1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 15:27:06 +01:00

Compare commits

..

156 Commits

Author SHA1 Message Date
27ea2afe86 No compile on comms == none fix 2017-10-30 01:14:11 +00:00
78e8704eac Shaking out 2017-10-30 00:25:31 +00:00
67131d82f2 Get subrank info from communicator constructor 2017-10-30 00:24:11 +00:00
615a9448b9 Extended sub comm supported 2017-10-30 00:23:34 +00:00
00164f5ce5 : 2017-10-30 00:22:52 +00:00
a7f72eb994 SHaking out 2017-10-30 00:22:06 +00:00
501fa1614a Communicator updates for split grid 2017-10-30 00:16:12 +00:00
5bf42e1e15 Update 2017-10-30 00:05:21 +00:00
fe4d9b003c More digits 2017-10-30 00:04:47 +00:00
4a699b4da3 New rank can be found out 2017-10-30 00:04:14 +00:00
689323f4ee Reverse dim ordering lexico support 2017-10-30 00:03:15 +00:00
84b441800f Merge branch 'develop' into feature/lanczos-reorg 2017-10-27 14:21:38 +01:00
1ef424b139 Split grid Y2K bug fix attempt 2017-10-27 14:20:35 +01:00
aa66f41c69 Bug fix in the coarse restore...
Think this is nearly there
2017-10-27 10:29:34 +01:00
f96c800d25 Passes reload of coarse basis 2017-10-27 09:43:22 +01:00
32a52d7583 Move the local coherence lanczos into algorithms.
Keep the I/O in the tester. Other people can copy this method to write other I/O formats.
2017-10-27 09:04:31 +01:00
fa04b6d3c2 Finished ? Verifying coarse evec restore 2017-10-27 08:18:29 +01:00
7fab183c0e Better read test 2017-10-27 08:17:49 +01:00
9ec9850bdb 64bit ftello update 2017-10-26 23:34:31 +01:00
0c4ddaea0b Cleaning up 2017-10-26 23:31:46 +01:00
00ebc150ad Mistake in string parse; interface is ambiguous and must fix. Is char * a file, or a XML buffer ? 2017-10-26 23:30:37 +01:00
0f3e9ae57d Gsites error. Only appeared (so far) in I/O code for even odd fields 2017-10-26 23:29:59 +01:00
034de160bf Staggered updates : Schur fixed and added a unit test for Test_staggered_cg_schur.cc giving stronger check 2017-10-26 20:58:46 +01:00
14507fd6e4 Final? candidate for push back on the lanczos reorg feature 2017-10-26 16:25:01 +01:00
2db05ac214 Test for split/unsplit in isolation 2017-10-26 07:48:03 +01:00
31f99574fa Moving these out of algorithms 2017-10-26 07:47:42 +01:00
a34c8a2961 Update to IRL; getting close to the structure I would like. 2017-10-26 07:45:56 +01:00
ccd20df827 Better IRL interface 2017-10-26 01:59:59 +01:00
e9be293444 Better messaging 2017-10-26 01:59:30 +01:00
d577211cc3 Relax stoppign condition 2017-10-25 23:57:54 +01:00
f4336e480a Faster converge time 2017-10-25 23:53:44 +01:00
e4d461cb03 Messagign 2017-10-25 23:53:19 +01:00
3d63b4894e Use existing functionality where possible 2017-10-25 23:52:47 +01:00
08583afaff Red black friendly coarsening 2017-10-25 23:51:18 +01:00
b395a312af Better error messaging 2017-10-25 23:50:37 +01:00
66295b99aa Bit less verbose SciDAC IO 2017-10-25 23:50:05 +01:00
b8654be0ef 64 bit safe offsets 2017-10-25 23:49:23 +01:00
a479325349 Rewrite of local coherence lanczos 2017-10-25 23:48:47 +01:00
f6c3f6bf2d XML serialisation of parms and initialise from parms object 2017-10-25 23:47:59 +01:00
d83868fdbb Identity linear op added -- useful in circumstances where a linear op may or may not be needed.
Supply a trivial one if not needed
2017-10-25 23:47:10 +01:00
303e0b927d Improvements for coarse grid compressed lanczos 2017-10-25 23:46:33 +01:00
28ba8a0f48 Force spacing more nicely 2017-10-25 23:45:57 +01:00
f9e28577f3 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-10-25 21:07:56 +01:00
8a3aae98f6 Solving minor bug in compilation 2017-10-25 10:34:49 +01:00
8309f2364b Solving again the MPI comm bug with FFTs 2017-10-25 10:24:14 +01:00
cac1750078 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-10-24 23:30:36 +01:00
27936900e6 Putting the FG verbosity in the Integrator level 2017-10-18 13:08:09 +01:00
e325929851 ALl codes compile against the new Lanczos call signature 2017-10-13 14:02:43 +01:00
47af3565f4 Logging improvement; reunified the Lanczos codes 2017-10-13 13:23:07 +01:00
4b4d187935 Reunified the Lanczos implementations 2017-10-13 13:22:44 +01:00
9aff354ab5 Final version prior to reunification 2017-10-13 13:22:26 +01:00
cb9ff20249 Approx tests and lanczos improvement 2017-10-13 11:30:50 +01:00
9fe6ac71ea Starting reorg of Blocked lanczos 2017-10-11 10:12:07 +01:00
f1fa00b71b Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-10-10 14:26:44 +01:00
bf58557fb1 Block compressed Lanczos 2017-10-10 14:15:11 +01:00
10cb37f504 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-10-10 14:09:44 +01:00
1374c943d4 Correct Schur operator called 2017-10-10 13:59:50 +01:00
a1d80282ec cb factorise 2017-10-10 13:49:31 +01:00
4eb8bbbebe Christop mods 2017-10-10 13:48:51 +01:00
d1c6288c5f Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-10-10 13:38:40 +01:00
dd949bc428 Merge branch 'feature/staggering' into develop 2017-10-10 13:02:51 +01:00
bb7378cfc3 Schur for staggered 2017-10-10 12:02:18 +01:00
f0e084a88c Schur staggered 2017-10-10 10:00:43 +01:00
153672d8ec Split CG testing 2017-10-09 23:20:58 +01:00
08ca338875 Split grid communication 2017-10-09 23:19:45 +01:00
f7cbf82c04 Better stdout/err debug 2017-10-09 23:18:48 +01:00
07009c569a Comms splitting improvements 2017-10-09 23:16:51 +01:00
09f4cdb11e Merge branch 'develop' of https://github.com/paboyle/Grid into feature/staggering 2017-10-04 10:51:16 +01:00
1e54882f71 Stagger 2017-10-04 10:51:06 +01:00
d54807b8c0 MPIT works with split grid now 2017-10-02 23:14:56 +01:00
5625b47c7d Merge branch 'feature/dwf-multirhs' into develop 2017-10-02 12:42:32 +01:00
1edcf902b7 Macos ANON 2017-10-02 12:41:02 +01:00
e5c19e1fd7 RB constructor change 2017-10-02 12:25:52 +01:00
a11d0a33d1 Merge branch 'feature/dwf-multirhs' of https://github.com/paboyle/Grid into feature/dwf-multirhs 2017-10-02 11:42:07 +01:00
4f8b6f26b4 Merge branch 'develop' into feature/dwf-multirhs 2017-10-02 11:41:49 +01:00
073525c5b3 Small patch from cori 2017-10-02 03:38:21 -07:00
eb6153080a Merge branch 'develop' of https://github.com/paboyle/Grid into feature/staggering 2017-10-02 08:56:33 +01:00
f7072d1ac2 Solving an annoying compilation error in json 2017-10-02 07:13:40 +01:00
fddeb29d6b Bug fix with spreadout FFT 2017-09-21 11:10:08 +01:00
a9ec5cf564 Christoph bug report integrate 2017-09-21 10:32:41 +01:00
946a8671b9 Merge pull request #129 from djm2131/feature/eofa
Add support for DWF with the exact one flavor algorithm
2017-09-21 10:15:21 +01:00
a6eeea777b Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-09-21 10:12:41 +01:00
771a1b8e79 Merge pull request #128 from paboyle/feature/CG-reliable-update
Feature/cg reliable update
2017-09-21 10:12:03 +01:00
bfb68e6f02 Merge pull request #130 from giltirn/gparity-handunroll
Gparity handunroll
2017-09-21 10:11:00 +01:00
77f7737ccc Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-09-19 14:28:01 +01:00
18c335198a Merge branch 'hotfix/dirac-ITT-fix1' into develop 2017-09-16 18:19:02 +01:00
5918769f97 Subtle Naik term bug updated in Stencil; less on logical && with a function call on right 2017-09-16 12:51:26 +01:00
bbaf1ada91 Merge branch 'feature/json-fix' into develop 2017-09-08 16:02:08 +01:00
1950ac9294 Fixed the Intel compiler problem with the JSON classes 2017-09-08 15:18:59 +01:00
13fa70ac1a Merge branch 'develop' into feature/json-fix 2017-09-08 13:42:20 +01:00
7cb2b11f26 Fixing Intel compiler error for the JSON parser 2017-09-08 13:41:53 +01:00
1184ed29ae Merge pull request #124 from nmeyer-ur/feature/arm-neon
Added integer reduce functionality
2017-09-08 10:54:35 +02:00
203c7bf6fa Merge branch 'hotfix/dirac-ITT-fix' into develop 2017-09-05 15:08:51 +01:00
d856327250 Merge branch 'release/dirac-ITT' into develop 2017-09-05 14:56:12 +01:00
a5fe07c077 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-09-04 14:10:15 +01:00
b83b2b1415 Stability improvement to BCG. Force m_rr hermitian beyond rounding. 2017-09-04 14:09:47 +01:00
59bd1fe21b Fix for 'perm' and 'local' not being set for hand-unrolled external-site Dslash, which caused incorrect behavior of G-parity kernel 2017-08-29 13:07:37 -07:00
4e907fef2c Merge remote-tracking branch 'grid/develop' into feature/arm-neon 2017-08-29 17:47:36 +02:00
67888b657f Merge branch 'gparity-handunroll' of https://github.com/giltirn/Grid into gparity-handunroll 2017-08-29 09:52:05 -04:00
74af885d4e Removed some no-longer-needed associated with G-parity hand unrolled kernel 2017-08-29 09:50:37 -04:00
d36d2fb40d Added ability to override default Ls in Benchmark_dwf 2017-08-28 06:53:56 -07:00
4b4c2a715b fcntl.h needed 2017-08-26 11:38:04 +01:00
54a5e6c1d0 Check if we get huge pages on linux. Larry Meadows piece of magic. 2017-08-25 22:36:08 +01:00
f365a83fae In G-parity unrolled kernel, replaced calls to permute and exchange with run-time-evaluated permute type with explicit calls to appropriate underlying functions 2017-08-25 14:24:11 -04:00
34a9aeb331 Reduced number of if-statement evaluations in G-parity unrolled kernel 2017-08-24 13:53:50 -07:00
edabb3577f Imported Benchmark_gparity 2017-08-23 16:54:06 -04:00
ce5df177ee Removed superfluous implementation of G-parity twist for hand-unrolled kernel from GparityWilsonImpl 2017-08-23 15:05:22 -04:00
a0bb8e5b46 Added hand-unrolled kernel implementations of all the other dslash precision / comms precision combinations with G-parity 2017-08-23 14:44:40 -04:00
46f88e6d72 G-parity hand-unrolled intrinsics twist now uses one less permute and one less temporary 2017-08-23 13:21:10 -04:00
dd8f1ea189 Vectorized Mobius EOFA Dperp + shift operation 2017-08-23 13:17:26 -04:00
b61835c1a5 Added inplace version of intrinsic G-parity twist to hand-unrolled kernel 2017-08-23 12:33:48 -04:00
459f70e8d4 Check-in of working Mobius EOFA class and tests 2017-08-22 22:38:30 -04:00
061e48fd73 Replaced slow unpack-repack in G-parity BC twist with intrinsics version 2017-08-22 18:12:12 -04:00
ab50145001 Implemented first, unoptimized version of hand-unrolled G-parity kernels
Improved Test_gparity
2017-08-22 17:12:25 -04:00
9d45fca8bc Implement MobiusEOFAFermioncache.cc 2017-08-17 23:45:36 -04:00
ac9e6b63c0 More re-import of Mobius EOFA 2017-08-17 19:28:53 -04:00
e140b3f802 Beginning to re-import Mobius EOFA 2017-08-16 23:36:23 -04:00
d9d3d30cc7 Minor clean-up 2017-08-16 20:57:51 -04:00
47a12ec7b5 Implement EOFA pseudofermion force and Shamir tests for G-parity and non G-parity cases 2017-08-16 19:50:08 -04:00
ec1e2f7a40 Add (mostly implemented) ExactOneFlavourRatio pseudofermion class and tests of Shamir heatbath and action 2017-08-16 12:38:59 -04:00
41f73ec083 Add ChronoForecast class for forecasting solutions across poles in the EOFA heatbath 2017-08-16 12:37:38 -04:00
6d0786ff9d Typo fixes and check-in of G-parity action test for DWF 2017-08-15 22:47:00 -04:00
b7f93aeb4d Change CayleyFermion5D::SetCoefficientsInternal to virtual to allow overriding in derived EOFA classes 2017-08-15 14:18:51 -04:00
202a7fe900 Re-import DWF and abstract base EOFA fermion classes and tests 2017-08-15 13:36:08 -04:00
7d867a8134 Merge branch 'develop' into feature/CG-reliable-update 2017-08-02 09:48:04 -04:00
9939b267d2 Added switching to fallback linear operator in reliable update CG, and added recalculation of b parameter on update. 2017-07-31 13:39:44 -04:00
8f4b3049cd Merge branch 'feature/CG-reliable-update' into ckelly_develop 2017-07-25 11:55:26 -04:00
2a6e673a91 Merge branch 'develop' into feature/CG-reliable-update 2017-07-25 11:54:43 -04:00
9b6cde173f Merge branch 'feature/CG-reliable-update' into ckelly_develop 2017-07-25 11:51:08 -04:00
9f280b82c4 Added mixed-precision CG with reliable updates 2017-07-25 11:30:41 -04:00
7a53dc3715 Added integer reduce functionality 2017-07-24 11:12:59 +02:00
9fa07eecde Merge branch 'develop' into feature/json-fix 2017-07-12 15:47:22 +01:00
f64fb7bd77 Fix gcc error on JSON compilation 2017-07-12 14:55:42 +01:00
2a35449b91 Merge branch 'develop' into feature/json-fix 2017-07-12 14:47:00 +01:00
184af5bd05 Added support for std::pair in the JSON serialiser 2017-07-12 14:44:53 +01:00
097c9637ee Fixed the JSON parsing error 2017-07-11 14:31:57 +01:00
d9593c4b81 Merge branch 'develop' into feature/json-fix 2017-07-07 14:17:50 +01:00
ac740f73ce Works on Cori 2017-07-02 16:47:58 -07:00
75dc7794b9 Working on Cori 2017-07-02 16:47:42 -07:00
dee68fc728 IO working multiple nodes again. Strategy of all nodes writing metadata is unsafe.
Only one rank should do this. must identify this rank. Means pass communicator to the
Objects.
2017-07-02 23:33:48 +01:00
a2d3643634 Merge branch 'feature/dwf-multirhs' of https://github.com/paboyle/Grid into feature/dwf-multirhs 2017-07-02 14:59:22 -07:00
57002924bc NERSC shakeout of this 2017-07-02 14:58:30 -07:00
4a29ab0d0a Merge branch 'feature/dwf-multirhs' of https://github.com/paboyle/Grid into feature/dwf-multirhs 2017-06-23 23:10:43 +01:00
0165bcb58e Added an update to TODO list 2017-06-23 23:10:24 +01:00
349d75e483 Precision fix 2017-06-23 02:57:59 -07:00
e51475703a Ticking off lots on the TODO list 2017-06-23 09:42:21 +01:00
1feddf4ba6 const fixes 2017-06-22 19:32:41 +01:00
600d7ddc2e Proof of concept : Multi RHS solver, running independent solves on different ranks 2017-06-22 18:54:34 +01:00
e504260f3d Able to run a test job splitting into multiple MPI subdomains. 2017-06-22 18:53:11 +01:00
5e4bea8f20 Benchmark DWF works 2017-06-22 08:38:54 +01:00
6ebf9f15b7 Splitting communicators first cut 2017-06-22 08:14:34 +01:00
1d7aa673a4 Include BlockCG by default 2017-06-21 21:08:53 +01:00
b9104f3072 Block CG 2017-06-21 21:08:03 +01:00
b672717096 Test_serialiation update for JSON 2017-06-19 14:38:39 +01:00
284ee194b1 JSON update 2017-06-19 14:38:15 +01:00
0cd6b1858c Merge branch 'develop' of https://github.com/paboyle/Grid into feature/staggering 2016-12-14 09:23:22 +00:00
134 changed files with 24121 additions and 7861 deletions

12
TODO
View File

@ -3,19 +3,19 @@ TODO:
Large item work list:
1)- BG/Q port and check
1)- BG/Q port and check ; Andrew says ok.
2)- Christoph's local basis expansion Lanczos
3)- Precision conversion and sort out localConvert <-- partial
- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
--
3a)- RNG I/O in ILDG/SciDAC (minor)
3b)- Precision conversion and sort out localConvert <-- partial/easy
3c)- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
4)- Physical propagator interface
5)- Conserved currents
6)- Multigrid Wilson and DWF, compare to other Multigrid implementations
7)- HDCR resume
Recent DONE
-- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O. <--- DONE
-- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O ; <-- DONE ; bmark cori
-- Lanczos Remove DenseVector, DenseMatrix; Use Eigen instead. <-- DONE
-- GaugeFix into central location <-- DONE
-- Scidac and Ildg metadata handling <-- DONE

View File

@ -51,7 +51,13 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> latt4 = GridDefaultLatt();
const int Ls=16;
int Ls=16;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);

View File

@ -0,0 +1,190 @@
#include <Grid/Grid.h>
#include <sstream>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
typedef typename GparityDomainWallFermionF::FermionField GparityLatticeFermionF;
typedef typename GparityDomainWallFermionD::FermionField GparityLatticeFermionD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int Ls=16;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "Ls = " << Ls << std::endl;
std::vector<int> latt4 = GridDefaultLatt();
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
GparityLatticeFermionF src (FGrid); random(RNG5,src);
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
GparityLatticeFermionF result(FGrid); result=zero;
GparityLatticeFermionF ref(FGrid); ref=zero;
GparityLatticeFermionF tmp(FGrid);
GparityLatticeFermionF err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
RealD mass=0.1;
RealD M5 =1.8;
RealD NP = UGrid->_Nprocessors;
RealD NN = UGrid->NodeCount();
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermion::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexF::Nsimd()<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE/SINGLE"<<std::endl;
GparityDomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
Dw.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
std::cout << GridLogMessage<< "* SINGLE/HALF"<<std::endl;
GparityDomainWallFermionFH DwH(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
if (1) {
FGrid->Barrier();
DwH.ZeroCounters();
DwH.Dhop(src,result,0);
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwH.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwH.Report();
}
GridCartesian * UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
GridCartesian * FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_d);
GridRedBlackCartesian * FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_d);
std::cout << GridLogMessage<< "* DOUBLE/DOUBLE"<<std::endl;
GparityLatticeFermionD src_d(FGrid_d);
precisionChange(src_d,src);
LatticeGaugeFieldD Umu_d(UGrid_d);
precisionChange(Umu_d,Umu);
GparityLatticeFermionD result_d(FGrid_d);
GparityDomainWallFermionD DwD(Umu_d,*FGrid_d,*FrbGrid_d,*UGrid_d,*UrbGrid_d,mass,M5);
if (1) {
FGrid_d->Barrier();
DwD.ZeroCounters();
DwD.Dhop(src_d,result_d,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwD.Dhop(src_d,result_d,0);
__SSC_STOP;
}
double t1=usecond();
FGrid_d->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwD.Report();
}
Grid_finalize();
}

View File

@ -40,7 +40,7 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -58,7 +58,7 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -93,7 +93,7 @@ int main (int argc, char ** argv)
std::cout << latt_size.back() << "\t\t";
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);

View File

@ -550,6 +550,7 @@ AC_CONFIG_FILES(tests/forces/Makefile)
AC_CONFIG_FILES(tests/hadrons/Makefile)
AC_CONFIG_FILES(tests/hmc/Makefile)
AC_CONFIG_FILES(tests/solver/Makefile)
AC_CONFIG_FILES(tests/lanczos/Makefile)
AC_CONFIG_FILES(tests/smearing/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(tests/testu01/Makefile)

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Algorithms.h
@ -37,6 +37,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/approx/Chebyshev.h>
#include <Grid/algorithms/approx/Remez.h>
#include <Grid/algorithms/approx/MultiShiftFunction.h>
#include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateResidual.h>
@ -44,30 +45,16 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
// Lanczos support
//#include <Grid/algorithms/iterative/MatrixUtils.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h>
// Eigen/lanczos
// EigCg
// MCR
// Pcg
// Multishift CG
// Hdcg
// GCR
// etc..
// integrator/Leapfrog
// integrator/Omelyan
// integrator/ForceGradient
// montecarlo/hmc
// montecarlo/rhmc
// montecarlo/metropolis
// etc...
#endif

View File

@ -103,29 +103,32 @@ namespace Grid {
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid) :
CoarseGrid(_CoarseGrid),
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid)
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
// CheckOrthogonal();
}
void CheckOrthogonal(void){
CoarseVector iProj(CoarseGrid);
CoarseVector eProj(CoarseGrid);
Lattice<CComplex> pokey(CoarseGrid);
for(int i=0;i<nbasis;i++){
blockProject(iProj,subspace[i],subspace);
eProj=zero;
for(int ss=0;ss<CoarseGrid->oSites();ss++){
parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){
eProj._odata[ss](i)=CComplex(1.0);
}
eProj=eProj - iProj;
@ -137,6 +140,7 @@ namespace Grid {
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.checkerboard = subspace[0].checkerboard;
blockPromote(CoarseVec,FineVec,subspace);
}
void CreateSubspaceRandom(GridParallelRNG &RNG){
@ -147,6 +151,7 @@ namespace Grid {
Orthogonalise();
}
/*
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
{
// Run a Lanczos with sloppy convergence
@ -195,7 +200,7 @@ namespace Grid {
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
}
}
*/
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;

View File

@ -230,6 +230,7 @@ namespace Grid {
// Barrel shift and collect global pencil
std::vector<int> lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
PARALLEL_REGION
{
@ -240,7 +241,8 @@ namespace Grid {
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=p*L;
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
}
}
@ -278,7 +280,6 @@ namespace Grid {
flops+= flops_call*NN;
// writing out result
int pc = processor_coor[dim];
PARALLEL_REGION
{
std::vector<int> clbuf(Nd), cgbuf(Nd);

View File

@ -162,15 +162,10 @@ namespace Grid {
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
ComplexD dot;
_Mat.M(in,out);
dot= innerProduct(in,out);
n1=real(dot);
dot = innerProduct(out,out);
n2=real(dot);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
@ -192,10 +187,10 @@ namespace Grid {
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
MpcDagMpc(in,out,n1,n2);
}
void HermOp(const Field &in, Field &out){
virtual void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
@ -212,7 +207,6 @@ namespace Grid {
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
@ -270,7 +264,6 @@ namespace Grid {
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
@ -299,6 +292,45 @@ namespace Grid {
return axpy_norm(out,-1.0,tmp,in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
n2 = Mpc(in,out);
ComplexD dot= innerProduct(in,out);
n1 = real(dot);
}
virtual void HermOp(const Field &in, Field &out){
Mpc(in,out);
}
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
return Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
/////////////////////////////////////////////////////////////
@ -314,6 +346,14 @@ namespace Grid {
virtual void operator() (const Field &in, Field &out) = 0;
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
public:
void operator() (const Field &in, Field &out){
out = in;
};
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
@ -336,6 +376,64 @@ namespace Grid {
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
}

View File

@ -8,6 +8,7 @@
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,41 +34,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////
// Simple general polynomial with user supplied coefficients
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
// std::cout <<"Poly in " <<norm2(in)<<" size "<< Coeffs.size()<<std::endl;
// std::cout <<"Coeffs[0]= "<<Coeffs[0]<< " 0 " <<norm2(out)<<std::endl;
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
// std::cout <<"Coeffs "<<n<<"= "<< Coeffs[n]<< " 0 " <<std::endl;
// std::cout << n<<" " <<norm2(out)<<std::endl;
}
};
};
struct ChebyParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
RealD, alpha,
RealD, beta,
int, Npoly);
};
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations
@ -82,8 +54,10 @@ namespace Grid {
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=(hi-lo)/1000) {
RealD diff = hi-lo;
RealD delta = (hi-lo)*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
@ -99,6 +73,7 @@ namespace Grid {
};
Chebyshev(){};
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
@ -193,6 +168,47 @@ namespace Grid {
return sum;
};
RealD approxD(RealD x)
{
RealD Un;
RealD Unm;
RealD Unp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD U0=1;
RealD U1=2*y;
RealD sum;
sum = Coeffs[1]*U0;
sum+= Coeffs[2]*U1*2.0;
Un =U1;
Unm=U0;
for(int i=2;i<order-1;i++){
Unp=2*y*Un-Unm;
Unm=Un;
Un =Unp;
sum+= Un*Coeffs[i+1]*(i+1.0);
}
return sum/(0.5*(hi-lo));
};
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
RealD x = x0;
RealD eps;
int i;
for (i=0;i<maxiter;i++) {
eps = approx(x) - z;
if (fabs(eps / z) < resid)
return x;
x = x - eps / approxD(x);
}
return std::numeric_limits<double>::quiet_NaN();
}
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {

