1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-12 20:27:06 +01:00

Compare commits

...

503 Commits

Author SHA1 Message Date
9203126aa5 Scripts 2025-06-11 15:30:16 +02:00
f90ba4712a Update for Jupiter 2025-06-11 15:24:34 +02:00
3737a24096 Updated python output 2025-06-03 14:09:29 -04:00
d418f78352 Making running on Aurora more debuggable 2025-05-23 20:58:16 +00:00
25163998a0 Makes SYCL compiler happy 2025-05-23 20:57:11 +00:00
dc546aaa4b Updated config options for BNL cluster 2025-05-13 18:44:47 -04:00
5364d580c9 Output chirality, eigenvector density files and python source lego plot 2025-05-13 18:44:47 -04:00
2a9a6347e3 Do not require Grid format RNGs and also to the 5Li reporting 2025-05-13 18:44:47 -04:00
cfdb56f314 Run measurements at t=0 too 2025-05-13 18:44:46 -04:00
b517e88db3 Update README 2025-05-13 16:49:21 -04:00
bb317aba8d Lattice = for sycl 2025-05-13 12:50:58 +00:00
644cc6647e JSON update 2025-05-13 12:50:58 +00:00
72397ce23b SYCL interface change 2025-05-13 12:50:58 +00:00
d60a80c098 Fixes and visualisation 2025-04-29 18:04:23 -04:00
bb8b6d9d73 Fix 2025-04-29 18:04:04 -04:00
677b4cc5b0 Make all tests compile 2025-04-24 20:33:26 -04:00
be565ffab6 update mac config command 2025-04-24 14:50:06 -04:00
df6120e5f6 CPU compile oops fix 2025-04-24 14:50:06 -04:00
21de6f7da8 Merge pull request #477 from lehner/feature/wilson-clover-5d
Feature/wilson clover 5d
2025-04-24 14:44:48 -04:00
dbe39f9ce0 Merge pull request #471 from edbennett/fix-wflow
Shave off rough edges in Wilson flow test
2025-04-24 14:40:31 -04:00
ab3de50d5e Merge pull request #473 from UCL-ARC/gauge_action_deriv
WilsonGagueAction deriv
2025-04-24 14:39:10 -04:00
c545bd2139 Merge pull request #465 from edbennett/allow-nonsu3-compilation
guard against trying to compile SU3-specific code when Nc ≠ 3
2025-04-24 14:35:51 -04:00
6a1c64fbdd Merge pull request #470 from paboyle/specflow
Spectral flow, DWF/Mobius kernel measurement
2025-04-24 14:34:33 -04:00
b75809ed61 Update README 2025-04-24 14:27:22 -04:00
ecaf228e5c Update README 2025-04-24 14:25:32 -04:00
6d015ae8fc Visualisation tools 2025-04-24 13:47:34 -04:00
233150d93f Bug fix for no accelerator aware MPI, thanks Shuhei for finding it. 2025-04-24 11:40:46 -04:00
7af8c77a52 Normalise 2025-04-24 11:37:39 -04:00
a957e7bfa1 Adding DWF evec Chirality measurement 2025-04-22 22:17:51 +00:00
cee4c8ce8c Merge branch 'develop' of https://github.com/paboyle/Grid into specflow 2025-04-18 19:55:36 +00:00
96bf814d8c Add checkerboarding to 5D compact clover 2025-04-10 23:05:39 +02:00
7ddc422788 CompactWilsonClover5D 2025-04-10 23:05:29 +02:00
e652fc2825 Shared Memory test reenabled on every Grid object creation.
Const improvements in Accelerator.h
2025-04-07 11:51:40 -04:00
a49fa3f8d0 ROCM 6.3.1 appears to work 2025-04-07 11:50:59 -04:00
cd452a2f91 Slurm update 2025-04-04 18:40:20 -04:00
4f89f603ae Changes to add back shared memory test on GPU 2025-04-04 18:40:15 -04:00
11dc2c5e1d PVdagM initialise 2025-04-04 18:35:06 -04:00
6fec3c15ca Cleaner printing 2025-04-04 18:35:06 -04:00
938c47480f Updated compile on frontier.
Unsatisfactory hacsk
2025-04-04 18:35:06 -04:00
3811d19298 Fence 2025-04-04 18:35:06 -04:00
83a3ab6b6f Barrier -- not sure 100% this was needed 2025-04-04 18:35:05 -04:00
d66a9af6a3 No compile fix 2025-04-04 18:35:05 -04:00
adc90d3a86 NVLINK GET/PUT on cuda aware mpi 2025-04-04 18:35:05 -04:00
ebbd015c5c Deprecate shared memory copy as direction matters on nvidia GPU 2025-04-04 18:35:05 -04:00
4ab73b36b2 Deprecate shared memory copy as direction matters on GPU 2025-04-04 18:35:05 -04:00
130e07a422 Non hermitian support 2025-04-04 18:35:05 -04:00
8f47bb367e Shifted non herm 2025-04-04 18:35:05 -04:00
0c3cb60135 Script update 2025-04-04 18:35:05 -04:00
9eae8fca5d Size outut 2025-04-04 18:35:05 -04:00
882a217074 Example of Useful prerequisite installs with spack 2025-03-26 11:28:53 -04:00
e465fce201 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-03-24 10:12:42 +00:00
d41542c64b reverted sp2n test wilsonfundfermiongauge to original 2025-03-24 08:29:15 +00:00
199818bd6c Merge pull request #475 from lehner/feature-aurora
Sync with GPT on Aurora
2025-03-13 08:55:55 -04:00
fe66c7ca30 verbosity 2025-03-13 12:49:36 +00:00
e9177e4af3 Blas compatibility 2025-03-13 08:48:23 +00:00
d15a6c5933 Merge branch 'develop' of https://github.com/paboyle/Grid into feature-aurora 2025-03-13 07:29:55 +00:00
25ab9325e7 Use hostVector but remove construct resize 2025-03-11 15:02:32 +00:00
19f9378b98 Should work on Aurora nowb 2025-03-11 13:50:43 +00:00
785bc7a14f Adding staple zeroing fix 2025-03-10 12:29:04 +00:00
1a1fe85428 Merge remote-tracking branch 'upstream' into gauge_action_deriv 2025-03-10 08:37:36 +00:00
0000d2e558 Merge branch 'develop' into gauge_action_deriv 2025-03-10 08:35:57 +00:00
9ffd1ed4ce Merged 2025-03-08 15:30:08 +00:00
3d014864e2 Makinig LLVM happy 2025-03-06 14:19:25 -05:00
1d22841811 Working on aurora, GPT issue turned up is fixed 2025-03-06 03:20:18 +00:00
a1cdda833f Update WorkArounds.txt 2025-03-05 14:04:23 -05:00
ad6db92690 Update WorkArounds.txt 2025-03-05 14:00:26 -05:00
e8ff9d8e50 Update WorkArounds.txt 2025-03-05 14:00:04 -05:00
795769c636 Update WorkArounds.txt 2025-03-05 13:50:41 -05:00
267a39d943 Update WorkArounds.txt 2025-03-05 13:49:43 -05:00
3624bd3d22 Update WorkArounds.txt 2025-03-05 13:45:09 -05:00
bc12dbbb38 Update WorkArounds.txt 2025-03-05 12:48:56 -05:00
eb8a008a8f Create WorkArounds.txt 2025-03-05 12:41:59 -05:00
c4d9aa1a21 Config command that makes GPT happier 2025-02-27 20:12:49 +00:00
6ae809ed40 Print not liked on GPT compile 2025-02-27 20:12:49 +00:00
311e2aab3f Update Accelerator.h 2025-02-26 11:42:52 -05:00
438dfbdb83 Only throw if there is a pending list entry in CommsComplete 2025-02-25 16:57:27 +00:00
b2ce760cf4 Verbose issue with GPT 2025-02-25 16:55:23 +00:00
b1ba209696 Latest upstream with np-su3 patch and modified Sp_WilsonFunfFermionGauge test to be small (#22)
Co-authored-by: Mashy Green <mashy@me.com>

merging no-su3 patch
2025-02-24 11:38:42 +00:00
cb3e529b1e Merge branch 'paboyle:develop' into develop 2025-02-24 11:29:09 +00:00
717f647418 added the WilsonFlow patch from upstream PR #471 2025-02-24 08:41:31 +00:00
98e7418187 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-02-24 08:33:05 +00:00
fe05bf48b1 Improvements to WilsonGaugeAction deriv function (#16)
* patched version + modifications to deriv -> staple in qcd/gauge

* Cleaning up and aligning variable naming between action deriv versions

* Removing the regresion test files that were also in this branch for a clean PR

* Reverting whitespace changes

* Fixing after revering too much!

