mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-17 15:27:06 +01:00
Compare commits
156 Commits
dirac-ITT-
...
feature/la
Author | SHA1 | Date | |
---|---|---|---|
27ea2afe86 | |||
78e8704eac | |||
67131d82f2 | |||
615a9448b9 | |||
00164f5ce5 | |||
a7f72eb994 | |||
501fa1614a | |||
5bf42e1e15 | |||
fe4d9b003c | |||
4a699b4da3 | |||
689323f4ee | |||
84b441800f | |||
1ef424b139 | |||
aa66f41c69 | |||
f96c800d25 | |||
32a52d7583 | |||
fa04b6d3c2 | |||
7fab183c0e | |||
9ec9850bdb | |||
0c4ddaea0b | |||
00ebc150ad | |||
0f3e9ae57d | |||
034de160bf | |||
14507fd6e4 | |||
2db05ac214 | |||
31f99574fa | |||
a34c8a2961 | |||
ccd20df827 | |||
e9be293444 | |||
d577211cc3 | |||
f4336e480a | |||
e4d461cb03 | |||
3d63b4894e | |||
08583afaff | |||
b395a312af | |||
66295b99aa | |||
b8654be0ef | |||
a479325349 | |||
f6c3f6bf2d | |||
d83868fdbb | |||
303e0b927d | |||
28ba8a0f48 | |||
f9e28577f3 | |||
8a3aae98f6 | |||
8309f2364b | |||
cac1750078 | |||
27936900e6 | |||
e325929851 | |||
47af3565f4 | |||
4b4d187935 | |||
9aff354ab5 | |||
cb9ff20249 | |||
9fe6ac71ea | |||
f1fa00b71b | |||
bf58557fb1 | |||
10cb37f504 | |||
1374c943d4 | |||
a1d80282ec | |||
4eb8bbbebe | |||
d1c6288c5f | |||
dd949bc428 | |||
bb7378cfc3 | |||
f0e084a88c | |||
153672d8ec | |||
08ca338875 | |||
f7cbf82c04 | |||
07009c569a | |||
09f4cdb11e | |||
1e54882f71 | |||
d54807b8c0 | |||
5625b47c7d | |||
1edcf902b7 | |||
e5c19e1fd7 | |||
a11d0a33d1 | |||
4f8b6f26b4 | |||
073525c5b3 | |||
eb6153080a | |||
f7072d1ac2 | |||
fddeb29d6b | |||
a9ec5cf564 | |||
946a8671b9 | |||
a6eeea777b | |||
771a1b8e79 | |||
bfb68e6f02 | |||
77f7737ccc | |||
18c335198a | |||
5918769f97 | |||
bbaf1ada91 | |||
1950ac9294 | |||
13fa70ac1a | |||
7cb2b11f26 | |||
1184ed29ae | |||
203c7bf6fa | |||
d856327250 | |||
a5fe07c077 | |||
b83b2b1415 | |||
59bd1fe21b | |||
4e907fef2c | |||
67888b657f | |||
74af885d4e | |||
d36d2fb40d | |||
4b4c2a715b | |||
54a5e6c1d0 | |||
f365a83fae | |||
34a9aeb331 | |||
edabb3577f | |||
ce5df177ee | |||
a0bb8e5b46 | |||
46f88e6d72 | |||
dd8f1ea189 | |||
b61835c1a5 | |||
459f70e8d4 | |||
061e48fd73 | |||
ab50145001 | |||
9d45fca8bc | |||
ac9e6b63c0 | |||
e140b3f802 | |||
d9d3d30cc7 | |||
47a12ec7b5 | |||
ec1e2f7a40 | |||
41f73ec083 | |||
6d0786ff9d | |||
b7f93aeb4d | |||
202a7fe900 | |||
7d867a8134 | |||
9939b267d2 | |||
8f4b3049cd | |||
2a6e673a91 | |||
9b6cde173f | |||
9f280b82c4 | |||
7a53dc3715 | |||
9fa07eecde | |||
f64fb7bd77 | |||
2a35449b91 | |||
184af5bd05 | |||
097c9637ee | |||
d9593c4b81 | |||
ac740f73ce | |||
75dc7794b9 | |||
dee68fc728 | |||
a2d3643634 | |||
57002924bc | |||
4a29ab0d0a | |||
0165bcb58e | |||
349d75e483 | |||
e51475703a | |||
1feddf4ba6 | |||
600d7ddc2e | |||
e504260f3d | |||
5e4bea8f20 | |||
6ebf9f15b7 | |||
1d7aa673a4 | |||
b9104f3072 | |||
b672717096 | |||
284ee194b1 | |||
0cd6b1858c |
12
TODO
12
TODO
@ -3,19 +3,19 @@ TODO:
|
||||
|
||||
Large item work list:
|
||||
|
||||
1)- BG/Q port and check
|
||||
1)- BG/Q port and check ; Andrew says ok.
|
||||
2)- Christoph's local basis expansion Lanczos
|
||||
3)- Precision conversion and sort out localConvert <-- partial
|
||||
|
||||
- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
|
||||
--
|
||||
3a)- RNG I/O in ILDG/SciDAC (minor)
|
||||
3b)- Precision conversion and sort out localConvert <-- partial/easy
|
||||
3c)- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
|
||||
4)- Physical propagator interface
|
||||
5)- Conserved currents
|
||||
6)- Multigrid Wilson and DWF, compare to other Multigrid implementations
|
||||
7)- HDCR resume
|
||||
|
||||
Recent DONE
|
||||
|
||||
-- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O. <--- DONE
|
||||
-- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O ; <-- DONE ; bmark cori
|
||||
-- Lanczos Remove DenseVector, DenseMatrix; Use Eigen instead. <-- DONE
|
||||
-- GaugeFix into central location <-- DONE
|
||||
-- Scidac and Ildg metadata handling <-- DONE
|
||||
|
@ -51,7 +51,13 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
||||
std::vector<int> latt4 = GridDefaultLatt();
|
||||
const int Ls=16;
|
||||
int Ls=16;
|
||||
for(int i=0;i<argc;i++)
|
||||
if(std::string(argv[i]) == "-Ls"){
|
||||
std::stringstream ss(argv[i+1]); ss >> Ls;
|
||||
}
|
||||
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
|
190
benchmarks/Benchmark_gparity.cc
Normal file
190
benchmarks/Benchmark_gparity.cc
Normal file
@ -0,0 +1,190 @@
|
||||
#include <Grid/Grid.h>
|
||||
#include <sstream>
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
template<class d>
|
||||
struct scal {
|
||||
d internal;
|
||||
};
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
|
||||
typedef typename GparityDomainWallFermionF::FermionField GparityLatticeFermionF;
|
||||
typedef typename GparityDomainWallFermionD::FermionField GparityLatticeFermionD;
|
||||
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
int Ls=16;
|
||||
for(int i=0;i<argc;i++)
|
||||
if(std::string(argv[i]) == "-Ls"){
|
||||
std::stringstream ss(argv[i+1]); ss >> Ls;
|
||||
}
|
||||
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
std::cout<<GridLogMessage << "Ls = " << Ls << std::endl;
|
||||
|
||||
std::vector<int> latt4 = GridDefaultLatt();
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
|
||||
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
|
||||
|
||||
GparityLatticeFermionF src (FGrid); random(RNG5,src);
|
||||
RealD N2 = 1.0/::sqrt(norm2(src));
|
||||
src = src*N2;
|
||||
|
||||
GparityLatticeFermionF result(FGrid); result=zero;
|
||||
GparityLatticeFermionF ref(FGrid); ref=zero;
|
||||
GparityLatticeFermionF tmp(FGrid);
|
||||
GparityLatticeFermionF err(FGrid);
|
||||
|
||||
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
|
||||
LatticeGaugeFieldF Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4,Umu);
|
||||
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
|
||||
|
||||
RealD mass=0.1;
|
||||
RealD M5 =1.8;
|
||||
|
||||
RealD NP = UGrid->_Nprocessors;
|
||||
RealD NN = UGrid->NodeCount();
|
||||
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermion::Dhop "<<std::endl;
|
||||
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexF::Nsimd()<<std::endl;
|
||||
#ifdef GRID_OMP
|
||||
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
|
||||
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
|
||||
#endif
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
|
||||
|
||||
|
||||
std::cout << GridLogMessage<< "* SINGLE/SINGLE"<<std::endl;
|
||||
GparityDomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
int ncall =1000;
|
||||
if (1) {
|
||||
FGrid->Barrier();
|
||||
Dw.ZeroCounters();
|
||||
Dw.Dhop(src,result,0);
|
||||
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
|
||||
double t0=usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
__SSC_START;
|
||||
Dw.Dhop(src,result,0);
|
||||
__SSC_STOP;
|
||||
}
|
||||
double t1=usecond();
|
||||
FGrid->Barrier();
|
||||
|
||||
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
|
||||
double flops=2*1344*volume*ncall;
|
||||
|
||||
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
|
||||
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
|
||||
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
|
||||
Dw.Report();
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage<< "* SINGLE/HALF"<<std::endl;
|
||||
GparityDomainWallFermionFH DwH(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
if (1) {
|
||||
FGrid->Barrier();
|
||||
DwH.ZeroCounters();
|
||||
DwH.Dhop(src,result,0);
|
||||
double t0=usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
__SSC_START;
|
||||
DwH.Dhop(src,result,0);
|
||||
__SSC_STOP;
|
||||
}
|
||||
double t1=usecond();
|
||||
FGrid->Barrier();
|
||||
|
||||
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
|
||||
double flops=2*1344*volume*ncall;
|
||||
|
||||
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
|
||||
DwH.Report();
|
||||
}
|
||||
|
||||
GridCartesian * UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
|
||||
GridCartesian * FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_d);
|
||||
GridRedBlackCartesian * FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_d);
|
||||
|
||||
|
||||
std::cout << GridLogMessage<< "* DOUBLE/DOUBLE"<<std::endl;
|
||||
GparityLatticeFermionD src_d(FGrid_d);
|
||||
precisionChange(src_d,src);
|
||||
|
||||
LatticeGaugeFieldD Umu_d(UGrid_d);
|
||||
precisionChange(Umu_d,Umu);
|
||||
|
||||
GparityLatticeFermionD result_d(FGrid_d);
|
||||
|
||||
GparityDomainWallFermionD DwD(Umu_d,*FGrid_d,*FrbGrid_d,*UGrid_d,*UrbGrid_d,mass,M5);
|
||||
if (1) {
|
||||
FGrid_d->Barrier();
|
||||
DwD.ZeroCounters();
|
||||
DwD.Dhop(src_d,result_d,0);
|
||||
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
|
||||
double t0=usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
__SSC_START;
|
||||
DwD.Dhop(src_d,result_d,0);
|
||||
__SSC_STOP;
|
||||
}
|
||||
double t1=usecond();
|
||||
FGrid_d->Barrier();
|
||||
|
||||
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
|
||||
double flops=2*1344*volume*ncall;
|
||||
|
||||
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
|
||||
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
|
||||
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
|
||||
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
|
||||
DwD.Report();
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -40,7 +40,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
@ -58,7 +58,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
@ -93,7 +93,7 @@ int main (int argc, char ** argv)
|
||||
std::cout << latt_size.back() << "\t\t";
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
|
||||
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);
|
||||
|
@ -550,6 +550,7 @@ AC_CONFIG_FILES(tests/forces/Makefile)
|
||||
AC_CONFIG_FILES(tests/hadrons/Makefile)
|
||||
AC_CONFIG_FILES(tests/hmc/Makefile)
|
||||
AC_CONFIG_FILES(tests/solver/Makefile)
|
||||
AC_CONFIG_FILES(tests/lanczos/Makefile)
|
||||
AC_CONFIG_FILES(tests/smearing/Makefile)
|
||||
AC_CONFIG_FILES(tests/qdpxx/Makefile)
|
||||
AC_CONFIG_FILES(tests/testu01/Makefile)
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/Algorithms.h
|
||||
|
||||
@ -37,6 +37,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/approx/Chebyshev.h>
|
||||
#include <Grid/algorithms/approx/Remez.h>
|
||||
#include <Grid/algorithms/approx/MultiShiftFunction.h>
|
||||
#include <Grid/algorithms/approx/Forecast.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateResidual.h>
|
||||
@ -44,30 +45,16 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
|
||||
// Lanczos support
|
||||
//#include <Grid/algorithms/iterative/MatrixUtils.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
// Eigen/lanczos
|
||||
// EigCg
|
||||
// MCR
|
||||
// Pcg
|
||||
// Multishift CG
|
||||
// Hdcg
|
||||
// GCR
|
||||
// etc..
|
||||
|
||||
// integrator/Leapfrog
|
||||
// integrator/Omelyan
|
||||
// integrator/ForceGradient
|
||||
|
||||
// montecarlo/hmc
|
||||
// montecarlo/rhmc
|
||||
// montecarlo/metropolis
|
||||
// etc...
