 2018-02-07 18:09:07 +01:00
323ed1a588 Add an overrelaxation parameter to the MR solver 2018-02-07 18:09:06 +01:00
68c66d2e4b Remove empty line in output of *Residual* solvers 2018-02-07 18:08:56 +01:00
1671adfd49 WilsonMG: Add some tests for linear operators 2018-02-07 17:15:22 +01:00
871649238c WilsonMG: Stricter naming for linear operators 2018-02-01 14:43:08 +01:00
7c86d2085b WilsonMG: Some minor cleanup 2018-02-01 12:24:16 +01:00
9292be0b69 WilsonMG: Add check for Mdiag + Σ Mdir == M
Need to test my implementations of CoarsenedMatrix::Mdiag &
CoarsenedMatrix::Mdir.
2018-01-31 14:03:30 +01:00
10141f90c9 WilsonMG: Rename test file 2018-01-30 10:25:09 +01:00
a414430817 Merge remote-tracking branch 'upstream/develop' into feature/ddalphaamg 2018-01-29 18:32:31 +01:00
f20728baa9 WilsonMG: Some further steps towards a three level method
Currently this is very "manual" as we are still testing stuff. Will refactor
and make it an algorithm once everything works.

What currently does work:

  - All tests in MultiGridPreconditioner::runChecks for the first coarse grid
  - The tests for the intergrid operators going from the first to the second
    coarse grid
    - (1 - P R) v   == 0
    - (1 - R P) v_c == 0
  - A full solve with VPGCR and a two-level MG preconditioner

What hinders the rest of the tests from passing with a three-level method is the
absence of implementations of CoarsenedMatrix::Mdir and CoarsenedMatrix::Mdiag.
2018-01-29 18:29:49 +01:00
d2e68c4355 WilsonMG: Perform some minor cleanup 2018-01-29 18:07:10 +01:00
1cb745c8dc Add function to return full type as std::string
Also works for nested templates. I find it useful for debugging.
Possible usage:

std::cout << "getTypename<AType>() = " << getTypename<Atype>() << std::endl;
std::cout << "getTypename<decltype(AnInstance)>() = " << getTypename<decltype(AnInstance)>() << std::endl;
2018-01-29 17:39:19 +01:00
faf4278019 Use 2 passes of GS in coarse operator construction 2018-01-29 17:21:42 +01:00
194e4b94bb Make MG checking function work level-wise 2018-01-29 17:18:20 +01:00
bfc1411c1f Use more iterations in subspace creation 2018-01-29 17:11:29 +01:00
161637e573 Turn on orthogonality checking temporarily 2018-01-29 17:10:05 +01:00
04f92ccddf WilsonMG: Provide a fix for the previous commit; compiles and runs successfully now
I don't like the solution with the temporary very much though ...
2018-01-22 14:56:48 +01:00
3b2d805398 WilsonMG: Some first steps towards coarse spin dofs; not compiling yet
A failing conversion from the innermost type (Grid::Simd<...>) to a coarse
scalar (triple iScalar) in blockPromote prohibits this commit from working.
2018-01-22 12:45:51 +01:00
9dc885d297 Fix a bug in Wilson MG
The calculation of the lattice size of a second coarse level was incorrect.
2018-01-18 17:02:04 +01:00
a70c1feecc Remove some unnecessary stuff in Wilson MG 2018-01-18 15:48:28 +01:00
38328100c9 Implement correctness checks for Wilson MG 2018-01-18 15:43:15 +01:00
9732519c41 Apply clang-format to Wilson MG
I can provide the configuration file I used if people want that.
2018-01-18 15:14:37 +01:00
fa4eeb28c4 Save current state in Wilson MG test file 2018-01-17 17:56:34 +01:00
10f7a17ae4 Make timing in VPGCR more detailed 2018-01-11 13:42:18 +01:00
26f14d7dd7 Adapt output format of non-herm solvers to the one of VPGCR 2018-01-11 13:36:30 +01:00
73434db636 Merge remote-tracking branch 'upstream/develop' into feature/ddalphaamg 2018-01-09 10:43:33 +01:00
c6411f8514 Merge remote-tracking branch 'upstream/develop' into feature/ddalphaamg 2018-01-08 10:37:10 +01:00
6cf635d61c Remove some old code in Wilson MG 2017-12-22 13:20:09 +01:00
39558cce52 Multiply TVs in Wilson MG with G5 instead of G5R5 2017-12-22 13:07:56 +01:00
df152648d6 Fix error in MR code when compiling for single precision 2017-12-06 18:00:58 +01:00
4e965c168e Implement analogon to test vector analysis in WMG codebase 2017-11-29 15:05:27 +01:00
f260af546e Save current state 2017-11-28 15:03:02 +01:00
649b8c9aca Save current state 2017-11-24 10:46:20 +01:00
0afa22747d Merge remote-tracking branch 'upstream/develop' into feature/new-solver-algorithms 2017-11-24 10:11:42 +01:00
fa43206c79 Remove some empty lines 2017-11-10 13:48:38 +01:00
a367835bf2 Set everything up for the implementation of FCAGMRES
The current implementation is the exact same code as normal FGMRES. This commit
only sets up the "framework" for the implementation of FCAGMRES, i.e., a test
and an include in the algorithms header file.
2017-11-09 17:30:41 +01:00
d7743591ea Fix some minor formatting errors 2017-11-09 17:28:19 +01:00
c6cbe533ea Set everything up for the implementation of CAGMRES
The current implementation is the exact same code as normal GMRES. This commit
only sets up the "framework" for the implementation of CAGMRES, i.e., a test and
an include in the algorithms header file.
2017-11-09 17:14:44 +01:00
8402ab6cf9 Some minor formatting improvements 2017-11-09 12:52:04 +01:00
c63095345e Remove some superfluous comments 2017-11-09 12:47:20 +01:00
a7ae46b61e Remove some comments 2017-11-08 16:58:20 +01:00
cd63052205 Remove everything preconditioner-related in GMRES code 2017-11-08 16:57:40 +01:00
699d537cd6 Add FGMRES test with staggered fermions 2017-11-08 16:56:42 +01:00
9031f0ed95 Fix a filename in a file header 2017-11-08 16:42:26 +01:00
26b3d441bb Check in forgotten FGMRES test with wilson Fermions 2017-11-08 16:39:11 +01:00
99bc4cde56 Fix an implementation error in FGMRES 2017-11-08 16:38:34 +01:00
e843d83d9d Make z in FGMRES a single Field 2017-11-08 16:38:16 +01:00
0f75ea52b7 First version of FGMRES; not working yet 2017-11-08 16:17:18 +01:00
8107b785cc Rename misunderstood "rsd_sq" to "rsq" in GMRES code 2017-11-08 14:40:03 +01:00
37b777d801 Add test for GMRES solver with staggered fermions 2017-11-08 14:28:48 +01:00
7382787856 Some minor changes 2017-11-08 14:23:55 +01:00
781c611ca0 Perform minor code style fix 2017-11-08 14:22:38 +01:00
b069090b52 Remove a superfluous comment 2017-11-08 13:58:02 +01:00
0c1c1d9900 Set precision and formatting only once in MR code 2017-11-08 13:57:06 +01:00
7f4ed6c2e5 First working version of GMRES + a test for Wilson fermions 2017-11-08 13:56:41 +01:00
56d32a4afb Rename misunderstood "rsd_sq" to "rsq" in MR code 2017-11-08 13:51:08 +01:00
b8ee496ed6 Print some info at start of GMRES 2017-11-08 13:23:41 +01:00
b87416dac4 Fix error with conformable 2017-11-07 15:00:08 +01:00
176bf37372 Remove some commented stuff 2017-11-07 14:57:36 +01:00
b3d342ca22 Remove old implementation of GMRES operator 2017-11-07 10:24:49 +01:00
e1f928398d Save current state 2017-11-07 10:22:41 +01:00
8c579d2d4a Save current state 2017-11-06 18:09:48 +01:00
fc7d07ade0 Correct function signature of body of GMRES outer loop 2017-11-06 17:12:38 +01:00
b3be9195b4 Save one lattice fermion in GMRES code 2017-11-06 17:12:23 +01:00
9e3c187a4d Save current state 2017-11-06 17:05:25 +01:00
8363edfcdb Perform some minor changes to GMRES code 2017-11-06 16:17:44 +01:00
74af31564f Adapt style of wilson GMRES test to style of wilson MR test 2017-11-06 14:06:45 +01:00
e0819d395f Merge remote-tracking branch 'upstream/develop' into feature/new-solver-algorithms 2017-11-06 13:09:36 +01:00
6f81906b00 Add test for the MR solver with staggered fermions; does not converge atm
TODO: Is this a property of staggered or did I do something wrong?
2017-10-30 16:57:55 +01:00
a2d83d4f3d Add test for the MR solver with DW fermions; does not converge atm
TODO: Is this a property of DWF or did I do something wrong?
2017-10-30 16:39:30 +01:00
89bacb0470 Fix path in MR solver header commentary 2017-10-30 16:16:55 +01:00
19010ff66a Merge remote-tracking branch 'upstream/develop' into feature/new-solver-algorithms 2017-10-30 13:16:46 +01:00
5a477ed29e Perform minor style correction 2017-10-27 14:46:18 +02:00
54128d579a Make MR a bit more verbose 2017-10-27 14:45:29 +02:00
e7b1933e88 Add a test for the MR solver 2017-10-27 14:38:57 +02:00
1bad64ac6a Some formatting 2017-10-27 14:35:04 +02:00
15dfa9f663 Change stopping criterion implementation in MR solver + some cleanup 2017-10-27 14:33:25 +02:00
2185b0d651 Correct author in the file 2017-10-27 14:32:38 +02:00
f61c0b5d03 Very early version of MR solver 2017-10-27 14:09:02 +02:00
074db32e54 Fix build of gmres test 2017-10-27 14:08:48 +02:00
d5f661ba70 Save intermediate state 2017-10-25 10:38:26 +02:00
1ab8d5cc13 Save two more files 2017-10-24 16:58:05 +02:00
789e892865 Save current state 2017-10-24 16:58:04 +02:00
53cfa44d7a Save current state 2017-10-24 16:58:03 +02:00
45 changed files with 4566 additions and 448 deletions

View File

@ -48,6 +48,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h> #include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/MinimalResidual.h>
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h> #include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h> #include <Grid/algorithms/FFT.h>

View File

@ -211,6 +211,7 @@ namespace Grid {
for(int b=0;b<nn;b++){ for(int b=0;b<nn;b++){
subspace[b] = zero;
gaussian(RNG,noise); gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5); scale = std::pow(norm2(noise),-0.5);
noise=noise*scale; noise=noise*scale;
@ -295,13 +296,58 @@ namespace Grid {
return norm2(out); return norm2(out);
}; };
RealD Mdag (const CoarseVector &in, CoarseVector &out){ RealD Mdag (const CoarseVector &in, CoarseVector &out){
return M(in,out); // // corresponds to Petrov-Galerkin coarsening
// return M(in,out);
// corresponds to Galerkin coarsening
CoarseVector tmp(Grid());
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
return norm2(out);
}; };
// Defer support for further coarsening for now void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
void Mdiag (const CoarseVector &in, CoarseVector &out){};
void Mdir (const CoarseVector &in, CoarseVector &out,int dir, int disp){}; conformable(_grid,in._grid);
conformable(in._grid,out._grid);
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
auto point = [dir, disp](){
if(dir == 0 and disp == 0)
return 8;
else
return (4 * dir + 1 - disp) / 2;
}();
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
siteVector nbr;
int ptype;
StencilEntry *SE;
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local&&SE->_permute) {
permute(nbr,in._odata[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in._odata[SE->_offset];
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
res = res + A[point]._odata[ss]*nbr;
vstream(out._odata[ss],res);
}
};
void Mdiag(const CoarseVector &in, CoarseVector &out){
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
};
CoarsenedMatrix(GridCartesian &CoarseGrid) : CoarsenedMatrix(GridCartesian &CoarseGrid) :
@ -417,7 +463,7 @@ namespace Grid {
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl; std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
#endif #endif
// ForceHermitian(); // ForceHermitian();
AssertHermitian(); // AssertHermitian();
// ForceDiagonal(); // ForceDiagonal();
} }
void ForceDiagonal(void) { void ForceDiagonal(void) {

View File

@ -0,0 +1,244 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = std::norm(gamma[i+1]);
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -0,0 +1,256 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
LinearFunction<Field> &Preconditioner;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = std::norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -0,0 +1,254 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
LinearFunction<Field> &Preconditioner;
FlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = std::norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -0,0 +1,242 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the GMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
GeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = std::norm(gamma[i+1]);
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -0,0 +1,156 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MINIMAL_RESIDUAL_H
#define GRID_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
RealD overRelaxParam;
Integer IterationsToComplete; // Number of iterations the MR took to finish.
// Filled in upon completion
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
Complex a, c;
Real d;
Field Mr(src);
Field r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Linop.Op(psi, Mr);
r = src - Mr;
RealD cp = norm2(r);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
std::cout << GridLogIterative << "MinimalResidual: mp " << d << std::endl;
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
if (cp <= rsq) {
return;
}
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
MatrixTimer.Start();
Linop.Op(r, Mr);
MatrixTimer.Stop();
LinalgTimer.Start();
c = innerProduct(Mr, r);
d = norm2(Mr);
a = c / d;
a = a * overRelaxParam;
psi = psi + r * a;
r = r - Mr * a;
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
Linop.Op(psi, Mr);
r = src - Mr;
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
if (ErrorOnNoConverge)
assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
<< std::endl;
if (ErrorOnNoConverge)
assert(0);
IterationsToComplete = k;
}
};
} // namespace Grid
#endif