View File

@ -0,0 +1,152 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/Forecast.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef INCLUDED_FORECAST_H
#define INCLUDED_FORECAST_H
namespace Grid {
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
// used to forecast solutions across poles of the EOFA heatbath.
//
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
template<class Matrix, class Field>
class ChronoForecast : public Forecast<Matrix,Field>
{
public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = zero; return chi; }
else if(degree == 1){ return prev_solns[0]; }
RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
std::vector<Field> MdagMv(degree,phi);
// Array to hold the matrix elements
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
// Solution and source vectors
std::vector<ComplexD> a(degree);
std::vector<ComplexD> b(degree);
// Orthonormalize the vector basis
for(int i=0; i<degree; i++){
v[i] *= 1.0/std::sqrt(norm2(v[i]));
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
}
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}
// Construct the matrix
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = std::conj(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
for(int i=0; i<degree; i++){
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
b[i] = xp;
for(int j=0; j<degree; j++){
xp = G[k][j];
G[k][j] = G[i][j];
G[i][j] = xp;
}
}
// Convert matrix to upper triangular form
for(int j=i+1; j<degree; j++){
xp = G[j][i]/G[i][i];
b[j] -= xp * b[i];
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
}
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = zero;
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
a[i] = (b[i]-a[i])/G[i][i];
chi += a[i]*v[i];
r -= a[i]*MdagMv[i];
}
RealD true_r(0.0);
ComplexD tmp;
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = std::conj(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
RealD error = std::sqrt(norm2(r)/norm2(phi));
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
return chi;
};
};
}
#endif

View File

@ -87,15 +87,22 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
////////////////////////////////////////////////////////////////////////////////////////////////////
sliceInnerProductMatrix(m_rr,R,R,Orthog);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Cholesky from Eigen
// There exists a ldlt that is documented as more stable
////////////////////////////////////////////////////////////////////////////////////////////////////
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// Force manifest hermitian to avoid rounding related
m_rr = 0.5*(m_rr+m_rr.adjoint());
#if 0
std::cout << " Calling Cholesky ldlt on m_rr " << m_rr <<std::endl;
Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();
std::cout << " Called Cholesky ldlt on m_rr " << L_ldlt <<std::endl;
auto D_ldlt = m_rr.ldlt().vectorD();
std::cout << " Called Cholesky ldlt on m_rr " << D_ldlt <<std::endl;
#endif
// std::cout << " Calling Cholesky llt on m_rr " <<std::endl;
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// std::cout << " Called Cholesky llt on m_rr " << L <<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
// Q = R C^{-1}
//
@ -103,7 +110,6 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
//
// NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
////////////////////////////////////////////////////////////////////////////////////////////////////
// FIXME:: make a sliceMulMatrix to avoid zero vector
sliceMulMatrix(Q,Cinv,R,Orthog);
}
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -52,8 +52,8 @@ class ConjugateGradient : public OperatorFunction<Field> {
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
Field &psi) {
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
@ -78,12 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
@ -92,7 +92,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
return;
}
std::cout << GridLogIterative << std::setprecision(4)
std::cout << GridLogIterative << std::setprecision(8)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;

View File

@ -0,0 +1,256 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
namespace Grid {
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer ReliableUpdatesPerformed;
bool DoFinalCleanup; //Final DP cleanup, defaults to true
Integer IterationsToCleanup; //Final DP cleanup step iterations
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback;
RealD fallback_transition_tol;
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
Delta(_delta),
Linop_f(_Linop_f),
Linop_d(_Linop_d),
SinglePrecGrid(_sp_grid),
ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true),
Linop_fallback(NULL)
{};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback;
fallback_transition_tol = _fallback_transition_tol;
}
void operator()(const FieldD &src, FieldD &psi) {
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
FieldD p(src);
FieldD mmp(src);
FieldD r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop_d.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if (cp <= rsq) {
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
return;
}
//Single prec initialization
FieldF r_f(SinglePrecGrid);
r_f.checkerboard = r.checkerboard;
precisionChange(r_f, r);
FieldF psi_f(r_f);
psi_f = zero;
FieldF p_f(r_f);
FieldF mmp_f(r_f);
RealD MaxResidSinceLastRelUp = cp; //initial residual
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k = 0;
int l = 0;
for (k = 1; k <= MaxIterations; k++) {
c = cp;
MatrixTimer.Start();
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
MatrixTimer.Stop();
LinalgTimer.Start();
a = c / d;
b_pred = a * (a * qq - d) / c;
cp = axpy_norm(r_f, -a, mmp_f, r_f);
b = cp / c;
// Fuse these loops ; should be really easy
psi_f = a * p_f + psi_f;
//p_f = p_f * b + r_f;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
if(cp > MaxResidSinceLastRelUp){
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
MaxResidSinceLastRelUp = cp;
}
// Stopping condition
if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution
precisionChange(mmp, psi_f);
psi = psi + mmp;
SolverTimer.Stop();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
if(DoFinalCleanup){
//Do a final CG to cleanup
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
CG.ErrorOnNoConverge = ErrorOnNoConverge;
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
return;
}
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
precisionChange(mmp, psi_f);
psi = psi + mmp;
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
r = src - mmp;
psi_f = zero;
precisionChange(r_f, r);
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
b = cp/c;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
l = l+1;
}
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
Linop_f_use = Linop_fallback;
using_fallback = true;
}
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}
};
};
#endif

View File

@ -7,8 +7,9 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung
Author: Guido Cossu
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -27,125 +28,282 @@ Author: Guido Cossu
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_IRL_H
#define GRID_IRL_H
#ifndef GRID_BIRL_H
#define GRID_BIRL_H
#include <string.h> //memset
//#include <zlib.h>
#include <sys/stat.h>
namespace Grid {
namespace Grid {
enum IRLdiagonalisation {
IRLdiagonaliseWithDSTEGR,
IRLdiagonaliseWithQR,
IRLdiagonaliseWithEigen
};
////////////////////////////////////////////////////////////////////////////////
// Helper class for sorting the evalues AND evectors by Field
// Use pointer swizzle on vectors
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// Move following 100 LOC to lattice/Lattice_basis.h
////////////////////////////////////////////////////////
template<class Field>
class SortEigen {
private:
static bool less_lmd(RealD left,RealD right){
return left > right;
}
static bool less_pair(std::pair<RealD,Field const*>& left,
std::pair<RealD,Field const*>& right){
return left.first > (right.first);
}
public:
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
////////////////////////////////////////////////////////////////////////
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
// : The vector reorder should be done by pointer swizzle somehow
////////////////////////////////////////////////////////////////////////
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
for(int i=0;i<N;++i){
lmd[i]=it->first;
evec[i]=*(it->second);
++it;
template<class Field>
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
parallel_region
{
std::vector < vobj > B(Nm); // Thread private
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis[k]._odata[ss];
}
}
for(int j=j0; j<j1; ++j){
basis[j]._odata[ss] = B[j];
}
}
}
void push(std::vector<RealD>& lmd,int N) {
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
result.checkerboard = basis[0].checkerboard;
parallel_for(int ss=0;ss < grid->oSites();ss++){
vobj B = zero;
for(int k=k0; k<k1; ++k){
B +=Qt(j,k) * basis[k]._odata[ss];
}
result._odata[ss] = B;
}
bool saturated(RealD lmd, RealD thrs) {
return fabs(lmd) > fabs(thrs);
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
};
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = zero;
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template<class Field> class ImplicitlyRestartedLanczosTester
{
public:
virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox);
virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox);
};
enum IRLdiagonalisation {
IRLdiagonaliseWithDSTEGR,
IRLdiagonaliseWithQR,
IRLdiagonaliseWithEigen
};
template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public ImplicitlyRestartedLanczosTester<Field>
{
public:
LinearFunction<Field> &_HermOpTest;
ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOpTest) : _HermOpTest(HermOpTest) { };
int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
{
return TestConvergence(j,resid,B,eval,evalMaxApprox);
}
int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
{
Field v(B);
RealD eval_poly = eval;
// Apply operator
_HermOpTest(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
};
template<class Field>
class ImplicitlyRestartedLanczos {
private:
int MaxIter; // Max iterations
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Nm; // Nm -- total number of vectors
RealD eresid;
private:
const RealD small = 1.0e-8;
int MaxIter;
int MinRestart; // Minimum number of restarts; only check for convergence after
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
int Nm; // Nm -- total number of vectors
IRLdiagonalisation diagonalisation;
////////////////////////////////////
int orth_period;
RealD OrthoTime;
RealD eresid, betastp;
////////////////////////////////
// Embedded objects
////////////////////////////////////
SortEigen<Field> _sort;
LinearOperatorBase<Field> &_Linop;
OperatorFunction<Field> &_poly;
////////////////////////////////
LinearFunction<Field> &_HermOp;
LinearFunction<Field> &_HermOpTest;
ImplicitlyRestartedLanczosTester<Field> &_Tester;
// Default tester provided (we need a ref to something in default case)
ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
/////////////////////////
// Constructor
/////////////////////////
public:
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynomial
int _Nstop, // really sought vecs
int _Nk, // sought vecs
int _Nm, // total vecs
RealD _eresid, // resid in lmd deficit
int _MaxIter, // Max iterations
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
_Linop(Linop), _poly(poly),
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
eresid(_eresid), MaxIter(_MaxIter),
diagonalisation(_diagonalisation)
{ };
//////////////////////////////////////////////////////////////////
// PAB:
//////////////////////////////////////////////////////////////////
// Too many options & knobs. Do we really need orth_period
// What is the theoretical basis & guarantees of betastp ?
// Nstop=Nk viable?
// MinRestart avoidable with new convergence test?
// Could cut to HermOp, HermOpTest, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
// HermOpTest could be eliminated if we dropped the Power method for max eval.
// -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
//////////////////////////////////////////////////////////////////
ImplicitlyRestartedLanczos(LinearFunction<Field> & HermOp,
LinearFunction<Field> & HermOpTest,
ImplicitlyRestartedLanczosTester<Field> & Tester,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOpTest), _HermOp(HermOp), _HermOpTest(HermOpTest), _Tester(Tester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
eresid(_eresid), betastp(_betastp),
MaxIter(_MaxIter) , MinRestart(_MinRestart),
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
ImplicitlyRestartedLanczos(LinearFunction<Field> & HermOp,
LinearFunction<Field> & HermOpTest,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOpTest), _HermOp(HermOp), _HermOpTest(HermOpTest), _Tester(SimpleTester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
eresid(_eresid), betastp(_betastp),
MaxIter(_MaxIter) , MinRestart(_MinRestart),
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
////////////////////////////////
// Helpers
////////////////////////////////
static RealD normalise(Field& v)
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
{
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
for(int j=0; j<k; ++j){
ip = innerProduct(evec[j],w);
w = w - ip * evec[j];
}
OrthoTime-=usecond()/1e6;
basisOrthogonalize(evec,w,k);
normalise(w);
OrthoTime+=usecond()/1e6;
}
/* Rudy Arthur's thesis pp.137
@ -165,184 +323,234 @@ repeat
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=true)
{
GridBase *grid = src._grid;
assert(grid == evec[0]._grid);
GridBase *grid = evec[0]._grid;
assert(grid == src._grid);
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
}
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
assert(Nm <= evec.size() && Nm <= eval.size());
assert(Nm == evec.size() && Nm == eval.size());
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
{
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_IRL_MEVAPP_ = 50;
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
_HermOpTest(src_n,tmp);
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
src_n = tmp;
}
}
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);
std::vector<RealD> eval2(Nm);
std::vector<RealD> eval2_copy(Nm);
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
std::vector<int> Iconv(Nm);
std::vector<Field> B(Nm,grid); // waste of space replicating
Field f(grid);
Field v(grid);
int k1 = 1;
int k2 = Nk;
Nconv = 0;
RealD beta_k;
Nconv = 0;
// Set initial vector
evec[0] = src;
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
normalise(evec[0]);
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
// Initial Nk steps
OrthoTime=0.;
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
//////////////////////////////////
// Restarting loop begins
//////////////////////////////////
int iter;
for(iter = 0; iter<MaxIter; ++iter){
OrthoTime=0.;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
f *= lme[Nm-1];
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
//////////////////////////////////
// getting eigenvalues
//////////////////////////////////
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k+k1-1];
lme2[k] = lme[k+k1-1];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
//////////////////////////////////
// sorting
_sort.push(eval2,Nm);
//////////////////////////////////
eval2_copy = eval2;
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
const int chunk=8;
for(int io=0; io<k2;io+=chunk){
std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
for(int ii=0;ii<chunk;ii++){
if ( (io+ii)<k2 )
std::cout<< " "<< std::setw(12)<< eval2[io+ii];
}
std::cout << std::endl;
}
//////////////////////////////////
// Implicitly shifted QR transformations
//////////////////////////////////
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
for(int ip=k2; ip<Nm; ++ip){
// Eigen replacement for qr_decomp ???
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
}
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
for(int j=k1-1; j<k2+1; ++j){
for(int k=0; k<Nm; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += Qt(j,k) * evec[k];
}
}
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
////////////////////////////////////////////////////
// Compressed vector f and beta(k2)
////////////////////////////////////////////////////
f *= Qt(k2-1,Nm-1);
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = sqrt(beta_k);
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[k2] = betar * f;
lme[k2-1] = beta_k;
////////////////////////////////////////////////////
// Convergence test
////////////////////////////////////////////////////
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k];
lme2[k] = lme[k];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
for(int k = 0; k<Nk; ++k) B[k]=0.0;
for(int j = 0; j<Nk; ++j){
for(int k = 0; k<Nk; ++k){
B[j].checkerboard = evec[k].checkerboard;
B[j] += Qt(j,k) * evec[k];
}
}
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
Nconv = 0;
for(int i=0; i<Nk; ++i){
_Linop.HermOp(B[i],v);
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
RealD vden = norm2(B[i]);
eval2[i] = vnum/vden;
v -= eval2[i]*B[i];
RealD vv = norm2(v);
std::cout.precision(13);
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
if((vv<eresid*eresid) && (i == Nconv) ){
Iconv[Nconv] = i;
++Nconv;
}
} // i-loop end
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
if (iter >= MinRestart) {
if( Nconv>=Nstop ){
goto converged;
}
} // end of iter loop
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
Field B(grid); B.checkerboard = evec[0].checkerboard;
// power of two search pattern; not every evalue in eval2 is assessed.
for(int jj = 1; jj<=Nstop; jj*=2){
int j = Nstop-jj;
RealD e = eval2_copy[j]; // Discard the evalue
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
if( _Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
if ( j > Nconv ) {
Nconv=j+1;
jj=Nstop; // Terminate the scan
}
}
}
// Do evec[0] for good measure
{
int j=0;
RealD e = eval2_copy[0];
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox);
}
// test if we converged, if so, terminate
std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
// if( Nconv>=Nstop || beta_k < betastp){
if( Nconv>=Nstop){
goto converged;
}
} else {
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
} // end of iter loop
}
std::cout<<GridLogError<<"\n NOT converged.\n";
abort();
converged:
// Sorting
eval.resize(Nconv);
evec.resize(Nconv,grid);
for(int i=0; i<Nconv; ++i){
eval[i] = eval2[Iconv[i]];
evec[i] = B[Iconv[i]];
{
Field B(grid); B.checkerboard = evec[0].checkerboard;
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
Nconv=0;
//////////////////////////////////////////////////////////////////////
// Full final convergence test; unconditionally applied
//////////////////////////////////////////////////////////////////////
for(int j = 0; j<=Nk; j++){
B=evec[j];
if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
Nconv++;
}
}
if ( Nconv < Nstop )
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
eval=eval2;
basisSortInPlace(evec,eval,reverse);
}
_sort.push(eval,evec,Nconv);
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
}
private:
private:
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
@ -360,28 +568,38 @@ private:
{
const RealD tiny = 1.0e-20;
assert( k< Nm );
_poly(_Linop,evec[k],w); // 3. wk:=Avkβkv_{k1}
GridStopWatch gsw_op,gsw_o;
Field& evec_k = evec[k];
_HermOp(evec_k,w); std::cout<<GridLogIRL << "Poly(HermOp)" <<std::endl;
if(k>0) w -= lme[k-1] * evec[k-1];
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
RealD alph = real(zalph);
w = w - alph * evec[k];// 5. wk:=wkαkvk
w = w - alph * evec_k;// 5. wk:=wkαkvk
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
lmd[k] = alph;
lme[k] = beta;
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
if ( k < Nm-1) evec[k+1] = w;
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
if (k>0 && k % orth_period == 0) {
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt, // Nm x Nm
@ -404,11 +622,11 @@ private:
}
}
}
///////////////////////////////////////////////////////////////////////////
// File could end here if settle on Eigen ???
///////////////////////////////////////////////////////////////////////////
void qr_decomp(std::vector<RealD>& lmd, // Nm
///////////////////////////////////////////////////////////////////////////
// File could end here if settle on Eigen ??? !!!
///////////////////////////////////////////////////////////////////////////
void QR_decomp(std::vector<RealD>& lmd, // Nm
std::vector<RealD>& lme, // Nm
int Nk, int Nm, // Nk, Nm
Eigen::MatrixXd& Qt, // Nm x Nm matrix
@ -575,51 +793,50 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
#endif
}
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
int Niter = 100*Nm;
int kmin = 1;
int kmax = Nk;
// (this should be more sophisticated)
for(int iter=0; iter<Niter; ++iter){
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
// transformation
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
if(fabs(lme[j-1])+dds > dds){
kmax = j+1;
goto continued;
}
}
Niter = iter;
return;
continued:
for(int j=0; j<kmax-1; ++j){
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
if(fabs(lme[j])+dds > dds){
kmin = j+1;
break;
}
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
int QRiter = 100*Nm;
int kmin = 1;
int kmax = Nk;
// (this should be more sophisticated)
for(int iter=0; iter<QRiter; ++iter){
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
// transformation
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
if(fabs(lme[j-1])+dds > dds){
kmax = j+1;
goto continued;
}
}
QRiter = iter;
return;
continued:
for(int j=0; j<kmax-1; ++j){
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
if(fabs(lme[j])+dds > dds){
kmin = j+1;
break;
}
}
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
abort();
}
};
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
abort();
}
};
}
#endif

View File

@ -0,0 +1,352 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
Copyright (C) 2015
Author: Christoph Lehner <clehner@bnl.gov>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LOCAL_COHERENCE_IRL_H
#define GRID_LOCAL_COHERENCE_IRL_H
namespace Grid {
struct LanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
ChebyParams, Cheby,/*Chebyshev*/
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
int, Nk, /*Vecs in Lanczos seek converge*/
int, Nm, /*Total vecs in Lanczos include restart*/
RealD, resid, /*residual*/
int, MaxIt,
RealD, betastp, /* ? */
int, MinRes); // Must restart
};
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
bool, doFine,
bool, doFineRead,
bool, doCoarse,
bool, doCoarseRead,
LanczosParams, FineParams,
LanczosParams, CoarseParams,
ChebyParams, Smoother,
RealD , coarse_relax_tol,
std::vector<int>, blockSize,
std::string, config,
std::vector < std::complex<double> >, omega,
RealD, mass,
RealD, M5);
};
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearOperatorBase<FineField> &_Linop;
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
ProjectedHermOp(LinearOperatorBase<FineField>& linop, Aggregation<Fobj,CComplex,nbasis> &aggregate) :
_Linop(linop),
_Aggregate(aggregate) { };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = _Aggregate.FineGrid;
FineField fin(FineGrid);
FineField fout(FineGrid);
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
OperatorFunction<FineField> & _poly;
LinearOperatorBase<FineField> &_Linop;
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,LinearOperatorBase<FineField>& linop,
Aggregation<Fobj,CComplex,nbasis> &aggregate) :
_poly(poly),
_Linop(linop),
_Aggregate(aggregate) { };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = _Aggregate.FineGrid;
FineField fin(FineGrid) ;fin.checkerboard =_Aggregate.checkerboard;
FineField fout(FineGrid);fout.checkerboard =_Aggregate.checkerboard;
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearFunction<CoarseField> & _Poly;
OperatorFunction<FineField> & _smoother;
LinearOperatorBase<FineField> &_Linop;
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
RealD _coarse_relax_tol;
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
OperatorFunction<FineField> &smoother,
LinearOperatorBase<FineField> &Linop,
Aggregation<Fobj,CComplex,nbasis> &Aggregate,
RealD coarse_relax_tol=5.0e3)
: _smoother(smoother), _Linop(Linop),_Aggregate(Aggregate), _Poly(Poly), _coarse_relax_tol(coarse_relax_tol) { };
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
RealD eval_poly = eval;
// Apply operator
_Poly(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
GridBase *FineGrid = _Aggregate.FineGrid;
int checkerboard = _Aggregate.checkerboard;
FineField fB(FineGrid);fB.checkerboard =checkerboard;
FineField fv(FineGrid);fv.checkerboard =checkerboard;
_Aggregate.PromoteFromSubspace(B,fv);
_smoother(_Linop,fv,fB);
RealD eval_poly = eval;
_Linop.HermOp(fB,fv);
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
RealD vden = norm2(fB);
RealD vv0 = norm2(fv);
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
};
////////////////////////////////////////////
// Make serializable Lanczos params
////////////////////////////////////////////
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczos
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
protected:
GridBase *_CoarseGrid;
GridBase *_FineGrid;
int _checkerboard;
LinearOperatorBase<FineField> & _FineOp;
// FIXME replace Aggregation with vector of fine; the code reuse is too small for
// the hassle and complexity of cross coupling.
Aggregation<Fobj,CComplex,nbasis> _Aggregate;
std::vector<RealD> evals_fine;
std::vector<RealD> evals_coarse;
std::vector<CoarseField> evec_coarse;
public:
LocalCoherenceLanczos(GridBase *FineGrid,
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_Aggregate(CoarseGrid,FineGrid,checkerboard),
_FineOp(FineOp),
_checkerboard(checkerboard)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
void Orthogonalise(void ) { _Aggregate.Orthogonalise(); }
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = ::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void fakeFine(void)
{
int Nk = nbasis;
_Aggregate.subspace.resize(Nk,_FineGrid);
_Aggregate.subspace[0]=1.0;
_Aggregate.subspace[0].checkerboard=_checkerboard;
normalise(_Aggregate.subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
_Aggregate.subspace[k].checkerboard=_checkerboard;
Op(_Aggregate.subspace[k-1],_Aggregate.subspace[k]);
normalise(_Aggregate.subspace[k]);
}
}
void testFine(RealD resid)
{
assert(evals_fine.size() == nbasis);
assert(_Aggregate.subspace.size() == nbasis);
PlainHermOp<FineField> Op(_FineOp);
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
for(int k=0;k<nbasis;k++){
assert(SimpleTester.ReconstructEval(k,resid,_Aggregate.subspace[k],evals_fine[k],1.0)==1);
}
}
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
assert(_Aggregate.subspace.size() == nbasis);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,_Aggregate);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
for(int k=0;k<evec_coarse.size();k++){
if ( k < nbasis ) {
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
} else {
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
}
}
}
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
assert(nbasis<=Nm);
Chebyshev<FineField> Cheby(cheby_parms);
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
PlainHermOp<FineField> Op(_FineOp);
evals_fine.resize(Nm);
_Aggregate.subspace.resize(Nm,_FineGrid);
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
int Nconv;
IRL.calc(evals_fine,_Aggregate.subspace,src,Nconv,false);
// Shrink down to number saved
assert(Nstop>=nbasis);
assert(Nconv>=nbasis);
evals_fine.resize(nbasis);
_Aggregate.subspace.resize(nbasis,_FineGrid);
}
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,_Aggregate);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,_Aggregate);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
assert(Nconv>=Nstop);
evals_coarse.resize(Nstop);
evec_coarse.resize (Nstop,_CoarseGrid);
for (int i=0;i<Nstop;i++){
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
};
}
#endif

View File

@ -53,16 +53,119 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* M psi = eta
***********************
*Odd
* i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
* i) D_oo psi_o = L^{-1} eta_o
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
*
* Wilson:
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
* Stag:
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
*
* L^-1 eta_o= (1 0 ) (e
* (-MoeMee^{-1} 1 )
*
*Even
* ii) Mee psi_e + Meo psi_o = src_e
*
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
*
*
* TODO: Other options:
*
* a) change checkerboards for Schur e<->o
*
* Left precon by Moo^-1
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
*
* Right precon by Moo^-1
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
* psi_o = M_oo^-1 phi_o
* TODO: Deflation
*/
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackStaggeredSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
src_o = tmp; assert(src_o.checkerboard ==Odd);
// _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
@ -76,12 +179,10 @@ namespace Grid {
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
};
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=cb;
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
@ -141,5 +242,166 @@ namespace Grid {
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoMixed {
private:
LinearFunction<Field> & _HermitianRBSolver;
int CBfactorise;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
_HermitianRBSolver(src_o,tmp); assert(tmp.checkerboard==Odd);
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
}
};
}
#endif