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -103,29 +103,32 @@ namespace Grid {
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid)
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
|
||||
// CheckOrthogonal();
|
||||
}
|
||||
void CheckOrthogonal(void){
|
||||
CoarseVector iProj(CoarseGrid);
|
||||
CoarseVector eProj(CoarseGrid);
|
||||
Lattice<CComplex> pokey(CoarseGrid);
|
||||
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
blockProject(iProj,subspace[i],subspace);
|
||||
|
||||
eProj=zero;
|
||||
for(int ss=0;ss<CoarseGrid->oSites();ss++){
|
||||
parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){
|
||||
eProj._odata[ss](i)=CComplex(1.0);
|
||||
}
|
||||
eProj=eProj - iProj;
|
||||
@ -137,6 +140,7 @@ namespace Grid {
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.checkerboard = subspace[0].checkerboard;
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void CreateSubspaceRandom(GridParallelRNG &RNG){
|
||||
@ -147,6 +151,7 @@ namespace Grid {
|
||||
Orthogonalise();
|
||||
}
|
||||
|
||||
/*
|
||||
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
// Run a Lanczos with sloppy convergence
|
||||
@ -195,7 +200,7 @@ namespace Grid {
|
||||
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
@ -230,6 +230,7 @@ namespace Grid {
|
||||
// Barrel shift and collect global pencil
|
||||
std::vector<int> lcoor(Nd), gcoor(Nd);
|
||||
result = source;
|
||||
int pc = processor_coor[dim];
|
||||
for(int p=0;p<processors[dim];p++) {
|
||||
PARALLEL_REGION
|
||||
{
|
||||
@ -240,7 +241,8 @@ namespace Grid {
|
||||
for(int idx=0;idx<sgrid->lSites();idx++) {
|
||||
sgrid->LocalIndexToLocalCoor(idx,cbuf);
|
||||
peekLocalSite(s,result,cbuf);
|
||||
cbuf[dim]+=p*L;
|
||||
cbuf[dim]+=((pc+p) % processors[dim])*L;
|
||||
// cbuf[dim]+=p*L;
|
||||
pokeLocalSite(s,pgbuf,cbuf);
|
||||
}
|
||||
}
|
||||
@ -278,7 +280,6 @@ namespace Grid {
|
||||
flops+= flops_call*NN;
|
||||
|
||||
// writing out result
|
||||
int pc = processor_coor[dim];
|
||||
PARALLEL_REGION
|
||||
{
|
||||
std::vector<int> clbuf(Nd), cgbuf(Nd);
|
||||
|
@ -162,15 +162,10 @@ namespace Grid {
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
ComplexD dot;
|
||||
|
||||
_Mat.M(in,out);
|
||||
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
|
||||
dot = innerProduct(out,out);
|
||||
n2=real(dot);
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
@ -192,10 +187,10 @@ namespace Grid {
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
@ -212,7 +207,6 @@ namespace Grid {
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
@ -270,7 +264,6 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
@ -299,6 +292,45 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
n2 = Mpc(in,out);
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
n1 = real(dot);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
_Mat.Meooe(in,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
_Mat.Mooee(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
return Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -314,6 +346,14 @@ namespace Grid {
|
||||
virtual void operator() (const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||
public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
out = in;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for Multishift solvers for operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -336,6 +376,64 @@ namespace Grid {
|
||||
};
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hermitian operator Linear function and operator function
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||
{}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_Linop.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
||||
: _poly(poly), _Linop(linop) {};
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_poly(_Linop,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in._grid);
|
||||
Field Mtmp(in._grid);
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,7 @@
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,41 +34,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Simple general polynomial with user supplied coefficients
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in._grid);
|
||||
Field Mtmp(in._grid);
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
// std::cout <<"Poly in " <<norm2(in)<<" size "<< Coeffs.size()<<std::endl;
|
||||
// std::cout <<"Coeffs[0]= "<<Coeffs[0]<< " 0 " <<norm2(out)<<std::endl;
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
// std::cout <<"Coeffs "<<n<<"= "<< Coeffs[n]<< " 0 " <<std::endl;
|
||||
// std::cout << n<<" " <<norm2(out)<<std::endl;
|
||||
}
|
||||
};
|
||||
};
|
||||
struct ChebyParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
|
||||
RealD, alpha,
|
||||
RealD, beta,
|
||||
int, Npoly);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Chebyshev approximations
|
||||
@ -82,8 +54,10 @@ namespace Grid {
|
||||
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
RealD diff = hi-lo;
|
||||
for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=(hi-lo)/1000) {
|
||||
RealD diff = hi-lo;
|
||||
RealD delta = (hi-lo)*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
@ -99,6 +73,7 @@ namespace Grid {
|
||||
};
|
||||
|
||||
Chebyshev(){};
|
||||
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
|
||||
|
||||
@ -193,6 +168,47 @@ namespace Grid {
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
|
152
lib/algorithms/approx/Forecast.h
Normal file
152
lib/algorithms/approx/Forecast.h
Normal file
@ -0,0 +1,152 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/approx/Forecast.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef INCLUDED_FORECAST_H
|
||||
#define INCLUDED_FORECAST_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
// Abstract base class.
|
||||
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
|
||||
// and returns a forecasted solution to the system D*psi = phi (psi).
|
||||
template<class Matrix, class Field>
|
||||
class Forecast
|
||||
{
|
||||
public:
|
||||
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
|
||||
};
|
||||
|
||||
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
|
||||
// used to forecast solutions across poles of the EOFA heatbath.
|
||||
//
|
||||
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
|
||||
template<class Matrix, class Field>
|
||||
class ChronoForecast : public Forecast<Matrix,Field>
|
||||
{
|
||||
public:
|
||||
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
|
||||
{
|
||||
int degree = prev_solns.size();
|
||||
Field chi(phi); // forecasted solution
|
||||
|
||||
// Trivial cases
|
||||
if(degree == 0){ chi = zero; return chi; }
|
||||
else if(degree == 1){ return prev_solns[0]; }
|
||||
|
||||
RealD dot;
|
||||
ComplexD xp;
|
||||
Field r(phi); // residual
|
||||
Field Mv(phi);
|
||||
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
|
||||
std::vector<Field> MdagMv(degree,phi);
|
||||
|
||||
// Array to hold the matrix elements
|
||||
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
|
||||
|
||||
// Solution and source vectors
|
||||
std::vector<ComplexD> a(degree);
|
||||
std::vector<ComplexD> b(degree);
|
||||
|
||||
// Orthonormalize the vector basis
|
||||
for(int i=0; i<degree; i++){
|
||||
v[i] *= 1.0/std::sqrt(norm2(v[i]));
|
||||
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
|
||||
}
|
||||
|
||||
// Perform sparse matrix multiplication and construct rhs
|
||||
for(int i=0; i<degree; i++){
|
||||
b[i] = innerProduct(v[i],phi);
|
||||
Mat.M(v[i],Mv);
|
||||
Mat.Mdag(Mv,MdagMv[i]);
|
||||
G[i][i] = innerProduct(v[i],MdagMv[i]);
|
||||
}
|
||||
|
||||
// Construct the matrix
|
||||
for(int j=0; j<degree; j++){
|
||||
for(int k=j+1; k<degree; k++){
|
||||
G[j][k] = innerProduct(v[j],MdagMv[k]);
|
||||
G[k][j] = std::conj(G[j][k]);
|
||||
}}
|
||||
|
||||
// Gauss-Jordan elimination with partial pivoting
|
||||
for(int i=0; i<degree; i++){
|
||||
|
||||
// Perform partial pivoting
|
||||
int k = i;
|
||||
for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
|
||||
if(k != i){
|
||||
xp = b[k];
|
||||
b[k] = b[i];
|
||||
b[i] = xp;
|
||||
for(int j=0; j<degree; j++){
|
||||
xp = G[k][j];
|
||||
G[k][j] = G[i][j];
|
||||
G[i][j] = xp;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert matrix to upper triangular form
|
||||
for(int j=i+1; j<degree; j++){
|
||||
xp = G[j][i]/G[i][i];
|
||||
b[j] -= xp * b[i];
|
||||
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
|
||||
}
|
||||
}
|
||||
|
||||
// Use Gaussian elimination to solve equations and calculate initial guess
|
||||
chi = zero;
|
||||
r = phi;
|
||||
for(int i=degree-1; i>=0; i--){
|
||||
a[i] = 0.0;
|
||||
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
|
||||
a[i] = (b[i]-a[i])/G[i][i];
|
||||
chi += a[i]*v[i];
|
||||
r -= a[i]*MdagMv[i];
|
||||
}
|
||||
|
||||
RealD true_r(0.0);
|
||||
ComplexD tmp;
|
||||
for(int i=0; i<degree; i++){
|
||||
tmp = -b[i];
|
||||
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
|
||||
tmp = std::conj(tmp)*tmp;
|
||||
true_r += std::sqrt(tmp.real());
|
||||
}
|
||||
|
||||
RealD error = std::sqrt(norm2(r)/norm2(phi));
|
||||
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
|
||||
|
||||
return chi;
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -87,15 +87,22 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Cholesky from Eigen
|
||||
// There exists a ldlt that is documented as more stable
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
||||
// Force manifest hermitian to avoid rounding related
|
||||
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
||||
|
||||
#if 0
|
||||
std::cout << " Calling Cholesky ldlt on m_rr " << m_rr <<std::endl;
|
||||
Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();
|
||||
std::cout << " Called Cholesky ldlt on m_rr " << L_ldlt <<std::endl;
|
||||
auto D_ldlt = m_rr.ldlt().vectorD();
|
||||
std::cout << " Called Cholesky ldlt on m_rr " << D_ldlt <<std::endl;
|
||||
#endif
|
||||
|
||||
// std::cout << " Calling Cholesky llt on m_rr " <<std::endl;
|
||||
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
||||
// std::cout << " Called Cholesky llt on m_rr " << L <<std::endl;
|
||||
C = L.adjoint();
|
||||
Cinv = C.inverse();
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Q = R C^{-1}
|
||||
//
|
||||
@ -103,7 +110,6 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
|
||||
//
|
||||
// NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FIXME:: make a sliceMulMatrix to avoid zero vector
|
||||
sliceMulMatrix(Q,Cinv,R,Orthog);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -52,8 +52,8 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
MaxIterations(maxit),
|
||||
ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
|
||||
Field &psi) {
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
@ -78,12 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: p " << a << std::endl;
|
||||
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
@ -92,7 +92,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
std::cout << GridLogIterative << std::setprecision(8)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
|
256
lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
Normal file
256
lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
Normal file
@ -0,0 +1,256 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
|
||||
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer ReliableUpdatesPerformed;
|
||||
|
||||
bool DoFinalCleanup; //Final DP cleanup, defaults to true
|
||||
Integer IterationsToCleanup; //Final DP cleanup step iterations
|
||||
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
GridBase* SinglePrecGrid;
|
||||
RealD Delta; //reliable update parameter
|
||||
|
||||
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
||||
LinearOperatorBase<FieldF> *Linop_fallback;
|
||||
RealD fallback_transition_tol;
|
||||
|
||||
|
||||
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
Delta(_delta),
|
||||
Linop_f(_Linop_f),
|
||||
Linop_d(_Linop_d),
|
||||
SinglePrecGrid(_sp_grid),
|
||||
ErrorOnNoConverge(err_on_no_conv),
|
||||
DoFinalCleanup(true),
|
||||
Linop_fallback(NULL)
|
||||
{};
|
||||
|
||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||
Linop_fallback = &_Linop_fallback;
|
||||
fallback_transition_tol = _fallback_transition_tol;
|
||||
}
|
||||
|
||||
void operator()(const FieldD &src, FieldD &psi) {
|
||||
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
||||
bool using_fallback = false;
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
RealD cp, c, a, d, b, ssq, qq, b_pred;
|
||||
|
||||
FieldD p(src);
|
||||
FieldD mmp(src);
|
||||
FieldD r(src);
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
a = norm2(p);
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
|
||||
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
//Single prec initialization
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
r_f.checkerboard = r.checkerboard;
|
||||
precisionChange(r_f, r);
|
||||
|
||||
FieldF psi_f(r_f);
|
||||
psi_f = zero;
|
||||
|
||||
FieldF p_f(r_f);
|
||||
FieldF mmp_f(r_f);
|
||||
|
||||
RealD MaxResidSinceLastRelUp = cp; //initial residual
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k = 0;
|
||||
int l = 0;
|
||||
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
a = c / d;
|
||||
b_pred = a * (a * qq - d) / c;
|
||||
|
||||
cp = axpy_norm(r_f, -a, mmp_f, r_f);
|
||||
b = cp / c;
|
||||
|
||||
// Fuse these loops ; should be really easy
|
||||
psi_f = a * p_f + psi_f;
|
||||
//p_f = p_f * b + r_f;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
|
||||
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
|
||||
|
||||
if(cp > MaxResidSinceLastRelUp){
|
||||
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
|
||||
MaxResidSinceLastRelUp = cp;
|
||||
}
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
//Although not written in the paper, I assume that I have to add on the final solution
|
||||
precisionChange(mmp, psi_f);
|
||||
psi = psi + mmp;
|
||||
|
||||
|
||||
SolverTimer.Stop();
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
|
||||
if(DoFinalCleanup){
|
||||
//Do a final CG to cleanup
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
|
||||
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
|
||||
CG.ErrorOnNoConverge = ErrorOnNoConverge;
|
||||
CG(Linop_d,src,psi);
|
||||
IterationsToCleanup = CG.IterationsToComplete;
|
||||
}
|
||||
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
|
||||
return;
|
||||
}
|
||||
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
||||
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
||||
precisionChange(mmp, psi_f);
|
||||
psi = psi + mmp;
|
||||
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
r = src - mmp;
|
||||
|
||||
psi_f = zero;
|
||||
precisionChange(r_f, r);
|
||||
cp = norm2(r);
|
||||
MaxResidSinceLastRelUp = cp;
|
||||
|
||||
b = cp/c;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
|
||||
|
||||
l = l+1;
|
||||
}
|
||||
|
||||
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
|
||||
|
||||
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
|
||||
Linop_f_use = Linop_fallback;
|
||||
using_fallback = true;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif
|
@ -7,8 +7,9 @@
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Guido Cossu
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -27,125 +28,282 @@ Author: Guido Cossu
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRL_H
|
||||
#define GRID_IRL_H
|
||||
#ifndef GRID_BIRL_H
|
||||
#define GRID_BIRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
//#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace Grid {
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper class for sorting the evalues AND evectors by Field
|
||||
// Use pointer swizzle on vectors
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////
|
||||
// Move following 100 LOC to lattice/Lattice_basis.h
|
||||
////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class SortEigen {
|
||||
private:
|
||||
static bool less_lmd(RealD left,RealD right){
|
||||
return left > right;
|
||||
}
|
||||
static bool less_pair(std::pair<RealD,Field const*>& left,
|
||||
std::pair<RealD,Field const*>& right){
|
||||
return left.first > (right.first);
|
||||
}
|
||||
|
||||
public:
|
||||
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
|
||||
// : The vector reorder should be done by pointer swizzle somehow
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
|
||||
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
|
||||
|
||||
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
}
|
||||
}
|
||||
|
||||
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
|
||||
|
||||
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
|
||||
|
||||
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
|
||||
for(int i=0;i<N;++i){
|
||||
lmd[i]=it->first;
|
||||
evec[i]=*(it->second);
|
||||
++it;
|
||||
template<class Field>
|
||||
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0]._grid;
|
||||
|
||||
parallel_region
|
||||
{
|
||||
std::vector < vobj > B(Nm); // Thread private
|
||||
|
||||
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis[k]._odata[ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis[j]._odata[ss] = B[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
void push(std::vector<RealD>& lmd,int N) {
|
||||
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
template<class Field>
|
||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0]._grid;
|
||||
|
||||
result.checkerboard = basis[0].checkerboard;
|
||||
parallel_for(int ss=0;ss < grid->oSites();ss++){
|
||||
vobj B = zero;
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B +=Qt(j,k) * basis[k]._odata[ss];
|
||||
}
|
||||
result._odata[ss] = B;
|
||||
}
|
||||
bool saturated(RealD lmd, RealD thrs) {
|
||||
return fabs(lmd) > fabs(thrs);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
if (idx[i] != i) {
|
||||
|
||||
//////////////////////////////////////
|
||||
// idx[i] is a table of desired sources giving a permutation.
|
||||
// Swap v[i] with v[idx[i]].
|
||||
// Find j>i for which _vnew[j] = _vold[i],
|
||||
// track the move idx[j] => idx[i]
|
||||
// track the move idx[i] => i
|
||||
//////////////////////////////////////
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||
|
||||
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
|
||||
idx[j] = idx[i];
|
||||
idx[i] = i;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
|
||||
{
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
|
||||
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
|
||||
});
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
|
||||
{
|
||||
std::vector<int> idx = basisSortGetIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
basisReorderInPlace(_v,sort_vals,idx);
|
||||
}
|
||||
|
||||
// PAB: faster to compute the inner products first then fuse loops.
|
||||
// If performance critical can improve.
