mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-23 10:12:02 +01:00
Compare commits
158 Commits
0f1c5b08a1
...
feature/di
Author | SHA1 | Date | |
---|---|---|---|
8cc3c522c3 | |||
33e4a0caee | |||
1f903d9296 | |||
4df1e0987f | |||
588c2f3cb1 | |||
bd99fd608c | |||
57b442d0de | |||
751a4562d7 | |||
ca66301dee | |||
808bb59206 | |||
4b7f51d19d | |||
d03152fac4 | |||
137f190258 | |||
53d01312b3 | |||
220050822a | |||
87ad76d81b | |||
4ac1094856 | |||
d44a57b0af | |||
dc000d10ee | |||
3685f391cf | |||
efd7338a00 | |||
e1e7b1e224 | |||
7319d4e1ad | |||
fd933420c6 | |||
8208a6214f | |||
3d8146b596 | |||
31efa5c4da | |||
d10d30dda8 | |||
0e9666bc92 | |||
6efd80f104 | |||
fdef7a1a8c | |||
501bb117bf | |||
05ca7dc252 | |||
e9648a1635 | |||
9a9f4a111f | |||
1ad54d049d | |||
57bd0a0a22 | |||
b49db84b08 | |||
583f7c52f3 | |||
58a86c9164 | |||
a25b32847f | |||
6f1a2e132b | |||
b1ede7b46d | |||
e762c940c2 | |||
6a1a198144 | |||
34faa39f4f | |||
5ddea3829d | |||
7eb29cf529 | |||
f729b9b889 | |||
4f997c5f04 | |||
d3496d2fe0 | |||
60f4cb0ffd | |||
136d843ce7 | |||
18028f4309 | |||
5164016740 | |||
d83beaa890 | |||
f9f05e995b | |||
e651b9e7ab | |||
47b4e91473 | |||
3f31afa4fc | |||
af3b065add | |||
7937ac2bab | |||
e909aeedf0 | |||
bab8aa8eb0 | |||
38b22f05be | |||
617c5362c1 | |||
083b58e66d | |||
633427a2df | |||
2031d6910a | |||
f82ce67624 | |||
b52e8ef65a | |||
2594e3c230 | |||
8cedb45af2 | |||
aa008cbe99 | |||
79e34b3eb4 | |||
4f3d581ab4 | |||
6fb6ca5b6b | |||
b8ee19691c | |||
d16427b837 | |||
4b1997e2f3 | |||
8939d5dc73 | |||
b051e00de0 | |||
8aa75b492f | |||
0274f40686 | |||
77aa147ce5 | |||
32facbd02a | |||
6121397587 | |||
4de50ab146 | |||
8b12a61097 | |||
79ea027c0b | |||
62339d437f | |||
698e745276 | |||
0417b96896 | |||
9a6e2c315d | |||
e61fed87db | |||
81fe4c937e | |||
f77f3a6598 | |||
239afb18fb | |||
ef820a26cd | |||
65abe4d0d3 | |||
5012adfebf | |||
b808d48fa1 | |||
83f818a99d | |||
b8bc560b51 | |||
6bc2483d57 | |||
82aecbf4cf | |||
ee23a76aa0 | |||
d7191e5a02 | |||
c8a824425b | |||
f23626a6b8 | |||
6577a03d16 | |||
427c8695fe | |||
9e82c468ab | |||
603fd96747 | |||
fe993c0836 | |||
cdf31d52c1 | |||
0542eaf1da | |||
317bdcf158 | |||
387397374a | |||
9ca2c98882 | |||
605cf401e1 | |||
f99c3660d2 | |||
92a83a9eb3 | |||
53ae01a34a | |||
b615fa0f35 | |||
76c294a7ba | |||
0c0c2b1e20 | |||
e2fc3a0f04 | |||
451e7972fd | |||
56c089d347 | |||
acf740e44d | |||
182f513404 | |||
d5b2323a57 | |||
bad18d4417 | |||
bb5c16b97f | |||
0d80eeb545 | |||
d1decee4cc | |||
d4ae71b880 | |||
b0f4eee78b | |||
5340e50427 | |||
e16fc5b2e4 | |||
694306f202 | |||
9aac1e6d64 | |||
3e882f555d | |||
438caab25f | |||
239e2c1ee6 | |||
013dc2ef33 | |||
9616811c3d | |||
8a3002c03b | |||
71034f828e | |||
11437930c5 | |||
3d44aa9cb9 | |||
2851870d70 | |||
63dbaeefaa | |||
e8c187b323 | |||
0bd83cdbda | |||
42d56ea6b6 | |||
0b905a72dd |
@ -44,14 +44,22 @@ directory
|
||||
#ifdef __NVCC__
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
|
||||
|
||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma nv_diag_suppress unsigned_compare_with_zero
|
||||
#pragma nv_diag_suppress cast_to_qualified_type
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma nv_diag_suppress extra_semicolon
|
||||
#else
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma diag_suppress unsigned_compare_with_zero
|
||||
#pragma diag_suppress cast_to_qualified_type
|
||||
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma diag_suppress extra_semicolon
|
||||
|
||||
//Eigen only
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
|
||||
|
@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/qcd/QCD.h>
|
||||
#include <Grid/qcd/spin/Spin.h>
|
||||
#include <Grid/qcd/gparity/Gparity.h>
|
||||
#include <Grid/qcd/utils/Utils.h>
|
||||
#include <Grid/qcd/representations/Representations.h>
|
||||
NAMESPACE_CHECK(GridQCDCore);
|
||||
|
@ -16,6 +16,7 @@
|
||||
#include <functional>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <strings.h>
|
||||
#include <stdio.h>
|
||||
#include <signal.h>
|
||||
#include <ctime>
|
||||
|
@ -14,7 +14,11 @@
|
||||
/* NVCC save and restore compile environment*/
|
||||
#ifdef __NVCC__
|
||||
#pragma push
|
||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
|
||||
#pragma nv_diag_suppress code_is_unreachable
|
||||
#else
|
||||
#pragma diag_suppress code_is_unreachable
|
||||
#endif
|
||||
#pragma push_macro("__CUDA_ARCH__")
|
||||
#pragma push_macro("__NVCC__")
|
||||
#pragma push_macro("__CUDACC__")
|
||||
|
@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
|
@ -120,6 +120,9 @@ public:
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
GridStopWatch IterationTimer;
|
||||
IterationTimer.Start();
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
@ -152,8 +155,14 @@ public:
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||
IterationTimer.Stop();
|
||||
if ( (k % 500) == 0 ) {
|
||||
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
|
||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
} else {
|
||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
|
||||
}
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
@ -170,13 +179,13 @@ public:
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
|
@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
RealD TrueResidual;
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
@ -97,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
@ -130,6 +133,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
(*guesser)(src_f, sol_f);
|
||||
|
||||
//Inner CG
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
@ -150,6 +154,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
TrueResidual = CG_d.TrueResidual;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
|
@ -44,7 +44,7 @@ public:
|
||||
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
// RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
@ -52,7 +52,7 @@ public:
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
||||
MaxIterations(maxit),
|
||||
shifts(_shifts)
|
||||
{
|
||||
@ -182,6 +182,9 @@ public:
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
@ -321,8 +324,8 @@ public:
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
409
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
409
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
@ -0,0 +1,409 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||
//Every update_freq iterations the residual is corrected in double precision.
|
||||
|
||||
//For safety the a final regular CG is applied to clean up if necessary
|
||||
|
||||
//Linop to add shift to input linop, used in cleanup CG
|
||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
||||
template<typename Field>
|
||||
class ShiftedLinop: public LinearOperatorBase<Field>{
|
||||
public:
|
||||
LinearOperatorBase<Field> &linop_base;
|
||||
RealD shift;
|
||||
|
||||
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
|
||||
void HermOp(const Field &in, Field &out){
|
||||
linop_base.HermOp(in, out);
|
||||
axpy(out, shift, in, out);
|
||||
}
|
||||
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
template<class FieldD, class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
||||
public OperatorFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq
|
||||
) :
|
||||
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<FieldD> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||
{
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
|
||||
//Double precision search directions
|
||||
FieldD p_d(DoublePrecGrid);
|
||||
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
FieldF p_f(SinglePrecGrid);
|
||||
FieldF tmp_f(SinglePrecGrid);
|
||||
FieldF mmp_f(SinglePrecGrid);
|
||||
FieldF src_f(SinglePrecGrid);
|
||||
precisionChange(src_f, src_d);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src_d);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi_d[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
ps_d[s] = src_d;
|
||||
}
|
||||
// r and p for primary
|
||||
r_f=src_f; //residual maintained in single
|
||||
p_f=src_f;
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
|
||||
//MdagM+m[0]
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||
RealD rn = norm2(p_f);
|
||||
d += rn*mass[0];
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r_f,b,mmp_f,r_f);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
a = c /cp;
|
||||
|
||||
//Update double precision search direction by residual
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_d, r_f);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(p_d,a,p_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps_d[s],a,ps_d[s],r_d);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(p_f, p_d); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
d=real(innerProduct(p_f,mmp_f));
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||
AXPYTimer.Stop();
|
||||
RealD rn = norm2(p_f);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
//Update double precision solutions
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
||||
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
c = c_f;
|
||||
|
||||
if(k % ReliableUpdateFreq == 0){
|
||||
//Replace r with true residual
|
||||
MatrixTimer.Start();
|
||||
Linop_d.HermOp(psi_d[0],mmp_d);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
||||
|
||||
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r_d);
|
||||
PrecChangeTimer.Stop();
|
||||
c = c_d;
|
||||
}
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsq[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged ){
|
||||
|
||||
SolverTimer.Stop();
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||
RealD rn = norm2(r_d);
|
||||
RealD cn = norm2(src_d);
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||
|
||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||
if(rn >= rsq[s]){
|
||||
CleanupTimer.Start();
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
||||
|
||||
//Setup linear operators for final cleanup
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||
cg(src_d, psi_d[s]);
|
||||
|
||||
TrueResidualShift[s] = cg.TrueResidual;
|
||||
CleanupTimer.Stop();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
// ugly hack
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -113,7 +113,43 @@ public:
|
||||
blockPromote(guess_coarse,guess,subspace);
|
||||
guess.Checkerboard() = src.Checkerboard();
|
||||
};
|
||||
};
|
||||
|
||||
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
|
||||
int Nevec = (int)evec_coarse.size();
|
||||
int Nsrc = (int)src.size();
|
||||
// make temp variables
|
||||
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
|
||||
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
|
||||
//Preporcessing
|
||||
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
guess_coarse[j] = Zero();
|
||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
||||
blockProject(src_coarse[j],src[j],subspace);
|
||||
}
|
||||
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
|
||||
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
|
||||
for (int i=0;i<Nevec;i++)
|
||||
{
|
||||
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
|
||||
const CoarseField & tmp = evec_coarse[i];
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
|
||||
}
|
||||
}
|
||||
//postprocessing
|
||||
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
||||
blockPromote(guess_coarse[j],guess[j],subspace);
|
||||
guess[j].Checkerboard() = src[j].Checkerboard();
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
@ -44,6 +44,7 @@ public:
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
//This class is the input parameter class for some testing programs
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
@ -145,16 +146,24 @@ public:
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
RealD _coarse_relax_tol;
|
||||
std::vector<FineField> &_subspace;
|
||||
|
||||
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
|
||||
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
|
||||
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
|
||||
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
|
||||
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
|
||||
|
||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||
OperatorFunction<FineField> &smoother,
|
||||
LinearOperatorBase<FineField> &Linop,
|
||||
std::vector<FineField> &subspace,
|
||||
RealD coarse_relax_tol=5.0e3)
|
||||
RealD coarse_relax_tol=5.0e3,
|
||||
int largestEvalIdxForReport=-1)
|
||||
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
||||
_coarse_relax_tol(coarse_relax_tol)
|
||||
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
|
||||
{ };
|
||||
|
||||
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
@ -177,12 +186,26 @@ public:
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
|
||||
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
|
||||
RealD tmp_eval;
|
||||
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
|
||||
}
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
|
||||
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
||||
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
||||
|
||||
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
||||
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
||||
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
evalMaxApprox = 1.0; //cf above
|
||||
GridBase *FineGrid = _subspace[0].Grid();
|
||||
int checkerboard = _subspace[0].Checkerboard();
|
||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||
@ -201,13 +224,13 @@ public:
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
@ -285,6 +308,10 @@ public:
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
|
||||
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
||||
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
||||
//vectors under the block inner product. This step must be performed after computing the fine grid
|
||||
//eigenvectors and before computing the coarse grid eigenvectors.
|
||||
void Orthogonalise(void ) {
|
||||
CoarseScalar InnerProd(_CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
@ -328,6 +355,8 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
||||
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
@ -376,25 +405,31 @@ public:
|
||||
evals_fine.resize(nbasis);
|
||||
subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
|
||||
|
||||
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
||||
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
||||
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
||||
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
@ -405,6 +440,14 @@ public:
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Get the fine eigenvector 'i' by reconstruction
|
||||
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
||||
blockPromote(evec_coarse[i],evec,subspace);
|
||||
eval = evals_coarse[i];
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -29,6 +29,8 @@ template<class Field> class PowerMethod
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
|
@ -372,7 +372,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
if ( dox ) {
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||
@ -382,7 +382,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
}
|
||||
}
|
||||
|
||||
if (dor) {
|
||||
if (dox) {
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
@ -390,16 +390,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=bytes;
|
||||
} else {
|
||||
// TODO : make a OMP loop on CPU, call threaded bcopy
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
|
||||
}
|
||||
}
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
|
||||
this->StencilSendToRecvFromComplete(list,dir);
|
||||
list.resize(0);
|
||||
}
|
||||
|
||||
return off_node_bytes;
|
||||
|
@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
|
55
Grid/lattice/Lattice_crc.h
Normal file
55
Grid/lattice/Lattice_crc.h
Normal file
@ -0,0 +1,55 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_crc.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
|
||||
{
|
||||
auto ff = localNorm2(f);
|
||||
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
||||
typedef typename vobj::tensor_reduced normtype;
|
||||
typedef typename normtype::scalar_object scalar;
|
||||
std::vector<scalar> sff;
|
||||
sliceSum(ff,sff,mu);
|
||||
for(int t=0;t<sff.size();t++){
|
||||
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -125,6 +125,12 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
|
||||
typename vobj::scalar_object s;
|
||||
peekSite(s,l,site);
|
||||
return s;
|
||||
}
|
||||
template<class vobj,class sobj>
|
||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
|
@ -142,6 +142,15 @@ inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
|
||||
return sumD_cpu(arg,osites);
|
||||
#endif
|
||||
}
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
return sumD_gpu_large(arg,osites);
|
||||
#else
|
||||
return sumD_cpu(arg,osites);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
|
||||
@ -159,6 +168,22 @@ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
|
||||
return ssum;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
autoView( arg_v, arg, AcceleratorRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum_gpu_large(&arg_v[0],osites);
|
||||
#else
|
||||
autoView(arg_v, arg, CpuRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum_cpu(&arg_v[0],osites);
|
||||
#endif
|
||||
arg.Grid()->GlobalSum(ssum);
|
||||
return ssum;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Deterministic Reduction operations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -207,6 +232,7 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
// Might make all code paths go this way.
|
||||
#if 0
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
@ -216,15 +242,31 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, 1,{
|
||||
auto x_l = left_v[ss];
|
||||
auto y_l = right_v[ss];
|
||||
inner_tmp_v[ss]=innerProductD(x_l,y_l);
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#else
|
||||
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
// This is in single precision and fails some tests
|
||||
auto anrm = sum(inner_tmp_v,sites);
|
||||
auto anrm = sumD(inner_tmp_v,sites);
|
||||
nrm = anrm;
|
||||
return nrm;
|
||||
}
|
||||
@ -258,7 +300,7 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
conformable(x,y);
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_typeD vector_type;
|
||||
// typedef typename vobj::vector_typeD vector_type;
|
||||
RealD nrm;
|
||||
|
||||
GridBase *grid = x.Grid();
|
||||
@ -270,17 +312,29 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
autoView( x_v, x, AcceleratorRead);
|
||||
autoView( y_v, y, AcceleratorRead);
|
||||
autoView( z_v, z, AcceleratorWrite);
|
||||
|
||||
#if 0
|
||||
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, 1,{
|
||||
auto tmp = a*x_v[ss]+b*y_v[ss];
|
||||
inner_tmp_v[ss]=innerProductD(tmp,tmp);
|
||||
z_v[ss]=tmp;
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
||||
#else
|
||||
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
|
||||
#endif
|
||||
grid->GlobalSum(nrm);
|
||||
return nrm;
|
||||
}
|
||||
|
@ -23,7 +23,7 @@ unsigned int nextPow2(Iterator x) {
|
||||
}
|
||||
|
||||
template <class Iterator>
|
||||
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
|
||||
int device;
|
||||
#ifdef GRID_CUDA
|
||||
@ -37,13 +37,13 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
|
||||
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
|
||||
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
|
||||
|
||||
/*
|
||||
std::cout << GridLogDebug << "GPU has:" << std::endl;
|
||||
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
|
||||
|
||||
*/
|
||||
if (warpSize != WARP_SIZE) {
|
||||
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
@ -53,12 +53,12 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
threads = warpSize;
|
||||
if ( threads*sizeofsobj > sharedMemPerBlock ) {
|
||||
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
|
||||
// keep all the streaming multiprocessors busy
|
||||
blocks = nextPow2(multiProcessorCount);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <class sobj, class Iterator>
|
||||
@ -198,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
typedef decltype(lat) Iterator;
|
||||
@ -207,7 +207,9 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
Integer size = osites*nsimd;
|
||||
|
||||
Integer numThreads, numBlocks;
|
||||
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
assert(ok);
|
||||
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
|
||||
Vector<sobj> buffer(numBlocks);
|
||||
@ -218,6 +220,54 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
auto result = buffer_v[0];
|
||||
return result;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
sobj ret;
|
||||
scalarD *ret_p = (scalarD *)&ret;
|
||||
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Vector<vector> buffer(osites);
|
||||
vector *dat = (vector *)lat;
|
||||
vector *buf = &buffer[0];
|
||||
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
|
||||
for(int w=0;w<words;w++) {
|
||||
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
ret_p[w] = sumD_gpu_small(tbuf,osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
sobj ret;
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
Integer size = osites*nsimd;
|
||||
Integer numThreads, numBlocks;
|
||||
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
|
||||
if ( ok ) {
|
||||
ret = sumD_gpu_small(lat,osites);
|
||||
} else {
|
||||
ret = sumD_gpu_large(lat,osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Return as same precision as input performing reduction in double precision though
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -230,6 +280,13 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu_large(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -424,9 +424,32 @@ public:
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
#if 1
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int gidx;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
int rank;
|
||||
Coordinate pcoor;
|
||||
Coordinate lcoor;
|
||||
Coordinate gcoor;
|
||||
_grid->LocalIndexToLocalCoor(lidx,lcoor);
|
||||
pcoor=_grid->ThisProcessorCoor();
|
||||
_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
|
||||
_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
|
||||
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
assert(rank == _grid->ThisRank() );
|
||||
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
});
|
||||
#else
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
|
||||
// Where is it?