View File

@ -1,7 +1,5 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
namespace Grid {
@ -63,4 +61,37 @@ void *PointerCache::Lookup(size_t bytes) {
return NULL;
}
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
}

View File

@ -64,6 +64,8 @@ namespace Grid {
};
void check_huge_pages(void *Buf,uint64_t BYTES);
////////////////////////////////////////////////////////////////////
// A lattice of something, but assume the something is SIMDized.
////////////////////////////////////////////////////////////////////

View File

@ -44,11 +44,20 @@ namespace Grid{
class GridBase : public CartesianCommunicator , public GridThread {
public:
int dummy;
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
GridBase(const std::vector<int> & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {};
GridBase(const std::vector<int> & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {};
virtual ~GridBase() = default;
// Physics Grid information.
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
@ -210,9 +219,6 @@ public:
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
gidx=0;
int mult=1;

View File

@ -38,7 +38,7 @@ namespace Grid{
class GridCartesian: public GridBase {
public:
int dummy;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
@ -61,9 +61,38 @@ public:
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
Init(dimensions,simd_layout,processor_grid);
}
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
Init(dimensions,simd_layout,processor_grid);
}
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid);
}
virtual ~GridCartesian() = default;
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid)
{
///////////////////////
// Grid information

View File

@ -112,24 +112,59 @@ public:
}
};
GridRedBlackCartesian(const GridBase *base) : GridRedBlackCartesian(base->_fdimensions,base->_simd_layout,base->_processors) {};
////////////////////////////////////////////////////////////
// Create Redblack from original grid; require full grid pointer ?
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
{
int dims = base->_ndimension;
std::vector<int> checker_dim_mask(dims,1);
int checker_dim = 0;
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
};
GridRedBlackCartesian(const std::vector<int> &dimensions,
////////////////////////////////////////////////////////////
// Create redblack from original grid, with non-trivial checker dim mask
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &checker_dim_mask,
int checker_dim
) : GridBase(base->_processors,*base)
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
virtual ~GridRedBlackCartesian() = default;
#if 0
////////////////////////////////////////////////////////////
// Create redblack grid ;; deprecate these. Should not
// need direct creation of redblack without a full grid to base on
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim
) : GridBase(processor_grid)
) : GridBase(processor_grid,*base)
{
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
GridRedBlackCartesian(const std::vector<int> &dimensions,
////////////////////////////////////////////////////////////
// Create redblack grid
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
const std::vector<int> &processor_grid) : GridBase(processor_grid,*base)
{
std::vector<int> checker_dim_mask(dimensions.size(),1);
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,0);
int checker_dim = 0;
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
#endif
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
@ -172,6 +207,7 @@ public:
{
assert((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
_gsites /= 2;
}
_ldimensions[d] = _gdimensions[d] / _processors[d];
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);

View File

@ -67,7 +67,7 @@ void CartesianCommunicator::ShmBufferFreeAll(void) {
/////////////////////////////////
// Grid information queries
/////////////////////////////////
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
int CartesianCommunicator::BossRank(void) { return 0; };
int CartesianCommunicator::ThisRank(void) { return _processor; };
@ -96,6 +96,138 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
GlobalSumVector((double *)c,2*N);
}
#if defined( GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT) || defined (GRID_COMMS_MPI3)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size();
assert(_ndimension = parent._ndimension);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
int childsize=1;
for(int d=0;d<processors.size();d++) {
childsize *= processors[d];
}
int Nchild = Nparent/childsize;
assert (childsize * Nchild == Nparent);
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
std::vector<int> scoor(_ndimension); // coor of split within parent
std::vector<int> ssize(_ndimension); // coor of split within parent
for(int d=0;d<_ndimension;d++){
ccoor[d] = parent._processor_coor[d] % processors[d];
scoor[d] = parent._processor_coor[d] / processors[d];
ssize[d] = parent._processors[d] / processors[d];
}
int crank; // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
// Mpi uses the reverse Lexico convention to us
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors);
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize);
MPI_Comm comm_split;
if ( Nchild > 1 ) {
/*
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << parent._processor_coor[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << ccoor[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" new coor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << parent._processor_coor[d] << " ";
std::cout<<std::endl;
*/
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
assert(ierr==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Declare victory
//////////////////////////////////////////////////////////////////////////////////////////////////////
/*
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
*/
} else {
comm_split=parent.communicator;
srank = 0;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Set up from the new split communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
InitFromMPICommunicator(processors,comm_split);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Take an MPI_Comm and self assemble
//////////////////////////////////////////////////////////////////////////////////////////////////////
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
{
_ndimension = processors.size();
_processor_coor.resize(_ndimension);
/////////////////////////////////
// Count the requested nodes
/////////////////////////////////
_Nprocessors=1;
_processors = processors;
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
std::vector<int> periodic(_ndimension,1);
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
if ( communicator_base != communicator_world ) {
std::cout << "Cartesian communicator created with a non-world communicator"<<std::endl;
std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
for(int d=0;d<_processors.size();d++){
std::cout << _processor_coor[d]<<" ";
}
std::cout << std::endl;
}
int Size;
MPI_Comm_size(communicator,&Size);
#ifdef GRID_COMMS_MPIT
communicator_halo.resize (2*_ndimension);
for(int i=0;i<_ndimension*2;i++){
MPI_Comm_dup(communicator,&communicator_halo[i]);
}
#endif
assert(Size==_Nprocessors);
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
InitFromMPICommunicator(processors,communicator_world);
}
#endif
#if !defined( GRID_COMMS_MPI3)
int CartesianCommunicator::NodeCount(void) { return ProcessorCount();};
@ -147,8 +279,13 @@ void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
}
void CartesianCommunicator::ShmInitGeneric(void){
#if 1
int mmap_flag = MAP_SHARED | MAP_ANONYMOUS;
int mmap_flag =0;
#ifdef MAP_ANONYMOUS
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
#endif
#ifdef MAP_ANON
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
#endif
#ifdef MAP_HUGETLB
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
#endif

View File

@ -83,6 +83,7 @@ class CartesianCommunicator {
std::vector<MPI_Comm> communicator_halo;
typedef MPI_Request CommsRequest_t;
#else
typedef int CommsRequest_t;
#endif
@ -147,11 +148,24 @@ class CartesianCommunicator {
// Must call in Grid startup
////////////////////////////////////////////////
static void Init(int *argc, char ***argv);
////////////////////////////////////////////////
// Constructor of any given grid
// Constructors to sub-divide a parent communicator
// and default to comm world
////////////////////////////////////////////////
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank);
CartesianCommunicator(const std::vector<int> &pdimensions_in);
virtual ~CartesianCommunicator();
private:
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT)
////////////////////////////////////////////////
// Private initialise from an MPI communicator
// Can use after an MPI_Comm_split, but hidden from user so private
////////////////////////////////////////////////
void InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base);
#endif
public:
////////////////////////////////////////////////////////////////////////////////////////
// Wraps MPI_Cart routines, or implements equivalent on other impls
@ -249,6 +263,27 @@ class CartesianCommunicator {
// Broadcast a buffer and composite larger
////////////////////////////////////////////////////////////
void Broadcast(int root,void* data, int bytes);
////////////////////////////////////////////////////////////
// All2All down one dimension
////////////////////////////////////////////////////////////
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
assert(dim>=0);
assert(dim<_ndimension);
int numnode = _processors[dim];
// std::cerr << " AllToAll in.size() "<<in.size()<<std::endl;
// std::cerr << " AllToAll out.size() "<<out.size()<<std::endl;
assert(in.size()==out.size());
uint64_t bytes=sizeof(T);
uint64_t words=in.size()/numnode;
assert(numnode * words == in.size());
assert(words < (1ULL<<32));
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
}
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
void AllToAll(void *in,void *out,uint64_t words ,uint64_t bytes);
template<class obj> void Broadcast(int root,obj &data)
{

View File

@ -53,28 +53,14 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
CartesianCommunicator::~CartesianCommunicator()
{
_ndimension = processors.size();
std::vector<int> periodic(_ndimension,1);
_Nprocessors=1;
_processors = processors;
_processor_coor.resize(_ndimension);
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
int Size;
MPI_Comm_size(communicator,&Size);
assert(Size==_Nprocessors);
int MPI_is_finalised;
MPI_Finalized(&MPI_is_finalised);
if (communicator && MPI_is_finalised)
MPI_Comm_free(&communicator);
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
@ -210,6 +196,36 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
root,
communicator);
assert(ierr==0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
std::vector<int> row(_ndimension,1);
assert(dim>=0 && dim<_ndimension);
// Split the communicator
row[dim] = _processors[dim];
int me;
CartesianCommunicator Comm(row,*this,me);
Comm.AllToAll(in,out,words,bytes);
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
// MPI is a pain and uses "int" arguments
// 64*64*64*128*16 == 500Million elements of data.
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
// (Turns up on 32^3 x 64 Gparity too)
MPI_Datatype object;
int iwords;
int ibytes;
iwords = words;
ibytes = bytes;
assert(words == iwords); // safe to cast to int ?
assert(bytes == ibytes); // safe to cast to int ?
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
MPI_Type_commit(&object);
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
MPI_Type_free(&object);
}
///////////////////////////////////////////////////////
// Should only be used prior to Grid Init finished.
@ -230,5 +246,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
assert(ierr==0);
}
}

View File

@ -450,6 +450,15 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &c
assert(lr!=-1);
Lexicographic::CoorFromIndex(coor,lr,_processors);
}
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
: CartesianCommunicator(processors)
{
std::cout << "Attempts to split MPI3 communicators will fail until implemented" <<std::endl;
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
int ierr;
@ -703,7 +712,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int from,
int bytes,int dir)
{
assert(dir < communicator_halo.size());
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
@ -723,14 +733,14 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
gfrom = MPI_UNDEFINED;
#endif
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[dir],&rrq);
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[dir],&xrq);
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;

View File

@ -53,33 +53,13 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
CartesianCommunicator::~CartesianCommunicator()
{
_ndimension = processors.size();
std::vector<int> periodic(_ndimension,1);
_Nprocessors=1;
_processors = processors;
_processor_coor.resize(_ndimension);
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
communicator_halo.resize (2*_ndimension);
for(int i=0;i<_ndimension*2;i++){
MPI_Comm_dup(communicator,&communicator_halo[i]);
}
int Size;
MPI_Comm_size(communicator,&Size);
assert(Size==_Nprocessors);
if (communicator && !MPI::Is_finalized())
MPI_Comm_free(&communicator);
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
@ -244,13 +224,14 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
{
int myrank = _processor;
int ierr;
assert(dir < communicator_halo.size());
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
// Give the CPU to MPI immediately; can use threads to overlap optionally
MPI_Request req[2];
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[commdir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[commdir],&req[0]);
list.push_back(req[0]);
list.push_back(req[1]);
@ -269,13 +250,14 @@ double CartesianCommunicator::StencilSendToRecvFrom(void *xmit,
{
int myrank = _processor;
int ierr;
assert(dir < communicator_halo.size());
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo.size()<< <std::endl;
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
// Give the CPU to MPI immediately; can use threads to overlap optionally
MPI_Request req[2];
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[commdir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[commdir],&req[0]);
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
return 2.0*bytes;
}

View File

@ -38,6 +38,9 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors) { srank=0;}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_processors = processors;
@ -53,6 +56,8 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
}
}
CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}
@ -95,6 +100,14 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
}
int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){}

View File

@ -75,6 +75,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
: CartesianCommunicator(processors)
{
std::cout << "Attempts to split SHMEM communicators will fail " <<std::endl;
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();

File diff suppressed because it is too large Load Diff

View File

@ -544,7 +544,6 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
// vector_typeD rtmp = TensorRemove(tmp);
auto rtmp = TensorRemove(tmp);
mat_thread(i,j) += Reduce(rtmp);
}}

View File

@ -109,8 +109,8 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
coarseData=zero;
// Loop with a cache friendly loop ordering
for(int sf=0;sf<fine->oSites();sf++){
// Loop over coars parallel, and then loop over fine associated with coarse.
parallel_for(int sf=0;sf<fine->oSites();sf++){
int sc;
std::vector<int> coor_c(_ndimension);
@ -119,8 +119,9 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
PARALLEL_CRITICAL
for(int i=0;i<nbasis;i++) {
coarseData._odata[sc](i)=coarseData._odata[sc](i)
+ innerProduct(Basis[i]._odata[sf],fineData._odata[sf]);
@ -139,6 +140,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
GridBase * coarse= coarseA._grid;
fineZ.checkerboard=fineX.checkerboard;
assert(fineX.checkerboard==fineY.checkerboard);
subdivides(coarse,fine); // require they map
conformable(fineX,fineY);
conformable(fineX,fineZ);
@ -180,9 +182,10 @@ template<class vobj,class CComplex>
GridBase *coarse(CoarseInner._grid);
GridBase *fine (fineX._grid);
Lattice<dotp> fine_inner(fine);
Lattice<dotp> fine_inner(fine); fine_inner.checkerboard = fineX.checkerboard;
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
parallel_for(int ss=0;ss<coarse->oSites();ss++){
@ -193,7 +196,7 @@ template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
GridBase *coarse = ip._grid;
Lattice<vobj> zz(fineX._grid); zz=zero;
Lattice<vobj> zz(fineX._grid); zz=zero; zz.checkerboard=fineX.checkerboard;
blockInnerProduct(ip,fineX,fineX);
ip = pow(ip,-0.5);
blockZAXPY(fineX,ip,fineX,zz);
@ -216,19 +219,25 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
coarseData=zero;
for(int sf=0;sf<fine->oSites();sf++){
parallel_region {
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
PARALLEL_CRITICAL
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
}
}
return;
}
@ -238,7 +247,7 @@ inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vob
{
GridBase * fine = unpicked._grid;
Lattice<vobj> zz(fine);
Lattice<vobj> zz(fine); zz.checkerboard = unpicked.checkerboard;
Lattice<iScalar<vInteger> > fcoor(fine);
zz = zero;
@ -303,20 +312,21 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
}
// Loop with a cache friendly loop ordering
for(int sf=0;sf<fine->oSites();sf++){
parallel_region {
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
}
}
}
return;
@ -684,6 +694,315 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
merge(out._odata[out_oidx], ptrs, 0);
}
}
////////////////////////////////////////////////////////////////////////////////
// Communicate between grids
////////////////////////////////////////////////////////////////////////////////
//
// All to all plan
//
// Subvolume on fine grid is v. Vectors a,b,c,d
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// SIMPLEST CASE:
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Mesh of nodes (2) ; subdivide to 1 subdivisions
//
// Lex ord:
// N0 va0 vb0 N1 va1 vb1
//
// For each dimension do an all to all
//
// full AllToAll(0)
// N0 va0 va1 N1 vb0 vb1
//
// REARRANGE
// N0 va01 N1 vb01
//
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
// NB: Easiest to programme if keep in lex order.
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// SIMPLE CASE:
///////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
//
// Lex ord:
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
//
// Ratio = full[dim] / split[dim]
//
// For each dimension do an all to all; get Nvec -> Nvec / ratio
// Ldim -> Ldim * ratio
// LocalVol -> LocalVol * ratio
// full AllToAll(0)
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
//
// REARRANGE
// N0 va01 vb01 N1 vc01 vd01
// N2 va23 vb23 N3 vc23 vd23
//
// full AllToAll(1) // Not what is wanted. FIXME
// N0 va01 va23 N1 vc01 vc23
// N2 vb01 vb23 N3 vd01 vd23
//
// REARRANGE
// N0 va0123 N1 vc0123
// N2 vb0123 N3 vd0123
//
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
// NB: Easiest to programme if keep in lex order.
//
/////////////////////////////////////////////////////////
template<class Vobj>
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
typedef typename Vobj::scalar_object Sobj;
int full_vecs = full.size();
assert(full_vecs>=1);
GridBase * full_grid = full[0]._grid;
GridBase *split_grid = split._grid;
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
int split_nproc =split_grid->_Nprocessors;
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].checkerboard;
split.checkerboard = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].checkerboard == cb);
for(int d=0;d<ndim;d++){
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
std::vector<int> ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
uint64_t lsites = full_grid->lSites();
uint64_t sz = lsites * nvector;
std::vector<Sobj> tmpdata(sz);
std::vector<Sobj> alldata(sz);
std::vector<Sobj> scalardata(lsites);
for(int v=0;v<nvector;v++){
unvectorizeToLexOrdArray(scalardata,full[v]);
parallel_for(int site=0;site<lsites;site++){
alldata[v*lsites+site] = scalardata[site];
}
}
int nvec = nvector; // Counts down to 1 as we collapse dims
std::vector<int> ldims = full_grid->_ldimensions;
std::vector<int> lcoor(ndim);
for(int d=ndim-1;d>=0;d--){
if ( ratio[d] != 1 ) {
full_grid ->AllToAll(d,alldata,tmpdata);
// std::cout << GridLogMessage << "Grid_split: dim " <<d<<" ratio "<<ratio[d]<<" nvec "<<nvec<<" procs "<<split_grid->_processors[d]<<std::endl;
// for(int v=0;v<nvec;v++){
// std::cout << "Grid_split: alldata["<<v<<"] " << alldata[v] <<std::endl;
// std::cout << "Grid_split: tmpdata["<<v<<"] " << tmpdata[v] <<std::endl;
// }
//////////////////////////////////////////
//Local volume for this dimension is expanded by ratio of processor extents
// Number of vectors is decreased by same factor
// Rearrange to lexico for bigger volume
//////////////////////////////////////////
nvec /= ratio[d];
auto rdims = ldims; rdims[d] *= ratio[d];
auto rsites= lsites*ratio[d];
for(int v=0;v<nvec;v++){
// For loop over each site within old subvol
for(int lsite=0;lsite<lsites;lsite++){
Lexicographic::CoorFromIndex(lcoor, lsite, ldims);
for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
auto rcoor = lcoor; rcoor[d] += r*ldims[d];
int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);
rsite += v * rsites;
int rmul=nvec*lsites;
int vmul= lsites;
alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
// if ( lsite==0 ) {
// std::cout << "Grid_split: grow alldata["<<rsite<<"] " << alldata[rsite] << " <- tmpdata["<< lsite+r*rmul+v*vmul<<"] "<<tmpdata[lsite+r*rmul+v*vmul] <<std::endl;
// }
}
}
}
ldims[d]*= ratio[d];
lsites *= ratio[d];
if ( split_grid->_processors[d] > 1 ) {
tmpdata = alldata;
split_grid->AllToAll(d,tmpdata,alldata);
}
}
}
vectorizeFromLexOrdArray(alldata,split);
}
template<class Vobj>
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
{
int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
for(int n=0;n<nvector;n++){
full_v[n] = full;
}
Grid_split(full_v,split);
}
template<class Vobj>
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
typedef typename Vobj::scalar_object Sobj;
int full_vecs = full.size();
assert(full_vecs>=1);
GridBase * full_grid = full[0]._grid;
GridBase *split_grid = split._grid;
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
int split_nproc =split_grid->_Nprocessors;
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].checkerboard;
split.checkerboard = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].checkerboard == cb);
for(int d=0;d<ndim;d++){
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
std::vector<int> ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
uint64_t lsites = full_grid->lSites();
uint64_t sz = lsites * nvector;
std::vector<Sobj> tmpdata(sz);
std::vector<Sobj> alldata(sz);
std::vector<Sobj> scalardata(lsites);
unvectorizeToLexOrdArray(alldata,split);
/////////////////////////////////////////////////////////////////
// Start from split grid and work towards full grid
/////////////////////////////////////////////////////////////////
std::vector<int> lcoor(ndim);
std::vector<int> rcoor(ndim);
int nvec = 1;
lsites = split_grid->lSites();
std::vector<int> ldims = split_grid->_ldimensions;
// for(int d=ndim-1;d>=0;d--){
for(int d=0;d<ndim;d++){
if ( ratio[d] != 1 ) {
if ( split_grid->_processors[d] > 1 ) {
tmpdata = alldata;
split_grid->AllToAll(d,tmpdata,alldata);
}
//////////////////////////////////////////
//Local volume for this dimension is expanded by ratio of processor extents
// Number of vectors is decreased by same factor
// Rearrange to lexico for bigger volume
//////////////////////////////////////////
auto rsites= lsites/ratio[d];
auto rdims = ldims; rdims[d]/=ratio[d];
for(int v=0;v<nvec;v++){
// rsite, rcoor --> smaller local volume
// lsite, lcoor --> bigger original (single node?) volume
// For loop over each site within smaller subvol
for(int rsite=0;rsite<rsites;rsite++){
Lexicographic::CoorFromIndex(rcoor, rsite, rdims);
int lsite;
for(int r=0;r<ratio[d];r++){
lcoor = rcoor; lcoor[d] += r*rdims[d];
Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
int rmul=nvec*rsites;
int vmul= rsites;
tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
}
}
}
nvec *= ratio[d];
ldims[d]=rdims[d];
lsites =rsites;
full_grid ->AllToAll(d,tmpdata,alldata);
}
}
lsites = full_grid->lSites();
for(int v=0;v<nvector;v++){
assert(v<full.size());
parallel_for(int site=0;site<lsites;site++){
scalardata[site] = alldata[v*lsites+site];
}
vectorizeFromLexOrdArray(scalardata,full[v]);
}
}
}
#endif

View File

@ -50,7 +50,7 @@ namespace Grid {
return (status==0) ? res.get() : name ;
}
GridStopWatch Logger::StopWatch;
GridStopWatch Logger::GlobalStopWatch;
int Logger::timestamp;
std::ostream Logger::devnull(0);
@ -59,13 +59,15 @@ void GridLogTimestamp(int on){
}
Colours GridLogColours(0);
GridLogger GridLogError(1, "Error", GridLogColours, "RED");
GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL");
GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
GridLogger GridLogDebug(1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogIterative(1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator(1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(0);

View File

@ -85,12 +85,15 @@ class Logger {
protected:
Colours &Painter;
int active;
int timing_mode;
static int timestamp;
std::string name, topName;
std::string COLOUR;
public:
static GridStopWatch StopWatch;
static GridStopWatch GlobalStopWatch;
GridStopWatch LocalStopWatch;
GridStopWatch *StopWatch;
static std::ostream devnull;
std::string background() {return Painter.colour["NORMAL"];}
@ -101,22 +104,38 @@ public:
name(nm),
topName(topNm),
Painter(col_class),
COLOUR(col) {} ;
timing_mode(0),
COLOUR(col)
{
StopWatch = & GlobalStopWatch;
};
void Active(int on) {active = on;};
int isActive(void) {return active;};
static void Timestamp(int on) {timestamp = on;};
void Reset(void) {
StopWatch->Reset();
StopWatch->Start();
}
void TimingMode(int on) {
timing_mode = on;
if(on) {
StopWatch = &LocalStopWatch;
Reset();
}
}
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
stream << log.background()<< std::setw(8) << std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::setw(10) << std::left << log.name << log.background() << " : ";
stream << log.background()<< std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::left << log.name << log.background() << " : ";
if ( log.timestamp ) {
StopWatch.Stop();
GridTime now = StopWatch.Elapsed();
StopWatch.Start();
stream << log.evidence()<< now << log.background() << " : " ;
log.StopWatch->Stop();
GridTime now = log.StopWatch->Elapsed();
if ( log.timing_mode==1 ) log.StopWatch->Reset();
log.StopWatch->Start();
stream << log.evidence()<< std::setw(6)<<now << log.background() << " : " ;
}
stream << log.colour();
return stream;
@ -135,6 +154,8 @@ public:
void GridLogConfigure(std::vector<std::string> &logstreams);
extern GridLogger GridLogIRL;
extern GridLogger GridLogSolver;
extern GridLogger GridLogError;
extern GridLogger GridLogWarning;
extern GridLogger GridLogMessage;

