1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-12 20:27:06 +01:00

Compare commits

...

73 Commits

Author SHA1 Message Date
dc5b909f99 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2018-06-12 19:11:20 -04:00
855b249f57 Merge branch 'develop' of https://github.com/paboyle/Grid into merge2 2018-06-12 19:08:06 -04:00
8bb11e5039 Making tests compile 2018-03-08 23:02:19 -05:00
3686827df5 Reverted ImplicitlyRestartedLanczos.h 2018-03-08 19:22:25 -05:00
60589a93a3 Merge branch 'develop' of https://github.com/paboyle/Grid into merge 2018-03-08 18:02:43 -05:00
bc1f5be265 Merge branch 'dev-IRBL-ypj' of https://github.com/yongchull/Grid into merge 2018-03-08 18:02:06 -05:00
1c430ec71c Moved #include 2018-03-07 16:22:54 -05:00
0b63e2e9cd Merge branch 'develop' of https://github.com/paboyle/Grid into merge 2018-03-07 15:24:11 -05:00
386b4fcb04 update convergence check 2018-03-05 18:37:51 -05:00
11219a8f7a add explicit restart method rbl 2018-03-05 18:12:42 -05:00
3caf0e8b09 print Ritz values before and after the shift; rollback to simple last lanczos vector rebuild; print formatting is changed 2018-02-02 18:43:37 -05:00
bc5ba39278 relocate the printing block of converged eigenvalues 2018-01-31 12:40:33 -05:00
fbe1209f7e count converged eigenvalues not assuming candidates are sorted 2018-01-31 12:10:24 -05:00
ebb1bebf24 Merge pull request #145 from yongchull/fix-skylake-avx512
patch to compile with AVX512 for SkyLake Xeon processor using GCC7.2.…
2018-01-28 11:01:43 +00:00
53a9260a94 patch to compile with AVX512 for SkyLake Xeon processor using GCC7.2.0. Beside bug fixes in the source code, a option 'SKL' is added to configure.ac for SkyLake processor specific AVX512 instruction flags when using GCC. Code can be compiled with --enable-simd=SKL using GCC 7.2.0, but Test_simd fails. AVX512 support for complex double type with non-intel compilers makes this error. 2018-01-27 10:00:38 -05:00
dc6f637e70 change GparityDomainWallFermion to ZMobius and add command line options to read boundary phase and omega 2018-01-27 08:21:27 -05:00
44b218a595 force hermicity to the block alpha and force diagonal of the block beta to be real 2017-12-29 23:26:17 -05:00
bfc0306a43 job parameters can be provided by cmdarg. 2017-12-29 00:58:24 -05:00
4c0ae75ac5 read configuration file 2017-12-27 16:34:18 -05:00
3cb8cb7282 'typename' is added to compile with AVX512 using GCC7.2.0; a semicolon was missing in Grid_avx512.h and the bug is fixed. Option SKL is added to configure script for skylake processor specific AVX512 operations. Code can be compiled with --enable-simd=SKL using GCC 7.2.0, but Test_simd fails. AVX512 support for complex double type with non-intel compilers makes this error; it needs a review. 2017-12-23 14:54:07 -05:00
89c4e9b168 first complete version of IRBL; requires practical test and clean up 2017-12-21 23:13:39 -05:00
fe406e230d block with a single vector case is working with IRBL 2017-12-18 11:26:42 -05:00
3dbc8586fa Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-12-12 21:23:01 -05:00
7305910c95 Fixing an initialization found by Yong-Chull 2017-12-12 18:46:11 -05:00
5139eaf491 block Lanczos construction is added. 2017-12-03 23:55:22 -05:00
2c35c89b92 fix vector assign bug 2017-11-27 13:39:52 -05:00
91cc33e907 IRBL development test bed is added; bootstrap.sh is updated to avoid repeated download of the EIGEN package after the first build. 2017-11-05 23:46:03 -05:00
5d44346be3 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-10-30 15:49:17 -04:00
3a754fcd51 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-10-27 17:34:35 -04:00
137886c316 Addressed when coor.size() != dim.size() in Lexicographic 2017-10-19 10:28:57 -04:00
ef61b549e6 Merge branch 'feature/Lanczos' into ckelly_develop4 2017-10-10 13:41:43 -04:00
3006663b9c Schur solver for staggered type (hermition Mpc) opertors 2017-08-31 21:32:01 -04:00
0145685f96 Added Staggered Type Preconditioned operator 2017-08-18 01:44:31 -04:00
e73e4b4002 Minor changes fixes 2017-08-11 01:35:25 -04:00
caa6605b43 Still tweaking memory saving routines in Lanczos 2017-08-07 00:01:04 -04:00
522c9248ae Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-08-06 23:58:21 -04:00
191fbf85fc Added ImplicitlyRestartedLanczosCJ to Algorithms.h 2017-07-28 15:33:59 -04:00
93650f3a61 Adding back (temporarily) dense matrix routines until Lanczos is fininalized 2017-07-24 21:49:25 -04:00
cab4b4d063 Deleting old include file references 2017-07-24 20:51:31 -04:00
cf4b30b2dd re-adding ImplcitlyRestartedLanczos 2017-07-24 20:40:25 -04:00
c51d0b4078 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-07-24 20:35:29 -04:00
2f4cbeb4d5 Minor changes 2017-06-12 18:25:18 -04:00
fb7c4fb815 Recovering lapack interface without array allocation 2017-06-07 00:00:59 -04:00
00bb71e5af Checking in before reworking lapack interface 2017-06-06 16:26:41 -04:00
cfed2c1ea0 Broken Lanczos. Going back to an older verion temporarily. 2017-06-06 12:14:45 -04:00
b1b15f0b70 Further fixes from multidimensional array 2017-06-05 23:13:41 -04:00
927c7ae3ed changed allocation for LAPACK temporaries, to avoid crashing with some compilers (reported by Christoph) 2017-05-25 21:43:53 -04:00
05d04ceff8 Adding SimpleLanczos 2017-05-25 12:30:47 -04:00
8313367a50 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-05-25 12:30:06 -04:00
5c479ce663 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-05-24 18:58:53 -04:00
4bf9d65bf8 Checking in memory saving version of Lanczos 2017-05-24 18:57:32 -04:00
3a056c4dff Re-adding Bisection for SimpleLanczos 2017-05-22 18:23:03 -04:00
b0ba651654 Turning off the final sort for now 2017-05-19 10:49:09 -04:00
25d4c175c3 Cleaning up Lanczos 2017-05-18 18:33:47 -04:00
a8d7986e1c Temporary (hopefully) change to run with GCC for now. 2017-05-05 10:55:07 -04:00
92ec509bfa Commiting to move to Jlab 2017-05-04 19:32:00 -04:00
e80a87ff7f Checking in before modifying 2017-05-04 16:05:07 -04:00
867fe93018 First Rotate reorg done. 2017-05-02 01:26:22 -04:00
09651c3326 Checking in before rearranging Lanczos 2017-05-02 00:47:18 -04:00
f87f2a3f8b Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-05-01 12:00:47 -04:00
a07556dd5f Added back the convergence test from evecs of tridiagonal matrix. Bugfixes 2017-04-15 09:32:15 -04:00
f80a847aef Merge branch 'develop' into bugfix/dminus 2017-04-06 23:49:10 -04:00
93cb5d4e97 Working version of Lanczos without the extra copy. 2017-04-06 23:35:30 -04:00
9e48b7dfda MEM_SAVE in Lanczos seems to be working, but not pretty 2017-04-06 22:21:56 -04:00
d0c2c9c71f Merge branch 'develop' of https://github.com/paboyle/Grid into bugfix/dminus 2017-04-04 15:20:17 -04:00
c8cafa77ca Checking in the latest Lacnzos 2017-04-04 15:18:12 -04:00
a3bcad3804 Added preconditioned SYM2 solver (SchurRedBlackDiagTwoSolve) 2017-03-30 20:33:27 -04:00
5a5b66292b Merge branch 'develop' of https://github.com/paboyle/Grid into bugfix/dminus 2017-03-30 10:44:02 -04:00
e63be32ad2 zmobius Meooe5D fixed? 2017-03-28 03:48:50 -04:00
6aa106d906 Fixing zmobius coeffs again 2017-03-27 21:57:07 -04:00
33d59c8869 Adding Zmobius prec test 2017-03-27 21:40:27 -04:00
a833fd8dbf Merge branch 'develop' of https://github.com/paboyle/Grid into bugfix/dminus 2017-03-27 21:37:26 -04:00
e9712bc7fb Zmobius test was wrong! (only mobius) checking in again 2017-03-16 23:04:28 -04:00
34 changed files with 7284 additions and 36 deletions

6
.gitignore vendored
View File

@ -88,12 +88,18 @@ Thumbs.db
###################
build*/*
# bootstrap #
#############
*.tar.bz2*
# IDE related files #
#####################
*.xcodeproj/*
build.sh
.vscode
*.code-workspace
.ctags
tags
# Eigen source #
################

View File

@ -1,9 +1,16 @@
#!/usr/bin/env bash
EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2'
EIGEN_SRC='3.3.3.tar.bz2'
EIGEN_URL="http://bitbucket.org/eigen/eigen/get/${EIGEN_SRC}"
echo "-- deploying Eigen source..."
wget ${EIGEN_URL} --no-check-certificate && ./scripts/update_eigen.sh `basename ${EIGEN_URL}` && rm `basename ${EIGEN_URL}`
if [ -f ${EIGEN_SRC} ]; then
echo "-- skip deploying Eigen source..."
else
echo "-- deploying Eigen source..."
wget ${EIGEN_URL} --no-check-certificate
./scripts/update_eigen.sh `basename ${EIGEN_URL}`
#rm `basename ${EIGEN_URL}`
fi
echo '-- generating Make.inc files...'
./scripts/filelist

View File

@ -49,6 +49,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczosCJ.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h>

View File

@ -373,6 +373,75 @@ namespace Grid {
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
#if 0
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
// INHERIT_IMPL_TYPES(Matrix);
typedef typename Matrix::Coeff_t Coeff_t;
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out._grid;
out.checkerboard = in.checkerboard;
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
parallel_for(int ss=0;ss<grid->oSites();ss++){
vobj tmp = s[ss % Ls]*in._odata[ss];
vstream(out._odata[ss],tmp);
}
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
#endif
/////////////////////////////////////////////////////////////
// Base classes for functions of operators

View File

@ -54,10 +54,16 @@ struct ChebyParams : Serializable {
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
#if 0
RealD delta = (hi-lo)*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
#else
RealD diff = hi-lo;
//for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=(hi-lo)/1000) {
for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=diff/1000.0) { // ypj [note] divide by float
#endif
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
@ -89,7 +95,7 @@ struct ChebyParams : Serializable {
if(order < 2) exit(-1);
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs.assign(order,0.);
Coeffs[order-1] = 1.;
};

View File

@ -0,0 +1,137 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/DenseMatrix.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_DENSE_MATRIX_H
#define GRID_DENSE_MATRIX_H
namespace Grid {
/////////////////////////////////////////////////////////////
// Matrix untils
/////////////////////////////////////////////////////////////
template<class T> using DenseVector = std::vector<T>;
template<class T> using DenseMatrix = DenseVector<DenseVector<T> >;
template<class T> void Size(DenseVector<T> & vec, int &N)
{
N= vec.size();
}
template<class T> void Size(DenseMatrix<T> & mat, int &N,int &M)
{
N= mat.size();
M= mat[0].size();
}
template<class T> void SizeSquare(DenseMatrix<T> & mat, int &N)
{
int M; Size(mat,N,M);
assert(N==M);
}
template<class T> void Resize(DenseVector<T > & mat, int N) {
mat.resize(N);
}
template<class T> void Resize(DenseMatrix<T > & mat, int N, int M) {
mat.resize(N);
for(int i=0;i<N;i++){
mat[i].resize(M);
}
}
template<class T> void Fill(DenseMatrix<T> & mat, T&val) {
int N,M;
Size(mat,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
mat[i][j] = val;
}}
}
/** Transpose of a matrix **/
template<class T> DenseMatrix<T> Transpose(DenseMatrix<T> & mat){
int N,M;
Size(mat,N,M);
DenseMatrix<T> C; Resize(C,M,N);
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
C[i][j] = mat[j][i];
}}
return C;
}
/** Set DenseMatrix to unit matrix **/
template<class T> void Unity(DenseMatrix<T> &A){
int N; SizeSquare(A,N);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
if ( i==j ) A[i][j] = 1;
else A[i][j] = 0;
}
}
}
/** Add C * I to matrix **/
template<class T>
void PlusUnit(DenseMatrix<T> & A,T c){
int dim; SizeSquare(A,dim);
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
}
/** return the Hermitian conjugate of matrix **/
template<class T>
DenseMatrix<T> HermitianConj(DenseMatrix<T> &mat){
int dim; SizeSquare(mat,dim);
DenseMatrix<T> C; Resize(C,dim,dim);
for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
C[i][j] = conj(mat[j][i]);
}
}
return C;
}
/**Get a square submatrix**/
template <class T>
DenseMatrix<T> GetSubMtx(DenseMatrix<T> &A,int row_st, int row_end, int col_st, int col_end)
{
DenseMatrix<T> H; Resize(H,row_end - row_st,col_end-col_st);
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
H[i-row_st][j-col_st]=A[i][j];
}}
return H;
}
}
#include "Householder.h"
#include "Francis.h"
#endif