View File

@ -0,0 +1,273 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
public:
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
GridStopWatch ChangePrecTimer;
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
GridBase* SinglePrecGrid;
LinearFunction<FieldF> &Preconditioner;
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
GridBase * sp_grid,
LinearFunction<FieldF> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, SinglePrecGrid(sp_grid)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
FieldD r(src._grid);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
ChangePrecTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
RealD cp = 0;
FieldD w(src._grid);
FieldD r(src._grid);
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<FieldD> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<FieldD> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = std::norm(gamma[i+1]);
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
FieldF v_f(SinglePrecGrid);
FieldF z_f(SinglePrecGrid);
ChangePrecTimer.Start();
precisionChange(v_f, v[iter]);
precisionChange(z_f, z[iter]);
ChangePrecTimer.Stop();
PrecTimer.Start();
Preconditioner(v_f, z_f);
PrecTimer.Stop();
ChangePrecTimer.Start();
precisionChange(z[iter], z_f);
ChangePrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -139,8 +139,11 @@ namespace Grid {
MatTimer.Start(); MatTimer.Start();
Linop.HermOpAndNorm(psi,Az,zAz,zAAz); Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
MatTimer.Stop(); MatTimer.Stop();
LinalgTimer.Start();
r=src-Az; r=src-Az;
LinalgTimer.Stop();
///////////////////// /////////////////////
// p = Prec(r) // p = Prec(r)
///////////////////// /////////////////////
@ -152,8 +155,10 @@ namespace Grid {
Linop.HermOp(z,tmp); Linop.HermOp(z,tmp);
MatTimer.Stop(); MatTimer.Stop();
LinalgTimer.Start();
ttmp=tmp; ttmp=tmp;
tmp=tmp-r; tmp=tmp-r;
LinalgTimer.Stop();
/* /*
std::cout<<GridLogMessage<<r<<std::endl; std::cout<<GridLogMessage<<r<<std::endl;
@ -166,12 +171,14 @@ namespace Grid {
Linop.HermOpAndNorm(z,Az,zAz,zAAz); Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop(); MatTimer.Stop();
LinalgTimer.Start();
//p[0],q[0],qq[0] //p[0],q[0],qq[0]
p[0]= z; p[0]= z;
q[0]= Az; q[0]= Az;
qq[0]= zAAz; qq[0]= zAAz;
cp =norm2(r); cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){ for(int k=0;k<nstep;k++){
@ -181,12 +188,14 @@ namespace Grid {
int peri_k = k %mmax; int peri_k = k %mmax;
int peri_kp= kp%mmax; int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real? rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
a = rq/qq[peri_k]; a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi); axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r); cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
if((k==nstep-1)||(cp<rsq)){ if((k==nstep-1)||(cp<rsq)){
return cp; return cp;
@ -202,6 +211,8 @@ namespace Grid {
Linop.HermOpAndNorm(z,Az,zAz,zAAz); Linop.HermOpAndNorm(z,Az,zAz,zAAz);
Linop.HermOp(z,tmp); Linop.HermOp(z,tmp);
MatTimer.Stop(); MatTimer.Stop();
LinalgTimer.Start();
tmp=tmp-r; tmp=tmp-r;
std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl; std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;
@ -219,9 +230,9 @@ namespace Grid {
} }
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
} }
assert(0); // never reached assert(0); // never reached
return cp; return cp;
} }

View File

@ -59,6 +59,7 @@ void GridLogTimestamp(int on){
} }
Colours GridLogColours(0); Colours GridLogColours(0);
GridLogger GridLogMG (1, "MG" , GridLogColours, "NORMAL");
GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL"); GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL");
GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL"); GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
GridLogger GridLogError (1, "Error" , GridLogColours, "RED"); GridLogger GridLogError (1, "Error" , GridLogColours, "RED");

View File

@ -169,6 +169,7 @@ public:
void GridLogConfigure(std::vector<std::string> &logstreams); void GridLogConfigure(std::vector<std::string> &logstreams);
extern GridLogger GridLogMG;
extern GridLogger GridLogIRL; extern GridLogger GridLogIRL;
extern GridLogger GridLogSolver; extern GridLogger GridLogSolver;
extern GridLogger GridLogError; extern GridLogger GridLogError;

View File

@ -4,9 +4,11 @@
Source file: ./lib/qcd/action/gauge/Photon.h Source file: ./lib/qcd/action/gauge/Photon.h
Copyright (C) 2015 Copyright (C) 2015-2018
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <J.Harrison@soton.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -30,8 +32,9 @@
namespace Grid{ namespace Grid{
namespace QCD{ namespace QCD{
template <class S> template <class S>
class QedGimpl class QedGImpl
{ {
public: public:
typedef S Simd; typedef S Simd;
@ -43,27 +46,27 @@ namespace QCD{
typedef iImplGaugeLink<Simd> SiteLink; typedef iImplGaugeLink<Simd> SiteLink;
typedef iImplGaugeField<Simd> SiteField; typedef iImplGaugeField<Simd> SiteField;
typedef SiteField SiteComplex; typedef SiteLink SiteComplex;
typedef Lattice<SiteLink> LinkField; typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field; typedef Lattice<SiteField> Field;
typedef Field ComplexField; typedef Field ComplexField;
}; };
typedef QedGimpl<vComplex> QedGimplR; typedef QedGImpl<vComplex> QedGImplR;
template<class Gimpl> template <class GImpl>
class Photon class Photon
{ {
public: public:
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(GImpl);
typedef typename SiteGaugeLink::scalar_object ScalarSite;
typedef typename ScalarSite::scalar_type ScalarComplex;
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3); GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2, qedInf, 3); GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2);
public: public:
Photon(Gauge gauge, ZmScheme zmScheme); Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvement);
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements); Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme);
Photon(Gauge gauge, ZmScheme zmScheme, Real G0);
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements, Real G0);
virtual ~Photon(void) = default; virtual ~Photon(void) = default;
void FreePropagator(const GaugeField &in, GaugeField &out); void FreePropagator(const GaugeField &in, GaugeField &out);
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out); void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
@ -73,345 +76,255 @@ namespace QCD{
const GaugeLinkField &weight); const GaugeLinkField &weight);
void UnitField(GaugeField &out); void UnitField(GaugeField &out);
private: private:
void infVolPropagator(GaugeLinkField &out); void makeSpatialNorm(LatticeInteger &spNrm);
void invKHatSquared(GaugeLinkField &out); void makeKHat(std::vector<GaugeLinkField> &khat);
void makeInvKHatSquared(GaugeLinkField &out);
void zmSub(GaugeLinkField &out); void zmSub(GaugeLinkField &out);
void transverseProjectSpatial(GaugeField &out);
void gaugeTransform(GaugeField &out);
private: private:
Gauge gauge_; GridBase *grid_;
ZmScheme zmScheme_; Gauge gauge_;
std::vector<Real> improvement_; ZmScheme zmScheme_;
Real G0_; std::vector<Real> improvement_;
}; };
typedef Photon<QedGimplR> PhotonR; typedef Photon<QedGImplR> PhotonR;
template<class Gimpl> template<class GImpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme) Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme,
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()),
G0_(0.15493339023106021408483720810737508876916113364521)
{}
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
std::vector<Real> improvements) std::vector<Real> improvements)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements), : grid_(grid), gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements)
G0_(0.15493339023106021408483720810737508876916113364521)
{} {}
template<class Gimpl> template<class GImpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme, Real G0) Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()), G0_(G0) : Photon(grid, gauge, zmScheme, std::vector<Real>())
{} {}
template<class Gimpl> template<class GImpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme, void Photon<GImpl>::FreePropagator(const GaugeField &in, GaugeField &out)
std::vector<Real> improvements, Real G0)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements), G0_(G0)
{}
template<class Gimpl>
void Photon<Gimpl>::FreePropagator (const GaugeField &in,GaugeField &out)
{ {
FFT theFFT(in._grid); FFT theFFT(dynamic_cast<GridCartesian *>(grid_));
GaugeField in_k(grid_);
GaugeField prop_k(grid_);
GaugeField in_k(in._grid); theFFT.FFT_all_dim(in_k, in, FFT::forward);
GaugeField prop_k(in._grid); MomentumSpacePropagator(prop_k, in_k);
theFFT.FFT_all_dim(out, prop_k, FFT::backward);
theFFT.FFT_all_dim(in_k,in,FFT::forward);
MomentumSpacePropagator(prop_k,in_k);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::infVolPropagator(GaugeLinkField &out) void Photon<GImpl>::makeSpatialNorm(LatticeInteger &spNrm)
{ {
auto *grid = dynamic_cast<GridCartesian *>(out._grid); LatticeInteger coor(grid_);
LatticeReal xmu(grid); std::vector<int> l = grid_->FullDimensions();
GaugeLinkField one(grid);
const unsigned int nd = grid->_ndimension; spNrm = zero;
std::vector<int> &l = grid->_fdimensions; for(int mu = 0; mu < grid_->Nd() - 1; mu++)
std::vector<int> x0(nd,0); {
TComplex Tone = Complex(1.0,0.0); LatticeCoordinate(coor, mu);
TComplex Tzero = Complex(G0_,0.0); coor = where(coor < Integer(l[mu]/2), coor, coor - Integer(l[mu]));
FFT fft(grid); spNrm = spNrm + coor*coor;
}
}
template<class GImpl>
void Photon<GImpl>::makeKHat(std::vector<GaugeLinkField> &khat)
{
const unsigned int nd = grid_->Nd();
std::vector<int> l = grid_->FullDimensions();
Complex ci(0., 1.);
khat.resize(nd, grid_);
for (unsigned int mu = 0; mu < nd; ++mu)
{
Real piL = M_PI/l[mu];
LatticeCoordinate(khat[mu], mu);
khat[mu] = exp(piL*ci*khat[mu])*2.*sin(piL*khat[mu]);
}
}
template<class GImpl>
void Photon<GImpl>::makeInvKHatSquared(GaugeLinkField &out)
{
std::vector<GaugeLinkField> khat;
GaugeLinkField lone(grid_);
const unsigned int nd = grid_->Nd();
std::vector<int> zm(nd, 0);
ScalarSite one = ScalarComplex(1., 0.), z = ScalarComplex(0., 0.);
one = Complex(1.0,0.0);
out = zero; out = zero;
makeKHat(khat);
for(int mu = 0; mu < nd; mu++) for(int mu = 0; mu < nd; mu++)
{ {
LatticeCoordinate(xmu,mu); out = out + khat[mu]*conjugate(khat[mu]);
Real lo2 = l[mu]/2.0;
xmu = where(xmu < lo2, xmu, xmu-double(l[mu]));
out = out + toComplex(4*M_PI*M_PI*xmu*xmu);
} }
pokeSite(Tone, out, x0); lone = ScalarComplex(1., 0.);
out = one/out; pokeSite(one, out, zm);
pokeSite(Tzero, out, x0); out = lone/out;
fft.FFT_all_dim(out, out, FFT::forward); pokeSite(z, out, zm);
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out) void Photon<GImpl>::zmSub(GaugeLinkField &out)
{ {
GridBase *grid = out._grid;
GaugeLinkField kmu(grid), one(grid);
const unsigned int nd = grid->_ndimension;
std::vector<int> &l = grid->_fdimensions;
std::vector<int> zm(nd,0);
TComplex Tone = Complex(1.0,0.0);
TComplex Tzero= Complex(0.0,0.0);
one = Complex(1.0,0.0);
out = zero;
for(int mu = 0; mu < nd; mu++)
{
Real twoPiL = M_PI*2./l[mu];
LatticeCoordinate(kmu,mu);
kmu = 2.*sin(.5*twoPiL*kmu);
out = out + kmu*kmu;
}
pokeSite(Tone, out, zm);
out = one/out;
pokeSite(Tzero, out, zm);
}
template<class Gimpl>
void Photon<Gimpl>::zmSub(GaugeLinkField &out)
{
GridBase *grid = out._grid;
const unsigned int nd = grid->_ndimension;
std::vector<int> &l = grid->_fdimensions;
switch (zmScheme_) switch (zmScheme_)
{ {
case ZmScheme::qedTL: case ZmScheme::qedTL:
{ {
std::vector<int> zm(nd,0); std::vector<int> zm(grid_->Nd(), 0);
TComplex Tzero = Complex(0.0,0.0); ScalarSite z = ScalarComplex(0., 0.);
pokeSite(Tzero, out, zm);
pokeSite(z, out, zm);
break; break;
} }
case ZmScheme::qedL: case ZmScheme::qedL:
{ {
LatticeInteger spNrm(grid), coor(grid); LatticeInteger spNrm(grid_);
GaugeLinkField z(grid);
spNrm = zero;
for(int d = 0; d < grid->_ndimension - 1; d++)
{
LatticeCoordinate(coor,d);
coor = where(coor < Integer(l[d]/2), coor, coor-Integer(l[d]));
spNrm = spNrm + coor*coor;
}
out = where(spNrm == Integer(0), 0.*out, out);
// IR improvement makeSpatialNorm(spNrm);
out = where(spNrm == Integer(0), 0.*out, out);
for(int i = 0; i < improvement_.size(); i++) for(int i = 0; i < improvement_.size(); i++)
{ {
Real f = sqrt(improvement_[i]+1); Real f = sqrt(improvement_[i] + 1);
out = where(spNrm == Integer(i+1), f*out, out); out = where(spNrm == Integer(i + 1), f*out, out);
} }
break;
} }
default: default:
assert(0);
break; break;
} }
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::MomentumSpacePropagator(const GaugeField &in, void Photon<GImpl>::transverseProjectSpatial(GaugeField &out)
GaugeField &out)
{ {
GridBase *grid = out._grid; const unsigned int nd = grid_->Nd();
LatticeComplex momProp(grid); GaugeLinkField invKHat(grid_), cst(grid_), spdiv(grid_);
LatticeInteger spNrm(grid_);
switch (zmScheme_) std::vector<GaugeLinkField> khat, a(nd, grid_), aProj(nd, grid_);
invKHat = zero;
makeSpatialNorm(spNrm);
makeKHat(khat);
for (unsigned int mu = 0; mu < nd; ++mu)
{ {
case ZmScheme::qedTL: a[mu] = peekLorentz(out, mu);
case ZmScheme::qedL: if (mu < nd - 1)
{ {
invKHatSquared(momProp); invKHat += khat[mu]*conjugate(khat[mu]);
zmSub(momProp);
break;
} }
case ZmScheme::qedInf: }
{ cst = ScalarComplex(1., 0.);
infVolPropagator(momProp); invKHat = where(spNrm == Integer(0), cst, invKHat);
invKHat = cst/invKHat;
cst = zero;
invKHat = where(spNrm == Integer(0), cst, invKHat);
spdiv = zero;
for (unsigned int nu = 0; nu < nd - 1; ++nu)
{
spdiv += conjugate(khat[nu])*a[nu];
}
spdiv *= invKHat;
for (unsigned int mu = 0; mu < nd; ++mu)
{
aProj[mu] = a[mu] - khat[mu]*spdiv;
pokeLorentz(out, aProj[mu], mu);
}
}
template<class GImpl>
void Photon<GImpl>::gaugeTransform(GaugeField &out)
{
switch (gauge_)
{
case Gauge::feynman:
break;
case Gauge::coulomb:
transverseProjectSpatial(out);
break;
case Gauge::landau:
assert(0);
break; break;
}
default: default:
assert(0);
break; break;
} }
}
template<class GImpl>
void Photon<GImpl>::MomentumSpacePropagator(const GaugeField &in,
GaugeField &out)
{
LatticeComplex momProp(grid_);
makeInvKHatSquared(momProp);
zmSub(momProp);
out = in*momProp; out = in*momProp;
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::StochasticWeight(GaugeLinkField &weight) void Photon<GImpl>::StochasticWeight(GaugeLinkField &weight)
{ {
auto *grid = dynamic_cast<GridCartesian *>(weight._grid); const unsigned int nd = grid_->Nd();
const unsigned int nd = grid->_ndimension; std::vector<int> l = grid_->FullDimensions();
std::vector<int> latt_size = grid->_fdimensions; Integer vol = 1;
switch (zmScheme_) for(unsigned int mu = 0; mu < nd; mu++)
{ {
case ZmScheme::qedTL: vol = vol*l[mu];
case ZmScheme::qedL:
{
Integer vol = 1;
for(int d = 0; d < nd; d++)
{
vol = vol * latt_size[d];
}
invKHatSquared(weight);
weight = sqrt(vol)*sqrt(weight);
zmSub(weight);
break;
}
case ZmScheme::qedInf:
{
infVolPropagator(weight);
weight = sqrt(real(weight));
break;
}
default:
break;
} }
makeInvKHatSquared(weight);
weight = sqrt(vol)*sqrt(weight);
zmSub(weight);
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng) void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
{ {
auto *grid = dynamic_cast<GridCartesian *>(out._grid); GaugeLinkField weight(grid_);
GaugeLinkField weight(grid);
StochasticWeight(weight); StochasticWeight(weight);
StochasticField(out, rng, weight); StochasticField(out, rng, weight);
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng, void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight) const GaugeLinkField &weight)
{ {
auto *grid = dynamic_cast<GridCartesian *>(out._grid); const unsigned int nd = grid_->Nd();
const unsigned int nd = grid->_ndimension; GaugeLinkField r(grid_);
GaugeLinkField r(grid); GaugeField aTilde(grid_);
GaugeField aTilde(grid); FFT fft(dynamic_cast<GridCartesian *>(grid_));
FFT fft(grid);
switch (zmScheme_) for(unsigned int mu = 0; mu < nd; mu++)
{ {
case ZmScheme::qedTL: gaussian(rng, r);
case ZmScheme::qedL: r = weight*r;
{ pokeLorentz(aTilde, r, mu);
for(int mu = 0; mu < nd; mu++)
{
gaussian(rng, r);
r = weight*r;
pokeLorentz(aTilde, r, mu);
}
break;
}
case ZmScheme::qedInf:
{
Complex shift(1., 1.); // This needs to be a GaugeLink element?
for(int mu = 0; mu < nd; mu++)
{
bernoulli(rng, r);
r = weight*(2.*r - shift);
pokeLorentz(aTilde, r, mu);
}
break;
}
default:
break;
} }
gaugeTransform(aTilde);
fft.FFT_all_dim(out, aTilde, FFT::backward); fft.FFT_all_dim(out, aTilde, FFT::backward);
out = real(out); out = real(out);
} }
template<class Gimpl> template<class GImpl>
void Photon<Gimpl>::UnitField(GaugeField &out) void Photon<GImpl>::UnitField(GaugeField &out)
{ {
auto *grid = dynamic_cast<GridCartesian *>(out._grid); const unsigned int nd = grid_->Nd();
const unsigned int nd = grid->_ndimension; GaugeLinkField r(grid_);
GaugeLinkField r(grid);
r = Complex(1.0,0.0); r = ScalarComplex(1., 0.);
for(unsigned int mu = 0; mu < nd; mu++)
for(int mu = 0; mu < nd; mu++)
{ {
pokeLorentz(out, r, mu); pokeLorentz(out, r, mu);
} }
out = real(out); out = real(out);
} }
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out,
// const GaugeField &in)
// {
//
// FeynmanGaugeMomentumSpacePropagator_TL(out,in);
//
// GridBase *grid = out._grid;
// LatticeInteger coor(grid);
// GaugeField zz(grid); zz=zero;
//
// // xyzt
// for(int d = 0; d < grid->_ndimension-1;d++){
// LatticeCoordinate(coor,d);
// out = where(coor==Integer(0),zz,out);
// }
// }
//
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out,
// const GaugeField &in)
// {
//
// // what type LatticeComplex
// GridBase *grid = out._grid;
// int nd = grid->_ndimension;
//
// typedef typename GaugeField::vector_type vector_type;
// typedef typename GaugeField::scalar_type ScalComplex;
// typedef Lattice<iSinglet<vector_type> > LatComplex;
//
// std::vector<int> latt_size = grid->_fdimensions;
//
// LatComplex denom(grid); denom= zero;
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
// LatComplex kmu(grid);
//
// ScalComplex ci(0.0,1.0);
// // momphase = n * 2pi / L
// for(int mu=0;mu<Nd;mu++) {
//
// LatticeCoordinate(kmu,mu);
//
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
//
// kmu = TwoPiL * kmu ;
//
// denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
// }
// std::vector<int> zero_mode(nd,0);
// TComplexD Tone = ComplexD(1.0,0.0);
// TComplexD Tzero= ComplexD(0.0,0.0);
//
// pokeSite(Tone,denom,zero_mode);
//
// denom= one/denom;
//
// pokeSite(Tzero,denom,zero_mode);
//
// out = zero;
// out = in*denom;
// };
}} }}
#endif #endif