View File

@ -261,7 +261,7 @@ class BinaryIO {
GridBase *grid,
std::vector<fobj> &iodata,
std::string file,
int offset,
Integer offset,
const std::string &format, int control,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
@ -356,7 +356,7 @@ class BinaryIO {
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
#ifdef USE_MPI_IO
std::cout<< GridLogMessage<< "MPI read I/O "<< file<< std::endl;
std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl;
ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh); assert(ierr==0);
ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); assert(ierr==0);
ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status); assert(ierr==0);
@ -367,7 +367,7 @@ class BinaryIO {
assert(0);
#endif
} else {
std::cout << GridLogMessage << "C++ read I/O " << file << " : "
std::cout << GridLogMessage <<"IOobject: C++ read I/O " << file << " : "
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
std::ifstream fin;
fin.open(file, std::ios::binary | std::ios::in);
@ -413,9 +413,9 @@ class BinaryIO {
timer.Start();
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
#ifdef USE_MPI_IO
std::cout << GridLogMessage << "MPI write I/O " << file << std::endl;
std::cout << GridLogMessage <<"IOobject: MPI write I/O " << file << std::endl;
ierr = MPI_File_open(grid->communicator, (char *)file.c_str(), MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
std::cout << GridLogMessage << "Checking for errors" << std::endl;
// std::cout << GridLogMessage << "Checking for errors" << std::endl;
if (ierr != MPI_SUCCESS)
{
char error_string[BUFSIZ];
@ -444,48 +444,56 @@ class BinaryIO {
assert(0);
#endif
} else {
std::cout << GridLogMessage << "IOobject: C++ write I/O " << file << " : "
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
std::ofstream fout;
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
try {
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
} catch (const std::fstream::failure& exc) {
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
#ifdef USE_MPI_IO
MPI_Abort(MPI_COMM_WORLD,1);
#else
exit(1);
#endif
}
std::cout << GridLogMessage<< "C++ write I/O "<< file<<" : "
<< iodata.size()*sizeof(fobj)<<" bytes"<<std::endl;
if ( control & BINARYIO_MASTER_APPEND ) {
fout.seekp(0,fout.end);
} else {
fout.seekp(offset+myrank*lsites*sizeof(fobj));
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
try {
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
} catch (const std::fstream::failure& exc) {
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
#ifdef USE_MPI_IO
MPI_Abort(MPI_COMM_WORLD,1);
#else
exit(1);
#endif
}
if ( control & BINARYIO_MASTER_APPEND ) {
try {
fout.seekp(0,fout.end);
} catch (const std::fstream::failure& exc) {
std::cout << "Exception in seeking file end " << file << std::endl;
}
} else {
try {
fout.seekp(offset+myrank*lsites*sizeof(fobj));
} catch (const std::fstream::failure& exc) {
std::cout << "Exception in seeking file " << file <<" offset "<< offset << std::endl;
}
}
try {
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
}
catch (const std::fstream::failure& exc) {
std::cout << "Exception in writing file " << file << std::endl;
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
#ifdef USE_MPI_IO
MPI_Abort(MPI_COMM_WORLD,1);
#else
exit(1);
#endif
}
try {
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
}
catch (const std::fstream::failure& exc) {
std::cout << "Exception in writing file " << file << std::endl;
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
#ifdef USE_MPI_IO
MPI_Abort(MPI_COMM_WORLD,1);
#else
exit(1);
#endif
}
fout.close();
}
timer.Stop();
}
}
timer.Stop();
}
std::cout<<GridLogMessage<<"IOobject: ";
if ( control & BINARYIO_READ) std::cout << " read ";
else std::cout << " write ";
@ -515,7 +523,7 @@ class BinaryIO {
static inline void readLatticeObject(Lattice<vobj> &Umu,
std::string file,
munger munge,
int offset,
Integer offset,
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
@ -552,7 +560,7 @@ class BinaryIO {
static inline void writeLatticeObject(Lattice<vobj> &Umu,
std::string file,
munger munge,
int offset,
Integer offset,
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
@ -589,7 +597,7 @@ class BinaryIO {
static inline void readRNG(GridSerialRNG &serial,
GridParallelRNG &parallel,
std::string file,
int offset,
Integer offset,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb)
@ -651,7 +659,7 @@ class BinaryIO {
static inline void writeRNG(GridSerialRNG &serial,
GridParallelRNG &parallel,
std::string file,
int offset,
Integer offset,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb)

View File

@ -84,10 +84,6 @@ namespace QCD {
stream << "GRID_";
stream << ScidacWordMnemonic<stype>();
// std::cout << " Lorentz N/S/V/M : " << _LorentzN<<" "<<_LorentzScalar<<"/"<<_LorentzVector<<"/"<<_LorentzMatrix<<std::endl;
// std::cout << " Spin N/S/V/M : " << _SpinN <<" "<<_SpinScalar <<"/"<<_SpinVector <<"/"<<_SpinMatrix<<std::endl;
// std::cout << " Colour N/S/V/M : " << _ColourN <<" "<<_ColourScalar <<"/"<<_ColourVector <<"/"<<_ColourMatrix<<std::endl;
if ( _LorentzVector ) stream << "_LorentzVector"<<_LorentzN;
if ( _LorentzMatrix ) stream << "_LorentzMatrix"<<_LorentzN;
@ -151,7 +147,7 @@ namespace QCD {
_scidacRecord = sr;
std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
// std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
}
///////////////////////////////////////////////////////
@ -163,7 +159,7 @@ namespace QCD {
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
if ( scidac_csuma !=scidac_checksuma) return 0;
if ( scidac_csumb !=scidac_checksumb) return 0;
return 1;
return 1;
}
////////////////////////////////////////////////////////////////////////////////////
@ -182,7 +178,7 @@ class GridLimeReader : public BinaryIO {
/////////////////////////////////////////////
// Open the file
/////////////////////////////////////////////
void open(std::string &_filename)
void open(const std::string &_filename)
{
filename= _filename;
File = fopen(filename.c_str(), "r");
@ -210,24 +206,38 @@ class GridLimeReader : public BinaryIO {
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
std::cout << GridLogMessage << limeReaderType(LimeR) <<std::endl;
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
uint64_t file_bytes =limeReaderBytes(LimeR);
// std::cout << GridLogMessage << limeReaderType(LimeR) << " "<< file_bytes <<" bytes "<<std::endl;
// std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
off_t offset= ftell(File);
if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
// std::cout << GridLogMessage<< " readLimeLatticeBinaryObject matches ! " <<std::endl;
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
// std::cout << "R sizeof(sobj)= " <<sizeof(sobj)<<std::endl;
// std::cout << "R Gsites " <<field._grid->_gsites<<std::endl;
// std::cout << "R Payload expected " <<PayloadSize<<std::endl;
// std::cout << "R file size " <<file_bytes <<std::endl;
assert(PayloadSize == file_bytes);// Must match or user error
uint64_t offset= ftello(File);
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< sobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
/////////////////////////////////////////////
// Insist checksum is next record
/////////////////////////////////////////////
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),record_name);
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
/////////////////////////////////////////////
// Verify checksums
/////////////////////////////////////////////
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1);
return;
}
}
@ -242,11 +252,16 @@ class GridLimeReader : public BinaryIO {
// should this be a do while; can we miss a first record??
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
// std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
// std::cout << GridLogMessage<< " readLimeObject matches ! " << record_name <<std::endl;
std::vector<char> xmlc(nbytes+1,'\0');
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
// std::cout << GridLogMessage<< " readLimeObject matches XML " << &xmlc[0] <<std::endl;
XmlReader RD(&xmlc[0],"");
read(RD,object_name,object);
return;
@ -261,13 +276,14 @@ class GridLimeWriter : public BinaryIO {
public:
///////////////////////////////////////////////////
// FIXME: format for RNG? Now just binary out instead
// FIXME: collective calls or not ?
// : must know if I am the I/O boss
///////////////////////////////////////////////////
FILE *File;
LimeWriter *LimeW;
std::string filename;
void open(std::string &_filename) {
void open(const std::string &_filename) {
filename= _filename;
File = fopen(filename.c_str(), "w");
LimeW = limeCreateWriter(File); assert(LimeW != NULL );
@ -302,14 +318,18 @@ class GridLimeWriter : public BinaryIO {
write(WR,object_name,object);
xmlstring = WR.XmlString();
}
// std::cout << "WriteLimeObject" << record_name <<std::endl;
uint64_t nbytes = xmlstring.size();
// std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl;
int err;
LimeRecordHeader *h = limeCreateHeader(MB, ME,(char *)record_name.c_str(), nbytes); assert(h!= NULL);
LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes);
assert(h!= NULL);
err=limeWriteRecordHeader(h, LimeW); assert(err>=0);
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
limeDestroyHeader(h);
// std::cout << " File offset is now"<<ftello(File) << std::endl;
}
////////////////////////////////////////////
// Write a generic lattice field and csum
@ -326,6 +346,10 @@ class GridLimeWriter : public BinaryIO {
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
createLimeRecordHeader(record_name, 0, 0, PayloadSize);
// std::cout << "W sizeof(sobj)" <<sizeof(sobj)<<std::endl;
// std::cout << "W Gsites " <<field._grid->_gsites<<std::endl;
// std::cout << "W Payload expected " <<PayloadSize<<std::endl;
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
// the same file through different file handles (integer units).
@ -333,17 +357,20 @@ class GridLimeWriter : public BinaryIO {
// These are both buffered, so why I think this code is right is as follows.
//
// i) write record header to FILE *File, telegraphing the size.
// ii) ftell reads the offset from FILE *File .
// ii) ftello reads the offset from FILE *File .
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
// Closes iostream and flushes.
// iv) fseek on FILE * to end of this disjoint section.
// v) Continue writing scidac record.
////////////////////////////////////////////////////////////////////
off_t offset = ftell(File);
uint64_t offset = ftello(File);
// std::cout << " Writing to offset "<<offset << std::endl;
std::string format = getFormatString<vobj>();
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
// fseek(File,0,SEEK_END); offset = ftello(File);std::cout << " offset now "<<offset << std::endl;
err=limeWriterCloseRecord(LimeW); assert(err>=0);
////////////////////////////////////////
// Write checksum element, propagaing forward from the BinaryIO
// Always pair a checksum with a binary object, and close message
@ -353,8 +380,8 @@ class GridLimeWriter : public BinaryIO {
std::stringstream streamb; streamb << std::hex << scidac_csumb;
checksum.suma= streama.str();
checksum.sumb= streamb.str();
std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
writeLimeObject(0,1,checksum,std::string("scidacChecksum" ),std::string(SCIDAC_CHECKSUM));
// std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
writeLimeObject(0,1,checksum,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
}
};
@ -371,11 +398,9 @@ class ScidacWriter : public GridLimeWriter {
////////////////////////////////////////////////
// Write generic lattice field in scidac format
////////////////////////////////////////////////
template <class vobj, class userRecord>
template <class vobj, class userRecord>
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord)
{
typedef typename vobj::scalar_object sobj;
uint64_t nbytes;
GridBase * grid = field._grid;
////////////////////////////////////////
@ -397,6 +422,66 @@ class ScidacWriter : public GridLimeWriter {
}
};
class ScidacReader : public GridLimeReader {
public:
template<class SerialisableUserFile>
void readScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
{
scidacFile _scidacFile(grid);
readLimeObject(_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
readLimeObject(_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
}
////////////////////////////////////////////////
// Write generic lattice field in scidac format
////////////////////////////////////////////////
template <class vobj, class userRecord>
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
{
typedef typename vobj::scalar_object sobj;
GridBase * grid = field._grid;
////////////////////////////////////////
// fill the Grid header
////////////////////////////////////////
FieldMetaData header;
scidacRecord _scidacRecord;
scidacFile _scidacFile;
//////////////////////////////////////////////
// Fill the Lime file record by record
//////////////////////////////////////////////
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
}
void skipPastBinaryRecord(void) {
std::string rec_name(ILDG_BINARY_DATA);
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
return;
}
}
}
void skipPastObjectRecord(std::string rec_name) {
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
return;
}
}
}
void skipScidacFieldRecord() {
skipPastObjectRecord(std::string(GRID_FORMAT));
skipPastObjectRecord(std::string(SCIDAC_RECORD_XML));
skipPastObjectRecord(std::string(SCIDAC_PRIVATE_RECORD_XML));
skipPastBinaryRecord();
}
};
class IldgWriter : public ScidacWriter {
public:
@ -425,8 +510,6 @@ class IldgWriter : public ScidacWriter {
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
uint64_t nbytes;
////////////////////////////////////////
// fill the Grid header
////////////////////////////////////////
@ -557,7 +640,7 @@ class IldgReader : public GridLimeReader {
// Copy out the string
std::vector<char> xmlc(nbytes+1,'\0');
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
// std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
//////////////////////////////////
// ILDG format record
@ -601,7 +684,7 @@ class IldgReader : public GridLimeReader {
std::string xmls(&xmlc[0]);
// is it a USQCD info field
if ( xmls.find(std::string("usqcdInfo")) != std::string::npos ) {
std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
// std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
XmlReader RD(&xmlc[0],"");
read(RD,"usqcdInfo",usqcdInfo_);
found_usqcdInfo = 1;
@ -619,8 +702,7 @@ class IldgReader : public GridLimeReader {
// Binary data
/////////////////////////////////
std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
off_t offset= ftell(File);
uint64_t offset= ftello(File);
if ( format == std::string("IEEE64BIG") ) {
GaugeSimpleMunger<dobj, sobj> munge;
BinaryIO::readLatticeObject< vobj, dobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);

View File

@ -64,6 +64,11 @@ namespace Grid {
// file compatability, so should be correct to assume the undocumented but defacto file structure.
/////////////////////////////////////////////////////////////////////////////////
struct emptyUserRecord : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(emptyUserRecord,int,dummy);
emptyUserRecord() { dummy=0; };
};
////////////////////////
// Scidac private file xml
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile>

View File

@ -85,6 +85,9 @@ namespace Grid {
nd=4;
dimension.resize(4);
boundary.resize(4);
scidac_checksuma=0;
scidac_checksumb=0;
checksum=0;
}
};
@ -104,6 +107,7 @@ namespace Grid {
header.nd = nd;
header.dimension.resize(nd);
header.boundary.resize(nd);
header.data_start = 0;
for(int d=0;d<nd;d++) {
header.dimension[d] = grid->_fdimensions[d];
}

View File

@ -0,0 +1,100 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_ABSTRACT_EOFA_FERMION_H
#define GRID_QCD_ABSTRACT_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
namespace QCD {
// DJM: Abstract base class for EOFA fermion types.
// Defines layout of additional EOFA-specific parameters and operators.
// Use to construct EOFA pseudofermion actions that are agnostic to
// Shamir / Mobius / etc., and ensure that no one can construct EOFA
// pseudofermion action with non-EOFA fermion type.
template<class Impl>
class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
RealD mq1;
RealD mq2;
RealD mq3;
RealD shift;
int pm;
RealD alpha; // Mobius scale
RealD k; // EOFA normalization constant
virtual void Instantiatable(void) = 0;
// EOFA-specific operations
// Force user to implement in derived classes
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag) = 0;
virtual void Dtilde (const FermionField& in, FermionField& out) = 0;
virtual void DtildeInv(const FermionField& in, FermionField& out) = 0;
// Implement derivatives in base class:
// for EOFA both DWF and Mobius just need d(Dw)/dU
virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDeriv(mat, U, V, dag);
};
virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDerivOE(mat, U, V, dag);
};
virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDerivEO(mat, U, V, dag);
};
// Recompute 5D coefficients for different value of shift constant
// (needed for heatbath loop over poles)
virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
// Constructors
AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
: CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
_mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
{
int Ls = this->Ls;
this->alpha = _b + _c;
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
};
};
}}
#endif

View File

@ -77,7 +77,6 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
}
}
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
{
this->Report();
@ -119,7 +118,6 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
MooeeInvTime=0;
}
template<class Impl>
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
@ -35,24 +35,24 @@ namespace Grid {
namespace QCD {
template<typename T> struct switcheroo {
static inline int iscomplex() { return 0; }
template<typename T> struct switcheroo {
static inline int iscomplex() { return 0; }
template<class vec>
static inline vec mult(vec a, vec b) {
return real_mult(a,b);
}
};
template<> struct switcheroo<ComplexD> {
static inline int iscomplex() { return 1; }
template<> struct switcheroo<ComplexD> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
}
};
template<> struct switcheroo<ComplexF> {
static inline int iscomplex() { return 1; }
template<> struct switcheroo<ComplexF> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
@ -90,14 +90,14 @@ namespace Grid {
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField &psi,
const FermionField &phi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi,
const FermionField &phi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
@ -125,7 +125,7 @@ namespace Grid {
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void Meooe5D (const FermionField &in, FermionField &out);
void MeooeDag5D (const FermionField &in, FermionField &out);
@ -133,23 +133,23 @@ namespace Grid {
RealD mass;
// Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega;
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
// For preconditioning Cayley form
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
// Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv;
@ -165,7 +165,7 @@ namespace Grid {
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
void CayleyReport(void);
void CayleyZeroCounters(void);
@ -179,9 +179,9 @@ namespace Grid {
double MooeeInvTime;
protected:
void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
};
}

View File

@ -0,0 +1,438 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
DomainWallEOFAFermion<Impl>::DomainWallEOFAFermion(
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3,
RealD _shift, int _pm, RealD _M5, const ImplParams &p) :
AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
_shift, _pm, _M5, 1.0, 0.0, p)
{
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);
assert(zdata->n == this->Ls);
std::cout << GridLogMessage << "DomainWallEOFAFermion with Ls=" << this->Ls << std::endl;
this->SetCoefficientsTanh(zdata, 1.0, 0.0);
Approx::zolotarev_free(zdata);
}
/***************************************************************
* Additional EOFA operators only called outside the inverter.
* Since speed is not essential, simple axpby-style
* implementations should be fine.
***************************************************************/
template<class Impl>
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
{
int Ls = this->Ls;
Din = zero;
if((sign == 1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, Ls-1, 0); }
else if((sign == -1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
else if((sign == 1 ) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, Ls-1); }
else if((sign == -1) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
}
// This is just the identity for DWF
template<class Impl>
void DomainWallEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi){ chi = psi; }
// This is just the identity for DWF
template<class Impl>
void DomainWallEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi){ chi = psi; }
/*****************************************************************************************************/
template<class Impl>
RealD DomainWallEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->Meooe5D(psi, Din);
this->DW(Din, chi, DaggerNo);
axpby(chi, 1.0, 1.0, chi, psi);
this->M5D(psi, chi);
return(norm2(chi));
}
template<class Impl>
RealD DomainWallEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->DW(psi, Din, DaggerYes);
this->MeooeDag5D(Din, chi);
this->M5Ddag(psi, chi);
axpby(chi, 1.0, 1.0, chi, psi);
return(norm2(chi));
}
/********************************************************************
* Performance critical fermion operators called inside the inverter
********************************************************************/
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
int pm = this->pm;
RealD shift = this->shift;
RealD mq1 = this->mq1;
RealD mq2 = this->mq2;
RealD mq3 = this->mq3;
// coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
Coeff_t shiftp(0.0), shiftm(0.0);
if(shift != 0.0){
if(pm == 1){ shiftp = shift*(mq3-mq2); }
else{ shiftm = -shift*(mq3-mq2); }
}
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
#if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
for(int i=0; i<diag.size(); ++i){
std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
}
for(int i=0; i<upper.size(); ++i){
std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
}
for(int i=0; i<lower.size(); ++i){
std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
}
#endif
this->M5D(psi, chi, chi, lower, diag, upper);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
int pm = this->pm;
RealD shift = this->shift;
RealD mq1 = this->mq1;
RealD mq2 = this->mq2;
RealD mq3 = this->mq3;
// coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
Coeff_t shiftp(0.0), shiftm(0.0);
if(shift != 0.0){
if(pm == 1){ shiftp = shift*(mq3-mq2); }
else{ shiftm = -shift*(mq3-mq2); }
}
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
#if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5Ddag(FF&,FF&):" << std::endl;
for(int i=0; i<diag.size(); ++i){
std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
}
for(int i=0; i<upper.size(); ++i){
std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
}
for(int i=0; i<lower.size(); ++i){
std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
}
#endif
this->M5Ddag(psi, chi, chi, lower, diag, upper);
}
// half checkerboard operations
template<class Impl>
void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
}
upper[Ls-1] = this->dm;
lower[0] = this->dp;
this->M5D(psi, psi, chi, lower, diag, upper);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
}
upper[Ls-1] = this->dp;
lower[0] = this->dm;
this->M5Ddag(psi, psi, chi, lower, diag, upper);
}
/****************************************************************************************/
//Zolo
template<class Impl>
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c)
{
int Ls = this->Ls;
int pm = this->pm;
RealD mq1 = this->mq1;
RealD mq2 = this->mq2;
RealD mq3 = this->mq3;
RealD shift = this->shift;
////////////////////////////////////////////////////////
// Constants for the preconditioned matrix Cayley form
////////////////////////////////////////////////////////
this->bs.resize(Ls);
this->cs.resize(Ls);
this->aee.resize(Ls);
this->aeo.resize(Ls);
this->bee.resize(Ls);
this->beo.resize(Ls);
this->cee.resize(Ls);
this->ceo.resize(Ls);
for(int i=0; i<Ls; ++i){
this->bee[i] = 4.0 - this->M5 + 1.0;
this->cee[i] = 1.0;
}
for(int i=0; i<Ls; ++i){
this->aee[i] = this->cee[i];
this->bs[i] = this->beo[i] = 1.0;
this->cs[i] = this->ceo[i] = 0.0;
}
//////////////////////////////////////////
// EOFA shift terms
//////////////////////////////////////////
if(pm == 1){
this->dp = mq1*this->cee[0] + shift*(mq3-mq2);
this->dm = mq1*this->cee[Ls-1];
} else if(this->pm == -1) {
this->dp = mq1*this->cee[0];
this->dm = mq1*this->cee[Ls-1] - shift*(mq3-mq2);
} else {
this->dp = mq1*this->cee[0];
this->dm = mq1*this->cee[Ls-1];
}
//////////////////////////////////////////
// LDU decomposition of eeoo
//////////////////////////////////////////
this->dee.resize(Ls+1);
this->lee.resize(Ls);
this->leem.resize(Ls);
this->uee.resize(Ls);
this->ueem.resize(Ls);
for(int i=0; i<Ls; ++i){
if(i < Ls-1){
this->lee[i] = -this->cee[i+1]/this->bee[i]; // sub-diag entry on the ith column
this->leem[i] = this->dm/this->bee[i];
for(int j=0; j<i; j++){ this->leem[i] *= this->aee[j]/this->bee[j]; }
this->dee[i] = this->bee[i];
this->uee[i] = -this->aee[i]/this->bee[i]; // up-diag entry on the ith row
this->ueem[i] = this->dp / this->bee[0];
for(int j=1; j<=i; j++){ this->ueem[i] *= this->cee[j]/this->bee[j]; }
} else {
this->lee[i] = 0.0;
this->leem[i] = 0.0;
this->uee[i] = 0.0;
this->ueem[i] = 0.0;
}
}
{
Coeff_t delta_d = 1.0 / this->bee[0];
for(int j=1; j<Ls-1; j++){ delta_d *= this->cee[j] / this->bee[j]; }
this->dee[Ls-1] = this->bee[Ls-1] + this->cee[0] * this->dm * delta_d;
this->dee[Ls] = this->bee[Ls-1] + this->cee[Ls-1] * this->dp * delta_d;
}
int inv = 1;
this->MooeeInternalCompute(0, inv, this->MatpInv, this->MatmInv);
this->MooeeInternalCompute(1, inv, this->MatpInvDag, this->MatmInvDag);
}
// Recompute Cayley-form coefficients for different shift
template<class Impl>
void DomainWallEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
{
this->shift = new_shift;
Approx::zolotarev_data *zdata = Approx::higham(1.0, this->Ls);
this->SetCoefficientsTanh(zdata, 1.0, 0.0);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
int Ls = this->Ls;
GridBase* grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0];
if(LLs == Ls){ return; } // Not vectorised in 5th direction
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0; s<Ls; s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
}
for(int s=0; s<Ls-1; s++){
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = this->dp;
Pminus(Ls-1,0) = this->dm;
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
#if(0)
std::cout << GridLogMessage << "Pplus:" << std::endl;
for(int s=0; s<Ls; ++s){
for(int ss=0; ss<Ls; ++ss){
std::cout << Pplus(s,ss) << "\t";
}
std::cout << std::endl;
}
std::cout << GridLogMessage << "Pminus:" << std::endl;
for(int s=0; s<Ls; ++s){
for(int ss=0; ss<Ls; ++ss){
std::cout << Pminus(s,ss) << "\t";
}
std::cout << std::endl;
}
#endif
if(inv) {
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd = Simd::Nsimd();
Matp.resize(Ls*LLs);
Matm.resize(Ls*LLs);
for(int s2=0; s2<Ls; s2++){
for(int s1=0; s1<LLs; s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type*) &Vp;
scalar_type *sm = (scalar_type*) &Vm;
for(int l=0; l<Nsimd; l++){
if(switcheroo<Coeff_t>::iscomplex()) {
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
} else {
// if real
scalar_type tmp;
tmp = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(tmp.real(),tmp.real());
tmp = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(tmp.real(),tmp.real());
}
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
}
FermOpTemplateInstantiate(DomainWallEOFAFermion);
GparityFermOpTemplateInstantiate(DomainWallEOFAFermion);
}}