---------

Co-authored-by: Mashy Green <mashy@me.com>
2025-02-17 18:52:04 +00:00
d2dd8f54e2 Fixing after revering too much! 2025-02-17 17:32:27 +00:00
7726ee4b16 Reverting whitespace changes 2025-02-17 17:16:28 +00:00
ba9bbe0221 Bounce MPI through host 2025-02-12 19:34:59 +00:00
4c3dd82d84 CSHIFT with bounce throuhgh Host memory on MPI packets 2025-02-12 19:09:53 +00:00
44e911b5b7 Comment change 2025-02-12 17:37:55 +00:00
a7a16df9d0 GET not put has kinder barrier sequence for NVLINK type access as when
GET is done, I can use it without barrier. Moves a barrier to a nicer
place, overlapped with DtoH DMA
2025-02-12 14:59:28 +00:00
382e0abefd Was issueing a double fence -- the gather also fences 2025-02-12 14:57:28 +00:00
6fdefe5b90 Barrier sequencing if doing "GET" not "PUT" is different.
This is somewhat better timing for Barriers
2025-02-12 14:55:20 +00:00
4788dd8e2e More states in packet progression for GPU non aware MPI 2025-02-12 14:53:57 +00:00
1cc5f221f3 GET not put ordering is better as I know when I've got all MY data 2025-02-12 14:53:05 +00:00
93251bfba0 GET not put for better ordering in the downstream dependent kernels -- I
know when I'm done, so we can move a barrier / handshake between ranks
intranode to a point off critical path
2025-02-12 14:50:21 +00:00
18b79508b8 New line better for pretty print 2025-02-12 14:49:48 +00:00
4de5ed1613 Remove vector view. The std::vector will not inform Memory manager of
deletion and so a stale entry could be left. It is not and should not be
used.
2025-02-12 14:48:46 +00:00
0baaddbe98 Pipeline mode commit on Aurora. 5+ TF/s on 16^3x32 per tile at 384
nodes.
More concurrency/fine grained scheduling is possible.
2025-02-04 19:27:26 +00:00
8729c46169 add clover energy density measurement to default WilsonFlow measurements 2025-02-03 14:27:55 +00:00
09f81fe7c3 don't force energy density measurement to be every wilson flow iteration 2025-02-03 14:27:45 +00:00
1876e5b7c0 correct tests/smearing/WilsonFlow to use non-adaptive flow and use correct interface 2025-02-03 14:27:29 +00:00
355ec76257 Merge pull request #18 from UCL-ARC/bugfix/nvtx
Bugfix/nvtx
2025-02-03 11:05:42 +00:00
b50fb34e71 Perf on Aurora 2025-02-01 18:39:34 +00:00
de84d730ff Fastest run config on Aurora to date 2025-02-01 18:08:40 +00:00
c74d11e3d7 PVdagM MG 2025-02-01 11:04:13 -05:00
84cab5e6e7 no comms and log cleanup 2025-02-01 16:37:21 +01:00
c4fc972fec Merge branch 'feature/deprecate-uvm' into develop 2025-01-31 16:32:36 +00:00
8cf809e231 Best results on Aurora so far 2025-01-31 16:14:45 +00:00
94019a922e Significantly better performance on Aurora without using pipeline mode 2025-01-30 16:36:46 +00:00
4f17c8d081 Merge branch 'paboyle:develop' into bugfix/nvtx 2025-01-29 13:10:12 +00:00
aaab753982 Reverting to older version of nvtx for Tursa support 2025-01-29 12:57:38 +00:00
d6b2727f86 Pipeline mode getting better -- 2 nodes @ 10TF/s per node on Aurora 2025-01-29 09:22:21 +00:00
74a4f43946 Optional host buffer bounce for no CUDA aware MPI 2025-01-28 15:22:46 +00:00
1caf8b0f86 Rename 2025-01-28 15:22:37 +00:00
570b72a47b Bugfix. Sorry! 2025-01-21 15:37:39 -05:00
a5798a89ed Merge branch 'develop' into specflow 2025-01-21 12:13:24 -05:00
3f3661a86f Heading towards PVdagM multigrid 2025-01-17 14:33:35 +00:00
f7e2f9a401 Checking in spectral flow and DWF/Mobius kernel eigenvalue measurement 2025-01-16 20:47:33 +00:00
2848a9b558 DWF Kernel lanczos working(?) 2025-01-16 01:29:56 +00:00
d4868991af Fixed wrong lib for NVTX in configure.ac and updated to nvtx3 2025-01-10 14:53:19 +00:00
e99d42404e Removing the regresion test files that were also in this branch for a clean PR 2024-12-16 16:31:22 +00:00
3ba019c747 Cleaning up and aligning variable naming between action deriv versions 2024-12-03 15:23:00 +00:00
47429218bb patched version + modifications to deriv -> staple in qcd/gauge 2024-11-27 16:29:22 +00:00
8fe429346f Dslash testing for reproduce 2024-11-11 23:11:11 +00:00
5a4f9bf2e3 Force the ROCM version 2024-10-29 18:12:31 -04:00
b91fc1b6b4 Merge branch 'feature/boosted' into feature/deprecate-uvm
Fixed boosted free field test
2024-10-28 16:53:09 -04:00
eafc150034 Test fft asserts 2024-10-23 16:46:26 -04:00
2877f1a268 Verbose reduce 2024-10-23 15:14:16 -04:00
1e893af775 GPU happy 2024-10-23 14:52:15 -04:00
d9f430a575 Happy GPU 2024-10-23 14:51:16 -04:00
63abe87f36 Memory manager verbose improvements that were useful to track an error 2024-10-23 14:49:13 -04:00
368d649c8a feature/deprecate-uvm happier -- preallocate device resident neigbour table 2024-10-23 14:47:55 -04:00
5603464f39 Fix in partial fraction import/export physical and
make the GPU happier on the deprecate-uvm -- don't use static vectors, make member of class
2024-10-23 14:45:58 -04:00
655c79f39e Suppress warning on partial override 2024-10-23 14:44:41 -04:00
565b231c03 Nvcc happy 2024-10-23 14:44:17 -04:00
62a9f180fa NVCC happy 2024-10-23 14:44:04 -04:00
5ae77876a8 Meson field and Aslash field on GPU; some compiler warning removed 2024-10-18 19:08:06 -04:00
4ed2c2c74f Config command 2024-10-18 13:58:33 -04:00
955da582b6 Working on NVCC 2024-10-18 13:58:03 -04:00
11b07b950d Vanilla linux compile, assuming spack prerequisites 2024-10-18 13:57:40 -04:00
8f70cfeda9 Clean up 2024-10-18 13:56:53 -04:00
ce64271048 Remove the copying version 2024-10-18 13:56:24 -04:00
5cc4f3241d Meson field test 2024-10-18 15:42:30 +00:00
6815e138b4 Boosted fermion attempt 2024-10-17 18:37:33 +01:00
a78a61d76f Update configure 2024-10-15 14:38:45 +00:00
2eff3f34ed Alternate reduction; default to grids own but make a configure flag
--enable-reduction=grid|mpi
2024-10-15 14:36:06 +00:00
03687c1d62 Final version of test, closer to original again 2024-10-15 14:35:17 +00:00
febfe4e77f Make my own reduction a configure flag 2024-10-15 14:32:35 +00:00
4d1aa134b5 Use normal reduction, configure flag to force deterministic 2024-10-15 14:32:11 +00:00
5ec879860a Odd rounding issue - bears looking into 2024-10-15 14:30:54 +00:00
f617468e04 Update Lattice_base.h 2024-10-11 10:39:16 -04:00
b728af903c Fast axpy norm under CFLAG 2024-10-11 03:23:09 +00:00
54f1999030 axpy_norm_fast -- wasn't using the determinstic MPI sum causing issues 2024-10-11 03:22:18 +00:00
fd58f0b669 Return ok 2024-10-11 03:21:21 +00:00
c5c67b706e cl::sycl -> SYCL 2024-10-10 22:04:12 +00:00
be7a543e2c Revert barriers -- these were not the problem 2024-10-10 22:03:29 +00:00
68f112d576 New software moves cl::sycl 2024-10-10 22:03:04 +00:00
ec1395a304 Better flight logging 2024-10-10 22:01:57 +00:00
beb0e474ee Use deterministic own brand reduction 2024-10-10 22:01:24 +00:00
2b5fdcbbc5 New software version 2024-10-10 21:59:02 +00:00
295127d456 Deterministic homebrew reduction 2024-10-10 21:58:26 +00:00
7dcfb13694 New software stack 2024-10-10 21:57:35 +00:00
ee4046fe92 Added a dimension ordered column sum based reduction for scalar.
Removes dependence on MPI_Allreduce and allows for work around on
systems where this is bollox.
2024-09-27 09:26:03 -04:00
2a9cfeb9ea New files 2024-09-26 14:23:29 -04:00
1147b8ea40 Cheby poly setup 2024-09-26 14:20:32 -04:00
3f9119b39d Remove vectors used for the power spectrum table in paper 2024-09-26 14:19:41 -04:00
35e8225abd Verbose control 2024-09-26 14:18:35 -04:00
bdbfbb7a14 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-09-26 14:05:45 -04:00
f7d4be8d96 Calculate bytes correctly 2024-09-26 14:04:44 -04:00
9fa8bd6438 Configure for AOT on Aurora latest software 2024-09-23 11:25:44 +00:00
02c8178f16 Almost working on Aurora 2024-09-23 09:43:50 +00:00
e637fbacae Verbose remove 2024-09-23 09:42:43 +00:00
066544281f Deprecate UVM 2024-09-17 13:34:27 +00:00
11be10d2c0 Aurora testing 2024-09-10 18:11:52 +00:00
160969a758 UVM tester, doesn't turn up anything 2024-09-10 18:09:42 +00:00
622f78ebea SYCL updates -- operator = giving trouble on Aurora.
SYCL reduction is failing intermittently with SVM interface - returns
zero, expect non-zero.
Think I need to remove ALL dependence on SVM.
2024-09-04 13:53:48 +00:00
aa67a5b095 Rename 2024-08-27 19:54:01 +00:00
af9ea0864c Blas fix 2024-08-27 19:53:09 +00:00
4e2a6d87c4 Gemm batched fix 2024-08-27 19:24:05 +00:00
a465ecece9 Aurora 2024-08-27 19:20:43 +00:00
575eb72182 Converges on 16^3 2024-08-27 19:20:38 +00:00
3a973914d6 Compile on frontier 2024-08-27 14:55:42 -04:00
f568c07bbd Improved the BLAS benchmark 2024-08-27 14:53:54 -04:00
2c9878fc3a Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-08-27 12:05:46 -04:00
27b1b1b005 Checkerboard available for offloading pickCheckerboard 2024-08-27 12:04:09 -04:00
130d7ab077 Verbose changes 2024-08-27 12:03:28 -04:00
29f6b8a74a Setup 2024-08-27 12:02:49 -04:00
9779aaea33 16^3 optimise 2024-08-27 11:38:35 -04:00
ec25604a67 Fastest solver for mrhs multigrid 2024-08-27 11:32:34 -04:00
3668e81c5e Extract slice working on checkerboard field for Block Lanczos 2024-08-27 11:31:30 -04:00
d66b2423cb Move slice operations to GPU for BlockCG 2024-08-27 11:28:47 -04:00
15cc78f0b6 peek/poke local site on checkerboard arrays 2024-08-27 11:23:42 -04:00
06db4ddea2 Fast init on GPU 2024-08-27 11:22:33 -04:00
6cfb90e99f Support needed for accelerator resident set/pick Checkerboard 2024-08-27 11:19:00 -04:00
d8be95a2a3 Don't early terminate power method to get more accurate top EV 2024-08-27 11:17:37 -04:00
f82702872d Normal residual 2024-08-27 11:16:44 -04:00
3752c49ef0 Add option to record the CG polynomial 2024-08-27 11:14:35 -04:00
fe65fa4988 MulMatrix 2024-08-27 11:13:18 -04:00
1fe4c205a3 Adef 2024-08-27 11:11:47 -04:00
d4dc5e0f43 BlockCG linalg acceleratoin with BLAS 2024-08-27 11:08:33 -04:00
77944437ce Functor initialisation 2024-08-27 11:01:02 -04:00
c164bff758 MMdag 2024-08-27 11:00:36 -04:00
aa2e3d954a MMdag operator 2024-08-27 10:59:29 -04:00
de62b04728 Block CG linalg acceleration 2024-08-27 10:58:54 -04:00
d0bdb50f24 Analyse power spectrum 2024-08-27 10:58:19 -04:00
a8fecbc609 BlockCG linalg via BLAS 2024-08-21 16:08:16 -04:00
557fa483ff Blas benchmark committed stand alone 2024-08-20 16:18:43 +00:00
fc15d55df6 Mallinfo 2024-08-20 14:33:09 +00:00
53573d7d94 Better benchmark 2024-08-20 14:31:57 +00:00
bb3c177000 Better benchmarking 2024-08-20 14:31:41 +00:00
a3322b470f Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-08-20 14:30:52 +00:00
f8f408e7a9 BLAS everywhere 2024-07-25 18:09:02 +00:00
baac1127d0 Later intel compiler happiness 2024-07-25 18:06:05 +00:00
6f1328160c Remove SVM use 2024-07-25 18:05:40 +00:00
04cf902791 Mallinfo and ASAN hooks 2024-07-25 18:04:56 +00:00
7a5b1c1a19 Try Catch convenience macro 2024-07-25 18:03:41 +00:00
18d2d7da4a Eigen implementation and SYCL implementation 2024-07-25 18:02:56 +00:00
b461184797 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-07-23 09:53:58 -04:00
4563b39305 New Frontier config 2024-07-23 09:53:08 -04:00
c9d5674d5b FInal for paper 2024-07-22 15:26:45 -04:00
486412635a 8^4 test for PETSc 2024-07-22 15:25:17 -04:00
8b23a1546a Force compile temporarily 2024-07-22 15:24:56 -04:00
a901e4e369 Regressed performance for paper 2024-07-22 15:24:04 -04:00
804d9367d4 Regressed performance 2024-07-22 15:23:25 -04:00
41d8adca95 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-07-11 15:38:45 +00:00
059e8e5bb0 New compile option 2024-07-11 15:37:30 +00:00
b3ee8ded96 Respect command line 2024-07-11 15:34:48 +00:00
cf3584ad15 Convenient to monitor memory across an HMC trajectory 2024-07-11 15:30:32 +00:00
a66973163f Device vector not UVM 2024-07-11 15:24:11 +00:00
4502a8c8a1 libc malloc heap info dump on Linux 2024-07-11 15:22:18 +00:00
9c902e4c2d Batched blas, but not working yet on OneAPI 2024-07-11 15:19:49 +00:00
f3eb36adcf Namespace addition 2024-07-11 15:19:19 +00:00
7c246606c1 Schur additional case 2024-07-10 22:04:32 +00:00
172c75029e Redblack additional case 2024-07-10 22:03:59 +00:00
6ae52da571 LLVM leak sanitizer 2024-07-08 15:59:18 +00:00
4ee9c68053 Updated compile environment 2024-07-08 15:57:57 +00:00
a15b4378a3 Sanitizer preservation of options 2024-07-08 15:57:45 +00:00
89fdd7f8dd AOT compilation 2024-07-05 17:47:56 +00:00
c328be24b7 Sanitizer compile options 2024-07-05 17:46:43 +00:00
a73dc6dbf4 Display linux heap info 2024-06-28 16:05:17 +00:00
eee2a2657f Try catch exception wrappers 2024-06-28 16:02:29 +00:00
12b8be7cb9 Best so far on 96^3 350 Evecs converged on 4^4 block 2024-06-18 16:31:37 -04:00
63c223ea5d Verbose 2024-06-18 03:22:01 +00:00
2877fb4a2c More verbose if alloc failure 2024-06-18 03:21:03 +00:00
d299c86633 Std::asin,acos 2024-06-11 16:41:23 -04:00
6ce52092e8 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-06-11 15:16:58 -04:00
b5926c1d21 Broadcast time info 2024-06-11 15:16:25 -04:00
9563238e9b Force initial to identity 2024-06-11 17:51:58 +00:00
fb9b1d76ca Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-06-11 16:48:16 +00:00
1739146599 Property to initialise reduction 2024-06-11 16:47:35 +00:00
ed20b39ab3 Log files from Frontier benchmark 2024-06-11 11:16:20 -04:00
284fc05f15 Protect vs. missing LIME libarary 2024-06-11 11:08:00 -04:00
07a07b6fa3 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-06-10 15:09:25 -04:00
dc80b08969 96^3 test 2024-06-10 15:07:29 -04:00
a49a161f8d SYCL update to use buffer on reduction variable 2024-06-08 16:05:18 +00:00
a6479ca50f Shuhei's ComputeWilsonFlow main programme 2024-06-05 15:51:11 -04:00
0e607a55e7 Updated for 8^4 test 2024-05-26 20:53:05 +00:00
8d305df0db guard against trying to compile SU3-specific code when Nc ≠ 3 2024-05-24 14:00:56 +01:00
c4b9f71357 CPU compile ordering is important 2024-05-21 02:22:32 +01:00
394e506aea Compile options for tursa update 2024-05-21 02:10:04 +01:00
e19b26341b Tursa configure update 2024-05-21 01:14:27 +01:00
cfe1b13225 Back out zero change 2024-05-21 01:14:08 +01:00
890c5ea1cd Warning disable 2024-05-20 20:08:31 +01:00
a87378d3b6 Update 2024-05-20 20:08:31 +01:00
832fc08809 Merge pull request #459 from dbollweg/sycl_slicesum_update
Sycl slicesum bugfix
2024-05-20 15:06:53 -04:00
9a1ad6a5eb Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-05-17 11:33:46 -04:00
a90eafad24 Merge branch 'feature/scidac-wp1' into develop 2024-05-17 11:32:00 -04:00
ad14a82742 Working aas good as possible on 48^3 in double 2024-05-16 10:55:45 -04:00
14e9d8ed9f CG improvements for smoother 2024-05-16 10:55:18 -04:00
0ac85fa70b Serialisation removal 2024-05-16 10:49:04 -04:00
c371de42b9 Some site tools for sitewise autocorr 2024-05-16 10:48:23 -04:00
ccf147d6c1 Select the compiler that gives better performance on sunspot 2024-05-07 18:45:56 +00:00
7aa12b446f New config command for sunspot 2024-05-07 18:45:40 +00:00
c293228102 layout control 2024-05-07 18:45:21 +00:00
5c4c9f721a Remove pbs file and replace with bench1 and bench2 for 1 and 2 nodes 2024-05-07 18:44:49 +00:00
057f86c1de 2 queues works ok in performance 2024-05-07 18:42:50 +00:00
cd52e3cbc2 Jobs on subspot 2024-05-07 18:38:15 +00:00
24602e1259 Accidental synchronise 2024-05-07 17:28:38 +00:00
8a098889fc Update FlightRecorder.cc 2024-04-30 21:15:08 +01:00
5c3ace7c3e Merge branch 'develop' into feature/scidac-wp1 2024-04-30 05:26:06 -04:00
aa148455b7 Updated todo list 2024-04-30 05:24:39 -04:00
98cf247f33 prepare to switch to mixed precision 2024-04-30 05:23:45 -04:00
0cf16522d1 Refine with HDCG choice 2024-04-30 05:22:14 -04:00
7b7c75f9e5 Setup 2024-04-30 05:21:02 -04:00
aefd255a3c Verbose 2024-04-30 05:20:41 -04:00
1c5aa939fd Subspace setup changes 2024-04-30 05:19:09 -04:00
3a0ff17be0 Verbose changes 2024-04-30 05:17:28 -04:00
47829ae5cc Verbose changes 2024-04-30 05:16:46 -04:00
bfa7b69aff Verbose changes 2024-04-16 15:42:46 -04:00
2aaa959b5f Printing changes 2024-04-16 15:41:25 -04:00
ce2970b93a Printing changes 2024-04-16 15:40:38 -04:00
7b76970d10 Verbose changes 2024-04-16 15:40:10 -04:00
9fd41882d2 Herm Op update 2024-04-16 15:39:27 -04:00
ff2ea5de18 Update Tensor_traits.h 2024-04-11 14:25:45 -04:00
5147a42818 Updated hdcg 2024-04-05 01:05:57 -04:00
57552d8ca3 Assign from non-lattice made accelerator resident 2024-04-05 01:05:12 -04:00
13713b2a76 Much faster little dirac operator calculation 2024-04-05 01:04:40 -04:00
36a14e4ee3 Best setup and introduce an HDCG refine method 2024-04-05 01:03:33 -04:00
b4cc788b8c First version used in mrhsHDCG
Need to consolidate files.
Plan: Make this version able to go virtual base, then absorb chulwoos
version when it is proven
2024-04-05 01:02:21 -04:00
0f0e7512f3 Keep MRHS in a different file 2024-04-05 00:59:53 -04:00
1196b1a161 Less verbose 2024-04-05 00:58:58 -04:00
2c8c3be9ee Adef2Mrhs 2024-04-05 00:57:13 -04:00
5b79d51c22 Improvements 2024-04-01 14:18:40 -04:00
da890dc293 Verbose changes 2024-04-01 14:18:00 -04:00
93d0a1e73a HISQ view call 2024-04-01 14:16:47 -04:00
f0a8c7d045 Playing with chebyshevs 2024-04-01 14:16:11 -04:00
db8793777c Logging/verbose 2024-04-01 14:15:41 -04:00
c745484e65 9.5x speed up version 2024-04-01 14:14:30 -04:00
da59379612 Large reg file for double 2024-03-26 17:03:20 +00:00
3ef2a41518 ifdef guard ommitted 2024-03-26 14:50:32 +00:00
aa96f420c6 Acclerator ware MPI guard on the Unix domain sockets 2024-03-26 14:41:25 +00:00
49e9e4ed0e Fences 2024-03-26 14:14:06 +00:00
f7b8163016 Deterministic MPI reduce options 2024-03-26 14:11:40 +00:00
93769eacd3 Updated configure for bounce through host 2024-03-26 14:10:24 +00:00
59b0cc11df REduce the time in single 2024-03-26 00:42:40 +00:00
f32c275376 Updated config options for MPI not being aware of GPU 2024-03-26 00:42:00 +00:00
5404fc66ab Merge needs a fence on SYCL 2024-03-26 00:38:41 +00:00
1f53458af8 Options to bounce through a host buffer if
--disable-accelerator-aware-mpi
2024-03-26 00:37:19 +00:00
434c3e7f1d We have a choice of GET or PUT across NVlink 2024-03-25 14:32:44 +00:00
500b119f3d Deterministic MPI 2024-03-22 15:55:23 +00:00
4b87259c1b New config command for sunspot 2024-03-22 15:43:49 +00:00
503dec34ef This appears working now on Sunspot 2024-03-22 15:43:30 +00:00
d1e9fe50d2 Xor csum for repro testing 2024-03-22 15:42:57 +00:00
d01e5fa838 Improved FlightRecorder 2024-03-22 15:42:32 +00:00
a477c25e8c Sunspot repro tests 2024-03-22 15:42:11 +00:00
1bd20cd9e8 FlightRecorder 2024-03-22 15:40:01 +00:00
e49e95b037 Upgrade of the Britney test with flight recorder and fast xor checksum 2024-03-22 15:39:27 +00:00
6f59fed563 Flight recorder, resurrecting the "world famous" Britney test 2024-03-22 15:32:32 +00:00
60b7f6c99d Flight recorder, resurrecting the "world famous" Britney test 2024-03-22 15:32:26 +00:00
b92dfcc8d3 Flight recorder, resurrecting the "world famous" Britney test 2024-03-22 15:30:27 +00:00
f6fd6dd053 Flight recorder, resurrecting the "world famous" Britney test 2024-03-22 15:30:01 +00:00
461cd045c6 sliceSum cleanup 2024-03-13 18:18:44 -04:00
fee65d7a75 Merge branch 'paboyle:develop' into sycl_slicesum_update 2024-03-13 18:06:17 -04:00
31f9971dbf avoid PI_ERROR_OUT_OF_RESOURCES in sycl sliceSum 2024-03-13 13:39:26 -04:00
d87296f3e8 Merge branch 'develop' of https://github.com/dbollweg/Grid into develop 2024-03-06 16:54:22 -05:00
be94cf1c6f Fewer wait-calls in sycl slicesum 2024-03-06 16:53:13 -05:00
cc04dc42dc Merge branch 'develop' into feature/scidac-wp1 2024-03-06 14:55:21 -05:00
070b61f08f Simplifying the MultiRHS solver to make it do SRHS *and* MRHS 2024-03-06 14:04:33 -05:00
ee3b3c4c56 relocate deflation support 2024-02-27 11:52:23 -05:00
462d706a63 Move to a blas directory 2024-02-27 11:51:04 -05:00
ee0d460c8e Blas based block project & deflate for multiRHS 2024-02-27 11:41:44 -05:00
cd15abe9d1 Mrhs prep 2024-02-27 11:41:13 -05:00
9f40467e24 Warning squash 2024-02-27 11:40:36 -05:00
d0b6593823 More verbose on checksum 2024-02-27 11:40:14 -05:00
79fc821d8d reorg headers 2024-02-27 11:39:37 -05:00
d7fdb9a7e6 Reorg headers 2024-02-27 11:39:06 -05:00
b74de51c18 Reorder headers 2024-02-27 11:38:52 -05:00
44b466e072 Make InsertSliceFast the default at some point in future.
Should I do this now?
2024-02-21 14:51:24 -05:00
5e5b471bb2 Put/Get and DEviceToDevice 2024-02-21 14:47:06 -05:00
9c2565f64e Working and faster version 2024-02-21 14:46:43 -05:00
e1d0a7cec3 Batched blas 2024-02-21 14:38:20 -05:00
b19ae8f465 Nbasis method for convenience 2024-02-21 14:36:19 -05:00
cdff2c8e18 Updated mrhs adef 2024-02-21 14:27:19 -05:00
eb702f581b Running on 12 rhs on 18 nodes of frontier 2024-01-22 17:44:15 -05:00
3d13fd56c5 Precompute phases, save memory in hermitian 2024-01-22 17:43:35 -05:00
6f51b49ef8 Use stderr 2024-01-22 17:41:09 -05:00
addc638856 Fast localCopyRegion, blockProjectFast 2024-01-22 17:40:38 -05:00
42ae36bc28 WOrking 2024-01-17 16:39:14 -05:00
c69f73ff9f Working 2024-01-17 16:38:46 -05:00
ca5ae8a2e6 Revert to working. 2024-01-17 16:32:05 -05:00
d967eb53de Working for first time 2024-01-17 16:31:12 -05:00
839f9f1bbe Don't log memory by default 2024-01-17 16:25:50 -05:00
b754a152c6 Flag guard correctly 2024-01-17 16:25:28 -05:00
e07cb2b9de Accelerator memory 2024-01-17 16:24:31 -05:00
a1f8bbb078 accelerator memory print 2024-01-17 16:24:09 -05:00
7909683f3b MultiRHS 2024-01-17 16:21:07 -05:00
25f71913b7 MultiRHS coarse 2024-01-04 12:01:17 -05:00
34ddd2b7b1 MultiRHS coarse space 2024-01-04 12:00:53 -05:00
d5fd90b2f3 Add 48^3 rtest 2024-01-04 12:00:01 -05:00
b7c7000d0d Don't need the numerical rounding tolerance in multigrid 2023-12-22 18:10:23 -05:00
551f6c4edd Synchronise changes 2023-12-22 18:09:11 -05:00
defd814750 Speed up the coarsened matrix matrix evaluation.
It is block project limited.
Could be sped up with calls to Batched GEMM and a data layout change.
2023-12-22 18:07:03 -05:00
3d517bbd2a Synchronise decouple from the launch
Speeds up multileg stencils
2023-12-22 18:06:13 -05:00
78ab955fec Better padded cell exchange 2023-12-22 18:05:41 -05:00
dd13937bb6 Better opt face gather scatter 2023-12-22 18:03:38 -05:00
66a1b63aa9 Faster grid/blas layout change.
Halo exchange is now the only slow part.
Revisit
2023-12-21 20:50:18 -05:00
22c611bd1a Delete temp file 2023-12-21 18:32:31 -05:00
c9bb1bf8ea Passing new BLAs based 2023-12-21 18:31:17 -05:00
9e489887cf General coarse multiRHS move to BLAS implementation 2023-12-21 15:24:48 -05:00
9feb801bb9 Much simpler GPU implementation 2023-12-21 15:24:06 -05:00
c00b495933 Multigrid 2023-12-21 15:23:31 -05:00
d22eebe553 BLas options 2023-12-21 15:23:03 -05:00
8bcbd82680 BLAS based layout and implementation 2023-12-21 15:21:24 -05:00
dfa617c439 Batched SGEMM/DGEMM/ZGEMM/CGEMM
Hip, Cuda version and vanilla CPU
One MKL stub in comments, to be tested as different.
2023-12-21 14:01:18 -05:00
48d1f0df89 Optimised partially, working 2023-12-21 12:33:47 -05:00
b75cb7a12c Blas batched partial implementation on Frontier only for now 2023-12-21 12:31:33 -05:00
332563e037 Debugged, reducing verbose 2023-12-21 12:30:57 -05:00
0cce97a4fe verbosity only 2023-12-20 21:30:10 -05:00
95a8e4be64 rocblas 2023-12-20 21:27:59 -05:00
abcd6b8cb6 Faster version 2023-12-19 15:17:46 -05:00
e8f21c9b6d Memmory verbose control improvement 2023-12-19 15:16:58 -05:00
e054078b11 Verbose 2023-12-05 16:15:17 -05:00
6835a7f208 Better logging, test on 81 point stencil 2023-11-29 19:20:47 -05:00
f59993b979 Nbasis§ 2023-11-29 09:47:36 -05:00
2290b8f680 Verbose 2023-11-29 09:47:04 -05:00
2c54be651c Further updates 2023-11-29 09:43:29 -05:00
e859a199df Reduce volume to interior for coarse stencil -- worth up to 4x gain 2023-11-28 10:23:16 -05:00
0a3682ad0b MultiRHS work 2023-11-28 07:43:37 -05:00
59abaeb5cd Time stamp 2023-11-24 12:56:45 -05:00
3e448435d3 Restrict to interior 2023-11-23 18:23:29 -05:00
a294bc3c5b Relax constraints for multiRHS 2023-11-23 18:20:42 -05:00
b302ad3d49 multiRHS test in place, passes Yay! 2023-11-23 18:20:15 -05:00
82fc4b1e94 Finalise 2023-11-23 18:19:41 -05:00
b4f1740380 Finalise message 2023-11-23 18:19:16 -05:00
031f85247c multRHS initial support -- needs optimisation for multi project/promote.
Bug fix in freeing intermediate grids to stop double free
2023-11-23 18:18:35 -05:00
639cc6f73a better support for multiRHS coarse space
Still to add restriction of domain of last loop to interior of padded cell (expect about 4.5x on test volume on Crusher)
2023-11-23 18:16:26 -05:00
09946cf1ba Improved, works on 48^3 moving to multiRHS optimisations 2023-11-15 18:03:05 -05:00
f4fa95e7cb Use 5.3.0 2023-11-15 18:01:38 -05:00
100e29e35e Allow expression as argument to norm2 2023-11-15 18:00:44 -05:00
4cbe471a83 devVector 2023-11-15 18:00:07 -05:00
8bece1f861 Faster to transpose the matrix and apply with column major order 2023-11-15 17:58:38 -05:00
a3ca71ec01 Lots more setup options, still working on them 2023-11-15 17:58:04 -05:00
e0543e8af5 Implement flexible preconditioned CG 2023-11-15 17:57:39 -05:00
c1eb80d01a Print which have converged 2023-11-15 17:57:08 -05:00
a26121d97b Better printing 2023-11-15 17:56:45 -05:00
043031a757 Report resid on failed convergence 2023-11-15 17:56:22 -05:00
807aeebe4c Resize tol in constructor 2023-11-15 17:55:57 -05:00
8aa1a37aad For Mirs preconditioner solver 2023-11-15 17:55:32 -05:00
4efa042f50 C++17 change 2023-10-24 10:57:50 -04:00
c7cb37e970 c++17 accepted 2023-10-24 10:57:24 -04:00
d34b207eab Avoid HIP warnings 2023-10-24 10:57:04 -04:00
0e6fa6f6b8 DOn't need the Cshift for the period optimisation 2023-10-24 10:56:31 -04:00
38b87de53f This works around a stacksize limit on AMD GPU 2023-10-24 10:56:07 -04:00
aa5047a9e4 Faster blockProject blockPromote 2023-10-24 10:49:55 -04:00
24b6ee0df9 M4 file 2023-10-24 10:36:48 -04:00
1e79cc9cbe Avoid compiler error 2023-10-24 10:36:09 -04:00
b3925df9c3 Verbose on CPU-GPU xfer, remove performance by default 2023-10-24 10:25:01 -04:00
351795ac3a Better messaging 2023-10-20 19:33:04 -04:00
9c9c42d0df Tests on frontier with real speed up . 3.5x on 16^3 at mq=0.01 2023-10-20 19:27:13 -04:00
b6ad1bafc7 Normal memory SendToRecvFrom asynchronous for use in general stencil
code
2023-10-20 19:27:13 -04:00
a5ca40f446 Better verbose -- track CPU GPU motion under --log Memory, others go to
debug output stream
2023-10-20 19:27:13 -04:00
9ab54c5565 Overlap comms & data copy/buffer assembly in Ghost zone exchange 2023-10-20 19:27:13 -04:00
4341d96bde Massively sped up coarse grid mult, comms
Save 3ms spend (60% of time !) on cudaMalloc !!
2023-10-20 19:27:13 -04:00
5fac47a26d Faster halo exchange 2023-10-20 19:27:13 -04:00
e064f17346 Faster halo exchange 2023-10-20 19:27:13 -04:00
afe10ba2a2 More digits 2023-10-20 19:27:13 -04:00
7cc3435ba8 Imporved General coarsened matrix 2023-10-20 19:27:13 -04:00
541772313c Verbosity 2023-10-20 19:27:13 -04:00
3747494a09 Notify delet public 2023-10-20 19:27:13 -04:00
f2b98d0dcc Const safety 2023-10-20 19:27:13 -04:00
80471bf762 Alternate implementation involving face operations 2023-10-20 19:27:13 -04:00
a06f63c110 Improved I/O and non-lexico option exposed to SciDAC format 2023-10-20 19:27:13 -04:00
0ae4478cd9 Checkpoint the subspace and ldop 2023-10-20 19:27:13 -04:00
ae4e705e09 Use random vec as easier for debug 2023-10-20 19:27:13 -04:00
f5dcea9dbf Updates for Frontier 2023-10-20 19:27:12 -04:00
2207309f8a Spack rules 2023-10-16 18:38:24 -04:00
2111e7ab5f Run at physical mass 2023-10-06 21:20:21 -04:00
d29abfdcaf Transfer code to Frontier now 2023-10-06 21:03:34 -04:00
a751c42cc5 Checkpoint restore the setup 2023-10-06 21:03:08 -04:00
6a3bc9865e Verbose change 2023-10-06 21:02:04 -04:00
4d5f7e4377 Verbose change 2023-10-06 21:01:37 -04:00
78b117fb78 Comment fix 2023-10-06 21:01:15 -04:00
ded63a1319 Verbose change/pretty print 2023-10-06 21:00:53 -04:00
df3e4d1e9c Return fix 2023-10-06 21:00:21 -04:00
b58fd80379 I/O for coarse op and reorganise multigrid headers 2023-10-06 13:43:46 -04:00
7f6e0f57d0 No IO in file 2023-10-06 13:39:53 -04:00
cae27678d8 gpermute 2023-10-06 13:39:19 -04:00
48ff655bad Slightly less verbose 2023-10-06 10:47:52 -04:00
2525ad4623 Slight clean up 2023-10-06 10:47:32 -04:00
e7020017c5 Reorganise multigrid 2023-10-06 10:47:12 -04:00
eacebfad74 Reorganise multigrid into multiple headers 2023-10-06 10:46:21 -04:00
3bc2da5321 Merge branch 'feature/scidac-wp1' of https://github.com/paboyle/Grid into feature/scidac-wp1 2023-10-05 16:57:59 -04:00
2d710d6bfd Optimised parameters for 16^3 2023-10-05 16:56:55 -04:00
6532b7f32b Eliminate older inefficient coarsening implementation 2023-10-05 16:56:15 -04:00
7b41b92d99 Only need to bad non-local dimensions 2023-10-05 16:55:48 -04:00
dd557af84b ADEF1 and ADEF2 2 level CG 2023-10-05 16:55:19 -04:00
59b9d0e030 coalesceRead the blockSum 2023-10-05 16:54:48 -04:00
b82eee4733 Hermitian dealing with 2023-10-05 16:54:14 -04:00
6a87487544 Running on Frontier, fix RNG big volume y2k, affecting 5D RNG 2023-10-05 16:50:59 -04:00
fcf5023845 Running on Frontier 2023-10-05 16:50:59 -04:00
c8adad6d8b First runs on Summit. PopulateAdag needs work 2023-10-05 16:50:54 -04:00
737d3ffb98 ADEF1 and 1 hop projection 2023-10-03 14:22:18 -04:00
b01e67bab1 coalescedReadGeneralPermute now working 2023-10-02 17:46:57 -04:00
8a70314f54 Merge branch 'develop' into feature/scidac-wp1 2023-10-02 17:24:55 -04:00
36ae6e5aba Fastest GPU version.
Need to work on the PaddedCell now to make much faster
2023-09-29 18:26:51 -04:00
9db585cfeb Temporary commit while optimisation is carried out 2023-09-29 17:11:35 -04:00
c564611ba7 Annoying hack that is useful to preserve for profiling 2023-09-29 17:11:12 -04:00
e187bcb85c Updating 2023-09-29 17:10:17 -04:00
be18ffe3b4 Further tuning and lanczos 2023-09-27 16:21:58 -04:00
0d63dce4e2 Timing info 2023-09-27 16:21:14 -04:00
26b30e1551 Flop count and projection to nearest neighbour (keeps redundant flops) 2023-09-27 16:20:11 -04:00
7fc58ac293 Verbose subspace init 2023-09-27 16:19:45 -04:00
3a86cce8c1 Compile 2023-09-27 16:19:18 -04:00
37884d369f Coarse space is expensive, but gives a speed up in fine matrix multiplies now.
Down to optimisation
2023-09-25 17:24:19 -04:00
9246e653cd Basic non-local coarsening of operator test 2023-09-25 17:20:58 -04:00
64283c8673 Normal equations becomes linear function for easy base class pass aroudn 2023-09-25 17:19:39 -04:00
755002da9c Comparison convenience 2023-09-25 17:16:33 -04:00
31b8e8b437 Better messaging 2023-09-25 17:16:14 -04:00
0ec0de97e6 Adef2 implemented and working in an HDCG like context 2023-09-25 17:15:03 -04:00
6c3ade5d89 Improved the coarsening 2023-09-25 17:14:40 -04:00
980c5f9a34 Update chebyshev setup 2023-09-25 17:12:22 -04:00
e29b97b3ea Qslash term added 2023-09-14 16:14:03 -04:00
ad2b699d2b Better macos 2023-09-14 16:12:21 -04:00
471ca5f281 Power method more iterations 2023-09-07 10:55:05 -04:00
e82ddcff5d Working getting closer to HDCG but some low level engineering work still needed
+ MUCH work on optimisation
2023-09-07 10:53:51 -04:00
b9dcad89e8 Test cases for coarsening with non-local stencil 2023-09-07 10:53:22 -04:00
993f43ef4a Even odd use case 2023-09-07 10:53:06 -04:00
2b43308208 First cut non-local coarsening 2023-08-25 17:38:07 -04:00
04a1ac3a76 First cut for non-local coarsening 2023-08-25 17:37:38 -04:00
990b8798bd Merge remote-tracking branch 'refs/remotes/origin/develop' into develop 2023-08-25 17:36:45 -04:00
b334a73a44 Stencil improvement 2023-08-25 17:35:10 -04:00
5d113d1c70 Odd address sanitizer complain 2023-08-25 17:34:18 -04:00
c14977aeab Random vector option for test purposes 2023-08-25 17:33:31 -04:00
3e94838204 Spread out improvement 2023-08-25 17:31:28 -04:00
c0a0b8ca62 NEON and address sanitiser 2023-08-25 17:30:30 -04:00
287 changed files with 24275 additions and 5030 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,2 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL

View File

@ -0,0 +1,5 @@
CXX=hipcc
MPICXX=mpicxx
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench

View File

@ -0,0 +1,2 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL

View File

@ -59,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice.h>
#include <Grid/cshift/Cshift.h>
#include <Grid/stencil/Stencil.h>
#include <Grid/stencil/GeneralLocalStencil.h>
#include <Grid/parallelIO/BinaryIO.h>
#include <Grid/algorithms/Algorithms.h>
NAMESPACE_CHECK(GridCore)

View File

@ -30,9 +30,14 @@ directory
#include <type_traits>
#include <cassert>
#include <exception>
#define NAMESPACE_BEGIN(A) namespace A {
#define NAMESPACE_END(A) }
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
#define EXCEPTION_CHECK_BEGIN(A) try {
#define EXCEPTION_CHECK_END(A) } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }

View File

@ -29,6 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHMS_H
#define GRID_ALGORITHMS_H
NAMESPACE_CHECK(blas);
#include <Grid/algorithms/blas/BatchedBlas.h>
NAMESPACE_CHECK(algorithms);
#include <Grid/algorithms/SparseMatrix.h>
#include <Grid/algorithms/LinearOperator.h>
@ -44,7 +47,11 @@ NAMESPACE_CHECK(SparseMatrix);
#include <Grid/algorithms/approx/RemezGeneral.h>
#include <Grid/algorithms/approx/ZMobius.h>
NAMESPACE_CHECK(approx);
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/deflation/Deflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
NAMESPACE_CHECK(deflation);
#include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad);
#include <Grid/algorithms/iterative/BiCGSTAB.h>
@ -67,10 +74,11 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/PowerMethod.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
NAMESPACE_CHECK(PowerMethod);
#include <Grid/algorithms/CoarsenedMatrix.h>
NAMESPACE_CHECK(CoarsendMatrix);
#include <Grid/algorithms/multigrid/MultiGrid.h>
NAMESPACE_CHECK(multigrid);
#include <Grid/algorithms/FFT.h>
#endif

View File

@ -168,6 +168,7 @@ public:
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
std::cerr << "FFTW is not compiled but is called"<<std::endl;
assert(0);
#else
conformable(result.Grid(),vgrid);
@ -190,7 +191,8 @@ public:
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -213,6 +215,7 @@ public:
else if ( sign == forward ) div = 1.0;
else assert(0);
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@ -226,6 +229,7 @@ public:
}
// Barrel shift and collect global pencil
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
@ -247,6 +251,7 @@ public:
}
}
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
@ -269,6 +274,7 @@ public:
usec += timer.useconds();
flops+= flops_call*NN;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
@ -285,6 +291,7 @@ public:
}
result = result*div;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif

View File

@ -103,6 +103,38 @@ public:
_Mat.MdagM(in,out);
}
};
template<class Matrix,class Field>
class MMdagLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MMdag(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MMdag(in,out);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
@ -145,6 +177,44 @@ public:
}
};
////////////////////////////////////////////////////////////////////
// Create a shifted HermOp
////////////////////////////////////////////////////////////////////
template<class Field>
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
LinearOperatorBase<Field> &_Mat;
RealD _shift;
public:
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
HermOp(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.HermOp(in,out);
out = out + _shift*in;
}
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
@ -207,6 +277,38 @@ public:
assert(0);
}
};
template<class Matrix,class Field>
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD shift;
public:
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
out = out + shift*in;
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
out = out + shift * in;
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several

View File

@ -45,6 +45,11 @@ public:
M(in,tmp);
Mdag(tmp,out);
}
virtual void MMdag(const Field &in, Field &out) {
Field tmp (in.Grid());
Mdag(in,tmp);
M(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;

View File

@ -59,7 +59,7 @@ public:
RealD diff = hi-lo;
RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
delta*=1.02;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
@ -90,9 +90,8 @@ public:
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
Coeffs.resize(order,0.0);
Coeffs[order-1] = 1.0;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
@ -132,6 +131,26 @@ public:
Coeffs[j] = s * 2.0/order;
}
};
template<class functor>
void Init(RealD _lo,RealD _hi,int _order, functor & func)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){
@ -250,7 +269,9 @@ public:
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
grid->Barrier();
axpby(T1,xscale,mscale,y,in);
grid->Barrier();
// sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1;

View File

@ -40,7 +40,7 @@ public:
RealD norm;
RealD lo,hi;
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
RealD approx(RealD x);
void csv(std::ostream &out);
void gnuplot(std::ostream &out);

View File

@ -42,6 +42,7 @@ Author: Peter Boyle <pboyle@bnl.gov>
#ifdef GRID_ONE_MKL
#include <oneapi/mkl.hpp>
#endif
///////////////////////////////////////////////////////////////////////
// Need to rearrange lattice data to be in the right format for a
// batched multiply. Might as well make these static, dense packed
@ -54,10 +55,10 @@ NAMESPACE_BEGIN(Grid);
typedef cublasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_SYCL
typedef cl::sycl::queue *gridblasHandle_t;
typedef sycl::queue *gridblasHandle_t;
#endif
#ifdef GRID_ONE_MKL
typedef cl::sycl::queue *gridblasHandle_t;
typedef sycl::queue *gridblasHandle_t;
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
typedef int32_t gridblasHandle_t;
@ -88,9 +89,10 @@ public:
gridblasHandle = theGridAccelerator;
#endif
#ifdef GRID_ONE_MKL
cl::sycl::cpu_selector selector;
cl::sycl::device selectedDevice { selector };
gridblasHandle =new sycl::queue (selectedDevice);
sycl::gpu_selector selector;
sycl::device selectedDevice { selector };
sycl::property_list q_prop{sycl::property::queue::in_order()};
gridblasHandle =new sycl::queue (selectedDevice,q_prop);
#endif
gridblasInit=1;
}
@ -206,6 +208,9 @@ public:
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -265,26 +270,169 @@ public:
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(ComplexD *) &alpha_p[0],
(const ComplexD **)&Amk[0], (const int64_t *)&lda64,
(const ComplexD **)&Bkn[0], (const int64_t *)&ldb64,
(ComplexD *) &beta_p[0],
(ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#if 0
// This code was used to check the mat mul on Sunspot/OneMKL
std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
std::vector<ComplexD> A(m*k); // pointer list to matrices
std::vector<ComplexD> B(k*n);
std::vector<ComplexD> C(m*n);
// int sda = lda*k;
// int sdb = ldb*k;
// int sdc = ldc*n;
std::cerr << " Checking the GEMM results "<<std::endl;
for (int p = 0; p < 1; ++p) {
ComplexD * Amk_p; // pointer list to matrices
ComplexD * Bkn_p; // pointer list to matrices
ComplexD * Cmn_p; // pointer list to matrices
acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
std::cerr << " p " << p << " copied pointers "<<std::endl;
acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
std::cerr << " p " << p << " copied matrices "<<std::endl;
std::cerr << " C[0] "<<C[0]<<std::endl;
std::cerr << " A[0] "<<A[0]<<std::endl;
std::cerr << " B[0] "<<B[0]<<std::endl;
std::cerr << " m "<<m<<std::endl;
std::cerr << " n "<<n<<std::endl;
std::cerr << " k "<<k<<std::endl;
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk) {
int idx_a, idx_b;
// int lda = m; // m x k column major
// int ldb = k; // k x n column major
// int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N) {
idx_a =kk + mm*lda;
} else {
idx_a =mm + kk*lda;
}
if(OpB!=GridBLAS_OP_N) {
idx_b =nn + kk*ldb;
} else {
idx_b =kk + nn*ldb;
}
// std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
ComplexD Ac = A[idx_a];
ComplexD Bc = B[idx_b];
if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
c_mn += Ac*Bc;
}
std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
}
}
}
}
#endif
// synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
@ -305,6 +453,9 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -365,26 +516,111 @@ public:
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(ComplexF *) &alpha_p[0],
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
(const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
(ComplexF *) &beta_p[0],
(ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
ComplexF alphaf(real(alpha),imag(alpha));
ComplexF betaf(real(beta),imag(beta));
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexF c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
@ -407,6 +643,9 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -466,24 +705,81 @@ public:
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(float *) &alpha_p[0],
(const float **)&Amk[0], (const int64_t *)&lda64,
(const float **)&Bkn[0], (const int64_t *)&ldb64,
(float *) &beta_p[0],
(float **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
@ -494,7 +790,6 @@ public:
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
@ -507,6 +802,9 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -567,161 +865,136 @@ public:
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
/*
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
onemkl::transpose::N,
onemkl::transpose::N,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
1,&batchCount64);
*/
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(const double **)&Amk[0], (const int64_t *)&lda64,
(const double **)&Bkn[0], (const int64_t *)&ldb64,
(double *) &beta_p[0],
(double **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Strided case used by benchmark, but generally unused in Grid
// Keep a code example in double complex, but don't generate the single and real variants for now
////////////////////////////////////////////////////////////////////////////////////////////////
void gemmStridedBatched(int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // pointer list to matrices
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn,
int batchCount)
{
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
int sda = m*k;
int sdb = k*n;
int sdc = m*n;
deviceVector<ComplexD> alpha_p(1);
deviceVector<ComplexD> beta_p(1);
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
#ifdef GRID_HIP
auto err = hipblasZgemmStridedBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda, sda,
(hipblasDoubleComplex *) Bkn, ldb, sdb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc, sdc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasZgemmStridedBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda, sda,
(cuDoubleComplex *) Bkn, ldb, sdb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc, sdc,
batchCount);
#endif
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
oneapi::mkl::transpose::N,
oneapi::mkl::transpose::N,
m,n,k,
alpha,
(const ComplexD *)Amk,lda,sda,
(const ComplexD *)Bkn,ldb,sdb,
beta,
(ComplexD *)Cmn,ldc,sdc,
batchCount);
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
}
template<class CComplex>
double benchmark(int M, int N, int K, int BATCH)
{
int32_t N_A = M*K*BATCH;
int32_t N_B = K*N*BATCH;
int32_t N_C = M*N*BATCH;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
CComplex alpha(1.0);
CComplex beta (1.0);
RealD flops = 8.0*M*N*K*BATCH;
int ncall=10;
int ncall=1000;
deviceVector<CComplex *> As(BATCH);
deviceVector<CComplex *> Bs(BATCH);
deviceVector<CComplex *> Cs(BATCH);
for(int b = 0 ; b < BATCH;b++) {
CComplex *ptr;
ptr = &A[b*M*K]; acceleratorPut(As[b],ptr);
ptr = &B[b*K*N]; acceleratorPut(Bs[b],ptr);
ptr = &C[b*M*N]; acceleratorPut(Cs[b],ptr);
}
// Warm up call
gemmBatched(M,N,K,
alpha,
As, // m x k
Bs, // k x n
beta,
Cs);
synchronise();
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemmStridedBatched(M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
BATCH);
gemmBatched(M,N,K,
alpha,
As, // m x k
Bs, // k x n
beta,
Cs);
synchronise();
}
synchronise();
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
flops = 8.0*M*N*K*BATCH*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,376 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSBlockCGLinalg.h
Copyright (C) 2024
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs blockCG */
template<class Field>
class MultiRHSBlockCGLinalg
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef typename Field::vector_object vector_object;
deviceVector<scalar> BLAS_X; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_Y; // nrhs x vol -- the result
deviceVector<scalar> BLAS_C; // nrhs x nrhs -- the coefficients
deviceVector<scalar> BLAS_Cred; // nrhs x nrhs x oSites -- reduction buffer
deviceVector<scalar *> Xdip;
deviceVector<scalar *> Ydip;
deviceVector<scalar *> Cdip;
MultiRHSBlockCGLinalg() {};
~MultiRHSBlockCGLinalg(){ Deallocate(); };
void Deallocate(void)
{
Xdip.resize(0);
Ydip.resize(0);
Cdip.resize(0);
BLAS_Cred.resize(0);
BLAS_C.resize(0);
BLAS_X.resize(0);
BLAS_Y.resize(0);
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
{
std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
for(int r=0;r<AP.size();r++){
Y_copy[r] = Y[r];
}
MulMatrix(AP,m,X);
for(int r=0;r<AP.size();r++){
AP[r] = scale*AP[r]+Y_copy[r];
}
}
void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
{
typedef typename Field::scalar_type scomplex;
GridBase *grid;
uint64_t vol;
uint64_t words;
int nrhs = Y.size();
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
}
// Assumes Eigen storage contiguous
acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
* Yxr = [Y1(x)][..][Ym(x)]
* Y = X . C
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
RealD t2 = usecond();
GridBLAS BLAS;
/////////////////////////////////////////
// Y = X*C (transpose?)
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nrhs,
scalar(1.0),
Xd,
Cd,
scalar(0.0), // wipe out Y
Yd);
BLAS.synchronise();
RealD t3 = usecond();
// Copy back Y = m X
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(y_v,Y[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
{
#if 0
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
autoView(y_v,Y[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,vw,
ComplexD(1.0),
Xd,
Yd,
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
RealD t5 = usecond();
for(int rr=0;rr<nrhs;rr++){
for(int r=0;r<nrhs;r++){
int off = r+nrhs*rr;
m(r,rr)=HOST_C[off];
}
}
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
int rd0 = grid->_rdimensions[0] * grid->_rdimensions[1];
vol = grid->oSites()/rd0;
words = rd0*sizeof(vector_object)/sizeof(scalar);
int64_t vw = vol * words;
assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources -- layout batched BLAS ready
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
autoView(x_v,X[r],AcceleratorRead);
autoView(y_v,Y[r],AcceleratorRead);
scalar *from_x=(scalar *)&x_v[0];
scalar *from_y=(scalar *)&y_v[0];
scalar *BX = &BLAS_X[0];
scalar *BY = &BLAS_Y[0];
accelerator_for(ssw,vw,1,{
uint64_t ss=ssw/words;
uint64_t w=ssw%words;
uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
BX[offset] = from_x[ssw];
BY[offset] = from_y[ssw];
});
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
Xdip.resize(vol);
Ydip.resize(vol);
Cdip.resize(vol);
std::vector<scalar *> Xh(vol);
std::vector<scalar *> Yh(vol);
std::vector<scalar *> Ch(vol);
for(uint64_t ss=0;ss<vol;ss++){
Xh[ss] = & BLAS_X[ss*nrhs*words];
Yh[ss] = & BLAS_Y[ss*nrhs*words];
Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
}
acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,words,
ComplexD(1.0),
Xdip,
Ydip,
ComplexD(0.0), // wipe out C
Cdip);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_Cred.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
RealD t5 = usecond();
m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
for(int ss=0;ss<vol;ss++){
Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
m = m + eC;
}
RealD t6l = usecond();
grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD xybytes = grid->lSites()*sizeof(scalar_object);
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,513 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSDeflation.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/*
MultiRHS block projection
Import basis -> nblock x nbasis x (block x internal)
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
=> coarse_(nrhs x nbasis )^block = via batched GEMM
//template<class vobj,class CComplex,int nbasis,class VLattice>
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
// const VLattice &fineData,
// const VLattice &Basis)
*/
template<class Field>
class MultiRHSBlockProject
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef Field Fermion;
int nbasis;
GridBase *coarse_grid;
GridBase *fine_grid;
uint64_t block_vol;
uint64_t fine_vol;
uint64_t coarse_vol;
uint64_t words;
// Row major layout "C" order:
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
/*
* in Fortran column major notation (cuBlas order)
*
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
*
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
*
* Block project:
* C_br = V^dag F x coarse vol
*
* Block promote:
* F_xr = Vxb Cbr x coarse_vol
*/
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
RealD blasNorm2(deviceVector<scalar> &blas)
{
scalar ss(0.0);
std::vector<scalar> tmp(blas.size());
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
for(int64_t s=0;s<blas.size();s++){
ss=ss+tmp[s]*adj(tmp[s]);
}
coarse_grid->GlobalSum(ss);
return real(ss);
}
MultiRHSBlockProject(){};
~MultiRHSBlockProject(){ Deallocate(); };
void Deallocate(void)
{
nbasis=0;
coarse_grid=nullptr;
fine_grid=nullptr;
fine_vol=0;
block_vol=0;
coarse_vol=0;
words=0;
BLAS_V.resize(0);
BLAS_F.resize(0);
BLAS_C.resize(0);
}
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
{
nbasis=_nbasis;
fine_grid=_fgrid;
coarse_grid=_cgrid;
fine_vol = fine_grid->lSites();
coarse_vol = coarse_grid->lSites();
block_vol = fine_vol/coarse_vol;
words = sizeof(scalar_object)/sizeof(scalar);
BLAS_V.resize (fine_vol * words * nbasis );
}
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename Field::vector_object vobj;
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
assert(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
}
uint64_t sz = blas.size();
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
Coordinate fine_rdimensions = fine_grid->_rdimensions;
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
int64_t bv= block_vol;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
autoView( fineData , vecs[v], AcceleratorRead);
auto blasData_p = &blas[0];
auto fineData_p = &fineData[0];
int64_t osites = fine_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
// std::cout << "sz "<<sz<<std::endl;
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
uint64_t lwords= words; // local variable for copy in to GPU
accelerator_for(sf,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
// One thread per fine site
Coordinate coor_f(_ndimension);
Coordinate coor_b(_ndimension);
Coordinate coor_c(_ndimension);
// Fine site to fine coor
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
int sc;// coarse site
int sb;// block site
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
scalar_object data = extractLane(lane,fineData[sf]);
// BLAS layout address calculation
// words * block_vol * nbasis x coarse_vol
// coarse oSite x block vole x lanes
int64_t site = (lane*osites + sc*bv)*nvec
+ v*bv
+ sb;
// assert(site*lwords<sz);
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
*ptr = data;
#ifdef GRID_SIMT
}
#else
}
#endif
});
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
}
}
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
{
typedef typename Field::vector_object vobj;
int nvec = vecs.size();
assert(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
}
Coordinate fine_rdimensions = fine_grid->_rdimensions;
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
int64_t bv= block_vol;
for(int v=0;v<vecs.size();v++){
autoView( fineData , vecs[v], AcceleratorWrite);
auto blasData_p = &blas[0];
auto fineData_p = &fineData[0];
int64_t osites = fine_grid->oSites();
uint64_t lwords = words;
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
// std::cout << " lwords is "<<lwords << std::endl;
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
// loop over fine sites
accelerator_for(sf,osites,vobj::Nsimd(),{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
#else
for(int lane=0;lane<vobj::Nsimd();lane++) {
#endif
// One thread per fine site
Coordinate coor_f(_ndimension);
Coordinate coor_b(_ndimension);
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
int sc;
int sb;
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
// BLAS layout address calculation
// words * block_vol * nbasis x coarse_vol
int64_t site = (lane*osites + sc*bv)*nvec
+ v*bv
+ sb;
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
scalar_object data = *ptr;
insertLane(lane,fineData[sf],data);
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
}
template<class vobj>
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename vobj::scalar_object coarse_scalar_object;
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
uint64_t sz = blas.size();
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
autoView( coarseData , vecs[v], AcceleratorRead);
auto blasData_p = &blas[0];
auto coarseData_p = &coarseData[0];
int64_t osites = coarse_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
// C_br per site
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
*ptr = data;
#ifdef GRID_SIMT
}
#else
}
#endif
});
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
}
}
template<class vobj>
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename vobj::scalar_object coarse_scalar_object;
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
uint64_t sz = blas.size();
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
autoView( coarseData , vecs[v], AcceleratorWrite);
auto blasData_p = &blas[0];
auto coarseData_p = &coarseData[0];
int64_t osites = coarse_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
coarse_scalar_object data = *ptr;
insertLane(lane,coarseData[sc],data);
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
}
void ImportBasis(std::vector < Field > &vecs)
{
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
ImportFineGridVectors(vecs,BLAS_V);
}
template<class cobj>
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
assert(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
/////////////////////////////////////////////
// Copy in the multi-rhs sources to same data layout
/////////////////////////////////////////////
// std::cout << "BlockProject import fine"<<std::endl;
ImportFineGridVectors(fine,BLAS_F);
deviceVector<scalar *> Vd(coarse_vol);
deviceVector<scalar *> Fd(coarse_vol);
deviceVector<scalar *> Cd(coarse_vol);
// std::cout << "BlockProject pointers"<<std::endl;
for(int c=0;c<coarse_vol;c++){
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
acceleratorPut(Vd[c],Vh);
acceleratorPut(Fd[c],Fh);
acceleratorPut(Cd[c],Ch);
}
GridBLAS BLAS;
// std::cout << "BlockProject BLAS"<<std::endl;
int64_t vw = block_vol * words;
/////////////////////////////////////////
// C_br = V^dag R
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nbasis,nrhs,vw,
scalar(1.0),
Vd,
Fd,
scalar(0.0), // wipe out C
Cd);
BLAS.synchronise();
// std::cout << "BlockProject done"<<std::endl;
ExportCoarseGridVectors(coarse, BLAS_C);
// std::cout << "BlockProject done"<<std::endl;
}
template<class cobj>
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
assert(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
ImportCoarseGridVectors(coarse, BLAS_C);
GridBLAS BLAS;
deviceVector<scalar *> Vd(coarse_vol);
deviceVector<scalar *> Fd(coarse_vol);
deviceVector<scalar *> Cd(coarse_vol);
for(int c=0;c<coarse_vol;c++){
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
acceleratorPut(Vd[c],Vh);
acceleratorPut(Fd[c],Fh);
acceleratorPut(Cd[c],Ch);
}
/////////////////////////////////////////
// Block promote:
// F_xr = Vxb Cbr (x coarse_vol)
/////////////////////////////////////////
int64_t vw = block_vol * words;
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nbasis,
scalar(1.0),
Vd,
Cd,
scalar(0.0), // wipe out C
Fd);
BLAS.synchronise();
// std::cout << " blas call done"<<std::endl;
ExportFineGridVectors(fine, BLAS_F);
// std::cout << " exported "<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,233 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSDeflation.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs projection
i) MultiRHS Deflation
Import Evecs -> nev x vol x internal
Import vector of Lattice objects -> nrhs x vol x internal
=> Cij (nrhs x Nev) via GEMM.
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
Export
ii) MultiRHS block projection
Import basis -> nblock x nbasis x (block x internal)
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
=> coarse_(nrhs x nbasis )^block = via batched GEMM
iii) Alternate interface:
Import higher dim Lattice object-> vol x nrhs layout
*/
template<class Field>
class MultiRHSDeflation
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
int nev;
std::vector<RealD> eval;
GridBase *grid;
uint64_t vol;
uint64_t words;
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
MultiRHSDeflation(){};
~MultiRHSDeflation(){ Deallocate(); };
void Deallocate(void)
{
nev=0;
grid=nullptr;
vol=0;
words=0;
BLAS_E.resize(0);
BLAS_R.resize(0);
BLAS_C.resize(0);
BLAS_G.resize(0);
}
void Allocate(int _nev,GridBase *_grid)
{
nev=_nev;
grid=_grid;
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
eval.resize(nev);
BLAS_E.resize (vol * words * nev );
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
}
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
{
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
assert(ev<eval.size());
eval[ev] = _eval;
int64_t offset = ev*vol*words;
autoView(v,evec,AcceleratorRead);
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
}
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
{
ImportEigenBasis(evec,_eval,0,evec.size());
}
// Could use to import a batch of eigenvectors
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
{
assert(_ev0+_nev<=evec.size());
Allocate(_nev,evec[0].Grid());
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
for(int e=0;e<nev;e++){
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
}
}
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
{
int nrhs = source.size();
assert(source.size()==guess.size());
assert(grid == guess[0].Grid());
conformable(guess[0],source[0]);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
// for(int r=0;r<nrhs;r++){
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
// }
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(v,source[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
}
/*
* in Fortran column major notation (cuBlas order)
*
* Exe = [e1(x)][..][en(x)]
*
* Rxr = [r1(x)][..][rm(x)]
*
* C_er = E^dag R
* C_er = C_er / lambda_e
* G_xr = Exe Cer
*/
deviceVector<scalar *> Ed(1);
deviceVector<scalar *> Rd(1);
deviceVector<scalar *> Cd(1);
deviceVector<scalar *> Gd(1);
scalar * Eh = & BLAS_E[0];
scalar * Rh = & BLAS_R[0];
scalar * Ch = & BLAS_C[0];
scalar * Gh = & BLAS_G[0];
acceleratorPut(Ed[0],Eh);
acceleratorPut(Rd[0],Rh);
acceleratorPut(Cd[0],Ch);
acceleratorPut(Gd[0],Gh);
GridBLAS BLAS;
/////////////////////////////////////////
// C_er = E^dag R
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nev,nrhs,vw,
scalar(1.0),
Ed,
Rd,
scalar(0.0), // wipe out C
Cd);
BLAS.synchronise();
assert(BLAS_C.size()==nev*nrhs);
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
for(int e=0;e<nev;e++){
RealD lam(1.0/eval[e]);
for(int r=0;r<nrhs;r++){
int off = e+nev*r;
HOST_C[off]=HOST_C[off] * lam;
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
}
}
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/////////////////////////////////////////
// Guess G_xr = Exe Cer
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nev,
scalar(1.0),
Ed, // x . nev
Cd, // nev . nrhs
scalar(0.0),
Gd);
BLAS.synchronise();
///////////////////////////////////////
// Copy out the multirhs
///////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(v,guess[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
}
RealD t1 = usecond();
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -33,109 +33,111 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Deflation methods considered
* -- Solve P A x = P b [ like Luscher ]
* DEF-1 M P A x = M P b [i.e. left precon]
* DEF-2 P^T M A x = P^T M b
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
* ADEF-2 Preconditioner = P^T M + Q
* BNN Preconditioner = P^T M P + Q
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
* Vout = x
*/
NAMESPACE_BEGIN(Grid);
// abstract base
template<class Field, class CoarseField>
class TwoLevelFlexiblePcg : public LinearFunction<Field>
template<class Field>
class TwoLevelCG : public LinearFunction<Field>
{
public:
int verbose;
RealD Tolerance;
Integer MaxIterations;
const int mmax = 5;
GridBase *grid;
GridBase *coarsegrid;
LinearOperatorBase<Field> *_Linop
OperatorFunction<Field> *_Smoother,
LinearFunction<CoarseField> *_CoarseSolver;
// Need somthing that knows how to get from Coarse to fine and back again
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
// more most opertor functions
TwoLevelFlexiblePcg(RealD tol,
Integer maxit,
LinearOperatorBase<Field> *Linop,
LinearOperatorBase<Field> *SmootherLinop,
OperatorFunction<Field> *Smoother,
OperatorFunction<CoarseField> CoarseLinop
) :
TwoLevelCG(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
Tolerance(tol),
MaxIterations(maxit),
_Linop(Linop),
_PreconditionerLinop(PrecLinop),
_Preconditioner(Preconditioner)
{
verbose=0;
_FineLinop(FineLinop),
_Smoother(Smoother)
{
grid = fine;
};
// The Pcg routine is common to all, but the various matrices differ from derived
// implementation to derived implmentation
void operator() (const Field &src, Field &psi){
void operator() (const Field &src, Field &psi){
psi.Checkerboard() = src.Checkerboard();
grid = src.Grid();
virtual void operator() (const Field &src, Field &x)
{
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
RealD tn;
RealD guess = norm2(psi);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
/////////////////////////////
// Set up history vectors
/////////////////////////////
std::vector<Field> p (mmax,grid);
int mmax = 5;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
std::vector<Field> p(mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field x (grid); x = psi;
Field z (grid);
Field z(grid);
Field tmp(grid);
Field r (grid);
Field mu (grid);
Field mp (grid);
Field r (grid);
Field mu (grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
//Initial residual computation & set up
RealD guess = norm2(x);
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
RealD src_nrm = norm2(src);
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
if ( src_nrm == 0.0 ) {
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
x=Zero();
}
RealD tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
x=src;
Vstart(x,src);
// r0 = b -A x0
HermOp(x,mmp); // Shouldn't this be something else?
_FineLinop.HermOp(x,mmp[0]);
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
{
double n1 = norm2(x);
double n2 = norm2(mmp[0]);
double n3 = norm2(r);
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
M1(r,z,tmp,mp,SmootherMirs);
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Solve for Mss mu = P A z and set p = z-mu
// Def2: p = 1 - Q Az = Pright z
// Def2 p = 1 - Q Az = Pright z
// Other algos M2 is trivial
///////////////////////////////////////
M2(z,p[0]);
PcgM2(z,p[0]);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
Field pp(grid);
for (int k=0;k<=MaxIterations;k++){
@ -143,31 +145,46 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
d= PcgM3(p[peri_k],mmp[peri_k]);
a = rtz/d;
// Memorise this
pAp[peri_k] = d;
axpy(x,a,p[peri_k],x);
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
// Compute z = M x
M1(r,z,tmp,mp);
PcgM1(r,z);
{
RealD n1,n2;
n1=norm2(r);
n2=norm2(z);
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
}
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
// PcgM2(z,p[0]);
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
p[peri_kp]=mu;
p[peri_kp]=p[peri_k];
// Standard search direction p -> z + b p ; b =
// Standard search direction p -> z + b p
b = (rtzp)/rtz;
int northog;
// k=zero <=> peri_kp=1; northog = 1
// k=1 <=> peri_kp=2; northog = 2
// ... ... ...
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
// k=mmax-1<=> peri_kp=0; northog = 1
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
@ -176,75 +193,324 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
}
RealD rrn=sqrt(rn/ssq);
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
RealD rtn=sqrt(rtz/ssq);
RealD rtnp=sqrt(rtzp/ssq);
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
// Stopping condition
if ( rn <= rsq ) {
HermOp(x,mmp); // Shouldn't this be something else?
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp[0]);
axpy(tmp,-1.0,src,mmp[0]);
RealD psinorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
return k;
RealD mmpnorm = sqrt(norm2(mmp[0]));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
}
}
// Non-convergence
assert(0);
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 3;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
src[0].Grid()->Barrier();
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
a[rhs] = rtz[rhs]/d[rhs];
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
}
// Compute z = M x (for *all* RHS)
PcgM1(r,z);
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
grid->Barrier();
RealD max_rn=0.0;
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void M(Field & in,Field & out,Field & tmp) {
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
{
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<in.size();rhs++){
this->PcgM1(in[rhs],out[rhs]);
}
}
virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
{
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<x.size();rhs++){
this->Vstart(x[rhs],src[rhs]);
}
}
virtual void Vstart(Field & x,const Field & src)=0;
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual void M1(Field & in, Field & out) {// the smoother
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout.
/////////////////////////////////////////////////////////////////////
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2 : public TwoLevelCG<Field>
{
public:
///////////////////////////////////////////////////////////////////////////////////
// Need something that knows how to get from Coarse to fine and back again
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
///////////////////////////////////////////////////////////////////////////////////
GridBase *coarsegrid;
Aggregation &_Aggregates;
LinearFunction<CoarseField> &_CoarseSolver;
LinearFunction<CoarseField> &_CoarseSolverPrecise;
///////////////////////////////////////////////////////////////////////////////////
// more most opertor functions
TwoLevelADEF2(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
Aggregation &Aggregates
) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
_CoarseSolver(CoarseSolver),
_CoarseSolverPrecise(CoarseSolverPrecise),
_Aggregates(Aggregates)
{
coarsegrid = Aggregates.CoarseGrid;
};
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("MultiGridPreconditioner ");
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(grid);
Field Min(grid);
PcgM(in,Min); // Smoother call
Field tmp(this->grid);
Field Min(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
HermOp(Min,out);
GridStopWatch SmootherTimer;
GridStopWatch MatrixTimer;
SmootherTimer.Start();
this->_Smoother(in,Min);
SmootherTimer.Stop();
MatrixTimer.Start();
this->_FineLinop.HermOp(Min,out);
MatrixTimer.Stop();
axpy(tmp,-1.0,out,in); // tmp = in - A Min
ProjectToSubspace(tmp,PleftProj);
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
GridStopWatch ProjTimer;
GridStopWatch CoarseTimer;
GridStopWatch PromTimer;
ProjTimer.Start();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
ProjTimer.Stop();
CoarseTimer.Start();
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
CoarseTimer.Stop();
PromTimer.Start();
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
PromTimer.Stop();
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
axpy(out,1.0,Min,tmp); // Min+tmp
}
virtual void M2(const Field & in, Field & out) {
out=in;
// Must override for Def2 only
// case PcgDef2:
// Pright(in,out);
// break;
}
virtual RealD M3(const Field & p, Field & mmp){
double d,dd;
HermOpAndNorm(p,mmp,d,dd);
return dd;
// Must override for Def1 only
// case PcgDef1:
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
// Pleft(mp,mmp);
// d=real(linop_d->inner(p,mmp));
}
virtual void VstartDef2(Field & xconst Field & src){
//case PcgDef2:
//case PcgAdef2:
//case PcgAdef2f:
//case PcgV11f:
virtual void Vstart(Field & x,const Field & src)
{
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
@ -256,142 +522,78 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
Field r(grid);
Field mmp(grid);
HermOp(x,mmp);
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
ProjectToSubspace(r,PleftProj);
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
PromoteFromSubspace(PleftMss_proj,mmp);
x=x+mmp;
Field r(this->grid);
Field mmp(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
this->_Aggregates.ProjectToSubspace(PleftProj,src);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
}
};
template<class Field>
class TwoLevelADEF1defl : public TwoLevelCG<Field>
{
public:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
TwoLevelADEF1defl(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
std::vector<Field> &_evec,
std::vector<RealD> &_eval) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
evec(_evec),
eval(_eval)
{};
// Can just inherit existing M2
// Can just inherit existing M3
// Simple vstart - do nothing
virtual void Vstart(Field & x,const Field & src){
return;
x=src; // Could apply Q
};
// Override PcgM1
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("EvecPreconditioner ");
int N=evec.size();
Field Pin(this->grid);
Field Qin(this->grid);
//MP + Q = M(1-AQ) + Q = M
// // If we are eigenvector deflating in coarse space
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
// // A Q = Sum_i |phi_i> <phi_i|
// // M(1-AQ) = M(1-proj) + Q
Qin.Checkerboard()=in.Checkerboard();
Qin = Zero();
Pin = in;
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
auto ip = TensorRemove(innerProduct(tmp,in));
axpy(Qin, ip / eval[i],tmp,Qin);
axpy(Pin, -ip ,tmp,Pin);
}
this->_Smoother(Pin,out);
out = out + Qin;
}
};
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout. Override in Def1
/////////////////////////////////////////////////////////////////////
virtual void Vout (Field & in, Field & out,Field & src){
out = in;
//case PcgDef1:
// //Qb + PT x
// ProjectToSubspace(src,PleftProj);
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
// PromoteFromSubspace(PleftMss_proj,tmp);
//
// Pright(in,out);
//
// linop_d->axpy(out,tmp,out,1.0);
// break;
}
NAMESPACE_END(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////
// Pright and Pleft are common to all implementations
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void Pright(Field & in,Field & out){
// P_R = [ 1 0 ]
// [ -Mss^-1 Msb 0 ]
Field in_sbar(grid);
ProjectToSubspace(in,PleftProj);
PromoteFromSubspace(PleftProj,out);
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
HermOp(in_sbar,out);
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
PromoteFromSubspace(PleftMss_proj,out); //
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
}
virtual void Pleft (Field & in,Field & out){
// P_L = [ 1 -Mbs Mss^-1]
// [ 0 0 ]
Field in_sbar(grid);
Field tmp2(grid);
Field Mtmp(grid);
ProjectToSubspace(in,PleftProj);
PromoteFromSubspace(PleftProj,out);
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
PromoteFromSubspace(PleftMss_proj,out);
HermOp(out,Mtmp);
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
PromoteFromSubspace(PleftProj,tmp2);
axpy(out,-1.0,tmp2,Mtmp);
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
}
}
template<class Field>
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp){
}
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
}
virtual void M2(Field & in, Field & out){
}
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
}
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
}
}
/*
template<class Field>
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
}
template<class Field>
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
}
template<class Field>
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
}
template<class Field>
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
}
*/
#endif