View File

@ -173,6 +173,39 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
} }
} }
} }
}
}} // I explicitly need these outside the QCD namespace
template<typename vobj>
void G5C(Lattice<vobj> &z, const Lattice<vobj> &x)
{
GridBase *grid = x._grid;
z.checkerboard = x.checkerboard;
conformable(x, z);
QCD::Gamma G5(QCD::Gamma::Algebra::Gamma5);
z = G5 * x;
}
template<class CComplex, int nbasis>
void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex, nbasis>> &x)
{
GridBase *grid = x._grid;
z.checkerboard = x.checkerboard;
conformable(x, z);
static_assert(nbasis % 2 == 0, "");
int nb = nbasis / 2;
parallel_for(int ss = 0; ss < grid->oSites(); ss++) {
for(int n = 0; n < nb; ++n) {
z._odata[ss](n) = x._odata[ss](n);
}
for(int n = nb; n < nbasis; ++n) {
z._odata[ss](n) = -x._odata[ss](n);
}
}
}
}
#endif #endif

View File

@ -6,10 +6,12 @@
Copyright (C) 2015 Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp> Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: James Harrison <J.Harrison@soton.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -645,6 +647,184 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
} }
} }
} }
//////////////////////////////////////////////////
// Wilson loop of size (R1, R2), oriented in mu,nu plane
//////////////////////////////////////////////////
static void wilsonLoop(GaugeMat &wl, const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
wl = U[nu];
for(int i = 0; i < Rnu-1; i++){
wl = Gimpl::CovShiftForward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftForward(U[mu], mu, wl);
}
for(int i = 0; i < Rnu; i++){
wl = Gimpl::CovShiftBackward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftBackward(U[mu], mu, wl);
}
}
//////////////////////////////////////////////////
// trace of Wilson Loop oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceWilsonLoop(LatticeComplex &wl,
const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
GaugeMat sp(U[0]._grid);
wilsonLoop(sp, U, Rmu, Rnu, mu, nu);
wl = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of Wilson loop
//////////////////////////////////////////////////
static void siteWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0]._grid);
Wl = zero;
for (int mu = 1; mu < U[0]._grid->_ndimension; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over planes of Wilson loop with length R1
// in the time direction
//////////////////////////////////////////////////
static void siteTimelikeWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0]._grid);
int ndim = U[0]._grid->_ndimension;
Wl = zero;
for (int nu = 0; nu < ndim - 1; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, ndim-1, nu);
Wl = Wl + siteWl;
}
}
//////////////////////////////////////////////////
// sum Wilson loop over all planes orthogonal to the time direction
//////////////////////////////////////////////////
static void siteSpatialWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0]._grid);
Wl = zero;
for (int mu = 1; mu < U[0]._grid->_ndimension - 1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real sumWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu._grid);
siteWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu._grid);
siteTimelikeWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu._grid);
siteSpatialWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real avgWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu._grid->_ndimension;
Real sumWl = sumWilsonLoop(Umu, R1, R2);
Real vol = Umu._grid->gSites();
Real faces = 1.0 * ndim * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real avgTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu._grid->_ndimension;
Real sumWl = sumTimelikeWilsonLoop(Umu, R1, R2);
Real vol = Umu._grid->gSites();
Real faces = 1.0 * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real avgSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu._grid->_ndimension;
Real sumWl = sumSpatialWilsonLoop(Umu, R1, R2);
Real vol = Umu._grid->gSites();
Real faces = 1.0 * (ndim - 1) * (ndim - 2);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
}; };
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops; typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;