View File

@ -0,0 +1,115 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
#define GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
// for red-black preconditioned Shamir EOFA
Coeff_t dm;
Coeff_t dp;
virtual void Instantiatable(void) {};
// EOFA-specific operations
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
virtual void Dtilde (const FermionField& in, FermionField& out);
virtual void DtildeInv (const FermionField& in, FermionField& out);
// override multiply
virtual RealD M (const FermionField& in, FermionField& out);
virtual RealD Mdag (const FermionField& in, FermionField& out);
// half checkerboard operations
virtual void Mooee (const FermionField& in, FermionField& out);
virtual void MooeeDag (const FermionField& in, FermionField& out);
virtual void MooeeInv (const FermionField& in, FermionField& out);
virtual void MooeeInvDag(const FermionField& in, FermionField& out);
virtual void M5D (const FermionField& psi, FermionField& chi);
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
virtual void RefreshShiftCoefficients(RealD new_shift);
// Constructors
DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
RealD _M5, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
};
}}
#define INSTANTIATE_DPERP_DWF_EOFA(A)\
template void DomainWallEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void DomainWallEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void DomainWallEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
template void DomainWallEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi);
#undef DOMAIN_WALL_EOFA_DPERP_DENSE
#define DOMAIN_WALL_EOFA_DPERP_CACHE
#undef DOMAIN_WALL_EOFA_DPERP_LINALG
#define DOMAIN_WALL_EOFA_DPERP_VEC
#endif

View File

@ -0,0 +1,248 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards..
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
int Ls = this->Ls;
GridBase* grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
for(int s=0; s<Ls; s++){
auto tmp = psi._odata[0];
if(s==0) {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5m(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
int Ls = this->Ls;
GridBase* grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard=psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
auto tmp = psi._odata[0];
for(int s=0; s<Ls; s++){
if(s==0) {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5p(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
// flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls = 12*Ls * (9) = 108*Ls flops
// Apply (L^{\prime})^{-1}
chi[ss] = psi[ss]; // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
spProj5p(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
spProj5m(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
spProj5p(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls])*tmp1;
}
spProj5m(tmp2, chi[ss+Ls-1]);
chi[ss+Ls-1] = (1.0/this->dee[Ls])*tmp1 + (1.0/this->dee[Ls-1])*tmp2;
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
spProj5m(tmp1, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
assert(psi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
std::vector<Coeff_t> ueec(Ls);
std::vector<Coeff_t> deec(Ls+1);
std::vector<Coeff_t> leec(Ls);
std::vector<Coeff_t> ueemc(Ls);
std::vector<Coeff_t> leemc(Ls);
for(int s=0; s<ueec.size(); s++){
ueec[s] = conjugate(this->uee[s]);
deec[s] = conjugate(this->dee[s]);
leec[s] = conjugate(this->lee[s]);
ueemc[s] = conjugate(this->ueem[s]);
leemc[s] = conjugate(this->leem[s]);
}
deec[Ls] = conjugate(this->dee[Ls]);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
// Apply (U^{\prime})^{-dagger}
chi[ss] = psi[ss];
for(int s=1; s<Ls; s++){
spProj5m(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - ueec[s-1]*tmp1;
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
spProj5p(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - ueemc[s]*tmp1;
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
spProj5m(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/deec[s])*chi[ss+s] - (leemc[s]/deec[Ls-1])*tmp1;
}
spProj5p(tmp2, chi[ss+Ls-1]);
chi[ss+Ls-1] = (1.0/deec[Ls-1])*tmp1 + (1.0/deec[Ls])*tmp2;
// Apply L^{-dagger}
for(int s=Ls-2; s>=0; s--){
spProj5p(tmp1, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - leec[s]*tmp1;
}
}
this->MooeeInvTime += usecond();
}
#ifdef DOMAIN_WALL_EOFA_DPERP_CACHE
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,159 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
assert(Ls==LLs);
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
}
for(int s=0; s<Ls-1; s++){
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = this->dp;
Pminus(Ls-1,0) = this->dm;
Eigen::MatrixXd PplusMat ;
Eigen::MatrixXd PminusMat;
if(inv) {
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
// For the non-vectorised s-direction this is simple
for(auto site=0; site<vol; site++){
SiteSpinor SiteChi;
SiteHalfSpinor SitePplus;
SiteHalfSpinor SitePminus;
for(int s1=0; s1<Ls; s1++){
SiteChi = zero;
for(int s2=0; s2<Ls; s2++){
int lex2 = s2 + Ls*site;
if(PplusMat(s1,s2) != 0.0){
spProj5p(SitePplus,psi[lex2]);
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
}
if(PminusMat(s1,s2) != 0.0){
spProj5m(SitePminus, psi[lex2]);
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
}
}
chi[s1+Ls*site] = SiteChi*0.5;
}
}
}
#ifdef DOMAIN_WALL_EOFA_DPERP_DENSE
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
template void DomainWallEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
template void DomainWallEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -0,0 +1,168 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (L^{\prime})^{-1}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls], chi, s, Ls-1);
}
axpby_ssp_pminus(tmp, czero, chi, one/this->dee[Ls-1], chi, Ls-1, Ls-1);
axpby_ssp_pplus(chi, one, tmp, one/this->dee[Ls], chi, Ls-1, Ls-1);
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
}
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (U^{\prime})^{-dagger}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
}
axpby_ssp_pminus(tmp, czero, chi, one/conjugate(this->dee[Ls-1]), chi, Ls-1, Ls-1);
axpby_ssp_pplus(chi, one, tmp, one/conjugate(this->dee[Ls]), chi, Ls-1, Ls-1);
// Apply L^{-dagger}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
}
}
#ifdef DOMAIN_WALL_EOFA_DPERP_LINALG
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,605 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd> > u(LLs);
Vector<iSinglet<Simd> > l(LLs);
Vector<iSinglet<Simd> > d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0;o<LLs;o++){ // outer
for(int i=0;i<nsimd;i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5m(hp, psi[ss+vp]);
spProj5p(hm, psi[ss+vm]);
if (vp <= v){ rotate(hp, hp, 1); }
if (vm >= v){ rotate(hm, hm, nsimd-1); }
hp = 0.5*hp;
hm = 0.5*hm;
spRecon5m(fp, hp);
spRecon5p(fm, hm);
chi[ss+v] = d[v]*phi[ss+v];
chi[ss+v] = chi[ss+v] + u[v]*fp;
chi[ss+v] = chi[ss+v] + l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v==LLs-1) ? 0 : v+1;
int vm = (v==0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd> > u(LLs);
Vector<iSinglet<Simd> > l(LLs);
Vector<iSinglet<Simd> > d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5p(hp, psi[ss+vp]);
spProj5m(hm, psi[ss+vm]);
if(vp <= v){ rotate(hp, hp, 1); }
if(vm >= v){ rotate(hm, hm, nsimd-1); }
hp = hp*0.5;
hm = hm*0.5;
spRecon5p(fp, hp);
spRecon5m(fm, hm);
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
#ifdef AVX512
#include<simd/Intel512common.h>
#include<simd/Intel512avx.h>
#include<simd/Intel512single.h>
#endif
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
int s = s2 + l*LLs;
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1 + LLs*site;
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
int lex = s2 + LLs*site;
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t) &psi[lex];
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
if((s2+l)==0) {
asm(
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
VMULMEM(0,%1,BCAST8,Chi_22)
VMULMEM(0,%1,BCAST9,Chi_30)
VMULMEM(0,%1,BCAST10,Chi_31)
VMULMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm(
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(Simd::scalar_type);
}
}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
// Z-mobius version
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
exit(-1);
};
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
Vector<iSinglet<Simd> > Matp;
Vector<iSinglet<Simd> > Matm;
Vector<iSinglet<Simd> > *_Matp;
Vector<iSinglet<Simd> > *_Matm;
// MooeeInternalCompute(dag,inv,Matp,Matm);
if(inv && dag){
_Matp = &this->MatpInvDag;
_Matm = &this->MatmInvDag;
}
if(inv && (!dag)){
_Matp = &this->MatpInv;
_Matm = &this->MatmInv;
}
if(!inv){
MooeeInternalCompute(dag, inv, Matp, Matm);
_Matp = &Matp;
_Matm = &Matm;
}
assert(_Matp->size() == Ls*LLs);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
if(switcheroo<Coeff_t>::iscomplex()){
parallel_for(auto site=0; site<vol; site++){
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
} else {
parallel_for(auto site=0; site<vol; site++){
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
}
this->MooeeInvTime += usecond();
}
#ifdef DOMAIN_WALL_EOFA_DPERP_VEC
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplD);
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplDF);
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplFH);
template void DomainWallEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/Fermion_base_aggregate.h
@ -38,6 +38,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
// - ContinuedFractionFermion5D.cc
// - WilsonFermion.cc
// - WilsonKernels.cc
// - DomainWallEOFAFermion.cc
// - MobiusEOFAFermion.cc
//
// The explicit instantiation is only avoidable if we move this source to headers and end up with include/parse/recompile
// for EVERY .cc file. This define centralises the list and restores global push of impl cases
@ -55,8 +57,9 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h> // Cayley types
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
#include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
@ -113,6 +116,14 @@ typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
@ -121,6 +132,14 @@ typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
@ -129,7 +148,7 @@ typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised
// Ls vectorised
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
@ -138,6 +157,14 @@ typedef DomainWallFermion<DomainWallVec5dImplRL> DomainWallFermionVec5dRL;
typedef DomainWallFermion<DomainWallVec5dImplFH> DomainWallFermionVec5dFH;
typedef DomainWallFermion<DomainWallVec5dImplDF> DomainWallFermionVec5dDF;
typedef DomainWallEOFAFermion<DomainWallVec5dImplR> DomainWallEOFAFermionVec5dR;
typedef DomainWallEOFAFermion<DomainWallVec5dImplF> DomainWallEOFAFermionVec5dF;
typedef DomainWallEOFAFermion<DomainWallVec5dImplD> DomainWallEOFAFermionVec5dD;
typedef DomainWallEOFAFermion<DomainWallVec5dImplRL> DomainWallEOFAFermionVec5dRL;
typedef DomainWallEOFAFermion<DomainWallVec5dImplFH> DomainWallEOFAFermionVec5dFH;
typedef DomainWallEOFAFermion<DomainWallVec5dImplDF> DomainWallEOFAFermionVec5dDF;
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
@ -146,6 +173,14 @@ typedef MobiusFermion<DomainWallVec5dImplRL> MobiusFermionVec5dRL;
typedef MobiusFermion<DomainWallVec5dImplFH> MobiusFermionVec5dFH;
typedef MobiusFermion<DomainWallVec5dImplDF> MobiusFermionVec5dDF;
typedef MobiusEOFAFermion<DomainWallVec5dImplR> MobiusEOFAFermionVec5dR;
typedef MobiusEOFAFermion<DomainWallVec5dImplF> MobiusEOFAFermionVec5dF;
typedef MobiusEOFAFermion<DomainWallVec5dImplD> MobiusEOFAFermionVec5dD;
typedef MobiusEOFAFermion<DomainWallVec5dImplRL> MobiusEOFAFermionVec5dRL;
typedef MobiusEOFAFermion<DomainWallVec5dImplFH> MobiusEOFAFermionVec5dFH;
typedef MobiusEOFAFermion<DomainWallVec5dImplDF> MobiusEOFAFermionVec5dDF;
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
@ -206,6 +241,14 @@ typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
@ -222,6 +265,14 @@ typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;

View File

@ -538,6 +538,12 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
}
template <class ref>
inline void loadLinkElement(Simd &reg, ref &memory) {
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid);

View File

@ -0,0 +1,502 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
MobiusEOFAFermion<Impl>::MobiusEOFAFermion(
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3,
RealD _shift, int _pm, RealD _M5,
RealD _b, RealD _c, const ImplParams &p) :
AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
_shift, _pm, _M5, _b, _c, p)
{
int Ls = this->Ls;
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::higham(eps, this->Ls);
assert(zdata->n == this->Ls);
std::cout << GridLogMessage << "MobiusEOFAFermion (b=" << _b <<
",c=" << _c << ") with Ls=" << Ls << std::endl;
this->SetCoefficientsTanh(zdata, _b, _c);
std::cout << GridLogMessage << "EOFA parameters: (mq1=" << _mq1 <<
",mq2=" << _mq2 << ",mq3=" << _mq3 << ",shift=" << _shift <<
",pm=" << _pm << ")" << std::endl;
Approx::zolotarev_free(zdata);
if(_shift != 0.0){
SetCoefficientsPrecondShiftOps();
} else {
Mooee_shift.resize(Ls, 0.0);
MooeeInv_shift_lc.resize(Ls, 0.0);
MooeeInv_shift_norm.resize(Ls, 0.0);
MooeeInvDag_shift_lc.resize(Ls, 0.0);
MooeeInvDag_shift_norm.resize(Ls, 0.0);
}
}
/****************************************************************
* Additional EOFA operators only called outside the inverter.
* Since speed is not essential, simple axpby-style
* implementations should be fine.
***************************************************************/
template<class Impl>
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
{
int Ls = this->Ls;
RealD alpha = this->alpha;
Din = zero;
if((sign == 1) && (dag == 0)) { // \Omega_{+}
for(int s=0; s<Ls; ++s){
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,Ls-s-1)/std::pow(1.0+alpha,Ls-s), psi, s, 0);
}
} else if((sign == -1) && (dag == 0)) { // \Omega_{-}
for(int s=0; s<Ls; ++s){
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,s)/std::pow(1.0+alpha,s+1), psi, s, 0);
}
} else if((sign == 1 ) && (dag == 1)) { // \Omega_{+}^{\dagger}
for(int sp=0; sp<Ls; ++sp){
axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,Ls-sp-1)/std::pow(1.0+alpha,Ls-sp), psi, 0, sp);
}
} else if((sign == -1) && (dag == 1)) { // \Omega_{-}^{\dagger}
for(int sp=0; sp<Ls; ++sp){
axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,sp)/std::pow(1.0+alpha,sp+1), psi, 0, sp);
}
}
}
// This is the operator relating the usual Ddwf to TWQCD's EOFA Dirac operator (arXiv:1706.05843, Eqn. 6).
// It also relates the preconditioned and unpreconditioned systems described in Appendix B.2.
template<class Impl>
void MobiusEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
RealD b = 0.5 * ( 1.0 + this->alpha );
RealD c = 0.5 * ( 1.0 - this->alpha );
RealD mq1 = this->mq1;
for(int s=0; s<Ls; ++s){
if(s == 0) {
axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
axpby_ssp_pplus (chi, 1.0, chi, mq1*c, psi, s, Ls-1);
} else if(s == (Ls-1)) {
axpby_ssp_pminus(chi, b, psi, mq1*c, psi, s, 0);
axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
} else {
axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
}
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
RealD m = this->mq1;
RealD c = 0.5 * this->alpha;
RealD d = 0.5;
RealD DtInv_p(0.0), DtInv_m(0.0);
RealD N = std::pow(c+d,Ls) + m*std::pow(c-d,Ls);
FermionField tmp(this->FermionGrid());
for(int s=0; s<Ls; ++s){
for(int sp=0; sp<Ls; ++sp){
DtInv_p = m * std::pow(-1.0,s-sp+1) * std::pow(c-d,Ls+s-sp) / std::pow(c+d,s-sp+1) / N;
DtInv_p += (s < sp) ? 0.0 : std::pow(-1.0,s-sp) * std::pow(c-d,s-sp) / std::pow(c+d,s-sp+1);
DtInv_m = m * std::pow(-1.0,sp-s+1) * std::pow(c-d,Ls+sp-s) / std::pow(c+d,sp-s+1) / N;
DtInv_m += (s > sp) ? 0.0 : std::pow(-1.0,sp-s) * std::pow(c-d,sp-s) / std::pow(c+d,sp-s+1);
if(sp == 0){
axpby_ssp_pplus (tmp, 0.0, tmp, DtInv_p, psi, s, sp);
axpby_ssp_pminus(tmp, 0.0, tmp, DtInv_m, psi, s, sp);
} else {
axpby_ssp_pplus (tmp, 1.0, tmp, DtInv_p, psi, s, sp);
axpby_ssp_pminus(tmp, 1.0, tmp, DtInv_m, psi, s, sp);
}
}}
}
/*****************************************************************************************************/
template<class Impl>
RealD MobiusEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->Meooe5D(psi, Din);
this->DW(Din, chi, DaggerNo);
axpby(chi, 1.0, 1.0, chi, psi);
this->M5D(psi, chi);
return(norm2(chi));
}
template<class Impl>
RealD MobiusEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->DW(psi, Din, DaggerYes);
this->MeooeDag5D(Din, chi);
this->M5Ddag(psi, chi);
axpby(chi, 1.0, 1.0, chi, psi);
return(norm2(chi));
}
/********************************************************************
* Performance critical fermion operators called inside the inverter
********************************************************************/
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
// fused M + shift operation
else{ this->M5D_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
// fused M + shift operation
else{ this->M5Ddag_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
}
// half checkerboard operations
template<class Impl>
void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
// coefficients of Mooee
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
}
upper[Ls-1] *= -this->mq1;
lower[0] *= -this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5D(psi, psi, chi, lower, diag, upper); }
// fused M + shift operation
else { this->M5D_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
// coefficients of MooeeDag
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
if(s==0) {
upper[s] = -this->cee[s+1];
lower[s] = this->mq1*this->cee[Ls-1];
} else if(s==(Ls-1)) {
upper[s] = this->mq1*this->cee[0];
lower[s] = -this->cee[s-1];
} else {
upper[s] = -this->cee[s+1];
lower[s] = -this->cee[s-1];
}
}
// no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, psi, chi, lower, diag, upper); }
// fused M + shift operation
else{ this->M5Ddag_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
}
/****************************************************************************************/
// Computes coefficients for applying Cayley preconditioned shift operators
// (Mooee + \Delta) --> Mooee_shift
// (Mooee + \Delta)^{-1} --> MooeeInv_shift_lc, MooeeInv_shift_norm
// (Mooee + \Delta)^{-dag} --> MooeeInvDag_shift_lc, MooeeInvDag_shift_norm
// For the latter two cases, the operation takes the form
// [ (Mooee + \Delta)^{-1} \psi ]_{i} = Mooee_{ij} \psi_{j} +
// ( MooeeInv_shift_norm )_{i} ( \sum_{j} [ MooeeInv_shift_lc ]_{j} P_{pm} \psi_{j} )
template<class Impl>
void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
{
int Ls = this->Ls;
int pm = this->pm;
RealD alpha = this->alpha;
RealD k = this->k;
RealD mq1 = this->mq1;
RealD shift = this->shift;
// Initialize
Mooee_shift.resize(Ls);
MooeeInv_shift_lc.resize(Ls);
MooeeInv_shift_norm.resize(Ls);
MooeeInvDag_shift_lc.resize(Ls);
MooeeInvDag_shift_norm.resize(Ls);
// Construct Mooee_shift
int idx(0);
Coeff_t N = ( (pm == 1) ? 1.0 : -1.0 ) * (2.0*shift*k) *
( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
for(int s=0; s<Ls; ++s){
idx = (pm == 1) ? (s) : (Ls-1-s);
Mooee_shift[idx] = N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1);
}
// Tridiagonal solve for MooeeInvDag_shift_lc
{
Coeff_t m(0.0);
std::vector<Coeff_t> d = Mooee_shift;
std::vector<Coeff_t> u(Ls,0.0);
std::vector<Coeff_t> y(Ls,0.0);
std::vector<Coeff_t> q(Ls,0.0);
if(pm == 1){ u[0] = 1.0; }
else{ u[Ls-1] = 1.0; }
// Tridiagonal matrix algorithm + Sherman-Morrison formula
//
// We solve
// ( Mooee' + u \otimes v ) MooeeInvDag_shift_lc = Mooee_shift
// where Mooee' is the tridiagonal part of Mooee_{+}, and
// u = (1,0,...,0) and v = (0,...,0,mq1*cee[0]) are chosen
// so that the outer-product u \otimes v gives the (0,Ls-1)
// entry of Mooee_{+}.
//
// We do this as two solves: Mooee'*y = d and Mooee'*q = u,
// and then construct the solution to the original system
// MooeeInvDag_shift_lc = y - <v,y> / ( 1 + <v,q> ) q
if(pm == 1){
for(int s=1; s<Ls; ++s){
m = -this->cee[s] / this->bee[s-1];
d[s] -= m*d[s-1];
u[s] -= m*u[s-1];
}
}
y[Ls-1] = d[Ls-1] / this->bee[Ls-1];
q[Ls-1] = u[Ls-1] / this->bee[Ls-1];
for(int s=Ls-2; s>=0; --s){
if(pm == 1){
y[s] = d[s] / this->bee[s];
q[s] = u[s] / this->bee[s];
} else {
y[s] = ( d[s] + this->cee[s]*y[s+1] ) / this->bee[s];
q[s] = ( u[s] + this->cee[s]*q[s+1] ) / this->bee[s];
}
}
// Construct MooeeInvDag_shift_lc
for(int s=0; s<Ls; ++s){
if(pm == 1){
MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[0]*y[Ls-1] /
(1.0+mq1*this->cee[0]*q[Ls-1]) * q[s];
} else {
MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[Ls-1]*y[0] /
(1.0+mq1*this->cee[Ls-1]*q[0]) * q[s];
}
}
// Compute remaining coefficients
N = (pm == 1) ? (1.0 + MooeeInvDag_shift_lc[Ls-1]) : (1.0 + MooeeInvDag_shift_lc[0]);
for(int s=0; s<Ls; ++s){
// MooeeInv_shift_lc
if(pm == 1){ MooeeInv_shift_lc[s] = std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s); }
else{ MooeeInv_shift_lc[s] = std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s); }
// MooeeInv_shift_norm
MooeeInv_shift_norm[s] = -MooeeInvDag_shift_lc[s] /
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N;
// MooeeInvDag_shift_norm
if(pm == 1){ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s) /
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
else{ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s) /
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
}
}
}
// Recompute coefficients for a different value of shift constant
template<class Impl>
void MobiusEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
{
this->shift = new_shift;
if(new_shift != 0.0){
SetCoefficientsPrecondShiftOps();
} else {
int Ls = this->Ls;
Mooee_shift.resize(Ls,0.0);
MooeeInv_shift_lc.resize(Ls,0.0);
MooeeInv_shift_norm.resize(Ls,0.0);
MooeeInvDag_shift_lc.resize(Ls,0.0);
MooeeInvDag_shift_norm.resize(Ls,0.0);
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
int Ls = this->Ls;
GridBase* grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0];
if(LLs == Ls){ return; } // Not vectorised in 5th direction
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0; s<Ls; s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = this->mq1*this->cee[0];
Pminus(Ls-1,0) = this->mq1*this->cee[Ls-1];
if(this->shift != 0.0){
RealD c = 0.5 * this->alpha;
RealD d = 0.5;
RealD N = this->shift * this->k * ( std::pow(c+d,Ls) + this->mq1*std::pow(c-d,Ls) );
if(this->pm == 1) {
for(int s=0; s<Ls; ++s){
Pplus(s,Ls-1) += N * std::pow(-1.0,s) * std::pow(c-d,s) / std::pow(c+d,Ls+s+1);
}
} else {
for(int s=0; s<Ls; ++s){
Pminus(s,0) += N * std::pow(-1.0,s+1) * std::pow(c-d,Ls-1-s) / std::pow(c+d,2*Ls-s);
}
}
}
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
if(inv) {
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd = Simd::Nsimd();
Matp.resize(Ls*LLs);
Matm.resize(Ls*LLs);
for(int s2=0; s2<Ls; s2++){
for(int s1=0; s1<LLs; s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type*) &Vp;
scalar_type *sm = (scalar_type*) &Vm;
for(int l=0; l<Nsimd; l++){
if(switcheroo<Coeff_t>::iscomplex()) {
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
} else {
// if real
scalar_type tmp;
tmp = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(tmp.real(),tmp.real());
tmp = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(tmp.real(),tmp.real());
}
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
}
FermOpTemplateInstantiate(MobiusEOFAFermion);
GparityFermOpTemplateInstantiate(MobiusEOFAFermion);
}}

View File

@ -0,0 +1,133 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_MOBIUS_EOFA_FERMION_H
#define GRID_QCD_MOBIUS_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA
std::vector<Coeff_t> Mooee_shift;
std::vector<Coeff_t> MooeeInv_shift_lc;
std::vector<Coeff_t> MooeeInv_shift_norm;
std::vector<Coeff_t> MooeeInvDag_shift_lc;
std::vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {};
// EOFA-specific operations
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
virtual void Dtilde (const FermionField& in, FermionField& out);
virtual void DtildeInv (const FermionField& in, FermionField& out);
// override multiply
virtual RealD M (const FermionField& in, FermionField& out);
virtual RealD Mdag (const FermionField& in, FermionField& out);
// half checkerboard operations
virtual void Mooee (const FermionField& in, FermionField& out);
virtual void MooeeDag (const FermionField& in, FermionField& out);
virtual void MooeeInv (const FermionField& in, FermionField& out);
virtual void MooeeInv_shift (const FermionField& in, FermionField& out);
virtual void MooeeInvDag (const FermionField& in, FermionField& out);
virtual void MooeeInvDag_shift(const FermionField& in, FermionField& out);
virtual void M5D (const FermionField& psi, FermionField& chi);
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
virtual void RefreshShiftCoefficients(RealD new_shift);
// Constructors
MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsPrecondShiftOps(void);
};
}}
#define INSTANTIATE_DPERP_MOBIUS_EOFA(A)\
template void MobiusEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void MobiusEOFAFermion<A>::M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
template void MobiusEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void MobiusEOFAFermion<A>::M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
template void MobiusEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
template void MobiusEOFAFermion<A>::MooeeInv_shift(const FermionField& psi, FermionField& chi); \
template void MobiusEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi); \
template void MobiusEOFAFermion<A>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi);
#undef MOBIUS_EOFA_DPERP_DENSE
#define MOBIUS_EOFA_DPERP_CACHE
#undef MOBIUS_EOFA_DPERP_LINALG
#define MOBIUS_EOFA_DPERP_VEC
#endif