View File

@ -0,0 +1,734 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/AdefGeneric.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
/*
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
*/
NAMESPACE_BEGIN(Grid);
template<class Field>
class TwoLevelCGmrhs
{
public:
RealD Tolerance;
Integer MaxIterations;
GridBase *grid;
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
GridStopWatch ProjectTimer;
GridStopWatch PromoteTimer;
GridStopWatch DeflateTimer;
GridStopWatch CoarseTimer;
GridStopWatch FineTimer;
GridStopWatch SmoothTimer;
GridStopWatch InsertTimer;
/*
Field rrr;
Field sss;
Field qqq;
Field zzz;
*/
// more most opertor functions
TwoLevelCGmrhs(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
Tolerance(tol),
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
/*
rrr(fine),
sss(fine),
qqq(fine),
zzz(fine)
*/
{
grid = fine;
};
// Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
// SolveSingleSystem(src,x);
SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
//
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
//
// Q C = R => Q = R C^{-1}
//
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
//
// Set C = L^{dag}, and then Q^dag Q = ident
//
// Checks:
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_zz,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
std::vector<Field> & MQ,
const std::vector<Field> & Z,
const std::vector<Field> & MZ)
{
RealD t0=usecond();
_BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
RealD t1=usecond();
m_zz = 0.5*(m_zz+m_zz.adjoint());
Eigen::MatrixXcd L = m_zz.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
RealD t3=usecond();
_BlockCGLinalg.MulMatrix( Q,Cinv,Z);
_BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
RealD t4=usecond();
std::cout << " ThinQRfact IP :"<< t1-t0<<" us"<<std::endl;
std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
}
virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
// std::vector<RealD> f(nrhs);
// std::vector<RealD> rtzp(nrhs);
// std::vector<RealD> rtz(nrhs);
// std::vector<RealD> a(nrhs);
// std::vector<RealD> d(nrhs);
// std::vector<RealD> b(nrhs);
// std::vector<RealD> rptzp(nrhs);
////////////////////////////////////////////
//Initial residual computation & set up
////////////////////////////////////////////
std::vector<RealD> ssq(nrhs);
for(int rhs=0;rhs<nrhs;rhs++){
ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
}
///////////////////////////
// Fields -- eliminate duplicates between fPcg and block cg
///////////////////////////
std::vector<Field> Mtmp(nrhs,grid);
std::vector<Field> tmp(nrhs,grid);
std::vector<Field> Z(nrhs,grid); // Rename Z to R
std::vector<Field> MZ(nrhs,grid); // Rename MZ to Z
std::vector<Field> Q(nrhs,grid); //
std::vector<Field> MQ(nrhs,grid); // Rename to P
std::vector<Field> D(nrhs,grid);
std::vector<Field> AD(nrhs,grid);
/************************************************************************
* Preconditioned Block conjugate gradient rQ
* Generalise Sebastien Birk Thesis, after Dubrulle 2001.
* Introduce preconditioning following Saad Ch9
************************************************************************
* Dimensions:
*
* X,B etc... ==(Nferm x nrhs)
* Matrix A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
* QC => Thin QR factorisation (google it)
*
* R = B-AX
* Z = Mi R
* QC = Z
* D = Q
* for k:
* R = AD
* Z = Mi R
* M = [D^dag R]^{-1}
* X = X + D M C
* QS = Q - Z.M
* D = Q + D S^dag
* C = S C
*/
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_zz = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(nrhs,nrhs);
GridStopWatch HDCGTimer;
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(X,src);
//////////////////////////
// R = B-AX
//////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(X[rhs],tmp[rhs]);
axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]); // Computes R=Z=src - A X0
}
//////////////////////////////////
// Compute MZ = M1 Z = M1 B - M1 A x0
//////////////////////////////////
PcgM1(Z,MZ);
//////////////////////////////////
// QC = Z
//////////////////////////////////
ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
//////////////////////////////////
// D=MQ
//////////////////////////////////
for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
ProjectTimer.Reset();
PromoteTimer.Reset();
DeflateTimer.Reset();
CoarseTimer.Reset();
SmoothTimer.Reset();
FineTimer.Reset();
InsertTimer.Reset();
GridStopWatch M1Timer;
GridStopWatch M2Timer;
GridStopWatch M3Timer;
GridStopWatch LinalgTimer;
GridStopWatch InnerProdTimer;
HDCGTimer.Start();
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
////////////////////
// Z = AD
////////////////////
M3Timer.Start();
for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);
M3Timer.Stop();
////////////////////
// MZ = M1 Z <==== the Multigrid preconditioner
////////////////////
M1Timer.Start();
PcgM1(Z,MZ);
M1Timer.Stop();
FineTimer.Start();
////////////////////
// M = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
////////////////////
InnerProdTimer.Start();
_BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
InnerProdTimer.Stop();
m_M = m_DZ.inverse();
///////////////////////////
// X = X + D MC
///////////////////////////
m_tmp = m_M * m_C;
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(X,m_tmp, D,X); // D are the search directions and X takes the updates
LinalgTimer.Stop();
///////////////////////////
// QS = Q - M Z
// (MQ) S = MQ - M (M1Z)
///////////////////////////
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
_BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
LinalgTimer.Stop();
////////////////////////////
// D = MQ + D S^dag
////////////////////////////
m_tmp = m_S.adjoint();
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
LinalgTimer.Stop();
////////////////////////////
// C = S C
////////////////////////////
m_C = m_S*m_C;
////////////////////////////
// convergence monitor
////////////////////////////
m_rr = m_C.adjoint() * m_C;
FineTimer.Stop();
RealD max_resid=0;
RealD rrsum=0;
RealD sssum=0;
RealD rr;
for(int b=0;b<nrhs;b++) {
rrsum+=real(m_rr(b,b));
sssum+=ssq[b];
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogMessage <<
"\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H "<<M3Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine "<<FineTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert "<<InsertTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(X[rhs],tmp[rhs]);
Field mytmp(grid);
axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
RealD xnorm = sqrt(norm2(X[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(mytmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
assert(0);
}
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 3;
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
ProjectTimer.Reset();
PromoteTimer.Reset();
DeflateTimer.Reset();
CoarseTimer.Reset();
SmoothTimer.Reset();
FineTimer.Reset();
InsertTimer.Reset();
GridStopWatch M1Timer;
GridStopWatch M2Timer;
GridStopWatch M3Timer;
GridStopWatch LinalgTimer;
HDCGTimer.Start();
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
M3Timer.Start();
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
M3Timer.Stop();
a[rhs] = rtz[rhs]/d[rhs];
LinalgTimer.Start();
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
LinalgTimer.Stop();
}
// Compute z = M x (for *all* RHS)
M1Timer.Start();
PcgM1(r,z);
M1Timer.Stop();
RealD max_rn=0.0;
LinalgTimer.Start();
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
LinalgTimer.Stop();
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
};
template<class Field, class CoarseField>
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
{
public:
GridBase *coarsegrid;
GridBase *coarsegridmrhs;
LinearFunction<CoarseField> &_CoarseSolverMrhs;
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
MultiRHSBlockProject<Field> &_Projector;
MultiRHSDeflation<CoarseField> &_Deflator;
TwoLevelADEF2mrhs(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolverMrhs,
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
MultiRHSBlockProject<Field> &Projector,
MultiRHSDeflation<CoarseField> &Deflator,
GridBase *_coarsemrhsgrid) :
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
_CoarseSolverMrhs(CoarseSolverMrhs),
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
_Projector(Projector),
_Deflator(Deflator)
{
coarsegrid = Projector.coarse_grid;
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
};
// Override Vstart
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
{
int nrhs=x.size();
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
// = [1 - Ass_inv A] Guess + Assinv src
// = P^T guess + Assinv src
// = Vstart [Tang notation]
// This gives:
// W^T (src - A x_0) = src_s - A guess_s - r_s
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
this->_Projector.blockProject(src,PleftProj);
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
for(int rhs=0;rhs<nrhs;rhs++) {
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
}
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
}
this->_Projector.blockPromote(x,PleftMss_proj);
}
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
int nrhs=in.size();
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
std::vector<Field> tmp(nrhs,this->grid);
std::vector<Field> Min(nrhs,this->grid);
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
// this->rrr=in[0];
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
this->_Smoother(in,Min);
this->SmoothTimer.Stop();
#else
for(int rhs=0;rhs<nrhs;rhs++) {
this->SmoothTimer.Start();
this->_Smoother(in[rhs],Min[rhs]);
this->SmoothTimer.Stop();
}
#endif
// this->sss=Min[0];
for(int rhs=0;rhs<nrhs;rhs++) {
this->FineTimer.Start();
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
this->FineTimer.Stop();
}
this->ProjectTimer.Start();
this->_Projector.blockProject(tmp,PleftProj);
this->ProjectTimer.Stop();
this->DeflateTimer.Start();
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
this->DeflateTimer.Stop();
this->InsertTimer.Start();
for(int rhs=0;rhs<nrhs;rhs++) {
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
}
this->InsertTimer.Stop();
this->CoarseTimer.Start();
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
this->CoarseTimer.Stop();
this->InsertTimer.Start();
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
}
this->InsertTimer.Stop();
this->PromoteTimer.Start();
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
this->PromoteTimer.Stop();
this->FineTimer.Start();
// this->qqq=tmp[0];
for(int rhs=0;rhs<nrhs;rhs++) {
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
}
// this->zzz=out[0];
this->FineTimer.Stop();
}
};
NAMESPACE_END(Grid);

View File

@ -31,6 +31,58 @@ directory
NAMESPACE_BEGIN(Grid);
template<class Field>
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
typedef typename Field::scalar_type scomplex;
int Nblock = X.size();
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
template<class Field>
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
//
//Could pack "X" and "AP" into a Nblock x Volume dense array.
// AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
template<class Field>
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
template<class Field>
double normv(const std::vector<Field> &P){
int Nblock = P.size();
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
//////////////////////////////////////////////////////////////////////////
@ -87,10 +139,19 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -110,11 +171,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
const std::vector<Field> & R)
{
InnerProductMatrix(m_rr,R,R);
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint();
Cinv = C.inverse();
@ -186,6 +256,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
sliceNorm(ssq,B,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
sliceNorm(residuals,B,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
@ -221,6 +292,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
Linop.HermOp(X, AD);
tmp = B - AD;
sliceNorm(residuals,tmp,Orthog);
for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
D=Q;
@ -236,6 +310,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
GridStopWatch SolverTimer;
SolverTimer.Start();
RealD max_resid=0;
int k;
for (k = 1; k <= MaxIterations; k++) {
@ -280,7 +356,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
*/
m_rr = m_C.adjoint() * m_C;
RealD max_resid=0;
max_resid=0;
RealD rrsum=0;
RealD rr;
@ -322,7 +398,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
<<" residual "<< std::sqrt(max_resid)<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
@ -466,43 +544,6 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
IterationsToComplete = k;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
double normv(const std::vector<Field> &P){
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation:
//--------------------------
@ -549,6 +590,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
@ -585,6 +627,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b];
std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
}
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);