View File

@ -0,0 +1,525 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/Francis.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef FRANCIS_H
#define FRANCIS_H
#include <cstdlib>
#include <string>
#include <cmath>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include <complex>
#include <algorithm>
//#include <timer.h>
//#include <lapacke.h>
//#include <Eigen/Dense>
namespace Grid {
template <class T> int SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
template <class T> int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
/**
Find the eigenvalues of an upper hessenberg matrix using the Francis QR algorithm.
H =
x x x x x x x x x
x x x x x x x x x
0 x x x x x x x x
0 0 x x x x x x x
0 0 0 x x x x x x
0 0 0 0 x x x x x
0 0 0 0 0 x x x x
0 0 0 0 0 0 x x x
0 0 0 0 0 0 0 x x
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary.
**/
template <class T>
int QReigensystem(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
{
DenseMatrix<T> H = Hin;
int N ; SizeSquare(H,N);
int M = N;
Fill(evals,0);
Fill(evecs,0);
T s,t,x=0,y=0,z=0;
T u,d;
T apd,amd,bc;
DenseVector<T> p(N,0);
T nrm = Norm(H); ///DenseMatrix Norm
int n, m;
int e = 0;
int it = 0;
int tot_it = 0;
int l = 0;
int r = 0;
DenseMatrix<T> P; Resize(P,N,N); Unity(P);
DenseVector<int> trows(N,0);
/// Check if the matrix is really hessenberg, if not abort
RealD sth = 0;
for(int j=0;j<N;j++){
for(int i=j+2;i<N;i++){
sth = abs(H[i][j]);
if(sth > small){
std::cout << "Non hessenberg H = " << sth << " > " << small << std::endl;
exit(1);
}
}
}
do{
std::cout << "Francis QR Step N = " << N << std::endl;
/** Check for convergence
x x x x x
0 x x x x
0 0 x x x
0 0 x x x
0 0 0 0 x
for this matrix l = 4
**/
do{
l = Chop_subdiag(H,nrm,e,small);
r = 0; ///May have converged on more than one eval
///Single eval
if(l == N-1){
evals[e] = H[l][l];
N--; e++; r++; it = 0;
}
///RealD eval
if(l == N-2){
trows[l+1] = 1; ///Needed for UTSolve
apd = H[l][l] + H[l+1][l+1];
amd = H[l][l] - H[l+1][l+1];
bc = (T)4.0*H[l+1][l]*H[l][l+1];
evals[e] = (T)0.5*( apd + sqrt(amd*amd + bc) );
evals[e+1] = (T)0.5*( apd - sqrt(amd*amd + bc) );
N-=2; e+=2; r++; it = 0;
}
} while(r>0);
if(N ==0) break;
DenseVector<T > ck; Resize(ck,3);
DenseVector<T> v; Resize(v,3);
for(int m = N-3; m >= l; m--){
///Starting vector essentially random shift.
if(it%10 == 0 && N >= 3 && it > 0){
s = (T)1.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
t = (T)0.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
z = H[m+1][m]*H[m+2][m+1];
}
///Starting vector implicit Q theorem
else{
s = (H[N-2][N-2] + H[N-1][N-1]);
t = (H[N-2][N-2]*H[N-1][N-1] - H[N-2][N-1]*H[N-1][N-2]);
x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
z = H[m+1][m]*H[m+2][m+1];
}
ck[0] = x; ck[1] = y; ck[2] = z;
if(m == l) break;
/** Some stupid thing from numerical recipies, seems to work**/
// PAB.. for heaven's sake quote page, purpose, evidence it works.
// what sort of comment is that!?!?!?
u=abs(H[m][m-1])*(abs(y)+abs(z));
d=abs(x)*(abs(H[m-1][m-1])+abs(H[m][m])+abs(H[m+1][m+1]));
if ((T)abs(u+d) == (T)abs(d) ){
l = m; break;
}
//if (u < small){l = m; break;}
}
if(it > 100000){
std::cout << "QReigensystem: bugger it got stuck after 100000 iterations" << std::endl;
std::cout << "got " << e << " evals " << l << " " << N << std::endl;
exit(1);
}
normalize(ck); ///Normalization cancels in PHP anyway
T beta;
Householder_vector<T >(ck, 0, 2, v, beta);
Householder_mult<T >(H,v,beta,0,l,l+2,0);
Householder_mult<T >(H,v,beta,0,l,l+2,1);
///Accumulate eigenvector
Householder_mult<T >(P,v,beta,0,l,l+2,1);
int sw = 0; ///Are we on the last row?
for(int k=l;k<N-2;k++){
x = H[k+1][k];
y = H[k+2][k];
z = (T)0.0;
if(k+3 <= N-1){
z = H[k+3][k];
} else{
sw = 1;
v[2] = (T)0.0;
}
ck[0] = x; ck[1] = y; ck[2] = z;
normalize(ck);
Householder_vector<T >(ck, 0, 2-sw, v, beta);
Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,0);
Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,1);
///Accumulate eigenvector
Householder_mult<T >(P,v, beta,0,k+1,k+3-sw,1);
}
it++;
tot_it++;
}while(N > 1);
N = evals.size();
///Annoying - UT solves in reverse order;
DenseVector<T> tmp; Resize(tmp,N);
for(int i=0;i<N;i++){
tmp[i] = evals[N-i-1];
}
evals = tmp;
UTeigenvectors(H, trows, evals, evecs);
for(int i=0;i<evals.size();i++){evecs[i] = P*evecs[i]; normalize(evecs[i]);}
return tot_it;
}
template <class T>
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
{
/**
Find the eigenvalues of an upper Hessenberg matrix using the Wilkinson QR algorithm.
H =
x x 0 0 0 0
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary. **/
return my_Wilkinson(Hin, evals, evecs, small, small);
}
template <class T>
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small, RealD tol)
{
int N; SizeSquare(Hin,N);
int M = N;
///I don't want to modify the input but matricies must be passed by reference
//Scale a matrix by its "norm"
//RealD Hnorm = abs( Hin.LargestDiag() ); H = H*(1.0/Hnorm);
DenseMatrix<T> H; H = Hin;
RealD Hnorm = abs(Norm(Hin));
H = H * (1.0 / Hnorm);
// TODO use openmp and memset
Fill(evals,0);
Fill(evecs,0);
T s, t, x = 0, y = 0, z = 0;
T u, d;
T apd, amd, bc;
DenseVector<T> p; Resize(p,N); Fill(p,0);
T nrm = Norm(H); ///DenseMatrix Norm
int n, m;
int e = 0;
int it = 0;
int tot_it = 0;
int l = 0;
int r = 0;
DenseMatrix<T> P; Resize(P,N,N);
Unity(P);
DenseVector<int> trows(N, 0);
/// Check if the matrix is really symm tridiag
RealD sth = 0;
for(int j = 0; j < N; ++j)
{
for(int i = j + 2; i < N; ++i)
{
if(abs(H[i][j]) > tol || abs(H[j][i]) > tol)
{
std::cout << "Non Tridiagonal H(" << i << ","<< j << ") = |" << Real( real( H[j][i] ) ) << "| > " << tol << std::endl;
std::cout << "Warning tridiagonalize and call again" << std::endl;
// exit(1); // see what is going on
//return;
}
}
}
do{
do{
//Jasper
//Check if the subdiagonal term is small enough (<small)
//if true then it is converged.
//check start from H.dim - e - 1
//How to deal with more than 2 are converged?
//What if Chop_symm_subdiag return something int the middle?
//--------------
l = Chop_symm_subdiag(H,nrm, e, small);
r = 0; ///May have converged on more than one eval
//Jasper
//In this case
// x x 0 0 0 0
// x x x 0 0 0
// 0 x x x 0 0
// 0 0 x x x 0
// 0 0 0 x x 0
// 0 0 0 0 0 x <- l
//--------------
///Single eval
if(l == N - 1)
{
evals[e] = H[l][l];
N--;
e++;
r++;
it = 0;
}
//Jasper
// x x 0 0 0 0
// x x x 0 0 0
// 0 x x x 0 0
// 0 0 x x 0 0
// 0 0 0 0 x x <- l
// 0 0 0 0 x x
//--------------
///RealD eval
if(l == N - 2)
{
trows[l + 1] = 1; ///Needed for UTSolve
apd = H[l][l] + H[l + 1][ l + 1];
amd = H[l][l] - H[l + 1][l + 1];
bc = (T) 4.0 * H[l + 1][l] * H[l][l + 1];
evals[e] = (T) 0.5 * (apd + sqrt(amd * amd + bc));
evals[e + 1] = (T) 0.5 * (apd - sqrt(amd * amd + bc));
N -= 2;
e += 2;
r++;
it = 0;
}
}while(r > 0);
//Jasper
//Already converged
//--------------
if(N == 0) break;
DenseVector<T> ck,v; Resize(ck,2); Resize(v,2);
for(int m = N - 3; m >= l; m--)
{
///Starting vector essentially random shift.
if(it%10 == 0 && N >= 3 && it > 0)
{
t = abs(H[N - 1][N - 2]) + abs(H[N - 2][N - 3]);
x = H[m][m] - t;
z = H[m + 1][m];
} else {
///Starting vector implicit Q theorem
d = (H[N - 2][N - 2] - H[N - 1][N - 1]) * (T) 0.5;
t = H[N - 1][N - 1] - H[N - 1][N - 2] * H[N - 1][N - 2]
/ (d + sign(d) * sqrt(d * d + H[N - 1][N - 2] * H[N - 1][N - 2]));
x = H[m][m] - t;
z = H[m + 1][m];
}
//Jasper
//why it is here????
//-----------------------
if(m == l)
break;
u = abs(H[m][m - 1]) * (abs(y) + abs(z));
d = abs(x) * (abs(H[m - 1][m - 1]) + abs(H[m][m]) + abs(H[m + 1][m + 1]));
if ((T)abs(u + d) == (T)abs(d))
{
l = m;
break;
}
}
//Jasper
if(it > 1000000)
{
std::cout << "Wilkinson: bugger it got stuck after 100000 iterations" << std::endl;
std::cout << "got " << e << " evals " << l << " " << N << std::endl;
exit(1);
}
//
T s, c;
Givens_calc<T>(x, z, c, s);
Givens_mult<T>(H, l, l + 1, c, -s, 0);
Givens_mult<T>(H, l, l + 1, c, s, 1);
Givens_mult<T>(P, l, l + 1, c, s, 1);
//
for(int k = l; k < N - 2; ++k)
{
x = H.A[k + 1][k];
z = H.A[k + 2][k];
Givens_calc<T>(x, z, c, s);
Givens_mult<T>(H, k + 1, k + 2, c, -s, 0);
Givens_mult<T>(H, k + 1, k + 2, c, s, 1);
Givens_mult<T>(P, k + 1, k + 2, c, s, 1);
}
it++;
tot_it++;
}while(N > 1);
N = evals.size();
///Annoying - UT solves in reverse order;
DenseVector<T> tmp(N);
for(int i = 0; i < N; ++i)
tmp[i] = evals[N-i-1];
evals = tmp;
//
UTeigenvectors(H, trows, evals, evecs);
//UTSymmEigenvectors(H, trows, evals, evecs);
for(int i = 0; i < evals.size(); ++i)
{
evecs[i] = P * evecs[i];
normalize(evecs[i]);
evals[i] = evals[i] * Hnorm;
}
// // FIXME this is to test
// Hin.write("evecs3", evecs);
// Hin.write("evals3", evals);
// // check rsd
// for(int i = 0; i < M; i++) {
// vector<T> Aevec = Hin * evecs[i];
// RealD norm2(0.);
// for(int j = 0; j < M; j++) {
// norm2 += (Aevec[j] - evals[i] * evecs[i][j]) * (Aevec[j] - evals[i] * evecs[i][j]);
// }
// }
return tot_it;
}
template <class T>
void Hess(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
/**
turn a matrix A =
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
into
x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
with householder rotations
Slow.
*/
int N ; SizeSquare(A,N);
DenseVector<T > p; Resize(p,N); Fill(p,0);
for(int k=start;k<N-2;k++){
//cerr << "hess" << k << std::endl;
DenseVector<T > ck,v; Resize(ck,N-k-1); Resize(v,N-k-1);
for(int i=k+1;i<N;i++){ck[i-k-1] = A(i,k);} ///kth column
normalize(ck); ///Normalization cancels in PHP anyway
T beta;
Householder_vector<T >(ck, 0, ck.size()-1, v, beta); ///Householder vector
Householder_mult<T>(A,v,beta,start,k+1,N-1,0); ///A -> PA
Householder_mult<T >(A,v,beta,start,k+1,N-1,1); ///PA -> PAP^H
///Accumulate eigenvector
Householder_mult<T >(Q,v,beta,start,k+1,N-1,1); ///Q -> QP^H
}
/*for(int l=0;l<N-2;l++){
for(int k=l+2;k<N;k++){
A(0,k,l);
}
}*/
}
template <class T>
void Tri(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
///Tridiagonalize a matrix
int N; SizeSquare(A,N);
Hess(A,Q,start);
/*for(int l=0;l<N-2;l++){
for(int k=l+2;k<N;k++){
A(0,l,k);
}
}*/
}
template <class T>
void ForceTridiagonal(DenseMatrix<T> &A){
///Tridiagonalize a matrix
int N ; SizeSquare(A,N);
for(int l=0;l<N-2;l++){
for(int k=l+2;k<N;k++){
A[l][k]=0;
A[k][l]=0;
}
}
}
template <class T>
int my_SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
///Solve a symmetric eigensystem, not necessarily in tridiagonal form
int N; SizeSquare(Ain,N);
DenseMatrix<T > A; A = Ain;
DenseMatrix<T > Q; Resize(Q,N,N); Unity(Q);
Tri(A,Q,0);
int it = my_Wilkinson<T>(A, evals, evecs, small);
for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
return it;
}
template <class T>
int Wilkinson(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
return my_Wilkinson(Ain, evals, evecs, small);
}
template <class T>
int SymmEigensystem(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
return my_SymmEigensystem(Ain, evals, evecs, small);
}
template <class T>
int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
///Solve a general eigensystem, not necessarily in tridiagonal form
int N = Ain.dim;
DenseMatrix<T > A(N); A = Ain;
DenseMatrix<T > Q(N);Q.Unity();
Hess(A,Q,0);
int it = QReigensystem<T>(A, evals, evecs, small);
for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
return it;
}
}
#endif