|
||||
int rank;
|
||||
int o_idx;
|
||||
@ -443,6 +466,7 @@ public:
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
#endif
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Machine and thread decomposition dependent seeding is efficient
|
||||
|
@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
|
@ -65,29 +65,34 @@ GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
|
||||
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
|
||||
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
|
||||
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
|
||||
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogError.Active(0);
|
||||
GridLogError.Active(1);
|
||||
GridLogWarning.Active(0);
|
||||
GridLogMessage.Active(1); // at least the messages should be always on
|
||||
GridLogMemory.Active(0); // at least the messages should be always on
|
||||
GridLogIterative.Active(0);
|
||||
GridLogDebug.Active(0);
|
||||
GridLogPerformance.Active(0);
|
||||
GridLogIntegrator.Active(1);
|
||||
GridLogColours.Active(0);
|
||||
GridLogHMC.Active(1);
|
||||
|
||||
for (int i = 0; i < logstreams.size(); i++) {
|
||||
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
|
||||
if (logstreams[i] == std::string("Memory")) GridLogMemory.Active(1);
|
||||
if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1);
|
||||
if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0);
|
||||
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
|
||||
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
|
||||
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
|
||||
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
|
||||
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
|
||||
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
|
||||
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
|
||||
}
|
||||
}
|
||||
|
@ -182,6 +182,8 @@ extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern GridLogger GridLogMemory;
|
||||
extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
@ -31,6 +31,7 @@ directory
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <map>
|
||||
|
||||
#include <pwd.h>
|
||||
@ -654,7 +655,8 @@ class IldgWriter : public ScidacWriter {
|
||||
// Fill ILDG header data struct
|
||||
//////////////////////////////////////////////////////
|
||||
ildgFormat ildgfmt ;
|
||||
ildgfmt.field = std::string("su3gauge");
|
||||
const std::string stNC = std::to_string( Nc ) ;
|
||||
ildgfmt.field = std::string("su"+stNC+"gauge");
|
||||
|
||||
if ( format == std::string("IEEE32BIG") ) {
|
||||
ildgfmt.precision = 32;
|
||||
@ -871,7 +873,8 @@ class IldgReader : public GridLimeReader {
|
||||
} else {
|
||||
|
||||
assert(found_ildgFormat);
|
||||
assert ( ildgFormat_.field == std::string("su3gauge") );
|
||||
const std::string stNC = std::to_string( Nc ) ;
|
||||
assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Populate our Grid metadata as best we can
|
||||
@ -879,7 +882,7 @@ class IldgReader : public GridLimeReader {
|
||||
|
||||
std::ostringstream vers; vers << ildgFormat_.version;
|
||||
FieldMetaData_.hdr_version = vers.str();
|
||||
FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
|
||||
FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC);
|
||||
|
||||
FieldMetaData_.nd=4;
|
||||
FieldMetaData_.dimension.resize(4);
|
||||
|
@ -6,8 +6,8 @@
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -182,8 +182,8 @@ class GaugeStatistics
|
||||
public:
|
||||
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
|
||||
{
|
||||
header.link_trace=WilsonLoops<Impl>::linkTrace(data);
|
||||
header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
|
||||
header.link_trace = WilsonLoops<Impl>::linkTrace(data);
|
||||
header.plaquette = WilsonLoops<Impl>::avgPlaquette(data);
|
||||
}
|
||||
};
|
||||
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
|
||||
@ -203,20 +203,24 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
inline void reconstruct3(LorentzColourMatrix & cm)
|
||||
{
|
||||
const int x=0;
|
||||
const int y=1;
|
||||
const int z=2;
|
||||
assert( Nc < 4 && Nc > 1 ) ;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
|
||||
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
|
||||
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
|
||||
#if Nc == 2
|
||||
cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ;
|
||||
cm(mu)()(1,1) = adj(cm(mu)()(0,x)) ;
|
||||
#else
|
||||
const int x=0 , y=1 , z=2 ; // a little disinenuous labelling
|
||||
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
|
||||
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
|
||||
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Some data types for intermediate storage
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
|
||||
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >;
|
||||
|
||||
typedef iLorentzColour2x3<Complex> LorentzColour2x3;
|
||||
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
|
||||
@ -278,7 +282,6 @@ struct GaugeSimpleMunger{
|
||||
|
||||
template <class fobj, class sobj>
|
||||
struct GaugeSimpleUnmunger {
|
||||
|
||||
void operator()(sobj &in, fobj &out) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
for (int i = 0; i < Nc; i++) {
|
||||
@ -317,8 +320,8 @@ template<class fobj,class sobj>
|
||||
struct Gauge3x2munger{
|
||||
void operator() (fobj &in,sobj &out){
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int i=0;i<2;i++){
|
||||
for(int j=0;j<3;j++){
|
||||
for(int i=0;i<Nc-1;i++){
|
||||
for(int j=0;j<Nc;j++){
|
||||
out(mu)()(i,j) = in(mu)(i)(j);
|
||||
}}
|
||||
}
|
||||
@ -330,8 +333,8 @@ template<class fobj,class sobj>
|
||||
struct Gauge3x2unmunger{
|
||||
void operator() (sobj &in,fobj &out){
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int i=0;i<2;i++){
|
||||
for(int j=0;j<3;j++){
|
||||
for(int i=0;i<Nc-1;i++){
|
||||
for(int j=0;j<Nc;j++){
|
||||
out(mu)(i)(j) = in(mu)()(i,j);
|
||||
}}
|
||||
}
|
||||
|
@ -9,6 +9,7 @@
|
||||
Author: Matt Spraggs <matthew.spraggs@gmail.com>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -30,6 +31,8 @@
|
||||
#ifndef GRID_NERSC_IO_H
|
||||
#define GRID_NERSC_IO_H
|
||||
|
||||
#include <string>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
using namespace Grid;
|
||||
@ -39,9 +42,11 @@ using namespace Grid;
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
class NerscIO : public BinaryIO {
|
||||
public:
|
||||
|
||||
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
||||
|
||||
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
|
||||
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
|
||||
|
||||
static inline void truncate(std::string file){
|
||||
std::ofstream fout(file,std::ios::out);
|
||||
}
|
||||
@ -145,15 +150,17 @@ public:
|
||||
|
||||
std::string format(header.floating_point);
|
||||
|
||||
int ieee32big = (format == std::string("IEEE32BIG"));
|
||||
int ieee32 = (format == std::string("IEEE32"));
|
||||
int ieee64big = (format == std::string("IEEE64BIG"));
|
||||
int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
|
||||
const int ieee32big = (format == std::string("IEEE32BIG"));
|
||||
const int ieee32 = (format == std::string("IEEE32"));
|
||||
const int ieee64big = (format == std::string("IEEE64BIG"));
|
||||
const int ieee64 = (format == std::string("IEEE64") || \
|
||||
format == std::string("IEEE64LITTLE"));
|
||||
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
// depending on datatype, set up munger;
|
||||
// munger is a function of <floating point, Real, data_type>
|
||||
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
|
||||
const std::string stNC = std::to_string( Nc ) ;
|
||||
if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) {
|
||||
if ( ieee32 || ieee32big ) {
|
||||
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
|
||||
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
|
||||
@ -164,7 +171,7 @@ public:
|
||||
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
}
|
||||
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
|
||||
} else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) {
|
||||
if ( ieee32 || ieee32big ) {
|
||||
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
|
||||
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
|
||||
@ -198,7 +205,7 @@ public:
|
||||
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
||||
exit(0);
|
||||
}
|
||||
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
||||
assert(nersc_csum == header.checksum );
|
||||
|
||||
@ -209,27 +216,29 @@ public:
|
||||
template<class GaugeStats=PeriodicGaugeStatistics>
|
||||
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
|
||||
std::string file,
|
||||
std::string ens_label = std::string("DWF"))
|
||||
std::string ens_label = std::string("DWF"),
|
||||
std::string ens_id = std::string("UKQCD"),
|
||||
unsigned int sequence_number = 1)
|
||||
{
|
||||
writeConfiguration(Umu,file,0,1,ens_label);
|
||||
writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number);
|
||||
}
|
||||
template<class GaugeStats=PeriodicGaugeStatistics>
|
||||
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
|
||||
std::string file,
|
||||
int two_row,
|
||||
int bits32,
|
||||
std::string ens_label = std::string("DWF"))
|
||||
std::string ens_label = std::string("DWF"),
|
||||
std::string ens_id = std::string("UKQCD"),
|
||||
unsigned int sequence_number = 1)
|
||||
{
|
||||
typedef vLorentzColourMatrixD vobj;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
FieldMetaData header;
|
||||
///////////////////////////////////////////
|
||||
// Following should become arguments
|
||||
///////////////////////////////////////////
|
||||
header.sequence_number = 1;
|
||||
header.ensemble_id = std::string("UKQCD");
|
||||
header.sequence_number = sequence_number;
|
||||
header.ensemble_id = ens_id;
|
||||
header.ensemble_label = ens_label;
|
||||
header.hdr_version = "1.0" ;
|
||||
|
||||
typedef LorentzColourMatrixD fobj3D;
|
||||
typedef LorentzColour2x3D fobj2D;
|
||||
@ -243,10 +252,14 @@ public:
|
||||
|
||||
uint64_t offset;
|
||||
|
||||
// Sod it -- always write 3x3 double
|
||||
header.floating_point = std::string("IEEE64BIG");
|
||||
header.data_type = std::string("4D_SU3_GAUGE_3x3");
|
||||
GaugeSimpleUnmunger<fobj3D,sobj> munge;
|
||||
// Sod it -- always write NcxNc double
|
||||
header.floating_point = std::string("IEEE64BIG");
|
||||
const std::string stNC = std::to_string( Nc ) ;
|
||||
if( two_row ) {
|
||||
header.data_type = std::string("4D_SU" + stNC + "_GAUGE" );
|
||||
} else {
|
||||
header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC );
|
||||
}
|
||||
if ( grid->IsBoss() ) {
|
||||
truncate(file);
|
||||
offset = writeHeader(header,file);
|
||||
@ -254,8 +267,15 @@ public:
|
||||
grid->Broadcast(0,(void *)&offset,sizeof(offset));
|
||||
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
if( two_row ) {
|
||||
Gauge3x2unmunger<fobj2D,sobj> munge;
|
||||
BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
} else {
|
||||
GaugeSimpleUnmunger<fobj3D,sobj> munge;
|
||||
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
}
|
||||
header.checksum = nersc_csum;
|
||||
if ( grid->IsBoss() ) {
|
||||
writeHeader(header,file);
|
||||
@ -287,8 +307,7 @@ public:
|
||||
header.plaquette=0.0;
|
||||
MachineCharacteristics(header);
|
||||
|
||||
uint64_t offset;
|
||||
|
||||
uint64_t offset;
|
||||
#ifdef RNG_RANLUX
|
||||
header.floating_point = std::string("UINT64");
|
||||
header.data_type = std::string("RANLUX48");
|
||||
@ -328,7 +347,7 @@ public:
|
||||
|
||||
GridBase *grid = parallel.Grid();
|
||||
|
||||
uint64_t offset = readHeader(file,grid,header);
|
||||
uint64_t offset = readHeader(file,grid,header);
|
||||
|
||||
FieldMetaData clone(header);
|
||||
|
||||
|
@ -72,17 +72,9 @@ static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
|
||||
inline uint64_t cyclecount(void){
|
||||
return 0;
|
||||
}
|
||||
#define __SSC_MARK(mark) __asm__ __volatile__ ("movl %0, %%ebx; .byte 0x64, 0x67, 0x90 " ::"i"(mark):"%ebx")
|
||||
#define __SSC_STOP __SSC_MARK(0x110)
|
||||
#define __SSC_START __SSC_MARK(0x111)
|
||||
|
||||
|
||||
#else
|
||||
|
||||
#define __SSC_MARK(mark)
|
||||
#define __SSC_STOP
|
||||
#define __SSC_START
|
||||
|
||||
/*
|
||||
* cycle counters arch dependent
|
||||
*/
|
||||
|
@ -39,9 +39,9 @@ NAMESPACE_BEGIN(Grid)
|
||||
// C++11 time facilities better?
|
||||
inline double usecond(void) {
|
||||
struct timeval tv;
|
||||
#ifdef TIMERS_ON
|
||||
tv.tv_sec = 0;
|
||||
tv.tv_usec = 0;
|
||||
gettimeofday(&tv,NULL);
|
||||
#endif
|
||||
return 1.0*tv.tv_usec + 1.0e6*tv.tv_sec;
|
||||
}
|
||||
|
||||
|
@ -16,8 +16,12 @@
|
||||
|
||||
#ifdef __NVCC__
|
||||
#pragma push
|
||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
|
||||
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
|
||||
#else
|
||||
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include "pugixml.h"
|
||||
|
||||
|
@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
|
||||
#define ColourIndex (2)
|
||||
#define SpinIndex (1)
|
||||
#define LorentzIndex (0)
|
||||
#define GparityFlavourIndex (0)
|
||||
|
||||
// Also should make these a named enum type
|
||||
static constexpr int DaggerNo=0;
|
||||
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
|
||||
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
||||
|
||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
|
||||
|
||||
// ChrisK very keen to add extra space for Gparity doubling.
|
||||
//
|
||||
// Also add domain wall index, in a way where Wilson operator
|
||||
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
|
||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||
|
||||
|
||||
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
|
||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
|
||||
|
||||
// Spin matrix
|
||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||
|
||||
//G-parity flavour matrix
|
||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
|
||||
|
||||
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
|
||||
|
||||
|
||||
// Spin vector
|
||||
typedef iSpinVector<Complex > SpinVector;
|
||||
typedef iSpinVector<ComplexF> SpinVectorF;
|
||||
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
|
||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||
|
||||
//G-parity flavour vector
|
||||
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
|
||||
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
|
||||
|
||||
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
|
||||
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
|
||||
|
||||
|
||||
// singlets
|
||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||
|
@ -40,6 +40,29 @@ class Action
|
||||
|
||||
public:
|
||||
bool is_smeared = false;
|
||||
RealD deriv_norm_sum;
|
||||
RealD deriv_max_sum;
|
||||
int deriv_num;
|
||||
RealD deriv_us;
|
||||
RealD S_us;
|
||||
RealD refresh_us;
|
||||
void reset_timer(void) {
|
||||
deriv_us = S_us = refresh_us = 0.0;
|
||||
deriv_num=0;
|
||||
deriv_norm_sum = deriv_max_sum=0.0;
|
||||
}
|
||||
void deriv_log(RealD nrm, RealD max) { deriv_max_sum+=max; deriv_norm_sum+=nrm; deriv_num++;}
|
||||
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
|
||||
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
|
||||
RealD deriv_timer(void) { return deriv_us; };
|
||||
RealD S_timer(void) { return deriv_us; };
|
||||
RealD refresh_timer(void) { return deriv_us; };
|
||||
void deriv_timer_start(void) { deriv_us-=usecond(); }
|
||||
void deriv_timer_stop(void) { deriv_us+=usecond(); }
|
||||
void refresh_timer_start(void) { refresh_us-=usecond(); }
|
||||
void refresh_timer_stop(void) { refresh_us+=usecond(); }
|
||||
void S_timer_start(void) { S_us-=usecond(); }
|
||||
void S_timer_stop(void) { S_us+=usecond(); }
|
||||
// Heatbath?