View File

@ -0,0 +1,429 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
{
int Ls = this->Ls;
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
for(int s=0; s<Ls; s++){
auto tmp = psi._odata[0];
if(s==0){
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5m(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs)
{
int Ls = this->Ls;
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
for(int s=0; s<Ls; s++){
auto tmp = psi._odata[0];
if(s==0){
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5m(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+shift_s]); }
else{ spProj5m(tmp, psi._odata[ss+shift_s]); }
chi[ss+s] = chi[ss+s] + shift_coeffs[s]*tmp;
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
{
int Ls = this->Ls;
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp = psi._odata[0];
for(int s=0; s<Ls; s++){
if(s==0) {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5p(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs)
{
int Ls = this->Ls;
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
chi[ss+Ls-1] = zero;
auto tmp = psi._odata[0];
for(int s=0; s<Ls; s++){
if(s==0) {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5p(tmp, psi._odata[ss+0]);
chi[ss+s] = chi[ss+s] + diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+s]); }
else{ spProj5m(tmp, psi._odata[ss+s]); }
chi[ss+shift_s] = chi[ss+shift_s] + shift_coeffs[s]*tmp;
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
{
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp = psi._odata[0];
// Apply (L^{\prime})^{-1}
chi[ss] = psi[ss]; // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
spProj5p(tmp, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp;
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
spProj5m(tmp, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp;
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
spProj5p(tmp, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp;
}
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
spProj5m(tmp, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi, FermionField &chi)
{
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
auto tmp2_spProj = psi._odata[0];
// Apply (L^{\prime})^{-1} and accumulate MooeeInv_shift_lc[j]*psi[j] in tmp2
chi[ss] = psi[ss]; // chi[0]=psi[0]
tmp2 = MooeeInv_shift_lc[0]*psi[ss];
for(int s=1; s<Ls; s++){
spProj5p(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
tmp2 = tmp2 + MooeeInv_shift_lc[s]*psi[ss+s];
}
if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
else{ spProj5m(tmp2_spProj, tmp2); }
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
spProj5m(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
spProj5p(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp1;
}
// chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
spProj5m(tmp1, chi[ss+Ls-1]);
chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
// Apply U^{-1} and add shift term
for(int s=Ls-2; s>=0; s--){
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
spProj5m(tmp1, chi[ss+s]);
chi[ss+s] = chi[ss+s] + MooeeInv_shift_norm[s]*tmp2_spProj;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi, FermionField &chi)
{
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp = psi._odata[0];
// Apply (U^{\prime})^{-dag}
chi[ss] = psi[ss];
for(int s=1; s<Ls; s++){
spProj5m(tmp, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp;
}
// U_m^{-\dag}
for(int s=0; s<Ls-1; s++){
spProj5p(tmp, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp;
}
// L_m^{-\dag} D^{-dag}
for(int s=0; s<Ls-1; s++){
spProj5m(tmp, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp;
}
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
// Apply L^{-dag}
for(int s=Ls-2; s>=0; s--){
spProj5p(tmp, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - this->lee[s]*tmp;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi, FermionField &chi)
{
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
auto tmp2_spProj = psi._odata[0];
// Apply (U^{\prime})^{-dag} and accumulate MooeeInvDag_shift_lc[j]*psi[j] in tmp2
chi[ss] = psi[ss];
tmp2 = MooeeInvDag_shift_lc[0]*psi[ss];
for(int s=1; s<Ls; s++){
spProj5m(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp1;
tmp2 = tmp2 + MooeeInvDag_shift_lc[s]*psi[ss+s];
}
if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
else{ spProj5m(tmp2_spProj, tmp2); }
// U_m^{-\dag}
for(int s=0; s<Ls-1; s++){
spProj5p(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp1;
}
// L_m^{-\dag} D^{-dag}
for(int s=0; s<Ls-1; s++){
spProj5m(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp1;
}
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
spProj5p(tmp1, chi[ss+Ls-1]);
chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInvDag_shift_norm[Ls-1]*tmp2_spProj;
// Apply L^{-dag}
for(int s=Ls-2; s>=0; s--){
chi[ss+s] = chi[ss+s] - this->lee[s]*tmp1;
spProj5p(tmp1, chi[ss+s]);
chi[ss+s] = chi[ss+s] + MooeeInvDag_shift_norm[s]*tmp2_spProj;
}
}
this->MooeeInvTime += usecond();
}
#ifdef MOBIUS_EOFA_DPERP_CACHE
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,184 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
int pm = this->pm;
RealD shift = this->shift;
RealD alpha = this->alpha;
RealD k = this->k;
RealD mq1 = this->mq1;
chi.checkerboard = psi.checkerboard;
assert(Ls==LLs);
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
}
for(int s=0; s<Ls-1; s++){
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = mq1*this->cee[0];
Pminus(Ls-1,0) = mq1*this->cee[Ls-1];
if(shift != 0.0){
Coeff_t N = 2.0 * ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
for(int s=0; s<Ls; ++s){
if(pm == 1){ Pplus(s,Ls-1) += shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
else{ Pminus(Ls-1-s,Ls-1) -= shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
}
}
Eigen::MatrixXd PplusMat ;
Eigen::MatrixXd PminusMat;
if(inv){
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
// For the non-vectorised s-direction this is simple
for(auto site=0; site<vol; site++){
SiteSpinor SiteChi;
SiteHalfSpinor SitePplus;
SiteHalfSpinor SitePminus;
for(int s1=0; s1<Ls; s1++){
SiteChi = zero;
for(int s2=0; s2<Ls; s2++){
int lex2 = s2 + Ls*site;
if(PplusMat(s1,s2) != 0.0){
spProj5p(SitePplus,psi[lex2]);
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
}
if(PminusMat(s1,s2) != 0.0){
spProj5m(SitePminus, psi[lex2]);
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
}
}
chi[s1+Ls*site] = SiteChi*0.5;
}
}
}
#ifdef MOBIUS_EOFA_DPERP_DENSE
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
template void MobiusEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
template void MobiusEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -0,0 +1,290 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
}
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
}
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
// Apply (L^{\prime})^{-1}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
}
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (L^{\prime})^{-1}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
axpby_ssp(tmp, czero, tmp, this->MooeeInv_shift_lc[0], psi, 0, 0);
for(int s=1; s<Ls; s++){
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
axpby_ssp(tmp, one, tmp, this->MooeeInv_shift_lc[s], psi, 0, s);
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
}
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
// Apply U^{-1} and add shift term
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
// Apply (U^{\prime})^{-dagger}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
}
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
// Apply L^{-dagger}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (U^{\prime})^{-dagger} and accumulate (MooeeInvDag_shift_lc)_{j} \psi_{j} in tmp[0]
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
axpby_ssp(tmp, czero, tmp, this->MooeeInvDag_shift_lc[0], psi, 0, 0);
for(int s=1; s<Ls; s++){
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
axpby_ssp(tmp, one, tmp, this->MooeeInvDag_shift_lc[s], psi, 0, s);
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
}
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
// Apply L^{-dagger} and add shift
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
}
}
#ifdef MOBIUS_EOFA_DPERP_LINALG
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,983 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5m(hp, psi[ss+vp]);
spProj5p(hm, psi[ss+vm]);
if (vp <= v){ rotate(hp, hp, 1); }
if (vm >= v){ rotate(hm, hm, nsimd-1); }
hp = 0.5*hp;
hm = 0.5*hm;
spRecon5m(fp, hp);
spRecon5p(fm, hm);
chi[ss+v] = d[v]*phi[ss+v];
chi[ss+v] = chi[ss+v] + u[v]*fp;
chi[ss+v] = chi[ss+v] + l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
#if 0
this->M5D(psi, phi, chi, lower, diag, upper);
// FIXME: possible gain from vectorizing shift operation as well?
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
}
#else
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
Vector<iSinglet<Simd>> s(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
scalar_type* s_p = (scalar_type*) &s[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
s_p[ss] = shift_coeffs[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
int vs = (this->pm == 1) ? LLs-1 : 0;
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(2)(0) : psi[ss+vs]()(0)(0);
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(2)(1) : psi[ss+vs]()(0)(1);
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(2)(2) : psi[ss+vs]()(0)(2);
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(3)(0) : psi[ss+vs]()(1)(0);
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(3)(1) : psi[ss+vs]()(1)(1);
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(3)(2) : psi[ss+vs]()(1)(2);
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(this->pm == 1 && vs <= v){
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
if(this->pm == -1 && vs >= v){
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
}
this->M5Dtime += usecond();
#endif
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5p(hp, psi[ss+vp]);
spProj5m(hm, psi[ss+vm]);
if(vp <= v){ rotate(hp, hp, 1); }
if(vm >= v){ rotate(hm, hm, nsimd-1); }
hp = hp*0.5;
hm = hm*0.5;
spRecon5p(fp, hp);
spRecon5m(fm, hm);
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
#if 0
this->M5Ddag(psi, phi, chi, lower, diag, upper);
// FIXME: possible gain from vectorizing shift operation as well?
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
}
#else
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
Vector<iSinglet<Simd>> s(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
scalar_type* s_p = (scalar_type*) &s[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
s_p[ss] = shift_coeffs[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
int vs = (this->pm == 1) ? LLs-1 : 0;
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(0)(0) : psi[ss+vs]()(2)(0);
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(0)(1) : psi[ss+vs]()(2)(1);
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(0)(2) : psi[ss+vs]()(2)(2);
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(1)(0) : psi[ss+vs]()(3)(0);
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(1)(1) : psi[ss+vs]()(3)(1);
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(1)(2) : psi[ss+vs]()(3)(2);
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(this->pm == 1 && vs <= v){
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
if(this->pm == -1 && vs >= v){
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
}
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
}
this->M5Dtime += usecond();
#endif
}
#ifdef AVX512
#include<simd/Intel512common.h>
#include<simd/Intel512avx.h>
#include<simd/Intel512single.h>
#endif
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
int s = s2 + l*LLs;
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1 + LLs*site;
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
int lex = s2 + LLs*site;
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t) &psi[lex];
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
if((s2+l)==0) {
asm(
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
VMULMEM(0,%1,BCAST8,Chi_22)
VMULMEM(0,%1,BCAST9,Chi_30)
VMULMEM(0,%1,BCAST10,Chi_31)
VMULMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm(
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(Simd::scalar_type);
}
}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
// Z-mobius version
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
exit(-1);
};
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
Vector<iSinglet<Simd>> Matp;
Vector<iSinglet<Simd>> Matm;
Vector<iSinglet<Simd>>* _Matp;
Vector<iSinglet<Simd>>* _Matm;
// MooeeInternalCompute(dag,inv,Matp,Matm);
if(inv && dag){
_Matp = &this->MatpInvDag;
_Matm = &this->MatmInvDag;
}
if(inv && (!dag)){
_Matp = &this->MatpInv;
_Matm = &this->MatmInv;
}
if(!inv){
MooeeInternalCompute(dag, inv, Matp, Matm);
_Matp = &Matp;
_Matm = &Matm;
}
assert(_Matp->size() == Ls*LLs);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
if(switcheroo<Coeff_t>::iscomplex()){
parallel_for(auto site=0; site<vol; site++){
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
} else {
parallel_for(auto site=0; site<vol; site++){
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
}
this->MooeeInvTime += usecond();
}
#ifdef MOBIUS_EOFA_DPERP_VEC
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplFH);
template void MobiusEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -30,60 +30,181 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define REGISTER
#define LOAD_CHIMU \
{const SiteSpinor & ref (in._odata[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
Chimu_02=ref()(0)(2);\
Chimu_10=ref()(1)(0);\
Chimu_11=ref()(1)(1);\
Chimu_12=ref()(1)(2);\
Chimu_20=ref()(2)(0);\
Chimu_21=ref()(2)(1);\
Chimu_22=ref()(2)(2);\
Chimu_30=ref()(3)(0);\
Chimu_31=ref()(3)(1);\
Chimu_32=ref()(3)(2);}
#define LOAD_CHIMU_BODY(F) \
Chimu_00=ref(F)(0)(0); \
Chimu_01=ref(F)(0)(1); \
Chimu_02=ref(F)(0)(2); \
Chimu_10=ref(F)(1)(0); \
Chimu_11=ref(F)(1)(1); \
Chimu_12=ref(F)(1)(2); \
Chimu_20=ref(F)(2)(0); \
Chimu_21=ref(F)(2)(1); \
Chimu_22=ref(F)(2)(2); \
Chimu_30=ref(F)(3)(0); \
Chimu_31=ref(F)(3)(1); \
Chimu_32=ref(F)(3)(2)
#define LOAD_CHI\
{const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = ref()(0)(0);\
Chi_01 = ref()(0)(1);\
Chi_02 = ref()(0)(2);\
Chi_10 = ref()(1)(0);\
Chi_11 = ref()(1)(1);\
Chi_12 = ref()(1)(2);}
#define LOAD_CHIMU(DIR,F,PERM) \
{ const SiteSpinor & ref (in._odata[offset]); LOAD_CHIMU_BODY(F); }
#define LOAD_CHI_BODY(F) \
Chi_00 = ref(F)(0)(0);\
Chi_01 = ref(F)(0)(1);\
Chi_02 = ref(F)(0)(2);\
Chi_10 = ref(F)(1)(0);\
Chi_11 = ref(F)(1)(1);\
Chi_12 = ref(F)(1)(2)
#define LOAD_CHI(DIR,F,PERM) \
{const SiteHalfSpinor &ref(buf[offset]); LOAD_CHI_BODY(F); }
//G-parity implementations using in-place intrinsic ops
//1l 1h -> 1h 1l
//0l 0h , 1h 1l -> 0l 1h 0h,1l
//0h,1l -> 1l,0h
//if( (distance == 1 && !perm_will_occur) || (distance == -1 && perm_will_occur) )
//Pulled fermion through forwards face, GPBC on upper component
//Need 0= 0l 1h 1= 1l 0h
//else if( (distance == -1 && !perm) || (distance == 1 && perm) )
//Pulled fermion through backwards face, GPBC on lower component
//Need 0= 1l 0h 1= 0l 1h
//1l 1h -> 1h 1l
//0l 0h , 1h 1l -> 0l 1h 0h,1l
#define DO_TWIST_0L_1H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3) \
permute##PERM(tmp1, ref(1)(S)(C)); \
exchange##PERM(tmp2,tmp3, ref(0)(S)(C), tmp1); \
INTO = tmp2;
//0l 0h -> 0h 0l
//1l 1h, 0h 0l -> 1l 0h, 1h 0l
#define DO_TWIST_1L_0H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3) \
permute##PERM(tmp1, ref(0)(S)(C)); \
exchange##PERM(tmp2,tmp3, ref(1)(S)(C), tmp1); \
INTO = tmp2;
#define LOAD_CHI_SETUP(DIR,F) \
g = F; \
direction = st._directions[DIR]; \
distance = st._distances[DIR]; \
sl = st._grid->_simd_layout[direction]; \
inplace_twist = 0; \
if(SE->_around_the_world && this->Params.twists[DIR % 4]){ \
if(sl == 1){ \
g = (F+1) % 2; \
}else{ \
inplace_twist = 1; \
} \
}
#define LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM) \
{ const SiteSpinor &ref(in._odata[offset]); \
LOAD_CHI_SETUP(DIR,F); \
if(!inplace_twist){ \
LOAD_CHIMU_BODY(g); \
}else{ \
if( ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
DO_TWIST_0L_1H(Chimu_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_02,0,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_10,1,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_12,1,2,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_20,2,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_21,2,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_22,2,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_30,3,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_31,3,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_32,3,2,F,PERM, U_11,U_20,U_21); \
}else{ \
DO_TWIST_1L_0H(Chimu_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_02,0,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_10,1,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_12,1,2,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_20,2,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_21,2,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_22,2,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_30,3,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_31,3,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_32,3,2,F,PERM, U_11,U_20,U_21); \
} \
} \
}
#define LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM) \
{ const SiteHalfSpinor &ref(buf[offset]); \
LOAD_CHI_SETUP(DIR,F); \
if(!inplace_twist){ \
LOAD_CHI_BODY(g); \
}else{ \
if( ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
DO_TWIST_0L_1H(Chi_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chi_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chi_02,0,2,F,PERM, UChi_00,UChi_01,UChi_02); \
DO_TWIST_0L_1H(Chi_10,1,0,F,PERM, UChi_10,UChi_11,UChi_12); \
DO_TWIST_0L_1H(Chi_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chi_12,1,2,F,PERM, U_11,U_20,U_21); \
}else{ \
DO_TWIST_1L_0H(Chi_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chi_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chi_02,0,2,F,PERM, UChi_00,UChi_01,UChi_02); \
DO_TWIST_1L_0H(Chi_10,1,0,F,PERM, UChi_10,UChi_11,UChi_12); \
DO_TWIST_1L_0H(Chi_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chi_12,1,2,F,PERM, U_11,U_20,U_21); \
} \
} \
}
#define LOAD_CHI_GPARITY(DIR,F,PERM) LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM)
#define LOAD_CHIMU_GPARITY(DIR,F,PERM) LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM)
// To splat or not to splat depends on the implementation
#define MULT_2SPIN(A)\
{auto & ref(U._odata[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
Impl::loadLinkElement(U_01,ref()(0,1)); \
Impl::loadLinkElement(U_11,ref()(1,1)); \
Impl::loadLinkElement(U_21,ref()(2,1)); \
UChi_00 = U_00*Chi_00;\
UChi_10 = U_00*Chi_10;\
UChi_01 = U_10*Chi_00;\
UChi_11 = U_10*Chi_10;\
UChi_02 = U_20*Chi_00;\
UChi_12 = U_20*Chi_10;\
UChi_00+= U_01*Chi_01;\
UChi_10+= U_01*Chi_11;\
UChi_01+= U_11*Chi_01;\
UChi_11+= U_11*Chi_11;\
UChi_02+= U_21*Chi_01;\
UChi_12+= U_21*Chi_11;\
Impl::loadLinkElement(U_00,ref()(0,2)); \
Impl::loadLinkElement(U_10,ref()(1,2)); \
Impl::loadLinkElement(U_20,ref()(2,2)); \
UChi_00+= U_00*Chi_02;\
UChi_10+= U_00*Chi_12;\
UChi_01+= U_10*Chi_02;\
UChi_11+= U_10*Chi_12;\
UChi_02+= U_20*Chi_02;\
UChi_12+= U_20*Chi_12;}
#define MULT_2SPIN_BODY \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
Impl::loadLinkElement(U_01,ref()(0,1)); \
Impl::loadLinkElement(U_11,ref()(1,1)); \
Impl::loadLinkElement(U_21,ref()(2,1)); \
UChi_00 = U_00*Chi_00; \
UChi_10 = U_00*Chi_10; \
UChi_01 = U_10*Chi_00; \
UChi_11 = U_10*Chi_10; \
UChi_02 = U_20*Chi_00; \
UChi_12 = U_20*Chi_10; \
UChi_00+= U_01*Chi_01; \
UChi_10+= U_01*Chi_11; \
UChi_01+= U_11*Chi_01; \
UChi_11+= U_11*Chi_11; \
UChi_02+= U_21*Chi_01; \
UChi_12+= U_21*Chi_11; \
Impl::loadLinkElement(U_00,ref()(0,2)); \
Impl::loadLinkElement(U_10,ref()(1,2)); \
Impl::loadLinkElement(U_20,ref()(2,2)); \
UChi_00+= U_00*Chi_02; \
UChi_10+= U_00*Chi_12; \
UChi_01+= U_10*Chi_02; \
UChi_11+= U_10*Chi_12; \
UChi_02+= U_20*Chi_02; \
UChi_12+= U_20*Chi_12
#define MULT_2SPIN(A,F) \
{auto & ref(U._odata[sU](A)); MULT_2SPIN_BODY; }
#define MULT_2SPIN_GPARITY(A,F) \
{auto & ref(U._odata[sU](F)(A)); MULT_2SPIN_BODY; }
#define PERMUTE_DIR(dir) \
@ -307,84 +428,87 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
result_31-= UChi_11; \
result_32-= UChi_12;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
LOAD_CHIMU_IMPL(DIR,F,PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
LOAD_CHI_IMPL(DIR,F,PERM); \
} \
MULT_2SPIN(DIR); \
MULT_2SPIN_IMPL(DIR,F); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
LOAD_CHIMU_IMPL(DIR,F,PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
LOAD_CHI_IMPL(DIR,F,PERM); \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
MULT_2SPIN_IMPL(DIR,F); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
LOAD_CHI_IMPL(DIR,F,PERM); \
MULT_2SPIN_IMPL(DIR,F); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
#define HAND_RESULT(ss,F) \
{ \
SiteSpinor & ref (out._odata[ss]); \
vstream(ref()(0)(0),result_00); \
vstream(ref()(0)(1),result_01); \
vstream(ref()(0)(2),result_02); \
vstream(ref()(1)(0),result_10); \
vstream(ref()(1)(1),result_11); \
vstream(ref()(1)(2),result_12); \
vstream(ref()(2)(0),result_20); \
vstream(ref()(2)(1),result_21); \
vstream(ref()(2)(2),result_22); \
vstream(ref()(3)(0),result_30); \
vstream(ref()(3)(1),result_31); \
vstream(ref()(3)(2),result_32); \
vstream(ref(F)(0)(0),result_00); \
vstream(ref(F)(0)(1),result_01); \
vstream(ref(F)(0)(2),result_02); \
vstream(ref(F)(1)(0),result_10); \
vstream(ref(F)(1)(1),result_11); \
vstream(ref(F)(1)(2),result_12); \
vstream(ref(F)(2)(0),result_20); \
vstream(ref(F)(2)(1),result_21); \
vstream(ref(F)(2)(2),result_22); \
vstream(ref(F)(3)(0),result_30); \
vstream(ref(F)(3)(1),result_31); \
vstream(ref(F)(3)(2),result_32); \
}
#define HAND_RESULT_EXT(ss) \
#define HAND_RESULT_EXT(ss,F) \
if (nmu){ \
SiteSpinor & ref (out._odata[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
ref(F)(0)(0)+=result_00; \
ref(F)(0)(1)+=result_01; \
ref(F)(0)(2)+=result_02; \
ref(F)(1)(0)+=result_10; \
ref(F)(1)(1)+=result_11; \
ref(F)(1)(2)+=result_12; \
ref(F)(2)(0)+=result_20; \
ref(F)(2)(1)+=result_21; \
ref(F)(2)(2)+=result_22; \
ref(F)(3)(0)+=result_30; \
ref(F)(3)(1)+=result_31; \
ref(F)(3)(2)+=result_32; \
}
@ -463,15 +587,18 @@ WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGauge
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl>
@ -485,16 +612,19 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,Doub
StencilEntry *SE;
int offset,local,perm, ptype;
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE_DAG(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE_DAG(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl> void
@ -509,16 +639,20 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl>
@ -532,16 +666,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,D
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE_DAG_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE_DAG_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl> void
@ -557,16 +695,20 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
int offset,local,perm, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT_EXT(ss);
#define HAND_DOP_SITE_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT_EXT(ss,F)
HAND_DOP_SITE_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl>
@ -581,16 +723,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
StencilEntry *SE;
int offset,local,perm, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT_EXT(ss);
#define HAND_DOP_SITE_DAG_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT_EXT(ss,F)
HAND_DOP_SITE_DAG_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
////////////////////////////////////////////////
@ -646,11 +792,124 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
const FermionField &in, \
FermionField &out){ assert(0); } \
HAND_SPECIALISE_EMPTY(GparityWilsonImplF);
HAND_SPECIALISE_EMPTY(GparityWilsonImplD);
HAND_SPECIALISE_EMPTY(GparityWilsonImplFH);
HAND_SPECIALISE_EMPTY(GparityWilsonImplDF);
#define HAND_SPECIALISE_GPARITY(IMPL) \
template<> void \
WilsonKernels<IMPL>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
StencilEntry *SE; \
HAND_DOP_SITE(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> \
void WilsonKernels<IMPL>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
StencilEntry *SE; \
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
HAND_DOP_SITE_DAG(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE_DAG(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
StencilEntry *SE; \
HAND_DOP_SITE_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> \
void WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
StencilEntry *SE; \
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
HAND_DOP_SITE_DAG_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE_DAG_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
StencilEntry *SE; \
int nmu=0; \
HAND_DOP_SITE_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
nmu = 0; \
HAND_DOP_SITE_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
template<> \
void WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
StencilEntry *SE; \
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
int nmu=0; \
HAND_DOP_SITE_DAG_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
nmu = 0; \
HAND_DOP_SITE_DAG_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
}
HAND_SPECIALISE_GPARITY(GparityWilsonImplF);
HAND_SPECIALISE_GPARITY(GparityWilsonImplD);
HAND_SPECIALISE_GPARITY(GparityWilsonImplFH);
HAND_SPECIALISE_GPARITY(GparityWilsonImplDF);
////////////// Wilson ; uses this implementation /////////////////////
#define INSTANTIATE_THEM(A) \