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
assert(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class ImplicitlyRestartedLanczosTester
|
||||
{
|
||||
public:
|
||||
virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox);
|
||||
virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox);
|
||||
};
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public ImplicitlyRestartedLanczosTester<Field>
|
||||
{
|
||||
public:
|
||||
LinearFunction<Field> &_HermOpTest;
|
||||
ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOpTest) : _HermOpTest(HermOpTest) { };
|
||||
int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
return TestConvergence(j,resid,B,eval,evalMaxApprox);
|
||||
}
|
||||
int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
Field v(B);
|
||||
RealD eval_poly = eval;
|
||||
// Apply operator
|
||||
_HermOpTest(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval = vnum/vden;
|
||||
v -= eval*B;
|
||||
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
|
||||
return conv;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedLanczos {
|
||||
|
||||
private:
|
||||
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // Nm -- total number of vectors
|
||||
RealD eresid;
|
||||
private:
|
||||
const RealD small = 1.0e-8;
|
||||
int MaxIter;
|
||||
int MinRestart; // Minimum number of restarts; only check for convergence after
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
|
||||
int Nm; // Nm -- total number of vectors
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
int orth_period;
|
||||
|
||||
RealD OrthoTime;
|
||||
RealD eresid, betastp;
|
||||
////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
////////////////////////////////
|
||||
LinearFunction<Field> &_HermOp;
|
||||
LinearFunction<Field> &_HermOpTest;
|
||||
ImplicitlyRestartedLanczosTester<Field> &_Tester;
|
||||
// Default tester provided (we need a ref to something in default case)
|
||||
ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
|
||||
public:
|
||||
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
|
||||
_Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ };
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// PAB:
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Too many options & knobs. Do we really need orth_period
|
||||
// What is the theoretical basis & guarantees of betastp ?
|
||||
// Nstop=Nk viable?
|
||||
// MinRestart avoidable with new convergence test?
|
||||
// Could cut to HermOp, HermOpTest, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
|
||||
// HermOpTest could be eliminated if we dropped the Power method for max eval.
|
||||
// -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
|
||||
//////////////////////////////////////////////////////////////////
|
||||
ImplicitlyRestartedLanczos(LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
ImplicitlyRestartedLanczosTester<Field> & Tester,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOpTest), _HermOp(HermOp), _HermOpTest(HermOpTest), _Tester(Tester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
ImplicitlyRestartedLanczos(LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOpTest), _HermOp(HermOp), _HermOpTest(HermOpTest), _Tester(SimpleTester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalise(Field& v)
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
OrthoTime-=usecond()/1e6;
|
||||
basisOrthogonalize(evec,w,k);
|
||||
normalise(w);
|
||||
OrthoTime+=usecond()/1e6;
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
@ -165,184 +323,234 @@ repeat
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=true)
|
||||
{
|
||||
GridBase *grid = src._grid;
|
||||
assert(grid == evec[0]._grid);
|
||||
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src._grid);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
|
||||
GridLogIRL.TimingMode(1);
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
|
||||
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
|
||||
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
_HermOpTest(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> eval2_copy(Nm);
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
|
||||
|
||||
normalise(evec[0]);
|
||||
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
|
||||
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime=0.;
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// Restarting loop begins
|
||||
//////////////////////////////////
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
OrthoTime=0.;
|
||||
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
|
||||
|
||||
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
f *= lme[Nm-1];
|
||||
|
||||
|
||||
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// getting eigenvalues
|
||||
//////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
//////////////////////////////////
|
||||
eval2_copy = eval2;
|
||||
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
|
||||
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
|
||||
const int chunk=8;
|
||||
for(int io=0; io<k2;io+=chunk){
|
||||
std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
|
||||
for(int ii=0;ii<chunk;ii++){
|
||||
if ( (io+ii)<k2 )
|
||||
std::cout<< " "<< std::setw(12)<< eval2[io+ii];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Implicitly shifted QR transformations
|
||||
//////////////////////////////////
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
// Eigen replacement for qr_decomp ???
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
|
||||
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
|
||||
|
||||
for(int j=k1-1; j<k2+1; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
|
||||
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
||||
|
||||
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
|
||||
|
||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Compressed vector f and beta(k2)
|
||||
////////////////////////////////////////////////////
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Convergence test
|
||||
////////////////////////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
|
||||
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (i == Nconv) ){
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
|
||||
if (iter >= MinRestart) {
|
||||
|
||||
if( Nconv>=Nstop ){
|
||||
goto converged;
|
||||
}
|
||||
} // end of iter loop
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
|
||||
|
||||
Field B(grid); B.checkerboard = evec[0].checkerboard;
|
||||
|
||||
// power of two search pattern; not every evalue in eval2 is assessed.
|
||||
for(int jj = 1; jj<=Nstop; jj*=2){
|
||||
int j = Nstop-jj;
|
||||
RealD e = eval2_copy[j]; // Discard the evalue
|
||||
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
|
||||
if( _Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
|
||||
if ( j > Nconv ) {
|
||||
Nconv=j+1;
|
||||
jj=Nstop; // Terminate the scan
|
||||
}
|
||||
}
|
||||
}
|
||||
// Do evec[0] for good measure
|
||||
{
|
||||
int j=0;
|
||||
RealD e = eval2_copy[0];
|
||||
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
|
||||
_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox);
|
||||
}
|
||||
// test if we converged, if so, terminate
|
||||
std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
|
||||
// if( Nconv>=Nstop || beta_k < betastp){
|
||||
if( Nconv>=Nstop){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
} else {
|
||||
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
|
||||
} // end of iter loop
|
||||
}
|
||||
|
||||
std::cout<<GridLogError<<"\n NOT converged.\n";
|
||||
abort();
|
||||
|
||||
converged:
|
||||
// Sorting
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
{
|
||||
Field B(grid); B.checkerboard = evec[0].checkerboard;
|
||||
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
|
||||
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
|
||||
Nconv=0;
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Full final convergence test; unconditionally applied
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
for(int j = 0; j<=Nk; j++){
|
||||
B=evec[j];
|
||||
if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
|
||||
Nconv++;
|
||||
}
|
||||
}
|
||||
|
||||
if ( Nconv < Nstop )
|
||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||
|
||||
eval=eval2;
|
||||
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
@ -360,28 +568,38 @@ private:
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
_poly(_Linop,evec[k],w); // 3. wk:=Avk−βkv_{k−1}
|
||||
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_HermOp(evec_k,w); std::cout<<GridLogIRL << "Poly(HermOp)" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec[k];// 5. wk:=wk−αkvk
|
||||
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
|
||||
if ( k < Nm-1) evec[k+1] = w;
|
||||
|
||||
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
@ -404,11 +622,11 @@ private:
|
||||
}
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ???
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd, // Nm
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ??? !!!
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
void QR_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||||
@ -575,51 +793,50 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
#endif
|
||||
}
|
||||
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int Niter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<Niter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
Niter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int QRiter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<QRiter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
QRiter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
};
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
|
||||
abort();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
352
lib/algorithms/iterative/LocalCoherenceLanczos.h
Normal file
352
lib/algorithms/iterative/LocalCoherenceLanczos.h
Normal file
@ -0,0 +1,352 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LOCAL_COHERENCE_IRL_H
|
||||
#define GRID_LOCAL_COHERENCE_IRL_H
|
||||
namespace Grid {
|
||||
struct LanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
|
||||
ChebyParams, Cheby,/*Chebyshev*/
|
||||
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
|
||||
int, Nk, /*Vecs in Lanczos seek converge*/
|
||||
int, Nm, /*Total vecs in Lanczos include restart*/
|
||||
RealD, resid, /*residual*/
|
||||
int, MaxIt,
|
||||
RealD, betastp, /* ? */
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
bool, doFine,
|
||||
bool, doFineRead,
|
||||
bool, doCoarse,
|
||||
bool, doCoarseRead,
|
||||
LanczosParams, FineParams,
|
||||
LanczosParams, CoarseParams,
|
||||
ChebyParams, Smoother,
|
||||
RealD , coarse_relax_tol,
|
||||
std::vector<int>, blockSize,
|
||||
std::string, config,
|
||||
std::vector < std::complex<double> >, omega,
|
||||
RealD, mass,
|
||||
RealD, M5);
|
||||
};
|
||||
|
||||
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
|
||||
|
||||
ProjectedHermOp(LinearOperatorBase<FineField>& linop, Aggregation<Fobj,CComplex,nbasis> &aggregate) :
|
||||
_Linop(linop),
|
||||
_Aggregate(aggregate) { };
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
|
||||
GridBase *FineGrid = _Aggregate.FineGrid;
|
||||
FineField fin(FineGrid);
|
||||
FineField fout(FineGrid);
|
||||
|
||||
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
|
||||
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
|
||||
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
|
||||
OperatorFunction<FineField> & _poly;
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
|
||||
|
||||
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,LinearOperatorBase<FineField>& linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> &aggregate) :
|
||||
_poly(poly),
|
||||
_Linop(linop),
|
||||
_Aggregate(aggregate) { };
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
|
||||
GridBase *FineGrid = _Aggregate.FineGrid;
|
||||
|
||||
FineField fin(FineGrid) ;fin.checkerboard =_Aggregate.checkerboard;
|
||||
FineField fout(FineGrid);fout.checkerboard =_Aggregate.checkerboard;
|
||||
|
||||
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
|
||||
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
|
||||
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LinearFunction<CoarseField> & _Poly;
|
||||
OperatorFunction<FineField> & _smoother;
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
|
||||
RealD _coarse_relax_tol;
|
||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||
OperatorFunction<FineField> &smoother,
|
||||
LinearOperatorBase<FineField> &Linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> &Aggregate,
|
||||
RealD coarse_relax_tol=5.0e3)
|
||||
: _smoother(smoother), _Linop(Linop),_Aggregate(Aggregate), _Poly(Poly), _coarse_relax_tol(coarse_relax_tol) { };
|
||||
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
RealD eval_poly = eval;
|
||||
// Apply operator
|
||||
_Poly(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval = vnum/vden;
|
||||
v -= eval*B;
|
||||
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
GridBase *FineGrid = _Aggregate.FineGrid;
|
||||
|
||||
int checkerboard = _Aggregate.checkerboard;
|
||||
|
||||
FineField fB(FineGrid);fB.checkerboard =checkerboard;
|
||||
FineField fv(FineGrid);fv.checkerboard =checkerboard;
|
||||
|
||||
_Aggregate.PromoteFromSubspace(B,fv);
|
||||
_smoother(_Linop,fv,fB);
|
||||
|
||||
RealD eval_poly = eval;
|
||||
_Linop.HermOp(fB,fv);
|
||||
|
||||
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
|
||||
RealD vden = norm2(fB);
|
||||
RealD vv0 = norm2(fv);
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Make serializable Lanczos params
|
||||
////////////////////////////////////////////
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class LocalCoherenceLanczos
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
protected:
|
||||
GridBase *_CoarseGrid;
|
||||
GridBase *_FineGrid;
|
||||
int _checkerboard;
|
||||
LinearOperatorBase<FineField> & _FineOp;
|
||||
|
||||
// FIXME replace Aggregation with vector of fine; the code reuse is too small for
|
||||
// the hassle and complexity of cross coupling.
|
||||
Aggregation<Fobj,CComplex,nbasis> _Aggregate;
|
||||
std::vector<RealD> evals_fine;
|
||||
std::vector<RealD> evals_coarse;
|
||||
std::vector<CoarseField> evec_coarse;
|
||||
public:
|
||||
LocalCoherenceLanczos(GridBase *FineGrid,
|
||||
GridBase *CoarseGrid,
|
||||
LinearOperatorBase<FineField> &FineOp,
|
||||
int checkerboard) :
|
||||
_CoarseGrid(CoarseGrid),
|
||||
_FineGrid(FineGrid),
|
||||
_Aggregate(CoarseGrid,FineGrid,checkerboard),
|
||||
_FineOp(FineOp),
|
||||
_checkerboard(checkerboard)
|
||||
{
|
||||
evals_fine.resize(0);
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
void Orthogonalise(void ) { _Aggregate.Orthogonalise(); }
|
||||
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = ::sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void fakeFine(void)
|
||||
{
|
||||
int Nk = nbasis;
|
||||
_Aggregate.subspace.resize(Nk,_FineGrid);
|
||||
_Aggregate.subspace[0]=1.0;
|
||||
_Aggregate.subspace[0].checkerboard=_checkerboard;
|
||||
normalise(_Aggregate.subspace[0]);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
for(int k=1;k<Nk;k++){
|
||||
_Aggregate.subspace[k].checkerboard=_checkerboard;
|
||||
Op(_Aggregate.subspace[k-1],_Aggregate.subspace[k]);
|
||||
normalise(_Aggregate.subspace[k]);
|
||||
}
|
||||
}
|
||||
|
||||
void testFine(RealD resid)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(_Aggregate.subspace.size() == nbasis);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
|
||||
for(int k=0;k<nbasis;k++){
|
||||
assert(SimpleTester.ReconstructEval(k,resid,_Aggregate.subspace[k],evals_fine[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(_Aggregate.subspace.size() == nbasis);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,_Aggregate);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
|
||||
|
||||
for(int k=0;k<evec_coarse.size();k++){
|
||||
if ( k < nbasis ) {
|
||||
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
|
||||
} else {
|
||||
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
assert(nbasis<=Nm);
|
||||
Chebyshev<FineField> Cheby(cheby_parms);
|
||||
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
|
||||
evals_fine.resize(Nm);
|
||||
_Aggregate.subspace.resize(Nm,_FineGrid);
|
||||
|
||||
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
|
||||
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
|
||||
|
||||
int Nconv;
|
||||
IRL.calc(evals_fine,_Aggregate.subspace,src,Nconv,false);
|
||||
|
||||
// Shrink down to number saved
|
||||
assert(Nstop>=nbasis);
|
||||
assert(Nconv>=nbasis);
|
||||
evals_fine.resize(nbasis);
|
||||
_Aggregate.subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,_Aggregate);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,_Aggregate);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
assert(Nconv>=Nstop);
|
||||
evals_coarse.resize(Nstop);
|
||||
evec_coarse.resize (Nstop,_CoarseGrid);
|
||||
for (int i=0;i<Nstop;i++){
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
@ -53,16 +53,119 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* M psi = eta
|
||||
***********************
|
||||
*Odd
|
||||
* i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* i) D_oo psi_o = L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Wilson:
|
||||
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* Stag:
|
||||
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* L^-1 eta_o= (1 0 ) (e
|
||||
* (-MoeMee^{-1} 1 )
|
||||
*
|
||||
*Even
|
||||
* ii) Mee psi_e + Meo psi_o = src_e
|
||||
*
|
||||
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
*
|
||||
*
|
||||
* TODO: Other options:
|
||||
*
|
||||
* a) change checkerboards for Schur e<->o
|
||||
*
|
||||
* Left precon by Moo^-1
|
||||
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Right precon by Moo^-1
|
||||
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* psi_o = M_oo^-1 phi_o
|
||||
* TODO: Deflation
|
||||
*/
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field> class SchurRedBlackStaggeredSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
src_o = tmp; assert(src_o.checkerboard ==Odd);
|
||||
// _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
|
||||
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
@ -76,12 +179,10 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=cb;
|
||||
};
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
@ -141,5 +242,166 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoMixed {
|
||||
private:
|
||||
LinearFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_HermitianRBSolver(src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -1,7 +1,5 @@
|
||||
|
||||
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
#include <fcntl.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
@ -63,4 +61,37 @@ void *PointerCache::Lookup(size_t bytes) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES)
|
||||
{
|
||||
#ifdef __linux__
|
||||
int fd = open("/proc/self/pagemap", O_RDONLY);
|
||||
assert(fd >= 0);
|
||||
const int page_size = 4096;
|
||||
uint64_t virt_pfn = (uint64_t)Buf / page_size;
|
||||
off_t offset = sizeof(uint64_t) * virt_pfn;
|
||||
uint64_t npages = (BYTES + page_size-1) / page_size;
|
||||
uint64_t pagedata[npages];
|
||||
uint64_t ret = lseek(fd, offset, SEEK_SET);
|
||||
assert(ret == offset);
|
||||
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
|
||||
assert(ret == sizeof(uint64_t) * npages);
|
||||
int nhugepages = npages / 512;
|
||||
int n4ktotal, nnothuge;
|
||||
n4ktotal = 0;
|
||||
nnothuge = 0;
|
||||
for (int i = 0; i < nhugepages; ++i) {
|
||||
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
|
||||
for (int j = 0; j < 512; ++j) {
|
||||
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
|
||||
++n4ktotal;
|
||||
if (pageaddr != baseaddr + j * page_size)
|
||||
++nnothuge;
|
||||
}
|
||||
}
|
||||
int rank = CartesianCommunicator::RankWorld();
|
||||
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -64,6 +64,8 @@ namespace Grid {
|
||||
|
||||
};
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES);
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// A lattice of something, but assume the something is SIMDized.