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
|
||||
|
@ -39,6 +39,7 @@ NAMESPACE_CHECK(ActionParams);
|
||||
|
||||
#include <Grid/qcd/action/filters/MomentumFilter.h>
|
||||
#include <Grid/qcd/action/filters/DirichletFilter.h>
|
||||
#include <Grid/qcd/action/filters/DDHMCFilter.h>
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Gauge Actions
|
||||
|
@ -37,24 +37,33 @@ NAMESPACE_BEGIN(Grid);
|
||||
// These can move into a params header and be given MacroMagic serialisation
|
||||
struct GparityWilsonImplParams {
|
||||
Coordinate twists;
|
||||
GparityWilsonImplParams() : twists(Nd, 0) {};
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
Coordinate dirichlet; // Blocksize of dirichlet BCs
|
||||
GparityWilsonImplParams() : twists(Nd, 0), dirichlet(Nd, 0) {};
|
||||
};
|
||||
|
||||
struct WilsonImplParams {
|
||||
bool overlapCommsCompute;
|
||||
Coordinate dirichlet; // Blocksize of dirichlet BCs
|
||||
AcceleratorVector<Real,Nd> twist_n_2pi_L;
|
||||
AcceleratorVector<Complex,Nd> boundary_phases;
|
||||
WilsonImplParams() {
|
||||
dirichlet.resize(Nd,0);
|
||||
boundary_phases.resize(Nd, 1.0);
|
||||
twist_n_2pi_L.resize(Nd, 0.0);
|
||||
};
|
||||
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
|
||||
twist_n_2pi_L.resize(Nd, 0.0);
|
||||
dirichlet.resize(Nd,0);
|
||||
}
|
||||
};
|
||||
|
||||
struct StaggeredImplParams {
|
||||
StaggeredImplParams() {};
|
||||
Coordinate dirichlet; // Blocksize of dirichlet BCs
|
||||
StaggeredImplParams()
|
||||
{
|
||||
dirichlet.resize(Nd,0);
|
||||
};
|
||||
};
|
||||
|
||||
struct OneFlavourRationalParams : Serializable {
|
||||
@ -63,9 +72,11 @@ struct StaggeredImplParams {
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
RealD, mdtolerance,
|
||||
int, degree,
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
int, BoundsCheckFreq,
|
||||
RealD, BoundsCheckTol);
|
||||
|
||||
// MaxIter and tolerance, vectors??
|
||||
|
||||
@ -76,16 +87,62 @@ struct StaggeredImplParams {
|
||||
RealD tol = 1.0e-8,
|
||||
int _degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
int _BoundsCheckFreq=20,
|
||||
RealD mdtol = 1.0e-6,
|
||||
double _BoundsCheckTol=1e-6)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
mdtolerance(mdtol),
|
||||
degree(_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
BoundsCheckFreq(_BoundsCheckFreq),
|
||||
BoundsCheckTol(_BoundsCheckTol){};
|
||||
};
|
||||
|
||||
/*Action parameters for the generalized rational action
|
||||
The approximation is for (M^dag M)^{1/inv_pow}
|
||||
where inv_pow is the denominator of the fractional power.
|
||||
Default inv_pow=2 for square root, making this equivalent to
|
||||
the OneFlavourRational action
|
||||
*/
|
||||
struct RationalActionParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
|
||||
int, inv_pow,
|
||||
RealD, lo, //low eigenvalue bound of rational approx
|
||||
RealD, hi, //high eigenvalue bound of rational approx
|
||||
int, MaxIter, //maximum iterations in msCG
|
||||
RealD, action_tolerance, //msCG tolerance in action evaluation
|
||||
int, action_degree, //rational approx tolerance in action evaluation
|
||||
RealD, md_tolerance, //msCG tolerance in MD integration
|
||||
int, md_degree, //rational approx tolerance in MD integration
|
||||
int, precision, //precision of floating point arithmetic
|
||||
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
|
||||
// constructor
|
||||
RationalActionParams(int _inv_pow = 2,
|
||||
RealD _lo = 0.0,
|
||||
RealD _hi = 1.0,
|
||||
int _maxit = 1000,
|
||||
RealD _action_tolerance = 1.0e-8,
|
||||
int _action_degree = 10,
|
||||
RealD _md_tolerance = 1.0e-8,
|
||||
int _md_degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: inv_pow(_inv_pow),
|
||||
lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
action_tolerance(_action_tolerance),
|
||||
action_degree(_action_degree),
|
||||
md_tolerance(_md_tolerance),
|
||||
md_degree(_md_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -68,9 +68,17 @@ public:
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Support for MADWF tricks
|
||||
///////////////////////////////////////////////////////////////
|
||||
RealD Mass(void) { return mass; };
|
||||
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; };
|
||||
RealD MassPlus(void) { return mass_plus; };
|
||||
RealD MassMinus(void) { return mass_minus; };
|
||||
|
||||
void SetMass(RealD _mass) {
|
||||
mass=_mass;
|
||||
mass_plus=mass_minus=_mass;
|
||||
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
|
||||
} ;
|
||||
void SetMass(RealD _mass_plus, RealD _mass_minus) {
|
||||
mass_plus=_mass_plus;
|
||||
mass_minus=_mass_minus;
|
||||
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
|
||||
} ;
|
||||
void P(const FermionField &psi, FermionField &chi);
|
||||
@ -108,7 +116,7 @@ public:
|
||||
void MeooeDag5D (const FermionField &in, FermionField &out);
|
||||
|
||||
// protected:
|
||||
RealD mass;
|
||||
RealD mass_plus, mass_minus;
|
||||
|
||||
// Save arguments to SetCoefficientsInternal
|
||||
Vector<Coeff_t> _gamma;
|
||||
|
435
Grid/qcd/action/fermion/CloverHelpers.h
Normal file
435
Grid/qcd/action/fermion/CloverHelpers.h
Normal file
@ -0,0 +1,435 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
|
||||
|
||||
Copyright (C) 2017 - 2022
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
Author: Mattia Bruno <mattia.bruno@cern.ch>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Standard Clover
|
||||
// (4+m0) + csw * clover_term
|
||||
// Exp Clover
|
||||
// (4+m0) * exp(csw/(4+m0) clover_term)
|
||||
// = (4+m0) + csw * clover_term + ...
|
||||
////////////////////////////////////////////
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
//////////////////////////////////
|
||||
// Generic Standard Clover
|
||||
//////////////////////////////////
|
||||
|
||||
template<class Impl>
|
||||
class CloverHelpers: public WilsonCloverHelpers<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
|
||||
static void Instantiate(CloverField& CloverTerm, CloverField& CloverTermInv, RealD csw_t, RealD diag_mass) {
|
||||
GridBase *grid = CloverTerm.Grid();
|
||||
CloverTerm += diag_mass;
|
||||
|
||||
int lvol = grid->lSites();
|
||||
int DimRep = Impl::Dimension;
|
||||
{
|
||||
autoView(CTv,CloverTerm,CpuRead);
|
||||
autoView(CTIv,CloverTermInv,CpuWrite);
|
||||
thread_for(site, lvol, {
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
|
||||
peekLocalSite(Qx, CTv, lcoor);
|
||||
|
||||
for (int j = 0; j < Ns; j++)
|
||||
for (int k = 0; k < Ns; k++)
|
||||
for (int a = 0; a < DimRep; a++)
|
||||
for (int b = 0; b < DimRep; b++){
|
||||
auto zz = Qx()(j, k)(a, b);
|
||||
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
|
||||
}
|
||||
|
||||
EigenInvCloverOp = EigenCloverOp.inverse();
|
||||
for (int j = 0; j < Ns; j++)
|
||||
for (int k = 0; k < Ns; k++)
|
||||
for (int a = 0; a < DimRep; a++)
|
||||
for (int b = 0; b < DimRep; b++)
|
||||
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
|
||||
pokeLocalSite(Qxinv, CTIv, lcoor);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
|
||||
return Helpers::Cmunu(U, lambda, mu, nu);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////
|
||||
// Generic Exp Clover
|
||||
//////////////////////////////////
|
||||
|
||||
template<class Impl>
|
||||
class ExpCloverHelpers: public WilsonCloverHelpers<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
|
||||
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
|
||||
// Can this be avoided?
|
||||
static void IdentityTimesC(const CloverField& in, RealD c) {
|
||||
int DimRep = Impl::Dimension;
|
||||
|
||||
autoView(in_v, in, AcceleratorWrite);
|
||||
|
||||
accelerator_for(ss, in.Grid()->oSites(), 1, {
|
||||
for (int sa=0; sa<Ns; sa++)
|
||||
for (int ca=0; ca<DimRep; ca++)
|
||||
in_v[ss]()(sa,sa)(ca,ca) = c;
|
||||
});
|
||||
}
|
||||
|
||||
static int getNMAX(RealD prec, RealD R) {
|
||||
/* compute stop condition for exponential */
|
||||
int NMAX=1;
|
||||
RealD cond=R*R/2.;
|
||||
|
||||
while (cond*std::exp(R)>prec) {
|
||||
NMAX++;
|
||||
cond*=R/(double)(NMAX+1);
|
||||
}
|
||||
return NMAX;
|
||||
}
|
||||
|
||||
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
|
||||
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
|
||||
|
||||
static void Instantiate(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
|
||||
GridBase* grid = Clover.Grid();
|
||||
CloverField ExpClover(grid);
|
||||
|
||||
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
|
||||
|
||||
Clover *= (1.0/diag_mass);
|
||||
|
||||
// Taylor expansion, slow but generic
|
||||
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
|
||||
// qN = cN
|
||||
// qn = cn + qn+1 X
|
||||
std::vector<RealD> cn(NMAX+1);
|
||||
cn[0] = 1.0;
|
||||
for (int i=1; i<=NMAX; i++)
|
||||
cn[i] = cn[i-1] / RealD(i);
|
||||
|
||||
ExpClover = Zero();
|
||||
IdentityTimesC(ExpClover, cn[NMAX]);
|
||||
for (int i=NMAX-1; i>=0; i--)
|
||||
ExpClover = ExpClover * Clover + cn[i];
|
||||
|
||||
// prepare inverse
|
||||
CloverInv = (-1.0)*Clover;
|
||||
|
||||
Clover = ExpClover * diag_mass;
|
||||
|
||||
ExpClover = Zero();
|
||||
IdentityTimesC(ExpClover, cn[NMAX]);
|
||||
for (int i=NMAX-1; i>=0; i--)
|
||||
ExpClover = ExpClover * CloverInv + cn[i];
|
||||
|
||||
CloverInv = ExpClover * (1.0/diag_mass);
|
||||
|
||||
}
|
||||
|
||||
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
|
||||
assert(0);
|
||||
return lambda;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////
|
||||
// Compact Standard Clover
|
||||
//////////////////////////////////
|
||||
|
||||
|
||||
template<class Impl>
|
||||
class CompactCloverHelpers: public CompactWilsonCloverHelpers<Impl>,
|
||||
public WilsonCloverHelpers<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
INHERIT_COMPACT_CLOVER_TYPES(Impl);
|
||||
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
|
||||
|
||||
static void MassTerm(CloverField& Clover, RealD diag_mass) {
|
||||
Clover += diag_mass;
|
||||
}
|
||||
|
||||
static void Exponentiate_Clover(CloverDiagonalField& Diagonal,
|
||||
CloverTriangleField& Triangle,
|
||||
RealD csw_t, RealD diag_mass) {
|
||||
|
||||
// Do nothing
|
||||
}
|
||||
|
||||
// TODO: implement Cmunu for better performances with compact layout, but don't do it
|
||||
// here, but rather in WilsonCloverHelpers.h -> CompactWilsonCloverHelpers
|
||||
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
|
||||
return Helpers::Cmunu(U, lambda, mu, nu);
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
// Compact Exp Clover
|
||||
//////////////////////////////////
|
||||
|
||||
template<class Impl>
|
||||
class CompactExpCloverHelpers: public CompactWilsonCloverHelpers<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
INHERIT_CLOVER_TYPES(Impl);
|
||||
INHERIT_COMPACT_CLOVER_TYPES(Impl);
|
||||
|
||||
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
|
||||
|
||||
static void MassTerm(CloverField& Clover, RealD diag_mass) {
|
||||
// do nothing!
|
||||
// mass term is multiplied to exp(Clover) below
|
||||
}
|
||||
|
||||
static int getNMAX(RealD prec, RealD R) {
|
||||
/* compute stop condition for exponential */
|
||||
int NMAX=1;
|
||||
RealD cond=R*R/2.;
|
||||
|
||||
while (cond*std::exp(R)>prec) {
|
||||
NMAX++;
|
||||
cond*=R/(double)(NMAX+1);
|
||||
}
|
||||
return NMAX;
|
||||
}
|
||||
|
||||
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
|
||||
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
|
||||
|
||||
static void ExponentiateHermitean6by6(const iMatrix<ComplexD,6> &arg, const RealD& alpha, const std::vector<RealD>& cN, const int Niter, iMatrix<ComplexD,6>& dest){
|
||||
|
||||
typedef iMatrix<ComplexD,6> mat;
|
||||
|
||||
RealD qn[6];
|
||||
RealD qnold[6];
|
||||
RealD p[5];
|
||||
RealD trA2, trA3, trA4;
|
||||
|
||||
mat A2, A3, A4, A5;
|
||||
A2 = alpha * alpha * arg * arg;
|
||||
A3 = alpha * arg * A2;
|
||||
A4 = A2 * A2;
|
||||
A5 = A2 * A3;
|
||||
|
||||
trA2 = toReal( trace(A2) );
|
||||
trA3 = toReal( trace(A3) );
|
||||
trA4 = toReal( trace(A4));
|
||||
|
||||
p[0] = toReal( trace(A3 * A3)) / 6.0 - 0.125 * trA4 * trA2 - trA3 * trA3 / 18.0 + trA2 * trA2 * trA2/ 48.0;
|
||||
p[1] = toReal( trace(A5)) / 5.0 - trA3 * trA2 / 6.0;
|
||||
p[2] = toReal( trace(A4)) / 4.0 - 0.125 * trA2 * trA2;
|
||||
p[3] = trA3 / 3.0;
|
||||
p[4] = 0.5 * trA2;
|
||||
|
||||
qnold[0] = cN[Niter];
|
||||
qnold[1] = 0.0;
|
||||
qnold[2] = 0.0;
|
||||
qnold[3] = 0.0;
|
||||
qnold[4] = 0.0;
|
||||
qnold[5] = 0.0;
|
||||
|
||||
for(int i = Niter-1; i >= 0; i--)
|
||||
{
|
||||
qn[0] = p[0] * qnold[5] + cN[i];
|
||||
qn[1] = p[1] * qnold[5] + qnold[0];
|
||||
qn[2] = p[2] * qnold[5] + qnold[1];
|
||||
qn[3] = p[3] * qnold[5] + qnold[2];
|
||||
qn[4] = p[4] * qnold[5] + qnold[3];
|
||||
qn[5] = qnold[4];
|
||||
|
||||
qnold[0] = qn[0];
|
||||
qnold[1] = qn[1];
|
||||
qnold[2] = qn[2];
|
||||
qnold[3] = qn[3];
|
||||
qnold[4] = qn[4];
|
||||
qnold[5] = qn[5];
|
||||
}
|
||||
|
||||
mat unit(1.0);
|
||||
|
||||
dest = (qn[0] * unit + qn[1] * alpha * arg + qn[2] * A2 + qn[3] * A3 + qn[4] * A4 + qn[5] * A5);
|
||||
|
||||
}
|
||||
|
||||
static void Exponentiate_Clover(CloverDiagonalField& Diagonal, CloverTriangleField& Triangle, RealD csw_t, RealD diag_mass) {
|
||||
|
||||
GridBase* grid = Diagonal.Grid();
|
||||
int NMAX = getNMAX(Diagonal, 3.*csw_t/diag_mass);
|
||||
|
||||
//
|
||||
// Implementation completely in Daniel's layout
|
||||
//
|
||||
|
||||
// Taylor expansion with Cayley-Hamilton recursion
|
||||
// underlying Horner scheme as above
|
||||
std::vector<RealD> cn(NMAX+1);
|
||||
cn[0] = 1.0;
|
||||
for (int i=1; i<=NMAX; i++){
|
||||
cn[i] = cn[i-1] / RealD(i);
|
||||
}
|
||||
|
||||
// Taken over from Daniel's implementation
|
||||
conformable(Diagonal, Triangle);
|
||||
|
||||
long lsites = grid->lSites();
|
||||
{
|
||||
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
|
||||
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
|
||||
typedef iMatrix<ComplexD,6> mat;
|
||||
|
||||
autoView(diagonal_v, Diagonal, CpuRead);
|
||||
autoView(triangle_v, Triangle, CpuRead);
|
||||
autoView(diagonalExp_v, Diagonal, CpuWrite);
|
||||
autoView(triangleExp_v, Triangle, CpuWrite);
|
||||
|
||||
thread_for(site, lsites, { // NOTE: Not on GPU because of (peek/poke)LocalSite
|
||||
|
||||
mat srcCloverOpUL(0.0); // upper left block
|
||||
mat srcCloverOpLR(0.0); // lower right block
|
||||
mat ExpCloverOp;
|
||||
|
||||
scalar_object_diagonal diagonal_tmp = Zero();
|
||||
scalar_object_diagonal diagonal_exp_tmp = Zero();
|
||||
scalar_object_triangle triangle_tmp = Zero();
|
||||
scalar_object_triangle triangle_exp_tmp = Zero();
|
||||
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
|
||||
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
|
||||
peekLocalSite(triangle_tmp, triangle_v, lcoor);
|
||||
|
||||
int block;
|
||||
block = 0;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
|
||||
}
|
||||
else{
|
||||
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
|
||||
}
|
||||
}
|
||||
}
|
||||
block = 1;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
|
||||
}
|
||||
else{
|
||||
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// exp(Clover)
|
||||
|
||||
ExponentiateHermitean6by6(srcCloverOpUL,1.0/diag_mass,cn,NMAX,ExpCloverOp);
|
||||
|
||||
block = 0;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
|
||||
}
|
||||
else if(i < j){
|
||||
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ExponentiateHermitean6by6(srcCloverOpLR,1.0/diag_mass,cn,NMAX,ExpCloverOp);
|
||||
|
||||
block = 1;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
|
||||
}
|
||||
else if(i < j){
|
||||
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pokeLocalSite(diagonal_exp_tmp, diagonalExp_v, lcoor);
|
||||
pokeLocalSite(triangle_exp_tmp, triangleExp_v, lcoor);
|
||||
});
|
||||
}
|
||||
|
||||
Diagonal *= diag_mass;
|
||||
Triangle *= diag_mass;
|
||||
}
|
||||
|
||||
|
||||
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
|
||||
assert(0);
|
||||
return lambda;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -31,6 +31,7 @@
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
|
||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -85,7 +86,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
|
||||
// = 84 complex words per site
|
||||
|
||||
template<class Impl>
|
||||
template<class Impl, class CloverHelpers>
|
||||
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
|
||||
public WilsonCloverHelpers<Impl>,
|
||||
public CompactWilsonCloverHelpers<Impl> {
|
||||
|
@ -138,38 +138,52 @@ typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
|
||||
|
||||
// Clover fermions
|
||||
typedef WilsonCloverFermion<WilsonImplR> WilsonCloverFermionR;
|
||||
typedef WilsonCloverFermion<WilsonImplF> WilsonCloverFermionF;
|
||||
typedef WilsonCloverFermion<WilsonImplD> WilsonCloverFermionD;
|
||||
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
|
||||
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
|
||||
|
||||
typedef WilsonCloverFermion<WilsonAdjImplR> WilsonCloverAdjFermionR;
|
||||
typedef WilsonCloverFermion<WilsonAdjImplF> WilsonCloverAdjFermionF;
|
||||
typedef WilsonCloverFermion<WilsonAdjImplD> WilsonCloverAdjFermionD;
|
||||
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR;
|
||||
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
|
||||
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
|
||||
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
|
||||
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR;
|
||||
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
|
||||
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