View File

@ -38,12 +38,13 @@ NAMESPACE_BEGIN(Grid);
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
@ -54,11 +55,26 @@ public:
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
ErrorOnNoConverge(err_on_no_conv)
{};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
virtual void LogIteration(int k,RealD a,RealD b){
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
};
virtual void LogBegin(void){
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
};
GRID_TRACE("ConjugateGradient");
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
this->LogBegin();
GRID_TRACE("ConjugateGradient");
GridStopWatch PreambleTimer;
GridStopWatch ConstructTimer;
GridStopWatch NormTimer;
GridStopWatch AssignTimer;
PreambleTimer.Start();
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
@ -66,22 +82,32 @@ public:
RealD cp, c, a, d, b, ssq, qq;
//RealD b_pred;
Field p(src);
Field mmp(src);
Field r(src);
// Was doing copies
ConstructTimer.Start();
Field p (src.Grid());
Field mmp(src.Grid());
Field r (src.Grid());
ConstructTimer.Stop();
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
cp = a;
NormTimer.Start();
ssq = norm2(src);
RealD guess = norm2(psi);
NormTimer.Stop();
assert(std::isnan(guess) == 0);
AssignTimer.Start();
if ( guess == 0.0 ) {
r = src;
p = r;
a = ssq;
} else {
Linop.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
}
cp = a;
AssignTimer.Stop();
// Handle trivial case of zero src
if (ssq == 0.){
@ -111,6 +137,7 @@ public:
std::cout << GridLogIterative << std::setprecision(8)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
PreambleTimer.Stop();
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
@ -156,6 +183,7 @@ public:
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
LogIteration(k,a,b);
IterationTimer.Stop();
if ( (k % 500) == 0 ) {
@ -183,13 +211,14 @@ public:
<< "\tTrue residual " << true_residual
<< "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
@ -202,17 +231,143 @@ public:
}
}
// Failed. Calculate true residual before giving up
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
// Linop.HermOpAndNorm(psi, mmp, d, qq);
// p = mmp - src;
//TrueResidual = sqrt(norm2(p)/ssq);
// TrueResidual = 1;
TrueResidual = sqrt(norm2(p)/ssq);
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
template <class Field>
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
public:
// Optionally record the CG polynomial
std::vector<double> ak;
std::vector<double> bk;
std::vector<double> poly_p;
std::vector<double> poly_r;
std::vector<double> poly_Ap;
std::vector<double> polynomial;
public:
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
{ };
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
Field tmp(src.Grid());
Field AtoN(src.Grid());
AtoN = src;
psi=AtoN*polynomial[0];
for(int n=1;n<polynomial.size();n++){
tmp = AtoN;
Linop.HermOp(tmp,AtoN);
psi = psi + polynomial[n]*AtoN;
}
}
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
{
Field Ap(src.Grid());
Field r(src.Grid());
Field p(src.Grid());
p=src;
r=src;
x=Zero();
x.Checkerboard()=src.Checkerboard();
for(int k=0;k<ak.size();k++){
x = x + ak[k]*p;
Linop.HermOp(p,Ap);
r = r - ak[k] * Ap;
p = r + bk[k] * p;
}
}
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
psi=Zero();
this->operator ()(Linop,src,psi);
}
virtual void LogBegin(void)
{
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
ak.resize(0);
bk.resize(0);
polynomial.resize(0);
poly_Ap.resize(0);
poly_Ap.resize(0);
poly_p.resize(1);
poly_r.resize(1);
poly_p[0]=1.0;
poly_r[0]=1.0;
};
virtual void LogIteration(int k,RealD a,RealD b)
{
// With zero guess,
// p = r = src
//
// iterate:
// x = x + a p
// r = r - a A p
// p = r + b p
//
// [0]
// r = x
// p = x
// Ap=0
//
// [1]
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
// x = x + a p ==> add polynomials term by term
// r = r - a A p ==> add polynomials term by term
// p = r + b p ==> add polynomials term by term
//
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
ak.push_back(a);
bk.push_back(b);
// Ap= right_shift(p)
poly_Ap.resize(k+1);
poly_Ap[0]=0.0;
for(int i=0;i<k;i++){
poly_Ap[i+1]=poly_p[i];
}
// x = x + a p
polynomial.resize(k);
polynomial[k-1]=0.0;
for(int i=0;i<k;i++){
polynomial[i] = polynomial[i] + a * poly_p[i];
}
// r = r - a Ap
// p = r + b p
poly_r.resize(k+1);
poly_p.resize(k+1);
poly_r[k] = poly_p[k] = 0.0;
for(int i=0;i<k+1;i++){
poly_r[i] = poly_r[i] - a * poly_Ap[i];
poly_p[i] = poly_r[i] + b * poly_p[i];
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d, pc_wk_dp_to_sp);

View File

@ -102,11 +102,11 @@ public:
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
// remove dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
const int primary =0;
@ -144,7 +144,7 @@ public:
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
<<" target resid "<<rsq[s]<<std::endl;
<<" target resid^2 "<<rsq[s]<<std::endl;
ps[s] = src;
}
// r and p for primary

View File

@ -123,11 +123,11 @@ public:
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<RealD> rsqf(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
const int primary =0;

View File

@ -156,11 +156,11 @@ public:
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<RealD> rsqf(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
const int primary =0;

File diff suppressed because it is too large Load Diff

View File

@ -79,14 +79,16 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<" target " << eresid*eresid << " conv " <<conv
<<std::endl;
return conv;
}
};
@ -243,9 +245,10 @@ until convergence
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
RealD na = std::sqrt(vnum/vden);
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
@ -253,6 +256,7 @@ until convergence
src_n = tmp;
}
}
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);
@ -457,7 +461,7 @@ until convergence
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
const RealD tiny = 1.0e-20;
assert( k< Nm );
@ -465,7 +469,7 @@ until convergence
Field& evec_k = evec[k];
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
if(k>0) w -= lme[k-1] * evec[k-1];
@ -480,18 +484,18 @@ until convergence
lme[k] = beta;
if ( (k>0) && ( (k % orth_period) == 0 )) {
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,

View File

@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations {
template<class Field> class NormalEquations : public LinearFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
@ -60,7 +60,33 @@ public:
}
};
template<class Field> class HPDSolver {
template<class Field> class NormalResidual : public LinearFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field res(in.Grid());
Field tmp(in.Grid());
MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
_Guess(in,res);
_HermitianSolver(MMdagOp,in,res); // M Mdag res = in ;
_Matrix.Mdag(res,out); // out = Mdag res
}
};
template<class Field> class HPDSolver : public LinearFunction<Field> {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
@ -78,13 +104,13 @@ public:
void operator() (const Field &in, Field &out){
_Guess(in,out);
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
_HermitianSolver(_Matrix,in,out); //M out = in
}
};
template<class Field> class MdagMSolver {
template<class Field> class MdagMSolver : public LinearFunction<Field> {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;

View File

@ -20,7 +20,7 @@ template<class Field> class PowerMethod
RealD evalMaxApprox = 0.0;
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_EST_ = 50;
const int _MAX_ITER_EST_ = 200;
for (int i=0;i<_MAX_ITER_EST_;i++) {
@ -30,18 +30,17 @@ template<class Field> class PowerMethod
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
// if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {
// evalMaxApprox = na;
// return evalMaxApprox;
// }
evalMaxApprox = na;
src_n = tmp;
}
assert(0);
return 0;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
};
}

View File

@ -0,0 +1,76 @@
#pragma once
namespace Grid {
class Band
{
RealD lo, hi;
public:
Band(RealD _lo,RealD _hi)
{
lo=_lo;
hi=_hi;
}
RealD operator() (RealD x){
if ( x>lo && x<hi ){
return 1.0;
} else {
return 0.0;
}
}
};
class PowerSpectrum
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
std::vector<RealD> ranges;
std::vector<int> order;
PowerSpectrum( std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order) { };
template<class Field>
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
int N=ranges.size();
RealD hi = ranges[N-1];
RealD lo_band = 0.0;
RealD hi_band;
RealD nn=norm2(src);
RealD ss=0.0;
Field tmp = src;
for(int b=0;b<N;b++){
hi_band = ranges[b];
Band Notch(lo_band,hi_band);
Chebyshev<Field> polynomial;
polynomial.Init(0.0,hi,order[b],Notch);
polynomial.JacksonSmooth();
polynomial(HermOp,src,tmp) ;
RealD p=norm2(tmp);
ss=ss+p;
std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
lo_band=hi_band;
}
std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
return 0;
};
};
}

View File

@ -74,7 +74,7 @@ public:
void operator() (const Field &src, Field &psi){
psi=Zero();
// psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;

View File

@ -499,6 +499,87 @@ namespace Grid {
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, left preconditioned by Mee^inv
// ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv ) phi = Mee_inv eta
//
// Solve:
// ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag Mee_inv eta
//
// Old notation e<->o
//
// Left precon by Moo^-1
// b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o = [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1} eta_o
// eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
Mtmp=src_o-Mtmp;
_Matrix.MooeeInv(Mtmp,tmp); assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, right preconditioned by Mee^inv
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta

View File

@ -0,0 +1,608 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/Aggregates.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x)
{
// return std::pow(x,-4);
// return std::pow(x,-3);
return std::pow(x,-5);
}
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
constexpr int Nbasis(void) { return nbasis; };
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
int nn=nbasis;
RealD scale;
FineField noise(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
subspace[b] = noise;
}
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
{
RealD scale;
ConjugateGradient<FineField> CG(1.0e-3,400,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<4;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
{
RealD scale;
TrivialPrecon<FineField> simple_fine;
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
FineField noise(FineGrid);
FineField src(FineGrid);
FineField guess(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<2;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
src = noise;
guess=Zero();
GCR(src,guess);
subspace[b] = guess;
#else
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
src=Zero();
guess = noise;
GCR(src,guess);
subspace[b] = guess;
#endif
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
<<ordermin<<" step "<<orderstep
<<" lo"<<filterlo<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
ComplexD ip;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
ComplexD ip;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo1,
int orderfilter,
double lo2,
int orderstep)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn);
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
// Generate a full sequence of Chebyshevs
for(int n=1;n<nn;n++){
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
Cheb(hermop,subspace[n-1],Mn);
for(int m=0;m<n;m++){
ComplexD c = innerProduct(subspace[m],Mn);
Mn = Mn - c*subspace[m];
}
// normalise
scale = std::pow(norm2(Mn),-0.5);
Mn=Mn*scale;
subspace[n]=Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
// Refine
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
noise = Mn;
PowerLaw(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
// normalise
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
int orderfilter
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
double hi
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
/*266
Chebyshev<FineField> Cheb1(3.0,hi,300);
Chebyshev<FineField> Cheb2(1.0,hi,50);
Chebyshev<FineField> Cheb3(0.5,hi,300);
Chebyshev<FineField> Cheb4(0.05,hi,500);
Chebyshev<FineField> Cheb5(0.01,hi,2000);
*/
/* 242 */
/*
Chebyshev<FineField> Cheb3(0.1,hi,300);
Chebyshev<FineField> Cheb2(0.02,hi,1000);
Chebyshev<FineField> Cheb1(0.003,hi,2000);
8?
*/
/* How many??
*/
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
Chebyshev<FineField> Cheb1(0.02,hi,600);
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
// Chebyshev<FineField> Cheb1(0.02,hi,600);
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
subspace[b] = noise;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
}
}
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
double Lo,double tol,int maxit)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
// Filter
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
//
// 1/(x+Lo) - 1/(x+2 Lo)
double epsilon = Lo/3;
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
std::vector<RealD> tols({tol,tol,tol,tol});
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
MultiShiftFunction msf(4,0.0,95.0);
std::cout << "msf constructed "<<std::endl;
msf.poles=shifts;
msf.residues=alpha;
msf.tolerances=tols;
msf.norm=0.0;
msf.order=alpha.size();
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
MSCG(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
double Lo,double tol,int maxit)
{
FineField tmp(FineGrid);
for(int b =0;b<nbasis;b++)
{
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
tmp=Zero();
CGsloppy(hermop,subspace[b],tmp);
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
subspace[b]=tmp;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
int nrhs)
{
std::vector<FineField> src_mrhs(nrhs,FineGrid);
std::vector<FineField> res_mrhs(nrhs,FineGrid);
FineField tmp(FineGrid);
for(int b =0;b<nbasis;b+=nrhs)
{
tmp = subspace[b];
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
subspace[b] =tmp;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
src_mrhs[r] = subspace[b+r];
}
for(int r=0;r<nrhs;r++){
res_mrhs[r] = Zero();
}
theHDCG(src_mrhs,res_mrhs);
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
tmp = res_mrhs[r];
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
subspace[b+r]=tmp;
}
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
};
NAMESPACE_END(Grid);

View File

@ -56,243 +56,6 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
blockSum(CoarseInner,fine_inner_msk);
}
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
@ -336,7 +99,7 @@ public:
CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd;
Vector<RealD> dag_factor;
deviceVector<RealD> dag_factor;
///////////////////////
// Interface
@ -361,9 +124,13 @@ public:
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -398,7 +165,7 @@ public:
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
};
void Mdag (const CoarseVector &in, CoarseVector &out)
@ -427,9 +194,14 @@ public:
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -438,10 +210,10 @@ public:
int osites=Grid()->oSites();
Vector<int> points(geom.npoint, 0);
for(int p=0; p<geom.npoint; p++)
points[p] = geom.points_dagger[p];
deviceVector<int> points(geom.npoint);
for(int p=0; p<geom.npoint; p++) {
acceleratorPut(points[p],geom.points_dagger[p]);
}
auto points_p = &points[0];
RealD* dag_factor_p = &dag_factor[0];
@ -473,7 +245,7 @@ public:
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}
void MdirComms(const CoarseVector &in)
@ -488,8 +260,14 @@ public:
out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite);
@ -522,7 +300,7 @@ public:
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
@ -706,14 +484,20 @@ public:
// determine in what order we need the points
int npoint = geom.npoint-1;
Vector<int> points(npoint, 0);
for(int p=0; p<npoint; p++)
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
deviceVector<int> points(npoint);
for(int p=0; p<npoint; p++) {
int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
acceleratorPut(points[p], val);
}
auto points_p = &points[0];
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -776,7 +560,7 @@ public:
});
}
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
@ -827,11 +611,13 @@ public:
}
// GPU readable prefactor
std::vector<RealD> h_dag_factor(nbasis*nbasis);
thread_for(i, nbasis*nbasis, {
int j = i/nbasis;
int k = i%nbasis;
dag_factor[i] = dag_factor_eigen(j, k);
h_dag_factor[i] = dag_factor_eigen(j, k);
});
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
}
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,

View File

@ -0,0 +1,629 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
int hermitian;
GridBase * _FineGrid;
GridCartesian * _CoarseGrid;
NonLocalStencilGeometry &geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
std::vector<CoarseMatrix> _A;
std::vector<CoarseMatrix> _Adag;
std::vector<CoarseVector> MultTemporaries;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
/* void ShiftMatrix(RealD shift)
{
int Nd=_FineGrid->Nd();
Coordinate zero_shift(Nd,0);
for(int p=0;p<geom.npoint;p++){
if ( zero_shift==geom.shifts[p] ) {
_A[p] = _A[p]+shift;
// _Adag[p] = _Adag[p]+shift;
}
}
}
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
{
int nfound=0;
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
for(int p=0;p<geom.npoint;p++){
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
// Search for the same relative shift
// Avoids brutal handling of Grid pointers
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
nfound++;
}
}
}
assert(nfound==geom.npoint);
ExchangeCoarseLinks();
}
*/
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
_CoarseGrid(CoarseGrid),
hermitian(1),
Cell(_geom.Depth(),_CoarseGrid),
Stencil(Cell.grids.back(),geom.shifts)
{
{
int npoint = _geom.npoint;
}
_A.resize(geom.npoint,CoarseGrid);
// _Adag.resize(geom.npoint,CoarseGrid);
}
void M (const CoarseVector &in, CoarseVector &out)
{
Mult(_A,in,out);
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
assert(hermitian);
Mult(_A,in,out);
// if ( hermitian ) M(in,out);
// else Mult(_Adag,in,out);
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
RealD tmult2=0;
ttot=-usecond();
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
texch-=usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin);
texch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t osites=pin.Grid()->oSites();
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
+ 2.0*osites*sizeof(siteVector)*npoint;
{
tviews-=usecond();
autoView( in_v , pin, AcceleratorRead);
autoView( out_v , pout, AcceleratorWriteDiscard);
autoView( Stencil_v , Stencil, AcceleratorRead);
tviews+=usecond();
// Static and prereserve to keep UVM region live and not resized across multiple calls
ttemps-=usecond();
MultTemporaries.resize(npoint,pin.Grid());
ttemps+=usecond();
std::vector<Aview> AcceleratorViewContainer_h;
std::vector<Vview> AcceleratorVecViewContainer_h;
tviews-=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
}
tviews+=usecond();
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
auto Aview_p = &AcceleratorViewContainer[0];
auto Vview_p = &AcceleratorVecViewContainer[0];
tcopy-=usecond();
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
tcopy+=usecond();
tmult-=usecond();
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int32_t ss = spb/(nbasis*npoint);
int32_t bp = spb%(nbasis*npoint);
int32_t point= bp/nbasis;
int32_t b = bp%nbasis;
auto SE = Stencil_v.GetEntry(point,ss);
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
for(int bb=1;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
}
coalescedWrite(Vview_p[point][ss](b),res);
});
tmult2-=usecond();
accelerator_for(sb, osites*nbasis, Nsimd, {
int ss = sb/nbasis;
int b = sb%nbasis;
auto res = coalescedRead(Vview_p[0][ss](b));
for(int point=1;point<npoint;point++){
res = res + coalescedRead(Vview_p[point][ss](b));
}
coalescedWrite(out_v[ss](b),res);
});
tmult2+=usecond();
tmult+=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h[p].ViewClose();
AcceleratorVecViewContainer_h[p].ViewClose();
}
}
text-=usecond();
out = Cell.Extract(pout);
text+=usecond();
ttot+=usecond();
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
// std::cout << GridLogPerformance<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
void PopulateAdag(void)
{
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
Coordinate bcoor;
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
for(int p=0;p<geom.npoint;p++){
Coordinate scoor = bcoor;
for(int mu=0;mu<bcoor.size();mu++){
int L = CoarseGrid()->GlobalDimensions()[mu];
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
}
// Flip to poke/peekLocalSite and not too bad
auto link = peekSite(_A[p],scoor);
int pp = geom.Reverse(p);
pokeSite(adj(link),_Adag[pp],bcoor);
}
}
}
/////////////////////////////////////////////////////////////
//
// A) Only reduced flops option is to use a padded cell of depth 4
// and apply MpcDagMpc in the padded cell.
//
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
// Cost is 81x more, same as stencil size.
//
// But: can eliminate comms and do as local dirichlet.
//
// Local exchange gauge field once.
// Apply to all vectors, local only computation.
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
//
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
// pad by 2, apply Doe
// pad by 3, apply Deo
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
//
// => almost factor of 10 in setup cost, excluding data rearrangement
//
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
/////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// BFM HDCG style approach: Solve a system of equations to get Aij
//////////////////////////////////////////////////////////
/*
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
*
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
* = \sum_ball e^{iqk.delta} A_ji
*
* Must invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*/
#if 0
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
CoarseVector coarseInner(CoarseGrid());
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
tphase-=usecond();
CoarseComplexField coor(CoarseGrid());
CoarseComplexField pha(CoarseGrid()); pha=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha =exp(pha*ci);
phaV=Zero();
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
tphase+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#else
//////////////////////////////////////////////////////////////////////
// Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
CoarsenOperator(linop,Subspace,Subspace);
}
//////////////////////////////////////////////////////////////////////
// Petrov - Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & U,
Aggregation<Fobj,CComplex,nbasis> & V)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,V.subspace);
blockOrthogonalise(InnerProd,U.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
CoarseVector coarseInner(CoarseGrid());
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
tphase=-usecond();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid());
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*V.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
tproj-=usecond();
blockProject(coarseInner,MphaV,U.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
}
for(int p=0;p<geom.npoint;p++){
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#endif
void ExchangeCoarseLinks(void){
for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.ExchangePeriodic(_A[p]);
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,729 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef typename CComplex::scalar_object SComplex;
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef iVector<SComplex,nbasis > calcVector;
typedef iMatrix<SComplex,nbasis > calcMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
GridCartesian * _CoarseGridMulti;
NonLocalStencilGeometry geom;
NonLocalStencilGeometry geom_srhs;
PaddedCell Cell;
GeneralLocalStencil Stencil;
deviceVector<calcVector> BLAS_B;
deviceVector<calcVector> BLAS_C;
std::vector<deviceVector<calcMatrix> > BLAS_A;
std::vector<deviceVector<ComplexD *> > BLAS_AP;
std::vector<deviceVector<ComplexD *> > BLAS_BP;
deviceVector<ComplexD *> BLAS_CP;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
// Can be used to do I/O on the operator matrices externally
void SetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
GridtoBLAS(A[p],BLAS_A[p]);
}
void GetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
BLAStoGrid(A[p],BLAS_A[p]);
}
void CopyMatrix (GeneralCoarseOp &_Op)
{
for(int p=0;p<geom.npoint;p++){
auto Aup = _Op.Cell.Extract(_Op._A[p]);
//Unpadded
GridtoBLAS(Aup,BLAS_A[p]);
}
}
/*
void CheckMatrix (GeneralCoarseOp &_Op)
{
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
for(int p=0;p<geom.npoint;p++){
//Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]);
auto Ack = Aup;
BLAStoGrid(Ack,BLAS_A[p]);
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
}
std::cout <<"************* "<<std::endl;
}
*/
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
_CoarseGridMulti(CoarseGridMulti),
geom_srhs(_geom),
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
Cell(geom.Depth(),_CoarseGridMulti),
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
{
int32_t padded_sites = Cell.grids.back()->lSites();
int32_t unpadded_sites = CoarseGridMulti->lSites();
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
int32_t orhs = nrhs/CComplex::Nsimd();
padded_sites = padded_sites/nrhs;
unpadded_sites = unpadded_sites/nrhs;
/////////////////////////////////////////////////
// Device data vector storage
/////////////////////////////////////////////////
BLAS_A.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
}
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
BLAS_AP.resize(geom.npoint);
BLAS_BP.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_AP[p].resize(unpadded_sites);
BLAS_BP[p].resize(unpadded_sites);
}
BLAS_CP.resize(unpadded_sites);
/////////////////////////////////////////////////
// Pointers to data
/////////////////////////////////////////////////
// Site identity mapping for A
for(int p=0;p<geom.npoint;p++){
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
acceleratorPut(BLAS_AP[p][ss],ptr);
}
}
// Site identity mapping for C
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
acceleratorPut(BLAS_CP[ss],ptr);
}
// Neighbour table is more complicated
int32_t j=0; // Interior point counter (unpadded)
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
int ghost_zone=0;
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
}
}
if( ghost_zone==0) {
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
assert(nbr<BLAS_B.size());
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
}
j++;
}
}
assert(j==unpadded_sites);
}
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Fg = from.Grid();
assert(!Fg->_isCheckerBoarded);
int nd = Fg->_ndimension;
to.resize(Fg->lSites());
Coordinate LocalLatt = Fg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
autoView(from_v,from,AcceleratorRead);
auto to_v = &to[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate from_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
from_coor[i] = base[i];
}
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
scalar_type* to = (scalar_type *)&to_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
to[w] = stmp;
}
});
}
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Tg = grid.Grid();
assert(!Tg->_isCheckerBoarded);
int nd = Tg->_ndimension;
assert(in.size()==Tg->lSites());
Coordinate LocalLatt = Tg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
autoView(to_v,grid,AcceleratorWrite);
auto from_v = &in[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate to_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
to_coor[i] = base[i];
}
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type* from = (scalar_type *)&from_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp=from[w];
putlane(to[w], stmp, to_lane);
}
});
}
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace,
GridBase *CoarseGrid)
{
#if 0
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
// Could save on temporary storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
phaV = phaF[p]*Subspace.subspace[i];
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
linop.Op(phaV,MphaV);
// Fixme, could use batched block projector here
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
}
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
for(int k=0;k<npoint;k++){
FT = Zero();
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
/*
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
Takes 600s to compute matrix elements, DOMINATED by the block project.
Easy to speed up with the batched block project.
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
// Block project below taks to 240s
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
*/
#else
RealD tproj=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
MultiRHSBlockProject<Lattice<Fobj> > Projector;
Projector.Allocate(nbasis,grid,CoarseGrid);
Projector.ImportBasis(Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
tphase=-usecond();
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
// Could save on temporary storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
// Count use small chunks than npoint == 81 and save memory
int batch = 9;
std::vector<FineField> _MphaV(batch,grid);
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
// Fixme : do this in batches
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
for(int b=0;b<MIN(batch,npoint-p);b++){
tphaseBZ-=usecond();
phaV = phaF[p+b]*Subspace.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
// Memory footprint was an issue
tmat-=usecond();
linop.Op(phaV,MphaV);
_MphaV[b] = MphaV;
tmat+=usecond();
}
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
tproj-=usecond();
Projector.blockProject(_MphaV,TmpProj);
tproj+=usecond();
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
for(int b=0;b<MIN(batch,npoint-p);b++){
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
}
}
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT = Zero();
// 81 kernel calls as many ComputeProj vectors
// Could fuse with a vector of views, but ugly
// Could unroll the expression and run fewer kernels -- much more attractive
// Could also do non blocking.
#if 0
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
#else
const int radix = 9;
int ll;
for(ll=0;ll+radix-1<npoint;ll+=radix){
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
FT = FT
+ invMkl(ll+0,k)*ComputeProj[ll+0]
+ invMkl(ll+1,k)*ComputeProj[ll+1]
+ invMkl(ll+2,k)*ComputeProj[ll+2]
+ invMkl(ll+3,k)*ComputeProj[ll+3]
+ invMkl(ll+4,k)*ComputeProj[ll+4]
+ invMkl(ll+5,k)*ComputeProj[ll+5]
+ invMkl(ll+6,k)*ComputeProj[ll+6]
+ invMkl(ll+7,k)*ComputeProj[ll+7]
+ invMkl(ll+8,k)*ComputeProj[ll+8];
}
for(int l=ll;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
#endif
// 1 kernel call -- must be cheaper
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
#endif
}
void Mdag(const CoarseVector &in, CoarseVector &out)
{
this->M(in,out);
}
void M (const CoarseVector &in, CoarseVector &out)
{
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
RealD t_tot;
RealD t_exch;
RealD t_GtoB;
RealD t_BtoG;
RealD t_mult;
t_tot=-usecond();
CoarseVector tin=in;
t_exch=-usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
t_exch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef calcMatrix* Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
RealD flops,bytes;
int64_t osites=in.Grid()->oSites(); // unpadded
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
+ 2.0*osites*sizeof(siteVector)*npoint;
t_GtoB=-usecond();
GridtoBLAS(pin,BLAS_B);
t_GtoB+=usecond();
GridBLAS BLAS;
t_mult=-usecond();
for(int p=0;p<geom.npoint;p++){
RealD c = 1.0;
if (p==0) c = 0.0;
ComplexD beta(c);
BLAS.gemmBatched(nbasis,nrhs,nbasis,
ComplexD(1.0),
BLAS_AP[p],
BLAS_BP[p],
ComplexD(c),
BLAS_CP);
}
BLAS.synchronise();
t_mult+=usecond();
t_BtoG=-usecond();
BLAStoGrid(out,BLAS_C);
t_BtoG+=usecond();
t_tot+=usecond();
/*
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
*/
// std::cout << GridLogMessage<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,238 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////
// Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
/////////////////////////////////////////////////////////////////
// Less local equivalent of Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class NonLocalStencilGeometry {
public:
// int depth;
int skip;
int hops;
int npoint;
std::vector<Coordinate> shifts;
Coordinate stencil_size;
Coordinate stencil_lo;
Coordinate stencil_hi;
GridCartesian *grid;
GridCartesian *Grid() {return grid;};
int Depth(void){return 1;}; // Ghost zone depth
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
int DimSkip(void){return skip;};
virtual ~NonLocalStencilGeometry() {};
int Reverse(int point)
{
int Nd = Grid()->Nd();
Coordinate shft = shifts[point];
Coordinate rev(Nd);
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
for(int p=0;p<npoint;p++){
if(rev==shifts[p]){
return p;
}
}
assert(0);
return -1;
}
void BuildShifts(void)
{
this->shifts.resize(0);
int Nd = this->grid->Nd();
int dd = this->DimSkip();
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
Coordinate sft(Nd,0);
sft[dd+0] = s0;
sft[dd+1] = s1;
sft[dd+2] = s2;
sft[dd+3] = s3;
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
if(nhops<=this->hops) this->shifts.push_back(sft);
}}}}
this->npoint = this->shifts.size();
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
}
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
{
Coordinate latt = grid->GlobalDimensions();
stencil_size.resize(grid->Nd());
stencil_lo.resize(grid->Nd());
stencil_hi.resize(grid->Nd());
for(int d=0;d<grid->Nd();d++){
if ( latt[d] == 1 ) {
stencil_lo[d] = 0;
stencil_hi[d] = 0;
stencil_size[d]= 1;
} else if ( latt[d] == 2 ) {
stencil_lo[d] = -1;
stencil_hi[d] = 0;
stencil_size[d]= 2;
} else if ( latt[d] > 2 ) {
stencil_lo[d] = -1;
stencil_hi[d] = 1;
stencil_size[d]= 3;
}
}
this->BuildShifts();
};
};
// Need to worry about red-black now
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
public:
virtual int DerivedDimSkip(void) { return 0;};
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
virtual ~NonLocalStencilGeometry4D() {};
};
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
public:
virtual int DerivedDimSkip(void) { return 1; };
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
virtual ~NonLocalStencilGeometry5D() {};
};
/*
* Bunch of different options classes
*/
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
{
};
};
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
{
};
};
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
{
};
};
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
{
};
};
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
{
};
};
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
{
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,34 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid/algorithms/multigrid/MultiGrid.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/algorithms/multigrid/Aggregates.h>
#include <Grid/algorithms/multigrid/Geometry.h>
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>