View File

@ -0,0 +1,242 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/Householder.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef HOUSEHOLDER_H
#define HOUSEHOLDER_H
#define TIMER(A) std::cout << GridLogMessage << __FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
#define ENTER() std::cout << GridLogMessage << "ENTRY "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
#define LEAVE() std::cout << GridLogMessage << "EXIT "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
#include <cstdlib>
#include <string>
#include <cmath>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include <complex>
#include <algorithm>
namespace Grid {
/** Comparison function for finding the max element in a vector **/
template <class T> bool cf(T i, T j) {
return abs(i) < abs(j);
}
/**
Calculate a real Givens angle
**/
template <class T> inline void Givens_calc(T y, T z, T &c, T &s){
RealD mz = (RealD)abs(z);
if(mz==0.0){
c = 1; s = 0;
}
if(mz >= (RealD)abs(y)){
T t = -y/z;
s = (T)1.0 / sqrt ((T)1.0 + t * t);
c = s * t;
} else {
T t = -z/y;
c = (T)1.0 / sqrt ((T)1.0 + t * t);
s = c * t;
}
}
template <class T> inline void Givens_mult(DenseMatrix<T> &A, int i, int k, T c, T s, int dir)
{
int q ; SizeSquare(A,q);
if(dir == 0){
for(int j=0;j<q;j++){
T nu = A[i][j];
T w = A[k][j];
A[i][j] = (c*nu + s*w);
A[k][j] = (-s*nu + c*w);
}
}
if(dir == 1){
for(int j=0;j<q;j++){
T nu = A[j][i];
T w = A[j][k];
A[j][i] = (c*nu - s*w);
A[j][k] = (s*nu + c*w);
}
}
}
/**
from input = x;
Compute the complex Householder vector, v, such that
P = (I - b v transpose(v) )
b = 2/v.v
P | x | | x | k = 0
| x | | 0 |
| x | = | 0 |
| x | | 0 | j = 3
| x | | x |
These are the "Unreduced" Householder vectors.
**/
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, DenseVector<T> &v, T &beta)
{
int N ; Size(input,N);
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf<T> );
if(abs(m) > 0.0){
T alpha = 0;
for(int i=k; i<j+1; i++){
v[i] = input[i]/m;
alpha = alpha + v[i]*conj(v[i]);
}
alpha = sqrt(alpha);
beta = (T)1.0/(alpha*(alpha + abs(v[k]) ));
if(abs(v[k]) > 0.0) v[k] = v[k] + (v[k]/abs(v[k]))*alpha;
else v[k] = -alpha;
} else{
for(int i=k; i<j+1; i++){
v[i] = 0.0;
}
}
}
/**
from input = x;
Compute the complex Householder vector, v, such that
P = (I - b v transpose(v) )
b = 2/v.v
Px = alpha*e_dir
These are the "Unreduced" Householder vectors.
**/
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, int dir, DenseVector<T> &v, T &beta)
{
int N = input.size();
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf);
if(abs(m) > 0.0){
T alpha = 0;
for(int i=k; i<j+1; i++){
v[i] = input[i]/m;
alpha = alpha + v[i]*conj(v[i]);
}
alpha = sqrt(alpha);
beta = 1.0/(alpha*(alpha + abs(v[dir]) ));
if(abs(v[dir]) > 0.0) v[dir] = v[dir] + (v[dir]/abs(v[dir]))*alpha;
else v[dir] = -alpha;
}else{
for(int i=k; i<j+1; i++){
v[i] = 0.0;
}
}
}
/**
Compute the product PA if trans = 0
AP if trans = 1
P = (I - b v transpose(v) )
b = 2/v.v
start at element l of matrix A
v is of length j - k + 1 of v are nonzero
**/
template <class T> inline void Householder_mult(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int k, int j, int trans)
{
int N ; SizeSquare(A,N);
if(abs(beta) > 0.0){
for(int p=l; p<N; p++){
T s = 0;
if(trans==0){
for(int i=k;i<j+1;i++) s += conj(v[i-k])*A[i][p];
s *= beta;
for(int i=k;i<j+1;i++){ A[i][p] = A[i][p]-s*conj(v[i-k]);}
} else {
for(int i=k;i<j+1;i++){ s += conj(v[i-k])*A[p][i];}
s *= beta;
for(int i=k;i<j+1;i++){ A[p][i]=A[p][i]-s*conj(v[i-k]);}
}
}
}
}
/**
Compute the product PA if trans = 0
AP if trans = 1
P = (I - b v transpose(v) )
b = 2/v.v
start at element l of matrix A
v is of length j - k + 1 of v are nonzero
A is tridiagonal
**/
template <class T> inline void Householder_mult_tri(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int M, int k, int j, int trans)
{
if(abs(beta) > 0.0){
int N ; SizeSquare(A,N);
DenseMatrix<T> tmp; Resize(tmp,N,N); Fill(tmp,0);
T s;
for(int p=l; p<M; p++){
s = 0;
if(trans==0){
for(int i=k;i<j+1;i++) s = s + conj(v[i-k])*A[i][p];
}else{
for(int i=k;i<j+1;i++) s = s + v[i-k]*A[p][i];
}
s = beta*s;
if(trans==0){
for(int i=k;i<j+1;i++) tmp[i][p] = tmp(i,p) - s*v[i-k];
}else{
for(int i=k;i<j+1;i++) tmp[p][i] = tmp[p][i] - s*conj(v[i-k]);
}
}
for(int p=l; p<M; p++){
if(trans==0){
for(int i=k;i<j+1;i++) A[i][p] = A[i][p] + tmp[i][p];
}else{
for(int i=k;i<j+1;i++) A[p][i] = A[p][i] + tmp[p][i];
}
}
}
}
}
#endif

View File

@ -60,6 +60,7 @@ namespace Grid {
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
TotalInnerIterations = 0;
GridStopWatch TotalTimer;

View File

@ -0,0 +1,979 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
Author: Guido Cossu
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_IRBL_H
#define GRID_IRBL_H
#include <string.h> //memset
#define Glog std::cout << GridLogMessage
namespace Grid {
enum class LanczosType { irbl, rbl };
/////////////////////////////////////////////////////////////
// Implicitly restarted block lanczos
/////////////////////////////////////////////////////////////
template<class Field>
class ImplicitlyRestartedBlockLanczos {
private:
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
int MaxIter; // Max iterations
int Nstop; // Number of evecs checked for convergence
int Nu; // Numbeer of vecs in the unit block
int Nk; // Number of converged sought
int Nm; // total number of vectors
int Nblock_k; // Nk/Nu
int Nblock_m; // Nm/Nu
int Nconv_test_interval; // Number of skipped vectors when checking a convergence
RealD eresid;
IRLdiagonalisation diagonalisation;
////////////////////////////////////
// Embedded objects
////////////////////////////////////
SortEigen<Field> _sort;
LinearOperatorBase<Field> &_Linop;
OperatorFunction<Field> &_poly;
/////////////////////////
// Constructor
/////////////////////////
public:
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynomial
int _Nstop, // really sought vecs
int _Nconv_test_interval, // conv check interval
int _Nu, // vecs in the unit block
int _Nk, // sought vecs
int _Nm, // total vecs
RealD _eresid, // resid in lmd deficit
int _MaxIter, // Max iterations
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
: _Linop(Linop), _poly(poly),
Nstop(_Nstop), Nconv_test_interval(_Nconv_test_interval),
Nu(_Nu), Nk(_Nk), Nm(_Nm),
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
//eresid(_eresid), MaxIter(10),
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation)
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
////////////////////////////////
// Helpers
////////////////////////////////
static RealD normalize(Field& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j],w);
w = w - ip * evec[j];
}
normalize(w);
}
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j*Nu],w);
w = w - ip * evec[j*Nu];
}
normalize(w);
}
void calc(std::vector<RealD>& eval,
std::vector<Field>& evec,
const std::vector<Field>& src, int& Nconv, LanczosType Impl)
{
switch (Impl) {
case LanczosType::irbl:
calc_irbl(eval,evec,src,Nconv);
break;
case LanczosType::rbl:
calc_rbl(eval,evec,src,Nconv);
break;
}
}
void calc_irbl(std::vector<RealD>& eval,
std::vector<Field>& evec,
const std::vector<Field>& src, int& Nconv)
{
std::string fname = std::string(cname+"::calc_irbl()");
GridBase *grid = evec[0]._grid;
assert(grid == src[0]._grid);
assert( Nu = src.size() );
Glog << std::string(74,'*') << std::endl;
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
Glog << std::string(74,'*') << std::endl;
Glog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
Glog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
Glog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
Glog <<" -- size of eval = "<< eval.size() << std::endl;
Glog <<" -- size of evec = "<< evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
Glog << "Diagonalisation is Eigen "<< std::endl;
} else {
abort();
}
Glog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<RealD> eval2(Nm);
std::vector<RealD> resid(Nk);
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
std::vector<int> Iconv(Nm);
std::vector<Field> B(Nm,grid); // waste of space replicating
std::vector<Field> f(Nu,grid);
std::vector<Field> f_copy(Nu,grid);
Field v(grid);
Nconv = 0;
RealD beta_k;
// set initial vector
for (int i=0; i<Nu; ++i) {
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
evec[i] = src[i];
orthogonalize(evec[i],evec,i);
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
}
// initial Nblock_k steps
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
// restarting loop begins
int iter;
for(iter = 0; iter<MaxIter; ++iter){
Glog <<"#Restart iteration = "<< iter << std::endl;
// additional (Nblock_m - Nblock_k) steps
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
// getting eigenvalues
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nm; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
_sort.push(eval2,Nm);
Glog << "#Ritz value before shift: "<< std::endl;
for(int i=0; i<Nm; ++i){
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
//----------------------------------------------------------------------
if ( Nm>Nk ) {
Glog <<" #Apply shifted QR transformations "<<std::endl;
//int k2 = Nk+Nu;
int k2 = Nk;
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
for(int ip=Nk; ip<Nm; ++ip){
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
}
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
for(int i=0; i<k2; ++i) B[i] = 0.0;
for(int j=0; j<k2; ++j){
for(int k=0; k<Nm; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Q(k,j);
}
}
for(int i=0; i<k2; ++i) evec[i] = B[i];
// reconstruct initial vector for additional pole space
blockwiseStep(lmd,lme,evec,f,f_copy,Nblock_k-1);
// getting eigenvalues
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nm; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
_sort.push(eval2,Nk);
Glog << "#Ritz value after shift: "<< std::endl;
for(int i=0; i<Nk; ++i){
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
}
//----------------------------------------------------------------------
// Convergence test
Glog <<" #Convergence test: "<<std::endl;
for(int k = 0; k<Nk; ++k) B[k]=0.0;
for(int j = 0; j<Nk; ++j){
for(int k = 0; k<Nk; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Qt(k,j);
}
}
Nconv = 0;
for(int i=0; i<Nk; ++i){
_Linop.HermOp(B[i],v);
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
RealD vden = norm2(B[i]);
eval2[i] = vnum/vden;
v -= eval2[i]*B[i];
RealD vv = norm2(v);
resid[i] = vv;
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i];
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
//if( (vv<eresid*eresid) && (i == Nconv) ){
if (vv<eresid*eresid) {
Iconv[Nconv] = i;
++Nconv;
}
} // i-loop end
Glog <<" #modes converged: "<<Nconv<<std::endl;
for(int i=0; i<Nconv; ++i){
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<Iconv[i]<<"] ";
std::cout << "eval_conv = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[Iconv[i]];
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< resid[Iconv[i]]<< std::endl;
}
if ( Nconv>=Nstop ) break;
} // end of iter loop
Glog << std::string(74,'*') << std::endl;
if ( Nconv<Nstop ) {
Glog << fname + " NOT converged ; Summary :\n";
} else {
Glog << fname + " CONVERGED ; Summary :\n";
// Sort convered eigenpairs.
eval.resize(Nconv);
evec.resize(Nconv,grid);
for(int i=0; i<Nconv; ++i){
eval[i] = eval2[Iconv[i]];
evec[i] = B[Iconv[i]];
}
_sort.push(eval,evec,Nconv);
}
Glog << std::string(74,'*') << std::endl;
Glog << " -- Iterations = "<< iter << "\n";
//Glog << " -- beta(k) = "<< beta_k << "\n";
Glog << " -- Nconv = "<< Nconv << "\n";
Glog << std::string(74,'*') << std::endl;
}
void calc_rbl(std::vector<RealD>& eval,
std::vector<Field>& evec,
const std::vector<Field>& src, int& Nconv)
{
std::string fname = std::string(cname+"::calc_rbl()");
GridBase *grid = evec[0]._grid;
assert(grid == src[0]._grid);
assert( Nu = src.size() );
int Np = (Nm-Nk);
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
int Nblock_p = Np/Nu;
Glog << std::string(74,'*') << std::endl;
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
Glog << std::string(74,'*') << std::endl;
Glog <<" -- seek (min) Nk = "<< Nk <<" vectors"<< std::endl;
Glog <<" -- seek (inc) Np = "<< Np <<" vectors"<< std::endl;
Glog <<" -- seek (max) Nm = "<< Nm <<" vectors"<< std::endl;
Glog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
Glog <<" -- size of eval = "<< eval.size() << std::endl;
Glog <<" -- size of evec = "<< evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
Glog << "Diagonalisation is Eigen "<< std::endl;
} else {
abort();
}
Glog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<RealD> eval2(Nk);
std::vector<RealD> resid(Nm);
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
std::vector<int> Iconv(Nm);
std::vector<Field> B(Nm,grid); // waste of space replicating
std::vector<Field> f(Nu,grid);
std::vector<Field> f_copy(Nu,grid);
Field v(grid);
Nconv = 0;
RealD beta_k;
// set initial vector
for (int i=0; i<Nu; ++i) {
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
evec[i] = src[i];
orthogonalize(evec[i],evec,i);
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
}
// initial Nblock_k steps
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
// restarting loop begins
int iter;
int Nblock_l, Nblock_r;
int Nl, Nr;
int Nconv_guess = 0;
for(iter = 0; iter<MaxIter; ++iter){
Glog <<"#Restart iteration = "<< iter << std::endl;
Nblock_l = Nblock_k + iter*Nblock_p;
Nblock_r = Nblock_l + Nblock_p;
Nl = Nblock_l*Nu;
Nr = Nblock_r*Nu;
eval2.resize(Nr);
// additional Nblock_p steps
for(int b=Nblock_l; b<Nblock_r; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
// getting eigenvalues
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nr; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nr,Nr);
diagonalize(eval2,lmd2,lme2,Nu,Nr,Nr,Qt,grid);
_sort.push(eval2,Nr);
Glog << "#Ritz value: "<< std::endl;
for(int i=0; i<Nr; ++i){
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
// Convergence test
Glog <<" #Convergence test: "<<std::endl;
Nconv = 0;
for(int k = 0; k<Nr; ++k) B[k]=0.0;
for(int j = 0; j<Nr; j+=Nconv_test_interval){
if ( j/Nconv_test_interval == Nconv ) {
Glog <<" #rotation for next check point evec"
<< std::setw(4)<< std::setiosflags(std::ios_base::right)
<< "["<< j <<"]" <<std::endl;
for(int k = 0; k<Nr; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Qt(k,j);
}
_Linop.HermOp(B[j],v);
RealD vnum = real(innerProduct(B[j],v)); // HermOp.
RealD vden = norm2(B[j]);
eval2[j] = vnum/vden;
v -= eval2[j]*B[j];
RealD vv = norm2(v);
resid[j] = vv;
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<j<<"] ";
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[j];
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
//if( (vv<eresid*eresid) && (i == Nconv) ){
if (vv<eresid*eresid) {
Iconv[Nconv] = j;
++Nconv;
}
} else {
break;
}
} // j-loop end
Glog <<" #modes converged: "<<Nconv<<std::endl;
for(int i=0; i<Nconv; ++i){
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<Iconv[i]<<"] ";
std::cout << "eval_conv = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[Iconv[i]];
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< resid[Iconv[i]]<< std::endl;
}
(Nconv > 0 ) ? Nconv_guess = 1 + (Nconv-1)*Nconv_test_interval : Nconv_guess = 0;
if ( Nconv_guess >= Nstop ) break;
} // end of iter loop
Glog << std::string(74,'*') << std::endl;
if ( Nconv_guess < Nstop ) {
Glog << fname + " NOT converged ; Summary :\n";
} else {
Glog << fname + " CONVERGED ; Summary :\n";
// Sort convered eigenpairs.
eval.resize(Nconv);
evec.resize(Nconv,grid);
for(int i=0; i<Nconv; ++i){
eval[i] = eval2[Iconv[i]];
evec[i] = B[Iconv[i]];
}
_sort.push(eval,evec,Nconv);
}
Glog << std::string(74,'*') << std::endl;
Glog << " -- Iterations = "<< iter << "\n";
//Glog << " -- beta(k) = "<< beta_k << "\n";
Glog << " -- Nconv = "<< Nconv << "\n";
Glog << " -- Nconv (guess) = "<< Nconv_guess << "\n";
Glog << std::string(74,'*') << std::endl;
}
private:
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
std::vector<Field>& evec,
std::vector<Field>& w,
std::vector<Field>& w_copy,
int b)
{
const RealD tiny = 1.0e-20;
int Nu = w.size();
int Nm = evec.size();
assert( b < Nm/Nu );
// converts block index to full indicies for an interval [L,R)
int L = Nu*b;
int R = Nu*(b+1);
Real beta;
// 3. wk:=Avkβkv_{k1}
for (int k=L, u=0; k<R; ++k, ++u) {
_poly(_Linop,evec[k],w[u]);
}
if (b>0) {
for (int u=0; u<Nu; ++u) {
//for (int k=L-Nu; k<L; ++k) {
for (int k=L-Nu+u; k<L; ++k) {
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
}
}
}
// 4. αk:=(vk,wk)
//for (int u=0; u<Nu; ++u) {
// for (int k=L; k<R; ++k) {
// lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
// }
// lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
//}
for (int u=0; u<Nu; ++u) {
for (int k=L+u; k<R; ++k) {
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
lmd[k-L][u+L] = conjugate(lmd[u][k]); // force hermicity
}
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
}
// 5. wk:=wkαkvk
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
w[u] = w[u] - evec[k]*lmd[u][k];
}
w_copy[u] = w[u];
}
// In block version, the steps 6 and 7 in Lanczos construction is
// replaced by the QR decomposition of new basis block.
// It results block version beta and orthonormal block basis.
// Here, QR decomposition is done by using Gram-Schmidt.
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
lme[u][k] = 0.0;
}
}
#if 0
beta = normalize(w[0]);
for (int u=1; u<Nu; ++u) {
//orthogonalize(w[u],w_copy,u);
orthogonalize(w[u],w,u);
}
#else
// re-orthogonalization for numerical stability
for (int u=0; u<Nu; ++u) {
orthogonalize(w[u],evec,R);
}
// QR part
for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u);
}
#endif
for (int u=0; u<Nu; ++u) {
//for (int v=0; v<Nu; ++v) {
for (int v=u; v<Nu; ++v) {
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
}
lme[u][L+u] = real(lme[u][L+u]); // force diagonal to be real
}
//lme[0][L] = beta;
for (int u=0; u<Nu; ++u) {
Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
for (int k=L+u; k<R; ++k) {
Glog <<" In block "<< b << ",";
std::cout <<" beta[" << u << "," << k-L << "] = ";
std::cout << lme[u][k] << std::endl;
}
}
#if 0
// re-orthogonalization for numerical stability
if (b>0) {
for (int u=0; u<Nu; ++u) {
orthogonalize(w[u],evec,R);
}
for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u);
}
}
//if (b>0) {
// orthogonalize_blockhead(w[0],evec,b,Nu);
// for (int u=1; u<Nu; ++u) {
// orthogonalize(w[u],w,u);
// }
//}
#endif
if (b < Nm/Nu-1) {
for (int u=0; u<Nu; ++u) {
evec[R+u] = w[u];
}
}
}
void diagonalize_Eigen(std::vector<RealD>& eval,
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nk, int Nm,
Eigen::MatrixXcd & Qt, // Nm x Nm
GridBase *grid)
{
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//std::cout << BlockTriDiag << std::endl;
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
for (int i = 0; i < Nk; i++) {
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
}
for (int i = 0; i < Nk; i++) {
for (int j = 0; j < Nk; j++) {
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
}
}
}
void diagonalize(std::vector<RealD>& eval,
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nk, int Nm,
Eigen::MatrixXcd & Qt,
GridBase *grid)
{
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
} else {
assert(0);
}
}
void unpackHermitBlockTriDiagMatToEigen(
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
// rearrange
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
M(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//Glog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
}
void packHermitBlockTriDiagMatfromEigen(
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
// rearrange
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
lmd[u][k] = M(k,u+(k/Nu)*Nu);
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
}
}
//Glog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
}
// assume the input matrix M is a band matrix
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//Glog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Mtmp = M;
for (int i=0; i<Nm; ++i ) {
Mtmp(i,i) = M(i,i) - Dsh;
}
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
Q = QRD.householderQ();
R = QRD.matrixQR(); // upper triangular part is the R matrix.
// lower triangular part used to represent series
// of Q sequence.
// equivalent operation of Qprod *= Q
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm-2*(Nu+1); ++j) {
// for (int k=0; k<2*(Nu+1)+j; ++k) {
// M(i,j) += Qprod(i,k)*Q(k,j);
// }
// }
//}
//for (int i=0; i<Nm; ++i) {
// for (int j=Nm-2*(Nu+1); j<Nm; ++j) {
// for (int k=0; k<Nm; ++k) {
// M(i,j) += Qprod(i,k)*Q(k,j);
// }
// }
//}
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
for (int i=0; i<Nm; ++i) {
for (int j=0; j<Nm-(Nu+1); ++j) {
for (int k=0; k<Nu+1+j; ++k) {
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
}
}
}
for (int i=0; i<Nm; ++i) {
for (int j=Nm-(Nu+1); j<Nm; ++j) {
for (int k=0; k<Nm; ++k) {
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
}
}
}
//static int ntimes = 2;
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
// for (int i=ntimes*Nu+j; i<Nm; ++i) {
// Mtmp(i,j) = 0.0;
// }
//}
//ntimes++;
Qprod = Mtmp;
// equivalent operation of M = Q.adjoint()*(M*Q)
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
for (int a=0, i=0, kmax=0; a<Nu+1; ++a) {
for (int j=0; j<Nm-a; ++j) {
i = j+a;
kmax = (Nu+1)+j;
if (kmax > Nm) kmax = Nm;
for (int k=i; k<kmax; ++k) {
Mtmp(i,j) += R(i,k)*Q(k,j);
}
Mtmp(j,i) = conj(Mtmp(i,j));
}
}
for (int i=0; i<Nm; ++i) {
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
}
M = Mtmp;
//M = Q.adjoint()*(M*Q);
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// if (i==j) M(i,i) = real(M(i,i));
// if (j>i) M(i,j) = conj(M(j,i));
// if (i-j > Nu || j-i > Nu) M(i,j) = 0.;
// }
//}
//Glog << "shiftedQRDecompEigen() end" << endl;
}
void exampleQRDecompEigen(void)
{
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
A(0,0) = 12.0;
A(0,1) = -51.0;
A(0,2) = 4.0;
A(1,0) = 6.0;
A(1,1) = 167.0;
A(1,2) = -68.0;
A(2,0) = -4.0;
A(2,1) = 24.0;
A(2,2) = -41.0;
Glog << "matrix A before ColPivHouseholder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
Glog << std::endl;
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
Glog << "matrix A after ColPivHouseholder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "HouseholderQ with sequence lenth = 1" << std::endl;
Q = QRD.householderQ().setLength(1);
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "HouseholderQ with sequence lenth = 2" << std::endl;
Q = QRD.householderQ().setLength(2);
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "matrixR" << std::endl;
R = QRD.matrixR();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "rank = " << QRD.rank() << std::endl;
Glog << "threshold = " << QRD.threshold() << std::endl;
Glog << "matrixP" << std::endl;
P = QRD.colsPermutation();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "QR decomposition without column pivoting" << std::endl;
A(0,0) = 12.0;
A(0,1) = -51.0;
A(0,2) = 4.0;
A(1,0) = 6.0;
A(1,1) = 167.0;
A(1,2) = -68.0;
A(2,0) = -4.0;
A(2,1) = 24.0;
A(2,2) = -41.0;
Glog << "matrix A before Householder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
Glog << std::endl;
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
Glog << "HouseholderQ" << std::endl;
Q = QRDplain.householderQ();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
Glog << std::endl;
Glog << "matrix A after Householder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
Glog << std::endl;
}
};
}
#undef Glog
#endif