|
||||
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR;
|
||||
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
|
||||
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
|
||||
|
||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
|
||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
|
||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
|
||||
|
||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
|
||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Compact Clover fermions
|
||||
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
|
||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
|
||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
|
||||
|
||||
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
|
||||
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR;
|
||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
|
||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
|
||||
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
|
||||
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR;
|
||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
|
||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
|
||||
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
|
||||
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
|
||||
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
|
||||
|
||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
|
||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
|
||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
|
||||
|
||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
|
||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Domain Wall fermions
|
||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
|
||||
|
@ -49,7 +49,7 @@ public:
|
||||
|
||||
virtual FermionField &tmp(void) = 0;
|
||||
|
||||
virtual void DirichletBlock(Coordinate & _Block) { assert(0); };
|
||||
virtual void DirichletBlock(const Coordinate & _Block) { assert(0); };
|
||||
|
||||
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
|
||||
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
|
||||
|
@ -30,6 +30,18 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
Policy implementation for G-parity boundary conditions
|
||||
|
||||
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
|
||||
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
|
||||
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
|
||||
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
|
||||
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
|
||||
|
||||
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
*/
|
||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||
public:
|
||||
@ -113,7 +125,7 @@ public:
|
||||
|| ((distance== 1)&&(icoor[direction]==1))
|
||||
|| ((distance==-1)&&(icoor[direction]==0));
|
||||
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
|
||||
|
||||
//Apply the links
|
||||
int f_upper = permute_lane ? 1 : 0;
|
||||
@ -139,10 +151,10 @@ public:
|
||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||
assert((sl == 1) || (sl == 2));
|
||||
|
||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
|
||||
//If this site is an global boundary site, perform the G-parity flavor twist
|
||||
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
if ( sl == 2 ) {
|
||||
|
||||
//Only do the twist for lanes on the edge of the physical node
|
||||
ExtractBuffer<sobj> vals(Nsimd);
|
||||
|
||||
extract(chi,vals);
|
||||
@ -197,6 +209,19 @@ public:
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
|
||||
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
|
||||
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
|
||||
autoView(poke_f0_v, poke_f0, CpuRead);
|
||||
autoView(poke_f1_v, poke_f1, CpuRead);
|
||||
autoView(Uds_v, Uds, CpuWrite);
|
||||
thread_foreach(ss,poke_f0_v,{
|
||||
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
|
||||
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds.Grid(),GaugeGrid);
|
||||
@ -207,14 +232,19 @@ public:
|
||||
GaugeLinkField Uconj(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Uconj = conjugate(U);
|
||||
|
||||
// Implement the isospin rotation sign on the boundary between f=1 and f=0
|
||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||
if ( Params.twists[mu] ) {
|
||||
@ -229,7 +259,7 @@ public:
|
||||
thread_foreach(ss,U_v,{
|
||||
Uds_v[ss](0)(mu) = U_v[ss]();
|
||||
Uds_v[ss](1)(mu) = Uconj_v[ss]();
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
||||
@ -260,6 +290,38 @@ public:
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
{ //periodic / antiperiodic temporal BCs
|
||||
int mu = Nd-1;
|
||||
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||
int Lmu = L - 1;
|
||||
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
|
||||
|
||||
GaugeLinkField *Upoke = &U;
|
||||
|
||||
if(Params.twists[mu]){ //antiperiodic
|
||||
Utmp = where(coor == Lmu, -U, U);
|
||||
Upoke = &Utmp;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
|
||||
|
||||
//Get the barrel-shifted field
|
||||
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
|
||||
Upoke = &Utmp;
|
||||
|
||||
if(Params.twists[mu]){
|
||||
U = where(coor == 0, -Utmp, Utmp); //boundary phase
|
||||
Upoke = &U;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke);
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||
@ -298,28 +360,48 @@ public:
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
int Ls = Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
GaugeLinkField tmp(mat.Grid());
|
||||
tmp = Zero();
|
||||
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
{
|
||||
autoView( tmp_v , tmp, CpuWrite);
|
||||
autoView( Atilde_v , Atilde, CpuRead);
|
||||
autoView( Btilde_v , Btilde, CpuRead);
|
||||
thread_for(ss,tmp.Grid()->oSites(),{
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
int sF = s + Ls * ss;
|
||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
||||
}
|
||||
});
|
||||
GridBase *GaugeGrid = mat.Grid();
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
autoView( mat_v , mat, AcceleratorWrite);
|
||||
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
|
||||
int sU=sss;
|
||||
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||
ColorMatrixType sum;
|
||||
zeroit(sum);
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sF = s+Ls*sU;
|
||||
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||
//Flavor 0
|
||||
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
|
||||
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
|
||||
sum = sum + outerProduct(bb,aa);
|
||||
|
||||
//Flavor 1
|
||||
bb = coalescedRead(Btilde_v[sF](1)(spn) );
|
||||
aa = coalescedRead(Atilde_v[sF](1)(spn) );
|
||||
sum = sum + conjugate(outerProduct(bb,aa));
|
||||
}
|
||||
}
|
||||
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||
});
|
||||
}
|
||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
@ -32,6 +32,7 @@
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
|
||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -51,7 +52,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
// csw_r = csw_t to recover the isotropic version
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
template<class Impl, class CloverHelpers>
|
||||
class WilsonCloverFermion : public WilsonFermion<Impl>,
|
||||
public WilsonCloverHelpers<Impl>
|
||||
{
|
||||
|
@ -209,6 +209,8 @@ public:
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
|
||||
template<class Impl> class CompactWilsonCloverHelpers {
|
||||
public:
|
||||
|
||||
@ -726,8 +728,8 @@ public:
|
||||
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
|
||||
conformable(f, m);
|
||||
auto grid = f.Grid();
|
||||
const int Nsite = grid->oSites();
|
||||
const int Nsimd = grid->Nsimd();
|
||||
const uint32_t Nsite = grid->oSites();
|
||||
const uint32_t Nsimd = grid->Nsimd();
|
||||
autoView(f_v, f, AcceleratorWrite);
|
||||
autoView(m_v, m, AcceleratorRead);
|
||||
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
|
||||
|
@ -47,8 +47,6 @@ class CompactWilsonCloverTypes {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
|
||||
|
||||
static constexpr int Nred = Nc * Nhs; // 6
|
||||
static constexpr int Nblock = Nhs; // 2
|
||||
static constexpr int Ndiagonal = Nred; // 6
|
||||
|
@ -297,7 +297,7 @@ public:
|
||||
void ZeroCountersi(void) { }
|
||||
void Reporti(int calls) { }
|
||||
|
||||
std::vector<int> surface_list;
|
||||
// Vector<int> surface_list;
|
||||
|
||||
WilsonStencil(GridBase *grid,
|
||||
int npoints,
|
||||
@ -307,10 +307,11 @@ public:
|
||||
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p)
|
||||
{
|
||||
ZeroCountersi();
|
||||
surface_list.resize(0);
|
||||
// surface_list.resize(0);
|
||||
this->same_node.resize(npoints);
|
||||
};
|
||||
|
||||
/*
|
||||
void BuildSurfaceList(int Ls,int vol4){
|
||||
|
||||
// find same node for SHM
|
||||
@ -331,7 +332,8 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
template < class compressor>
|
||||
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
|
||||
{
|
||||
|
@ -178,16 +178,8 @@ public:
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
double _M5,const ImplParams &p= ImplParams());
|
||||
|
||||
virtual void DirichletBlock(Coordinate & block)
|
||||
virtual void DirichletBlock(const Coordinate & block)
|
||||
{
|
||||
assert(block.size()==Nd+1);
|
||||
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
|
||||
Dirichlet = 1;
|
||||
Block = block;
|
||||
Stencil.DirichletBlock(block);
|
||||
StencilEven.DirichletBlock(block);
|
||||
StencilOdd.DirichletBlock(block);
|
||||
}
|
||||
}
|
||||
// Constructors
|
||||
/*
|
||||
|
@ -47,7 +47,7 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_M5,p),
|
||||
mass(_mass)
|
||||
mass_plus(_mass), mass_minus(_mass)
|
||||
{
|
||||
}
|
||||
|
||||
@ -209,8 +209,8 @@ void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
int Ls=this->Ls;
|
||||
Vector<Coeff_t> diag (Ls,1.0);
|
||||
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass;
|
||||
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass;
|
||||
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus;
|
||||
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus;
|
||||
M5D(psi,chi,chi,lower,diag,upper);
|
||||
}
|
||||
template<class Impl>
|
||||
@ -220,8 +220,8 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
|
||||
Vector<Coeff_t> diag = bs;
|
||||
Vector<Coeff_t> upper= cs;
|
||||
Vector<Coeff_t> lower= cs;
|
||||
upper[Ls-1]=-mass*upper[Ls-1];
|
||||
lower[0] =-mass*lower[0];
|
||||
upper[Ls-1]=-mass_minus*upper[Ls-1];
|
||||
lower[0] =-mass_plus*lower[0];
|
||||
M5D(psi,psi,Din,lower,diag,upper);
|
||||
}
|
||||
// FIXME Redunant with the above routine; check this and eliminate
|
||||
@ -235,8 +235,8 @@ template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &
|
||||
upper[i]=-ceo[i];
|
||||
lower[i]=-ceo[i];
|
||||
}
|
||||
upper[Ls-1]=-mass*upper[Ls-1];
|
||||
lower[0] =-mass*lower[0];
|
||||
upper[Ls-1]=-mass_minus*upper[Ls-1];
|
||||
lower[0] =-mass_plus*lower[0];
|
||||
M5D(psi,psi,chi,lower,diag,upper);
|
||||
}
|
||||
template<class Impl>
|
||||
@ -250,8 +250,8 @@ void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &
|
||||
upper[i]=-cee[i];
|
||||
lower[i]=-cee[i];
|
||||
}
|
||||
upper[Ls-1]=-mass*upper[Ls-1];
|
||||
lower[0] =-mass*lower[0];
|
||||
upper[Ls-1]=-mass_minus*upper[Ls-1];
|
||||
lower[0] =-mass_plus*lower[0];
|
||||
M5D(psi,psi,chi,lower,diag,upper);
|
||||
}
|
||||
template<class Impl>
|
||||
@ -266,9 +266,9 @@ void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &
|
||||
// Assemble the 5d matrix
|
||||
if ( s==0 ) {
|
||||
upper[s] = -cee[s+1] ;
|
||||
lower[s] = mass*cee[Ls-1];
|
||||
lower[s] = mass_minus*cee[Ls-1];
|
||||
} else if ( s==(Ls-1)) {
|
||||
upper[s] = mass*cee[0];
|
||||
upper[s] = mass_plus*cee[0];
|
||||
lower[s] = -cee[s-1];
|
||||
} else {
|
||||
upper[s]=-cee[s+1];
|
||||
@ -291,8 +291,8 @@ void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
|
||||
Vector<Coeff_t> diag(Ls,1.0);
|
||||
Vector<Coeff_t> upper(Ls,-1.0);
|
||||
Vector<Coeff_t> lower(Ls,-1.0);
|
||||
upper[Ls-1]=-mass*upper[Ls-1];
|
||||
lower[0] =-mass*lower[0];
|
||||
upper[Ls-1]=-mass_plus*upper[Ls-1];
|
||||
lower[0] =-mass_minus*lower[0];
|
||||
M5Ddag(psi,chi,chi,lower,diag,upper);
|
||||
}
|
||||
|
||||
@ -307,9 +307,9 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
|
||||
for (int s=0;s<Ls;s++){
|
||||
if ( s== 0 ) {
|
||||
upper[s] = cs[s+1];
|
||||
lower[s] =-mass*cs[Ls-1];
|
||||
lower[s] =-mass_minus*cs[Ls-1];
|
||||
} else if ( s==(Ls-1) ) {
|
||||
upper[s] =-mass*cs[0];
|
||||
upper[s] =-mass_plus*cs[0];
|
||||
lower[s] = cs[s-1];
|
||||
} else {
|
||||
upper[s] = cs[s+1];
|
||||
@ -552,7 +552,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
|
||||
|
||||
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
|
||||
|
||||
leem[i]=mass*cee[Ls-1]/bee[0];
|
||||
leem[i]=mass_minus*cee[Ls-1]/bee[0];
|
||||
for(int j=0;j<i;j++) {
|
||||
assert(bee[j+1]!=Coeff_t(0.0));
|
||||
leem[i]*= aee[j]/bee[j+1];
|
||||
@ -560,7 +560,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
|
||||
|
||||
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
|
||||
|
||||
ueem[i]=mass;
|
||||
ueem[i]=mass_plus;
|
||||
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
|
||||
ueem[i]*= aee[0]/bee[0];
|
||||
|
||||
@ -573,7 +573,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
|
||||
}
|
||||
|
||||
{
|
||||
Coeff_t delta_d=mass*cee[Ls-1];
|
||||
Coeff_t delta_d=mass_minus*cee[Ls-1];
|
||||
for(int j=0;j<Ls-1;j++) {
|
||||
assert(bee[j] != Coeff_t(0.0));
|
||||
delta_d *= cee[j]/bee[j];
|
||||
@ -642,6 +642,10 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
|
||||
Current curr_type,
|
||||
unsigned int mu)
|
||||
{
|
||||
|
||||
assert(mass_plus == mass_minus);
|
||||
RealD mass = mass_plus;
|
||||
|
||||
#if (!defined(GRID_HIP))
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
@ -777,6 +781,8 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
assert(mu>=0);
|
||||
assert(mu<Nd);
|
||||
|
||||
assert(mass_plus == mass_minus);
|
||||
RealD mass = mass_plus;
|
||||
|
||||
#if 0
|
||||
int tshift = (mu == Nd-1) ? 1 : 0;
|
||||
|
@ -66,18 +66,17 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
|
||||
uint64_t nloop = grid->oSites()/Ls;
|
||||
uint64_t nloop = grid->oSites();
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss= sss*Ls;
|
||||
uint64_t s = sss%Ls;
|
||||
uint64_t ss= sss-s;
|
||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||
spinor tmp1, tmp2;
|
||||
for(int s=0;s<Ls;s++){
|
||||
uint64_t idx_u = ss+((s+1)%Ls);
|
||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||
spProj5m(tmp1,psi(idx_u));
|
||||
spProj5p(tmp2,psi(idx_l));
|
||||
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
||||
}
|
||||
uint64_t idx_u = ss+((s+1)%Ls);
|
||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||
spProj5m(tmp1,psi(idx_u));
|
||||
spProj5p(tmp2,psi(idx_l));
|
||||
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
||||
});
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
@ -108,18 +107,17 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
|
||||
uint64_t nloop = grid->oSites()/Ls;
|
||||
uint64_t nloop = grid->oSites();
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss=sss*Ls;
|
||||
uint64_t s = sss%Ls;
|
||||
uint64_t ss= sss-s;
|
||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||
spinor tmp1,tmp2;
|
||||
for(int s=0;s<Ls;s++){
|
||||
uint64_t idx_u = ss+((s+1)%Ls);
|
||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||
spProj5p(tmp1,psi(idx_u));
|
||||
spProj5m(tmp2,psi(idx_l));
|
||||
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
||||
}
|
||||
uint64_t idx_u = ss+((s+1)%Ls);
|
||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||
spProj5p(tmp1,psi(idx_u));
|
||||
spProj5m(tmp2,psi(idx_l));
|
||||
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
||||
});
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
@ -32,17 +32,18 @@
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
template<class Impl>
|
||||
CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
|
||||
GridCartesian& Fgrid,
|
||||
GridRedBlackCartesian& Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r,
|
||||
const RealD _csw_t,
|
||||
const RealD _cF,
|
||||
const WilsonAnisotropyCoefficients& clover_anisotropy,
|
||||
const ImplParams& impl_p)
|
||||
template<class Impl, class CloverHelpers>
|
||||
CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(GaugeField& _Umu,
|
||||
GridCartesian& Fgrid,
|
||||
GridRedBlackCartesian& Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r,
|
||||
const RealD _csw_t,
|
||||
const RealD _cF,
|
||||
const WilsonAnisotropyCoefficients& clover_anisotropy,
|
||||
const ImplParams& impl_p)
|
||||
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
|
||||
, csw_r(_csw_r)
|
||||
, csw_t(_csw_t)
|
||||
@ -58,50 +59,55 @@ CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
|
||||
, BoundaryMask(&Fgrid)
|
||||
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
|
||||
{
|
||||
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
|
||||
|
||||
csw_r *= 0.5;
|
||||
csw_t *= 0.5;
|
||||
if (clover_anisotropy.isAnisotropic)
|
||||
csw_r /= clover_anisotropy.xi_0;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
if (open_boundaries)
|
||||
if (open_boundaries) {
|
||||
this->BoundaryMaskEven.Checkerboard() = Even;
|
||||
this->BoundaryMaskOdd.Checkerboard() = Odd;
|
||||
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::Dhop(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopOE(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopEO(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