|
||||
////////////////////////////////////////////////////////////////////
|
||||
|
@ -44,11 +44,20 @@ namespace Grid{
|
||||
class GridBase : public CartesianCommunicator , public GridThread {
|
||||
|
||||
public:
|
||||
|
||||
int dummy;
|
||||
// Give Lattice access
|
||||
template<class object> friend class Lattice;
|
||||
|
||||
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
|
||||
GridBase(const std::vector<int> & processor_grid,
|
||||
const CartesianCommunicator &parent,
|
||||
int &split_rank)
|
||||
: CartesianCommunicator(processor_grid,parent,split_rank) {};
|
||||
GridBase(const std::vector<int> & processor_grid,
|
||||
const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processor_grid,parent,dummy) {};
|
||||
|
||||
virtual ~GridBase() = default;
|
||||
|
||||
// Physics Grid information.
|
||||
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
|
||||
@ -210,9 +219,6 @@ public:
|
||||
assert(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
|
||||
gidx=0;
|
||||
int mult=1;
|
||||
|
@ -38,7 +38,7 @@ namespace Grid{
|
||||
class GridCartesian: public GridBase {
|
||||
|
||||
public:
|
||||
|
||||
int dummy;
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||
return 0;
|
||||
}
|
||||
@ -61,9 +61,38 @@ public:
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
|
||||
return shift;
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Constructor takes a parent grid and possibly subdivides communicator.
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
GridCartesian(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid) : GridBase(processor_grid)
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid,
|
||||
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
GridCartesian(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid,
|
||||
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Construct from comm world
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
GridCartesian(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid) : GridBase(processor_grid)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
|
||||
virtual ~GridCartesian() = default;
|
||||
|
||||
void Init(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid)
|
||||
{
|
||||
///////////////////////
|
||||
// Grid information
|
||||
|
@ -112,24 +112,59 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
GridRedBlackCartesian(const GridBase *base) : GridRedBlackCartesian(base->_fdimensions,base->_simd_layout,base->_processors) {};
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create Redblack from original grid; require full grid pointer ?
|
||||
////////////////////////////////////////////////////////////
|
||||
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
|
||||
{
|
||||
int dims = base->_ndimension;
|
||||
std::vector<int> checker_dim_mask(dims,1);
|
||||
int checker_dim = 0;
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
|
||||
};
|
||||
|
||||
GridRedBlackCartesian(const std::vector<int> &dimensions,
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create redblack from original grid, with non-trivial checker dim mask
|
||||
////////////////////////////////////////////////////////////
|
||||
GridRedBlackCartesian(const GridBase *base,
|
||||
const std::vector<int> &checker_dim_mask,
|
||||
int checker_dim
|
||||
) : GridBase(base->_processors,*base)
|
||||
{
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
|
||||
}
|
||||
|
||||
virtual ~GridRedBlackCartesian() = default;
|
||||
#if 0
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create redblack grid ;; deprecate these. Should not
|
||||
// need direct creation of redblack without a full grid to base on
|
||||
////////////////////////////////////////////////////////////
|
||||
GridRedBlackCartesian(const GridBase *base,
|
||||
const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid,
|
||||
const std::vector<int> &checker_dim_mask,
|
||||
int checker_dim
|
||||
) : GridBase(processor_grid)
|
||||
) : GridBase(processor_grid,*base)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
|
||||
}
|
||||
GridRedBlackCartesian(const std::vector<int> &dimensions,
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create redblack grid
|
||||
////////////////////////////////////////////////////////////
|
||||
GridRedBlackCartesian(const GridBase *base,
|
||||
const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid) : GridBase(processor_grid)
|
||||
const std::vector<int> &processor_grid) : GridBase(processor_grid,*base)
|
||||
{
|
||||
std::vector<int> checker_dim_mask(dimensions.size(),1);
|
||||
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,0);
|
||||
int checker_dim = 0;
|
||||
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
|
||||
}
|
||||
#endif
|
||||
|
||||
void Init(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid,
|
||||
@ -172,6 +207,7 @@ public:
|
||||
{
|
||||
assert((_gdimensions[d] & 0x1) == 0);
|
||||
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
|
||||
_gsites /= 2;
|
||||
}
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d];
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
|
@ -67,7 +67,7 @@ void CartesianCommunicator::ShmBufferFreeAll(void) {
|
||||
/////////////////////////////////
|
||||
// Grid information queries
|
||||
/////////////////////////////////
|
||||
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
|
||||
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
|
||||
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
|
||||
int CartesianCommunicator::BossRank(void) { return 0; };
|
||||
int CartesianCommunicator::ThisRank(void) { return _processor; };
|
||||
@ -96,6 +96,138 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||
GlobalSumVector((double *)c,2*N);
|
||||
}
|
||||
|
||||
|
||||
#if defined( GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT) || defined (GRID_COMMS_MPI3)
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
assert(_ndimension = parent._ndimension);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// split the communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
int Nparent;
|
||||
MPI_Comm_size(parent.communicator,&Nparent);
|
||||
|
||||
int childsize=1;
|
||||
for(int d=0;d<processors.size();d++) {
|
||||
childsize *= processors[d];
|
||||
}
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
|
||||
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
|
||||
std::vector<int> scoor(_ndimension); // coor of split within parent
|
||||
std::vector<int> ssize(_ndimension); // coor of split within parent
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
ccoor[d] = parent._processor_coor[d] % processors[d];
|
||||
scoor[d] = parent._processor_coor[d] / processors[d];
|
||||
ssize[d] = parent._processors[d] / processors[d];
|
||||
}
|
||||
int crank; // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
||||
// Mpi uses the reverse Lexico convention to us
|
||||
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors);
|
||||
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize);
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
/*
|
||||
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << parent._processor_coor[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << ccoor[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" new coor ["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << parent._processor_coor[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
*/
|
||||
|
||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Declare victory
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
*/
|
||||
} else {
|
||||
comm_split=parent.communicator;
|
||||
srank = 0;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set up from the new split communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
InitFromMPICommunicator(processors,comm_split);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take an MPI_Comm and self assemble
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
/////////////////////////////////
|
||||
// Count the requested nodes
|
||||
/////////////////////////////////
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
|
||||
MPI_Comm_rank(communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
|
||||
if ( communicator_base != communicator_world ) {
|
||||
std::cout << "Cartesian communicator created with a non-world communicator"<<std::endl;
|
||||
|
||||
std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
|
||||
for(int d=0;d<_processors.size();d++){
|
||||
std::cout << _processor_coor[d]<<" ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator,&Size);
|
||||
|
||||
#ifdef GRID_COMMS_MPIT
|
||||
communicator_halo.resize (2*_ndimension);
|
||||
for(int i=0;i<_ndimension*2;i++){
|
||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
assert(Size==_Nprocessors);
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
InitFromMPICommunicator(processors,communicator_world);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( GRID_COMMS_MPI3)
|
||||
|
||||
int CartesianCommunicator::NodeCount(void) { return ProcessorCount();};
|
||||
@ -147,8 +279,13 @@ void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
|
||||
}
|
||||
void CartesianCommunicator::ShmInitGeneric(void){
|
||||
#if 1
|
||||
|
||||
int mmap_flag = MAP_SHARED | MAP_ANONYMOUS;
|
||||
int mmap_flag =0;
|
||||
#ifdef MAP_ANONYMOUS
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
||||
#endif
|
||||
#ifdef MAP_ANON
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
|
@ -83,6 +83,7 @@ class CartesianCommunicator {
|
||||
std::vector<MPI_Comm> communicator_halo;
|
||||
|
||||
typedef MPI_Request CommsRequest_t;
|
||||
|
||||
#else
|
||||
typedef int CommsRequest_t;
|
||||
#endif
|
||||
@ -147,11 +148,24 @@ class CartesianCommunicator {
|
||||
// Must call in Grid startup
|
||||
////////////////////////////////////////////////
|
||||
static void Init(int *argc, char ***argv);
|
||||
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Constructor of any given grid
|
||||
// Constructors to sub-divide a parent communicator
|
||||
// and default to comm world
|
||||
////////////////////////////////////////////////
|
||||
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank);
|
||||
CartesianCommunicator(const std::vector<int> &pdimensions_in);
|
||||
virtual ~CartesianCommunicator();
|
||||
|
||||
private:
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT)
|
||||
////////////////////////////////////////////////
|
||||
// Private initialise from an MPI communicator
|
||||
// Can use after an MPI_Comm_split, but hidden from user so private
|
||||
////////////////////////////////////////////////
|
||||
void InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base);
|
||||
#endif
|
||||
public:
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Wraps MPI_Cart routines, or implements equivalent on other impls
|
||||
@ -249,6 +263,27 @@ class CartesianCommunicator {
|
||||
// Broadcast a buffer and composite larger
|
||||
////////////////////////////////////////////////////////////
|
||||
void Broadcast(int root,void* data, int bytes);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// All2All down one dimension
|
||||
////////////////////////////////////////////////////////////
|
||||
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
||||
assert(dim>=0);
|
||||
assert(dim<_ndimension);
|
||||
int numnode = _processors[dim];
|
||||
// std::cerr << " AllToAll in.size() "<<in.size()<<std::endl;
|
||||
// std::cerr << " AllToAll out.size() "<<out.size()<<std::endl;
|
||||
assert(in.size()==out.size());
|
||||
uint64_t bytes=sizeof(T);
|
||||
uint64_t words=in.size()/numnode;
|
||||
|
||||
assert(numnode * words == in.size());
|
||||
assert(words < (1ULL<<32));
|
||||
|
||||
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
|
||||
}
|
||||
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
|
||||
void AllToAll(void *in,void *out,uint64_t words ,uint64_t bytes);
|
||||
|
||||
template<class obj> void Broadcast(int root,obj &data)
|
||||
{
|
||||
|
@ -53,28 +53,14 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
|
||||
MPI_Comm_rank(communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator,&Size);
|
||||
|
||||
assert(Size==_Nprocessors);
|
||||
int MPI_is_finalised;
|
||||
MPI_Finalized(&MPI_is_finalised);
|
||||
if (communicator && MPI_is_finalised)
|
||||
MPI_Comm_free(&communicator);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
@ -210,6 +196,36 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
std::vector<int> row(_ndimension,1);
|
||||
assert(dim>=0 && dim<_ndimension);
|
||||
|
||||
// Split the communicator
|
||||
row[dim] = _processors[dim];
|
||||
|
||||
int me;
|
||||
CartesianCommunicator Comm(row,*this,me);
|
||||
Comm.AllToAll(in,out,words,bytes);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
// MPI is a pain and uses "int" arguments
|
||||
// 64*64*64*128*16 == 500Million elements of data.
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
// (Turns up on 32^3 x 64 Gparity too)
|
||||
MPI_Datatype object;
|
||||
int iwords;
|
||||
int ibytes;
|
||||
iwords = words;
|
||||
ibytes = bytes;
|
||||
assert(words == iwords); // safe to cast to int ?
|
||||
assert(bytes == ibytes); // safe to cast to int ?
|
||||
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
||||
MPI_Type_commit(&object);
|
||||
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
||||
MPI_Type_free(&object);
|
||||
}
|
||||
///////////////////////////////////////////////////////
|
||||
// Should only be used prior to Grid Init finished.
|
||||
@ -230,5 +246,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -450,6 +450,15 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &c
|
||||
assert(lr!=-1);
|
||||
Lexicographic::CoorFromIndex(coor,lr,_processors);
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Try to subdivide communicator
|
||||
//////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processors)
|
||||
{
|
||||
std::cout << "Attempts to split MPI3 communicators will fail until implemented" <<std::endl;
|
||||
}
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
int ierr;
|
||||
@ -703,7 +712,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
assert(dir < communicator_halo.size());
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
@ -723,14 +733,14 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
gfrom = MPI_UNDEFINED;
|
||||
#endif
|
||||
if ( gfrom ==MPI_UNDEFINED) {
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[dir],&rrq);
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=bytes;
|
||||
}
|
||||
|
||||
if ( gdest == MPI_UNDEFINED ) {
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[dir],&xrq);
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=bytes;
|
||||
|
@ -53,33 +53,13 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
|
||||
MPI_Comm_rank(communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
communicator_halo.resize (2*_ndimension);
|
||||
for(int i=0;i<_ndimension*2;i++){
|
||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||
}
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator,&Size);
|
||||
|
||||
assert(Size==_Nprocessors);
|
||||
if (communicator && !MPI::Is_finalized())
|
||||
MPI_Comm_free(&communicator);
|
||||
}
|
||||
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
@ -244,13 +224,14 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
assert(dir < communicator_halo.size());
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
MPI_Request req[2];
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[commdir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[commdir],&req[0]);
|
||||
|
||||
list.push_back(req[0]);
|
||||
list.push_back(req[1]);
|
||||
@ -269,13 +250,14 @@ double CartesianCommunicator::StencilSendToRecvFrom(void *xmit,
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
assert(dir < communicator_halo.size());
|
||||
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo.size()<< <std::endl;
|
||||
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
MPI_Request req[2];
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[commdir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[commdir],&req[0]);
|
||||
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
|
@ -38,6 +38,9 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
|
||||
: CartesianCommunicator(processors) { srank=0;}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
_processors = processors;
|
||||
@ -53,6 +56,8 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
}
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator(){}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(float &){}
|
||||
void CartesianCommunicator::GlobalSumVector(float *,int N){}
|
||||
void CartesianCommunicator::GlobalSum(double &){}
|
||||
@ -95,6 +100,14 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
}
|
||||
|
||||
int CartesianCommunicator::RankWorld(void){return 0;}
|
||||
void CartesianCommunicator::Barrier(void){}
|
||||
|
@ -75,6 +75,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processors)
|
||||
{
|
||||
std::cout << "Attempts to split SHMEM communicators will fail " <<std::endl;
|
||||
}
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
|
16252
lib/json/json.hpp
16252
lib/json/json.hpp
File diff suppressed because it is too large
Load Diff
@ -544,7 +544,6 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
|
||||
for(int i=0;i<Nblock;i++){
|
||||
for(int j=0;j<Nblock;j++){
|
||||
auto tmp = innerProduct(Left[i],Right[j]);
|
||||
// vector_typeD rtmp = TensorRemove(tmp);
|
||||
auto rtmp = TensorRemove(tmp);
|
||||
mat_thread(i,j) += Reduce(rtmp);
|
||||
}}
|
||||
|
@ -109,8 +109,8 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
|
||||
coarseData=zero;
|
||||
|
||||
// Loop with a cache friendly loop ordering
|
||||
for(int sf=0;sf<fine->oSites();sf++){
|
||||
// Loop over coars parallel, and then loop over fine associated with coarse.