View File

@ -62,6 +62,9 @@ using A2AMatrixSet = Eigen::TensorMap<Eigen::Tensor<T, 5, Eigen::RowMajor>>;
template <typename T> template <typename T>
using A2AMatrix = Eigen::Matrix<T, -1, -1, Eigen::RowMajor>; using A2AMatrix = Eigen::Matrix<T, -1, -1, Eigen::RowMajor>;
template <typename T>
using A2AMatrixMap = Eigen::Map<A2AMatrix<T>>;
template <typename T> template <typename T>
using A2AMatrixTr = Eigen::Matrix<T, -1, -1, Eigen::ColMajor>; using A2AMatrixTr = Eigen::Matrix<T, -1, -1, Eigen::ColMajor>;
@ -108,7 +111,7 @@ public:
void saveBlock(const A2AMatrixSet<T> &m, const unsigned int ext, const unsigned int str, void saveBlock(const A2AMatrixSet<T> &m, const unsigned int ext, const unsigned int str,
const unsigned int i, const unsigned int j); const unsigned int i, const unsigned int j);
template <template <class> class Vec, typename VecT> template <template <class> class Vec, typename VecT>
void load(Vec<VecT> &v, double *tRead = nullptr); void load(Vec<VecT> &v, double *tRead = nullptr, const bool useCache = true);
private: private:
std::string filename_{""}, dataname_{""}; std::string filename_{""}, dataname_{""};
unsigned int nt_{0}, ni_{0}, nj_{0}; unsigned int nt_{0}, ni_{0}, nj_{0};
@ -495,7 +498,7 @@ void A2AMatrixIo<T>::saveBlock(const A2AMatrixSet<T> &m,
template <typename T> template <typename T>
template <template <class> class Vec, typename VecT> template <template <class> class Vec, typename VecT>
void A2AMatrixIo<T>::load(Vec<VecT> &v, double *tRead) void A2AMatrixIo<T>::load(Vec<VecT> &v, double *tRead, const bool useCache)
{ {
#ifdef HAVE_HDF5 #ifdef HAVE_HDF5
Hdf5Reader reader(filename_); Hdf5Reader reader(filename_);
@ -532,36 +535,55 @@ void A2AMatrixIo<T>::load(Vec<VecT> &v, double *tRead)
nj_ = hdim[2]; nj_ = hdim[2];
} }
A2AMatrix<T> buf(ni_, nj_); if (useCache)
std::vector<hsize_t> count = {1, static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)},
stride = {1, 1, 1},
block = {1, 1, 1},
memCount = {static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)};
H5NS::DataSpace memspace(memCount.size(), memCount.data());
std::cout << "Loading timeslice";
std::cout.flush();
*tRead = 0.;
for (unsigned int tp1 = nt_; tp1 > 0; --tp1)
{ {
unsigned int t = tp1 - 1; std::vector<T> buf(nt_*ni_*nj_);
std::vector<hsize_t> offset = {static_cast<hsize_t>(t), 0, 0}; T *pt;
if (t % 10 == 0) dataset.read(buf.data(), datatype);
pt = buf.data();
for (unsigned int t = 0; t < nt_; ++t)
{ {
std::cout << " " << t; A2AMatrixMap<T> bufMap(pt, ni_, nj_);
std::cout.flush();
v[t] = bufMap.template cast<VecT>();
pt += ni_*nj_;
} }
dataspace.selectHyperslab(H5S_SELECT_SET, count.data(), offset.data(),
stride.data(), block.data());
if (tRead) *tRead -= usecond();
dataset.read(buf.data(), datatype, memspace, dataspace);
if (tRead) *tRead += usecond();
v[t] = buf.template cast<VecT>();
} }
std::cout << std::endl; // if useCache = false, do I/O timeslice per timeslice (much slower)
else
{
A2AMatrix<T> buf(ni_, nj_);
std::vector<hsize_t> count = {1, static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)},
stride = {1, 1, 1},
block = {1, 1, 1},
memCount = {static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)};
H5NS::DataSpace memspace(memCount.size(), memCount.data());
std::cout << "Loading timeslice";
std::cout.flush();
*tRead = 0.;
for (unsigned int tp1 = nt_; tp1 > 0; --tp1)
{
unsigned int t = tp1 - 1;
std::vector<hsize_t> offset = {static_cast<hsize_t>(t), 0, 0};
if (t % 10 == 0)
{
std::cout << " " << t;
std::cout.flush();
}
dataspace.selectHyperslab(H5S_SELECT_SET, count.data(), offset.data(),
stride.data(), block.data());
if (tRead) *tRead -= usecond();
dataset.read(buf.data(), datatype, memspace, dataspace);
if (tRead) *tRead += usecond();
v[t] = buf.template cast<VecT>();
}
std::cout << std::endl;
}
#else #else
HADRONS_ERROR(Implementation, "all-to-all matrix I/O needs HDF5 library"); HADRONS_ERROR(Implementation, "all-to-all matrix I/O needs HDF5 library");
#endif #endif

View File

@ -41,14 +41,6 @@ BEGIN_HADRONS_NAMESPACE
class Application class Application
{ {
public: public:
class TrajRange: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TrajRange,
unsigned int, start,
unsigned int, end,
unsigned int, step);
};
class GlobalPar: Serializable class GlobalPar: Serializable
{ {
public: public:

View File

@ -263,6 +263,33 @@ void tokenReplace(std::string &str, const std::string token,
} }
} }
// trajectory range
class TrajRange: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TrajRange,
unsigned int, start,
unsigned int, end,
unsigned int, step,
std::string, exclude);
inline std::vector<unsigned int> getTrajectoryList(void)
{
std::vector<unsigned int> excVec = strToVec<unsigned int>(exclude);
std::vector<unsigned int> list;
for (unsigned int t = start; t < end; t += step)
{
if (std::find(excVec.begin(), excVec.end(), t) == excVec.end())
{
list.push_back(t);
}
}
return list;
}
};
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE
#include <Hadrons/Exceptions.hpp> #include <Hadrons/Exceptions.hpp>

View File

@ -34,4 +34,5 @@ nobase_libHadrons_a_HEADERS = \
Solver.hpp \ Solver.hpp \
TimerArray.hpp \ TimerArray.hpp \
VirtualMachine.hpp \ VirtualMachine.hpp \
Utilities/Contractor.hpp \
$(modules_hpp) $(modules_hpp)

View File

@ -70,7 +70,7 @@ void TStochEm::execute(void)
LOG(Message) << "Generating stochastic EM potential..." << std::endl; LOG(Message) << "Generating stochastic EM potential..." << std::endl;
std::vector<Real> improvements = strToVec<Real>(par().improvement); std::vector<Real> improvements = strToVec<Real>(par().improvement);
PhotonR photon(par().gauge, par().zmScheme, improvements, par().G0_qedInf); PhotonR photon(envGetGrid(EmField), par().gauge, par().zmScheme, improvements);
auto &a = envGet(EmField, getName()); auto &a = envGet(EmField, getName());
auto &w = envGet(EmComp, "_" + getName() + "_weight"); auto &w = envGet(EmComp, "_" + getName() + "_weight");

View File

@ -47,8 +47,7 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(StochEmPar, GRID_SERIALIZABLE_CLASS_MEMBERS(StochEmPar,
PhotonR::Gauge, gauge, PhotonR::Gauge, gauge,
PhotonR::ZmScheme, zmScheme, PhotonR::ZmScheme, zmScheme,
std::string, improvement, std::string, improvement);
Real, G0_qedInf);
}; };
class TStochEm: public Module<StochEmPar> class TStochEm: public Module<StochEmPar>

View File

@ -62,7 +62,7 @@ void TUnitEm::setup(void)
// execution /////////////////////////////////////////////////////////////////// // execution ///////////////////////////////////////////////////////////////////
void TUnitEm::execute(void) void TUnitEm::execute(void)
{ {
PhotonR photon(0, 0); // Just chose arbitrary input values here PhotonR photon(envGetGrid(EmField), 0, 0); // Just chose arbitrary input values here
auto &a = envGet(EmField, getName()); auto &a = envGet(EmField, getName());
LOG(Message) << "Generating unit EM potential..." << std::endl; LOG(Message) << "Generating unit EM potential..." << std::endl;
photon.UnitField(a); photon.UnitField(a);

View File

@ -28,6 +28,25 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Hadrons/A2AMatrix.hpp> #include <Hadrons/A2AMatrix.hpp>
#include <Hadrons/DiskVector.hpp> #include <Hadrons/DiskVector.hpp>
#include <Hadrons/TimerArray.hpp> #include <Hadrons/TimerArray.hpp>
#include <Hadrons/Utilities/Contractor.hpp>
#ifdef GRID_COMMS_MPI3
#define GET_RANK(rank, nMpi) \
MPI_Comm_size(MPI_COMM_WORLD, &(nMpi));\
MPI_Comm_rank(MPI_COMM_WORLD, &(rank))
#define BARRIER() MPI_Barrier(MPI_COMM_WORLD)
#define GLOBAL_DSUM(x) MPI_Allreduce(MPI_IN_PLACE, &x, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD)
#define GLOBAL_DMAX(x) MPI_Allreduce(MPI_IN_PLACE, &x, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD)
#define INIT() MPI_Init(NULL, NULL)
#define FINALIZE() MPI_Finalize()
#else
#define GET_RANK(rank, nMpi) (nMpi) = 1; (rank) = 0
#define BARRIER()
#define GLOBAL_DSUM(x)
#define GLOBAL_DMAX(x)
#define INIT()
#define FINALIZE()
#endif
using namespace Grid; using namespace Grid;
using namespace QCD; using namespace QCD;
@ -35,58 +54,6 @@ using namespace Hadrons;
#define TIME_MOD(t) (((t) + par.global.nt) % par.global.nt) #define TIME_MOD(t) (((t) + par.global.nt) % par.global.nt)
namespace Contractor
{
class TrajRange: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TrajRange,
unsigned int, start,
unsigned int, end,
unsigned int, step);
};
class GlobalPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GlobalPar,
TrajRange, trajCounter,
unsigned int, nt,
std::string, diskVectorDir,
std::string, output);
};
class A2AMatrixPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMatrixPar,
std::string, file,
std::string, dataset,
unsigned int, cacheSize,
std::string, name);
};
class ProductPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ProductPar,
std::string, terms,
std::vector<std::string>, times,
std::string, translations,
bool, translationAverage);
};
class CorrelatorResult: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(CorrelatorResult,
std::vector<Contractor::A2AMatrixPar>, a2aMatrix,
ProductPar, contraction,
std::vector<unsigned int>, times,
std::vector<ComplexD>, correlator);
};
}
struct ContractorPar struct ContractorPar
{ {
Contractor::GlobalPar global; Contractor::GlobalPar global;
@ -143,6 +110,27 @@ void saveCorrelator(const Contractor::CorrelatorResult &result, const std::strin
write(writer, fileStem, result); write(writer, fileStem, result);
} }
void printPerf(const double bytes, const double usec)
{
double maxt;
maxt = usec;
GLOBAL_DMAX(maxt);
std::cout << maxt/1.0e6 << " sec " << bytes/maxt*1.0e6/1024/1024/1024 << " GB/s";
}
void printPerf(const double bytes, const double busec,
const double flops, const double fusec)
{
double maxt;
printPerf(bytes, busec);
std::cout << " ";
maxt = fusec;
GLOBAL_DMAX(maxt);
std::cout << flops/fusec/1.0e3 << " GFlop/s";
}
std::set<unsigned int> parseTimeRange(const std::string str, const unsigned int nt) std::set<unsigned int> parseTimeRange(const std::string str, const unsigned int nt)
{ {
std::regex rex("([0-9]+)|(([0-9]+)\\.\\.([0-9]+))"); std::regex rex("([0-9]+)|(([0-9]+)\\.\\.([0-9]+))");
@ -184,59 +172,18 @@ std::set<unsigned int> parseTimeRange(const std::string str, const unsigned int
return tSet; return tSet;
} }
struct Sec
{
Sec(const double usec)
{
seconds = usec/1.0e6;
}
double seconds;
};
inline std::ostream & operator<< (std::ostream& s, const Sec &&sec)
{
s << std::setw(10) << sec.seconds << " sec";
return s;
}
struct Flops
{
Flops(const double flops, const double fusec)
{
gFlopsPerSec = flops/fusec/1.0e3;
}
double gFlopsPerSec;
};
inline std::ostream & operator<< (std::ostream& s, const Flops &&f)
{
s << std::setw(10) << f.gFlopsPerSec << " GFlop/s";
return s;
}
struct Bytes
{
Bytes(const double bytes, const double busec)
{
gBytesPerSec = bytes/busec*1.0e6/1024/1024/1024;
}
double gBytesPerSec;
};
inline std::ostream & operator<< (std::ostream& s, const Bytes &&b)
{
s << std::setw(10) << b.gBytesPerSec << " GB/s";
return s;
}
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
// MPI init
int nMpi, rank;
INIT();
GET_RANK(rank, nMpi);
if (rank != 0)
{
std::cout.setstate(std::ios::badbit);
}
// parse command line // parse command line
std::string parFilename; std::string parFilename;
@ -266,31 +213,68 @@ int main(int argc, char* argv[])
for (auto &p: par.a2aMatrix) for (auto &p: par.a2aMatrix)
{ {
std::string dirName = par.global.diskVectorDir + "/" + p.name; std::string dirName = par.global.diskVectorDir + "/" + p.name + "." + std::to_string(rank);
a2aMat.emplace(p.name, EigenDiskVector<ComplexD>(dirName, par.global.nt, p.cacheSize)); a2aMat.emplace(p.name, EigenDiskVector<ComplexD>(dirName, par.global.nt, p.cacheSize));
} }
// trajectory loop // trajectory loop
for (unsigned int traj = par.global.trajCounter.start; std::vector<unsigned int> tList = par.global.trajCounter.getTrajectoryList();
traj < par.global.trajCounter.end; traj += par.global.trajCounter.step) unsigned int indi, inde, indPerRank;
{
std::cout << ":::::::: Trajectory " << traj << std::endl;
indPerRank = tList.size()/nMpi;
indi = rank*indPerRank;
BARRIER();
for (unsigned int tInd = indi; tInd < indi + indPerRank; tInd++)
{
unsigned int traj;
if (tInd < tList.size())
{
traj = tList[tInd];
}
else
{
traj = tList.back();
}
if (nMpi > 1)
{
if (rank == 0)
{
std::cout << ":::::::: Trajectories ";
for (unsigned int r = 0; r < nMpi - 1; ++r)
{
std::cout << tList[tInd + r*indPerRank] << " ";
}
if (tInd + (nMpi - 1)*indPerRank < tList.size())
{
std::cout << tList[tInd + (nMpi - 1)*indPerRank];
}
std::cout << std::endl;
}
}
else
{
std::cout << ":::::::: Trajectory " << traj << std::endl;
}
// load data // load data
for (auto &p: par.a2aMatrix) for (auto &p: par.a2aMatrix)
{ {
std::string filename = p.file; std::string filename = p.file;
double t, size; double t;
tokenReplace(filename, "traj", traj); tokenReplace(filename, "traj", traj);
std::cout << "======== Loading '" << filename << "'" << std::endl; std::cout << "======== Loading '" << p.file << "'" << std::endl;
BARRIER();
A2AMatrixIo<HADRONS_A2AM_IO_TYPE> a2aIo(filename, p.dataset, par.global.nt); A2AMatrixIo<HADRONS_A2AM_IO_TYPE> a2aIo(filename, p.dataset, par.global.nt);
a2aIo.load(a2aMat.at(p.name), &t); a2aIo.load(a2aMat.at(p.name), &t);
std::cout << "Read " << a2aIo.getSize() << " bytes in " << t/1.0e6 GLOBAL_DMAX(t);
<< " sec, " << a2aIo.getSize()/t*1.0e6/1024/1024 << " MB/s" << std::endl; std::cout << "Read " << nMpi*a2aIo.getSize() << " bytes in " << t/1.0e6
<< " sec, " << nMpi*a2aIo.getSize()/t*1.0e6/1024/1024
<< " MB/s" << std::endl;
} }
// contract // contract
@ -308,6 +292,7 @@ int main(int argc, char* argv[])
double fusec, busec, flops, bytes, tusec; double fusec, busec, flops, bytes, tusec;
Contractor::CorrelatorResult result; Contractor::CorrelatorResult result;
BARRIER();
tAr.startTimer("Total"); tAr.startTimer("Total");
std::cout << "======== Contraction tr("; std::cout << "======== Contraction tr(";
for (unsigned int g = 0; g < term.size(); ++g) for (unsigned int g = 0; g < term.size(); ++g)
@ -358,9 +343,10 @@ int main(int argc, char* argv[])
} }
tAr.stopTimer("Transpose caching"); tAr.stopTimer("Transpose caching");
} }
bytes = par.global.nt*lastTerm[0].rows()*lastTerm[0].cols()*sizeof(ComplexD); bytes = par.global.nt*lastTerm[0].rows()*lastTerm[0].cols();
std::cout << Sec(tAr.getDTimer("Transpose caching")) << " " bytes *= sizeof(ComplexD)*nMpi;
<< Bytes(bytes, tAr.getDTimer("Transpose caching")) << std::endl; printPerf(bytes, tAr.getDTimer("Transpose caching"));
std::cout << std::endl;
for (unsigned int i = 0; i < timeSeq.size(); ++i) for (unsigned int i = 0; i < timeSeq.size(); ++i)
{ {
unsigned int dti = 0; unsigned int dti = 0;
@ -378,7 +364,7 @@ int main(int argc, char* argv[])
<< " -- positions= " << t << ", dt= " << dt << std::endl; << " -- positions= " << t << ", dt= " << dt << std::endl;
if (term.size() > 2) if (term.size() > 2)
{ {
std::cout << std::setw(8) << "products"; std::cout << std::setw(10) << "products ";
} }
flops = 0.; flops = 0.;
bytes = 0.; bytes = 0.;
@ -405,11 +391,11 @@ int main(int argc, char* argv[])
} }
if (term.size() > 2) if (term.size() > 2)
{ {
std::cout << Sec(tAr.getDTimer("A*B total") - busec) << " " printPerf(bytes*nMpi, tAr.getDTimer("A*B total") - busec,
<< Flops(flops, tAr.getDTimer("A*B algebra") - fusec) << " " flops*nMpi, tAr.getDTimer("A*B algebra") - fusec);
<< Bytes(bytes, tAr.getDTimer("A*B total") - busec) << std::endl; std::cout << std::endl;
} }
std::cout << std::setw(8) << "traces"; std::cout << std::setw(10) << "traces ";
flops = 0.; flops = 0.;
bytes = 0.; bytes = 0.;
fusec = tAr.getDTimer("tr(A*B)"); fusec = tAr.getDTimer("tr(A*B)");
@ -423,9 +409,9 @@ int main(int argc, char* argv[])
bytes += 2.*prod.rows()*prod.cols()*sizeof(ComplexD); bytes += 2.*prod.rows()*prod.cols()*sizeof(ComplexD);
} }
tAr.stopTimer("Linear algebra"); tAr.stopTimer("Linear algebra");
std::cout << Sec(tAr.getDTimer("tr(A*B)") - busec) << " " printPerf(bytes*nMpi, tAr.getDTimer("tr(A*B)") - busec,
<< Flops(flops, tAr.getDTimer("tr(A*B)") - fusec) << " " flops*nMpi, tAr.getDTimer("tr(A*B)") - fusec);
<< Bytes(bytes, tAr.getDTimer("tr(A*B)") - busec) << std::endl; std::cout << std::endl;
if (!p.translationAverage) if (!p.translationAverage)
{ {
saveCorrelator(result, par.global.output, dt, traj); saveCorrelator(result, par.global.output, dt, traj);
@ -450,5 +436,7 @@ int main(int argc, char* argv[])
} }
} }
FINALIZE();
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }

View File

@ -5,7 +5,48 @@
BEGIN_HADRONS_NAMESPACE BEGIN_HADRONS_NAMESPACE
namespace Contractor
{
class GlobalPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GlobalPar,
TrajRange, trajCounter,
unsigned int, nt,
std::string, diskVectorDir,
std::string, output);
};
class A2AMatrixPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMatrixPar,
std::string, file,
std::string, dataset,
unsigned int, cacheSize,
std::string, name);
};
class ProductPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ProductPar,
std::string, terms,
std::vector<std::string>, times,
std::string, translations,
bool, translationAverage);
};
class CorrelatorResult: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(CorrelatorResult,
std::vector<Contractor::A2AMatrixPar>, a2aMatrix,
ProductPar, contraction,
std::vector<unsigned int>, times,
std::vector<ComplexD>, correlator);
};
}
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE

View File

@ -7,7 +7,7 @@ HadronsFermionEP64To32_SOURCES = EigenPackCast.cc
HadronsFermionEP64To32_CXXFLAGS = $(AM_CXXFLAGS) -DFIN=WilsonImplD::FermionField -DFOUT=WilsonImplF::FermionField HadronsFermionEP64To32_CXXFLAGS = $(AM_CXXFLAGS) -DFIN=WilsonImplD::FermionField -DFOUT=WilsonImplF::FermionField
HadronsFermionEP64To32_LDADD = ../libHadrons.a ../../Grid/libGrid.a HadronsFermionEP64To32_LDADD = ../libHadrons.a ../../Grid/libGrid.a
HadronsContractor_SOURCES = Contractor.cc HadronsContractor_SOURCES = Contractor.cc Contractor.hpp
HadronsContractor_LDADD = ../libHadrons.a ../../Grid/libGrid.a HadronsContractor_LDADD = ../libHadrons.a ../../Grid/libGrid.a
HadronsContractorBenchmark_SOURCES = ContractorBenchmark.cc HadronsContractorBenchmark_SOURCES = ContractorBenchmark.cc