WilsonBase::DhopDir(in, out, dir, disp);
|
||||
if(this->open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
WilsonBase::DhopDirAll(in, out);
|
||||
if(this->open_boundaries) {
|
||||
for(auto& o : out) ApplyBoundaryMask(o);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
|
||||
Mooee(in, Tmp);
|
||||
@ -109,8 +115,8 @@ void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& o
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
|
||||
MooeeDag(in, Tmp);
|
||||
@ -118,20 +124,20 @@ void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::Meooe(in, out);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::MeooeDag(in, out);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
|
||||
@ -144,13 +150,13 @@ void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionFiel
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
|
||||
Mooee(in, out); // blocks are hermitian
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
|
||||
@ -163,23 +169,23 @@ void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionF
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
|
||||
MooeeInv(in, out); // blocks are hermitian
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
DhopDir(in, out, dir, disp);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
DhopDirAll(in, out);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
|
||||
assert(!open_boundaries); // TODO check for changes required for open bc
|
||||
|
||||
// NOTE: code copied from original clover term
|
||||
@ -251,7 +257,7 @@ void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionFi
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
@ -261,18 +267,18 @@ void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionFi
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
|
||||
FermionField& out,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle) {
|
||||
@ -285,8 +291,8 @@ void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField&
|
||||
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
|
||||
// NOTE: parts copied from original implementation
|
||||
|
||||
// Import gauge into base class
|
||||
@ -318,22 +324,27 @@ void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
|
||||
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
|
||||
TmpOriginal += this->diag_mass;
|
||||
|
||||
// Handle mass term based on clover policy
|
||||
CloverHelpers::MassTerm(TmpOriginal, this->diag_mass);
|
||||
|
||||
// Convert the data layout of the clover term
|
||||
double t4 = usecond();
|
||||
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
|
||||
|
||||
// Possible modify the boundary values
|
||||
// Exponentiate the clover (nothing happens in case of the standard clover)
|
||||
double t5 = usecond();
|
||||
CloverHelpers::Exponentiate_Clover(Diagonal, Triangle, csw_t, this->diag_mass);
|
||||
|
||||
// Possible modify the boundary values
|
||||
double t6 = usecond();
|
||||
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
|
||||
|
||||
// Invert the clover term in the improved layout
|
||||
double t6 = usecond();
|
||||
// Invert the Clover term (explicit inversion needed for the improvement in case of open boundary conditions)
|
||||
double t7 = usecond();
|
||||
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
|
||||
|
||||
// Fill the remaining clover fields
|
||||
double t7 = usecond();
|
||||
double t8 = usecond();
|
||||
pickCheckerboard(Even, DiagonalEven, Diagonal);
|
||||
pickCheckerboard(Even, TriangleEven, Triangle);
|
||||
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
|
||||
@ -344,20 +355,19 @@ void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
|
||||
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
|
||||
|
||||
// Report timings
|
||||
double t8 = usecond();
|
||||
#if 0
|
||||
std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
|
||||
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
|
||||
<< ", allocations = " << (t2 - t1) / 1e6
|
||||
<< ", field strength = " << (t3 - t2) / 1e6
|
||||
<< ", fill clover = " << (t4 - t3) / 1e6
|
||||
<< ", convert = " << (t5 - t4) / 1e6
|
||||
<< ", boundaries = " << (t6 - t5) / 1e6
|
||||
<< ", inversions = " << (t7 - t6) / 1e6
|
||||
<< ", pick cbs = " << (t8 - t7) / 1e6
|
||||
<< ", total = " << (t8 - t0) / 1e6
|
||||
<< std::endl;
|
||||
#endif
|
||||
double t9 = usecond();
|
||||
|
||||
std::cout << GridLogDebug << "CompactWilsonCloverFermion::ImportGauge timings:" << std::endl;
|
||||
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "convert = " << (t5 - t4) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "exponentiation = " << (t6 - t5) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "boundaries = " << (t7 - t6) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "inversions = " << (t8 - t7) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -34,8 +34,8 @@
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
|
||||
template<class Impl, class CloverHelpers>
|
||||
WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField& _Umu,
|
||||
GridCartesian& Fgrid,
|
||||
GridRedBlackCartesian& Hgrid,
|
||||
const RealD _mass,
|
||||
@ -74,8 +74,8 @@ WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField&
|
||||
}
|
||||
|
||||
// *NOT* EO
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, FermionField &out)
|
||||
{
|
||||
FermionField temp(out.Grid());
|
||||
|
||||
@ -89,8 +89,8 @@ void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
|
||||
out += temp;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
FermionField temp(out.Grid());
|
||||
|
||||
@ -104,8 +104,8 @@ void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
|
||||
out += temp;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Umu)
|
||||
{
|
||||
double t0 = usecond();
|
||||
WilsonFermion<Impl>::ImportGauge(_Umu);
|
||||
@ -131,47 +131,11 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
|
||||
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
|
||||
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
|
||||
CloverTerm += diag_mass;
|
||||
|
||||
|
||||
double t4 = usecond();
|
||||
int lvol = _Umu.Grid()->lSites();
|
||||
int DimRep = Impl::Dimension;
|
||||
CloverHelpers::Instantiate(CloverTerm, CloverTermInv, csw_t, this->diag_mass);
|
||||
|
||||
double t5 = usecond();
|
||||
{
|
||||
autoView(CTv,CloverTerm,CpuRead);
|
||||
autoView(CTIv,CloverTermInv,CpuWrite);
|
||||
thread_for(site, lvol, {
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
|
||||
peekLocalSite(Qx, CTv, lcoor);
|
||||
//if (csw!=0){
|
||||
for (int j = 0; j < Ns; j++)
|
||||
for (int k = 0; k < Ns; k++)
|
||||
for (int a = 0; a < DimRep; a++)
|
||||
for (int b = 0; b < DimRep; b++){
|
||||
auto zz = Qx()(j, k)(a, b);
|
||||
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
|
||||
}
|
||||
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
|
||||
|
||||
EigenInvCloverOp = EigenCloverOp.inverse();
|
||||
//std::cout << EigenInvCloverOp << std::endl;
|
||||
for (int j = 0; j < Ns; j++)
|
||||
for (int k = 0; k < Ns; k++)
|
||||
for (int a = 0; a < DimRep; a++)
|
||||
for (int b = 0; b < DimRep; b++)
|
||||
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
|
||||
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
|
||||
// }
|
||||
pokeLocalSite(Qxinv, CTIv, lcoor);
|
||||
});
|
||||
}
|
||||
|
||||
double t6 = usecond();
|
||||
// Separate the even and odd parts
|
||||
pickCheckerboard(Even, CloverTermEven, CloverTerm);
|
||||
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
|
||||
@ -184,48 +148,44 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
|
||||
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
|
||||
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
|
||||
double t7 = usecond();
|
||||
double t6 = usecond();
|
||||
|
||||
#if 0
|
||||
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
|
||||
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
|
||||
<< ", allocations = " << (t2 - t1) / 1e6
|
||||
<< ", field strength = " << (t3 - t2) / 1e6
|
||||
<< ", fill clover = " << (t4 - t3) / 1e6
|
||||
<< ", misc = " << (t5 - t4) / 1e6
|
||||
<< ", inversions = " << (t6 - t5) / 1e6
|
||||
<< ", pick cbs = " << (t7 - t6) / 1e6
|
||||
<< ", total = " << (t7 - t0) / 1e6
|
||||
<< std::endl;
|
||||
#endif
|
||||
std::cout << GridLogDebug << "WilsonCloverFermion::ImportGauge timings:" << std::endl;
|
||||
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "instantiation = " << (t5 - t4) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "pick cbs = " << (t6 - t5) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "total = " << (t6 - t0) / 1e6 << std::endl;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerNo, InverseNo);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerYes, InverseNo);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
|
||||
{
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
CloverField *Clover;
|
||||
@ -278,8 +238,8 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
|
||||
} // MooeeInternal
|
||||
|
||||
// Derivative parts unpreconditioned pseudofermions
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
conformable(X.Grid(), force.Grid());
|
||||
@ -349,7 +309,7 @@ void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X,
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
@ -360,15 +320,15 @@ void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X,
|
||||
}
|
||||
|
||||
// Derivative parts
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Derivative parts
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
|
||||
template<class Impl, class CloverHelpers>
|
||||
void WilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
|
||||
{
|
||||
assert(0); // not implemented yet
|
||||
}
|
||||
|
@ -92,6 +92,19 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
||||
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
|
||||
}
|
||||
|
||||
if ( p.dirichlet.size() == Nd+1) {
|
||||
Coordinate block = p.dirichlet;
|
||||
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
|
||||
Dirichlet = 1;
|
||||
Block = block;
|
||||
}
|
||||
} else {
|
||||
Coordinate block(Nd+1,0);
|
||||
Block = block;
|
||||
}
|
||||
|
||||
ZeroCounters();
|
||||
|
||||
if (Impl::LsVectorised) {
|
||||
|
||||
int nsimd = Simd::Nsimd();
|
||||
|
@ -4,12 +4,13 @@ Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonFermion.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2022
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Fabian Joswig <fabian.joswig@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -599,11 +600,47 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
Current curr_type,
|
||||
unsigned int mu)
|
||||
{
|
||||
if(curr_type != Current::Vector)
|
||||
{
|
||||
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
Gamma g5(Gamma::Algebra::Gamma5);
|
||||
conformable(_grid, q_in_1.Grid());
|
||||
conformable(_grid, q_in_2.Grid());
|
||||
conformable(_grid, q_out.Grid());
|
||||
assert(0);
|
||||
auto UGrid= this->GaugeGrid();
|
||||
|
||||
PropagatorField tmp_shifted(UGrid);
|
||||
PropagatorField g5Lg5(UGrid);
|
||||
PropagatorField R(UGrid);
|
||||
PropagatorField gmuR(UGrid);
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT,
|
||||
};
|
||||
Gamma gmu=Gamma(Gmu[mu]);
|
||||
|
||||
g5Lg5=g5*q_in_1*g5;
|
||||
tmp_shifted=Cshift(q_in_2,mu,1);
|
||||
Impl::multLinkField(R,this->Umu,tmp_shifted,mu);
|
||||
gmuR=gmu*R;
|
||||
|
||||
q_out=adj(g5Lg5)*R;
|
||||
q_out-=adj(g5Lg5)*gmuR;
|
||||
|
||||
tmp_shifted=Cshift(q_in_1,mu,1);
|
||||
Impl::multLinkField(g5Lg5,this->Umu,tmp_shifted,mu);
|
||||
g5Lg5=g5*g5Lg5*g5;
|
||||
R=q_in_2;
|
||||
gmuR=gmu*R;
|
||||
|
||||
q_out-=adj(g5Lg5)*R;
|
||||
q_out-=adj(g5Lg5)*gmuR;
|
||||
}
|
||||
|
||||
|
||||
@ -617,9 +654,51 @@ void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx)
|
||||
{
|
||||
if(curr_type != Current::Vector)
|
||||
{
|
||||
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
int tshift = (mu == Nd-1) ? 1 : 0;
|
||||
unsigned int LLt = GridDefaultLatt()[Tp];
|
||||
conformable(_grid, q_in.Grid());
|
||||
conformable(_grid, q_out.Grid());
|
||||
assert(0);
|
||||
auto UGrid= this->GaugeGrid();
|
||||
|
||||
PropagatorField tmp(UGrid);
|
||||
PropagatorField Utmp(UGrid);
|
||||
PropagatorField L(UGrid);
|
||||
PropagatorField zz (UGrid);
|
||||
zz=Zero();
|
||||
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT,
|
||||
};
|
||||
Gamma gmu=Gamma(Gmu[mu]);
|
||||
|
||||
tmp = Cshift(q_in,mu,1);
|
||||
Impl::multLinkField(Utmp,this->Umu,tmp,mu);
|
||||
tmp = ( Utmp*lattice_cmplx - gmu*Utmp*lattice_cmplx ); // Forward hop
|
||||
tmp = where((lcoor>=tmin),tmp,zz); // Mask the time
|
||||
q_out = where((lcoor<=tmax),tmp,zz); // Position of current complicated
|
||||
|
||||
tmp = q_in *lattice_cmplx;
|
||||
tmp = Cshift(tmp,mu,-1);
|
||||
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
|
||||
tmp = -( Utmp + gmu*Utmp );
|
||||
// Mask the time
|
||||
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
|
||||
unsigned int t0 = 0;
|
||||
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
|
||||
} else {
|
||||
tmp = where((lcoor>=tmin+tshift),tmp,zz);
|
||||
}
|
||||
q_out+= where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -440,6 +440,17 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
|
||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
||||
|
||||
#define KERNEL_CALL_EXT(A) \
|
||||
const uint64_t NN = Nsite*Ls; \
|
||||
const uint64_t sz = st.surface_list.size(); \
|
||||
auto ptr = &st.surface_list[0]; \
|
||||
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
|
||||
int sF = ptr[ss]; \
|
||||
int sU = ss/Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
}); \
|
||||
accelerator_barrier();
|
||||
|
||||
#define ASM_CALL(A) \
|
||||
thread_for( ss, Nsite, { \
|
||||
int sU = ss; \
|
||||
|
@ -9,6 +9,7 @@
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
||||
Author: Mattia Bruno <mattia.bruno@cern.ch>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -32,10 +33,12 @@
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class CompactWilsonCloverFermion<IMPLEMENTATION>;
|
||||
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
|
||||
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -8,7 +8,8 @@
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
Author: Mattia Bruno <mattia.bruno@cern.ch>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
@ -31,10 +32,12 @@
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonCloverFermion<IMPLEMENTATION>;
|
||||
template class WilsonCloverFermion<IMPLEMENTATION, CloverHelpers<IMPLEMENTATION>>;
|
||||
template class WilsonCloverFermion<IMPLEMENTATION, ExpCloverHelpers<IMPLEMENTATION>>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -1,51 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
|
||||
|
||||
Copyright (C) 2015, 2020
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
|
||||
|
||||
#ifndef AVX512
|
||||
#ifndef QPX
|
||||
#ifndef A64FX
|
||||
#ifndef A64FXFIXEDSIZE
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonKernels<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -18,6 +18,10 @@ WILSON_IMPL_LIST=" \
|
||||
GparityWilsonImplF \
|
||||
GparityWilsonImplD "
|
||||
|
||||
COMPACT_WILSON_IMPL_LIST=" \
|
||||
WilsonImplF \
|
||||
WilsonImplD "
|
||||
|
||||
DWF_IMPL_LIST=" \
|
||||
WilsonImplF \
|
||||
WilsonImplD \
|
||||
@ -40,13 +44,23 @@ EOF
|
||||
|
||||
done
|
||||
|
||||
CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
|
||||
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
|
||||
|
||||
for impl in $WILSON_IMPL_LIST
|
||||
do
|
||||
for f in $CC_LIST
|
||||
do
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
done
|
||||
done
|
||||
|
||||
CC_LIST="CompactWilsonCloverFermionInstantiation"
|
||||
|
||||
for impl in $COMPACT_WILSON_IMPL_LIST
|
||||
do
|
||||
for f in $CC_LIST
|
||||
do
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
done
|
||||
done
|
||||
|
||||
@ -63,14 +77,14 @@ for impl in $DWF_IMPL_LIST $GDWF_IMPL_LIST
|
||||
do
|
||||
for f in $CC_LIST
|
||||
do
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
done
|
||||
done
|
||||
|
||||
# overwrite the .cc file in Gparity directories
|
||||
for impl in $GDWF_IMPL_LIST
|
||||
do
|
||||
ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc
|
||||
ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc
|
||||
done
|
||||
|
||||
|
||||
@ -84,7 +98,7 @@ for impl in $STAG_IMPL_LIST
|
||||
do
|
||||
for f in $CC_LIST
|
||||
do
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
ln -f -s ../$f.cc.master $impl/$f$impl.cc
|
||||
done
|
||||
done
|
||||
|
||||
|
102
Grid/qcd/action/filters/DDHMCFilter.h
Normal file
102
Grid/qcd/action/filters/DDHMCFilter.h
Normal file
@ -0,0 +1,102 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//--------------------------------------------------------------------
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
////////////////////////////////////////////////////
|
||||
// DDHMC filter with sub-block size B[mu]
|
||||
////////////////////////////////////////////////////
|
||||
|
||||
template<typename GaugeField>
|
||||
struct DDHMCFilter: public MomentumFilterBase<GaugeField>
|
||||
{
|
||||
Coordinate Block;
|
||||
int Width;
|
||||
|
||||
DDHMCFilter(const Coordinate &_Block,int _Width=2): Block(_Block) { Width=_Width; }
|
||||
|
||||
void applyFilter(GaugeField &U) const override
|
||||
{
|
||||
GridBase *grid = U.Grid();
|
||||
Coordinate Global=grid->GlobalDimensions();
|
||||
GaugeField zzz(grid); zzz = Zero();
|
||||
LatticeInteger coor(grid);
|
||||
|
||||
auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
|
||||
////////////////////////////////////////////////////
|
||||
// Zero BDY layers
|
||||
////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage<<" DDHMC Force Filter Block "<<Block<<" width " <<Width<<std::endl;
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
Integer B1 = Block[mu];
|
||||
if ( B1 && (B1 <= Global[mu]) ) {
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
////////////////////////////////
|
||||
// OmegaBar - zero all links contained in slice B-1,0 and
|
||||
// mu links connecting to Omega
|
||||
////////////////////////////////
|
||||
if ( Width==1) {
|
||||
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||
U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu);
|
||||
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||
}
|
||||
if ( Width==2) {
|
||||
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
|
||||
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||
U_mu = where(mod(coor,B1)==Integer(B1-3),zzz_mu,U_mu);
|
||||
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||
}
|
||||
if ( Width==3) {
|
||||
U = where(mod(coor,B1)==Integer(B1-3),zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
|
||||
U = where(mod(coor,B1)==Integer(2) ,zzz,U);
|
||||
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||
U_mu = where(mod(coor,B1)==Integer(B1-4),zzz_mu,U_mu);
|
||||
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -53,9 +53,9 @@ struct DirichletFilter: public MomentumFilterBase<MomentaField>
|
||||
LatticeInteger coor(grid);
|
||||
LatCM zz(grid); zz = Zero();
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
if ( (Block[mu]) && (Block[mu] < grid->GlobalDimensions()[mu] ) ) {
|
||||
if ( (Block[mu]) && (Block[mu] <= grid->GlobalDimensions()[mu] ) ) {
|
||||
// If costly could provide Grid earlier and precompute masks
|
||||
std::cout << " Dirichlet in mu="<<mu<<std::endl;
|
||||
std::cout << GridLogMessage << " Dirichlet in mu="<<mu<<std::endl;
|
||||
LatticeCoordinate(coor,mu);
|
||||
auto P_mu = PeekIndex<LorentzIndex>(P, mu);
|
||||
P_mu = where(mod(coor,Block[mu])==Integer(Block[mu]-1),zz,P_mu);
|
||||
|
@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<typename MomentaField>
|
||||
struct MomentumFilterBase{
|
||||
virtual void applyFilter(MomentaField &P) const;
|
||||
virtual void applyFilter(MomentaField &P) const = 0;
|
||||
};
|
||||
|
||||
//Do nothing
|
||||
|
@ -69,6 +69,11 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Same as Cshift for periodic BCs
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||
};
|
||||
|
||||
@ -110,6 +115,11 @@ public:
|
||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||
}
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//Out(x) = U^dag_\mu(x-mu mod L)
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
@ -129,6 +139,13 @@ public:
|
||||
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
||||
}
|
||||
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
|
||||
// = S*_\mu(x+mu) | x_\mu == L-1
|
||||
//else
|
||||
//Out(x) = S_\mu(x+mu mod L)
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
assert(_conjDirs.size() == Nd);
|
||||
@ -138,6 +155,27 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//For conjugate BC direction
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu mod L)
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-\hat\mu mod L)
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
assert(_conjDirs.size() == Nd);
|
||||
if(_conjDirs[mu])
|
||||
return ConjugateBC::CshiftLink(Link,mu,shift);
|
||||
else
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||
|
@ -13,6 +13,31 @@ NAMESPACE_BEGIN(Grid);
|
||||
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
|
||||
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
|
||||
}
|
||||
|
||||
template<class Field> void ChebyBoundsCheck(LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
RealD lo,RealD hi)
|
||||
{
|
||||
int orderfilter = 1000;
|
||||
Chebyshev<Field> Cheb(lo,hi,orderfilter);
|
||||
|
||||
GridBase *FermionGrid = GaussNoise.Grid();
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
Cheb(HermOp,X,Z);
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " Cheb x noise = "<<Nz<<std::endl;
|
||||
std::cout << " Ratio = "<<Nz/Nx<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( ((Nz/Nx)<1.0) && " ChebyBoundsCheck ");
|
||||
}
|
||||
|
||||
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
@ -40,13 +65,65 @@ NAMESPACE_BEGIN(Grid);
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
|
||||
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
|
||||
for noise X (aka GaussNoise).
|
||||
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
|
||||
*/
|
||||
template<class Field> void InversePowerBoundsCheck(int inv_pow,
|
||||
int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &ApproxNegPow)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise.Grid();
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
Field tmp1(FermionGrid), tmp2(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
|
||||
|
||||
tmp1 = X;
|
||||
|
||||
Field* in = &tmp1;
|
||||
Field* out = &tmp2;
|
||||
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
|
||||
msCG(HermOp, *in, *out); //backwards conventions!
|
||||
if(i!=inv_pow-1) std::swap(in, out);
|
||||
}
|
||||
Z = *out;
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -0,0 +1,163 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundaryBoson.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class ImplD,class ImplF>
|
||||
class DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion : public Action<typename ImplD::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
|
||||
private:
|
||||
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
|
||||
RealD InnerStoppingCondition;
|
||||
RealD ActionStoppingCondition;
|
||||
RealD DerivativeStoppingCondition;
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
public:
|
||||
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
|
||||
: NumOp(_NumOp),
|
||||
DerivativeStoppingCondition(_DerivativeTol),
|
||||
ActionStoppingCondition(_ActionTol),
|
||||
InnerStoppingCondition(_InnerTol),
|
||||
Phi(_NumOp.FermionGrid()) {};
|
||||
|
||||
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
// P(phi) = e^{- phi^dag P^dag P phi}
|
||||
//
|
||||
// NumOp == P
|
||||
//
|
||||
// Take phi = P^{-1} eta ; eta = P Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
NumOp.tolinner=InnerStoppingCondition;
|
||||
NumOp.tol=ActionStoppingCondition;
|
||||
NumOp.ImportGauge(U);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
NumOp.ProjectBoundaryBar(eta);
|
||||
//DumpSliceNorm("eta",eta);
|
||||
NumOp.RInv(eta,Phi);
|
||||
|
||||
//DumpSliceNorm("Phi",Phi);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag Pdag P phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.tolinner=InnerStoppingCondition;
|
||||
NumOp.tol=ActionStoppingCondition;
|
||||
NumOp.ImportGauge(U);
|
||||
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
NumOp.R(Phi,Y);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
|
||||
{
|
||||
NumOp.tolinner=InnerStoppingCondition;
|
||||
NumOp.tol=DerivativeStoppingCondition;
|
||||
NumOp.ImportGauge(U);
|
||||
|
||||
GridBase *fgrid = NumOp.FermionGrid();
|
||||
GridBase *ugrid = NumOp.GaugeGrid();
|
||||
|
||||
FermionField X(fgrid);
|
||||
FermionField Y(fgrid);
|
||||
FermionField tmp(fgrid);
|
||||
|
||||
GaugeField force(ugrid);
|
||||
|
||||
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
|
||||
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
|
||||
FermionField DoidP_Phi(fgrid); // Vector E in my notes
|
||||
FermionField DobidDddDoidP_Phi(fgrid); // Vector F in my notes
|
||||
|
||||
FermionField P_Phi(fgrid);
|
||||
|
||||
// P term
|
||||
NumOp.dBoundaryBar(Phi,tmp);
|
||||
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
|
||||
NumOp.dBoundary(DobiDdbPhi,tmp);
|
||||
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
|
||||
P_Phi = Phi - DoiDdDobiDdbPhi;
|
||||
NumOp.ProjectBoundaryBar(P_Phi);
|
||||
|
||||
// P^dag P term
|
||||
NumOp.dOmegaDagInv(P_Phi,DoidP_Phi); // Vector E
|
||||
NumOp.dBoundaryDag(DoidP_Phi,tmp);
|
||||
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidP_Phi); // Vector F
|
||||
NumOp.dBoundaryBarDag(DobidDddDoidP_Phi,tmp);
|
||||
|
||||
X = DobiDdbPhi;
|
||||
Y = DobidDddDoidP_Phi;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||
|
||||
X = DoiDdDobiDdbPhi;
|
||||
Y = DoidP_Phi;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -0,0 +1,158 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class ImplD,class ImplF>
|
||||
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
|
||||
private:
|
||||
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
|
||||
RealD ActionStoppingCondition;
|
||||
RealD DerivativeStoppingCondition;
|
||||
RealD InnerStoppingCondition;
|
||||
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
RealD refresh_action;
|
||||
public:
|
||||
DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
|
||||
: DenOp(_DenOp),
|
||||
DerivativeStoppingCondition(_DerivativeTol),
|
||||
ActionStoppingCondition(_ActionTol),
|
||||
InnerStoppingCondition(_InnerTol),
|
||||
Phi(_DenOp.FermionGrid()) {};
|
||||
|
||||
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
|
||||
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
// P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
|
||||
//
|
||||
// DenOp == R
|
||||
//
|
||||
// Take phi = R eta ; eta = R^-1 Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
DenOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tol =ActionStoppingCondition;
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField eta(DenOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
DenOp.ProjectBoundaryBar(eta);
|
||||
DenOp.R(eta,Phi);
|
||||
//DumpSliceNorm("Phi",Phi);
|
||||
refresh_action = norm2(eta);
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag Rdag^-1 R^-1 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
DenOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tol=ActionStoppingCondition;
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(DenOp.FermionGrid());
|
||||
|
||||
DenOp.RInv(Phi,X);
|
||||
|
||||
RealD action = norm2(X);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
|
||||
{
|
||||
DenOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tol=DerivativeStoppingCondition;
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
GridBase *fgrid = DenOp.FermionGrid();
|
||||
GridBase *ugrid = DenOp.GaugeGrid();
|
||||
|
||||
FermionField X(fgrid);
|
||||
FermionField Y(fgrid);
|
||||
FermionField tmp(fgrid);
|
||||
|
||||
GaugeField force(ugrid);
|
||||
|
||||
FermionField DiDdb_Phi(fgrid); // Vector C in my notes
|
||||
FermionField DidRinv_Phi(fgrid); // Vector D in my notes
|
||||
FermionField Rinv_Phi(fgrid);
|
||||
|
||||
// FermionField RinvDagRinv_Phi(fgrid);
|
||||
// FermionField DdbdDidRinv_Phi(fgrid);
|
||||
|
||||
// R^-1 term
|
||||
DenOp.dBoundaryBar(Phi,tmp);
|
||||
DenOp.Dinverse(tmp,DiDdb_Phi); // Vector C
|
||||
Rinv_Phi = Phi - DiDdb_Phi;
|
||||
DenOp.ProjectBoundaryBar(Rinv_Phi);
|
||||
|
||||
// R^-dagger R^-1 term
|
||||
DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
|
||||
/*
|
||||
DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
|
||||
RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
|
||||
DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
|
||||
*/
|
||||
X = DiDdb_Phi;
|
||||
Y = DidRinv_Phi;
|
||||
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
|
||||
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||
DumpSliceNorm("force",dSdU);
|
||||
dSdU *= -1.0;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -0,0 +1,237 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class ImplD,class ImplF>
|
||||
class DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion : public Action<typename ImplD::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
|
||||
private:
|
||||
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
|
||||
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
|
||||
|
||||
RealD InnerStoppingCondition;
|
||||
RealD ActionStoppingCondition;
|
||||
RealD DerivativeStoppingCondition;
|
||||
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,
|
||||
SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,
|
||||
RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
|
||||
: NumOp(_NumOp), DenOp(_DenOp),
|
||||
Phi(_NumOp.PeriodicFermOpD.FermionGrid()),
|
||||
InnerStoppingCondition(_InnerTol),
|
||||
DerivativeStoppingCondition(_DerivativeTol),
|
||||
ActionStoppingCondition(_ActionTol)
|
||||
{};
|
||||
|
||||
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField eta(NumOp.PeriodicFermOpD.FermionGrid());
|
||||
FermionField tmp(NumOp.PeriodicFermOpD.FermionGrid());
|
||||
|
||||
// P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
|
||||
//
|
||||
// NumOp == P
|
||||
// DenOp == R
|
||||
//
|
||||
// Take phi = P^{-1} R eta ; eta = R^-1 P Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
NumOp.ProjectBoundaryBar(eta);
|
||||
NumOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tol = ActionStoppingCondition;
|
||||
NumOp.tol = ActionStoppingCondition;
|
||||
DenOp.R(eta,tmp);
|
||||
NumOp.RInv(tmp,Phi);
|
||||
DumpSliceNorm("Phi",Phi);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag Pdag Rdag^-1 R^-1 P phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.PeriodicFermOpD.FermionGrid());
|
||||
FermionField Y(NumOp.PeriodicFermOpD.FermionGrid());
|
||||
|
||||
NumOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tol = ActionStoppingCondition;
|
||||
NumOp.tol = ActionStoppingCondition;
|
||||
NumOp.R(Phi,Y);
|
||||
DenOp.RInv(Y,X);
|
||||
|
||||
RealD action = norm2(X);
|
||||
// std::cout << " DD boundary action is " <<action<<std::endl;
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
|
||||
{
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
GridBase *fgrid = NumOp.PeriodicFermOpD.FermionGrid();
|
||||
GridBase *ugrid = NumOp.PeriodicFermOpD.GaugeGrid();
|
||||
|
||||
FermionField X(fgrid);
|
||||
FermionField Y(fgrid);
|
||||
FermionField tmp(fgrid);
|
||||
|
||||
GaugeField force(ugrid);
|
||||
|
||||
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
|
||||
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
|
||||
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
|
||||
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
|
||||
FermionField DdbdDidRinvP_Phi(fgrid);
|
||||
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
|
||||
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
|
||||
|
||||
FermionField P_Phi(fgrid);
|
||||
FermionField RinvP_Phi(fgrid);
|
||||
FermionField RinvDagRinvP_Phi(fgrid);
|
||||
FermionField PdagRinvDagRinvP_Phi(fgrid);
|
||||
|
||||
// RealD action = S(U);
|
||||
NumOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tolinner=InnerStoppingCondition;
|
||||
DenOp.tol = DerivativeStoppingCondition;
|
||||
NumOp.tol = DerivativeStoppingCondition;
|
||||
|
||||
// P term
|
||||
NumOp.dBoundaryBar(Phi,tmp);
|
||||
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
|
||||
NumOp.dBoundary(DobiDdbPhi,tmp);
|
||||
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
|
||||
P_Phi = Phi - DoiDdDobiDdbPhi;
|
||||
NumOp.ProjectBoundaryBar(P_Phi);
|
||||
|
||||
// R^-1 P term
|
||||
DenOp.dBoundaryBar(P_Phi,tmp);
|
||||
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
|
||||
RinvP_Phi = P_Phi - DiDdbP_Phi;
|
||||
DenOp.ProjectBoundaryBar(RinvP_Phi); // Correct to here
|
||||
|
||||
|
||||
// R^-dagger R^-1 P term
|
||||
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
|
||||
DenOp.dBoundaryBarDag(DidRinvP_Phi,DdbdDidRinvP_Phi);
|
||||
RinvDagRinvP_Phi = RinvP_Phi - DdbdDidRinvP_Phi;
|
||||
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
|
||||
|
||||
|
||||
// P^dag R^-dagger R^-1 P term
|
||||
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
|
||||
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
|
||||
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
|
||||
NumOp.dBoundaryBarDag(DobidDddDoidRinvDagRinvP_Phi,tmp);
|
||||
PdagRinvDagRinvP_Phi = RinvDagRinvP_Phi- tmp;
|
||||
NumOp.ProjectBoundaryBar(PdagRinvDagRinvP_Phi);
|
||||
|
||||
/*
|
||||
std::cout << "S eval "<< action << std::endl;
|
||||
std::cout << "S - IP1 "<< innerProduct(Phi,PdagRinvDagRinvP_Phi) << std::endl;
|
||||
std::cout << "S - IP2 "<< norm2(RinvP_Phi) << std::endl;
|
||||
|
||||
NumOp.R(Phi,tmp);
|
||||
tmp = tmp - P_Phi;
|
||||
std::cout << "diff1 "<<norm2(tmp) <<std::endl;
|
||||
|
||||
|
||||
DenOp.RInv(P_Phi,tmp);
|
||||
tmp = tmp - RinvP_Phi;
|
||||
std::cout << "diff2 "<<norm2(tmp) <<std::endl;
|
||||
|
||||
DenOp.RDagInv(RinvP_Phi,tmp);
|
||||
tmp = tmp - RinvDagRinvP_Phi;
|
||||
std::cout << "diff3 "<<norm2(tmp) <<std::endl;
|
||||
|
||||
DenOp.RDag(RinvDagRinvP_Phi,tmp);
|
||||
tmp = tmp - PdagRinvDagRinvP_Phi;
|
||||
std::cout << "diff4 "<<norm2(tmp) <<std::endl;
|
||||
*/
|
||||
|
||||
dSdU=Zero();
|
||||
|
||||
X = DobiDdbPhi;
|
||||
Y = DobidDddDoidRinvDagRinvP_Phi;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||
|
||||
X = DoiDdDobiDdbPhi;
|
||||
Y = DoidRinvDagRinvP_Phi;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||
|
||||
X = DiDdbP_Phi;
|
||||
Y = DidRinvP_Phi;
|
||||
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
//Note: using mixed prec CG for the heatbath solver in this action class will not work
|
||||
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
|
||||
// You will find that the heatbath solver simply won't converge.