View File

@ -0,0 +1,264 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
FermionField Phi; // the pseudofermion field for this trajectory
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
{
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
Solver(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero; // Just use zero as the initial guess
Solver(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
Solver(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero;
Solver(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
Solver(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
Solver(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
Solver(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
Solver(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU - Rop.k * force;
};
};
}}
#endif

View File

@ -38,5 +38,6 @@ directory
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
#endif

View File

@ -231,7 +231,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
Field Pfg(U._grid);
Ufg = U;
Pfg = zero;
std::cout << GridLogMessage << "FG update " << fg_dt << " " << ep
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
<< std::endl;
// prepare_fg; no prediction/result cache for now
// could relax CG stopping conditions for the

View File

@ -72,7 +72,7 @@ protected:
}
virtual unsigned int Ls(){
return 0;
return 0;
}
virtual void print_parameters(){
@ -97,7 +97,7 @@ class HMC_FermionOperatorModuleFactory
: public Factory < FermionOperatorModuleBase<QCD::FermionOperator<FermionImpl> > , Reader<ReaderClass> > {
public:
// use SINGLETON FUNCTOR MACRO HERE
typedef Reader<ReaderClass> TheReader;
typedef Reader<ReaderClass> TheReader;
HMC_FermionOperatorModuleFactory(const HMC_FermionOperatorModuleFactory& e) = delete;
void operator=(const HMC_FermionOperatorModuleFactory& e) = delete;
@ -122,7 +122,7 @@ namespace QCD{
// Modules
class WilsonFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
RealD, mass);
};
@ -144,7 +144,7 @@ class WilsonFermionModule: public FermionOperatorModule<WilsonFermion, FermionIm
class MobiusFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
RealD, mass,
RealD, M5,
RealD, b,
@ -166,7 +166,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
auto GridMod = this->GridRefs[0];
auto GridMod5d = this->GridRefs[1];
typename FermionImpl::GaugeField U(GridMod->get_full());
this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
this->Par_.mass, this->Par_.M5, this->Par_.b, this->Par_.c));
}
@ -175,7 +175,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
class DomainWallFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
RealD, mass,
RealD, M5,
unsigned int, Ls);
@ -195,16 +195,49 @@ class DomainWallFermionModule: public FermionOperatorModule<DomainWallFermion, F
auto GridMod = this->GridRefs[0];
auto GridMod5d = this->GridRefs[1];
typename FermionImpl::GaugeField U(GridMod->get_full());
this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
this->Par_.mass, this->Par_.M5));
}
};
class DomainWallEOFAFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallEOFAFermionParameters,
RealD, mq1,
RealD, mq2,
RealD, mq3,
RealD, shift,
int, pm,
RealD, M5,
unsigned int, Ls);
};
template <class FermionImpl >
class DomainWallEOFAFermionModule: public FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> {
typedef FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> FermBase;
using FermBase::FermBase; // for constructors
virtual unsigned int Ls(){
return this->Par_.Ls;
}
// acquire resource
virtual void initialize(){
auto GridMod = this->GridRefs[0];
auto GridMod5d = this->GridRefs[1];
typename FermionImpl::GaugeField U(GridMod->get_full());
this->FOPtr.reset(new DomainWallEOFAFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
this->Par_.mq1, this->Par_.mq2, this->Par_.mq3,
this->Par_.shift, this->Par_.pm, this->Par_.M5));
}
};
} // QCD
} // Grid
#endif //FERMIONOPERATOR_MODULES_H
#endif //FERMIONOPERATOR_MODULES_H

View File

@ -60,7 +60,7 @@ GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
}
return new GridCartesian(latt5,simd5,mpi5);
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
}
@ -68,18 +68,14 @@ GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridC
{
int N4=FourDimGrid->_ndimension;
int cbd=1;
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,1);
std::vector<int> mpi5(1,1);
std::vector<int> cb5(1,0);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
cb5.push_back( 1);
}
return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd);
}
GridCartesian *tmp = makeFiveDimGrid(Ls,FourDimGrid);
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
delete tmp;
return ret;
}
@ -97,26 +93,24 @@ GridCartesian *SpaceTimeGrid::makeFiveDimDWFGrid(int Ls,const GridCartes
simd5.push_back(1);
mpi5.push_back(FourDimGrid->_processors[d]);
}
return new GridCartesian(latt5,simd5,mpi5);
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
}
///////////////////////////////////////////////////
// Interface is inefficient and forces the deletion
// Pass in the non-redblack grid
///////////////////////////////////////////////////
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
int nsimd = FourDimGrid->Nsimd();
int cbd=1;
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,nsimd);
std::vector<int> mpi5(1,1);
std::vector<int> cb5(1,0);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(1);
mpi5.push_back(FourDimGrid->_processors[d]);
cb5.push_back(1);
}
return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd);
}
GridCartesian *tmp = makeFiveDimDWFGrid(Ls,FourDimGrid);
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
delete tmp;
return ret;
}

View File

@ -86,7 +86,7 @@ namespace Grid {
or element<T>::is_number;
};
// Vector flatening utility class ////////////////////////////////////////////
// Vector flattening utility class ////////////////////////////////////////////
// Class to flatten a multidimensional std::vector
template <typename V>
class Flatten

View File

@ -42,6 +42,7 @@ JSONWriter::~JSONWriter(void)
// write prettified JSON to file
std::ofstream os(fileName_);
//std::cout << "JSONWriter::~JSONWriter" << std::endl;
os << std::setw(2) << json::parse(ss_.str()) << std::endl;
}
@ -56,6 +57,7 @@ void JSONWriter::push(const string &s)
void JSONWriter::pop(void)
{
//std::cout << "JSONWriter::pop" << std::endl;
delete_comma();
ss_ << "},";
}
@ -67,20 +69,22 @@ void JSONWriter::delete_comma()
ss_.str(dlast);
}
// here we are hitting a g++ bug (Bug 56480)
// compiles fine with clang
// have to wrap in the Grid namespace
// annoying, but necessary for TravisCI
namespace Grid
{
template<>
void JSONWriter::writeDefault(const std::string &s,
const std::string &x)
void JSONWriter::writeDefault(const std::string &s, const std::string &x)
{
//std::cout << "JSONWriter::writeDefault(string) : " << s << std::endl;
std::ostringstream os;
os << std::boolalpha << x;
if (s.size())
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
else
ss_ << "\"" << x << "\" ," ;
ss_ << os.str() << " ," ;
}
}// namespace Grid
@ -138,6 +142,7 @@ void JSONReader::pop(void)
bool JSONReader::nextElement(const std::string &s)
{
// Work in progress
// JSON dictionaries do not support multiple names
// Same name objects must be packed in vectors
++it_;

View File

@ -58,10 +58,15 @@ namespace Grid
void writeDefault(const std::string &s, const std::complex<U> &x);
template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U, typename P>
void writeDefault(const std::string &s, const std::pair<U,P> &x);
template<std::size_t N>
void writeDefault(const std::string &s, const char(&x)[N]);
void writeDefault(const std::string &s, const std::string &x);
private:
void delete_comma();
std::string fileName_;
@ -82,6 +87,8 @@ namespace Grid
void readDefault(const std::string &s, std::complex<U> &output);
template <typename U>
void readDefault(const std::string &s, std::vector<U> &output);
template <typename U, typename P>
void readDefault(const std::string &s, std::pair<U,P> &output);
private:
json jobject_; // main object
json jcur_; // current json object
@ -106,7 +113,7 @@ namespace Grid
template <typename U>
void JSONWriter::writeDefault(const std::string &s, const U &x)
{
//std::cout << "JSONReader::writeDefault(U) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(U) : " << s << " " << x <<std::endl;
std::ostringstream os;
os << std::boolalpha << x;
if (s.size())
@ -118,7 +125,7 @@ namespace Grid
template <typename U>
void JSONWriter::writeDefault(const std::string &s, const std::complex<U> &x)
{
//std::cout << "JSONReader::writeDefault(complex) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(complex) : " << s << " " << x << std::endl;
std::ostringstream os;
os << "["<< std::boolalpha << x.real() << ", " << x.imag() << "]";
if (s.size())
@ -127,10 +134,22 @@ namespace Grid
ss_ << os.str() << " ," ;
}
template <typename U, typename P>
void JSONWriter::writeDefault(const std::string &s, const std::pair<U,P> &x)
{
//std::cout << "JSONWriter::writeDefault(pair) : " << s << " " << x << std::endl;
std::ostringstream os;
os << "["<< std::boolalpha << "\""<< x.first << "\" , \"" << x.second << "\" ]";
if (s.size())
ss_ << "\""<< s << "\" : " << os.str() << " ," ;
else
ss_ << os.str() << " ," ;
}
template <typename U>
void JSONWriter::writeDefault(const std::string &s, const std::vector<U> &x)
{
//std::cout << "JSONReader::writeDefault(vec U) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(vec U) : " << s << std::endl;
if (s.size())
ss_ << " \""<<s<<"\" : [";
@ -146,12 +165,12 @@ namespace Grid
template<std::size_t N>
void JSONWriter::writeDefault(const std::string &s, const char(&x)[N]){
//std::cout << "JSONReader::writeDefault(char U) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(char U) : " << s << " " << x << std::endl;
if (s.size())
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
else
ss_ << "\"" << x << "\" ," ;
ss_ << "\"" << x << "\" ," ;
}
// Reader template implementation ////////////////////////////////////////////
@ -173,11 +192,35 @@ namespace Grid
}
// Reader template implementation ////////////////////////////////////////////
template <typename U, typename P>
void JSONReader::readDefault(const std::string &s, std::pair<U,P> &output)
{
U first;
P second;
json j;
if (s.size()){
//std::cout << "JSONReader::readDefault(pair) : " << s << " | "<< jcur_[s] << std::endl;
j = jcur_[s];
} else {
j = jcur_;
}
json::iterator it = j.begin();
jcur_ = *it;
read("", first);
it++;
jcur_ = *it;
read("", second);
output = std::pair<U,P>(first,second);
}
template <typename U>
void JSONReader::readDefault(const std::string &s, std::complex<U> &output)
{
U tmp1, tmp2;
//std::cout << "JSONReader::readDefault( complex U) : " << s << " : "<< jcur_ << std::endl;
//std::cout << "JSONReader::readDefault(complex U) : " << s << " : "<< jcur_ << std::endl;
json j = jcur_;
json::iterator it = j.begin();
jcur_ = *it;

View File

@ -70,8 +70,8 @@ XmlReader::XmlReader(const char *xmlstring,string toplev) : fileName_("")
pugi::xml_parse_result result;
result = doc_.load_string(xmlstring);
if ( !result ) {
cerr << "XML error description: " << result.description() << "\n";
cerr << "XML error offset : " << result.offset << "\n";
cerr << "XML error description (from char *): " << result.description() << "\nXML\n"<< xmlstring << "\n";
cerr << "XML error offset (from char *) " << result.offset << "\nXML\n"<< xmlstring <<"\n";
abort();
}
if ( toplev == std::string("") ) {
@ -87,8 +87,8 @@ XmlReader::XmlReader(const string &fileName,string toplev) : fileName_(fileName)
pugi::xml_parse_result result;
result = doc_.load_file(fileName_.c_str());
if ( !result ) {
cerr << "XML error description: " << result.description() << "\n";
cerr << "XML error offset : " << result.offset << "\n";
cerr << "XML error description: " << result.description() <<" "<< fileName_ <<"\n";
cerr << "XML error offset : " << result.offset <<" "<< fileName_ <<"\n";
abort();
}
if ( toplev == std::string("") ) {

View File

@ -82,11 +82,11 @@ namespace Optimization {
double tmp[2]={a,b};
return vld1q_f64(tmp);
}
//Real double // N:tbc
//Real double
inline float64x2_t operator()(double a){
return vdupq_n_f64(a);
}
//Integer // N:tbc
//Integer
inline uint32x4_t operator()(Integer a){
return vdupq_n_u32(a);
}
@ -124,33 +124,32 @@ namespace Optimization {
// Nils: Vset untested; not used currently in Grid at all;
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
struct Vset{
// Complex float // N:ok
// Complex float
inline float32x4_t operator()(Grid::ComplexF *a){
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
return vld1q_f32(tmp);
}
// Complex double // N:ok
// Complex double
inline float64x2_t operator()(Grid::ComplexD *a){
double tmp[2]={a[0].imag(),a[0].real()};
return vld1q_f64(tmp);
}
// Real float // N:ok
// Real float
inline float32x4_t operator()(float *a){
float tmp[4]={a[3],a[2],a[1],a[0]};
return vld1q_f32(tmp);
}
// Real double // N:ok
// Real double
inline float64x2_t operator()(double *a){
double tmp[2]={a[1],a[0]};
return vld1q_f64(tmp);
}
// Integer // N:ok
// Integer
inline uint32x4_t operator()(Integer *a){
return vld1q_dup_u32(a);
}
};
// N:leaving as is
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
@ -249,9 +248,9 @@ namespace Optimization {
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
// no fma, use mul and add
//float32x4_t r5;
//r5 = vmulq_f32(r0, a);
//return vaddq_f32(r4, r5);
// float32x4_t r5;
// r5 = vmulq_f32(r0, a);
// return vaddq_f32(r4, r5);
}
// Complex double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
@ -272,9 +271,9 @@ namespace Optimization {
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
// no fma, use mul and add
//float64x2_t r5;
//r5 = vmulq_f64(r0, a);
//return vaddq_f64(r4, r5);
// float64x2_t r5;
// r5 = vmulq_f64(r0, a);
// return vaddq_f64(r4, r5);
}
};
@ -421,11 +420,6 @@ namespace Optimization {
}
}
// working, but no restriction on n
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
// restriction on n
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
@ -441,7 +435,7 @@ namespace Optimization {
sb = vcvt_high_f32_f16(h);
// there is no direct conversion from lower float32x4_t to float64x2_t
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// workaround for clang
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
@ -547,7 +541,7 @@ namespace Optimization {
//Complex double Reduce
template<> // N:by Boyle
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
u128d conv; conv.v = in;
return Grid::ComplexD(conv.f[0],conv.f[1]);
@ -562,9 +556,7 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, uint32x4_t>::operator()(uint32x4_t in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
return vaddvq_u32(in);
}
}
@ -603,4 +595,5 @@ namespace Optimization {
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}
}

View File

@ -376,7 +376,18 @@ class Grid_simd {
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
}
friend inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
friend inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
}
friend inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
}
friend inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
}
////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across
// all subtypes; may not be a good assumption, but could

View File

@ -400,11 +400,13 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
splicetime-=usecond();
same_node = same_node && GatherSimd(source,dimension,shift,0x3,compress,face_idx);
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
same_node = same_node && tmp;
splicetime+=usecond();
} else {
nosplicetime-=usecond();
same_node = same_node && Gather(source,dimension,shift,0x3,compress,face_idx);
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx);
same_node = same_node && tmp;
nosplicetime+=usecond();
}
} else {
@ -412,13 +414,15 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
splicetime-=usecond();
// if checkerboard is unfavourable take two passes
// both with block stride loop iteration
same_node = same_node && GatherSimd(source,dimension,shift,0x1,compress,face_idx);
same_node = same_node && GatherSimd(source,dimension,shift,0x2,compress,face_idx);
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx);
same_node = same_node && tmp1 && tmp2;
splicetime+=usecond();
} else {
nosplicetime-=usecond();
same_node = same_node && Gather(source,dimension,shift,0x1,compress,face_idx);
same_node = same_node && Gather(source,dimension,shift,0x2,compress,face_idx);
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx);
same_node = same_node && tmp1 && tmp2;
nosplicetime+=usecond();
}
}

View File

@ -175,7 +175,7 @@ class TensorIndexRecursion {
}
}
template<class vtype,int N> inline static
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0)),N> &arg, int i,int j)
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0,0)),N> &arg, int i,int j)
{
for(int ii=0;ii<N;ii++){
TensorIndexRecursion<Level-1>::pokeIndex(ret._internal[ii],arg._internal[ii],i,j);
@ -191,7 +191,7 @@ class TensorIndexRecursion {
}}
}
template<class vtype,int N> inline static
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0)),N> &arg, int i,int j)
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0,0)),N> &arg, int i,int j)
{
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){

View File

@ -51,7 +51,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define PARALLEL_CRITICAL
#endif
#define parallel_region PARALLEL_REGION
#define parallel_for PARALLEL_FOR_LOOP for
#define parallel_for_internal PARALLEL_FOR_LOOP_INTERN for
#define parallel_for_nest2 PARALLEL_NESTED_LOOP2 for
namespace Grid {

View File

@ -208,7 +208,7 @@ static int Grid_is_initialised = 0;
void Grid_init(int *argc,char ***argv)
{
GridLogger::StopWatch.Start();
GridLogger::GlobalStopWatch.Start();
std::string arg;
@ -243,6 +243,12 @@ void Grid_init(int *argc,char ***argv)
fname<<CartesianCommunicator::RankWorld();
fp=freopen(fname.str().c_str(),"w",stdout);
assert(fp!=(FILE *)NULL);
std::ostringstream ename;
ename<<"Grid.stderr.";
ename<<CartesianCommunicator::RankWorld();
fp=freopen(ename.str().c_str(),"w",stderr);
assert(fp!=(FILE *)NULL);
}
////////////////////////////////////

View File

@ -7,7 +7,7 @@ namespace Grid{
class Lexicographic {
public:
static inline void CoorFromIndex (std::vector<int>& coor,int index,std::vector<int> &dims){
static inline void CoorFromIndex (std::vector<int>& coor,int index,const std::vector<int> &dims){
int nd= dims.size();
coor.resize(nd);
for(int d=0;d<nd;d++){
@ -16,7 +16,7 @@ namespace Grid{
}
}
static inline void IndexFromCoor (std::vector<int>& coor,int &index,std::vector<int> &dims){
static inline void IndexFromCoor (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
int nd=dims.size();
int stride=1;
index=0;
@ -26,6 +26,25 @@ namespace Grid{
}
}
static inline void IndexFromCoorReversed (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
int nd=dims.size();
int stride=1;
index=0;
for(int d=nd-1;d>=0;d--){
index = index+stride*coor[d];
stride=stride*dims[d];
}
}
static inline void CoorFromIndexReversed (std::vector<int>& coor,int index,const std::vector<int> &dims){
int nd= dims.size();
coor.resize(nd);
for(int d=nd-1;d>=0;d--){
coor[d] = index % dims[d];
index = index / dims[d];
}
}
};
}

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_serialisation.cc
@ -29,12 +29,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3);
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
@ -79,14 +78,14 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
write(writer, "testobject", object);
}
R reader(filename);
O buf;
bool good;
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
@ -98,7 +97,7 @@ int main(int argc,char **argv)
{
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml");
// test basic type writing
std::cout << "-- basic writing to 'bother.xml'..." << std::endl;
push(WR,"BasicTypes");
@ -112,12 +111,12 @@ int main(int argc,char **argv)
write(WR,"d",d);
write(WR,"b",b);
pop(WR);
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::vector<myclass> vec;
std::pair<myenum, myenum> pair;
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj);
WR.write("obj2", obj);
@ -132,11 +131,11 @@ int main(int argc,char **argv)
std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
write(WR, "objpair", pair);
std::cout << "-- pair writing to std::cout:" << std::endl;
std::cout << pair << std::endl;
// read tests
std::cout << "\n==== IO self-consistency tests" << std::endl;
//// XML
@ -151,6 +150,11 @@ int main(int argc,char **argv)
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
ioTest<TextWriter, TextReader>("iotest.dat", pair, "text (pair of objects)");
//// text
ioTest<JSONWriter, JSONReader>("iotest.json", obj, "JSON (object) ");
ioTest<JSONWriter, JSONReader>("iotest.json", vec, "JSON (vector of objects)");
ioTest<JSONWriter, JSONReader>("iotest.json", pair, "JSON (pair of objects)");
//// HDF5
#undef HAVE_HDF5
#ifdef HAVE_HDF5
@ -158,13 +162,13 @@ int main(int argc,char **argv)
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", pair, "HDF5 (pair of objects)");
#endif
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d;
vec3d dv, buf;
double d = 0.;
dv.resize(4);
for (auto &v1: dv)
{
@ -180,14 +184,14 @@ int main(int argc,char **argv)
}
std::cout << "original 3D vector:" << std::endl;
std::cout << dv << std::endl;
Flatten<vec3d> flatdv(dv);
std::cout << "\ndimensions:" << std::endl;
std::cout << flatdv.getDim() << std::endl;
std::cout << "\nflattened vector:" << std::endl;
std::cout << flatdv.getFlatVector() << std::endl;
Reconstruct<vec3d> rec(flatdv.getFlatVector(), flatdv.getDim());
std::cout << "\nreconstructed vector:" << std::endl;
std::cout << flatdv.getVector() << std::endl;
@ -199,10 +203,12 @@ int main(int argc,char **argv)
{
JSONWriter JW("bother.json");
// test basic type writing
myenum a = myenum::red;
push(JW,"BasicTypes");
write(JW,std::string("i16"),i16);
write(JW,"myenum",a);
write(JW,"u16",u16);
write(JW,"i32",i32);
write(JW,"u32",u32);
@ -212,23 +218,25 @@ int main(int argc,char **argv)
write(JW,"d",d);
write(JW,"b",b);
pop(JW);
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::cout << obj << std::endl;
std::cout << "-- serialisable class writing to 'bother.json'..." << std::endl;
write(JW,"obj",obj);
JW.write("obj2", obj);
std::cout << obj << std::endl;
std::vector<myclass> vec;
vec.push_back(myclass(1234));
vec.push_back(myclass(5678));
vec.push_back(myclass(3838));
write(JW, "objvec", vec);
}
{
JSONReader RD("bother.json");
myclass jcopy1;
@ -238,8 +246,9 @@ int main(int argc,char **argv)
std::cout << "Loaded (JSON) -----------------" << std::endl;
std::cout << jcopy1 << std::endl << jveccopy1 << std::endl;
}
/*
/*
// This is still work in progress
{
// Testing the next element function

View File

@ -1,4 +1,4 @@
SUBDIRS = . core forces hmc solver debug smearing IO
SUBDIRS = . core forces hmc solver debug smearing IO lanczos
if BUILD_CHROMA_REGRESSION
SUBDIRS+= qdpxx

View File

@ -80,31 +80,47 @@ int main (int argc, char ** argv)
LatticeFermionD src_o(FrbGrid);
LatticeFermionD result_o(FrbGrid);
LatticeFermionD result_o_2(FrbGrid);
LatticeFermionD result_cg(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o.checkerboard = Odd;
result_o = zero;
result_o_2.checkerboard = Odd;
result_o_2 = zero;
result_cg.checkerboard = Odd;
result_cg = zero;
LatticeFermionD result_mcg(result_cg);
LatticeFermionD result_rlcg(result_cg);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
SchurDiagMooeeOperator<DomainWallFermionFH,LatticeFermionF> HermOpEO_f(Ddwf_f);
//#define DO_MIXED_CG
#define DO_RLUP_CG
#ifdef DO_MIXED_CG
std::cout << "Starting mixed CG" << std::endl;
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(1.0e-8, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
mCG.InnerTolerance = 3.0e-5;
mCG(src_o,result_o);
mCG(src_o,result_mcg);
#endif
#ifdef DO_RLUP_CG
std::cout << "Starting reliable update CG" << std::endl;
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> rlCG(1.e-8, 10000, 0.1, FrbGrid_f, HermOpEO_f, HermOpEO);
rlCG(src_o,result_rlcg);
#endif
std::cout << "Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o_2);
CG(HermOpEO,src_o,result_cg);
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << "Diff between mixed and regular CG: " << diff << std::endl;
#ifdef DO_MIXED_CG
LatticeFermionD diff_mcg(FrbGrid);
RealD vdiff_mcg = axpy_norm(diff_mcg, -1.0, result_cg, result_mcg);
std::cout << "Diff between mixed and regular CG: " << vdiff_mcg << std::endl;
#endif
#ifdef DO_RLUP_CG
LatticeFermionD diff_rlcg(FrbGrid);
RealD vdiff_rlcg = axpy_norm(diff_rlcg, -1.0, result_cg, result_rlcg);
std::cout << "Diff between reliable update and regular CG: " << vdiff_rlcg << std::endl;
#endif
Grid_finalize();
}

View File

@ -48,7 +48,7 @@ int main(int argc, char ** argv) {
double volume = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian rbFine(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian rbFine(&Fine);
GridParallelRNG fRNG(&Fine);
// fRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});

View File

@ -47,7 +47,7 @@ int main (int argc, char ** argv)
mask[0]=0;
GridCartesian Fine (latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBFine(latt_size,simd_layout,mpi_layout,mask,1);
GridRedBlackCartesian RBFine(&Fine,mask,1);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));