138
tests/core/Test_qed.cc Normal file
View File

@ -0,0 +1,138 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/core/Test_qed.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <J.Harrison@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
#include <Grid/Grid.h>
using namespace Grid;
using namespace QCD;
typedef PeriodicGaugeImpl<QedGImplR> QedPeriodicGImplR;
typedef PhotonR::GaugeField EmField;
typedef PhotonR::GaugeLinkField EmComp;
const int NCONFIGS = 20;
const int NWILSON = 10;
int main(int argc, char *argv[])
{
// initialization
Grid_init(&argc, &argv);
std::cout << GridLogMessage << "Grid initialized" << std::endl;
// QED stuff
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(4, vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&grid);
PhotonR photon(&grid, PhotonR::Gauge::coulomb, PhotonR::ZmScheme::qedL);
EmField a(&grid);
EmField expA(&grid);
Complex imag_unit(0, 1);
Real wlA;
std::vector<Real> logWlAvg(NWILSON, 0.0), logWlTime(NWILSON, 0.0), logWlSpace(NWILSON, 0.0);
pRNG.SeedFixedIntegers({1, 2, 3, 4});
std::cout << GridLogMessage << "Wilson loop calculation beginning" << std::endl;
for(int ic = 0; ic < NCONFIGS; ic++){
std::cout << GridLogMessage << "Configuration " << ic <<std::endl;
photon.StochasticField(a, pRNG);
// Exponentiate photon field
expA = exp(imag_unit*a);
// Calculate zero-modes
std::vector<EmField::vector_object::scalar_object> zm;
std::cout << GridLogMessage << "Total zero-mode norm 2 "
<< std::sqrt(norm2(sum(a))) << std::endl;
std::cout << GridLogMessage << "Spatial zero-mode norm 2" << std::endl;
sliceSum(a, zm, grid.Nd() - 1);
for (unsigned int t = 0; t < latt_size.back(); ++t)
{
std::cout << GridLogMessage << "t = " << t << " " << std::sqrt(norm2(zm[t])) << std::endl;
}
// Calculate divergence
EmComp diva(&grid), amu(&grid);
diva = zero;
for (unsigned int mu = 0; mu < grid.Nd(); ++mu)
{
amu = peekLorentz(a, mu);
diva += amu - Cshift(amu, mu, -1);
if (mu == grid.Nd() - 2)
{
std::cout << GridLogMessage << "Spatial divergence norm 2 " << std::sqrt(norm2(diva)) << std::endl;
}
}
std::cout << GridLogMessage << "Total divergence norm 2 " << std::sqrt(norm2(diva)) << std::endl;
// Calculate Wilson loops
for(int iw=1; iw<=NWILSON; iw++){
wlA = WilsonLoops<QedPeriodicGImplR>::avgWilsonLoop(expA, iw, iw) * 3;
logWlAvg[iw-1] -= 2*log(wlA);
wlA = WilsonLoops<QedPeriodicGImplR>::avgTimelikeWilsonLoop(expA, iw, iw) * 3;
logWlTime[iw-1] -= 2*log(wlA);
wlA = WilsonLoops<QedPeriodicGImplR>::avgSpatialWilsonLoop(expA, iw, iw) * 3;
logWlSpace[iw-1] -= 2*log(wlA);
}
}
std::cout << GridLogMessage << "Wilson loop calculation completed" << std::endl;
// Calculate Wilson loops
// From A. Portelli's PhD thesis:
// size -2*log(W)
// 1 0.500000000(1)
// 2 1.369311535(1)
// 3 2.305193057(1)
// 4 3.261483854(1)
// 5 4.228829967(1)
// 6 5.203604529(1)
// 7 6.183728249(1)
// 8 7.167859805(1)
// 9 8.155091868(1)
// 10 9.144788116(1)
for(int iw=1; iw<=10; iw++){
std::cout << GridLogMessage << iw << 'x' << iw << " Wilson loop" << std::endl;
std::cout << GridLogMessage << "-2*log(W) average: " << logWlAvg[iw-1]/NCONFIGS << std::endl;
std::cout << GridLogMessage << "-2*log(W) timelike: " << logWlTime[iw-1]/NCONFIGS << std::endl;
std::cout << GridLogMessage << "-2*log(W) spatial: " << logWlSpace[iw-1]/NCONFIGS << std::endl;
}
// epilogue
std::cout << GridLogMessage << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,670 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_multigrid_common.h
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_TEST_MULTIGRID_COMMON_H
#define GRID_TEST_MULTIGRID_COMMON_H
namespace Grid {
// TODO: Can think about having one parameter struct per level and then a
// vector of these structs. How well would that work together with the
// serialization strategy of Grid?
// clang-format off
struct MultiGridParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MultiGridParams,
int, nLevels,
std::vector<std::vector<int>>, blockSizes, // size == nLevels - 1
std::vector<double>, smootherTol, // size == nLevels - 1
std::vector<int>, smootherMaxOuterIter, // size == nLevels - 1
std::vector<int>, smootherMaxInnerIter, // size == nLevels - 1
bool, kCycle,
std::vector<double>, kCycleTol, // size == nLevels - 1
std::vector<int>, kCycleMaxOuterIter, // size == nLevels - 1
std::vector<int>, kCycleMaxInnerIter, // size == nLevels - 1
double, coarseSolverTol,
int, coarseSolverMaxOuterIter,
int, coarseSolverMaxInnerIter);
// constructor with default values
MultiGridParams(int _nLevels = 2,
std::vector<std::vector<int>> _blockSizes = {{4, 4, 4, 4}},
std::vector<double> _smootherTol = {1e-14},
std::vector<int> _smootherMaxOuterIter = {4},
std::vector<int> _smootherMaxInnerIter = {4},
bool _kCycle = true,
std::vector<double> _kCycleTol = {1e-1},
std::vector<int> _kCycleMaxOuterIter = {2},
std::vector<int> _kCycleMaxInnerIter = {5},
double _coarseSolverTol = 5e-2,
int _coarseSolverMaxOuterIter = 10,
int _coarseSolverMaxInnerIter = 500)
: nLevels(_nLevels)
, blockSizes(_blockSizes)
, smootherTol(_smootherTol)
, smootherMaxOuterIter(_smootherMaxOuterIter)
, smootherMaxInnerIter(_smootherMaxInnerIter)
, kCycle(_kCycle)
, kCycleTol(_kCycleTol)
, kCycleMaxOuterIter(_kCycleMaxOuterIter)
, kCycleMaxInnerIter(_kCycleMaxInnerIter)
, coarseSolverTol(_coarseSolverTol)
, coarseSolverMaxOuterIter(_coarseSolverMaxOuterIter)
, coarseSolverMaxInnerIter(_coarseSolverMaxInnerIter)
{}
};
// clang-format on
void checkParameterValidity(MultiGridParams const &params) {
auto correctSize = params.nLevels - 1;
assert(correctSize == params.blockSizes.size());
assert(correctSize == params.smootherTol.size());
assert(correctSize == params.smootherMaxOuterIter.size());
assert(correctSize == params.smootherMaxInnerIter.size());
assert(correctSize == params.kCycleTol.size());
assert(correctSize == params.kCycleMaxOuterIter.size());
assert(correctSize == params.kCycleMaxInnerIter.size());
}
struct LevelInfo {
public:
std::vector<std::vector<int>> Seeds;
std::vector<GridCartesian *> Grids;
std::vector<GridParallelRNG> PRNGs;
LevelInfo(GridCartesian *FineGrid, MultiGridParams const &mgParams) {
auto nCoarseLevels = mgParams.blockSizes.size();
assert(nCoarseLevels == mgParams.nLevels - 1);
// set up values for finest grid
Grids.push_back(FineGrid);
Seeds.push_back({1, 2, 3, 4});
PRNGs.push_back(GridParallelRNG(Grids.back()));
PRNGs.back().SeedFixedIntegers(Seeds.back());
// set up values for coarser grids
for(int level = 1; level < mgParams.nLevels; ++level) {
auto Nd = Grids[level - 1]->_ndimension;
auto tmp = Grids[level - 1]->_fdimensions;
assert(tmp.size() == Nd);
Seeds.push_back(std::vector<int>(Nd));
for(int d = 0; d < Nd; ++d) {
tmp[d] /= mgParams.blockSizes[level - 1][d];
Seeds[level][d] = (level)*Nd + d + 1;
}
Grids.push_back(QCD::SpaceTimeGrid::makeFourDimGrid(tmp, Grids[level - 1]->_simd_layout, GridDefaultMpi()));
PRNGs.push_back(GridParallelRNG(Grids[level]));
PRNGs[level].SeedFixedIntegers(Seeds[level]);
}
std::cout << GridLogMessage << "Constructed " << mgParams.nLevels << " levels" << std::endl;
for(int level = 0; level < mgParams.nLevels; ++level) {
std::cout << GridLogMessage << "level = " << level << ":" << std::endl;
Grids[level]->show_decomposition();
}
}
};
template<class Field> class MultiGridPreconditionerBase : public LinearFunction<Field> {
public:
virtual ~MultiGridPreconditionerBase() = default;
virtual void setup() = 0;
virtual void operator()(Field const &in, Field &out) = 0;
virtual void runChecks(RealD tolerance) = 0;
virtual void reportTimings() = 0;
};
template<class Fobj, class CComplex, int nBasis, int nCoarserLevels, class Matrix>
class MultiGridPreconditioner : public MultiGridPreconditionerBase<Lattice<Fobj>> {
public:
/////////////////////////////////////////////
// Type Definitions
/////////////////////////////////////////////
// clang-format off
typedef Aggregation<Fobj, CComplex, nBasis> Aggregates;
typedef CoarsenedMatrix<Fobj, CComplex, nBasis> CoarseDiracMatrix;
typedef typename Aggregates::CoarseVector CoarseVector;
typedef typename Aggregates::siteVector CoarseSiteVector;
typedef Matrix FineDiracMatrix;
typedef typename Aggregates::FineField FineVector;
typedef MultiGridPreconditioner<CoarseSiteVector, iScalar<CComplex>, nBasis, nCoarserLevels - 1, CoarseDiracMatrix> NextPreconditionerLevel;
// clang-format on
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
int _CurrentLevel;
int _NextCoarserLevel;
MultiGridParams &_MultiGridParams;
LevelInfo & _LevelInfo;
FineDiracMatrix & _FineMatrix;
FineDiracMatrix & _SmootherMatrix;
Aggregates _Aggregates;
CoarseDiracMatrix _CoarseMatrix;
std::unique_ptr<NextPreconditionerLevel> _NextPreconditionerLevel;
GridStopWatch _SetupTotalTimer;
GridStopWatch _SetupCreateSubspaceTimer;
GridStopWatch _SetupProjectToChiralitiesTimer;
GridStopWatch _SetupCoarsenOperatorTimer;
GridStopWatch _SetupNextLevelTimer;
GridStopWatch _SolveTotalTimer;
GridStopWatch _SolveRestrictionTimer;
GridStopWatch _SolveProlongationTimer;
GridStopWatch _SolveSmootherTimer;
GridStopWatch _SolveNextLevelTimer;
/////////////////////////////////////////////
// Member Functions
/////////////////////////////////////////////
MultiGridPreconditioner(MultiGridParams &mgParams, LevelInfo &LvlInfo, FineDiracMatrix &FineMat, FineDiracMatrix &SmootherMat)
: _CurrentLevel(mgParams.nLevels - (nCoarserLevels + 1)) // _Level = 0 corresponds to finest
, _NextCoarserLevel(_CurrentLevel + 1) // incremented for instances on coarser levels
, _MultiGridParams(mgParams)
, _LevelInfo(LvlInfo)
, _FineMatrix(FineMat)
, _SmootherMatrix(SmootherMat)
, _Aggregates(_LevelInfo.Grids[_NextCoarserLevel], _LevelInfo.Grids[_CurrentLevel], 0)
, _CoarseMatrix(*_LevelInfo.Grids[_NextCoarserLevel]) {
_NextPreconditionerLevel
= std::unique_ptr<NextPreconditionerLevel>(new NextPreconditionerLevel(_MultiGridParams, _LevelInfo, _CoarseMatrix, _CoarseMatrix));
resetTimers();
}
void setup() {
_SetupTotalTimer.Start();
static_assert((nBasis & 0x1) == 0, "MG Preconditioner only supports an even number of basis vectors");
int nb = nBasis / 2;
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
_SetupCreateSubspaceTimer.Start();
_Aggregates.CreateSubspace(_LevelInfo.PRNGs[_CurrentLevel], fineMdagMOp, nb);
_SetupCreateSubspaceTimer.Stop();
_SetupProjectToChiralitiesTimer.Start();
FineVector tmp1(_Aggregates.subspace[0]._grid);
FineVector tmp2(_Aggregates.subspace[0]._grid);
for(int n = 0; n < nb; n++) {
auto tmp1 = _Aggregates.subspace[n];
G5C(tmp2, _Aggregates.subspace[n]);
axpby(_Aggregates.subspace[n], 0.5, 0.5, tmp1, tmp2);
axpby(_Aggregates.subspace[n + nb], 0.5, -0.5, tmp1, tmp2);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Chirally doubled vector " << n << ". "
<< "norm2(vec[" << n << "]) = " << norm2(_Aggregates.subspace[n]) << ". "
<< "norm2(vec[" << n + nb << "]) = " << norm2(_Aggregates.subspace[n + nb]) << std::endl;
}
_SetupProjectToChiralitiesTimer.Stop();
_SetupCoarsenOperatorTimer.Start();
_CoarseMatrix.CoarsenOperator(_LevelInfo.Grids[_CurrentLevel], fineMdagMOp, _Aggregates);
_SetupCoarsenOperatorTimer.Stop();
_SetupNextLevelTimer.Start();
_NextPreconditionerLevel->setup();
_SetupNextLevelTimer.Stop();
_SetupTotalTimer.Stop();
}
virtual void operator()(FineVector const &in, FineVector &out) {
conformable(_LevelInfo.Grids[_CurrentLevel], in._grid);
conformable(in, out);
// TODO: implement a W-cycle
if(_MultiGridParams.kCycle)
kCycle(in, out);
else
vCycle(in, out);
}
void vCycle(FineVector const &in, FineVector &out) {
_SolveTotalTimer.Start();
RealD inputNorm = norm2(in);
CoarseVector coarseSrc(_LevelInfo.Grids[_NextCoarserLevel]);
CoarseVector coarseSol(_LevelInfo.Grids[_NextCoarserLevel]);
coarseSol = zero;
FineVector fineTmp(in._grid);
auto maxSmootherIter = _MultiGridParams.smootherMaxOuterIter[_CurrentLevel] * _MultiGridParams.smootherMaxInnerIter[_CurrentLevel];
TrivialPrecon<FineVector> fineTrivialPreconditioner;
FlexibleGeneralisedMinimalResidual<FineVector> fineFGMRES(_MultiGridParams.smootherTol[_CurrentLevel],
maxSmootherIter,
fineTrivialPreconditioner,
_MultiGridParams.smootherMaxInnerIter[_CurrentLevel],
false);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineSmootherMdagMOp(_SmootherMatrix);
_SolveRestrictionTimer.Start();
_Aggregates.ProjectToSubspace(coarseSrc, in);
_SolveRestrictionTimer.Stop();
_SolveNextLevelTimer.Start();
(*_NextPreconditionerLevel)(coarseSrc, coarseSol);
_SolveNextLevelTimer.Stop();
_SolveProlongationTimer.Start();
_Aggregates.PromoteFromSubspace(coarseSol, out);
_SolveProlongationTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
auto r = norm2(fineTmp);
auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm);
_SolveSmootherTimer.Start();
fineFGMRES(fineSmootherMdagMOp, in, out);
_SolveSmootherTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
r = norm2(fineTmp);
auto residualAfterPostSmoother = std::sqrt(r / inputNorm);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": V-cycle: Input norm = " << std::sqrt(inputNorm)
<< " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother
<< std::endl;
_SolveTotalTimer.Stop();
}
void kCycle(FineVector const &in, FineVector &out) {
_SolveTotalTimer.Start();
RealD inputNorm = norm2(in);
CoarseVector coarseSrc(_LevelInfo.Grids[_NextCoarserLevel]);
CoarseVector coarseSol(_LevelInfo.Grids[_NextCoarserLevel]);
coarseSol = zero;
FineVector fineTmp(in._grid);
auto smootherMaxIter = _MultiGridParams.smootherMaxOuterIter[_CurrentLevel] * _MultiGridParams.smootherMaxInnerIter[_CurrentLevel];
auto kCycleMaxIter = _MultiGridParams.kCycleMaxOuterIter[_CurrentLevel] * _MultiGridParams.kCycleMaxInnerIter[_CurrentLevel];
TrivialPrecon<FineVector> fineTrivialPreconditioner;
FlexibleGeneralisedMinimalResidual<FineVector> fineFGMRES(_MultiGridParams.smootherTol[_CurrentLevel],
smootherMaxIter,
fineTrivialPreconditioner,
_MultiGridParams.smootherMaxInnerIter[_CurrentLevel],
false);
FlexibleGeneralisedMinimalResidual<CoarseVector> coarseFGMRES(_MultiGridParams.kCycleTol[_CurrentLevel],
kCycleMaxIter,
*_NextPreconditionerLevel,
_MultiGridParams.kCycleMaxInnerIter[_CurrentLevel],
false);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineSmootherMdagMOp(_SmootherMatrix);
MdagMLinearOperator<CoarseDiracMatrix, CoarseVector> coarseMdagMOp(_CoarseMatrix);
_SolveRestrictionTimer.Start();
_Aggregates.ProjectToSubspace(coarseSrc, in);
_SolveRestrictionTimer.Stop();
_SolveNextLevelTimer.Start();
coarseFGMRES(coarseMdagMOp, coarseSrc, coarseSol);
_SolveNextLevelTimer.Stop();
_SolveProlongationTimer.Start();
_Aggregates.PromoteFromSubspace(coarseSol, out);
_SolveProlongationTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
auto r = norm2(fineTmp);
auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm);
_SolveSmootherTimer.Start();
fineFGMRES(fineSmootherMdagMOp, in, out);
_SolveSmootherTimer.Stop();
fineMdagMOp.Op(out, fineTmp);
fineTmp = in - fineTmp;
r = norm2(fineTmp);
auto residualAfterPostSmoother = std::sqrt(r / inputNorm);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": K-cycle: Input norm = " << std::sqrt(inputNorm)
<< " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother
<< std::endl;
_SolveTotalTimer.Stop();
}
void runChecks(RealD tolerance) {
std::vector<FineVector> fineTmps(7, _LevelInfo.Grids[_CurrentLevel]);
std::vector<CoarseVector> coarseTmps(4, _LevelInfo.Grids[_NextCoarserLevel]);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
MdagMLinearOperator<CoarseDiracMatrix, CoarseVector> coarseMdagMOp(_CoarseMatrix);
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (M - (Mdiag + Σ_μ Mdir_μ)) * v" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_CurrentLevel], fineTmps[0]);
fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // M * v
fineMdagMOp.OpDiag(fineTmps[0], fineTmps[2]); // Mdiag * v
fineTmps[4] = zero;
for(int dir = 0; dir < 4; dir++) { // Σ_μ Mdir_μ * v
for(auto disp : {+1, -1}) {
fineMdagMOp.OpDir(fineTmps[0], fineTmps[3], dir, disp);
fineTmps[4] = fineTmps[4] + fineTmps[3];
}
}
fineTmps[5] = fineTmps[2] + fineTmps[4]; // (Mdiag + Σ_μ Mdir_μ) * v
fineTmps[6] = fineTmps[1] - fineTmps[5];
auto deviation = std::sqrt(norm2(fineTmps[6]) / norm2(fineTmps[1]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(M * v) = " << norm2(fineTmps[1]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(Mdiag * v) = " << norm2(fineTmps[2]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(Σ_μ Mdir_μ * v) = " << norm2(fineTmps[4]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2((Mdiag + Σ_μ Mdir_μ) * v) = " << norm2(fineTmps[5]) << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (1 - P R) v" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
for(auto i = 0; i < _Aggregates.subspace.size(); ++i) {
_Aggregates.ProjectToSubspace(coarseTmps[0], _Aggregates.subspace[i]); // R v_i
_Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P R v_i
fineTmps[1] = _Aggregates.subspace[i] - fineTmps[0]; // v_i - P R v_i
deviation = std::sqrt(norm2(fineTmps[1]) / norm2(_Aggregates.subspace[i]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Vector " << i << ": norm2(v_i) = " << norm2(_Aggregates.subspace[i])
<< " | norm2(R v_i) = " << norm2(coarseTmps[0]) << " | norm2(P R v_i) = " << norm2(fineTmps[0])
<< " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (1 - R P) v_c" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]);
_Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c
_Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[0]); // R P v_c
coarseTmps[2] = coarseTmps[0] - coarseTmps[1]; // v_c - R P v_c
deviation = std::sqrt(norm2(coarseTmps[2]) / norm2(coarseTmps[0]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(v_c) = " << norm2(coarseTmps[0])
<< " | norm2(R P v_c) = " << norm2(coarseTmps[1]) << " | norm2(P v_c) = " << norm2(fineTmps[0])
<< " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (R D P - D_c) v_c" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]);
_Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c
fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // D P v_c
_Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[1]); // R D P v_c
coarseMdagMOp.Op(coarseTmps[0], coarseTmps[2]); // D_c v_c
coarseTmps[3] = coarseTmps[1] - coarseTmps[2]; // R D P v_c - D_c v_c
deviation = std::sqrt(norm2(coarseTmps[3]) / norm2(coarseTmps[1]));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(R D P v_c) = " << norm2(coarseTmps[1])
<< " | norm2(D_c v_c) = " << norm2(coarseTmps[2]) << " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == |(Im(v_c^dag D_c^dag D_c v_c)|" << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl;
random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]);
coarseMdagMOp.Op(coarseTmps[0], coarseTmps[1]); // D_c v_c
coarseMdagMOp.AdjOp(coarseTmps[1], coarseTmps[2]); // D_c^dag D_c v_c
auto dot = innerProduct(coarseTmps[0], coarseTmps[2]); //v_c^dag D_c^dag D_c v_c
deviation = std::abs(imag(dot)) / std::abs(real(dot));
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Re(v_c^dag D_c^dag D_c v_c) = " << real(dot)
<< " | Im(v_c^dag D_c^dag D_c v_c) = " << imag(dot) << " | relative deviation = " << deviation;
if(deviation > tolerance) {
std::cout << " > " << tolerance << " -> check failed" << std::endl;
abort();
} else {
std::cout << " < " << tolerance << " -> check passed" << std::endl;
}
_NextPreconditionerLevel->runChecks(tolerance);
}
void reportTimings() {
// clang-format off
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Sum total " << _SetupTotalTimer.Elapsed() + _SolveTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup total " << _SetupTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup create subspace " << _SetupCreateSubspaceTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup project chiral " << _SetupProjectToChiralitiesTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup coarsen operator " << _SetupCoarsenOperatorTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup next level " << _SetupNextLevelTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve total " << _SolveTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve restriction " << _SolveRestrictionTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve prolongation " << _SolveProlongationTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve smoother " << _SolveSmootherTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve next level " << _SolveNextLevelTimer.Elapsed() << std::endl;
// clang-format on
_NextPreconditionerLevel->reportTimings();
}
void resetTimers() {
_SetupTotalTimer.Reset();
_SetupCreateSubspaceTimer.Reset();
_SetupProjectToChiralitiesTimer.Reset();
_SetupCoarsenOperatorTimer.Reset();
_SetupNextLevelTimer.Reset();
_SolveTotalTimer.Reset();
_SolveRestrictionTimer.Reset();
_SolveProlongationTimer.Reset();
_SolveSmootherTimer.Reset();
_SolveNextLevelTimer.Reset();
_NextPreconditionerLevel->resetTimers();
}
};
// Specialization for the coarsest level
template<class Fobj, class CComplex, int nBasis, class Matrix>
class MultiGridPreconditioner<Fobj, CComplex, nBasis, 0, Matrix> : public MultiGridPreconditionerBase<Lattice<Fobj>> {
public:
/////////////////////////////////////////////
// Type Definitions
/////////////////////////////////////////////
typedef Matrix FineDiracMatrix;
typedef Lattice<Fobj> FineVector;
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
int _CurrentLevel;
MultiGridParams &_MultiGridParams;
LevelInfo & _LevelInfo;
FineDiracMatrix &_FineMatrix;
FineDiracMatrix &_SmootherMatrix;
GridStopWatch _SolveTotalTimer;
GridStopWatch _SolveSmootherTimer;
/////////////////////////////////////////////
// Member Functions
/////////////////////////////////////////////
MultiGridPreconditioner(MultiGridParams &mgParams, LevelInfo &LvlInfo, FineDiracMatrix &FineMat, FineDiracMatrix &SmootherMat)
: _CurrentLevel(mgParams.nLevels - (0 + 1))
, _MultiGridParams(mgParams)
, _LevelInfo(LvlInfo)
, _FineMatrix(FineMat)
, _SmootherMatrix(SmootherMat) {
resetTimers();
}
void setup() {}
virtual void operator()(FineVector const &in, FineVector &out) {
_SolveTotalTimer.Start();
conformable(_LevelInfo.Grids[_CurrentLevel], in._grid);
conformable(in, out);
auto coarseSolverMaxIter = _MultiGridParams.coarseSolverMaxOuterIter * _MultiGridParams.coarseSolverMaxInnerIter;
// On the coarsest level we only have what I above call the fine level, no coarse one
TrivialPrecon<FineVector> fineTrivialPreconditioner;
FlexibleGeneralisedMinimalResidual<FineVector> fineFGMRES(
_MultiGridParams.coarseSolverTol, coarseSolverMaxIter, fineTrivialPreconditioner, _MultiGridParams.coarseSolverMaxInnerIter, false);
MdagMLinearOperator<FineDiracMatrix, FineVector> fineMdagMOp(_FineMatrix);
_SolveSmootherTimer.Start();
fineFGMRES(fineMdagMOp, in, out);
_SolveSmootherTimer.Stop();
_SolveTotalTimer.Stop();
}
void runChecks(RealD tolerance) {}
void reportTimings() {
// clang-format off
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve total " << _SolveTotalTimer.Elapsed() << std::endl;
std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve smoother " << _SolveSmootherTimer.Elapsed() << std::endl;
// clang-format on
}
void resetTimers() {
_SolveTotalTimer.Reset();
_SolveSmootherTimer.Reset();
}
};
template<class Fobj, class CComplex, int nBasis, int nLevels, class Matrix>
using NLevelMGPreconditioner = MultiGridPreconditioner<Fobj, CComplex, nBasis, nLevels - 1, Matrix>;
template<class Fobj, class CComplex, int nBasis, class Matrix>
std::unique_ptr<MultiGridPreconditionerBase<Lattice<Fobj>>>
createMGInstance(MultiGridParams &mgParams, LevelInfo &levelInfo, Matrix &FineMat, Matrix &SmootherMat) {
#define CASE_FOR_N_LEVELS(nLevels) \
case nLevels: \
return std::unique_ptr<NLevelMGPreconditioner<Fobj, CComplex, nBasis, nLevels, Matrix>>( \
new NLevelMGPreconditioner<Fobj, CComplex, nBasis, nLevels, Matrix>(mgParams, levelInfo, FineMat, SmootherMat)); \
break;
switch(mgParams.nLevels) {
CASE_FOR_N_LEVELS(2);
CASE_FOR_N_LEVELS(3);
CASE_FOR_N_LEVELS(4);
default:
std::cout << GridLogError << "We currently only support nLevels ∈ {2, 3, 4}" << std::endl;
exit(EXIT_FAILURE);
break;
}
#undef CASE_FOR_N_LEVELS
}
}
#endif