|
||||
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
|
||||
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
|
||||
public:
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
}
|
||||
|
||||
|
||||
//Use the same solver for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& CG,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
//Use the same solver for L,R in the heatbath but different solvers elsewhere
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
|
||||
|
||||
//Use different solvers for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
use_heatbath_forecasting(use_fc),
|
||||
initial_action(false)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
const FermionField &getPhi() const{ return Phi; }
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
@ -160,15 +195,15 @@ NAMESPACE_BEGIN(Grid);
|
||||
tmp[1] = Zero();
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
heatbathRefreshShiftCoefficients(0, -gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
@ -187,15 +222,15 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero();
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
@ -205,49 +240,117 @@ NAMESPACE_BEGIN(Grid);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
|
||||
//Mark that the next call to S is the first after refresh
|
||||
initial_action = true;
|
||||
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
norm2_eta = EtaDagEta;
|
||||
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
FermionField spProj_in(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
out = in;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
spProj(in, spProj_in, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_in, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
|
||||
out = out - Lop.k * tmp[1];
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(in, spProj_in, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_in, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
|
||||
out = out + Rop.k * tmp[1];
|
||||
}
|
||||
|
||||
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
|
||||
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
|
||||
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
|
||||
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
// = 1 * \eta
|
||||
out = in;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
spProj(in, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
|
||||
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = Lop.k * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(in, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
|
||||
|
||||
CG_soln = Zero();
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = - Rop.k * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
@ -271,7 +374,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
@ -281,6 +384,26 @@ NAMESPACE_BEGIN(Grid);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
if(initial_action){
|
||||
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
|
||||
RealD diff = action - norm2_eta;
|
||||
|
||||
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
|
||||
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
|
||||
|
||||
//If approximate solution
|
||||
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
|
||||
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
|
||||
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
|
||||
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
|
||||
|
||||
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
|
||||
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
|
||||
|
||||
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
|
||||
initial_action = false;
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
@ -329,6 +452,40 @@ NAMESPACE_BEGIN(Grid);
|
||||
};
|
||||
};
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
|
||||
private:
|
||||
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
|
||||
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
|
||||
|
||||
public:
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
|
||||
}
|
||||
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
|
||||
AbstractEOFAFermion<ImplF>& _RopF,
|
||||
AbstractEOFAFermion<ImplD>& _LopD,
|
||||
AbstractEOFAFermion<ImplD>& _RopD,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
@ -0,0 +1,372 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
|
||||
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
|
||||
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
|
||||
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
|
||||
|
||||
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
|
||||
BIG WARNING:
|
||||
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
|
||||
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
|
||||
Thus for DWF the numerator operator is the Pauli-Villars operator
|
||||
|
||||
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
|
||||
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
|
||||
*/
|
||||
|
||||
template<class Impl>
|
||||
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef RationalActionParams Params;
|
||||
Params param;
|
||||
|
||||
//For action evaluation
|
||||
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
//For the MD integration
|
||||
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
|
||||
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
|
||||
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
|
||||
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
|
||||
double error = remez.generateApprox(approx_degree,1,inv_pow);
|
||||
if(error > CG_tolerance)
|
||||
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
|
||||
|
||||
approx.Init(remez, CG_tolerance,false);
|
||||
approx_inv.Init(remez, CG_tolerance,true);
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
static constexpr bool Numerator = true;
|
||||
static constexpr bool Denominator = false;
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const GaugeField &U){
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
//Generate approximations for action eval
|
||||
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
|
||||
//Generate approximations for MD
|
||||
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
|
||||
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
}else{
|
||||
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
|
||||
ApproxPowerMD = ApproxPowerAction;
|
||||
ApproxNegPowerMD = ApproxNegPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
|
||||
|
||||
ApproxHalfPowerMD = ApproxHalfPowerAction;
|
||||
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
//Access the fermion field
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
// P(eta) \propto e^{- eta^dag eta}
|
||||
//
|
||||
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
|
||||
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
//Allow for manual specification of random field for testing
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
|
||||
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
// MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
|
||||
|
||||
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
|
||||
ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
|
||||
|
||||
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
int rcheck = rand();
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
|
||||
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
|
||||
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
RealD action = norm2(Y);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
|
||||
const int n_f = ApproxNegPowerMD.poles.size();
|
||||
const int n_pv = ApproxHalfPowerMD.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = ApproxNegPowerMD.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = ApproxHalfPowerMD.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -0,0 +1,93 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
|
||||
// cf. GeneralEvenOddRational.h for details
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
|
||||
private:
|
||||
typedef typename ImplD::FermionField FermionFieldD;
|
||||
typedef typename ImplF::FermionField FermionFieldF;
|
||||
|
||||
FermionOperator<ImplD> & NumOpD;
|
||||
FermionOperator<ImplD> & DenOpD;
|
||||
|
||||
FermionOperator<ImplF> & NumOpF;
|
||||
FermionOperator<ImplF> & DenOpF;
|
||||
|
||||
Integer ReliableUpdateFreq;
|
||||
protected:
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
|
||||
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
|
||||
precisionChange(Uf, Ud);
|
||||
|
||||
NumOpD.ImportGauge(Ud);
|
||||
DenOpD.ImportGauge(Ud);
|
||||
|
||||
NumOpF.ImportGauge(Uf);
|
||||
DenOpF.ImportGauge(Uf);
|
||||
}
|
||||
|
||||
public:
|
||||
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
|
||||
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
|
||||
const RationalActionParams & p, Integer _ReliableUpdateFreq
|
||||
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
|
||||
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
static RationalActionParams transcribe(const Params &in){
|
||||
RationalActionParams out;
|
||||
out.inv_pow = 2;
|
||||
out.lo = in.lo;
|
||||
out.hi = in.hi;
|
||||
out.MaxIter = in.MaxIter;
|
||||
out.action_tolerance = out.md_tolerance = in.tolerance;
|
||||
out.action_degree = out.md_degree = in.degree;
|
||||
out.precision = in.precision;
|
||||
out.BoundsCheckFreq = in.BoundsCheckFreq;
|
||||
return out;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
|
||||
// MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
if ( (r%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -49,10 +49,12 @@ NAMESPACE_BEGIN(Grid);
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
MultiShiftFunction MDPowerQuarter;
|
||||
MultiShiftFunction MDPowerNegHalf;
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
@ -73,11 +75,13 @@ NAMESPACE_BEGIN(Grid);
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
MDPowerNegHalf.Init(remez,param.mdtolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
MDPowerQuarter.Init(remez,param.mdtolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
@ -204,8 +208,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
const int n_f = MDPowerNegHalf.poles.size();
|
||||
const int n_pv = MDPowerQuarter.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
|
||||
@ -224,8 +228,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,MDPowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,MDPowerNegHalf);
|
||||
|
||||
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
@ -244,7 +248,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
ak = MDPowerNegHalf.residues[k];
|
||||
DenOp.M(MfMpvPhi_k[k],Y);
|
||||
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
|
||||
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||
@ -254,7 +258,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
ak = MDPowerQuarter.residues[k];
|
||||
|
||||
NumOp.M(MpvPhi_k[k],Y);
|
||||
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
|
@ -40,6 +40,8 @@ directory
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||
|
||||
|
@ -75,24 +75,22 @@ NAMESPACE_BEGIN(Grid);
|
||||
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
|
||||
virtual std::string action_name(){
|
||||
std::stringstream sstream;
|
||||
sstream<<"TwoFlavourEvenOddRatioPseudoFermionAction det("<<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||
sstream<< GridLogMessage << "["<<action_name()<<"] -- No further parameters "<<std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
//
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
@ -100,12 +98,22 @@ NAMESPACE_BEGIN(Grid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (NumOp.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
@ -124,10 +132,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Even det factors
|
||||
DenOp.MooeeDag(etaEven,tmp);
|
||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
203
Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
Normal file
203
Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
Normal file
@ -0,0 +1,203 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class Impl>
|
||||
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
private:
|
||||
typedef FermionOperator<Impl> FermOp;
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &DerivativeDagSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
OperatorFunction<FermionField> &HeatbathSolver;
|
||||
|
||||
FermionField phi4; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS ) :
|
||||
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
|
||||
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & DDS,
|
||||
OperatorFunction<FermionField> & AS,
|
||||
OperatorFunction<FermionField> & HS
|
||||
) : NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
DerivativeDagSolver(DDS),
|
||||
ActionSolver(AS),
|
||||
HeatbathSolver(HS),
|
||||
phi4(_NumOp.GaugeGrid())
|
||||
{};
|
||||
|
||||
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta4(NumOp.GaugeGrid());
|
||||
FermionField eta5(NumOp.FermionGrid());
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
FermionField phi5(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta4);
|
||||
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
|
||||
|
||||
DenOp.M(eta5,tmp); // M eta
|
||||
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
|
||||
phi5=phi5*scale;
|
||||
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
|
||||
// Project to 4d
|
||||
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField Y4(NumOp.GaugeGrid());
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField phi5(NumOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
|
||||
|
||||
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
|
||||
NumOp.M(phi5,X); // X= V phi
|
||||
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
|
||||
NumOp.ExportFourDimPseudoFermion(Y,Y4);
|
||||
|
||||
RealD action = norm2(Y4);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
|
||||
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField phi(NumOp.FermionGrid());
|
||||
FermionField Vphi(NumOp.FermionGrid());
|
||||
FermionField MinvVphi(NumOp.FermionGrid());
|
||||
FermionField tmp4(NumOp.GaugeGrid());
|
||||
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
|
||||
|
||||
GaugeField force(NumOp.GaugeGrid());
|
||||
|
||||
//Y=V phi
|
||||
//X = (Mdag V phi
|
||||
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
|
||||
NumOp.ImportFourDimPseudoFermion(phi4,phi);
|
||||
NumOp.M(phi,Vphi); // V phi
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
|
||||
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
|
||||
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
|
||||
|
||||
// Projects onto the physical space and back
|
||||
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
|
||||
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
|
||||
|
||||
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
|
||||
// X = proj M^-dag V phi
|
||||
// Need an adjoint solve
|
||||
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
|
||||
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
|
||||
|
||||
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
|
||||
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
|
||||
|
||||
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
|
||||
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
|
||||
|
||||
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
|
||||
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
6
Grid/qcd/gparity/Gparity.h
Normal file
6
Grid/qcd/gparity/Gparity.h
Normal file
@ -0,0 +1,6 @@
|
||||
#ifndef GRID_GPARITY_H_
|
||||
#define GRID_GPARITY_H_
|
||||
|
||||
#include<Grid/qcd/gparity/GparityFlavour.h>
|
||||
|
||||
#endif
|
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
@ -0,0 +1,34 @@
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
|
||||
}};
|
||||
|
||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::Identity),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
|
||||
}};
|
||||
|
||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
|
||||
"SigmaX",
|
||||
"MinusSigmaX",
|
||||
"SigmaY",
|
||||
"MinusSigmaY",
|
||||
"SigmaZ",
|
||||
"MinusSigmaZ",
|
||||
"Identity",
|
||||
"MinusIdentity",
|
||||
"ProjPlus",
|
||||
"MinusProjPlus",
|
||||
"ProjMinus",
|
||||
"MinusProjMinus"}};
|
||||
|
||||
NAMESPACE_END(Grid);
|
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
@ -0,0 +1,475 @@
|
||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
|
||||
#define GRID_QCD_GPARITY_FLAVOUR_H
|
||||
|
||||
//Support for flavour-matrix operations acting on the G-parity flavour index
|
||||
|
||||
#include <array>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class GparityFlavour {
|
||||
public:
|
||||
GRID_SERIALIZABLE_ENUM(Algebra, undef,
|
||||
SigmaX, 0,
|
||||
MinusSigmaX, 1,
|
||||
SigmaY, 2,
|
||||
MinusSigmaY, 3,
|
||||
SigmaZ, 4,
|
||||
MinusSigmaZ, 5,
|
||||
Identity, 6,
|
||||
MinusIdentity, 7,
|
||||
ProjPlus, 8,
|
||||
MinusProjPlus, 9,
|
||||
ProjMinus, 10,
|
||||
MinusProjMinus, 11
|
||||
);
|
||||
static constexpr unsigned int nSigma = 12;
|
||||
static const std::array<const char *, nSigma> name;
|
||||
static const std::array<const GparityFlavour, 3> sigma_mu;
|
||||
static const std::array<const GparityFlavour, 6> sigma_all;
|
||||
Algebra g;
|
||||
public:
|
||||
accelerator GparityFlavour(Algebra initg): g(initg) {}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// 0 1 x vector
|
||||
// 1 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(1);
|
||||
ret(1) = rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(1,0);
|
||||
ret(0,1) = rhs(1,1);
|
||||
ret(1,0) = rhs(0,0);
|
||||
ret(1,1) = rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,1);
|
||||
ret(0,1) = rhs(0,0);
|
||||
ret(1,0) = rhs(1,1);
|
||||
ret(1,1) = rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(1);
|
||||
ret(1) = -rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(1,0);
|
||||
ret(0,1) = -rhs(1,1);
|
||||
ret(1,0) = -rhs(0,0);
|
||||
ret(1,1) = -rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,1);
|
||||
ret(0,1) = -rhs(0,0);
|
||||
ret(1,0) = -rhs(1,1);
|
||||
ret(1,1) = -rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 0 -i x vector
|
||||
// i 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesMinusI(rhs(1));
|
||||
ret(1) = timesI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(1,0));
|
||||
ret(0,1) = timesMinusI(rhs(1,1));
|
||||
ret(1,0) = timesI(rhs(0,0));
|
||||
ret(1,1) = timesI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(0,1));
|
||||
ret(0,1) = timesMinusI(rhs(0,0));
|
||||
ret(1,0) = timesI(rhs(1,1));
|
||||
ret(1,1) = timesMinusI(rhs(1,0));
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesI(rhs(1));
|
||||
ret(1) = timesMinusI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(1,0));
|
||||
ret(0,1) = timesI(rhs(1,1));
|
||||
ret(1,0) = timesMinusI(rhs(0,0));
|
||||
ret(1,1) = timesMinusI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(0,1));
|
||||
ret(0,1) = timesI(rhs(0,0));
|
||||
ret(1,0) = timesMinusI(rhs(1,1));
|
||||
ret(1,1) = timesI(rhs(1,0));
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 1 0 x vector
|
||||
// 0 -1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1+\sigma_2)
|
||||
//1 -i
|
||||
//i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1-\sigma_2)
|
||||
//1 i
|
||||
//-i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
|
||||
{
|
||||
iVector<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
multFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
multFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
multFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
multFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
multFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
multFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
multFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
multFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
multFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
multFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
multFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
multFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
lmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
lmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
lmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
lmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
lmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
lmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
lmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
lmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
lmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
lmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
lmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
lmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
rmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
rmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
rmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
rmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
rmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
rmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
rmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
rmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
rmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
rmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
rmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
rmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // include guard
|
@ -129,18 +129,10 @@ public:
|
||||
Runner(S);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
template <class SmearingPolicy>
|
||||
void Runner(SmearingPolicy &Smearing) {
|
||||
auto UGrid = Resources.GetCartesian();
|
||||
Resources.AddRNGs();
|
||||
Field U(UGrid);
|
||||
|
||||
// Can move this outside?