View File

@ -0,0 +1,835 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
Author: Guido Cossu
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_IRBL_H
#define GRID_IRBL_H
#include <string.h> //memset
#define clog std::cout << GridLogMessage
namespace Grid {
/////////////////////////////////////////////////////////////
// Implicitly restarted block lanczos
/////////////////////////////////////////////////////////////
template<class Field>
class ImplicitlyRestartedBlockLanczos {
private:
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
int MaxIter; // Max iterations
int Nstop; // Number of evecs checked for convergence
int Nu; // Numbeer of vecs in the unit block
int Nk; // Number of converged sought
int Nm; // total number of vectors
int Nblock_k; // Nk/Nu
int Nblock_m; // Nm/Nu
RealD eresid;
IRLdiagonalisation diagonalisation;
////////////////////////////////////
// Embedded objects
////////////////////////////////////
SortEigen<Field> _sort;
LinearOperatorBase<Field> &_Linop;
OperatorFunction<Field> &_poly;
/////////////////////////
// Constructor
/////////////////////////
public:
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynomial
int _Nstop, // really sought vecs
int _Nu, // vecs in the unit block
int _Nk, // sought vecs
int _Nm, // total vecs
RealD _eresid, // resid in lmd deficit
int _MaxIter, // Max iterations
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
: _Linop(Linop), _poly(poly),
Nstop(_Nstop), Nu(_Nu), Nk(_Nk), Nm(_Nm),
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
//eresid(_eresid), MaxIter(10),
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation)
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
////////////////////////////////
// Helpers
////////////////////////////////
static RealD normalize(Field& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j],w);
w = w - ip * evec[j];
}
normalize(w);
}
/* Rudy Arthur's thesis pp.137
------------------------
Require: M > K P = M K †
Compute the factorization AVM = VM HM + fM eM
repeat
Q=I
for i = 1,...,P do
QiRi =HM θiI Q = QQi
H M = Q †i H M Q i
end for
βK =HM(K+1,K) σK =Q(M,K)
r=vK+1βK +rσK
VK =VM(1:M)Q(1:M,1:K)
HK =HM(1:K,1:K)
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval,
std::vector<Field>& evec,
const std::vector<Field>& src, int& Nconv)
{
std::string fname = std::string(cname+"::calc()");
GridBase *grid = evec[0]._grid;
assert(grid == src[0]._grid);
assert( Nu = src.size() );
clog << std::string(74,'*') << std::endl;
clog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
clog << std::string(74,'*') << std::endl;
clog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
clog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
clog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
clog <<" -- size of eval = "<< eval.size() << std::endl;
clog <<" -- size of evec = "<< evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
clog << "Diagonalisation is Eigen "<< std::endl;
} else {
abort();
}
clog << std::string(74,'*') << std::endl;
assert(Nm == evec.size() && Nm == eval.size());
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
std::vector<RealD> eval2(Nm);
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
std::vector<int> Iconv(Nm);
std::vector<Field> B(Nm,grid); // waste of space replicating
std::vector<Field> f(Nu,grid);
std::vector<Field> f_copy(Nu,grid);
Field v(grid);
Nconv = 0;
RealD beta_k;
// set initial vector
for (int i=0; i<Nu; ++i) {
clog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
evec[i] = src[i];
orthogonalize(evec[i],evec,i);
clog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
}
// initial Nblock_k steps
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
// restarting loop begins
int iter;
for(iter = 0; iter<MaxIter; ++iter){
clog <<" **********************"<< std::endl;
clog <<" Restart iteration = "<< iter << std::endl;
clog <<" **********************"<< std::endl;
// additional (Nblock_m - Nblock_k) steps
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
for(int k=0; k<Nm; ++k) {
clog << "ckpt A1: lme[" << k << "] = " << lme[0][k] << '\n';
}
for(int k=0; k<Nm; ++k) {
clog << "ckpt A2: lmd[" << k << "] = " << lmd[0][k] << '\n';
}
// residual vector
#if 1 // ypj[fixme] temporary to check a case when block has one vector
for ( int i=0; i<Nu; ++i) f_copy[i] = f[i];
for ( int i=0; i<Nu; ++i) {
f[i] = f_copy[0]*lme[0][Nm-Nu+i];
for ( int j=1; j<Nu; ++j) {
f[i] += f_copy[j]*lme[j][Nm-Nu+i];
}
//clog << "ckpt C (i= " << i << ")" << '\n';
//clog << "norm2(f) = " << norm2(f[i]) << std::endl;
}
#endif
// getting eigenvalues
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nm; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
//for(int k=0; k<Nm; ++k){
// clog << "ckpt D " << '\n';
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
//}
// sorting
_sort.push(eval2,Nm);
//for(int k=0; k<Nm; ++k){
// clog << "ckpt E " << '\n';
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
//}
// Implicitly shifted QR transformations
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
for(int ip=Nk; ip<Nm; ++ip){
clog << "ckpt B1: shift[" << ip << "] = " << eval2[ip] << endl;
shiftedQRDecompEigen(BTDM,Nm,eval2[ip],Q);
}
BTDM = Q.adjoint()*(BTDM*Q);
for (int i=0; i<Nm; ++i ) {
for (int j=i+1; j<Nm; ++j ) {
BTDM(i,j) = BTDM(j,i);
}
//BTDM(i,i) = real(BTDM(i,i));
}
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// clog << "ckpt G1: M[" << i << "," << j << "] = " << BTDM(i,j) << '\n';
// }
//}
//for (int i=0; i<Nm; ++i) {
// for (int j=0; j<Nm; ++j) {
// clog << "ckpt G2: Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
// }
//}
for (int i=0; i<Nm; ++i) {
clog << "ckpt C1: lme[" << i << "] = " << lme[0][i] << '\n';
}
for (int i=0; i<Nm; ++i) {
clog << "ckpt C2: lmd[" << i << "] = " << lmd[0][i] << '\n';
}
for(int i=0; i<Nk+Nu; ++i) B[i] = 0.0;
for(int j=0; j<Nk+Nu; ++j){
for(int k=0; k<Nm; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Q(k,j);
}
}
for(int i=0; i<Nk+Nu; ++i) {
evec[i] = B[i];
//clog << "ckpt F: norm2_evec[= " << i << "]" << norm2(evec[i]) << std::endl;
}
#if 1 // ypj[fixme] temporary to check a case when block has one vector
// Compressed vector f and beta(k2)
f[0] *= Q(Nm-1,Nk-1);
f[0] += lme[0][Nk-1] * evec[Nk]; // was commented out
std::cout<< GridLogMessage<<"ckpt D1: Q[Nm-1,Nk-1] = "<<Q(Nm-1,Nk-1)<<std::endl;
beta_k = norm2(f[0]);
beta_k = sqrt(beta_k);
std::cout<< GridLogMessage<<"ckpt D2: beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[Nk] = betar * f[0];
lme[0][Nk-1] = beta_k;
#endif
// Convergence test
for(int u=0; u<Nu; ++u){
for(int k=0; k<Nm; ++k){
lmd2[u][k] = lmd[u][k];
lme2[u][k] = lme[u][k];
}
}
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
for(int k = 0; k<Nk; ++k) B[k]=0.0;
for(int j = 0; j<Nk; ++j){
for(int k = 0; k<Nk; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += evec[k]*Qt(k,j);
}
}
//for (int i=0; i<Nk; ++i) {
// for (int j=0; j<Nk; ++j) {
// clog << "ckpt H1: R[" << i << "," << j << "] = " << Qt(i,j) << '\n';
// }
//}
//for (int i=0; i<Nk; ++i) {
// clog << "ckpt H2: eval2[" << i << "] = " << eval2[i] << '\n';
//}
//for(int j=0; j<Nk; ++j) {
// clog << "ckpt I: norm2_B[ " << j << "]" << norm2(B[j]) << std::endl;
//}
Nconv = 0;
for(int i=0; i<Nk; ++i){
_Linop.HermOp(B[i],v);
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
RealD vden = norm2(B[i]);
eval2[i] = vnum/vden;
v -= eval2[i]*B[i];
RealD vv = norm2(v);
std::cout.precision(13);
clog << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
if( (vv<eresid*eresid) && (i == Nconv) ){
//if( (vv<eresid*eresid) ){
Iconv[Nconv] = i;
++Nconv;
}
} // i-loop end
clog <<" #modes converged: "<<Nconv<<std::endl;
if( Nconv>=Nstop ){
goto converged;
}
} // end of iter loop
clog <<"**************************************************************************"<< std::endl;
std::cout<< GridLogError << fname + " NOT converged.";
clog <<"**************************************************************************"<< std::endl;
abort();
converged:
// Sorting
eval.resize(Nconv);
evec.resize(Nconv,grid);
for(int i=0; i<Nconv; ++i){
eval[i] = eval2[Iconv[i]];
evec[i] = B[Iconv[i]];
}
_sort.push(eval,evec,Nconv);
clog <<"**************************************************************************"<< std::endl;
clog << fname + " CONVERGED ; Summary :\n";
clog <<"**************************************************************************"<< std::endl;
clog << " -- Iterations = "<< iter << "\n";
clog << " -- beta(k) = "<< beta_k << "\n";
clog << " -- Nconv = "<< Nconv << "\n";
clog <<"**************************************************************************"<< std::endl;
}
private:
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
8. EndDo
*/
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
std::vector<Field>& evec,
std::vector<Field>& w,
std::vector<Field>& w_copy,
int b)
{
const RealD tiny = 1.0e-20;
int Nu = w.size();
int Nm = evec.size();
assert( b < Nm/Nu );
// converts block index to full indicies for an interval [L,R)
int L = Nu*b;
int R = Nu*(b+1);
Real beta;
// 3. wk:=Avkβkv_{k1}
for (int k=L, u=0; k<R; ++k, ++u) {
_poly(_Linop,evec[k],w[u]);
}
if (b>0) {
for (int u=0; u<Nu; ++u) {
for (int k=L-Nu; k<L; ++k) {
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
//clog << "ckpt A (k= " << k+1 << ")" << '\n';
//clog << "lme = " << lme[u][k] << '\n';
//clog << "lme = " << conjugate(lme[u][k]) << '\n';
}
//clog << "norm(w) = " << norm2(w[u]) << std::endl;
}
}
// 4. αk:=(vk,wk)
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
}
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
//clog << "ckpt B (k= " << L+u << ")" << '\n';
//clog << "lmd = " << lmd[u][L+u] << std::endl;
}
// 5. wk:=wkαkvk
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
w[u] = w[u] - evec[k]*lmd[u][k];
}
w_copy[u] = w[u];
}
// In block version, the steps 6 and 7 in Lanczos construction is
// replaced by the QR decomposition of new basis block.
// It results block version beta and orthonormal block basis.
// Here, QR decomposition is done by using Gram-Schmidt
for (int u=0; u<Nu; ++u) {
for (int k=L; k<R; ++k) {
lme[u][k] = 0.0;
}
}
beta = normalize(w[0]);
for (int u=1; u<Nu; ++u) {
//orthogonalize(w[u],w_copy,u);
orthogonalize(w[u],w,u);
}
for (int u=0; u<Nu; ++u) {
for (int v=0; v<Nu; ++v) {
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
}
}
lme[0][L] = beta;
#if 0
for (int u=0; u<Nu; ++u) {
for (int k=L+u; k<R; ++k) {
if (lme[u][k] < tiny) {
clog <<" In block "<< b << ",";
std::cout <<" beta[" << u << "," << k-L << "] = ";
std::cout << lme[u][k] << std::endl;
}
}
}
#else
for (int u=0; u<Nu; ++u) {
clog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
for (int k=L+u; k<R; ++k) {
clog <<" In block "<< b << ",";
std::cout <<" beta[" << u << "," << k-L << "] = ";
std::cout << lme[u][k] << std::endl;
}
}
#endif
// re-orthogonalization for numerical stability
if (b>0) {
for (int u=0; u<Nu; ++u) {
orthogonalize(w[u],evec,R);
}
}
if (b < Nm/Nu-1) {
for (int u=0; u<Nu; ++u) {
evec[R+u] = w[u];
}
}
}
void diagonalize_Eigen(std::vector<RealD>& eval,
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nk, int Nm,
Eigen::MatrixXcd & Qt, // Nm x Nm
GridBase *grid)
{
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//std::cout << BlockTriDiag << std::endl;
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
for (int i = 0; i < Nk; i++) {
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
}
for (int i = 0; i < Nk; i++) {
for (int j = 0; j < Nk; j++) {
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
}
}
}
void diagonalize(std::vector<RealD>& eval,
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nk, int Nm,
Eigen::MatrixXcd & Qt,
GridBase *grid)
{
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
} else {
assert(0);
}
}
void unpackHermitBlockTriDiagMatToEigen(
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//clog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
// rearrange
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
M(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//clog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
}
void packHermitBlockTriDiagMatfromEigen(
std::vector<std::vector<ComplexD>>& lmd,
std::vector<std::vector<ComplexD>>& lme,
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//clog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
// rearrange
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
lmd[u][k] = M(k,u+(k/Nu)*Nu);
}
}
for ( int u=0; u<Nu; ++u ) {
for (int k=Nu; k<Nk; ++k ) {
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
}
}
//clog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
}
// void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
// RealD Dsh,
// Eigen::MatrixXcd& Qprod, int Nk)
// {
// //clog << "shiftedQRDecompEigen() begin" << '\n';
// Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
// Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
//
// Mtmp = M;
// for (int i=0; i<Nm; ++i ) {
// Mtmp(i,i) = M(i,i) - Dsh;
// }
//
// Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
// Q = QRD.householderQ();
//
// M = Q.adjoint()*(M*Q);
//#if 0
// Qprod *= Q;
//#else
// Mtmp = Qprod*Q;
//
// Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Mtmp);
// Qprod = QRD2.householderQ();
//
// Mtmp -= Qprod;
// clog << "Frobenius norm ||Qprod(after) - Qprod|| = " << Mtmp.norm() << std::endl;
//#endif
// //clog << "shiftedQRDecompEigen() end" << endl;
// }
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//clog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
//Eigen::MatrixXcd Qtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Mtmp = Qprod.adjoint()*(M*Qprod);
for (int i=0; i<Nm; ++i ) {
for (int j=i+1; j<Nm; ++j ) {
Mtmp(i,j) = Mtmp(j,i);
}
}
for (int i=0; i<Nm; ++i ) {
Mtmp(i,i) -= Dsh;
//Mtmp(i,i) = real(Mtmp(i,i)-Dsh);
}
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
//Qtmp = Qprod*QRD.householderQ();
//Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Qtmp);
//Qprod = QRD2.householderQ();
Qprod *= QRD.householderQ();
//ComplexD p;
//RealD r;
//r = 0.;
//for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,0))*Qprod(k,0));
//r = sqrt(r);
//for (int k=0; k<Nm; ++k) Qprod(k,0) /= r;
//
//for (int i=1; i<Nm; ++i) {
// for (int j=0; j<i; ++j) {
// p = 0.;
// for (int k=0; k<Nm; ++k) {
// p += conj(Qprod(k,j))*Qprod(k,i);
// }
// for (int k=0; k<Nm; ++k) {
// Qprod(k,i) -= p*Qprod(k,j);
// }
// }
// r = 0.;