View File

@ -54,6 +54,9 @@ public:
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
@ -66,7 +69,7 @@ public:
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
@ -100,6 +103,9 @@ public:
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
@ -145,6 +151,9 @@ public:
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
@ -165,19 +174,48 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
#ifdef ACCELERATOR_CSHIFT
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
/*
template<class T> class vecView
{
protected:
T * data;
uint64_t size;
ViewMode mode;
void * cpu_ptr;
public:
// Rvalue accessor
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
vecView(Vector<T> &refer_to_me,ViewMode _mode)
{
cpu_ptr = &refer_to_me[0];
size = refer_to_me.size();
mode = _mode;
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
size*sizeof(T),
mode,
AdviseDefault);
}
void ViewClose(void)
{ // Inform the manager
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
{
vecView<T> ret(vec,_mode); // does the open
return ret; // must be closed
}
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid);

View File

@ -16,6 +16,44 @@ NAMESPACE_BEGIN(Grid);
uint64_t total_shared;
uint64_t total_device;
uint64_t total_host;;
#if defined(__has_feature)
#if __has_feature(leak_sanitizer)
#define ASAN_LEAK_CHECK
#endif
#endif
#ifdef ASAN_LEAK_CHECK
#include <sanitizer/asan_interface.h>
#include <sanitizer/common_interface_defs.h>
#include <sanitizer/lsan_interface.h>
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
#else
#define LEAK_CHECK(A) { }
#endif
void MemoryManager::DisplayMallinfo(void)
{
#ifdef __linux__
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
mi = mallinfo();
std::cout << "MemoryManager: Total non-mmapped bytes (arena): "<< (size_t)mi.arena<<std::endl;
std::cout << "MemoryManager: # of free chunks (ordblks): "<< (size_t)mi.ordblks<<std::endl;
std::cout << "MemoryManager: # of free fastbin blocks (smblks): "<< (size_t)mi.smblks<<std::endl;
std::cout << "MemoryManager: # of mapped regions (hblks): "<< (size_t)mi.hblks<<std::endl;
std::cout << "MemoryManager: Bytes in mapped regions (hblkhd): "<< (size_t)mi.hblkhd<<std::endl;
std::cout << "MemoryManager: Max. total allocated space (usmblks): "<< (size_t)mi.usmblks<<std::endl;
std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
std::cout << "MemoryManager: Total allocated space (uordblks): "<< (size_t)mi.uordblks<<std::endl;
std::cout << "MemoryManager: Total free space (fordblks): "<< (size_t)mi.fordblks<<std::endl;
std::cout << "MemoryManager: Topmost releasable block (keepcost): "<< (size_t)mi.keepcost<<std::endl;
#endif
LEAK_CHECK();
}
void MemoryManager::PrintBytes(void)
{
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
@ -35,7 +73,7 @@ void MemoryManager::PrintBytes(void)
#ifdef GRID_CUDA
cuda_mem();
#endif
DisplayMallinfo();
}
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }

View File

@ -209,9 +209,10 @@ private:
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
static void NotifyDeletion(void * CpuPtr);
public:
static void DisplayMallinfo(void);
static void NotifyDeletion(void * CpuPtr);
static void Print(void);
static void PrintAll(void);
static void PrintState( void* CpuPtr);

View File

@ -1,16 +1,15 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
#define MAXLINE 512
static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
//#define dprintf(...)
//#define mprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
@ -111,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -121,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -141,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
// uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++;
@ -169,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -184,7 +183,9 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
(uint64_t)AccCache.bytes,
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@ -233,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
@ -265,7 +269,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
@ -318,21 +322,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else {
assert(0);
}
@ -341,7 +345,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n");
dprintf("AccCache entry removed from LRU ");
LRUremove(AccCache);
}
@ -364,10 +368,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
@ -474,6 +478,7 @@ void MemoryManager::Print(void)
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
acceleratorMem();
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
}
void MemoryManager::PrintAll(void)

View File

@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
std::vector<uint64_t> pagedata(npages);
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;

View File

@ -70,8 +70,8 @@ public:
Coordinate _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
int64_t _fsites; // _isites*_osites = product(dimensions).
int64_t _gsites;
Coordinate _slice_block;// subslice information
Coordinate _slice_stride;
Coordinate _slice_nblock;
@ -82,6 +82,7 @@ public:
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
int _checker_dim;
public:
@ -89,7 +90,7 @@ public:
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoarded(int dim) =0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
@ -183,7 +184,7 @@ public:
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const Coordinate LocalStarts(void) { return _lstart; };
@ -214,7 +215,7 @@ public:
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
@ -222,7 +223,7 @@ public:
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {

View File

@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
public:
int dummy;
Coordinate _checker_dim_mask;
// Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
@ -46,7 +46,7 @@ public:
{
return 0;
}
virtual int CheckerBoarded(int dim){
virtual int CheckerBoarded(int dim) {
return 0;
}
virtual int CheckerBoard(const Coordinate &site){
@ -106,6 +106,7 @@ public:
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_checker_dim = -1;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);

View File

@ -57,9 +57,10 @@ class GridRedBlackCartesian : public GridBase
{
public:
// Coordinate _checker_dim_mask;
int _checker_dim;
// int _checker_dim;
std::vector<int> _checker_board;
virtual int isCheckerBoarded(void) const { return 1; };
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
@ -147,7 +148,7 @@ public:
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
virtual ~GridRedBlackCartesian() = default;
void Init(const Coordinate &dimensions,

View File

@ -57,18 +57,29 @@ int CartesianCommunicator::ProcessorCount(void) { return
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumP2P(c);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumP2P(c);
}
#else
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumVector((float *)&c,2);
}
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumVector((double *)&c,2);
}
#endif
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
{
GlobalSumVector((double *)c,2*N);

View File

@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
#define NVLINK_GET
NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
@ -127,7 +129,36 @@ public:
void GlobalSumVector(ComplexD *c,int N);
void GlobalXOR(uint32_t &);
void GlobalXOR(uint64_t &);
template<class obj> void GlobalSumP2P(obj &o)
{
std::vector<obj> column;
obj accum = o;
int source,dest;
for(int d=0;d<_ndimension;d++){
column.resize(_processors[d]);
column[0] = accum;
std::vector<MpiCommsRequest_t> list;
for(int p=1;p<_processors[d];p++){
ShiftedRanks(d,p,source,dest);
SendToRecvFromBegin(list,
&column[0],
dest,
&column[p],
source,
sizeof(obj),d*100+p);
}
if (!list.empty()) // avoid triggering assert in comms == none
CommsComplete(list);
for(int p=1;p<_processors[d];p++){
accum = accum + column[p];
}
}
Broadcast(0,accum);
o=accum;
}
template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type;
int words = sizeof(obj)/sizeof(scalar_type);
@ -138,6 +169,14 @@ public:
////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way
////////////////////////////////////////////////////////////
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir);
void SendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
@ -150,6 +189,17 @@ public:
int recv_from_rank,int do_recv,
int bytes,int dir);
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,

View File

@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
@ -257,15 +258,41 @@ CartesianCommunicator::~CartesianCommunicator()
}
}
}
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(f);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(d);
}
#else
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("AllReduce");
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
#endif
void CartesianCommunicator::GlobalSum(uint32_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
FlightRecorder::StepLog("AllReduceVector");
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
@ -287,25 +314,54 @@ void CartesianCommunicator::GlobalMax(double &d)
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
MPI_Request xrq;
MPI_Request rrq;
assert(dest != _processor);
assert(from != _processor);
int tag;
tag= dir+from*32;
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
{
int nreq=list.size();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
@ -313,9 +369,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
std::vector<MpiCommsRequest_t> reqs(0);
int myrank = _processor;
int ierr;
@ -331,9 +385,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
@ -343,11 +394,287 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
return 0.0; // Do nothing -- no preparation required
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
#ifdef NVLINK_GET
else {
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
}
#endif
}
// This is a NVLINK PUT
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
}
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
/*finishes Get/Put*/
acceleratorCopySynchronise();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
this->StencilBarrier();
}
#else /* NOT ... ACCELERATOR_AWARE_MPI */
///////////////////////////////////////////
// Pipeline mode through host memory
///////////////////////////////////////////
/*
* In prepare (phase 1):
* PHASE 1: (prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
* - post device - device transfers
* PHASE 3: (Complete)
* - MPI_waitall
* - host-device transfers
*
*********************************
* NB could split this further:
*--------------------------------
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (BeginInterNode)
* - complete all copies
* - post MPI send asynch
* PHASE 3: (BeginIntraNode)
* - post device - device transfers
* PHASE 4: (Complete)
* - MPI_waitall
* - host-device transfers asynch
* - (complete all copies)
*/
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
/*
* Bring sequence from Stencil.h down to lower level.
* Assume using XeLink is ok
*/
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_recv = NULL;
void * host_xmit = NULL;
/*
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
*/
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
host_recv = this->HostBufferMalloc(rbytes);
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
CommsRequest_t srq;
srq.PacketType = InterNodeRecv;
srq.bytes = rbytes;
srq.req = rrq;
srq.host_buf = host_recv;
srq.device_buf = recv;
list.push_back(srq);
off_node_bytes+=rbytes;
}
}
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// off_node_bytes+=xbytes;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
srq.tag = tag;
srq.dest = dest;
srq.commdir = commdir;
list.push_back(srq);
}
}
return off_node_bytes;
}
/*
* In the interest of better pipelining, poll for completion on each DtoH and
* start MPI_ISend in the meantime
*/
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeRecv ) {
int flag = 0;
MPI_Status status;
int ierr = MPI_Test(&list[idx].req,&flag,&status);
assert(ierr==0);
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
}
}
}
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
} while ( pending );
}
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeXmit ) {
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
///////////////////
// Send packet
///////////////////
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
list[idx].PacketType=InterNodeXmitISend;
} else {
// not done, so return to polling loop
pending++;
}
}
}
} while (pending);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
@ -372,45 +699,109 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
double off_node_bytes=0.0;
int tag;
void * host_xmit = NULL;
////////////////////////////////
// Receives already posted
// Copies already started
////////////////////////////////
/*
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
*/
#ifdef NVLINK_GET
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
srq.PacketType = IntraNodeRecv;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
}
#else
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
srq.PacketType = IntraNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#endif
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
if (nreq==0) return;
std::vector<MPI_Status> status;
std::vector<MPI_Request> MpiRequests;
for(int r=0;r<list.size();r++){
// Must check each Send buf is clear to reuse
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
}
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
int nreq=MpiRequests.size();
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
}
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
#ifndef NVLINK_GET
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
#endif
}
#endif
////////////////////////////////////////////
// END PIPELINE MODE / NO CUDA AWARE MPI
////////////////////////////////////////////
void CartesianCommunicator::StencilBarrier(void)
{
FlightRecorder::StepLog("NodeBarrier");
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
@ -418,11 +809,13 @@ void CartesianCommunicator::StencilBarrier(void)
//}
void CartesianCommunicator::Barrier(void)
{
FlightRecorder::StepLog("GridBarrier");
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
FlightRecorder::StepLog("Broadcast");
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
@ -441,6 +834,7 @@ void CartesianCommunicator::BarrierWorld(void){
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
FlightRecorder::StepLog("BroadcastWorld");
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
@ -463,6 +857,7 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
FlightRecorder::StepLog("AllToAll");
// MPI is a pain and uses "int" arguments
// 64*64*64*128*16 == 500Million elements of data.
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.

View File

@ -91,6 +91,17 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
@ -121,6 +132,17 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
{
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,

View File

@ -40,6 +40,9 @@ int GlobalSharedMemory::_ShmAlloc;
uint64_t GlobalSharedMemory::_ShmAllocBytes;
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
#ifndef ACCELERATOR_AWARE_MPI
void * GlobalSharedMemory::HostCommBuf;
#endif
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
int GlobalSharedMemory::WorldShmRank;
@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void)
/////////////////////////////////
// Alloc, free shmem region
/////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
void *SharedMemory::HostBufferMalloc(size_t bytes){
void *ptr = (void *)host_heap_top;
host_heap_top += bytes;
host_heap_bytes+= bytes;
if (host_heap_bytes >= host_heap_size) {
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
assert(host_heap_bytes<host_heap_size);
}
return ptr;
}
void SharedMemory::HostBufferFreeAll(void) {
host_heap_top =(size_t)HostCommBuf;
host_heap_bytes=0;
}
#endif
void *SharedMemory::ShmBufferMalloc(size_t bytes){
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
void *ptr = (void *)heap_top;

View File

@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
#if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request MpiCommsRequest_t;
#ifdef ACCELERATOR_AWARE_MPI
typedef MPI_Request CommsRequest_t;
#else
/*
* Enable state transitions as each packet flows.
*/
enum PacketType_t {
FaceGather,
InterNodeXmit,
InterNodeRecv,
IntraNodeXmit,
IntraNodeRecv,
InterNodeXmitISend,
InterNodeReceiveHtoD
};
/*
*Package arguments needed for various actions along packet flow
*/
typedef struct {
PacketType_t PacketType;
void *host_buf;
void *device_buf;
int dest;
int tag;
int commdir;
unsigned long bytes;
acceleratorEvent_t ev;
MpiCommsRequest_t req;
} CommsRequest_t;
#endif
#else
typedef int MpiCommsRequest_t;
typedef int CommsRequest_t;
typedef int Grid_MPI_Comm;
#endif
@ -75,7 +107,9 @@ public:
static int Hugepages;
static std::vector<void *> WorldShmCommBufs;
#ifndef ACCELERATOR_AWARE_MPI
static void *HostCommBuf;
#endif
static Grid_MPI_Comm WorldComm;
static int WorldRank;
static int WorldSize;
@ -103,7 +137,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};
@ -120,6 +154,13 @@ private:
size_t heap_bytes;
size_t heap_size;
#ifndef ACCELERATOR_AWARE_MPI
size_t host_heap_top; // set in free all
size_t host_heap_bytes;// set in free all
void *HostCommBuf; // set in SetCommunicator
size_t host_heap_size; // set in SetCommunicator
#endif
protected:
Grid_MPI_Comm ShmComm; // for barriers
@ -151,7 +192,10 @@ public:
void *ShmBufferTranslate(int rank,void * local_p);
void *ShmBufferMalloc(size_t bytes);
void ShmBufferFreeAll(void) ;
#ifndef ACCELERATOR_AWARE_MPI
void *HostBufferMalloc(size_t bytes);
void HostBufferFreeAll(void);
#endif
//////////////////////////////////////////////////////////////////////////
// Make info on Nodes & ranks and Shared memory available
//////////////////////////////////////////////////////////////////////////

View File

@ -39,9 +39,16 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <hip/hip_runtime_api.h>
#endif
#ifdef GRID_SYCL
#ifdef ACCELERATOR_AWARE_MPI
#define GRID_SYCL_LEVEL_ZERO_IPC
#define SHM_SOCKETS
#else
#ifdef HAVE_NUMAIF_H
#warning " Using NUMAIF "
#include <numaif.h>
#endif
#endif
#include <syscall.h>
#define SHM_SOCKETS
#endif
#include <sys/socket.h>
@ -512,46 +519,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
//if defined(GRID_SYCL)
#if 0
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
SharedMemoryZero(ShmCommBuf,bytes);
assert(WorldShmSize == 1);
for(int r=0;r<WorldShmSize;r++){
WorldShmCommBufs[r] = ShmCommBuf;
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -574,6 +541,40 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
// printf("Host buffer allocate for GPU non-aware MPI\n");
#if 0
HostCommBuf= acceleratorAllocHost(bytes);
#else
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
#if 0
#warning "Moving host buffers to specific NUMA domain"
int numa;
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
if(numa_name) {
unsigned long page_size = sysconf(_SC_PAGESIZE);
numa = atoi(numa_name);
unsigned long page_count = bytes/page_size;
std::vector<void *> pages(page_count);
std::vector<int> nodes(page_count,numa);
std::vector<int> status(page_count,-1);
for(unsigned long p=0;p<page_count;p++){
pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
}
int ret = move_pages(0,
page_count,
&pages[0],
&nodes[0],
&status[0],
MPOL_MF_MOVE);
printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
if (ret) perror(" move_pages failed for reason:");
}
#endif
acceleratorPin(HostCommBuf,bytes);
#endif
#endif
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
@ -604,8 +605,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
auto zeDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle;
clone_mem_t handle;
@ -738,7 +739,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#else
#ifdef GRID_MPI3_SHMMMAP
@ -916,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorCopyToDevice(src,dest,bytes);
#else
bcopy(src,dest,bytes);
#endif
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
// acceleratorCopyToDevice(src,dest,bytes);
//#else
// bcopy(src,dest,bytes);
//#endif
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
@ -959,9 +959,16 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
}
ShmBufferFreeAll();
#ifndef ACCELERATOR_AWARE_MPI
host_heap_size = heap_size;
HostCommBuf= GlobalSharedMemory::HostCommBuf;
HostBufferFreeAll();
#endif
/////////////////////////////////////////////////////////////////////
// find comm ranks in our SHM group (i.e. which ranks are on our node)
/////////////////////////////////////////////////////////////////////
@ -983,7 +990,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
}
#endif
//SharedMemoryTest();
// SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier
@ -1005,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
check[0]=GlobalSharedMemory::WorldNode;
check[1]=r;
check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
}
}
ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier();
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==magic);
ShmBarrier();
}
ShmBarrier();
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
}
void *SharedMemory::ShmBuffer(int rank)

View File

@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
// acceleratorCopyToDevice(src,dest,bytes);
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality

View File

@ -51,7 +51,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{

View File

@ -30,12 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table;
extern commVector<std::pair<int,int> > Cshift_table_device;
extern deviceVector<std::pair<int,int> > Cshift_table_device;
inline std::pair<int,int> *MapCshiftTable(void)
{
// GPU version
#ifdef ACCELERATOR_CSHIFT
uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz);
@ -45,16 +44,13 @@ inline std::pair<int,int> *MapCshiftTable(void)
sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0];
#else
return &Cshift_table[0];
#endif
// CPU version use identify map
}
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -94,17 +90,10 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -129,7 +118,6 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
@ -140,21 +128,10 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else {
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
@ -175,33 +152,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset);
}
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -245,17 +202,10 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
}
}
@ -278,7 +228,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
@ -287,14 +236,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
@ -360,19 +301,11 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
{
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -412,19 +345,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
{
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
}
}