|
||||
parallel_for(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
int sc;
|
||||
std::vector<int> coor_c(_ndimension);
|
||||
@ -119,8 +119,9 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
PARALLEL_CRITICAL
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
|
||||
|
||||
coarseData._odata[sc](i)=coarseData._odata[sc](i)
|
||||
+ innerProduct(Basis[i]._odata[sf],fineData._odata[sf]);
|
||||
|
||||
@ -139,6 +140,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
|
||||
GridBase * coarse= coarseA._grid;
|
||||
|
||||
fineZ.checkerboard=fineX.checkerboard;
|
||||
assert(fineX.checkerboard==fineY.checkerboard);
|
||||
subdivides(coarse,fine); // require they map
|
||||
conformable(fineX,fineY);
|
||||
conformable(fineX,fineZ);
|
||||
@ -180,9 +182,10 @@ template<class vobj,class CComplex>
|
||||
GridBase *coarse(CoarseInner._grid);
|
||||
GridBase *fine (fineX._grid);
|
||||
|
||||
Lattice<dotp> fine_inner(fine);
|
||||
Lattice<dotp> fine_inner(fine); fine_inner.checkerboard = fineX.checkerboard;
|
||||
Lattice<dotp> coarse_inner(coarse);
|
||||
|
||||
// Precision promotion?
|
||||
fine_inner = localInnerProduct(fineX,fineY);
|
||||
blockSum(coarse_inner,fine_inner);
|
||||
parallel_for(int ss=0;ss<coarse->oSites();ss++){
|
||||
@ -193,7 +196,7 @@ template<class vobj,class CComplex>
|
||||
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
|
||||
{
|
||||
GridBase *coarse = ip._grid;
|
||||
Lattice<vobj> zz(fineX._grid); zz=zero;
|
||||
Lattice<vobj> zz(fineX._grid); zz=zero; zz.checkerboard=fineX.checkerboard;
|
||||
blockInnerProduct(ip,fineX,fineX);
|
||||
ip = pow(ip,-0.5);
|
||||
blockZAXPY(fineX,ip,fineX,zz);
|
||||
@ -216,19 +219,25 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
|
||||
}
|
||||
|
||||
// Turn this around to loop threaded over sc and interior loop
|
||||
// over sf would thread better
|
||||
coarseData=zero;
|
||||
for(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
parallel_region {
|
||||
|
||||
int sc;
|
||||
std::vector<int> coor_c(_ndimension);
|
||||
std::vector<int> coor_f(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
|
||||
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
PARALLEL_CRITICAL
|
||||
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
|
||||
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
@ -238,7 +247,7 @@ inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vob
|
||||
{
|
||||
GridBase * fine = unpicked._grid;
|
||||
|
||||
Lattice<vobj> zz(fine);
|
||||
Lattice<vobj> zz(fine); zz.checkerboard = unpicked.checkerboard;
|
||||
Lattice<iScalar<vInteger> > fcoor(fine);
|
||||
|
||||
zz = zero;
|
||||
@ -303,20 +312,21 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
}
|
||||
|
||||
// Loop with a cache friendly loop ordering
|
||||
for(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
parallel_region {
|
||||
int sc;
|
||||
std::vector<int> coor_c(_ndimension);
|
||||
std::vector<int> coor_f(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
|
||||
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
|
||||
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
|
||||
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
@ -684,6 +694,315 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
merge(out._odata[out_oidx], ptrs, 0);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// All to all plan
|
||||
//
|
||||
// Subvolume on fine grid is v. Vectors a,b,c,d
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLEST CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Mesh of nodes (2) ; subdivide to 1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 N1 va1 vb1
|
||||
//
|
||||
// For each dimension do an all to all
|
||||
//
|
||||
// full AllToAll(0)
|
||||
// N0 va0 va1 N1 vb0 vb1
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 N1 vb01
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLE CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
|
||||
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
|
||||
//
|
||||
// Ratio = full[dim] / split[dim]
|
||||
//
|
||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
|
||||
// Ldim -> Ldim * ratio
|
||||
// LocalVol -> LocalVol * ratio
|
||||
// full AllToAll(0)
|
||||
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
|
||||
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 vb01 N1 vc01 vd01
|
||||
// N2 va23 vb23 N3 vc23 vd23
|
||||
//
|
||||
// full AllToAll(1) // Not what is wanted. FIXME
|
||||
// N0 va01 va23 N1 vc01 vc23
|
||||
// N2 vb01 vb23 N3 vd01 vd23
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va0123 N1 vc0123
|
||||
// N2 vb0123 N3 vd0123
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
//
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
uint64_t lsites = full_grid->lSites();
|
||||
uint64_t sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
|
||||
for(int v=0;v<nvector;v++){
|
||||
unvectorizeToLexOrdArray(scalardata,full[v]);
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
alldata[v*lsites+site] = scalardata[site];
|
||||
}
|
||||
}
|
||||
|
||||
int nvec = nvector; // Counts down to 1 as we collapse dims
|
||||
std::vector<int> ldims = full_grid->_ldimensions;
|
||||
std::vector<int> lcoor(ndim);
|
||||
|
||||
for(int d=ndim-1;d>=0;d--){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
full_grid ->AllToAll(d,alldata,tmpdata);
|
||||
// std::cout << GridLogMessage << "Grid_split: dim " <<d<<" ratio "<<ratio[d]<<" nvec "<<nvec<<" procs "<<split_grid->_processors[d]<<std::endl;
|
||||
// for(int v=0;v<nvec;v++){
|
||||
// std::cout << "Grid_split: alldata["<<v<<"] " << alldata[v] <<std::endl;
|
||||
// std::cout << "Grid_split: tmpdata["<<v<<"] " << tmpdata[v] <<std::endl;
|
||||
// }
|
||||
//////////////////////////////////////////
|
||||
//Local volume for this dimension is expanded by ratio of processor extents
|
||||
// Number of vectors is decreased by same factor
|
||||
// Rearrange to lexico for bigger volume
|
||||
//////////////////////////////////////////
|
||||
nvec /= ratio[d];
|
||||
|
||||
auto rdims = ldims; rdims[d] *= ratio[d];
|
||||
auto rsites= lsites*ratio[d];
|
||||
for(int v=0;v<nvec;v++){
|
||||
|
||||
// For loop over each site within old subvol
|
||||
for(int lsite=0;lsite<lsites;lsite++){
|
||||
|
||||
Lexicographic::CoorFromIndex(lcoor, lsite, ldims);
|
||||
|
||||
for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
|
||||
|
||||
auto rcoor = lcoor; rcoor[d] += r*ldims[d];
|
||||
|
||||
int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);
|
||||
rsite += v * rsites;
|
||||
|
||||
int rmul=nvec*lsites;
|
||||
int vmul= lsites;
|
||||
alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
|
||||
// if ( lsite==0 ) {
|
||||
// std::cout << "Grid_split: grow alldata["<<rsite<<"] " << alldata[rsite] << " <- tmpdata["<< lsite+r*rmul+v*vmul<<"] "<<tmpdata[lsite+r*rmul+v*vmul] <<std::endl;
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
ldims[d]*= ratio[d];
|
||||
lsites *= ratio[d];
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
tmpdata = alldata;
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
}
|
||||
}
|
||||
vectorizeFromLexOrdArray(alldata,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
|
||||
{
|
||||
int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
|
||||
std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
|
||||
for(int n=0;n<nvector;n++){
|
||||
full_v[n] = full;
|
||||
}
|
||||
Grid_split(full_v,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
uint64_t lsites = full_grid->lSites();
|
||||
uint64_t sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
|
||||
unvectorizeToLexOrdArray(alldata,split);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Start from split grid and work towards full grid
|
||||
/////////////////////////////////////////////////////////////////
|
||||
std::vector<int> lcoor(ndim);
|
||||
std::vector<int> rcoor(ndim);
|
||||
|
||||
int nvec = 1;
|
||||
lsites = split_grid->lSites();
|
||||
std::vector<int> ldims = split_grid->_ldimensions;
|
||||
|
||||
// for(int d=ndim-1;d>=0;d--){
|
||||
for(int d=0;d<ndim;d++){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
tmpdata = alldata;
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
//Local volume for this dimension is expanded by ratio of processor extents
|
||||
// Number of vectors is decreased by same factor
|
||||
// Rearrange to lexico for bigger volume
|
||||
//////////////////////////////////////////
|
||||
auto rsites= lsites/ratio[d];
|
||||
auto rdims = ldims; rdims[d]/=ratio[d];
|
||||
|
||||
for(int v=0;v<nvec;v++){
|
||||
|
||||
// rsite, rcoor --> smaller local volume
|
||||
// lsite, lcoor --> bigger original (single node?) volume
|
||||
// For loop over each site within smaller subvol
|
||||
for(int rsite=0;rsite<rsites;rsite++){
|
||||
|
||||
Lexicographic::CoorFromIndex(rcoor, rsite, rdims);
|
||||
int lsite;
|
||||
|
||||
for(int r=0;r<ratio[d];r++){
|
||||
|
||||
lcoor = rcoor; lcoor[d] += r*rdims[d];
|
||||
Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
|
||||
|
||||
int rmul=nvec*rsites;
|
||||
int vmul= rsites;
|
||||
tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
nvec *= ratio[d];
|
||||
ldims[d]=rdims[d];
|
||||
lsites =rsites;
|
||||
|
||||
full_grid ->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
}
|
||||
|
||||
lsites = full_grid->lSites();
|
||||
for(int v=0;v<nvector;v++){
|
||||
assert(v<full.size());
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
scalardata[site] = alldata[v*lsites+site];
|
||||
}
|
||||
vectorizeFromLexOrdArray(scalardata,full[v]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -50,7 +50,7 @@ namespace Grid {
|
||||
return (status==0) ? res.get() : name ;
|
||||
}
|
||||
|
||||
GridStopWatch Logger::StopWatch;
|
||||
GridStopWatch Logger::GlobalStopWatch;
|
||||
int Logger::timestamp;
|
||||
std::ostream Logger::devnull(0);
|
||||
|
||||
@ -59,13 +59,15 @@ void GridLogTimestamp(int on){
|
||||
}
|
||||
|
||||
Colours GridLogColours(0);
|
||||
GridLogger GridLogError(1, "Error", GridLogColours, "RED");
|
||||
GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL");
|
||||
GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
|
||||
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
|
||||
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogDebug(1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
|
||||
GridLogger GridLogIterative(1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator(1, "Integrator", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogError.Active(0);
|
||||
|
@ -85,12 +85,15 @@ class Logger {
|
||||
protected:
|
||||
Colours &Painter;
|
||||
int active;
|
||||
int timing_mode;
|
||||
static int timestamp;
|
||||
std::string name, topName;
|
||||
std::string COLOUR;
|
||||
|
||||
public:
|
||||
static GridStopWatch StopWatch;
|
||||
static GridStopWatch GlobalStopWatch;
|
||||
GridStopWatch LocalStopWatch;
|
||||
GridStopWatch *StopWatch;
|
||||
static std::ostream devnull;
|
||||
|
||||
std::string background() {return Painter.colour["NORMAL"];}
|
||||
@ -101,22 +104,38 @@ public:
|
||||
name(nm),
|
||||
topName(topNm),
|
||||
Painter(col_class),
|
||||
COLOUR(col) {} ;
|
||||
timing_mode(0),
|
||||
COLOUR(col)
|
||||
{
|
||||
StopWatch = & GlobalStopWatch;
|
||||
};
|
||||
|
||||
void Active(int on) {active = on;};
|
||||
int isActive(void) {return active;};
|
||||
static void Timestamp(int on) {timestamp = on;};
|
||||
|
||||
void Reset(void) {
|
||||
StopWatch->Reset();
|
||||
StopWatch->Start();
|
||||
}
|
||||
void TimingMode(int on) {
|
||||
timing_mode = on;
|
||||
if(on) {
|
||||
StopWatch = &LocalStopWatch;
|
||||
Reset();
|
||||
}
|
||||
}
|
||||
|
||||
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
|
||||
|
||||
if ( log.active ) {
|
||||
stream << log.background()<< std::setw(8) << std::left << log.topName << log.background()<< " : ";
|
||||
stream << log.colour() << std::setw(10) << std::left << log.name << log.background() << " : ";
|
||||
stream << log.background()<< std::left << log.topName << log.background()<< " : ";
|
||||
stream << log.colour() << std::left << log.name << log.background() << " : ";
|
||||
if ( log.timestamp ) {
|
||||
StopWatch.Stop();
|
||||
GridTime now = StopWatch.Elapsed();
|
||||
StopWatch.Start();
|
||||
stream << log.evidence()<< now << log.background() << " : " ;
|
||||
log.StopWatch->Stop();
|
||||
GridTime now = log.StopWatch->Elapsed();
|
||||
if ( log.timing_mode==1 ) log.StopWatch->Reset();
|
||||
log.StopWatch->Start();
|
||||
stream << log.evidence()<< std::setw(6)<<now << log.background() << " : " ;
|
||||
}
|
||||
stream << log.colour();
|
||||
return stream;
|
||||
@ -135,6 +154,8 @@ public:
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams);
|
||||
|
||||
extern GridLogger GridLogIRL;
|
||||
extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
extern GridLogger GridLogWarning;
|
||||
extern GridLogger GridLogMessage;
|
||||
|
@ -261,7 +261,7 @@ class BinaryIO {
|
||||
GridBase *grid,
|
||||
std::vector<fobj> &iodata,
|
||||
std::string file,
|
||||
int offset,
|
||||
Integer offset,
|
||||
const std::string &format, int control,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
@ -356,7 +356,7 @@ class BinaryIO {
|
||||
|
||||
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
|
||||
#ifdef USE_MPI_IO
|
||||
std::cout<< GridLogMessage<< "MPI read I/O "<< file<< std::endl;
|
||||
std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl;
|
||||
ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh); assert(ierr==0);
|
||||
ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); assert(ierr==0);
|
||||
ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status); assert(ierr==0);
|
||||
@ -367,7 +367,7 @@ class BinaryIO {
|
||||
assert(0);
|
||||
#endif
|
||||
} else {
|
||||
std::cout << GridLogMessage << "C++ read I/O " << file << " : "
|
||||
std::cout << GridLogMessage <<"IOobject: C++ read I/O " << file << " : "
|
||||
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
|
||||
std::ifstream fin;
|
||||
fin.open(file, std::ios::binary | std::ios::in);
|
||||
@ -413,9 +413,9 @@ class BinaryIO {
|
||||
timer.Start();
|
||||
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
|
||||
#ifdef USE_MPI_IO
|
||||
std::cout << GridLogMessage << "MPI write I/O " << file << std::endl;
|
||||
std::cout << GridLogMessage <<"IOobject: MPI write I/O " << file << std::endl;
|
||||
ierr = MPI_File_open(grid->communicator, (char *)file.c_str(), MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
|
||||
std::cout << GridLogMessage << "Checking for errors" << std::endl;
|
||||
// std::cout << GridLogMessage << "Checking for errors" << std::endl;
|
||||
if (ierr != MPI_SUCCESS)
|
||||
{
|
||||
char error_string[BUFSIZ];
|
||||
@ -444,48 +444,56 @@ class BinaryIO {
|
||||
assert(0);
|
||||
#endif
|
||||
} else {
|
||||
|
||||
std::cout << GridLogMessage << "IOobject: C++ write I/O " << file << " : "
|
||||
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
|
||||
|
||||
std::ofstream fout;
|
||||
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