// for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,i))*Qprod(k,i));
// r = sqrt(r);
// for (int k=0; k<Nm; ++k) Qprod(k,i) /= r;
//}
//clog << "shiftedQRDecompEigen() end" << endl;
}
void exampleQRDecompEigen(void)
{
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
A(0,0) = 12.0;
A(0,1) = -51.0;
A(0,2) = 4.0;
A(1,0) = 6.0;
A(1,1) = 167.0;
A(1,2) = -68.0;
A(2,0) = -4.0;
A(2,1) = 24.0;
A(2,2) = -41.0;
clog << "matrix A before ColPivHouseholder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
clog << "matrix A after ColPivHouseholder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
clog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "HouseholderQ with sequence lenth = 1" << std::endl;
Q = QRD.householderQ().setLength(1);
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "HouseholderQ with sequence lenth = 2" << std::endl;
Q = QRD.householderQ().setLength(2);
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "matrixR" << std::endl;
R = QRD.matrixR();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
}
}
clog << std::endl;
clog << "rank = " << QRD.rank() << std::endl;
clog << "threshold = " << QRD.threshold() << std::endl;
clog << "matrixP" << std::endl;
P = QRD.colsPermutation();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
}
}
clog << std::endl;
clog << "QR decomposition without column pivoting" << std::endl;
A(0,0) = 12.0;
A(0,1) = -51.0;
A(0,2) = 4.0;
A(1,0) = 6.0;
A(1,1) = 167.0;
A(1,2) = -68.0;
A(2,0) = -4.0;
A(2,1) = 24.0;
A(2,2) = -41.0;
clog << "matrix A before Householder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
clog << "HouseholderQ" << std::endl;
Q = QRDplain.householderQ();
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
}
}
clog << std::endl;
clog << "matrix A after Householder" << std::endl;
for ( int i=0; i<3; i++ ) {
for ( int j=0; j<3; j++ ) {
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
}
}
clog << std::endl;
}
};
}
#undef clog
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,625 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung
Author: Guido Cossu
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_IRL_H
#define GRID_IRL_H
#include <string.h> //memset
namespace Grid {
enum IRLdiagonalisation {
IRLdiagonaliseWithDSTEGR,
IRLdiagonaliseWithQR,
IRLdiagonaliseWithEigen
};
////////////////////////////////////////////////////////////////////////////////
// Helper class for sorting the evalues AND evectors by Field
// Use pointer swizzle on vectors
////////////////////////////////////////////////////////////////////////////////
template<class Field>
class SortEigen {
private:
static bool less_lmd(RealD left,RealD right){
return left > right;
}
static bool less_pair(std::pair<RealD,Field const*>& left,
std::pair<RealD,Field const*>& right){
return left.first > (right.first);
}
public:
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
////////////////////////////////////////////////////////////////////////
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
// : The vector reorder should be done by pointer swizzle somehow
////////////////////////////////////////////////////////////////////////
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
for(int i=0;i<N;++i){
lmd[i]=it->first;
evec[i]=*(it->second);
++it;
}
}
void push(std::vector<RealD>& lmd,int N) {
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
}
bool saturated(RealD lmd, RealD thrs) {
return fabs(lmd) > fabs(thrs);
}
};
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template<class Field>
class ImplicitlyRestartedLanczos {
private:
int MaxIter; // Max iterations
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Nm; // Nm -- total number of vectors
RealD eresid;
IRLdiagonalisation diagonalisation;
////////////////////////////////////
// Embedded objects
////////////////////////////////////
SortEigen<Field> _sort;
LinearOperatorBase<Field> &_Linop;
OperatorFunction<Field> &_poly;
/////////////////////////
// Constructor
/////////////////////////
public:
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynomial
int _Nstop, // really sought vecs
int _Nk, // sought vecs
int _Nm, // total vecs
RealD _eresid, // resid in lmd deficit
int _MaxIter, // Max iterations
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
_Linop(Linop), _poly(poly),
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation)
{ };
////////////////////////////////
// Helpers
////////////////////////////////
static RealD normalise(Field& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j],w);
w = w - ip * evec[j];
}
normalise(w);
}
/* Rudy Arthur's thesis pp.137
------------------------
Require: M > K P = M K †
Compute the factorization AVM = VM HM + fM eM
repeat
Q=I
for i = 1,...,P do
QiRi =HM θiI Q = QQi
H M = Q †i H M Q i
end for
βK =HM(K+1,K) σK =Q(M,K)
r=vK+1βK +rσK
VK =VM(1:M)Q(1:M,1:K)
HK =HM(1:K,1:K)
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
{
GridBase *grid = evec[0]._grid;
assert(grid == src._grid);
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
}
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
assert(Nm == evec.size() && Nm == eval.size());
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);
std::vector<RealD> eval2(Nm);
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
std::vector<int> Iconv(Nm);
std::vector<Field> B(Nm,grid); // waste of space replicating
Field f(grid);
Field v(grid);
int k1 = 1;
int k2 = Nk;
Nconv = 0;
RealD beta_k;
// Set initial vector
evec[0] = src;
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
normalise(evec[0]);
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
// Initial Nk steps
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
// Restarting loop begins
int iter;
for(iter = 0; iter<MaxIter; ++iter){
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
f *= lme[Nm-1];
// getting eigenvalues
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k+k1-1];
lme2[k] = lme[k+k1-1];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
// sorting
_sort.push(eval2,Nm);
// Implicitly shifted QR transformations
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
for(int ip=k2; ip<Nm; ++ip){
// Eigen replacement for qr_decomp ???
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
}
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
for(int j=k1-1; j<k2+1; ++j){
for(int k=0; k<Nm; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += Qt(j,k) * evec[k];
}
}
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
// Compressed vector f and beta(k2)
f *= Qt(k2-1,Nm-1);
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = sqrt(beta_k);
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[k2] = betar * f;
lme[k2-1] = beta_k;
// Convergence test
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k];
lme2[k] = lme[k];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
for(int k = 0; k<Nk; ++k) B[k]=0.0;
for(int j = 0; j<Nk; ++j){
for(int k = 0; k<Nk; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += Qt(j,k) * evec[k];
}
}
Nconv = 0;
for(int i=0; i<Nk; ++i){
_Linop.HermOp(B[i],v);
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
RealD vden = norm2(B[i]);
eval2[i] = vnum/vden;
v -= eval2[i]*B[i];
RealD vv = norm2(v);
std::cout.precision(13);
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
if((vv<eresid*eresid) && (i == Nconv) ){
Iconv[Nconv] = i;
++Nconv;
}
} // i-loop end
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
if( Nconv>=Nstop ){
goto converged;
}
} // end of iter loop
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
abort();
converged:
// Sorting
eval.resize(Nconv);
evec.resize(Nconv,grid);
for(int i=0; i<Nconv; ++i){
eval[i] = eval2[Iconv[i]];
evec[i] = B[Iconv[i]];
}
_sort.push(eval,evec,Nconv);
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
}
private:
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
8. EndDo
*/
void step(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
const RealD tiny = 1.0e-20;
assert( k< Nm );
_poly(_Linop,evec[k],w); // 3. wk:=Avkβkv_{k1}
if(k>0) w -= lme[k-1] * evec[k-1];
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
RealD alph = real(zalph);
w = w - alph * evec[k];// 5. wk:=wkαkvk
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
lmd[k] = alph;
lme[k] = beta;
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
if ( k < Nm-1) evec[k+1] = w;
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt, // Nm x Nm
GridBase *grid)
{
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
for (int i = 0; i < Nk; i++) {
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
}
for (int i = 0; i < Nk; i++) {
for (int j = 0; j < Nk; j++) {
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
}
}
}
///////////////////////////////////////////////////////////////////////////
// File could end here if settle on Eigen ???
///////////////////////////////////////////////////////////////////////////
void qr_decomp(std::vector<RealD>& lmd, // Nm
std::vector<RealD>& lme, // Nm
int Nk, int Nm, // Nk, Nm
Eigen::MatrixXd& Qt, // Nm x Nm matrix
RealD Dsh, int kmin, int kmax)
{
int k = kmin-1;
RealD x;
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
RealD c = ( lmd[k] -Dsh) *Fden;
RealD s = -lme[k] *Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
x =-s*lme[k+1];
lme[k+1] = c*lme[k+1];
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt(k,i);
RealD Qtmp2 = Qt(k+1,i);
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
}
// Givens transformations
for(int k = kmin; k < kmax-1; ++k){
RealD Fden = 1.0/hypot(x,lme[k-1]);
RealD c = lme[k-1]*Fden;
RealD s = - x*Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
lme[k-1] = c*lme[k-1] -s*x;
if(k != kmax-2){
x = -s*lme[k+1];
lme[k+1] = c*lme[k+1];
}
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt(k,i);
RealD Qtmp2 = Qt(k+1,i);
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
}
}
}
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
} else {
assert(0);
}
}
#ifdef USE_LAPACK
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
#endif
void diagonalize_lapack(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd& Qt,
GridBase *grid)
{
#ifdef USE_LAPACK
const int size = Nm;
int NN = Nk;
double evals_tmp[NN];
double evec_tmp[NN][NN];
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
double DD[NN];
double EE[NN];
for (int i = 0; i< NN; i++) {
for (int j = i - 1; j <= i + 1; j++) {
if ( j < NN && j >= 0 ) {
if (i==j) DD[i] = lmd[i];
if (i==j) evals_tmp[i] = lmd[i];
if (j==(i-1)) EE[j] = lme[j];
}
}
}
int evals_found;
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
int liwork = 3+NN*10 ;
int iwork[liwork];
double work[lwork];
int isuppz[2*NN];
char jobz = 'V'; // calculate evals & evecs
char range = 'I'; // calculate all evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
int info;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN/total)+1;
double vl = 0.0, vu = 0.0;
int il = interval*node+1 , iu = interval*(node+1);
if (iu > NN) iu=NN;
double tol = 0.0;
if (1) {
memset(evals_tmp,0,sizeof(double)*NN);
if ( il <= NN){
LAPACK_dstegr(&jobz, &range, &NN,
(double*)DD, (double*)EE,
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
isuppz,
work, &lwork, iwork, &liwork,
&info);
for (int i = iu-1; i>= il-1; i--){
evals_tmp[i] = evals_tmp[i - (il-1)];
if (il>1) evals_tmp[i-(il-1)]=0.;
for (int j = 0; j< NN; j++){
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
if (il>1) evec_tmp[i-(il-1)][j]=0.;
}
}
}
{
grid->GlobalSumVector(evals_tmp,NN);
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
}
}
// Safer to sort instead of just reversing it,
// but the document of the routine says evals are sorted in increasing order.
// qr gives evals in decreasing order.
for(int i=0;i<NN;i++){
lmd [NN-1-i]=evals_tmp[i];
for(int j=0;j<NN;j++){
Qt((NN-1-i),j)=evec_tmp[i][j];
}
}
#else
assert(0);
#endif
}
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
int Niter = 100*Nm;
int kmin = 1;
int kmax = Nk;
// (this should be more sophisticated)
for(int iter=0; iter<Niter; ++iter){
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
// transformation
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
if(fabs(lme[j-1])+dds > dds){
kmax = j+1;
goto continued;
}
}
Niter = iter;
return;
continued:
for(int j=0; j<kmax-1; ++j){
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
if(fabs(lme[j])+dds > dds){
kmin = j+1;
break;
}
}
}
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
abort();
}
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,930 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LANC_H
#define GRID_LANC_H
#include <string.h> //memset
#ifdef USE_LAPACK
#ifdef USE_MKL
#include<mkl_lapack.h>
#else
void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
//#include <lapacke/lapacke.h>
#endif
#endif
#include <Grid/algorithms/densematrix/DenseMatrix.h>
// eliminate temorary vector in calc()
#define MEM_SAVE
namespace Grid
{
struct Bisection
{
#if 0
static void get_eig2 (int row_num, std::vector < RealD > &ALPHA,
std::vector < RealD > &BETA,
std::vector < RealD > &eig)
{
int i, j;
std::vector < RealD > evec1 (row_num + 3);
std::vector < RealD > evec2 (row_num + 3);
RealD eps2;
ALPHA[1] = 0.;
BETHA[1] = 0.;
for (i = 0; i < row_num - 1; i++)
{
ALPHA[i + 1] = A[i * (row_num + 1)].real ();
BETHA[i + 2] = A[i * (row_num + 1) + 1].real ();
}
ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real ();
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2);
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2);
// Do we really need to sort here?
int begin = 1;
int end = row_num;
int swapped = 1;
while (swapped)
{
swapped = 0;
for (i = begin; i < end; i++)
{
if (mag (evec2[i]) > mag (evec2[i + 1]))
{
swap (evec2 + i, evec2 + i + 1);
swapped = 1;
}
}
end--;
for (i = end - 1; i >= begin; i--)
{
if (mag (evec2[i]) > mag (evec2[i + 1]))
{
swap (evec2 + i, evec2 + i + 1);
swapped = 1;
}
}
begin++;
}
for (i = 0; i < row_num; i++)
{
for (j = 0; j < row_num; j++)
{
if (i == j)
H[i * row_num + j] = evec2[i + 1];
else
H[i * row_num + j] = 0.;
}
}
}
#endif
static void bisec (std::vector < RealD > &c,
std::vector < RealD > &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh, std::vector < RealD > &x, RealD & eps2)
{
std::vector < RealD > wu (n + 2);
RealD h, q, x1, xu, x0, xmin, xmax;
int i, a, k;
b[1] = 0.0;
xmin = c[n] - fabs (b[n]);
xmax = c[n] + fabs (b[n]);
for (i = 1; i < n; i++)
{
h = fabs (b[i]) + fabs (b[i + 1]);
if (c[i] + h > xmax)
xmax = c[i] + h;
if (c[i] - h < xmin)
xmin = c[i] - h;
}