View File

@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
const int Cshift_verbose=0;
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
@ -55,17 +55,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
RealD t1,t0;
t0=usecond();
if ( !comm_dim ) {
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
} else if ( splice_dim ) {
//std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift);
} else {
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift);
}
t1=usecond();
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret;
}
@ -94,18 +94,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
//std::cout << "Single pass Cshift_comms" <<std::endl;
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
} else {
//std::cout << "Two pass Cshift_comms" <<std::endl;
// std::cout << "Two pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
@ -125,9 +123,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
@ -158,18 +160,31 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->Barrier();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
xbytes+=bytes;
// grid->Barrier();
grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
@ -177,13 +192,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
if (Cshift_verbose){
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -201,9 +216,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
@ -224,16 +239,20 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
@ -281,266 +300,50 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
#else
// bouncy bouncy
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)recv_buf_extract_mpi,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
*/
}
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
#endif
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,5 +1,5 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table;
commVector<std::pair<int,int> > Cshift_table_device;
deviceVector<std::pair<int,int> > Cshift_table_device;
NAMESPACE_END(Grid);

View File

@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
});
}
#define FAST_AXPY_NORM
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpy_norm");
return axpy_norm_fast(ret,a,x,y);
#ifdef FAST_AXPY_NORM
return axpy_norm_fast(ret,a,x,y);
#else
ret = a*x+y;
RealD nn=norm2(ret);
return nn;
#endif
}
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpby_norm");
return axpby_norm_fast(ret,a,b,x,y);
#ifdef FAST_AXPY_NORM
return axpby_norm_fast(ret,a,b,x,y);
#else
ret = a*x+b*y;
RealD nn=norm2(ret);
return nn;
#endif
}
/// Trace product

View File

@ -234,10 +234,23 @@ public:
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp;
vtmp = r;
#if 1
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(*vvtmp_p);
coalescedWrite(me[ss],stmp);
});
#else
auto me = View(CpuWrite);
thread_for(ss,me.size(),{
me[ss]= r;
});
me[ss]= r;
});
#endif
me.ViewClose();
return *this;
}
@ -360,7 +373,7 @@ public:
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int g=0;g<o.Grid()->_gsites;g++){
for(int64_t g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);

View File

@ -53,36 +53,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite));
h_basis_v[k] = basis[k].View(AcceleratorWrite);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
}
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
View *basis_vp = &d_basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
@ -91,17 +74,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
Vector <vobj> Bt(siteBlock * nrot);
deviceVector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<Coeff_t> Qt_jv(Nm*Nm);
hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
Qt_p[i]=Qt(j,k);
h_Qt_jv[i]=Qt(j,k);
});
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
@ -137,9 +122,8 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
}
// Extract a single rotated vector
@ -152,16 +136,19 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
result.Checkerboard() = basis[0].Checkerboard();
Vector<View> basis_v; basis_v.reserve(basis.size());
hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorRead));
h_basis_v[k]=basis[k].View(AcceleratorRead);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0];
vobj zz=Zero();
deviceVector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
auto basis_vp=& d_basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero();
@ -171,7 +158,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
}
template<class Field>

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;

View File

@ -165,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== grid->CheckerBoard(site));
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx);
}
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
return;
};
template<class vobj,class sobj>
@ -202,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== grid->CheckerBoard(site));
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);

View File

@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
std::vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
std::vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
@ -204,6 +204,27 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
return real(nrm);
}
template<class Op,class T1>
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr) ->RealD
{
return norm2(closure(expr));
}
template<class Op,class T1,class T2>
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr) ->RealD
{
return norm2(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) ->RealD
{
return norm2(closure(expr));
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
@ -243,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
const uint64_t sites = grid->oSites();
// Might make all code paths go this way.
#if 0
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// This code could read coalesce
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
});
}
#else
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
deviceVector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
@ -274,7 +279,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
});
}
#endif
// This is in single precision and fails some tests
auto anrm = sumD(inner_tmp_v,sites);
nrm = anrm;
@ -285,13 +289,47 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
uint32_t csum=0;
// Uint32Checksum(left,csum);
bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// Hack
// Fast integer xor checksum. Can also be used in comms now.
autoView(l_v,left,AcceleratorRead);
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&l_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
} else {
// csum2=svm_xor(base,words);
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
#endif
FlightRecorder::StepLog("rank inner product");
ComplexD nrm = rankInnerProduct(left,right);
// ComplexD nrmck=nrm;
RealD local = real(nrm);
GridNormLog(real(nrm),csum); // Could log before and after global sum to distinguish local and MPI
ok = FlightRecorder::NormLog(real(nrm));
if ( !ok ) {
ComplexD nrm2 = rankInnerProduct(left,right);
RealD local2 = real(nrm2);
std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
assert(ok);
}
FlightRecorder::StepLog("Start global sum");
// grid->GlobalSumP2P(nrm);
grid->GlobalSum(nrm);
GridMPINormLog(local,real(nrm));
FlightRecorder::StepLog("Finished global sum");
// std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
FlightRecorder::ReductionLog(local,real(nrm));
return nrm;
}
@ -327,20 +365,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
#if 0
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#else
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
deviceVector<inner_t> inner_tmp;
inner_tmp.resize(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
@ -348,9 +375,44 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// z_v
{
Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&z_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
// inner_v
{
Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&inner_tmp_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
}
#endif
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
ok = FlightRecorder::NormLog(real(nrm));
assert(ok);
RealD local = real(nrm);
grid->GlobalSum(nrm);
FlightRecorder::ReductionLog(local,real(nrm));
return nrm;
}
@ -360,7 +422,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
conformable(left,right);
typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2);
std::vector<ComplexD> tmp(2);
GridBase *grid = left.Grid();
@ -370,8 +432,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
// GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
deviceVector<inner_t> inner_tmp(sites);
deviceVector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
@ -421,7 +483,9 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
std::vector<typename vobj::scalar_object> &result,
int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
@ -443,8 +507,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
Vector<vobj> lvSum(rd); // will locally sum vectors first
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
std::vector<vobj> lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
@ -492,6 +556,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
scalar_type * ptr = (scalar_type *) &result[0];
int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words);
// std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
}
template<class vobj> inline
std::vector<typename vobj::scalar_object>
@ -502,7 +568,20 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
return result;
}
/*
Reimplement
1)
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
2)
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
3)
-- Make Slice Mul Matrix call sliceMaddMatrix
*/
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
@ -522,8 +601,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
Vector<vector_type> lvSum(rd); // will locally sum vectors first
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<vector_type> lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
@ -653,203 +732,96 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
}
};
/*
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
std::vector<int> latt_phys(NN-1);
Coordinate simd_phys;
std::vector<int> mpi_phys(NN-1);
Coordinate checker_dim_mask(NN-1);
int checker_dim=-1;
int dd;
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
mpi_phys[dd] =BlockSolverGrid->_processors[d];
checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
dd++;
}
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
GridCartesian *tmp = new GridCartesian(latt_phys,simd_phys,mpi_phys);
if(BlockSolverGrid->_isCheckerBoarded) {
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
delete tmp;
return (GridBase *) ret;
} else {
return (GridBase *) tmp;
}
}
*/
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
GridBase *FullGrid = X.Grid();
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Ys(SliceGrid);
Lattice<vobj> Rs(SliceGrid);
Lattice<vobj> Xs(SliceGrid);
Lattice<vobj> RR(FullGrid);
RR = R; // Copies checkerboard for insert
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
thread_region
{
Vector<vobj> s_x(Nblock);
thread_for_collapse_in_region(2, n,nblock, {
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
int Nslice = X.Grid()->GlobalDimensions()[Orthog];
for(int i=0;i<Nslice;i++){
ExtractSlice(Ys,Y,i,Orthog);
ExtractSlice(Rs,R,i,Orthog);
Rs=Ys;
for(int j=0;j<Nslice;j++){
ExtractSlice(Xs,X,j,Orthog);
Rs = Rs + Xs*(scale*aa(j,i));
}
InsertSlice(Rs,RR,i,Orthog);
}
R=RR; // Copy back handles arguments aliasing case
delete SliceGrid;
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_for_collapse_in_region( 2 ,n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
R=Zero();
sliceMaddMatrix(R,aa,X,R,Orthog,scale);
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
Lattice<vobj> ls(SliceGrid);
Lattice<vobj> rs(SliceGrid);
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
thread_region
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_for_collapse_in_region( 2, n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
auto red = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
}}
}});
thread_critical
{
mat += mat_thread;
}
int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
for(int s=0;s<Nslice;s++){
ExtractSlice(ls,lhs,s,Orthog);
for(int ss=0;ss<Nslice;ss++){
ExtractSlice(rs,rhs,ss,Orthog);
mat(s,ss) = innerProduct(ls,rs);
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
delete SliceGrid;
}
NAMESPACE_END(Grid);

View File

@ -214,22 +214,12 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
// Move out of UVM
// Turns out I had messed up the synchronise after move to compute stream
// as running this on the default stream fools the synchronise
#undef UVM_BLOCK_BUFFER
#ifndef UVM_BLOCK_BUFFER
commVector<sobj> buffer(numBlocks);
deviceVector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
#else
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
result = *buffer_v;
#endif
return result;
}
@ -244,7 +234,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
deviceVector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];

View File

@ -4,29 +4,28 @@ NAMESPACE_BEGIN(Grid);
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD;
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
sobj identity; zeroit(identity);
sobj ret ;
sobj identity; zeroit(identity);
sobj ret; zeroit(ret);
Integer nsimd= vobj::Nsimd();
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
theGridAccelerator->wait();
ret = mysum[0];
free(mysum,*theGridAccelerator);
{
sycl::buffer<sobj, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
cgh.parallel_for(sycl::range<1>{osites},
Reduction,
[=] (sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
}
sobjD dret; convertType(dret,ret);
return dret;
}
@ -69,57 +68,25 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
return result;
}
template<class Word> Word svm_xor(Word *vec,uint64_t L)
{
Word identity; identity=0;
Word ret = 0;
{
sycl::buffer<Word, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
cgh.parallel_for(sycl::range<1>{L},
Reduction,
[=] (sycl::id<1> index, auto &sum) {
sum ^=vec[index];
});
});
}
theGridAccelerator->wait();
return ret;
}
NAMESPACE_END(Grid);
/*
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
{
Double sumResult; zeroit(sumResult);
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
Double identity; zeroit(identity);
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum +=vec[index];
});
});
theGridAccelerator->wait();
Double ret = d_sum[0];
free(d_sum,*theGridAccelerator);
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -365,9 +365,14 @@ public:
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
{
if ( l.Grid()->_isCheckerBoarded ) {
Lattice<vobj> tmp(_grid);
fill(tmp,dist);
pickCheckerboard(l.Checkerboard(),l,tmp);
return;
}
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@ -430,7 +435,7 @@ public:
////////////////////////////////////////////////
thread_for( lidx, _grid->lSites(), {
int gidx;
int64_t gidx;
int o_idx;
int i_idx;
int rank;

View File

@ -1,5 +1,5 @@
#pragma once
#include <type_traits>
#if defined(GRID_CUDA)
#include <cub/cub.cuh>
@ -21,9 +21,18 @@ NAMESPACE_BEGIN(Grid);
#if defined(GRID_CUDA) || defined(GRID_HIP)
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
template<class vobj>
inline void sliceSumReduction_cub_small(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
size_t subvol_size = e1*e2;
commVector<vobj> reduction_buffer(rd*subvol_size);
deviceVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
vobj zero_init;
zeroit(zero_init);
@ -46,7 +55,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
@ -79,7 +88,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
exit(EXIT_FAILURE);
}
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy
accelerator_barrier();
@ -90,61 +99,34 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
}
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2;
commVector<vector>buffer(osites);
vector *dat = (vector *)Data;
vector *buf = &buffer[0];
Vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r];
}
}
}
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
{
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) {
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
else {
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
}
#endif
#endif
#if defined(GRID_SYCL)
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
template<class vobj>
inline void sliceSumReduction_sycl_small(const vobj *Data,
std::vector <vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{
typedef typename vobj::scalar_object sobj;
size_t subvol_size = e1*e2;
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
vobj vobj_zero;
zeroit(vobj_zero);
commVector<vobj> reduction_buffer(rd*subvol_size);
for (int r = 0; r<rd; r++) {
mysum[r] = vobj_zero;
}
deviceVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
autoView(Data_v, Data, AcceleratorRead);
// autoView(Data_v, Data, AcceleratorRead);
//prepare reduction buffer
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
@ -154,30 +136,102 @@ template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Dat
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
});
for (int r = 0; r < rd; r++) {
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
cgh.parallel_for(sycl::range<1>{subvol_size},
Reduction,
[=](cl::sycl::id<1> item, auto &sum) {
[=](sycl::id<1> item, auto &sum) {
auto s = item[0];
sum += rb_p[r*subvol_size+s];
});
});
theGridAccelerator->wait();
lvSum[r] = mysum[0];
}
theGridAccelerator->wait();
for (int r = 0; r < rd; r++) {
lvSum[r] = mysum[r];
}
free(mysum,*theGridAccelerator);
}
#endif
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
template<class vobj>
inline void sliceSumReduction_large(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2;
deviceVector<vector>buffer(osites);
vector *dat = (vector *)Data;
vector *buf = &buffer[0];
std::vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
#elif defined(GRID_SYCL)
sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
#endif
for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r];
}
}
}
template<class vobj>
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) {
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
#elif defined (GRID_SYCL)
sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif
}
else {
sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
}
template<class vobj>
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
@ -193,20 +247,20 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data
});
}
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#elif defined(GRID_SYCL)
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif
#endif
}

View File

@ -276,18 +276,33 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
RealD t_IP=0;
RealD t_co=0;
RealD t_za=0;
for(int v=0;v<nbasis;v++) {
t_IP-=usecond();
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
t_IP+=usecond();
t_co-=usecond();
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
t_co+=usecond();
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
ip=-ip;
t_za-=usecond();
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
t_za+=usecond();
}
// std::cout << GridLogPerformance << " blockProject : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl;
}
// This only minimises data motion from CPU to GPU
// there is chance of better implementation that does a vxk loop of inner products to data share
// at the GPU thread level
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
const std::vector<Lattice<vobj>> &fineData,
@ -393,8 +408,15 @@ template<class vobj,class CComplex>
Lattice<dotp> coarse_inner(coarse);
// Precision promotion
RealD t;
t=-usecond();
fine_inner = localInnerProductD<vobj>(fineX,fineY);
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
t=-usecond();
blockSum(coarse_inner,fine_inner);
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
t=-usecond();
{
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
@ -402,6 +424,7 @@ template<class vobj,class CComplex>
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
}
@ -444,6 +467,9 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
const int maxsubsec=256;
typedef iVector<vobj,maxsubsec> vSubsec;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
@ -463,35 +489,62 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead);
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sc,coarse->oSites(),1,{
vobj zz = Zero();
// Somewhat lazy calculation
// Find the biggest power of two subsection divisor less than or equal to maxsubsec
int subsec=maxsubsec;
int subvol;
subvol=blockVol/subsec;
while(subvol*subsec!=blockVol){
subsec = subsec/2;
subvol=blockVol/subsec;
};
Lattice<vSubsec> coarseTmp(coarse);
autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
auto coarseTmp_p= &coarseTmp_[0];
// Sum within subsecs in a first kernel
accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
int sc=sce/subsec;
int e=sce%subsec;
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
vobj cd = Zero();
for(int sb=0;sb<blockVol;sb++){
auto cd = coalescedRead(zz);
for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
int sf;
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
cd=cd+fineData_p[sf];
cd=cd+coalescedRead(fineData_p[sf]);
}
coarseData_p[sc] = cd;
coalescedWrite(coarseTmp_[sc](e),cd);
});
// Sum across subsecs in a second kernel
accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
auto cd = coalescedRead(coarseTmp_p[sc](0));
for(int e=1;e<subsec;e++){
cd=cd+coalescedRead(coarseTmp_p[sc](e));
}
coalescedWrite(coarseData_p[sc],cd);
});
return;
}
@ -548,7 +601,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
blockOrthonormalize(ip,Basis);
}
#if 0
#ifdef GRID_ACCELERATED
// TODO: CPU optimized version here
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
@ -574,26 +627,37 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
autoView( fineData_ , fineData, AcceleratorWrite);
autoView( coarseData_ , coarseData, AcceleratorRead);
typedef LatticeView<vobj> Vview;
std::vector<Vview> AcceleratorVecViewContainer_h;
for(int v=0;v<nbasis;v++) {
AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
}
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
auto Basis_p = &AcceleratorVecViewContainer[0];
// Loop with a cache friendly loop ordering
accelerator_for(sf,fine->oSites(),1,{
Coordinate frdimensions=fine->_rdimensions;
Coordinate crdimensions=coarse->_rdimensions;
accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
for(int i=0;i<nbasis;i++) {
/* auto basis_ = Basis[i], );*/
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
}
auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
coalescedWrite(fineData_[sf],sum);
});
for(int v=0;v<nbasis;v++) {
AcceleratorVecViewContainer_h[v].ViewClose();
}
return;
}
#else
// CPU version
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
@ -680,7 +744,11 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
static const int words=sizeof(vobj)/sizeof(vector_type);
const int words=sizeof(vobj)/sizeof(vector_type);
//////////////////////////////////////////////////////////////////////////////////////////
// checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
@ -695,52 +763,38 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]);
}
// the above should guarantee that the operations are local
#if 1
///////////////////////////////////////////////////////////
// do the index calc on the GPU
///////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx, nsite, {
Coordinate from_coor, to_coor;
size_t rem = idx;
for(int i=0;i<nd;i++){
size_t base_i = rem % RegionSize[i]; rem /= RegionSize[i];
from_coor[i] = base_i + FromLowerLeft[i];
to_coor[i] = base_i + ToLowerLeft[i];
}
int foidx = Fg->oIndex(from_coor);
int fiidx = Fg->iIndex(from_coor);
int toidx = Tg->oIndex(to_coor);
int tiidx = Tg->iIndex(to_coor);
int* tt = table + 4*idx;
tt[0] = foidx;
tt[1] = fiidx;
tt[2] = toidx;
tt[3] = tiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
Coordinate from_coor, to_coor, base;
Lexicographic::CoorFromIndex(base,idx,RegionSize);
for(int i=0;i<nd;i++){
from_coor[i] = base[i] + FromLowerLeft[i];
to_coor[i] = base[i] + ToLowerLeft[i];
}
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
@ -750,56 +804,146 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
Coordinate ldf = Fg->_ldimensions;
Coordinate rdf = Fg->_rdimensions;
Coordinate isf = Fg->_istride;
Coordinate osf = Fg->_ostride;
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
autoView( t_v , To, CpuWrite);
autoView( f_v , From, CpuRead);
thread_for(idx,Fg->lSites(),{
sobj s;
Coordinate Fcoor(nd);
Coordinate Tcoor(nd);
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
int in_region=1;
for(int d=0;d<nd;d++){
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
in_region=0;
}
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
}
if (in_region) {
#if 0
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
scalar_type * fp = (scalar_type *)&f_v[odx_f];
scalar_type * tp = (scalar_type *)&t_v[odx_t];
for(int w=0;w<words;w++){
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
}
#else
peekLocalSite(s,f_v,Fcoor);
pokeLocalSite(s,t_v,Tcoor);
#endif
}
});
#endif
}
template<class vobj>
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int words=sizeof(vobj)/sizeof(vector_type);
//////////////////////////////////////////////////////////////////////////////////////////
// checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
assert(nF+1 == nT);
///////////////////////////////////////////////////////////
// do the index calc on the GPU
///////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
Coordinate RegionSize = Fg->_ldimensions;
size_t nsite = 1;
for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
Coordinate from_coor(nF), to_coor(nT);
Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
int j=0;
for(int i=0;i<nT;i++){
if ( i!=orthog ) {
to_coor[i] = from_coor[j];
j++;
} else {
to_coor[i] = slice;
}
}
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
}
template<class vobj>
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int words=sizeof(vobj)/sizeof(vector_type);
//////////////////////////////////////////////////////////////////////////////////////////
// checks should guarantee that the operations are local
//////////////////////////////////////////////////////////////////////////////////////////
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
assert(nT+1 == nF);
///////////////////////////////////////////////////////////
// do the index calc on the GPU
///////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
Coordinate RegionSize = Tg->_ldimensions;
size_t nsite = 1;
for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
Coordinate from_coor(nF), to_coor(nT);
Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
int j=0;
for(int i=0;i<nF;i++){
if ( i!=orthog ) {
from_coor[i] = to_coor[j];
j++;
} else {
from_coor[i] = slice;
}
}
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
}
template<class vobj>
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
@ -837,8 +981,14 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl++];
hcoor[d]=lcoor[ddl];
if ( hg->_checker_dim == d ) {
hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
}
ddl++;
}
}
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
@ -859,6 +1009,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
lowDim.Checkerboard() = higherDim.Checkerboard();
int dl; dl = 0;
for(int d=0;d<nh;d++){
@ -876,11 +1027,16 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
int ddl=0;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl++];
hcoor[d]=lcoor[ddl];
if ( hg->_checker_dim == d ) {
hcoor[d]=hcoor[d]*2; // factor in the full gridd coor for peekLocalSite
lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
}
ddl++;
}
}
peekLocalSite(s,higherDimv,hcoor);
@ -889,9 +1045,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
//Can I implement with local copyregion??
template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
@ -912,121 +1066,18 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
#if 1
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx,nsite,{
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lcoor[orthog] = slice_lo;
hcoor[orthog] = slice_hi;
size_t rem = idx;
for(int mu=0;mu<nl;mu++){
if(mu != orthog){
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
lcoor[mu] = hcoor[mu] = xmu;
}
}
int loidx = lg->oIndex(lcoor);
int liidx = lg->iIndex(lcoor);
int hoidx = hg->oIndex(hcoor);
int hiidx = hg->iIndex(hcoor);
int* tt = table + 4*idx;
tt[0] = loidx;
tt[1] = liidx;
tt[2] = hoidx;
tt[3] = hiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(lowDim_v,lowDim,AcceleratorRead);
autoView(higherDim_v,higherDim,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
}
});
#endif
Coordinate sz = lg->_ldimensions;
sz[orthog]=1;
Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
}
template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
}
});
InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
}
@ -1052,7 +1103,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
Coordinate fcoor(nd);
Coordinate ccoor(nd);
for(int g=0;g<fg->gSites();g++){
for(int64_t g=0;g<fg->gSites();g++){
fg->GlobalIndexToGlobalCoor(g,fcoor);
for(int d=0;d<nd;d++){
@ -1738,5 +1789,35 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
}
}
//////////////////////////////////////////////////////
// Faster but less accurate blockProject
//////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<iScalar<CComplex> > ip(coarse);
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
RealD t_IP=0;
RealD t_co=0;
for(int v=0;v<nbasis;v++) {
t_IP-=usecond();
blockInnerProductD(ip,Basis[v],fineData);
t_IP+=usecond();
t_co-=usecond();
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
t_co+=usecond();
}
}
NAMESPACE_END(Grid);