View File

@ -0,0 +1,72 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_staggered_cagmres_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
CommunicationAvoidingGeneralisedMinimalResidual<FermionField> CAGMRES(1.0e-8, 10000, 25);
CAGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,75 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_staggered_fcagmres_prec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
TrivialPrecon<FermionField> simple;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual<FermionField> FCAGMRES(1.0e-8, 10000, simple, 25);
FCAGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,75 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_staggered_fgmres_prec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
TrivialPrecon<FermionField> simple;
FlexibleGeneralisedMinimalResidual<FermionField> FGMRES(1.0e-8, 10000, simple, 25);
FGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,72 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_staggered_gmres_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
GeneralisedMinimalResidual<FermionField> GMRES(1.0e-8, 10000, 25);
GMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,72 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_staggered_mr_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
MinimalResidual<FermionField> MR(1.0e-8,10000,0.8);
MR(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,65 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_cagmres_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
CommunicationAvoidingGeneralisedMinimalResidual<LatticeFermion> CAGMRES(1.0e-8, 10000, 25);
CAGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,68 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_fcagmres_prec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
TrivialPrecon<LatticeFermion> simple;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual<LatticeFermion> FCAGMRES(1.0e-8, 10000, simple, 25);
FCAGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,68 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_fgmres_prec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
TrivialPrecon<LatticeFermion> simple;
FlexibleGeneralisedMinimalResidual<LatticeFermion> FGMRES(1.0e-8, 10000, simple, 25);
FGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,65 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_gmres_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
GeneralisedMinimalResidual<LatticeFermion> GMRES(1.0e-8, 10000, 25);
GMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,114 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_mg.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Test_multigrid_common.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
std::vector<int> fSeeds({1, 2, 3, 4});
GridParallelRNG fPRNG(FGrid);
fPRNG.SeedFixedIntegers(fSeeds);
// clang-format off
LatticeFermion src(FGrid); gaussian(fPRNG, src);
LatticeFermion result(FGrid); result = zero;
LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(fPRNG, Umu);
// clang-format on
RealD mass = -0.25;
MultiGridParams mgParams;
std::string inputXml{"./mg_params.xml"};
if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) {
inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml");
assert(inputXml.length() != 0);
}
{
XmlWriter writer("mg_params_template.xml");
write(writer, "Params", mgParams);
std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl;
XmlReader reader(inputXml);
read(reader, "Params", mgParams);
std::cout << GridLogMessage << "Read in " << inputXml << std::endl;
}
checkParameterValidity(mgParams);
std::cout << mgParams << std::endl;
LevelInfo levelInfo(FGrid, mgParams);
// Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used
const int nbasis = 40;
WilsonFermionR Dw(Umu, *FGrid, *FrbGrid, mass);
MdagMLinearOperator<WilsonFermionR, LatticeFermion> MdagMOpDw(Dw);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing Multigrid for Wilson" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
TrivialPrecon<LatticeFermion> TrivialPrecon;
auto MGPreconDw = createMGInstance<vSpinColourVector, vTComplex, nbasis, WilsonFermionR>(mgParams, levelInfo, Dw, Dw);
MGPreconDw->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
RealD toleranceForMGChecks = (getPrecision<LatticeFermion>::value == 1) ? 1e-6 : 1e-13;
MGPreconDw->runChecks(toleranceForMGChecks);
}
std::vector<std::unique_ptr<OperatorFunction<LatticeFermion>>> solversDw;
solversDw.emplace_back(new ConjugateGradient<LatticeFermion>(1.0e-12, 50000, false));
solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual<LatticeFermion>(1.0e-12, 50000, TrivialPrecon, 100, false));
solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual<LatticeFermion>(1.0e-12, 50000, *MGPreconDw, 100, false));
for(auto const &solver : solversDw) {
std::cout << std::endl << "Starting with a new solver" << std::endl;
result = zero;
(*solver)(MdagMOpDw, src, result);
}
MGPreconDw->reportTimings();
Grid_finalize();
}