xmax *= 2.;
eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin);
if (eps1 <= 0.0)
eps1 = eps2;
eps2 = 0.5 * eps1 + 7.0 * (eps2);
x0 = xmax;
for (i = m1; i <= m2; i++)
{
x[i] = xmax;
wu[i] = xmin;
}
for (k = m2; k >= m1; k--)
{
xu = xmin;
i = k;
do
{
if (xu < wu[i])
{
xu = wu[i];
i = m1 - 1;
}
i--;
}
while (i >= m1);
if (x0 > x[k])
x0 = x[k];
while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1)
{
x1 = (xu + x0) / 2;
a = 0;
q = 1.0;
for (i = 1; i <= n; i++)
{
q =
c[i] - x1 -
((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh);
if (q < 0)
a++;
}
// printf("x1=%0.14e a=%d\n",x1,a);
if (a < k)
{
if (a < m1)
{
xu = x1;
wu[m1] = x1;
}
else
{
xu = x1;
wu[a + 1] = x1;
if (x[a] > x1)
x[a] = x1;
}
}
else
x0 = x1;
}
printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k);
x[k] = (x0 + xu) / 2;
}
}
};
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template < class Field > class SimpleLanczos
{
const RealD small = 1.0e-16;
public:
int lock;
int get;
int Niter;
int converged;
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Np; // Np -- Number of spare vecs in kryloc space
int Nm; // Nm -- total number of vectors
RealD OrthoTime;
RealD eresid;
SortEigen < Field > _sort;
LinearOperatorBase < Field > &_Linop;
OperatorFunction < Field > &_poly;
/////////////////////////
// Constructor
/////////////////////////
void init (void)
{
};
void Abort (int ff, DenseVector < RealD > &evals,
DenseVector < DenseVector < RealD > >&evecs);
SimpleLanczos (LinearOperatorBase < Field > &Linop, // op
OperatorFunction < Field > &poly, // polynmial
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _Niter): // Max iterations
_Linop (Linop),
_poly (poly),
Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter)
{
Np = Nm - Nk;
assert (Np > 0);
};
/////////////////////////
// Sanity checked this routine (step) against Saad.
/////////////////////////
void RitzMatrix (DenseVector < Field > &evec, int k)
{
if (1)
return;
GridBase *grid = evec[0]._grid;
Field w (grid);
std::cout << GridLogMessage << "RitzMatrix " << std::endl;
for (int i = 0; i < k; i++)
{
_Linop.HermOp (evec[i], w);
// _poly(_Linop,evec[i],w);
std::cout << GridLogMessage << "[" << i << "] ";
for (int j = 0; j < k; j++)
{
ComplexD in = innerProduct (evec[j], w);
if (fabs ((double) i - j) > 1)
{
if (abs (in) > 1.0e-9)
{
std::cout << GridLogMessage << "oops" << std::endl;
abort ();
}
else
std::cout << GridLogMessage << " 0 ";
}
else
{
std::cout << GridLogMessage << " " << in << " ";
}
}
std::cout << GridLogMessage << std::endl;
}
}
void step (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
Field & last, Field & current, Field & next, uint64_t k)
{
if (lmd.size () <= k)
lmd.resize (k + Nm);
if (lme.size () <= k)
lme.resize (k + Nm);
// _poly(_Linop,current,next ); // 3. wk:=Avkβkv_{k1}
_Linop.HermOp (current, next); // 3. wk:=Avkβkv_{k1}
if (k > 0)
{
next -= lme[k - 1] * last;
}
// std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl;
ComplexD zalph = innerProduct (current, next); // 4. αk:=(wk,vk)
RealD alph = real (zalph);
next = next - alph * current; // 5. wk:=wkαkvk
// std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl;
RealD beta = normalise (next); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
// norm=beta;
int interval = Nm / 100 + 1;
if ((k % interval) == 0)
std::
cout << GridLogMessage << k << " : alpha = " << zalph << " beta " <<
beta << std::endl;
const RealD tiny = 1.0e-20;
if (beta < tiny)
{
std::cout << GridLogMessage << " beta is tiny " << beta << std::
endl;
}
lmd[k] = alph;
lme[k] = beta;
}
void qr_decomp (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
int Nk,
int Nm,
DenseVector < RealD > &Qt, RealD Dsh, int kmin, int kmax)
{
int k = kmin - 1;
RealD x;
RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]);
RealD c = (lmd[k] - Dsh) * Fden;
RealD s = -lme[k] * Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k + 1];
RealD tmpb = lme[k];
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
x = -s * lme[k + 1];
lme[k + 1] = c * lme[k + 1];
for (int i = 0; i < Nk; ++i)
{
RealD Qtmp1 = Qt[i + Nm * k];
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
}
// Givens transformations
for (int k = kmin; k < kmax - 1; ++k)
{
RealD Fden = 1.0 / hypot (x, lme[k - 1]);
RealD c = lme[k - 1] * Fden;
RealD s = -x * Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k + 1];
RealD tmpb = lme[k];
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
lme[k - 1] = c * lme[k - 1] - s * x;
if (k != kmax - 2)
{
x = -s * lme[k + 1];
lme[k + 1] = c * lme[k + 1];
}
for (int i = 0; i < Nk; ++i)
{
RealD Qtmp1 = Qt[i + Nm * k];
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
}
}
}
#ifdef USE_LAPACK
#ifdef USE_MKL
#define LAPACK_INT MKL_INT
#else
#define LAPACK_INT long long
#endif
void diagonalize_lapack (DenseVector < RealD > &lmd, DenseVector < RealD > &lme, int N1, // all
int N2, // get
GridBase * grid)
{
const int size = Nm;
LAPACK_INT NN = N1;
double evals_tmp[NN];
double DD[NN];
double EE[NN];
for (int i = 0; i < NN; i++)
for (int j = i - 1; j <= i + 1; j++)
if (j < NN && j >= 0)
{
if (i == j)
DD[i] = lmd[i];
if (i == j)
evals_tmp[i] = lmd[i];
if (j == (i - 1))
EE[j] = lme[j];
}
LAPACK_INT evals_found;
LAPACK_INT lwork =
((18 * NN) >
(1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN));
LAPACK_INT liwork = 3 + NN * 10;
LAPACK_INT iwork[liwork];
double work[lwork];
LAPACK_INT isuppz[2 * NN];
char jobz = 'N'; // calculate evals only
char range = 'I'; // calculate il-th to iu-th evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
LAPACK_INT info;
// int total = QMP_get_number_of_nodes();
// int node = QMP_get_node_number();
// GridBase *grid = evec[0]._grid;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN / total) + 1;
double vl = 0.0, vu = 0.0;
LAPACK_INT il = interval * node + 1, iu = interval * (node + 1);
if (iu > NN)
iu = NN;
double tol = 0.0;
if (1)
{
memset (evals_tmp, 0, sizeof (double) * NN);
if (il <= NN)
{
printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu);
#ifdef USE_MKL
dstegr (&jobz, &range, &NN,
#else
LAPACK_dstegr (&jobz, &range, &NN,
#endif
(double *) DD, (double *) EE, &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double *) NULL, &NN,
isuppz, work, &lwork, iwork, &liwork, &info);
for (int i = iu - 1; i >= il - 1; i--)
{
printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node,
evals_found, i - (il - 1), evals_tmp[i - (il - 1)]);
evals_tmp[i] = evals_tmp[i - (il - 1)];
if (il > 1)
evals_tmp[i - (il - 1)] = 0.;
}
}
{
grid->GlobalSumVector (evals_tmp, NN);
}
}
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
}
#undef LAPACK_INT
#endif
void diagonalize (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
int N2, int N1, GridBase * grid)
{
#ifdef USE_LAPACK
const int check_lapack = 0; // just use lapack if 0, check against lapack if 1
if (!check_lapack)
return diagonalize_lapack (lmd, lme, N2, N1, grid);
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
#endif
}
#if 1
static RealD normalise (Field & v)
{
RealD nn = norm2 (v);
nn = sqrt (nn);
v = v * (1.0 / nn);
return nn;
}
void orthogonalize (Field & w, DenseVector < Field > &evec, int k)
{
double t0 = -usecond () / 1e6;
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
if (0)
{
for (int j = 0; j < k; ++j)
{
normalise (evec[j]);
for (int i = 0; i < j; i++)
{
ip = innerProduct (evec[i], evec[j]); // are the evecs normalised? ; this assumes so.
evec[j] = evec[j] - ip * evec[i];
}
}
}
for (int j = 0; j < k; ++j)
{
ip = innerProduct (evec[j], w); // are the evecs normalised? ; this assumes so.
w = w - ip * evec[j];
}
normalise (w);
t0 += usecond () / 1e6;
OrthoTime += t0;
}
void setUnit_Qt (int Nm, DenseVector < RealD > &Qt)
{
for (int i = 0; i < Qt.size (); ++i)
Qt[i] = 0.0;
for (int k = 0; k < Nm; ++k)
Qt[k + k * Nm] = 1.0;
}
void calc (DenseVector < RealD > &eval, const Field & src, int &Nconv)
{
GridBase *grid = src._grid;
// assert(grid == src._grid);
std::
cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std::
endl;
std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl;
std::cout << GridLogMessage << " -- size of eval = " << eval.
size () << std::endl;
// assert(c.size() && Nm == eval.size());
DenseVector < RealD > lme (Nm);
DenseVector < RealD > lmd (Nm);
Field current (grid);
Field last (grid);
Field next (grid);
Nconv = 0;
RealD beta_k;
// Set initial vector
// (uniform vector) Why not src??
// evec[0] = 1.0;
current = src;
std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std::
endl;
normalise (current);
std::
cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) <<
std::endl;
// Initial Nk steps
OrthoTime = 0.;
double t0 = usecond () / 1e6;
RealD norm; // sqrt norm of last vector
uint64_t iter = 0;
bool initted = false;
std::vector < RealD > low (Nstop * 10);
std::vector < RealD > high (Nstop * 10);
RealD cont = 0.;
while (1) {
cont = 0.;
std::vector < RealD > lme2 (Nm);
std::vector < RealD > lmd2 (Nm);
for (uint64_t k = 0; k < Nm; ++k, iter++) {
step (lmd, lme, last, current, next, iter);
last = current;
current = next;
}
double t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL::Initial steps: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
std::
cout << GridLogMessage << "IRL::Initial steps:OrthoTime " <<
OrthoTime << "seconds" << std::endl;
// getting eigenvalues
lmd2.resize (iter + 2);
lme2.resize (iter + 2);
for (uint64_t k = 0; k < iter; ++k) {
lmd2[k + 1] = lmd[k];
lme2[k + 2] = lme[k];
}
t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL:: copy: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
{
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (Nstop / total) + 1;
int iu = (iter + 1) - (interval * node + 1);
int il = (iter + 1) - (interval * (node + 1));
std::vector < RealD > eval2 (iter + 3);
RealD eps2;
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
eps2);
// diagonalize(eval2,lme2,iter,Nk,grid);
RealD diff = 0.;
for (int i = il; i <= iu; i++) {
if (initted)
diff =
fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) +
fabs (high[iu-i]));
if (initted && (diff > eresid))
cont = 1.;
if (initted)
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
high[iu-i], diff);
high[iu-i] = eval2[i];
}
il = (interval * node + 1);
iu = (interval * (node + 1));
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
eps2);
for (int i = il; i <= iu; i++) {
if (initted)
diff =
fabs (eval2[i] - low[i]) / (fabs (eval2[i]) +
fabs (low[i]));
if (initted && (diff > eresid))
cont = 1.;
if (initted)
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
low[i], diff);
low[i] = eval2[i];
}
t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
}
for (uint64_t k = 0; k < Nk; ++k) {
// eval[k] = eval2[k];
}
if (initted)
{
grid->GlobalSumVector (&cont, 1);
if (cont < 1.) return;
}
initted = true;
}
}
/**
There is some matrix Q such that for any vector y
Q.e_1 = y and Q is unitary.
**/
template < class T >
static T orthQ (DenseMatrix < T > &Q, DenseVector < T > y)
{
int N = y.size (); //Matrix Size
Fill (Q, 0.0);
T tau;
for (int i = 0; i < N; i++)
{
Q[i][0] = y[i];
}
T sig = conj (y[0]) * y[0];
T tau0 = fabs (sqrt (sig));
for (int j = 1; j < N; j++)
{
sig += conj (y[j]) * y[j];
tau = abs (sqrt (sig));
if (abs (tau0) > 0.0)
{
T gam = conj ((y[j] / tau) / tau0);
for (int k = 0; k <= j - 1; k++)
{
Q[k][j] = -gam * y[k];
}
Q[j][j] = tau0 / tau;
}
else
{
Q[j - 1][j] = 1.0;
}
tau0 = tau;
}
return tau;
}
/**
There is some matrix Q such that for any vector y
Q.e_k = y and Q is unitary.
**/
template < class T >
static T orthU (DenseMatrix < T > &Q, DenseVector < T > y)
{
T tau = orthQ (Q, y);
SL (Q);
return tau;
}
/**
Wind up with a matrix with the first con rows untouched
say con = 2
Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum
and the matrix is upper hessenberg
and with f and Q appropriately modidied with Q is the arnoldi factorization
**/
template < class T > static void Lock (DenseMatrix < T > &H, ///Hess mtx
DenseMatrix < T > &Q, ///Lock Transform
T val, ///value to be locked
int con, ///number already locked
RealD small, int dfg, bool herm)
{
//ForceTridiagonal(H);
int M = H.dim;
DenseVector < T > vec;
Resize (vec, M - con);
DenseMatrix < T > AH;
Resize (AH, M - con, M - con);
AH = GetSubMtx (H, con, M, con, M);
DenseMatrix < T > QQ;
Resize (QQ, M - con, M - con);
Unity (Q);
Unity (QQ);
DenseVector < T > evals;
Resize (evals, M - con);
DenseMatrix < T > evecs;
Resize (evecs, M - con, M - con);
Wilkinson < T > (AH, evals, evecs, small);
int k = 0;
RealD cold = abs (val - evals[k]);
for (int i = 1; i < M - con; i++)
{
RealD cnew = abs (val - evals[i]);
if (cnew < cold)
{
k = i;
cold = cnew;
}
}
vec = evecs[k];
ComplexD tau;
orthQ (QQ, vec);
//orthQM(QQ,AH,vec);
AH = Hermitian (QQ) * AH;
AH = AH * QQ;
for (int i = con; i < M; i++)
{
for (int j = con; j < M; j++)
{
Q[i][j] = QQ[i - con][j - con];
H[i][j] = AH[i - con][j - con];
}
}
for (int j = M - 1; j > con + 2; j--)
{
DenseMatrix < T > U;
Resize (U, j - 1 - con, j - 1 - con);
DenseVector < T > z;
Resize (z, j - 1 - con);
T nm = norm (z);
for (int k = con + 0; k < j - 1; k++)
{
z[k - con] = conj (H (j, k + 1));
}
normalise (z);
RealD tmp = 0;
for (int i = 0; i < z.size () - 1; i++)
{
tmp = tmp + abs (z[i]);
}
if (tmp < small / ((RealD) z.size () - 1.0))
{
continue;
}
tau = orthU (U, z);
DenseMatrix < T > Hb;
Resize (Hb, j - 1 - con, M);
for (int a = 0; a < M; a++)
{
for (int b = 0; b < j - 1 - con; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += H[a][con + 1 + c] * U[c][b];
} //sum += H(a,con+1+c)*U(c,b);}
Hb[b][a] = sum;
}
}
for (int k = con + 1; k < j; k++)
{
for (int l = 0; l < M; l++)
{
H[l][k] = Hb[k - 1 - con][l];
}
} //H(Hb[k-1-con][l] , l,k);}}
DenseMatrix < T > Qb;
Resize (Qb, M, M);
for (int a = 0; a < M; a++)
{
for (int b = 0; b < j - 1 - con; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += Q[a][con + 1 + c] * U[c][b];
} //sum += Q(a,con+1+c)*U(c,b);}
Qb[b][a] = sum;
}
}
for (int k = con + 1; k < j; k++)
{
for (int l = 0; l < M; l++)
{
Q[l][k] = Qb[k - 1 - con][l];
}
} //Q(Qb[k-1-con][l] , l,k);}}
DenseMatrix < T > Hc;
Resize (Hc, M, M);
for (int a = 0; a < j - 1 - con; a++)
{
for (int b = 0; b < M; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += conj (U[c][a]) * H[con + 1 + c][b];
} //sum += conj( U(c,a) )*H(con+1+c,b);}
Hc[b][a] = sum;
}
}
for (int k = 0; k < M; k++)
{
for (int l = con + 1; l < j; l++)
{
H[l][k] = Hc[k][l - 1 - con];
}
} //H(Hc[k][l-1-con] , l,k);}}
}
}
#endif
};
}
#endif