View File

@ -45,6 +45,188 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
};
/*
*
* TODO:
* -- address elementsof vobj via thread block in Scatter/Gather
* -- overlap comms with motion in Face_exchange
*
*/
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
Lattice<vobj> &lat,
int x,
int dim,
int offset=0)
{
const int Nsimd=vobj::Nsimd();
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *grid = lat.Grid();
Coordinate simd = grid->_simd_layout;
int Nd = grid->Nd();
int block = grid->_slice_block[dim];
int stride = grid->_slice_stride[dim];
int nblock = grid->_slice_nblock[dim];
int rd = grid->_rdimensions[dim];
int ox = x%rd;
int ix = x/rd;
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
int rNsimda= Nsimd/simd[dim]; // should be equal
assert(rNsimda==rNsimd);
int face_ovol=block*nblock;
// assert(buf.size()==face_ovol*rNsimd);
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
//Let's make it work on GPU and then make a special accelerator_for that
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
//for cross platform
// FIXME -- can put internal indices into thread loop
auto buf_p = & buf[0];
autoView(lat_v, lat, AcceleratorWrite);
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
// scalar layout won't coalesce
#ifdef GRID_SIMT
{
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int blane=0;blane<Nsimd;blane++) {
#endif
int olane=blane%rNsimd; // reduced lattice lane
int obit =blane/rNsimd;
///////////////////////////////////////////////////////////////
// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
///////////////////////////////////////////////////////////////
int ssp = ss*simd[dim]+obit;
int b = ssp%block;
int n = ssp/block;
int osite= b+n*stride + ox*block;
////////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate icoor;
int lane;
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
icoor[dim]=ix;
Lexicographic::IndexFromCoor(icoor,lane,simd);
///////////////////////////////////////////
// Transfer into lattice - will coalesce
///////////////////////////////////////////
// sobj obj = extractLane(blane,buf_p[ss+offset]);
// insertLane(lane,lat_v[osite],obj);
const int words=sizeof(vobj)/sizeof(vector_type);
vector_type * from = (vector_type *)&buf_p[ss+offset];
vector_type * to = (vector_type *)&lat_v[osite];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], blane);
putlane(to[w], stmp, lane);
}
}
});
}
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
const Lattice<vobj> &lat,
int x,
int dim,
int offset=0)
{
const int Nsimd=vobj::Nsimd();
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
autoView(lat_v, lat, AcceleratorRead);
GridBase *grid = lat.Grid();
Coordinate simd = grid->_simd_layout;
int Nd = grid->Nd();
int block = grid->_slice_block[dim];
int stride = grid->_slice_stride[dim];
int nblock = grid->_slice_nblock[dim];
int rd = grid->_rdimensions[dim];
int ox = x%rd;
int ix = x/rd;
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
int face_ovol=block*nblock;
// assert(buf.size()==face_ovol*rNsimd);
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
//Let's make it work on GPU and then make a special accelerator_for that
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
//for cross platform
//For CPU perhaps just run a loop over Nsimd
auto buf_p = & buf[0];
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
// scalar layout won't coalesce
#ifdef GRID_SIMT
{
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int blane=0;blane<Nsimd;blane++) {
#endif
int olane=blane%rNsimd; // reduced lattice lane
int obit =blane/rNsimd;
////////////////////////////////////////////
// osite
////////////////////////////////////////////
int ssp = ss*simd[dim]+obit;
int b = ssp%block;
int n = ssp/block;
int osite= b+n*stride + ox*block;
////////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate icoor;
int lane;
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
icoor[dim]=ix;
Lexicographic::IndexFromCoor(icoor,lane,simd);
///////////////////////////////////////////
// Take out of lattice
///////////////////////////////////////////
// sobj obj = extractLane(lane,lat_v[osite]);
// insertLane(blane,buf_p[ss+offset],obj);
const int words=sizeof(vobj)/sizeof(vector_type);
vector_type * to = (vector_type *)&buf_p[ss+offset];
vector_type * from = (vector_type *)&lat_v[osite];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], lane);
putlane(to[w], stmp, blane);
}
}
});
}
class PaddedCell {
public:
GridCartesian * unpadded_grid;
@ -63,14 +245,18 @@ public:
dims=_grid->Nd();
AllocateGrids();
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate procs =unpadded_grid->ProcessorGrid();
for(int d=0;d<dims;d++){
assert(local[d]>=depth);
if ( procs[d] > 1 ) assert(local[d]>=depth);
}
}
void DeleteGrids(void)
{
Coordinate processors=unpadded_grid->_processors;
for(int d=0;d<grids.size();d++){
delete grids[d];
if ( processors[d] > 1 ) {
delete grids[d];
}
}
grids.resize(0);
};
@ -81,27 +267,36 @@ public:
Coordinate processors=unpadded_grid->_processors;
Coordinate plocal =unpadded_grid->LocalDimensions();
Coordinate global(dims);
GridCartesian *old_grid = unpadded_grid;
// expand up one dim at a time
for(int d=0;d<dims;d++){
plocal[d] += 2*depth;
if ( processors[d] > 1 ) {
plocal[d] += 2*depth;
for(int d=0;d<dims;d++){
global[d] = plocal[d]*processors[d];
}
for(int d=0;d<dims;d++){
global[d] = plocal[d]*processors[d];
old_grid = new GridCartesian(global,simd,processors);
}
grids.push_back(new GridCartesian(global,simd,processors));
grids.push_back(old_grid);
}
};
template<class vobj>
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
{
Coordinate processors=unpadded_grid->_processors;
Lattice<vobj> out(unpadded_grid);
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate fll(dims,depth); // depends on the MPI spread
// depends on the MPI spread
Coordinate fll(dims,depth);
Coordinate tll(dims,0); // depends on the MPI spread
for(int d=0;d<dims;d++){
if( processors[d]==1 ) fll[d]=0;
}
localCopyRegion(in,out,fll,tll,local);
return out;
}
@ -116,10 +311,22 @@ public:
}
return tmp;
}
template<class vobj>
inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
{
GridBase *old_grid = in.Grid();
int dims = old_grid->Nd();
Lattice<vobj> tmp = in;
for(int d=0;d<dims;d++){
tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
}
return tmp;
}
// expand up one dim at a time
template<class vobj>
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
Coordinate processors=unpadded_grid->_processors;
GridBase *old_grid = in.Grid();
GridCartesian *new_grid = grids[dim];//These are new grids
Lattice<vobj> padded(new_grid);
@ -129,46 +336,266 @@ public:
if(dim==0) conformable(old_grid,unpadded_grid);
else conformable(old_grid,grids[dim-1]);
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
double tins=0, tshift=0;
// Middle bit
double t = usecond();
for(int x=0;x<local[dim];x++){
InsertSliceLocal(in,padded,x,depth+x,dim);
}
tins += usecond() - t;
// High bit
t = usecond();
shifted = cshift.Cshift(in,dim,depth);
tshift += usecond() - t;
t=usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
}
tins += usecond() - t;
// Low bit
t = usecond();
shifted = cshift.Cshift(in,dim,-depth);
tshift += usecond() - t;
t = usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,x,x,dim);
}
tins += usecond() - t;
int islocal = 0 ;
if ( processors[dim] == 1 ) islocal = 1;
if ( islocal ) {
// replace with a copy and maybe grid swizzle
// return in;??
double t = usecond();
padded = in;
tins += usecond() - t;
} else {
//////////////////////////////////////////////
// Replace sequence with
// ---------------------
// (i) Gather high face(s); start comms
// (ii) Gather low face(s); start comms
// (iii) Copy middle bit with localCopyRegion
// (iv) Complete high face(s), insert slice(s)
// (iv) Complete low face(s), insert slice(s)
//////////////////////////////////////////////
// Middle bit
double t = usecond();
for(int x=0;x<local[dim];x++){
InsertSliceLocal(in,padded,x,depth+x,dim);
}
tins += usecond() - t;
// High bit
t = usecond();
shifted = cshift.Cshift(in,dim,depth);
tshift += usecond() - t;
t=usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
}
tins += usecond() - t;
// Low bit
t = usecond();
shifted = cshift.Cshift(in,dim,-depth);
tshift += usecond() - t;
t = usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,x,x,dim);
}
tins += usecond() - t;
}
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
return padded;
}
template<class vobj>
inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
{
Coordinate processors=unpadded_grid->_processors;
GridBase *old_grid = in.Grid();
GridCartesian *new_grid = grids[dim];//These are new grids
Lattice<vobj> padded(new_grid);
// Lattice<vobj> shifted(old_grid);
Coordinate local =old_grid->LocalDimensions();
Coordinate plocal =new_grid->LocalDimensions();
if(dim==0) conformable(old_grid,unpadded_grid);
else conformable(old_grid,grids[dim-1]);
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
double tins=0, tshift=0;
int islocal = 0 ;
if ( processors[dim] == 1 ) islocal = 1;
if ( islocal ) {
padded=in; // slightly different interface could avoid a copy operation
} else {
Face_exchange(in,padded,dim,depth);
return padded;
}
return padded;
}
template<class vobj>
void Face_exchange(const Lattice<vobj> &from,
Lattice<vobj> &to,
int dimension,int depth) const
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::scalar_object sobj;
RealD t_gather=0.0;
RealD t_scatter=0.0;
RealD t_comms=0.0;
RealD t_copy=0.0;
// std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
// DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
GridBase *grid=from.Grid();
GridBase *new_grid=to.Grid();
Coordinate lds = from.Grid()->_ldimensions;
Coordinate nlds= to.Grid()->_ldimensions;
Coordinate simd= from.Grid()->_simd_layout;
int ld = lds[dimension];
int nld = to.Grid()->_ldimensions[dimension];
const int Nsimd = vobj::Nsimd();
assert(depth<=lds[dimension]); // A must be on neighbouring node
assert(depth>0); // A caller bug if zero
assert(ld+2*depth==nld);
////////////////////////////////////////////////////////////////////////////
// Face size and byte calculations
////////////////////////////////////////////////////////////////////////////
int buffer_size = 1;
for(int d=0;d<lds.size();d++){
if ( d!= dimension) buffer_size=buffer_size*lds[d];
}
buffer_size = buffer_size / Nsimd;
int rNsimd = Nsimd / simd[dimension];
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
static deviceVector<vobj> send_buf;
static deviceVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf;
static hostVector<vobj> hrecv_buf;
hsend_buf.resize(buffer_size*2*depth);
hrecv_buf.resize(buffer_size*2*depth);
#endif
std::vector<MpiCommsRequest_t> fwd_req;
std::vector<MpiCommsRequest_t> bwd_req;
int words = buffer_size;
int bytes = words * sizeof(vobj);
////////////////////////////////////////////////////////////////////////////
// Communication coords
////////////////////////////////////////////////////////////////////////////
int comm_proc = 1;
int xmit_to_rank;
int recv_from_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
////////////////////////////////////////////////////////////////////////////
// Gather all surface terms up to depth "d"
////////////////////////////////////////////////////////////////////////////
RealD t;
RealD t_tot=-usecond();
int plane=0;
for ( int d=0;d < depth ; d ++ ) {
int tag = d*1024 + dimension*2+0;
t=usecond();
GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
t_gather+=usecond()-t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(fwd_req,
(void *)&send_buf[d*buffer_size], xmit_to_rank,
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#else
acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
grid->SendToRecvFromBegin(fwd_req,
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#endif
t_comms+=usecond()-t;
}
for ( int d=0;d < depth ; d ++ ) {
int tag = d*1024 + dimension*2+1;
t=usecond();
GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
t_gather+= usecond() - t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(bwd_req,
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#else
acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
grid->SendToRecvFromBegin(bwd_req,
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#endif
t_comms+=usecond()-t;
}
////////////////////////////////////////////////////////////////////////////
// Copy interior -- overlap this with comms
////////////////////////////////////////////////////////////////////////////
int Nd = new_grid->Nd();
Coordinate LL(Nd,0);
Coordinate sz = grid->_ldimensions;
Coordinate toLL(Nd,0);
toLL[dimension]=depth;
t=usecond();
localCopyRegion(from,to,LL,toLL,sz);
t_copy= usecond() - t;
////////////////////////////////////////////////////////////////////////////
// Scatter all faces
////////////////////////////////////////////////////////////////////////////
plane=0;
t=usecond();
grid->CommsComplete(fwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t;
t=usecond();
for ( int d=0;d < depth ; d ++ ) {
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
}
t_scatter= usecond() - t;
t=usecond();
grid->CommsComplete(bwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t;
t=usecond();
for ( int d=0;d < depth ; d ++ ) {
ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
}
t_scatter+= usecond() - t;
t_tot+=usecond();
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy :" << t_copy/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << t_comms/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total :" << t_tot/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << (RealD)4.0*bytes/t_comms << "MB/s"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes :" << depth*bytes/1e6 << "MB"<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -165,7 +165,7 @@ class BinaryIO {
* FIXME -- 128^3 x 256 x 16 will overflow.
*/
int global_site;
int64_t global_site;
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
@ -175,8 +175,8 @@ class BinaryIO {
Lexicographic::IndexFromCoor(coor,global_site,global_vol);
uint32_t gsite29 = global_site%29;
uint32_t gsite31 = global_site%31;
uint64_t gsite29 = global_site%29;
uint64_t gsite31 = global_site%31;
site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
// std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
@ -545,7 +545,9 @@ class BinaryIO {
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb)
uint32_t &scidac_csumb,
int control=BINARYIO_LEXICOGRAPHIC
)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
@ -556,7 +558,7 @@ class BinaryIO {
std::vector<sobj> scalardata(lsites);
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
nersc_csum,scidac_csuma,scidac_csumb);
GridStopWatch timer;
@ -582,7 +584,8 @@ class BinaryIO {
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb)
uint32_t &scidac_csumb,
int control=BINARYIO_LEXICOGRAPHIC)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
@ -607,7 +610,7 @@ class BinaryIO {
while (attemptsLeft >= 0)
{
grid->Barrier();
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
nersc_csum,scidac_csuma,scidac_csumb);
if (checkWrite)
{
@ -617,7 +620,7 @@ class BinaryIO {
std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
grid->Barrier();
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
cknersc_csum,ckscidac_csuma,ckscidac_csumb);
if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
{

View File

@ -162,8 +162,14 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
{
uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
if ( scidac_csuma !=scidac_checksuma) return 0;
if ( scidac_csumb !=scidac_checksumb) return 0;
std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
if ( scidac_csuma !=scidac_checksuma) {
return 0;
};
if ( scidac_csumb !=scidac_checksumb) {
return 0;
};
return 1;
}
@ -206,7 +212,7 @@ class GridLimeReader : public BinaryIO {
// Read a generic lattice field and verify checksum
////////////////////////////////////////////
template<class vobj>
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
{
typedef typename vobj::scalar_object sobj;
scidacChecksum scidacChecksum_;
@ -238,7 +244,7 @@ class GridLimeReader : public BinaryIO {
uint64_t offset= ftello(File);
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
/////////////////////////////////////////////
@ -408,7 +414,7 @@ class GridLimeWriter : public BinaryIO
// in communicator used by the field.Grid()
////////////////////////////////////////////////////
template<class vobj>
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
{
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
@ -459,7 +465,7 @@ class GridLimeWriter : public BinaryIO
///////////////////////////////////////////
std::string format = getFormatString<vobj>();
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
///////////////////////////////////////////
// Wind forward and close the record
@ -512,7 +518,8 @@ class ScidacWriter : public GridLimeWriter {
////////////////////////////////////////////////
template <class vobj, class userRecord>
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
const unsigned int recordScientificPrec = 0)
const unsigned int recordScientificPrec = 0,
int control=BINARYIO_LEXICOGRAPHIC)
{
GridBase * grid = field.Grid();
@ -534,7 +541,7 @@ class ScidacWriter : public GridLimeWriter {
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
}
// Collective call
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); // Closes message with checksum
}
};
@ -553,7 +560,8 @@ class ScidacReader : public GridLimeReader {
// Write generic lattice field in scidac format
////////////////////////////////////////////////
template <class vobj, class userRecord>
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
int control=BINARYIO_LEXICOGRAPHIC)
{
typedef typename vobj::scalar_object sobj;
GridBase * grid = field.Grid();
@ -571,7 +579,7 @@ class ScidacReader : public GridLimeReader {
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
}
void skipPastBinaryRecord(void) {
std::string rec_name(ILDG_BINARY_DATA);

View File

@ -98,7 +98,7 @@ public:
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
/////////////////////////////////////////////////////////////
// virtual smeared interface through configuration container
/////////////////////////////////////////////////////////////
@ -132,6 +132,10 @@ public:
template <class GaugeField >
class EmptyAction : public Action <GaugeField>
{
using Action<GaugeField>::refresh;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative

View File

@ -55,6 +55,11 @@ public:
RealD alpha; // Mobius scale
RealD k; // EOFA normalization constant
// Device resident
deviceVector<Coeff_t> d_shift_coefficients;
deviceVector<Coeff_t> d_MooeeInv_shift_lc;
deviceVector<Coeff_t> d_MooeeInv_shift_norm;
virtual void Instantiatable(void) = 0;
// EOFA-specific operations
@ -92,6 +97,11 @@ public:
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
d_shift_coefficients.resize(Ls);
d_MooeeInv_shift_lc.resize(Ls);
d_MooeeInv_shift_norm.resize(Ls);
};
};

View File

@ -90,16 +90,16 @@ public:
void M5D(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
virtual void Instantiatable(void)=0;
@ -119,35 +119,51 @@ public:
RealD mass_plus, mass_minus;
// Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma;
std::vector<Coeff_t> _gamma;
RealD _zolo_hi;
RealD _b;
RealD _c;
// possible boost
std::vector<ComplexD> qmu;
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
// Cayley form Moebius (tanh and zolotarev)
Vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs
Vector<Coeff_t> cs;
Vector<Coeff_t> as;
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
// For preconditioning Cayley form
Vector<Coeff_t> bee;
Vector<Coeff_t> cee;
Vector<Coeff_t> aee;
Vector<Coeff_t> beo;
Vector<Coeff_t> ceo;
Vector<Coeff_t> aeo;
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
Vector<Coeff_t> lee;
Vector<Coeff_t> leem;
Vector<Coeff_t> uee;
Vector<Coeff_t> ueem;
Vector<Coeff_t> dee;
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
// Device memory
deviceVector<Coeff_t> d_diag;
deviceVector<Coeff_t> d_upper;
deviceVector<Coeff_t> d_lower;
deviceVector<Coeff_t> d_lee;
deviceVector<Coeff_t> d_dee;
deviceVector<Coeff_t> d_uee;
deviceVector<Coeff_t> d_leem;
deviceVector<Coeff_t> d_ueem;
// Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv;
Vector<iSinglet<Simd> > MatmInv;
Vector<iSinglet<Simd> > MatpInvDag;
Vector<iSinglet<Simd> > MatmInvDag;
// std::vector<iSinglet<Simd> > MatpInv;
// std::vector<iSinglet<Simd> > MatmInv;
// std::vector<iSinglet<Simd> > MatpInvDag;
// std::vector<iSinglet<Simd> > MatmInvDag;
///////////////////////////////////////////////////////////////
// Conserved current utilities
@ -187,7 +203,7 @@ public:
protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,196 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
Copyright (C) 2020 - 2025
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
template<class Impl, class CloverHelpers>
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion5D<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
int n_rhs;
bool fixedBoundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -60,6 +60,50 @@ public:
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
@ -90,12 +134,12 @@ protected:
RealD mass;
RealD R;
RealD ZoloHiInv;
Vector<double> Beta;
Vector<double> cc;;
Vector<double> cc_d;;
Vector<double> sqrt_cc;
Vector<double> See;
Vector<double> Aee;
std::vector<double> Beta;
std::vector<double> cc;;
std::vector<double> cc_d;;
std::vector<double> sqrt_cc;
std::vector<double> See;
std::vector<double> Aee;
};

View File

@ -69,10 +69,10 @@ public:
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
virtual void RefreshShiftCoefficients(RealD new_shift);
@ -83,7 +83,7 @@ public:
RealD _M5, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
};
NAMESPACE_END(Grid);

View File

@ -55,6 +55,7 @@ NAMESPACE_CHECK(Wilson);
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
@ -164,12 +165,17 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
// Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
@ -164,8 +164,6 @@ public:
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities

View File

@ -100,7 +100,6 @@ public:
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -108,7 +107,6 @@ public:
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -116,7 +114,6 @@ public:
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -192,8 +189,6 @@ public:
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -42,11 +42,11 @@ public:
public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA
Vector<Coeff_t> Mooee_shift;
Vector<Coeff_t> MooeeInv_shift_lc;
Vector<Coeff_t> MooeeInv_shift_norm;
Vector<Coeff_t> MooeeInvDag_shift_lc;
Vector<Coeff_t> MooeeInvDag_shift_norm;
std::vector<Coeff_t> Mooee_shift;
std::vector<Coeff_t> MooeeInv_shift_lc;
std::vector<Coeff_t> MooeeInv_shift_norm;
std::vector<Coeff_t> MooeeInvDag_shift_lc;
std::vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {};
@ -74,18 +74,18 @@ public:
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs);
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs);
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
virtual void RefreshShiftCoefficients(RealD new_shift);

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
void DhopInternal(StencilImpl &st, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
@ -152,9 +152,6 @@ public:
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////

View File

@ -42,7 +42,7 @@ public:
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
};
// Constructors
OverlapWilsonCayleyTanhFermion(GaugeField &_Umu,

View File

@ -41,6 +41,10 @@ public:
public:
// Constructors
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -41,6 +41,9 @@ public:
public:
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -40,6 +40,9 @@ public:
INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -41,6 +41,9 @@ public:
public:
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -40,6 +40,11 @@ public:
INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
public:
INHERIT_IMPL_TYPES(Impl);
const int part_frac_chroma_convention=1;
const int part_frac_chroma_convention=0;
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
@ -83,19 +83,78 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
if ( this->qmu.size() ){
this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu);
} else {
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
}
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
protected:
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
std::vector<RealD> qmu;
// Part frac
RealD mass;
RealD dw_diag;
RealD R;
RealD amax;
RealD scale;
Vector<double> p;
Vector<double> q;
std::vector<double> p;
std::vector<double> q;
};

View File

@ -35,7 +35,7 @@ template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
INHERIT_IMPL_TYPES(Matrix);
Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {

View File

@ -49,10 +49,10 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
public:
void DhopImproved(StencilImpl &st, LebesgueOrder &lo,
void DhopImproved(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopNaive(StencilImpl &st, LebesgueOrder &lo,
void DhopNaive(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);

View File

@ -47,7 +47,7 @@ public:
static int PartialCompressionFactor(GridBase *grid) { return 1;}
#endif
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
@ -109,7 +109,7 @@ public:
// Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
@ -197,7 +197,7 @@ public:
#endif
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
@ -208,7 +208,7 @@ public:
else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
}
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
@ -402,7 +402,6 @@ public:
typedef CartesianStencil<vobj,cobj,Parameters> Base;
typedef typename Base::View_type View_type;
typedef typename Base::StencilVector StencilVector;
// Vector<int> surface_list;
WilsonStencil(GridBase *grid,
@ -415,29 +414,6 @@ public:
// surface_list.resize(0);
this->same_node.resize(npoints);
};
/*
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
*/
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
@ -508,6 +484,11 @@ public:
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier();
#ifdef NVLINK_GET
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
}
};

View File

@ -126,14 +126,17 @@ public:
void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
void DhopInternal(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
@ -168,9 +171,6 @@ public:
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff;
///////////////////////////////////////////////////////////////

View File

@ -91,13 +91,13 @@ public:
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
@ -109,6 +109,8 @@ public:
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist,
std::vector<double> qmu) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
@ -117,6 +119,9 @@ public:
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
void DhopComms (const FermionField &in, FermionField &out);
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
@ -135,21 +140,18 @@ public:
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
@ -203,9 +205,6 @@ public:
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -57,6 +57,10 @@ public:
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids);
static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;

View File

@ -58,7 +58,7 @@ public:
{
// RealD eps = 1.0;
std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl;
Vector<Coeff_t> zgamma(this->Ls);
std::vector<Coeff_t> zgamma(this->Ls);
for(int s=0;s<this->Ls;s++){
zgamma[s] = gamma[s];
}

View File

@ -1,3 +1,5 @@
#if 0
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -818,3 +820,5 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,3 +1,4 @@
#if 0
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -241,3 +242,4 @@ void LebesgueOrder::ZGraph(void)
}
NAMESPACE_END(Grid);
#endif

View File

@ -72,7 +72,7 @@ public:
void ThreadInterleave(void);
private:
Vector<IndexInteger> _LebesgueReorder;
deviceVector<IndexInteger> _LebesgueReorder;
};

Some files were not shown because too many files have changed in this diff Show More