|
||||
try {
|
||||
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
|
||||
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
|
||||
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
std::cout << GridLogMessage<< "C++ write I/O "<< file<<" : "
|
||||
<< iodata.size()*sizeof(fobj)<<" bytes"<<std::endl;
|
||||
|
||||
if ( control & BINARYIO_MASTER_APPEND ) {
|
||||
fout.seekp(0,fout.end);
|
||||
} else {
|
||||
fout.seekp(offset+myrank*lsites*sizeof(fobj));
|
||||
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
|
||||
try {
|
||||
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
|
||||
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
|
||||
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
|
||||
if ( control & BINARYIO_MASTER_APPEND ) {
|
||||
try {
|
||||
fout.seekp(0,fout.end);
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in seeking file end " << file << std::endl;
|
||||
}
|
||||
} else {
|
||||
try {
|
||||
fout.seekp(offset+myrank*lsites*sizeof(fobj));
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in seeking file " << file <<" offset "<< offset << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
|
||||
}
|
||||
catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in writing file " << file << std::endl;
|
||||
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
|
||||
try {
|
||||
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
|
||||
}
|
||||
catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in writing file " << file << std::endl;
|
||||
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
fout.close();
|
||||
}
|
||||
timer.Stop();
|
||||
}
|
||||
|
||||
}
|
||||
timer.Stop();
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"IOobject: ";
|
||||
if ( control & BINARYIO_READ) std::cout << " read ";
|
||||
else std::cout << " write ";
|
||||
@ -515,7 +523,7 @@ class BinaryIO {
|
||||
static inline void readLatticeObject(Lattice<vobj> &Umu,
|
||||
std::string file,
|
||||
munger munge,
|
||||
int offset,
|
||||
Integer offset,
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
@ -552,7 +560,7 @@ class BinaryIO {
|
||||
static inline void writeLatticeObject(Lattice<vobj> &Umu,
|
||||
std::string file,
|
||||
munger munge,
|
||||
int offset,
|
||||
Integer offset,
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
@ -589,7 +597,7 @@ class BinaryIO {
|
||||
static inline void readRNG(GridSerialRNG &serial,
|
||||
GridParallelRNG ¶llel,
|
||||
std::string file,
|
||||
int offset,
|
||||
Integer offset,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
@ -651,7 +659,7 @@ class BinaryIO {
|
||||
static inline void writeRNG(GridSerialRNG &serial,
|
||||
GridParallelRNG ¶llel,
|
||||
std::string file,
|
||||
int offset,
|
||||
Integer offset,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
|
@ -84,10 +84,6 @@ namespace QCD {
|
||||
stream << "GRID_";
|
||||
stream << ScidacWordMnemonic<stype>();
|
||||
|
||||
// std::cout << " Lorentz N/S/V/M : " << _LorentzN<<" "<<_LorentzScalar<<"/"<<_LorentzVector<<"/"<<_LorentzMatrix<<std::endl;
|
||||
// std::cout << " Spin N/S/V/M : " << _SpinN <<" "<<_SpinScalar <<"/"<<_SpinVector <<"/"<<_SpinMatrix<<std::endl;
|
||||
// std::cout << " Colour N/S/V/M : " << _ColourN <<" "<<_ColourScalar <<"/"<<_ColourVector <<"/"<<_ColourMatrix<<std::endl;
|
||||
|
||||
if ( _LorentzVector ) stream << "_LorentzVector"<<_LorentzN;
|
||||
if ( _LorentzMatrix ) stream << "_LorentzMatrix"<<_LorentzN;
|
||||
|
||||
@ -151,7 +147,7 @@ namespace QCD {
|
||||
|
||||
_scidacRecord = sr;
|
||||
|
||||
std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
|
||||
// std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
@ -163,7 +159,7 @@ namespace QCD {
|
||||
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
|
||||
if ( scidac_csuma !=scidac_checksuma) return 0;
|
||||
if ( scidac_csumb !=scidac_checksumb) return 0;
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -182,7 +178,7 @@ class GridLimeReader : public BinaryIO {
|
||||
/////////////////////////////////////////////
|
||||
// Open the file
|
||||
/////////////////////////////////////////////
|
||||
void open(std::string &_filename)
|
||||
void open(const std::string &_filename)
|
||||
{
|
||||
filename= _filename;
|
||||
File = fopen(filename.c_str(), "r");
|
||||
@ -210,24 +206,38 @@ class GridLimeReader : public BinaryIO {
|
||||
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
|
||||
std::cout << GridLogMessage << limeReaderType(LimeR) <<std::endl;
|
||||
|
||||
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
|
||||
uint64_t file_bytes =limeReaderBytes(LimeR);
|
||||
|
||||
// std::cout << GridLogMessage << limeReaderType(LimeR) << " "<< file_bytes <<" bytes "<<std::endl;
|
||||
// std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
|
||||
|
||||
off_t offset= ftell(File);
|
||||
if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
|
||||
|
||||
// std::cout << GridLogMessage<< " readLimeLatticeBinaryObject matches ! " <<std::endl;
|
||||
|
||||
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
|
||||
|
||||
// std::cout << "R sizeof(sobj)= " <<sizeof(sobj)<<std::endl;
|
||||
// std::cout << "R Gsites " <<field._grid->_gsites<<std::endl;
|
||||
// std::cout << "R Payload expected " <<PayloadSize<<std::endl;
|
||||
// std::cout << "R file size " <<file_bytes <<std::endl;
|
||||
|
||||
assert(PayloadSize == file_bytes);// Must match or user error
|
||||
|
||||
uint64_t offset= ftello(File);
|
||||
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::readLatticeObject< sobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Insist checksum is next record
|
||||
/////////////////////////////////////////////
|
||||
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),record_name);
|
||||
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Verify checksums
|
||||
/////////////////////////////////////////////
|
||||
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
|
||||
assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -242,11 +252,16 @@ class GridLimeReader : public BinaryIO {
|
||||
// should this be a do while; can we miss a first record??
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
|
||||
// std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
|
||||
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
|
||||
|
||||
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
|
||||
if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
|
||||
|
||||
// std::cout << GridLogMessage<< " readLimeObject matches ! " << record_name <<std::endl;
|
||||
std::vector<char> xmlc(nbytes+1,'\0');
|
||||
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
|
||||
// std::cout << GridLogMessage<< " readLimeObject matches XML " << &xmlc[0] <<std::endl;
|
||||
|
||||
XmlReader RD(&xmlc[0],"");
|
||||
read(RD,object_name,object);
|
||||
return;
|
||||
@ -261,13 +276,14 @@ class GridLimeWriter : public BinaryIO {
|
||||
public:
|
||||
///////////////////////////////////////////////////
|
||||
// FIXME: format for RNG? Now just binary out instead
|
||||
// FIXME: collective calls or not ?
|
||||
// : must know if I am the I/O boss
|
||||
///////////////////////////////////////////////////
|
||||
|
||||
FILE *File;
|
||||
LimeWriter *LimeW;
|
||||
std::string filename;
|
||||
|
||||
void open(std::string &_filename) {
|
||||
void open(const std::string &_filename) {
|
||||
filename= _filename;
|
||||
File = fopen(filename.c_str(), "w");
|
||||
LimeW = limeCreateWriter(File); assert(LimeW != NULL );
|
||||
@ -302,14 +318,18 @@ class GridLimeWriter : public BinaryIO {
|
||||
write(WR,object_name,object);
|
||||
xmlstring = WR.XmlString();
|
||||
}
|
||||
// std::cout << "WriteLimeObject" << record_name <<std::endl;
|
||||
uint64_t nbytes = xmlstring.size();
|
||||
// std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl;
|
||||
int err;
|
||||
LimeRecordHeader *h = limeCreateHeader(MB, ME,(char *)record_name.c_str(), nbytes); assert(h!= NULL);
|
||||
LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes);
|
||||
assert(h!= NULL);
|
||||
|
||||
err=limeWriteRecordHeader(h, LimeW); assert(err>=0);
|
||||
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
|
||||
err=limeWriterCloseRecord(LimeW); assert(err>=0);
|
||||
limeDestroyHeader(h);
|
||||
// std::cout << " File offset is now"<<ftello(File) << std::endl;
|
||||
}
|
||||
////////////////////////////////////////////
|
||||
// Write a generic lattice field and csum
|
||||
@ -326,6 +346,10 @@ class GridLimeWriter : public BinaryIO {
|
||||
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
|
||||
createLimeRecordHeader(record_name, 0, 0, PayloadSize);
|
||||
|
||||
// std::cout << "W sizeof(sobj)" <<sizeof(sobj)<<std::endl;
|
||||
// std::cout << "W Gsites " <<field._grid->_gsites<<std::endl;
|
||||
// std::cout << "W Payload expected " <<PayloadSize<<std::endl;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// NB: FILE and iostream are jointly writing disjoint sequences in the
|
||||
// the same file through different file handles (integer units).
|
||||
@ -333,17 +357,20 @@ class GridLimeWriter : public BinaryIO {
|
||||
// These are both buffered, so why I think this code is right is as follows.
|
||||
//
|
||||
// i) write record header to FILE *File, telegraphing the size.
|
||||
// ii) ftell reads the offset from FILE *File .
|
||||
// ii) ftello reads the offset from FILE *File .
|
||||
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
|
||||
// Closes iostream and flushes.
|
||||
// iv) fseek on FILE * to end of this disjoint section.
|
||||
// v) Continue writing scidac record.
|
||||
////////////////////////////////////////////////////////////////////
|
||||
off_t offset = ftell(File);
|
||||
uint64_t offset = ftello(File);
|
||||
// std::cout << " Writing to offset "<<offset << std::endl;
|
||||
std::string format = getFormatString<vobj>();
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
// fseek(File,0,SEEK_END); offset = ftello(File);std::cout << " offset now "<<offset << std::endl;
|
||||
err=limeWriterCloseRecord(LimeW); assert(err>=0);
|
||||
|
||||
////////////////////////////////////////
|
||||
// Write checksum element, propagaing forward from the BinaryIO
|
||||
// Always pair a checksum with a binary object, and close message
|
||||
@ -353,8 +380,8 @@ class GridLimeWriter : public BinaryIO {
|
||||
std::stringstream streamb; streamb << std::hex << scidac_csumb;
|
||||
checksum.suma= streama.str();
|
||||
checksum.sumb= streamb.str();
|
||||
std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
|
||||
writeLimeObject(0,1,checksum,std::string("scidacChecksum" ),std::string(SCIDAC_CHECKSUM));
|
||||
// std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
|
||||
writeLimeObject(0,1,checksum,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
|
||||
}
|
||||
};
|
||||
|
||||
@ -371,11 +398,9 @@ class ScidacWriter : public GridLimeWriter {
|
||||
////////////////////////////////////////////////
|
||||
// Write generic lattice field in scidac format
|
||||
////////////////////////////////////////////////
|
||||
template <class vobj, class userRecord>
|
||||
template <class vobj, class userRecord>
|
||||
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
uint64_t nbytes;
|
||||
GridBase * grid = field._grid;
|
||||
|
||||
////////////////////////////////////////
|
||||
@ -397,6 +422,66 @@ class ScidacWriter : public GridLimeWriter {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class ScidacReader : public GridLimeReader {
|
||||
public:
|
||||
|
||||
template<class SerialisableUserFile>
|
||||
void readScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
|
||||
{
|
||||
scidacFile _scidacFile(grid);
|
||||
readLimeObject(_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
|
||||
readLimeObject(_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
|
||||
}
|
||||
////////////////////////////////////////////////
|
||||
// Write generic lattice field in scidac format
|
||||
////////////////////////////////////////////////
|
||||
template <class vobj, class userRecord>
|
||||
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
GridBase * grid = field._grid;
|
||||
|
||||
////////////////////////////////////////
|
||||
// fill the Grid header
|
||||
////////////////////////////////////////
|
||||
FieldMetaData header;
|
||||
scidacRecord _scidacRecord;
|
||||
scidacFile _scidacFile;
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Fill the Lime file record by record
|
||||
//////////////////////////////////////////////
|
||||
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
|
||||
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
|
||||
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
|
||||
}
|
||||
void skipPastBinaryRecord(void) {
|
||||
std::string rec_name(ILDG_BINARY_DATA);
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
|
||||
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
void skipPastObjectRecord(std::string rec_name) {
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
void skipScidacFieldRecord() {
|
||||
skipPastObjectRecord(std::string(GRID_FORMAT));
|
||||
skipPastObjectRecord(std::string(SCIDAC_RECORD_XML));
|
||||
skipPastObjectRecord(std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
skipPastBinaryRecord();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class IldgWriter : public ScidacWriter {
|
||||
public:
|
||||
|
||||
@ -425,8 +510,6 @@ class IldgWriter : public ScidacWriter {
|
||||
typedef iLorentzColourMatrix<vsimd> vobj;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
uint64_t nbytes;
|
||||
|
||||
////////////////////////////////////////
|
||||
// fill the Grid header
|
||||
////////////////////////////////////////
|
||||
@ -557,7 +640,7 @@ class IldgReader : public GridLimeReader {
|
||||
// Copy out the string
|
||||
std::vector<char> xmlc(nbytes+1,'\0');
|
||||
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
|
||||
std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
|
||||
// std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// ILDG format record
|
||||
@ -601,7 +684,7 @@ class IldgReader : public GridLimeReader {
|
||||
std::string xmls(&xmlc[0]);
|
||||
// is it a USQCD info field
|
||||
if ( xmls.find(std::string("usqcdInfo")) != std::string::npos ) {
|
||||
std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
|
||||
XmlReader RD(&xmlc[0],"");
|
||||
read(RD,"usqcdInfo",usqcdInfo_);
|
||||
found_usqcdInfo = 1;
|
||||
@ -619,8 +702,7 @@ class IldgReader : public GridLimeReader {
|
||||
// Binary data
|
||||
/////////////////////////////////
|
||||
std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
|
||||
off_t offset= ftell(File);
|
||||
|
||||
uint64_t offset= ftello(File);
|
||||
if ( format == std::string("IEEE64BIG") ) {
|
||||
GaugeSimpleMunger<dobj, sobj> munge;
|
||||
BinaryIO::readLatticeObject< vobj, dobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
|
@ -64,6 +64,11 @@ namespace Grid {
|
||||
// file compatability, so should be correct to assume the undocumented but defacto file structure.