View File

@ -0,0 +1,122 @@
#include <math.h>
#include <stdlib.h>
#include <vector>
struct Bisection {
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
{
int i,j;
std::vector<RealD> evec1(row_num+3);
std::vector<RealD> evec2(row_num+3);
RealD eps2;
ALPHA[1]=0.;
BETHA[1]=0.;
for(i=0;i<row_num-1;i++) {
ALPHA[i+1] = A[i*(row_num+1)].real();
BETHA[i+2] = A[i*(row_num+1)+1].real();
}
ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
// Do we really need to sort here?
int begin=1;
int end = row_num;
int swapped=1;
while(swapped) {
swapped=0;
for(i=begin;i<end;i++){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
end--;
for(i=end-1;i>=begin;i--){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
begin++;
}
for(i=0;i<row_num;i++){
for(j=0;j<row_num;j++) {
if(i==j) H[i*row_num+j]=evec2[i+1];
else H[i*row_num+j]=0.;
}
}
}
static void bisec(std::vector<RealD> &c,
std::vector<RealD> &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh,
std::vector<RealD> &x,
RealD &eps2)
{
std::vector<RealD> wu(n+2);
RealD h,q,x1,xu,x0,xmin,xmax;
int i,a,k;
b[1]=0.0;
xmin=c[n]-fabs(b[n]);
xmax=c[n]+fabs(b[n]);
for(i=1;i<n;i++){
h=fabs(b[i])+fabs(b[i+1]);
if(c[i]+h>xmax) xmax= c[i]+h;
if(c[i]-h<xmin) xmin= c[i]-h;
}
xmax *=2.;
eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
if(eps1<=0.0) eps1=eps2;
eps2=0.5*eps1+7.0*(eps2);
x0=xmax;
for(i=m1;i<=m2;i++){
x[i]=xmax;
wu[i]=xmin;
}
for(k=m2;k>=m1;k--){
xu=xmin;
i=k;
do{
if(xu<wu[i]){
xu=wu[i];
i=m1-1;
}
i--;
}while(i>=m1);
if(x0>x[k]) x0=x[k];
while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
x1=(xu+x0)/2;
a=0;
q=1.0;
for(i=1;i<=n;i++){
q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
if(q<0) a++;
}
// printf("x1=%e a=%d\n",x1,a);
if(a<k){
if(a<m1){
xu=x1;
wu[m1]=x1;
}else {
xu=x1;
wu[a+1]=x1;
if(x[a]>x1) x[a]=x1;
}
}else x0=x1;
}
x[k]=(x0+xu)/2;
}
}
}

View File

@ -444,6 +444,8 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
assert(omega[i]!=Coeff_t(0.0));
bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc);
std::cout<<GridLogMessage << "CayleyFermion5D "<<i<<" bs="<<bs[i]<<" cs="<<cs[i]<< std::endl;
}
////////////////////////////////////////////////////////

View File

@ -470,6 +470,7 @@ void CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi, FermionFie
a0 = a0+incr;
a1 = a1+incr;
a2 = a2+sizeof(typename Simd::scalar_type);
a2 = a2+sizeof(typename Simd::scalar_type); //ypj [debug]
}}
{
int lexa = s1+LLs*site;
@ -701,7 +702,8 @@ void CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi, FermionFi
}
a0 = a0+incr;
a1 = a1+incr;
a2 = a2+sizeof(typename Simd::scalar_type);
a2 = a2+sizeof(typename Simd::scalar_type);
a2 = a2+sizeof(typename Simd::scalar_type); // ypj [debug]
}}
{
int lexa = s1+LLs*site;

View File

@ -475,7 +475,8 @@ namespace QCD {
}
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(typename Simd::scalar_type);
a2 = a2 + sizeof(typename Simd::scalar_type);
a2 = a2 + sizeof(typename Simd::scalar_type); // ypj [debug]
}
}

View File

@ -63,8 +63,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
//#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>

View File

@ -853,7 +853,8 @@ namespace QCD {
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(typename Simd::scalar_type);
a2 = a2 + sizeof(typename Simd::scalar_type);
a2 = a2 + sizeof(typename Simd::scalar_type); // ypj [debug]
}
}

View File

@ -1,3 +1,4 @@
#if 1
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -97,6 +98,117 @@ namespace Grid {
}
};
#if 0
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Copied from DiagTwoSolve
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwoKappa solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
}
};
#endif
namespace QCD{
//
// Determinant is det of middle factor
// This assumes Mee is indept of U.
//
//
template<class Impl>
class SchurDifferentiableDiagTwo: public SchurDiagTwoOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableDiagTwo (Matrix &Mat) : SchurDiagTwoOperator<Matrix,FermionField>(Mat) {};
};
#if 0
template<class Impl>
class SchurDifferentiableDiagTwoKappa : public SchurDiagTwoKappaOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableDiagTwoKappa (Matrix &Mat) : SchurDiagTwoKappaOperator<Matrix,FermionField>(Mat) {};
};
#endif
}
}
#endif
#endif

View File

@ -140,6 +140,7 @@ namespace Grid{
};
}
}
#endif

View File

@ -50,6 +50,7 @@ GridCartesian *SpaceTimeGrid::makeFourDimDWFGrid(const std::vector<int> & latt,c
GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
assert(N4==4);
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,1);