|
||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
|
||||
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
|
||||
void initializeGaugeFieldAndRNGs(Field &U){
|
||||
if(!Resources.haveRNGs()) Resources.AddRNGs();
|
||||
|
||||
if (Parameters.StartingType == "HotStart") {
|
||||
// Hot start
|
||||
@ -159,14 +151,43 @@ private:
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
} else if (Parameters.StartingType == "CheckpointStartReseed") {
|
||||
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
|
||||
// Useful for creating new evolution streams from an existing stream
|
||||
|
||||
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
|
||||
// an existing RNG checkpoint first; make sure one is available and named correctly
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
Resources.SeedFixedIntegers();
|
||||
} else {
|
||||
// others
|
||||
std::cout << GridLogError << "Unrecognized StartingType\n";
|
||||
std::cout
|
||||
<< GridLogError
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
template <class SmearingPolicy>
|
||||
void Runner(SmearingPolicy &Smearing) {
|
||||
auto UGrid = Resources.GetCartesian();
|
||||
Field U(UGrid);
|
||||
|
||||
initializeGaugeFieldAndRNGs(U);
|
||||
|
||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||
|
||||
// Sets the momentum filter
|
||||
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
|
||||
|
||||
Smearing.set_Field(U);
|
||||
|
||||
|
@ -34,6 +34,7 @@ directory
|
||||
* @brief Classes for Hybrid Monte Carlo update
|
||||
*
|
||||
* @author Guido Cossu
|
||||
* @author Peter Boyle
|
||||
*/
|
||||
//--------------------------------------------------------------------
|
||||
#pragma once
|
||||
@ -115,22 +116,17 @@ private:
|
||||
|
||||
random(sRNG, rn_test);
|
||||
|
||||
std::cout << GridLogMessage
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "exp(-dH) = " << prob
|
||||
<< " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogMessage
|
||||
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
|
||||
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
||||
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogMessage
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
return true;
|
||||
} else { // rejected
|
||||
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogMessage
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -139,19 +135,68 @@ private:
|
||||
// Evolution
|
||||
/////////////////////////////////////////////////////////
|
||||
RealD evolve_hmc_step(Field &U) {
|
||||
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
|
||||
|
||||
RealD H0 = TheIntegrator.S(U); // initial state action
|
||||
GridBase *Grid = U.Grid();
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Mainly for DDHMC perform a random translation of U modulo volume
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Random shifting gauge field by [";
|
||||
for(int d=0;d<Grid->Nd();d++) {
|
||||
|
||||
int L = Grid->GlobalDimensions()[d];
|
||||
|
||||
RealD rn_uniform; random(sRNG, rn_uniform);
|
||||
|
||||
int shift = (int) (rn_uniform*L);
|
||||
|
||||
std::cout << shift;
|
||||
if(d<Grid->Nd()-1) std::cout <<",";
|
||||
else std::cout <<"]\n";
|
||||
|
||||
U = Cshift(U,d,shift);
|
||||
}
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
TheIntegrator.reset_timer();
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// set U and initialize P and phi's
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
|
||||
TheIntegrator.refresh(U, sRNG, pRNG);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// initial state action
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Compute initial action";
|
||||
RealD H0 = TheIntegrator.S(U);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
std::streamsize current_precision = std::cout.precision();
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
|
||||
TheIntegrator.integrate(U);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
RealD H1 = TheIntegrator.S(U); // updated state action
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// updated state action
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Compute final action";
|
||||
RealD H1 = TheIntegrator.S(U);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
if(0){
|
||||
std::cout << "------------------------- Reversibility test" << std::endl;
|
||||
@ -163,17 +208,16 @@ private:
|
||||
}
|
||||
///////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogMessage << "Total H after trajectory = " << H1
|
||||
<< " dH = " << H1 - H0 << "\n";
|
||||
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
return (H1 - H0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
public:
|
||||
/////////////////////////////////////////
|
||||
@ -195,10 +239,13 @@ public:
|
||||
|
||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
|
||||
|
||||
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
|
||||
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
|
||||
|
||||
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
|
||||
|
||||
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
|
||||
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
|
||||
}
|
||||
|
||||
double t0=usecond();
|
||||
@ -207,20 +254,19 @@ public:
|
||||
DeltaH = evolve_hmc_step(Ucopy);
|
||||
// Metropolis-Hastings test
|
||||
bool accept = true;
|
||||
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
accept = metropolis_test(DeltaH);
|
||||
} else {
|
||||
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
|
||||
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
|
||||
}
|
||||
|
||||
if (accept)
|
||||
Ucur = Ucopy;
|
||||
|
||||
|
||||
|
||||
double t1=usecond();
|
||||
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
|
||||
TheIntegrator.print_timer();
|
||||
|
||||
for (int obs = 0; obs < Observables.size(); obs++) {
|
||||
std::cout << GridLogDebug << "Observables # " << obs << std::endl;
|
||||
@ -228,7 +274,7 @@ public:
|
||||
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
|
||||
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -80,7 +80,9 @@ public:
|
||||
std::cout << GridLogError << "Seeds not initialized" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
|
||||
sRNG_.SeedFixedIntegers(SerialSeeds);
|
||||
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
|
||||
pRNG_->SeedFixedIntegers(ParallelSeeds);
|
||||
}
|
||||
};
|
||||
|
@ -72,6 +72,8 @@ class HMCResourceManager {
|
||||
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
|
||||
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
|
||||
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
|
||||
typedef typename ImplementationPolicy::Field MomentaField;
|
||||
typedef typename ImplementationPolicy::Field Field;
|
||||
|
||||
// Named storage for grid pairs (std + red-black)
|
||||
std::unordered_map<std::string, GridModule> Grids;
|
||||
@ -80,6 +82,9 @@ class HMCResourceManager {
|
||||
// SmearingModule<ImplementationPolicy> Smearing;
|
||||
std::unique_ptr<CheckpointerBaseModule> CP;
|
||||
|
||||
// Momentum filter
|
||||
std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
|
||||
|
||||
// A vector of HmcObservable modules
|
||||
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
|
||||
|
||||
@ -90,6 +95,7 @@ class HMCResourceManager {
|
||||
|
||||
bool have_RNG;
|
||||
bool have_CheckPointer;
|
||||
bool have_Filter;
|
||||
|
||||
// NOTE: operator << is not overloaded for std::vector<string>
|
||||
// so this function is necessary
|
||||
@ -101,7 +107,7 @@ class HMCResourceManager {
|
||||
|
||||
|
||||
public:
|
||||
HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
|
||||
HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
|
||||
|
||||
template <class ReaderClass, class vector_type = vComplex >
|
||||
void initialize(ReaderClass &Read){
|
||||
@ -129,6 +135,7 @@ public:
|
||||
RNGModuleParameters RNGpar(Read);
|
||||
SetRNGSeeds(RNGpar);
|
||||
|
||||
|
||||
// Observables
|
||||
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
|
||||
Read.push(observable_string);// here must check if existing...
|
||||
@ -208,6 +215,16 @@ public:
|
||||
AddGrid(s, Mod);
|
||||
}
|
||||
|
||||
void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
|
||||
assert(have_Filter==false);
|
||||
Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
|
||||
have_Filter = true;
|
||||
}
|
||||
MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
|
||||
if ( !have_Filter)
|
||||
SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
|
||||
return Filter.get();
|
||||
}
|
||||
|
||||
GridCartesian* GetCartesian(std::string s = "") {
|
||||
if (s.empty()) s = Grids.begin()->first;
|
||||
@ -226,6 +243,9 @@ public:
|
||||
//////////////////////////////////////////////////////
|
||||
// Random number generators
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
//Return true if the RNG objects have been instantiated
|
||||
bool haveRNGs() const{ return have_RNG; }
|
||||
|
||||
void AddRNGs(std::string s = "") {
|
||||
// Couple the RNGs to the GridModule tagged by s
|
||||
|
@ -66,6 +66,7 @@ public:
|
||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
|
||||
class Integrator {
|
||||
protected:
|
||||
|
||||
typedef typename FieldImplementation::Field MomentaField; //for readability
|
||||
typedef typename FieldImplementation::Field Field;
|
||||
|
||||
@ -118,36 +119,58 @@ protected:
|
||||
}
|
||||
} update_P_hireps{};
|
||||
|
||||
|
||||
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
|
||||
// input U actually not used in the fundamental case
|
||||
// Fundamental updates, include smearing
|
||||
|
||||
for (int a = 0; a < as[level].actions.size(); ++a) {
|
||||
|
||||
double start_full = usecond();
|
||||
Field force(U.Grid());
|
||||
conformable(U.Grid(), Mom.Grid());
|
||||
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
|
||||
double start_force = usecond();
|
||||
as[level].actions.at(a)->deriv_timer_start();
|
||||
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
|
||||
as[level].actions.at(a)->deriv_timer_stop();
|
||||
|
||||
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
|
||||
auto name = as[level].actions.at(a)->action_name();
|
||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||
|
||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||
double end_force = usecond();
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
|
||||
|
||||
MomFilter->applyFilter(force);
|
||||
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<< std::endl;
|
||||
DumpSliceNorm("force ",force,Nd-1);
|
||||
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
Real force_max = std::sqrt(maxLocalNorm2(force));
|
||||
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
as[level].actions.at(a)->deriv_log(force_abs,force_max);
|
||||
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
|
||||
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
double time_force = (end_force - start_force) / 1e3;
|
||||
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Force from the other representations
|
||||
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
|
||||
|
||||
MomFilter->applyFilter(Mom);
|
||||
}
|
||||
|
||||
void update_U(Field& U, double ep)
|
||||
@ -161,8 +184,12 @@ protected:
|
||||
|
||||
void update_U(MomentaField& Mom, Field& U, double ep)
|
||||
{
|
||||
MomentaField MomFiltered(Mom.Grid());
|
||||
MomFiltered = Mom;
|
||||
MomFilter->applyFilter(MomFiltered);
|
||||
|
||||
// exponential of Mom*U in the gauge fields case
|
||||
FieldImplementation::update_field(Mom, U, ep);
|
||||
FieldImplementation::update_field(MomFiltered, U, ep);
|
||||
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
Smearer.set_Field(U);
|
||||
@ -205,6 +232,66 @@ public:
|
||||
const MomentaField & getMomentum() const{ return P; }
|
||||
|
||||
|
||||
void reset_timer(void)
|
||||
{
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
as[level].actions.at(actionID)->reset_timer();
|
||||
}
|
||||
}
|
||||
}
|
||||
void print_timer(void)
|
||||
{
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
std::cout << GridLogMessage
|
||||
<< as[level].actions.at(actionID)->action_name()
|
||||
<<"["<<level<<"]["<< actionID<<"] "
|
||||
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
std::cout << GridLogMessage
|
||||
<< as[level].actions.at(actionID)->action_name()
|
||||
<<"["<<level<<"]["<< actionID<<"] "
|
||||
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
|
||||
std::cout << GridLogMessage << "------------------------- "<<std::endl;
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
std::cout << GridLogMessage
|
||||
<< as[level].actions.at(actionID)->action_name()
|
||||
<<"["<<level<<"]["<< actionID<<"] "
|
||||
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||
std::cout << GridLogMessage << " Force average size "<<std::endl;
|
||||
std::cout << GridLogMessage << "------------------------- "<<std::endl;
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
std::cout << GridLogMessage
|
||||
<< as[level].actions.at(actionID)->action_name()
|
||||
<<"["<<level<<"]["<< actionID<<"] : "
|
||||
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
|
||||
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
|
||||
<<" calls " << as[level].actions.at(actionID)->deriv_num
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
||||
}
|
||||
|
||||
void print_parameters()
|
||||
{
|
||||
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
|
||||
@ -223,7 +310,6 @@ public:
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
void reverse_momenta()
|
||||
@ -248,15 +334,19 @@ public:
|
||||
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
assert(P.Grid() == U.Grid());
|
||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
||||
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
|
||||
|
||||
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
|
||||
FieldImplementation::generate_momenta(P, sRNG, pRNG);
|
||||
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
// necessary to keep the fields updated even after a reject
|
||||
// of the Metropolis
|
||||
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
|
||||
Smearer.set_Field(U);
|
||||
// Set the (eventual) representations gauge fields
|
||||
|
||||
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
|
||||
Representations.update(U);
|
||||
|
||||
// The Smearer is attached to a pointer of the gauge field
|
||||
@ -266,15 +356,19 @@ public:
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
auto name = as[level].actions.at(actionID)->action_name();
|
||||
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
|
||||
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh_timer_start();
|
||||
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
|
||||
as[level].actions.at(actionID)->refresh_timer_stop();
|
||||
}
|
||||
|
||||
// Refresh the higher representation actions
|
||||
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
|
||||
}
|
||||
|
||||
MomFilter->applyFilter(P);
|
||||
}
|
||||
|
||||
// to be used by the actionlevel class to iterate
|
||||
@ -309,7 +403,9 @@ public:
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||
as[level].actions.at(actionID)->S_timer_start();
|
||||
Hterm = as[level].actions.at(actionID)->S(Us);
|
||||
as[level].actions.at(actionID)->S_timer_stop();
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
}
|
||||
|
@ -99,7 +99,7 @@ public:
|
||||
// using wilson flow by default here
|
||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
||||
Real T0 = WF.energyDensityPlaquette(Usmear);
|
||||
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Gimpl>
|
||||
class WilsonFlow: public Smear<Gimpl>{
|
||||
public:
|
||||
//Store generic measurements to take during smearing process using std::function
|
||||
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||
|
||||
private:
|
||||
unsigned int Nstep;
|
||||
unsigned int measure_interval;
|
||||
mutable RealD epsilon, taus;
|
||||
|
||||
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
|
||||
|
||||
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||
|
||||
mutable WilsonGaugeAction<Gimpl> SG;
|
||||
|
||||
void evolve_step(typename Gimpl::GaugeField&) const;
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
|
||||
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
|
||||
//Evolve the gauge field by 1 step and update tau
|
||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
void resetActions(){ functions.clear(); }
|
||||
|
||||
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||
|
||||
//Set the class to perform the default measurements:
|
||||
//the plaquette energy density every step
|
||||
//the plaquette topological charge every 'topq_meas_interval' steps
|
||||
//and output to stdout
|
||||
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||
|
||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
||||
Nstep(Nstep),
|
||||
epsilon(epsilon),
|
||||
measure_interval(interval),
|
||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||
// WilsonGaugeAction with beta 3.0
|
||||
assert(epsilon > 0.0);
|
||||
LogMessage();
|
||||
setDefaultMeasurements(interval);
|
||||
}
|
||||
|
||||
void LogMessage() {
|
||||
@ -73,9 +90,29 @@ public:
|
||||
// undefined for WilsonFlow
|
||||
}
|
||||
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
|
||||
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
|
||||
RealD energyDensityPlaquette(const GaugeField& U) const;
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the plaquette
|
||||
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
|
||||
//t is the Wilson flow time
|
||||
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||
};
|
||||
|
||||
|
||||
@ -83,7 +120,7 @@ public:
|
||||
// Implementations
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField tmp(U.Grid());
|
||||
SG.deriv(U, Z);
|
||||
@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
tau += epsilon;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
|
||||
if (maxTau - taus < epsilon){
|
||||
epsilon = maxTau-taus;
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
|
||||
if (maxTau - tau < eps){
|
||||
eps = maxTau-tau;
|
||||
}
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U.Grid());
|
||||
@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
|
||||
SG.deriv(U, Z);
|
||||
Zprime = -Z;
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Zprime += 2.0*tmp;
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||
|
||||
// Ramos
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||
// Compute distance as norm^2 of the difference
|
||||
GaugeField diffU = U - Uprime;
|
||||
RealD diff = norm2(diffU);
|
||||
// adjust integration step
|
||||
|
||||
taus += epsilon;
|
||||
tau += eps;
|
||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
|
||||
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
||||
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
|
||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
|
||||
RealD td = tau(step);
|
||||
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||
}
|
||||
|
||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
assert(Nd == 4);
|
||||
//E = 1/2 tr( F_munu F_munu )
|
||||
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
|
||||
//F_01 F_02 F_03 F_12 F_13 F_23
|
||||
GaugeMat F(U.Grid());
|
||||
LatticeComplexD R(U.Grid());
|
||||
R = Zero();
|
||||
|
||||
for(int mu=0;mu<3;mu++){
|
||||
for(int nu=mu+1;nu<4;nu++){
|
||||
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
|
||||
R = R + trace(F*F);
|
||||
}
|
||||
}
|
||||
ComplexD out = sum(R);
|
||||
out = t*t*out / RealD(U.Grid()->gSites());
|
||||
return -real(out); //minus sign necessary for +ve energy
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityPlaquette(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
|
||||
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityCloverleaf(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//#define WF_TIMING
|
||||
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
out = in;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) {
|
||||
RealD taus = 0.;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
evolve_step(out);
|
||||
evolve_step(out, taus);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> diff = end - start;
|
||||
#ifdef WF_TIMING
|
||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||
#endif
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << tau(step) << " "
|
||||
<< energyDensityPlaquette(step,out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
|
||||
out = in;
|
||||
taus = epsilon;
|
||||
RealD taus = 0.;
|
||||
RealD eps = epsilon;
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
step++;
|
||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
evolve_step_adaptive(out, maxTau);
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << taus << " "
|
||||
<< energyDensityPlaquette(out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
evolve_step_adaptive(out, taus, eps, maxTau);
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
} while (taus < maxTau);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -88,6 +88,12 @@ namespace PeriodicBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
return Cshift(Link, mu, shift);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -158,6 +164,9 @@ namespace ConjugateBC {
|
||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
||||
GridBase *grid = Link.Grid();
|
||||
@ -176,6 +185,9 @@ namespace ConjugateBC {
|
||||
return Link;
|
||||
}
|
||||
|
||||
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = S*_\mu(0) | x_\mu == L-1
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
@ -208,6 +220,35 @@ namespace ConjugateBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
GridBase *grid = Link.Grid();
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
Lattice<gauge> tmp(grid);
|
||||
if(shift == 1){
|
||||
tmp = Cshift(Link, mu, 1);
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return tmp;
|
||||
}else if(shift == -1){
|
||||
tmp = Link;
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return Cshift(tmp, mu, -1);
|
||||
}else assert(0 && "Invalid shift value");
|
||||
return tmp; //shuts up the compiler fussing about the return type
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user