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct emptyUserRecord : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(emptyUserRecord,int,dummy);
|
||||
emptyUserRecord() { dummy=0; };
|
||||
};
|
||||
|
||||
////////////////////////
|
||||
// Scidac private file xml
|
||||
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile>
|
||||
|
@ -85,6 +85,9 @@ namespace Grid {
|
||||
nd=4;
|
||||
dimension.resize(4);
|
||||
boundary.resize(4);
|
||||
scidac_checksuma=0;
|
||||
scidac_checksumb=0;
|
||||
checksum=0;
|
||||
}
|
||||
};
|
||||
|
||||
@ -104,6 +107,7 @@ namespace Grid {
|
||||
header.nd = nd;
|
||||
header.dimension.resize(nd);
|
||||
header.boundary.resize(nd);
|
||||
header.data_start = 0;
|
||||
for(int d=0;d<nd;d++) {
|
||||
header.dimension[d] = grid->_fdimensions[d];
|
||||
}
|
||||
|
100
lib/qcd/action/fermion/AbstractEOFAFermion.h
Normal file
100
lib/qcd/action/fermion/AbstractEOFAFermion.h
Normal file
@ -0,0 +1,100 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_ABSTRACT_EOFA_FERMION_H
|
||||
#define GRID_QCD_ABSTRACT_EOFA_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// DJM: Abstract base class for EOFA fermion types.
|
||||
// Defines layout of additional EOFA-specific parameters and operators.
|
||||
// Use to construct EOFA pseudofermion actions that are agnostic to
|
||||
// Shamir / Mobius / etc., and ensure that no one can construct EOFA
|
||||
// pseudofermion action with non-EOFA fermion type.
|
||||
template<class Impl>
|
||||
class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
// Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
|
||||
RealD mq1;
|
||||
RealD mq2;
|
||||
RealD mq3;
|
||||
RealD shift;
|
||||
int pm;
|
||||
|
||||
RealD alpha; // Mobius scale
|
||||
RealD k; // EOFA normalization constant
|
||||
|
||||
virtual void Instantiatable(void) = 0;
|
||||
|
||||
// EOFA-specific operations
|
||||
// Force user to implement in derived classes
|
||||
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag) = 0;
|
||||
virtual void Dtilde (const FermionField& in, FermionField& out) = 0;
|
||||
virtual void DtildeInv(const FermionField& in, FermionField& out) = 0;
|
||||
|
||||
// Implement derivatives in base class:
|
||||
// for EOFA both DWF and Mobius just need d(Dw)/dU
|
||||
virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
|
||||
this->DhopDeriv(mat, U, V, dag);
|
||||
};
|
||||
virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
|
||||
this->DhopDerivOE(mat, U, V, dag);
|
||||
};
|
||||
virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
|
||||
this->DhopDerivEO(mat, U, V, dag);
|
||||
};
|
||||
|
||||
// Recompute 5D coefficients for different value of shift constant
|
||||
// (needed for heatbath loop over poles)
|
||||
virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
|
||||
|
||||
// Constructors
|
||||
AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
|
||||
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
|
||||
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
|
||||
: CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
|
||||
_mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
this->alpha = _b + _c;
|
||||
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
|
||||
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
|
||||
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
|
||||
};
|
||||
};
|
||||
}}
|
||||
|
||||
#endif
|
@ -77,7 +77,6 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
|
||||
{
|
||||
this->Report();
|
||||
@ -119,7 +118,6 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
|
||||
MooeeInvTime=0;
|
||||
}
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
|
||||
|
||||
@ -35,24 +35,24 @@ namespace Grid {
|
||||
|
||||
namespace QCD {
|
||||
|
||||
template<typename T> struct switcheroo {
|
||||
static inline int iscomplex() { return 0; }
|
||||
template<typename T> struct switcheroo {
|
||||
static inline int iscomplex() { return 0; }
|
||||
|
||||
template<class vec>
|
||||
static inline vec mult(vec a, vec b) {
|
||||
return real_mult(a,b);
|
||||
}
|
||||
};
|
||||
template<> struct switcheroo<ComplexD> {
|
||||
static inline int iscomplex() { return 1; }
|
||||
template<> struct switcheroo<ComplexD> {
|
||||
static inline int iscomplex() { return 1; }
|
||||
|
||||
template<class vec>
|
||||
static inline vec mult(vec a, vec b) {
|
||||
return a*b;
|
||||
}
|
||||
};
|
||||
template<> struct switcheroo<ComplexF> {
|
||||
static inline int iscomplex() { return 1; }
|
||||
template<> struct switcheroo<ComplexF> {
|
||||
static inline int iscomplex() { return 1; }
|
||||
template<class vec>
|
||||
static inline vec mult(vec a, vec b) {
|
||||
return a*b;
|
||||
@ -90,14 +90,14 @@ namespace Grid {
|
||||
// Instantiate different versions depending on Impl
|
||||
/////////////////////////////////////////////////////
|
||||
void M5D(const FermionField &psi,
|
||||
const FermionField &phi,
|
||||
const FermionField &phi,
|
||||
FermionField &chi,
|
||||
std::vector<Coeff_t> &lower,
|
||||
std::vector<Coeff_t> &diag,
|
||||
std::vector<Coeff_t> &upper);
|
||||
|
||||
void M5Ddag(const FermionField &psi,
|
||||
const FermionField &phi,
|
||||
const FermionField &phi,
|
||||
FermionField &chi,
|
||||
std::vector<Coeff_t> &lower,
|
||||
std::vector<Coeff_t> &diag,
|
||||
@ -125,7 +125,7 @@ namespace Grid {
|
||||
|
||||
// Efficient support for multigrid coarsening
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
|
||||
void Meooe5D (const FermionField &in, FermionField &out);
|
||||
void MeooeDag5D (const FermionField &in, FermionField &out);
|
||||
|
||||
@ -133,23 +133,23 @@ namespace Grid {
|
||||
RealD mass;
|
||||
|
||||
// Cayley form Moebius (tanh and zolotarev)
|
||||
std::vector<Coeff_t> omega;
|
||||
std::vector<Coeff_t> omega;
|
||||
std::vector<Coeff_t> bs; // S dependent coeffs
|
||||
std::vector<Coeff_t> cs;
|
||||
std::vector<Coeff_t> as;
|
||||
std::vector<Coeff_t> cs;
|
||||
std::vector<Coeff_t> as;
|
||||
// For preconditioning Cayley form
|
||||
std::vector<Coeff_t> bee;
|
||||
std::vector<Coeff_t> cee;
|
||||
std::vector<Coeff_t> aee;
|
||||
std::vector<Coeff_t> beo;
|
||||
std::vector<Coeff_t> ceo;
|
||||
std::vector<Coeff_t> aeo;
|
||||
std::vector<Coeff_t> bee;
|
||||
std::vector<Coeff_t> cee;
|
||||
std::vector<Coeff_t> aee;
|
||||
std::vector<Coeff_t> beo;
|
||||
std::vector<Coeff_t> ceo;
|
||||
std::vector<Coeff_t> aeo;
|
||||
// LDU factorisation of the eeoo matrix
|
||||
std::vector<Coeff_t> lee;
|
||||
std::vector<Coeff_t> leem;
|
||||
std::vector<Coeff_t> uee;
|
||||
std::vector<Coeff_t> ueem;
|
||||
std::vector<Coeff_t> dee;
|
||||
std::vector<Coeff_t> lee;
|
||||
std::vector<Coeff_t> leem;
|
||||
std::vector<Coeff_t> uee;
|
||||
std::vector<Coeff_t> ueem;
|
||||
std::vector<Coeff_t> dee;
|
||||
|
||||
// Matrices of 5d ee inverse params
|
||||
Vector<iSinglet<Simd> > MatpInv;
|
||||
@ -165,7 +165,7 @@ namespace Grid {
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
|
||||
|
||||
|
||||
|
||||
|
||||
void CayleyReport(void);
|
||||
void CayleyZeroCounters(void);
|
||||
@ -179,9 +179,9 @@ namespace Grid {
|
||||
double MooeeInvTime;
|
||||
|
||||
protected:
|
||||
void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
|
||||
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
|
||||
};
|
||||
|
||||
}
|
||||
|
438
lib/qcd/action/fermion/DomainWallEOFAFermion.cc
Normal file
438
lib/qcd/action/fermion/DomainWallEOFAFermion.cc
Normal file
@ -0,0 +1,438 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template<class Impl>
|
||||
DomainWallEOFAFermion<Impl>::DomainWallEOFAFermion(
|
||||
GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3,
|
||||
RealD _shift, int _pm, RealD _M5, const ImplParams &p) :
|
||||
AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
|
||||
FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
|
||||
_shift, _pm, _M5, 1.0, 0.0, p)
|
||||
{
|
||||
RealD eps = 1.0;
|
||||
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);
|
||||
assert(zdata->n == this->Ls);
|
||||
|
||||
std::cout << GridLogMessage << "DomainWallEOFAFermion with Ls=" << this->Ls << std::endl;
|
||||
this->SetCoefficientsTanh(zdata, 1.0, 0.0);
|
||||
|
||||
Approx::zolotarev_free(zdata);
|
||||
}
|
||||
|
||||
/***************************************************************
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
Din = zero;
|
||||
if((sign == 1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, Ls-1, 0); }
|
||||
else if((sign == -1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
|
||||
else if((sign == 1 ) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, Ls-1); }
|
||||
else if((sign == -1) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
|
||||
}
|
||||
|
||||
// This is just the identity for DWF
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi){ chi = psi; }
|
||||
|
||||
// This is just the identity for DWF
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi){ chi = psi; }
|
||||
|
||||
/*****************************************************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
RealD DomainWallEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField Din(psi._grid);
|
||||
|
||||
this->Meooe5D(psi, Din);
|
||||
this->DW(Din, chi, DaggerNo);
|
||||
axpby(chi, 1.0, 1.0, chi, psi);
|
||||
this->M5D(psi, chi);
|
||||
return(norm2(chi));
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
RealD DomainWallEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField Din(psi._grid);
|
||||
|
||||
this->DW(psi, Din, DaggerYes);
|
||||
this->MeooeDag5D(Din, chi);
|
||||
this->M5Ddag(psi, chi);
|
||||
axpby(chi, 1.0, 1.0, chi, psi);
|
||||
return(norm2(chi));
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int pm = this->pm;
|
||||
RealD shift = this->shift;
|
||||
RealD mq1 = this->mq1;
|
||||
RealD mq2 = this->mq2;
|
||||
RealD mq3 = this->mq3;
|
||||
|
||||
// coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
|
||||
Coeff_t shiftp(0.0), shiftm(0.0);
|
||||
if(shift != 0.0){
|
||||
if(pm == 1){ shiftp = shift*(mq3-mq2); }
|
||||
else{ shiftm = -shift*(mq3-mq2); }
|
||||
}
|
||||
|
||||
std::vector<Coeff_t> diag(Ls,1.0);
|
||||
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
|
||||
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
|
||||
|
||||
#if(0)
|
||||
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
|
||||
for(int i=0; i<diag.size(); ++i){
|
||||
std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
|
||||
}
|
||||
for(int i=0; i<upper.size(); ++i){
|
||||
std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
|
||||
}
|
||||
for(int i=0; i<lower.size(); ++i){
|
||||
std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
this->M5D(psi, chi, chi, lower, diag, upper);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int pm = this->pm;
|
||||
RealD shift = this->shift;
|
||||
RealD mq1 = this->mq1;
|
||||
RealD mq2 = this->mq2;
|
||||
RealD mq3 = this->mq3;
|
||||
|
||||
// coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
|
||||
Coeff_t shiftp(0.0), shiftm(0.0);
|
||||
if(shift != 0.0){
|
||||
if(pm == 1){ shiftp = shift*(mq3-mq2); }
|
||||
else{ shiftm = -shift*(mq3-mq2); }
|
||||
}
|
||||
|
||||
std::vector<Coeff_t> diag(Ls,1.0);
|
||||
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
|
||||
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
|
||||
|
||||
#if(0)
|
||||
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5Ddag(FF&,FF&):" << std::endl;
|
||||
for(int i=0; i<diag.size(); ++i){
|
||||
std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
|
||||
}
|
||||
for(int i=0; i<upper.size(); ++i){
|
||||
std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
|
||||
}
|
||||
for(int i=0; i<lower.size(); ++i){
|
||||
std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
this->M5Ddag(psi, chi, chi, lower, diag, upper);
|
||||
}
|
||||
|
||||
// half checkerboard operations
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
std::vector<Coeff_t> diag = this->bee;
|
||||
std::vector<Coeff_t> upper(Ls);
|
||||
std::vector<Coeff_t> lower(Ls);
|
||||
|
||||
for(int s=0; s<Ls; s++){
|
||||
upper[s] = -this->cee[s];
|
||||
lower[s] = -this->cee[s];
|
||||
}
|
||||
upper[Ls-1] = this->dm;
|
||||
lower[0] = this->dp;
|
||||
|
||||
this->M5D(psi, psi, chi, lower, diag, upper);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
std::vector<Coeff_t> diag = this->bee;
|
||||
std::vector<Coeff_t> upper(Ls);
|
||||
std::vector<Coeff_t> lower(Ls);
|
||||
|
||||
for(int s=0; s<Ls; s++){
|
||||
upper[s] = -this->cee[s];
|
||||
lower[s] = -this->cee[s];
|
||||
}
|
||||
upper[Ls-1] = this->dp;
|
||||
lower[0] = this->dm;
|
||||
|
||||
this->M5Ddag(psi, psi, chi, lower, diag, upper);
|
||||
}
|
||||
|
||||
/****************************************************************************************/
|
||||
|
||||
//Zolo
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int pm = this->pm;
|
||||
RealD mq1 = this->mq1;
|
||||
RealD mq2 = this->mq2;
|
||||
RealD mq3 = this->mq3;
|
||||
RealD shift = this->shift;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Constants for the preconditioned matrix Cayley form
|
||||
////////////////////////////////////////////////////////
|
||||
this->bs.resize(Ls);
|
||||
this->cs.resize(Ls);
|
||||
this->aee.resize(Ls);
|
||||
this->aeo.resize(Ls);
|
||||
this->bee.resize(Ls);
|
||||
this->beo.resize(Ls);
|
||||
this->cee.resize(Ls);
|
||||
this->ceo.resize(Ls);
|
||||
|
||||
for(int i=0; i<Ls; ++i){
|
||||
this->bee[i] = 4.0 - this->M5 + 1.0;
|
||||
this->cee[i] = 1.0;
|
||||
}
|
||||
|
||||
for(int i=0; i<Ls; ++i){
|
||||
this->aee[i] = this->cee[i];
|
||||
this->bs[i] = this->beo[i] = 1.0;
|
||||
this->cs[i] = this->ceo[i] = 0.0;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// EOFA shift terms
|
||||
//////////////////////////////////////////
|
||||
if(pm == 1){
|
||||
this->dp = mq1*this->cee[0] + shift*(mq3-mq2);
|
||||
this->dm = mq1*this->cee[Ls-1];
|
||||
} else if(this->pm == -1) {
|
||||
this->dp = mq1*this->cee[0];
|
||||
this->dm = mq1*this->cee[Ls-1] - shift*(mq3-mq2);
|
||||
} else {
|
||||
this->dp = mq1*this->cee[0];
|
||||
this->dm = mq1*this->cee[Ls-1];
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// LDU decomposition of eeoo
|
||||
//////////////////////////////////////////
|
||||
this->dee.resize(Ls+1);
|
||||
this->lee.resize(Ls);
|
||||
this->leem.resize(Ls);
|
||||
this->uee.resize(Ls);
|
||||
this->ueem.resize(Ls);
|
||||
|
||||
for(int i=0; i<Ls; ++i){
|
||||
|
||||
if(i < Ls-1){
|
||||
|
||||
this->lee[i] = -this->cee[i+1]/this->bee[i]; // sub-diag entry on the ith column
|
||||
|
||||
this->leem[i] = this->dm/this->bee[i];
|
||||
for(int j=0; j<i; j++){ this->leem[i] *= this->aee[j]/this->bee[j]; }