View File

@ -556,7 +556,7 @@ namespace Optimization {
v3 = _mm256_add_epi32(v1, v2);
v1 = _mm256_hadd_epi32(v3, v3);
v2 = _mm256_hadd_epi32(v1, v1);
u1 = _mm256_castsi256_si128(v2); // upper half
u1 = _mm256_castsi256_si128(v2); // upper half ypj[debug] ; was missing
u2 = _mm256_extracti128_si256(v2, 1); // lower half
ret = _mm_add_epi32(u1, u2);
return _mm_cvtsi128_si32(ret);

View File

@ -158,6 +158,14 @@ void GridCmdOptionInt(std::string &str,int & val)
return;
}
// ypj [add]
void GridCmdOptionFloat(std::string &str,double & val)
{
std::stringstream ss(str);
ss>>val;
return;
}
void GridParseLayout(char **argv,int argc,
std::vector<int> &latt,

View File

@ -54,6 +54,9 @@ namespace Grid {
std::string GridCmdVectorIntToString(const std::vector<int> & vec);
void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
void GridCmdOptionIntVector(std::string &str,std::vector<int> & vec);
// ypj [add]
void GridCmdOptionInt(std::string &str,int & val);
void GridCmdOptionFloat(std::string &str,double & val);
void GridParseLayout(char **argv,int argc,

View File

@ -18,6 +18,10 @@ namespace Grid{
static inline void IndexFromCoor (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
int nd=dims.size();
if(nd > coor.size()) {
std::cout<< "coor.size "<<coor.size()<<" >dims.size "<<dims.size()<<std::endl;
assert(0);
}
int stride=1;
index=0;
for(int d=0;d<nd;d++){

View File

@ -0,0 +1,317 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_block_lanczos.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
//typedef typename GparityDomainWallFermionR::FermionField FermionField;
typedef typename ZMobiusFermionR::FermionField FermionField;
RealD AllZero(RealD x){ return 0.;}
class CmdJobParams
{
public:
std::string gaugefile;
int Ls;
double mass;
double M5;
double mob_b;
std::vector<ComplexD> omega;
std::vector<Complex> boundary_phase;
LanczosType Impl;
int Nu;
int Nk;
int Np;
int Nm;
int Nstop;
int Ntest;
int MaxIter;
double resid;
double low;
double high;
int order;
CmdJobParams()
: gaugefile("Hot"),
Ls(8), mass(0.01), M5(1.8), mob_b(1.5),
Impl(LanczosType::irbl),
Nu(4), Nk(200), Np(200), Nstop(100), Ntest(1), MaxIter(10), resid(1.0e-8),
low(0.2), high(5.5), order(11)
{Nm=Nk+Np;};
void Parse(char **argv, int argc);
};
void CmdJobParams::Parse(char **argv,int argc)
{
std::string arg;
std::vector<int> vi;
double re,im;
int expect, idx;
std::string vstr;
std::ifstream pfile;
if( GridCmdOptionExists(argv,argv+argc,"--gconf") ){
gaugefile = GridCmdOptionPayload(argv,argv+argc,"--gconf");
}
if( GridCmdOptionExists(argv,argv+argc,"--phase") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--phase");
pfile.open(arg);
assert(pfile);
expect = 0;
while( pfile >> vstr ) {
if ( vstr.compare("boundary_phase") == 0 ) {
pfile >> vstr;
GridCmdOptionInt(vstr,idx);
assert(expect==idx);
pfile >> vstr;
GridCmdOptionFloat(vstr,re);
pfile >> vstr;
GridCmdOptionFloat(vstr,im);
boundary_phase.push_back({re,im});
expect++;
}
}
pfile.close();
} else {
for (int i=0; i<4; ++i) boundary_phase.push_back({1.,0.});
}
if( GridCmdOptionExists(argv,argv+argc,"--omega") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--omega");
pfile.open(arg);
assert(pfile);
Ls = 0;
while( pfile >> vstr ) {
if ( vstr.compare("omega") == 0 ) {
pfile >> vstr;
GridCmdOptionInt(vstr,idx);
assert(Ls==idx);
pfile >> vstr;
GridCmdOptionFloat(vstr,re);
pfile >> vstr;
GridCmdOptionFloat(vstr,im);
omega.push_back({re,im});
Ls++;
}
}
pfile.close();
} else {
if( GridCmdOptionExists(argv,argv+argc,"--Ls") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--Ls");
GridCmdOptionInt(arg,Ls);
}
}
if( GridCmdOptionExists(argv,argv+argc,"--mass") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--mass");
GridCmdOptionFloat(arg,mass);
}
if( GridCmdOptionExists(argv,argv+argc,"--M5") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--M5");
GridCmdOptionFloat(arg,M5);
}
if( GridCmdOptionExists(argv,argv+argc,"--mob_b") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--mob_b");
GridCmdOptionFloat(arg,mob_b);
}
if( GridCmdOptionExists(argv,argv+argc,"--irbl") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--irbl");
GridCmdOptionIntVector(arg,vi);
Nu = vi[0];
Nk = vi[1];
Np = vi[2];
Nstop = vi[3];
MaxIter = vi[4];
// ypj[fixme] mode overriding message is needed.
Impl = LanczosType::irbl;
Nm = Nk+Np;
}
// block Lanczos with explicit extension of its dimensions
if( GridCmdOptionExists(argv,argv+argc,"--rbl") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--rbl");
GridCmdOptionIntVector(arg,vi);
Nu = vi[0];
Nk = vi[1];
Np = vi[2]; // vector space is enlarged by adding Np vectors
Nstop = vi[3];
MaxIter = vi[4];
// ypj[fixme] mode overriding message is needed.
Impl = LanczosType::rbl;
Nm = Nk+Np*MaxIter;
}
if( GridCmdOptionExists(argv,argv+argc,"--check_int") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--check_int");
GridCmdOptionInt(arg,Ntest);
}
if( GridCmdOptionExists(argv,argv+argc,"--resid") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--resid");
GridCmdOptionFloat(arg,resid);
}
if( GridCmdOptionExists(argv,argv+argc,"--cheby_l") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_l");
GridCmdOptionFloat(arg,low);
}
if( GridCmdOptionExists(argv,argv+argc,"--cheby_u") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_u");
GridCmdOptionFloat(arg,high);
}
if( GridCmdOptionExists(argv,argv+argc,"--cheby_n") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_n");
GridCmdOptionInt(arg,order);
}
if ( CartesianCommunicator::RankWorld() == 0 ) {
std::streamsize ss = std::cout.precision();
std::cout << GridLogMessage <<" Gauge Configuration "<< gaugefile << '\n';
std::cout.precision(15);
for ( int i=0; i<4; ++i ) std::cout << GridLogMessage <<" boundary_phase["<< i << "] = " << boundary_phase[i] << '\n';
std::cout.precision(ss);
std::cout << GridLogMessage <<" Ls "<< Ls << '\n';
std::cout << GridLogMessage <<" mass "<< mass << '\n';
std::cout << GridLogMessage <<" M5 "<< M5 << '\n';
std::cout << GridLogMessage <<" mob_b "<< mob_b << '\n';
std::cout.precision(15);
for ( int i=0; i<Ls; ++i ) std::cout << GridLogMessage <<" omega["<< i << "] = " << omega[i] << '\n';
std::cout.precision(ss);
std::cout << GridLogMessage <<" Nu "<< Nu << '\n';
std::cout << GridLogMessage <<" Nk "<< Nk << '\n';
std::cout << GridLogMessage <<" Np "<< Np << '\n';
std::cout << GridLogMessage <<" Nm "<< Nm << '\n';
std::cout << GridLogMessage <<" Nstop "<< Nstop << '\n';
std::cout << GridLogMessage <<" Ntest "<< Ntest << '\n';
std::cout << GridLogMessage <<" MaxIter "<< MaxIter << '\n';
std::cout << GridLogMessage <<" resid "<< resid << '\n';
std::cout << GridLogMessage <<" Cheby Poly "<< low << "," << high << "," << order << std::endl;
}
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
CmdJobParams JP;
JP.Parse(argv,argc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(JP.Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(JP.Ls,UGrid);
printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n",UGrid,UrbGrid,FGrid,FrbGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5rb(FrbGrid); RNG5.SeedFixedIntegers(seeds5);
// ypj [note] why seed RNG5 again? bug? In this case, run with a default seed().
//GridParallelRNG RNG5rb(FrbGrid); //RNG5rb.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
std::vector<LatticeColourMatrix> U(4,UGrid);
if ( JP.gaugefile.compare("Hot") == 0 ) {
SU3::HotConfiguration(RNG4, Umu);
} else {
FieldMetaData header;
NerscIO::readConfiguration(Umu,header,JP.gaugefile);
// ypj [fixme] additional checks for the loaded configuration?
}
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
RealD mass = JP.mass;
RealD M5 = JP.M5;
// ypj [fixme] flexible support for a various Fermions
// RealD mob_b = JP.mob_b; // Gparity
// std::vector<ComplexD> omega; // ZMobius
// GparityMobiusFermionD ::ImplParams params;
// std::vector<int> twists({1,1,1,0});
// params.twists = twists;
// GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
// SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
//WilsonFermionR::ImplParams params;
ZMobiusFermionR::ImplParams params;
params.overlapCommsCompute = true;
params.boundary_phases = JP.boundary_phase;
ZMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,JP.omega,1.,0.,params);
SchurDiagTwoOperator<ZMobiusFermionR,FermionField> HermOp(Ddwf);
//std::vector<double> Coeffs { 0.,-1.};
// ypj [note] this may not be supported by some compilers
std::vector<double> Coeffs({ 0.,-1.});
Polynomial<FermionField> PolyX(Coeffs);
//Chebyshev<FermionField> Cheb(0.2,5.5,11);
Chebyshev<FermionField> Cheb(JP.low,JP.high,JP.order);
// Cheb.csv(std::cout);
ImplicitlyRestartedBlockLanczos<FermionField> IRBL(HermOp,
Cheb,
JP.Nstop, JP.Ntest,
JP.Nu, JP.Nk, JP.Nm,
JP.resid,
JP.MaxIter);
std::vector<RealD> eval(JP.Nm);
std::vector<FermionField> src(JP.Nu,FrbGrid);
for ( int i=0; i<JP.Nu; ++i ) gaussian(RNG5rb,src[i]);
std::vector<FermionField> evec(JP.Nm,FrbGrid);
for(int i=0;i<1;++i){
std::cout << GridLogMessage << i <<" / "<< JP.Nm <<" grid pointer "<< evec[i]._grid << std::endl;
};
int Nconv;
IRBL.calc(eval,evec,src,Nconv,JP.Impl);
Grid_finalize();
}

View File

@ -22,6 +22,7 @@
*/
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/parallelIO/IldgIO.h>
/////////////////////////////////////////////////////////////////////////////
// The following are now decoupled from the Lanczos and deal with grids.
// Safe to replace functionality

View File

@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
#include <Grid/parallelIO/IldgIOtypes.h>
#include <Grid/parallelIO/IldgIO.h>
using namespace std;
using namespace Grid;
@ -57,7 +59,7 @@ public:
void checkpointFine(std::string evecs_file,std::string evals_file)
{
assert(this->subspace.size()==nbasis);
emptyUserRecord record;
Grid::emptyUserRecord record;
Grid::QCD::ScidacWriter WR(this->_FineGrid->IsBoss());
WR.open(evecs_file);
for(int k=0;k<nbasis;k++) {

View File

@ -75,16 +75,16 @@ int main (int argc, char ** argv)
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
const int Nstop = 30;
const int Nk = 40;
const int Np = 40;
const int Nstop = 120;
const int Nk = 240;
const int Np = 240;
const int Nm = Nk+Np;
const int MaxIt= 10000;
const int MaxIt= 10;
RealD resid = 1.0e-8;
std::vector<double> Coeffs { 0.,-1.};
Polynomial<FermionField> PolyX(Coeffs);
Chebyshev<FermionField> Cheby(0.2,5.,11);
Chebyshev<FermionField> Cheby(0.2,5.5,11);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
PlainHermOp<FermionField> Op (HermOp);

View File

@ -58,7 +58,7 @@ int main(int argc, char** argv) {
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5rb(FrbGrid);
RNG5.SeedFixedIntegers(seeds5);
RNG5.SeedFixedIntegers(seeds5); // ypj [note] Does it mean RNG5rb? RNG5rb is never used.
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);

View File

@ -26,17 +26,18 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/parallelIO/IldgIOtypes.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
//using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
typedef typename Grid::QCD::DomainWallFermionR::FermionField FermionField;
typedef typename Grid::QCD::DomainWallFermionR::ComplexField ComplexField;
typename Grid::QCD::DomainWallFermionR::ImplParams params;
const int Ls=4;
@ -102,7 +103,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Writing out in parallel view "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
emptyUserRecord record;
// Grid::emptyUserRecord record;
std::string file("./scratch.scidac");
std::string filef("./scratch.scidac.ferm");
@ -115,20 +116,20 @@ int main (int argc, char ** argv)
{
FGrid->Barrier();
ScidacWriter _ScidacWriter(FGrid->IsBoss());
_ScidacWriter.open(file);
// _ScidacWriter.open(file);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Writing out gauge field "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
_ScidacWriter.writeScidacFieldRecord(Umu,record);
_ScidacWriter.close();
// _ScidacWriter.writeScidacFieldRecord(Umu,record);
// _ScidacWriter.close();
FGrid->Barrier();
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Reading in gauge field "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
ScidacReader _ScidacReader;
_ScidacReader.open(file);
_ScidacReader.readScidacFieldRecord(s_Umu,record);
_ScidacReader.close();
// ScidacReader _ScidacReader;
// _ScidacReader.open(file);
// _ScidacReader.readScidacFieldRecord(s_Umu,record);
// _ScidacReader.close();
FGrid->Barrier();
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Read in gauge field "<<std::endl;
@ -145,9 +146,9 @@ int main (int argc, char ** argv)
std::stringstream filefn; filefn << filef << "."<< n;
ScidacWriter _ScidacWriter(FGrid->IsBoss());
_ScidacWriter.open(filefn.str());
_ScidacWriter.writeScidacFieldRecord(src[n],record);
_ScidacWriter.close();
// _ScidacWriter.open(filefn.str());
// _ScidacWriter.writeScidacFieldRecord(src[n],record);
// _ScidacWriter.close();
}
FGrid->Barrier();
@ -159,10 +160,10 @@ int main (int argc, char ** argv)
for(int n=0;n<nrhs;n++){
if ( n==me ) {
std::stringstream filefn; filefn << filef << "."<< n;
ScidacReader _ScidacReader;
_ScidacReader.open(filefn.str());
_ScidacReader.readScidacFieldRecord(s_src,record);
_ScidacReader.close();
// ScidacReader _ScidacReader;
// _ScidacReader.open(filefn.str());
// _ScidacReader.readScidacFieldRecord(s_src,record);
// _ScidacReader.close();
}
}
FGrid->Barrier();