View File

@ -0,0 +1,166 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_mg_mp.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Test_multigrid_common.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
// clang-format off
GridCartesian *FGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
GridCartesian *FGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_d);
GridRedBlackCartesian *FrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_f);
// clang-format on
std::vector<int> fSeeds({1, 2, 3, 4});
GridParallelRNG fPRNG(FGrid_d);
fPRNG.SeedFixedIntegers(fSeeds);
// clang-format off
LatticeFermionD src_d(FGrid_d); gaussian(fPRNG, src_d);
LatticeFermionD resultMGD_d(FGrid_d); resultMGD_d = zero;
LatticeFermionD resultMGF_d(FGrid_d); resultMGF_d = zero;
LatticeGaugeFieldD Umu_d(FGrid_d); SU3::HotConfiguration(fPRNG, Umu_d);
LatticeGaugeFieldF Umu_f(FGrid_f); precisionChange(Umu_f, Umu_d);
// clang-format on
RealD mass = -0.25;
MultiGridParams mgParams;
std::string inputXml{"./mg_params.xml"};
if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) {
inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml");
assert(inputXml.length() != 0);
}
{
XmlWriter writer("mg_params_template.xml");
write(writer, "Params", mgParams);
std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl;
XmlReader reader(inputXml);
read(reader, "Params", mgParams);
std::cout << GridLogMessage << "Read in " << inputXml << std::endl;
}
checkParameterValidity(mgParams);
std::cout << mgParams << std::endl;
LevelInfo levelInfo_d(FGrid_d, mgParams);
LevelInfo levelInfo_f(FGrid_f, mgParams);
// Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used
const int nbasis = 40;
WilsonFermionD Dw_d(Umu_d, *FGrid_d, *FrbGrid_d, mass);
WilsonFermionF Dw_f(Umu_f, *FGrid_f, *FrbGrid_f, mass);
MdagMLinearOperator<WilsonFermionD, LatticeFermionD> MdagMOpDw_d(Dw_d);
MdagMLinearOperator<WilsonFermionF, LatticeFermionF> MdagMOpDw_f(Dw_f);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing single-precision Multigrid for Wilson" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDw_f = createMGInstance<vSpinColourVectorF, vTComplexF, nbasis, WilsonFermionF>(mgParams, levelInfo_f, Dw_f, Dw_f);
MGPreconDw_f->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDw_f->runChecks(1e-6);
}
MixedPrecisionFlexibleGeneralisedMinimalResidual<LatticeFermionD, LatticeFermionF> MPFGMRESPREC(1.0e-12, 50000, FGrid_f, *MGPreconDw_f, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
MPFGMRESPREC(MdagMOpDw_d, src_d, resultMGF_d);
MGPreconDw_f->reportTimings();
if(GridCmdOptionExists(argv, argv + argc, "--docomparison")) {
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing double-precision Multigrid for Wilson" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDw_d = createMGInstance<vSpinColourVectorD, vTComplexD, nbasis, WilsonFermionD>(mgParams, levelInfo_d, Dw_d, Dw_d);
MGPreconDw_d->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDw_d->runChecks(1e-13);
}
FlexibleGeneralisedMinimalResidual<LatticeFermionD> FGMRESPREC(1.0e-12, 50000, *MGPreconDw_d, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
FGMRESPREC(MdagMOpDw_d, src_d, resultMGD_d);
MGPreconDw_d->reportTimings();
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Comparing single-precision Multigrid with double-precision one for Wilson" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
LatticeFermionD diffFullSolver(FGrid_d);
RealD deviationFullSolver = axpy_norm(diffFullSolver, -1.0, resultMGF_d, resultMGD_d);
// clang-format off
LatticeFermionF src_f(FGrid_f); precisionChange(src_f, src_d);
LatticeFermionF resMGF_f(FGrid_f); resMGF_f = zero;
LatticeFermionD resMGD_d(FGrid_d); resMGD_d = zero;
// clang-format on
(*MGPreconDw_f)(src_f, resMGF_f);
(*MGPreconDw_d)(src_d, resMGD_d);
LatticeFermionD diffOnlyMG(FGrid_d);
LatticeFermionD resMGF_d(FGrid_d);
precisionChange(resMGF_d, resMGF_f);
RealD deviationOnlyPrec = axpy_norm(diffOnlyMG, -1.0, resMGF_d, resMGD_d);
// clang-format off
std::cout << GridLogMessage << "Absolute difference between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver << std::endl;
std::cout << GridLogMessage << "Relative deviation between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver / norm2(resultMGD_d) << std::endl;
std::cout << GridLogMessage << "Absolute difference between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec << std::endl;
std::cout << GridLogMessage << "Relative deviation between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec / norm2(resMGD_d) << std::endl;
// clang-format on
}
Grid_finalize();
}

View File

@ -0,0 +1,65 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilson_mr_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
MinimalResidual<LatticeFermion> MR(1.0e-8,10000,0.8);
MR(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,71 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_cagmres_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass = 0.5;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
WilsonCloverFermionR Dwc(Umu,Grid,RBGrid,mass,csw_r,csw_t,anis,params);
MdagMLinearOperator<WilsonCloverFermionR,FermionField> HermOp(Dwc);
CommunicationAvoidingGeneralisedMinimalResidual<FermionField> CAGMRES(1.0e-8, 10000, 25);
CAGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,74 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_fcagmres_prec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass = 0.5;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
WilsonCloverFermionR Dwc(Umu,Grid,RBGrid,mass,csw_r,csw_t,anis,params);
MdagMLinearOperator<WilsonCloverFermionR,FermionField> HermOp(Dwc);
TrivialPrecon<FermionField> simple;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual<FermionField> FCAGMRES(1.0e-8, 10000, simple, 25);
FCAGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,74 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_fgmres_prec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass = 0.5;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
WilsonCloverFermionR Dwc(Umu,Grid,RBGrid,mass,csw_r,csw_t,anis,params);
MdagMLinearOperator<WilsonCloverFermionR,FermionField> HermOp(Dwc);
TrivialPrecon<FermionField> simple;
FlexibleGeneralisedMinimalResidual<FermionField> FGMRES(1.0e-8, 10000, simple, 25);
FGMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,71 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_gmres_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass = 0.5;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
WilsonCloverFermionR Dwc(Umu,Grid,RBGrid,mass,csw_r,csw_t,anis,params);
MdagMLinearOperator<WilsonCloverFermionR,FermionField> HermOp(Dwc);
GeneralisedMinimalResidual<FermionField> GMRES(1.0e-8, 10000, 25);
GMRES(HermOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,117 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_mg.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Test_multigrid_common.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
std::vector<int> fSeeds({1, 2, 3, 4});
GridParallelRNG fPRNG(FGrid);
fPRNG.SeedFixedIntegers(fSeeds);
// clang-format off
LatticeFermion src(FGrid); gaussian(fPRNG, src);
LatticeFermion result(FGrid); result = zero;
LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(fPRNG, Umu);
// clang-format on
RealD mass = -0.25;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
MultiGridParams mgParams;
std::string inputXml{"./mg_params.xml"};
if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) {
inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml");
assert(inputXml.length() != 0);
}
{
XmlWriter writer("mg_params_template.xml");
write(writer, "Params", mgParams);
std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl;
XmlReader reader(inputXml);
read(reader, "Params", mgParams);
std::cout << GridLogMessage << "Read in " << inputXml << std::endl;
}
checkParameterValidity(mgParams);
std::cout << mgParams << std::endl;
LevelInfo levelInfo(FGrid, mgParams);
// Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used
const int nbasis = 40;
WilsonCloverFermionR Dwc(Umu, *FGrid, *FrbGrid, mass, csw_r, csw_t);
MdagMLinearOperator<WilsonCloverFermionR, LatticeFermion> MdagMOpDwc(Dwc);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
TrivialPrecon<LatticeFermion> TrivialPrecon;
auto MGPreconDwc = createMGInstance<vSpinColourVector, vTComplex, nbasis, WilsonCloverFermionR>(mgParams, levelInfo, Dwc, Dwc);
MGPreconDwc->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
RealD toleranceForMGChecks = (getPrecision<LatticeFermion>::value == 1) ? 1e-6 : 1e-13;
MGPreconDwc->runChecks(toleranceForMGChecks);
}
std::vector<std::unique_ptr<OperatorFunction<LatticeFermion>>> solversDwc;
solversDwc.emplace_back(new ConjugateGradient<LatticeFermion>(1.0e-12, 50000, false));
solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual<LatticeFermion>(1.0e-12, 50000, TrivialPrecon, 100, false));
solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual<LatticeFermion>(1.0e-12, 50000, *MGPreconDwc, 100, false));
for(auto const &solver : solversDwc) {
std::cout << std::endl << "Starting with a new solver" << std::endl;
result = zero;
(*solver)(MdagMOpDwc, src, result);
std::cout << std::endl;
}
MGPreconDwc->reportTimings();
Grid_finalize();
}

View File

@ -0,0 +1,169 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_mg_mp.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Test_multigrid_common.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
// clang-format off
GridCartesian *FGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
GridCartesian *FGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_d);
GridRedBlackCartesian *FrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_f);
// clang-format on
std::vector<int> fSeeds({1, 2, 3, 4});
GridParallelRNG fPRNG(FGrid_d);
fPRNG.SeedFixedIntegers(fSeeds);
// clang-format off
LatticeFermionD src_d(FGrid_d); gaussian(fPRNG, src_d);
LatticeFermionD resultMGD_d(FGrid_d); resultMGD_d = zero;
LatticeFermionD resultMGF_d(FGrid_d); resultMGF_d = zero;
LatticeGaugeFieldD Umu_d(FGrid_d); SU3::HotConfiguration(fPRNG, Umu_d);
LatticeGaugeFieldF Umu_f(FGrid_f); precisionChange(Umu_f, Umu_d);
// clang-format on
RealD mass = -0.25;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
MultiGridParams mgParams;
std::string inputXml{"./mg_params.xml"};
if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) {
inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml");
assert(inputXml.length() != 0);
}
{
XmlWriter writer("mg_params_template.xml");
write(writer, "Params", mgParams);
std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl;
XmlReader reader(inputXml);
read(reader, "Params", mgParams);
std::cout << GridLogMessage << "Read in " << inputXml << std::endl;
}
checkParameterValidity(mgParams);
std::cout << mgParams << std::endl;
LevelInfo levelInfo_d(FGrid_d, mgParams);
LevelInfo levelInfo_f(FGrid_f, mgParams);
// Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used
const int nbasis = 40;
WilsonCloverFermionD Dwc_d(Umu_d, *FGrid_d, *FrbGrid_d, mass, csw_r, csw_t);
WilsonCloverFermionF Dwc_f(Umu_f, *FGrid_f, *FrbGrid_f, mass, csw_r, csw_t);
MdagMLinearOperator<WilsonCloverFermionD, LatticeFermionD> MdagMOpDwc_d(Dwc_d);
MdagMLinearOperator<WilsonCloverFermionF, LatticeFermionF> MdagMOpDwc_f(Dwc_f);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing single-precision Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDwc_f = createMGInstance<vSpinColourVectorF, vTComplexF, nbasis, WilsonCloverFermionF>(mgParams, levelInfo_f, Dwc_f, Dwc_f);
MGPreconDwc_f->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDwc_f->runChecks(1e-6);
}
MixedPrecisionFlexibleGeneralisedMinimalResidual<LatticeFermionD, LatticeFermionF> MPFGMRESPREC(
1.0e-12, 50000, FGrid_f, *MGPreconDwc_f, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
MPFGMRESPREC(MdagMOpDwc_d, src_d, resultMGF_d);
MGPreconDwc_f->reportTimings();
if(GridCmdOptionExists(argv, argv + argc, "--docomparison")) {
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing double-precision Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDwc_d = createMGInstance<vSpinColourVectorD, vTComplexD, nbasis, WilsonCloverFermionD>(mgParams, levelInfo_d, Dwc_d, Dwc_d);
MGPreconDwc_d->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDwc_d->runChecks(1e-13);
}
FlexibleGeneralisedMinimalResidual<LatticeFermionD> FGMRESPREC(1.0e-12, 50000, *MGPreconDwc_d, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
FGMRESPREC(MdagMOpDwc_d, src_d, resultMGD_d);
MGPreconDwc_d->reportTimings();
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Comparing single-precision Multigrid with double-precision one for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
LatticeFermionD diffFullSolver(FGrid_d);
RealD deviationFullSolver = axpy_norm(diffFullSolver, -1.0, resultMGF_d, resultMGD_d);
// clang-format off
LatticeFermionF src_f(FGrid_f); precisionChange(src_f, src_d);
LatticeFermionF resMGF_f(FGrid_f); resMGF_f = zero;
LatticeFermionD resMGD_d(FGrid_d); resMGD_d = zero;
// clang-format on
(*MGPreconDwc_f)(src_f, resMGF_f);
(*MGPreconDwc_d)(src_d, resMGD_d);
LatticeFermionD diffOnlyMG(FGrid_d);
LatticeFermionD resMGF_d(FGrid_d);
precisionChange(resMGF_d, resMGF_f);
RealD deviationOnlyPrec = axpy_norm(diffOnlyMG, -1.0, resMGF_d, resMGD_d);
// clang-format off
std::cout << GridLogMessage << "Absolute difference between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver << std::endl;
std::cout << GridLogMessage << "Relative deviation between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver / norm2(resultMGD_d) << std::endl;
std::cout << GridLogMessage << "Absolute difference between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec << std::endl;
std::cout << GridLogMessage << "Relative deviation between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec / norm2(resMGD_d) << std::endl;
// clang-format on
}
Grid_finalize();
}

View File

@ -0,0 +1,71 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_mr_unprec.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass = 0.5;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
WilsonCloverFermionR Dwc(Umu,Grid,RBGrid,mass,csw_r,csw_t,anis,params);
MdagMLinearOperator<WilsonCloverFermionR,FermionField> HermOp(Dwc);
MinimalResidual<FermionField> MR(1.0e-8,10000,0.8);
MR(HermOp,src,result);
Grid_finalize();
}