View File

@ -47,7 +47,7 @@ int main (int argc, char ** argv)
mask[0]=0;
GridCartesian Fine (latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBFine(latt_size,simd_layout,mpi_layout,mask,1);
GridRedBlackCartesian RBFine(&Fine,mask,1);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));

View File

@ -0,0 +1,239 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_dwf_eofa_even_odd.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
const int Ls = 8;
// GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeFermion src (FGrid); random(RNG5, src);
LatticeFermion phi (FGrid); random(RNG5, phi);
LatticeFermion chi (FGrid); random(RNG5, chi);
LatticeFermion result(FGrid); result = zero;
LatticeFermion ref (FGrid); ref = zero;
LatticeFermion tmp (FGrid); tmp = zero;
LatticeFermion err (FGrid); err = zero;
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)
Umu = zero;
for(int nn=0; nn<Nd; nn++){
random(RNG4, U[nn]);
if(nn>0){ U[nn] = zero; }
PokeIndex<LorentzIndex>(Umu, U[nn], nn);
}
RealD mq1 = 0.1;
RealD mq2 = 0.5;
RealD mq3 = 1.0;
RealD shift = 0.1234;
RealD M5 = 1.8;
int pm = 1;
DomainWallEOFAFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mq1, mq2, mq3, shift, pm, M5);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
LatticeFermion r_eeoo(FGrid);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Meo + Moe + Moo + Mee = Munprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
Ddwf.Meooe(src_e, r_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
Ddwf.Meooe(src_o, r_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
Ddwf.Mooee(src_e, r_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
Ddwf.Mooee(src_o, r_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
setCheckerboard(r_eeoo, r_e);
setCheckerboard(r_eeoo, r_o);
r_eo = r_eo + r_eeoo;
Ddwf.M(src, ref);
// std::cout << GridLogMessage << r_eo << std::endl;
// std::cout << GridLogMessage << ref << std::endl;
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
LatticeComplex cerr(FGrid);
cerr = localInnerProduct(err,err);
// std::cout << GridLogMessage << cerr << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
LatticeFermion chi_e (FrbGrid);
LatticeFermion chi_o (FrbGrid);
LatticeFermion dchi_e(FrbGrid);
LatticeFermion dchi_o(FrbGrid);
LatticeFermion phi_e (FrbGrid);
LatticeFermion phi_o (FrbGrid);
LatticeFermion dphi_e(FrbGrid);
LatticeFermion dphi_o(FrbGrid);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
Ddwf.Meooe (chi_e, dchi_o);
Ddwf.Meooe (chi_o, dchi_e);
Ddwf.MeooeDag(phi_e, dphi_o);
Ddwf.MeooeDag(phi_o, dphi_e);
ComplexD pDce = innerProduct(phi_e, dchi_e);
ComplexD pDco = innerProduct(phi_o, dchi_o);
ComplexD cDpe = innerProduct(chi_e, dphi_e);
ComplexD cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco-conj(cDpe) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.Mooee (chi_e, src_e);
Ddwf.MooeeInv(src_e, phi_e);
Ddwf.Mooee (chi_o, src_o);
Ddwf.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInvDag MeeDag = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.MooeeDag (chi_e, src_e);
Ddwf.MooeeInvDag(src_e, phi_e);
Ddwf.MooeeDag (chi_o, src_o);
Ddwf.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MpcDagMpc is Hermitian " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
random(RNG5, phi);
random(RNG5, chi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
RealD t1,t2;
SchurDiagMooeeOperator<DomainWallEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e, dchi_e, t1, t2);
HermOpEO.MpcDagMpc(chi_o, dchi_o, t1, t2);
HermOpEO.MpcDagMpc(phi_e, dphi_e, t1, t2);
HermOpEO.MpcDagMpc(phi_o, dphi_o, t1, t2);
pDce = innerProduct(phi_e, dchi_e);
pDco = innerProduct(phi_o, dchi_o);
cDpe = innerProduct(chi_e, dphi_e);
cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDco-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDce-conj(cDpe) << std::endl;
Grid_finalize();
}

View File

@ -47,7 +47,7 @@ int main (int argc, char ** argv)
vol = vol * latt_size[d];
}
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGRID(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGRID(&GRID);
LatticeComplexD one(&GRID);
LatticeComplexD zz(&GRID);

View File

@ -33,22 +33,68 @@ using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
//typedef GparityDomainWallFermionD GparityDiracOp;
//typedef DomainWallFermionD StandardDiracOp;
//#define DOP_PARAMS
typedef GparityMobiusFermionD GparityDiracOp;
typedef MobiusFermionD StandardDiracOp;
#define DOP_PARAMS ,1.5, 0.5
typedef typename GparityDiracOp::FermionField GparityFermionField;
typedef typename GparityDiracOp::GaugeField GparityGaugeField;
typedef typename GparityFermionField::vector_type vComplexType;
typedef typename StandardDiracOp::FermionField StandardFermionField;
typedef typename StandardDiracOp::GaugeField StandardGaugeField;
enum{ same_vComplex = std::is_same<vComplexType, typename StandardFermionField::vector_type>::value };
static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIMD complex type");
int main (int argc, char ** argv)
{
const int nu = 3;
int nu = 0;
Grid_init(&argc,&argv);
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--Gparity-dir"){
std::stringstream ss; ss << argv[i+1]; ss >> nu;
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
}
}
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Testing Gparity Dirac operator "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexType::Nsimd()<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
const int Ls=4;
const int L =4;
std::vector<int> latt_2f(Nd,L);
std::vector<int> latt_1f(Nd,L); latt_1f[nu] = 2*L;
//const int L =4;
//std::vector<int> latt_2f(Nd,L);
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> latt_2f = GridDefaultLatt();
std::vector<int> latt_1f(latt_2f); latt_1f[nu] = 2*latt_2f[nu];
int L = latt_2f[nu];
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexType::Nsimd());
std::cout << GridLogMessage << "SIMD layout: ";
for(int i=0;i<simd_layout.size();i++) std::cout << simd_layout[i] << " ";
std::cout << std::endl;
std::vector<int> mpi_layout = GridDefaultMpi(); //node layout
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
@ -67,13 +113,13 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu_2f(UGrid_2f);
GparityGaugeField Umu_2f(UGrid_2f);
SU3::HotConfiguration(RNG4_2f,Umu_2f);
LatticeFermion src (FGrid_2f);
LatticeFermion tmpsrc(FGrid_2f);
FermionField src_2f(FGrid_2f);
LatticeFermion src_1f(FGrid_1f);
StandardFermionField src (FGrid_2f);
StandardFermionField tmpsrc(FGrid_2f);
GparityFermionField src_2f(FGrid_2f);
StandardFermionField src_1f(FGrid_1f);
// Replicate fermion source
random(RNG5_2f,src);
@ -81,8 +127,8 @@ int main (int argc, char ** argv)
tmpsrc=src*2.0;
PokeIndex<0>(src_2f,tmpsrc,1);
LatticeFermion result_1f(FGrid_1f); result_1f=zero;
LatticeGaugeField Umu_1f(UGrid_1f);
StandardFermionField result_1f(FGrid_1f); result_1f=zero;
StandardGaugeField Umu_1f(UGrid_1f);
Replicate(Umu_2f,Umu_1f);
//Coordinate grid for reference
@ -92,7 +138,7 @@ int main (int argc, char ** argv)
//Copy-conjugate the gauge field
//First C-shift the lattice by Lx/2
{
LatticeGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
StandardGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
Umu_1f = where( xcoor_1f >= Integer(L), Umu_shift, Umu_1f );
// hack test to check the same
@ -101,7 +147,7 @@ int main (int argc, char ** argv)
cout << GridLogMessage << "Umu diff " << norm2(Umu_shift)<<std::endl;
//Make the gauge field antiperiodic in nu-direction
LatticeColourMatrix Unu(UGrid_1f);
decltype(PeekIndex<LorentzIndex>(Umu_1f,nu)) Unu(UGrid_1f);
Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
Unu = where(xcoor_1f == Integer(2*L-1), -Unu, Unu);
PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
@ -115,33 +161,33 @@ int main (int argc, char ** argv)
RealD mass=0.0;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5);
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
LatticeFermion src_o_1f(FrbGrid_1f);
LatticeFermion result_o_1f(FrbGrid_1f);
StandardFermionField src_o_1f(FrbGrid_1f);
StandardFermionField result_o_1f(FrbGrid_1f);
pickCheckerboard(Odd,src_o_1f,src_1f);
result_o_1f=zero;
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
SchurDiagMooeeOperator<StandardDiracOp,StandardFermionField> HermOpEO(Ddwf);
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
CG(HermOpEO,src_o_1f,result_o_1f);
// const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
GparityDomainWallFermionR::ImplParams params;
GparityDiracOp::ImplParams params;
params.twists = twists;
GparityDomainWallFermionR GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5,params);
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
for(int disp=-1;disp<=1;disp+=2)
for(int mu=0;mu<5;mu++)
{
FermionField Dsrc_2f(FGrid_2f);
GparityFermionField Dsrc_2f(FGrid_2f);
LatticeFermion Dsrc_1f(FGrid_1f);
LatticeFermion Dsrc_2freplica(FGrid_1f);
LatticeFermion Dsrc_2freplica0(FGrid_1f);
LatticeFermion Dsrc_2freplica1(FGrid_1f);
StandardFermionField Dsrc_1f(FGrid_1f);
StandardFermionField Dsrc_2freplica(FGrid_1f);
StandardFermionField Dsrc_2freplica0(FGrid_1f);
StandardFermionField Dsrc_2freplica1(FGrid_1f);
if ( mu ==0 ) {
std::cout << GridLogMessage<< " Cross checking entire hopping term"<<std::endl;
@ -156,8 +202,8 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "S norms "<< norm2(src_2f) << " " << norm2(src_1f) <<std::endl;
std::cout << GridLogMessage << "D norms "<< norm2(Dsrc_2f)<< " " << norm2(Dsrc_1f) <<std::endl;
LatticeFermion Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
LatticeFermion Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
StandardFermionField Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
StandardFermionField Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
// Dsrc_2f1 = Dsrc_2f1 - Dsrc_2f0;
// std::cout << GridLogMessage << " Cross check two halves " <<norm2(Dsrc_2f1)<<std::endl;
@ -174,20 +220,20 @@ int main (int argc, char ** argv)
}
{
FermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
FermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
GparityFermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
GparityFermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
FermionField chi_e (FrbGrid_2f);
FermionField chi_o (FrbGrid_2f);
GparityFermionField chi_e (FrbGrid_2f);
GparityFermionField chi_o (FrbGrid_2f);
FermionField dchi_e (FrbGrid_2f);
FermionField dchi_o (FrbGrid_2f);
GparityFermionField dchi_e (FrbGrid_2f);
GparityFermionField dchi_o (FrbGrid_2f);
FermionField phi_e (FrbGrid_2f);
FermionField phi_o (FrbGrid_2f);
GparityFermionField phi_e (FrbGrid_2f);
GparityFermionField phi_o (FrbGrid_2f);
FermionField dphi_e (FrbGrid_2f);
FermionField dphi_o (FrbGrid_2f);
GparityFermionField dphi_e (FrbGrid_2f);
GparityFermionField dphi_o (FrbGrid_2f);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
@ -212,14 +258,14 @@ int main (int argc, char ** argv)
}
FermionField result_2f(FGrid_2f); result_2f=zero;
FermionField src_o_2f(FrbGrid_2f);
FermionField result_o_2f(FrbGrid_2f);
GparityFermionField result_2f(FGrid_2f); result_2f=zero;
GparityFermionField src_o_2f(FrbGrid_2f);
GparityFermionField result_o_2f(FrbGrid_2f);
pickCheckerboard(Odd,src_o_2f,src_2f);
result_o_2f=zero;
ConjugateGradient<FermionField> CG2f(1.0e-8,10000);
SchurDiagMooeeOperator<GparityDomainWallFermionR,FermionField> HermOpEO2f(GPDdwf);
ConjugateGradient<GparityFermionField> CG2f(1.0e-8,10000);
SchurDiagMooeeOperator<GparityDiracOp,GparityFermionField> HermOpEO2f(GPDdwf);
CG2f(HermOpEO2f,src_o_2f,result_o_2f);
std::cout << "2f cb "<<result_o_2f.checkerboard<<std::endl;
@ -227,10 +273,10 @@ int main (int argc, char ** argv)
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
LatticeFermion res0o (FrbGrid_2f);
LatticeFermion res1o (FrbGrid_2f);
LatticeFermion res0 (FGrid_2f);
LatticeFermion res1 (FGrid_2f);
StandardFermionField res0o (FrbGrid_2f);
StandardFermionField res1o (FrbGrid_2f);
StandardFermionField res0 (FGrid_2f);
StandardFermionField res1 (FGrid_2f);
res0=zero;
res1=zero;
@ -244,9 +290,9 @@ int main (int argc, char ** argv)
setCheckerboard(res0,res0o);
setCheckerboard(res1,res1o);
LatticeFermion replica (FGrid_1f);
LatticeFermion replica0(FGrid_1f);
LatticeFermion replica1(FGrid_1f);
StandardFermionField replica (FGrid_1f);
StandardFermionField replica0(FGrid_1f);
StandardFermionField replica1(FGrid_1f);
Replicate(res0,replica0);
Replicate(res1,replica1);

View File

@ -40,7 +40,7 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -84,7 +84,7 @@ int main(int argc, char **argv) {
double volume = latt_size[0] * latt_size[1] * latt_size[2] * latt_size[3];
GridCartesian Fine(latt_size, simd_layout, mpi_layout);
GridRedBlackCartesian rbFine(latt_size, simd_layout, mpi_layout);
GridRedBlackCartesian rbFine(&Fine);
GridParallelRNG FineRNG(&Fine);
GridSerialRNG SerialRNG;
GridSerialRNG SerialRNG1;

View File

@ -0,0 +1,241 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_dwf_eofa_even_odd.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
const int Ls = 8;
// GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeFermion src (FGrid); random(RNG5, src);
LatticeFermion phi (FGrid); random(RNG5, phi);
LatticeFermion chi (FGrid); random(RNG5, chi);
LatticeFermion result(FGrid); result = zero;
LatticeFermion ref (FGrid); ref = zero;
LatticeFermion tmp (FGrid); tmp = zero;
LatticeFermion err (FGrid); err = zero;
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)
Umu = zero;
for(int nn=0; nn<Nd; nn++){
random(RNG4, U[nn]);
if(nn>0){ U[nn] = zero; }
PokeIndex<LorentzIndex>(Umu, U[nn], nn);
}
RealD b = 2.5;
RealD c = 1.5;
RealD mq1 = 0.1;
RealD mq2 = 0.5;
RealD mq3 = 1.0;
RealD shift = 0.1234;
RealD M5 = 1.8;
int pm = 1;
MobiusEOFAFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mq1, mq2, mq3, shift, pm, M5, b, c);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
LatticeFermion r_eeoo(FGrid);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Meo + Moe + Moo + Mee = Munprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
Ddwf.Meooe(src_e, r_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
Ddwf.Meooe(src_o, r_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
Ddwf.Mooee(src_e, r_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
Ddwf.Mooee(src_o, r_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
setCheckerboard(r_eeoo, r_e);
setCheckerboard(r_eeoo, r_o);
r_eo = r_eo + r_eeoo;
Ddwf.M(src, ref);
// std::cout << GridLogMessage << r_eo << std::endl;
// std::cout << GridLogMessage << ref << std::endl;
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
LatticeComplex cerr(FGrid);
cerr = localInnerProduct(err,err);
// std::cout << GridLogMessage << cerr << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
LatticeFermion chi_e (FrbGrid);
LatticeFermion chi_o (FrbGrid);
LatticeFermion dchi_e(FrbGrid);
LatticeFermion dchi_o(FrbGrid);
LatticeFermion phi_e (FrbGrid);
LatticeFermion phi_o (FrbGrid);
LatticeFermion dphi_e(FrbGrid);
LatticeFermion dphi_o(FrbGrid);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
Ddwf.Meooe (chi_e, dchi_o);
Ddwf.Meooe (chi_o, dchi_e);
Ddwf.MeooeDag(phi_e, dphi_o);
Ddwf.MeooeDag(phi_o, dphi_e);
ComplexD pDce = innerProduct(phi_e, dchi_e);
ComplexD pDco = innerProduct(phi_o, dchi_o);
ComplexD cDpe = innerProduct(chi_e, dphi_e);
ComplexD cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco-conj(cDpe) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.Mooee (chi_e, src_e);
Ddwf.MooeeInv(src_e, phi_e);
Ddwf.Mooee (chi_o, src_o);
Ddwf.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInvDag MeeDag = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.MooeeDag (chi_e, src_e);
Ddwf.MooeeInvDag(src_e, phi_e);
Ddwf.MooeeDag (chi_o, src_o);
Ddwf.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MpcDagMpc is Hermitian " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
random(RNG5, phi);
random(RNG5, chi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
RealD t1,t2;
SchurDiagMooeeOperator<MobiusEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e, dchi_e, t1, t2);
HermOpEO.MpcDagMpc(chi_o, dchi_o, t1, t2);
HermOpEO.MpcDagMpc(phi_e, dphi_e, t1, t2);
HermOpEO.MpcDagMpc(phi_o, dphi_o, t1, t2);
pDce = innerProduct(phi_e, dchi_e);
pDco = innerProduct(phi_o, dchi_o);
cDpe = innerProduct(chi_e, dphi_e);
cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDco-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDce-conj(cDpe) << std::endl;
Grid_finalize();
}

View File

@ -40,7 +40,7 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -52,7 +52,7 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -37,8 +37,15 @@ RealD InverseApproximation(RealD x){
RealD SqrtApproximation(RealD x){
return std::sqrt(x);
}
RealD Approximation32(RealD x){
return std::pow(x,-1.0/32.0);
}
RealD Approximation2(RealD x){
return std::pow(x,-1.0/2.0);
}
RealD StepFunction(RealD x){
if ( x<0.1 ) return 1.0;
if ( x<10.0 ) return 1.0;
else return 0.0;
}
@ -56,7 +63,6 @@ int main (int argc, char ** argv)
Chebyshev<LatticeFermion> ChebyInv(lo,hi,2000,InverseApproximation);
{
std::ofstream of("chebyinv");
ChebyInv.csv(of);
@ -78,7 +84,6 @@ int main (int argc, char ** argv)
ChebyStep.JacksonSmooth();
{
std::ofstream of("chebystepjack");
ChebyStep.csv(of);
@ -100,5 +105,30 @@ int main (int argc, char ** argv)
ChebyNE.csv(of);
}
lo=0.0;
hi=4.0;
Chebyshev<LatticeFermion> Cheby32(lo,hi,2000,Approximation32);
{
std::ofstream of("cheby32");
Cheby32.csv(of);
}
Cheby32.JacksonSmooth();
{
std::ofstream of("cheby32jack");
Cheby32.csv(of);
}
Chebyshev<LatticeFermion> ChebySqrt(lo,hi,2000,Approximation2);
{
std::ofstream of("chebysqrt");
ChebySqrt.csv(of);
}
ChebySqrt.JacksonSmooth();
{
std::ofstream of("chebysqrtjack");
ChebySqrt.csv(of);
}
Grid_finalize();
}

View File

@ -0,0 +1,102 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
DomainWallEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5);
DomainWallEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,108 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityDomainWallEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// GparityDomainWallFermionR::ImplParams params;
FermionAction::ImplParams params;
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, params);
FermionAction Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, params);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,104 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
MobiusEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,109 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityMobiusEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
FermionAction::ImplParams params;
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c, params);
FermionAction Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c, params);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,206 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 25;
const int max_iter = 5000;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
DomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5);
DomainWallFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5);
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> MdagM(Ddwf_f);
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Ddwf_f.FermionGrid());
LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
DomainWallEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5);
DomainWallEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5);
MdagMLinearOperator<DomainWallEOFAFermionR, LatticeFermion> LdagL(Deofa_L);
MdagMLinearOperator<DomainWallEOFAFermionR, LatticeFermion> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Deofa_L.FermionGrid());
LatticeFermion spProj_Phi(Deofa_L.FermionGrid());
std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Omega(tmp[0], tmp[1], -1, 1);
rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Omega(tmp[0], tmp[1], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,209 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa_gparity.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 10;
const int max_iter = 5000;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
GparityDomainWallFermionR::ImplParams params;
GparityDomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, params);
GparityDomainWallFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, params);
SchurDiagMooeeOperator<GparityDomainWallFermionR, FermionField> MdagM(Ddwf_f);
SchurDiagMooeeOperator<GparityDomainWallFermionR, FermionField> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<FermionField> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Ddwf_f.FermionGrid());
FermionField PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<FermionField> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
GparityDomainWallEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, params);
GparityDomainWallEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, params);
MdagMLinearOperator<GparityDomainWallEOFAFermionR, FermionField> LdagL(Deofa_L);
MdagMLinearOperator<GparityDomainWallEOFAFermionR, FermionField> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<FermionField> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<FermionField> SchurSolver(CG);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Deofa_L.FermionGrid());
FermionField spProj_Phi(Deofa_L.FermionGrid());
std::vector<FermionField> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Omega(tmp[0], tmp[1], -1, 1);
rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Omega(tmp[0], tmp[1], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,215 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 10;
const int max_iter = 5000;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
MobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c);
MobiusFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, b, c);
SchurDiagMooeeOperator<MobiusFermionR, LatticeFermion> MdagM(Ddwf_f);
SchurDiagMooeeOperator<MobiusFermionR, LatticeFermion> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Ddwf_f.FermionGrid());
LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
MobiusEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, b, c);
MobiusEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, b, c);
MdagMLinearOperator<MobiusEOFAFermionR, LatticeFermion> LdagL(Deofa_L);
MdagMLinearOperator<MobiusEOFAFermionR, LatticeFermion> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
// Compute -log(Z), where: ( RHMC det ratio ) = Z * ( EOFA det ratio )
RealD Z = std::pow(b+c+1.0,Ls) + mf*std::pow(b+c-1.0,Ls);
Z /= std::pow(b+c+1.0,Ls) + mb*std::pow(b+c-1.0,Ls);
Z = -12.0*grid_dim[0]*grid_dim[1]*grid_dim[2]*grid_dim[3]*std::log(Z);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Deofa_L.FermionGrid());
LatticeFermion spProj_Phi(Deofa_L.FermionGrid());
std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Dtilde(tmp[0], tmp[1]);
Deofa_L.Omega(tmp[1], tmp[0], -1, 1);
rw_eofa[hit] = Z - k*innerProduct(spProj_Phi,tmp[0]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Dtilde(tmp[0], tmp[1]);
Deofa_R.Omega(tmp[1], tmp[0], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[0]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,218 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 10;
const int max_iter = 5000;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
GparityDomainWallFermionR::ImplParams params;
GparityMobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c, params);
GparityMobiusFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, b, c, params);
SchurDiagMooeeOperator<GparityMobiusFermionR, FermionField> MdagM(Ddwf_f);
SchurDiagMooeeOperator<GparityMobiusFermionR, FermionField> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<FermionField> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Ddwf_f.FermionGrid());
FermionField PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<FermionField> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
GparityMobiusEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, b, c, params);
GparityMobiusEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, b, c, params);
MdagMLinearOperator<GparityMobiusEOFAFermionR, FermionField> LdagL(Deofa_L);
MdagMLinearOperator<GparityMobiusEOFAFermionR, FermionField> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<FermionField> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<FermionField> SchurSolver(CG);
// Compute -log(Z), where: ( RHMC det ratio ) = Z * ( EOFA det ratio )
RealD Z = std::pow(b+c+1.0,Ls) + mf*std::pow(b+c-1.0,Ls);
Z /= std::pow(b+c+1.0,Ls) + mb*std::pow(b+c-1.0,Ls);
Z = -12.0*grid_dim[0]*grid_dim[1]*grid_dim[2]*grid_dim[3]*std::log(Z);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Deofa_L.FermionGrid());
FermionField spProj_Phi(Deofa_L.FermionGrid());
std::vector<FermionField> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Dtilde(tmp[0], tmp[1]);
Deofa_L.Omega(tmp[1], tmp[0], -1, 1);
rw_eofa[hit] = 2.0*Z - k*innerProduct(spProj_Phi,tmp[0]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Dtilde(tmp[0], tmp[1]);
Deofa_R.Omega(tmp[1], tmp[0], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[0]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,164 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
LatticeFermion phi (FGrid); gaussian(RNG5, phi);
LatticeFermion Mphi (FGrid);
LatticeFermion MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
DomainWallEOFAFermionR Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5);
DomainWallEOFAFermionR Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(U, RNG5);
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
}
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
dS = zero;
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,169 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityDomainWallEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
FermionField phi (FGrid); gaussian(RNG5, phi);
FermionField Mphi (FGrid);
FermionField MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
FermionAction::ImplParams params;
FermionAction Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, params);
FermionAction Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, params);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(U, RNG5);
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
}
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
dS = zero;
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}

Some files were not shown because too many files have changed in this diff Show More