|
||||
|
||||
this->dee[i] = this->bee[i];
|
||||
|
||||
this->uee[i] = -this->aee[i]/this->bee[i]; // up-diag entry on the ith row
|
||||
|
||||
this->ueem[i] = this->dp / this->bee[0];
|
||||
for(int j=1; j<=i; j++){ this->ueem[i] *= this->cee[j]/this->bee[j]; }
|
||||
|
||||
} else {
|
||||
|
||||
this->lee[i] = 0.0;
|
||||
this->leem[i] = 0.0;
|
||||
this->uee[i] = 0.0;
|
||||
this->ueem[i] = 0.0;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
Coeff_t delta_d = 1.0 / this->bee[0];
|
||||
for(int j=1; j<Ls-1; j++){ delta_d *= this->cee[j] / this->bee[j]; }
|
||||
this->dee[Ls-1] = this->bee[Ls-1] + this->cee[0] * this->dm * delta_d;
|
||||
this->dee[Ls] = this->bee[Ls-1] + this->cee[Ls-1] * this->dp * delta_d;
|
||||
}
|
||||
|
||||
int inv = 1;
|
||||
this->MooeeInternalCompute(0, inv, this->MatpInv, this->MatmInv);
|
||||
this->MooeeInternalCompute(1, inv, this->MatpInvDag, this->MatmInvDag);
|
||||
}
|
||||
|
||||
// Recompute Cayley-form coefficients for different shift
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
|
||||
{
|
||||
this->shift = new_shift;
|
||||
Approx::zolotarev_data *zdata = Approx::higham(1.0, this->Ls);
|
||||
this->SetCoefficientsTanh(zdata, 1.0, 0.0);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
|
||||
Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
GridBase* grid = this->FermionRedBlackGrid();
|
||||
int LLs = grid->_rdimensions[0];
|
||||
|
||||
if(LLs == Ls){ return; } // Not vectorised in 5th direction
|
||||
|
||||
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
|
||||
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
|
||||
|
||||
for(int s=0; s<Ls; s++){
|
||||
Pplus(s,s) = this->bee[s];
|
||||
Pminus(s,s) = this->bee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pminus(s,s+1) = -this->cee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pplus(s+1,s) = -this->cee[s+1];
|
||||
}
|
||||
|
||||
Pplus (0,Ls-1) = this->dp;
|
||||
Pminus(Ls-1,0) = this->dm;
|
||||
|
||||
Eigen::MatrixXcd PplusMat ;
|
||||
Eigen::MatrixXcd PminusMat;
|
||||
|
||||
#if(0)
|
||||
std::cout << GridLogMessage << "Pplus:" << std::endl;
|
||||
for(int s=0; s<Ls; ++s){
|
||||
for(int ss=0; ss<Ls; ++ss){
|
||||
std::cout << Pplus(s,ss) << "\t";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "Pminus:" << std::endl;
|
||||
for(int s=0; s<Ls; ++s){
|
||||
for(int ss=0; ss<Ls; ++ss){
|
||||
std::cout << Pminus(s,ss) << "\t";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
if(inv) {
|
||||
PplusMat = Pplus.inverse();
|
||||
PminusMat = Pminus.inverse();
|
||||
} else {
|
||||
PplusMat = Pplus;
|
||||
PminusMat = Pminus;
|
||||
}
|
||||
|
||||
if(dag){
|
||||
PplusMat.adjointInPlace();
|
||||
PminusMat.adjointInPlace();
|
||||
}
|
||||
|
||||
typedef typename SiteHalfSpinor::scalar_type scalar_type;
|
||||
const int Nsimd = Simd::Nsimd();
|
||||
Matp.resize(Ls*LLs);
|
||||
Matm.resize(Ls*LLs);
|
||||
|
||||
for(int s2=0; s2<Ls; s2++){
|
||||
for(int s1=0; s1<LLs; s1++){
|
||||
int istride = LLs;
|
||||
int ostride = 1;
|
||||
Simd Vp;
|
||||
Simd Vm;
|
||||
scalar_type *sp = (scalar_type*) &Vp;
|
||||
scalar_type *sm = (scalar_type*) &Vm;
|
||||
for(int l=0; l<Nsimd; l++){
|
||||
if(switcheroo<Coeff_t>::iscomplex()) {
|
||||
sp[l] = PplusMat (l*istride+s1*ostride,s2);
|
||||
sm[l] = PminusMat(l*istride+s1*ostride,s2);
|
||||
} else {
|
||||
// if real
|
||||
scalar_type tmp;
|
||||
tmp = PplusMat (l*istride+s1*ostride,s2);
|
||||
sp[l] = scalar_type(tmp.real(),tmp.real());
|
||||
tmp = PminusMat(l*istride+s1*ostride,s2);
|
||||
sm[l] = scalar_type(tmp.real(),tmp.real());
|
||||
}
|
||||
}
|
||||
Matp[LLs*s2+s1] = Vp;
|
||||
Matm[LLs*s2+s1] = Vm;
|
||||
}}
|
||||
}
|
||||
|
||||
FermOpTemplateInstantiate(DomainWallEOFAFermion);
|
||||
GparityFermOpTemplateInstantiate(DomainWallEOFAFermion);
|
||||
|
||||
}}
|
115
lib/qcd/action/fermion/DomainWallEOFAFermion.h
Normal file
115
lib/qcd/action/fermion/DomainWallEOFAFermion.h
Normal file
@ -0,0 +1,115 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
|
||||
#define GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template<class Impl>
|
||||
class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
// Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
|
||||
// for red-black preconditioned Shamir EOFA
|
||||
Coeff_t dm;
|
||||
Coeff_t dp;
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
|
||||
// EOFA-specific operations
|
||||
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
|
||||
virtual void Dtilde (const FermionField& in, FermionField& out);
|
||||
virtual void DtildeInv (const FermionField& in, FermionField& out);
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField& in, FermionField& out);
|
||||
virtual RealD Mdag (const FermionField& in, FermionField& out);
|
||||
|
||||
// half checkerboard operations
|
||||
virtual void Mooee (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeDag (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInv (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInvDag(const FermionField& in, FermionField& out);
|
||||
|
||||
virtual void M5D (const FermionField& psi, FermionField& chi);
|
||||
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Instantiate different versions depending on Impl
|
||||
/////////////////////////////////////////////////////
|
||||
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
|
||||
|
||||
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
|
||||
|
||||
void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
|
||||
|
||||
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
|
||||
|
||||
void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
|
||||
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
|
||||
|
||||
void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
|
||||
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
|
||||
|
||||
virtual void RefreshShiftCoefficients(RealD new_shift);
|
||||
|
||||
// Constructors
|
||||
DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
|
||||
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
|
||||
RealD _M5, const ImplParams& p=ImplParams());
|
||||
|
||||
protected:
|
||||
void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
|
||||
};
|
||||
}}
|
||||
|
||||
#define INSTANTIATE_DPERP_DWF_EOFA(A)\
|
||||
template void DomainWallEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
|
||||
template void DomainWallEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
|
||||
template void DomainWallEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
|
||||
template void DomainWallEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi);
|
||||
|
||||
#undef DOMAIN_WALL_EOFA_DPERP_DENSE
|
||||
#define DOMAIN_WALL_EOFA_DPERP_CACHE
|
||||
#undef DOMAIN_WALL_EOFA_DPERP_LINALG
|
||||
#define DOMAIN_WALL_EOFA_DPERP_VEC
|
||||
|
||||
#endif
|
248
lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
Normal file
248
lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
Normal file
@ -0,0 +1,248 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
|
||||
|
||||
// Pminus fowards
|
||||
// Pplus backwards..
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
GridBase* grid = psi._grid;
|
||||
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
|
||||
for(int s=0; s<Ls; s++){
|
||||
auto tmp = psi._odata[0];
|
||||
if(s==0) {
|
||||
spProj5m(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+Ls-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else if(s==(Ls-1)) {
|
||||
spProj5m(tmp, psi._odata[ss+0]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else {
|
||||
spProj5m(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
GridBase* grid = psi._grid;
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard=psi.checkerboard;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
|
||||
auto tmp = psi._odata[0];
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
spProj5p(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+Ls-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else if(s==(Ls-1)) {
|
||||
spProj5p(tmp, psi._odata[ss+0]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else {
|
||||
spProj5p(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
|
||||
|
||||
auto tmp1 = psi._odata[0];
|
||||
auto tmp2 = psi._odata[0];
|
||||
|
||||
// flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls = 12*Ls * (9) = 108*Ls flops
|
||||
// Apply (L^{\prime})^{-1}
|
||||
chi[ss] = psi[ss]; // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
spProj5p(tmp1, chi[ss+s-1]);
|
||||
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
spProj5m(tmp1, chi[ss+s]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
|
||||
spProj5p(tmp1, chi[ss+Ls-1]);
|
||||
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls])*tmp1;
|
||||
}
|
||||
spProj5m(tmp2, chi[ss+Ls-1]);
|
||||
chi[ss+Ls-1] = (1.0/this->dee[Ls])*tmp1 + (1.0/this->dee[Ls-1])*tmp2;
|
||||
|
||||
// Apply U^{-1}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
spProj5m(tmp1, chi[ss+s+1]);
|
||||
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
|
||||
assert(psi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
std::vector<Coeff_t> ueec(Ls);
|
||||
std::vector<Coeff_t> deec(Ls+1);
|
||||
std::vector<Coeff_t> leec(Ls);
|
||||
std::vector<Coeff_t> ueemc(Ls);
|
||||
std::vector<Coeff_t> leemc(Ls);
|
||||
|
||||
for(int s=0; s<ueec.size(); s++){
|
||||
ueec[s] = conjugate(this->uee[s]);
|
||||
deec[s] = conjugate(this->dee[s]);
|
||||
leec[s] = conjugate(this->lee[s]);
|
||||
ueemc[s] = conjugate(this->ueem[s]);
|
||||
leemc[s] = conjugate(this->leem[s]);
|
||||
}
|
||||
deec[Ls] = conjugate(this->dee[Ls]);
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
|
||||
|
||||
auto tmp1 = psi._odata[0];
|
||||
auto tmp2 = psi._odata[0];
|
||||
|
||||
// Apply (U^{\prime})^{-dagger}
|
||||
chi[ss] = psi[ss];
|
||||
for(int s=1; s<Ls; s++){
|
||||
spProj5m(tmp1, chi[ss+s-1]);
|
||||
chi[ss+s] = psi[ss+s] - ueec[s-1]*tmp1;
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
spProj5p(tmp1, chi[ss+s]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] - ueemc[s]*tmp1;
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
spProj5m(tmp1, chi[ss+Ls-1]);
|
||||
chi[ss+s] = (1.0/deec[s])*chi[ss+s] - (leemc[s]/deec[Ls-1])*tmp1;
|
||||
}
|
||||
spProj5p(tmp2, chi[ss+Ls-1]);
|
||||
chi[ss+Ls-1] = (1.0/deec[Ls-1])*tmp1 + (1.0/deec[Ls])*tmp2;
|
||||
|
||||
// Apply L^{-dagger}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
spProj5p(tmp1, chi[ss+s+1]);
|
||||
chi[ss+s] = chi[ss+s] - leec[s]*tmp1;
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
#ifdef DOMAIN_WALL_EOFA_DPERP_CACHE
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
159
lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
Normal file
159
lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
Normal file
@ -0,0 +1,159 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int LLs = psi._grid->_rdimensions[0];
|
||||
int vol = psi._grid->oSites()/LLs;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
assert(Ls==LLs);
|
||||
|
||||
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
|
||||
for(int s=0;s<Ls;s++){
|
||||
Pplus(s,s) = this->bee[s];
|
||||
Pminus(s,s) = this->bee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pminus(s,s+1) = -this->cee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pplus(s+1,s) = -this->cee[s+1];
|
||||
}
|
||||
|
||||
Pplus (0,Ls-1) = this->dp;
|
||||
Pminus(Ls-1,0) = this->dm;
|
||||
|
||||
Eigen::MatrixXd PplusMat ;
|
||||
Eigen::MatrixXd PminusMat;
|
||||
|
||||
if(inv) {
|
||||
PplusMat = Pplus.inverse();
|
||||
PminusMat = Pminus.inverse();
|
||||
} else {
|
||||
PplusMat = Pplus;
|
||||
PminusMat = Pminus;
|
||||
}
|
||||
|
||||
if(dag){
|
||||
PplusMat.adjointInPlace();
|
||||
PminusMat.adjointInPlace();
|
||||
}
|
||||
|
||||
// For the non-vectorised s-direction this is simple
|
||||
|
||||
for(auto site=0; site<vol; site++){
|
||||
|
||||
SiteSpinor SiteChi;
|
||||
SiteHalfSpinor SitePplus;
|
||||
SiteHalfSpinor SitePminus;
|
||||
|
||||
for(int s1=0; s1<Ls; s1++){
|
||||
SiteChi = zero;
|
||||
for(int s2=0; s2<Ls; s2++){
|
||||
int lex2 = s2 + Ls*site;
|
||||
if(PplusMat(s1,s2) != 0.0){
|
||||
spProj5p(SitePplus,psi[lex2]);
|
||||
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
|
||||
}
|
||||
if(PminusMat(s1,s2) != 0.0){
|
||||
spProj5m(SitePminus, psi[lex2]);
|
||||
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
|
||||
}
|
||||
}
|
||||
chi[s1+Ls*site] = SiteChi*0.5;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DOMAIN_WALL_EOFA_DPERP_DENSE
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
|
||||
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
|
||||
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
168
lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
Normal file
168
lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
Normal file
@ -0,0 +1,168 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
|
||||
// Pminus fowards
|
||||
// Pplus backwards
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi._grid);
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls], chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp_pminus(tmp, czero, chi, one/this->dee[Ls-1], chi, Ls-1, Ls-1);
|
||||
axpby_ssp_pplus(chi, one, tmp, one/this->dee[Ls], chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply U^{-1}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi._grid);
|
||||
|
||||
// Apply (U^{\prime})^{-dagger}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp_pminus(tmp, czero, chi, one/conjugate(this->dee[Ls-1]), chi, Ls-1, Ls-1);
|
||||
axpby_ssp_pplus(chi, one, tmp, one/conjugate(this->dee[Ls]), chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply L^{-dagger}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DOMAIN_WALL_EOFA_DPERP_LINALG
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
605
lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
Normal file
605
lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
Normal file
@ -0,0 +1,605 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
const int nsimd = Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd> > u(LLs);
|
||||
Vector<iSinglet<Simd> > l(LLs);
|
||||
Vector<iSinglet<Simd> > d(LLs);
|
||||
|
||||
assert(Ls/LLs == nsimd);
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type* u_p = (scalar_type*) &u[0];
|
||||
scalar_type* l_p = (scalar_type*) &l[0];
|
||||
scalar_type* d_p = (scalar_type*) &d[0];
|
||||
|
||||
for(int o=0;o<LLs;o++){ // outer
|
||||
for(int i=0;i<nsimd;i++){ //inner
|
||||
int s = o + i*LLs;
|
||||
int ss = o*nsimd + i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
assert(Nc == 3);
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
|
||||
|
||||
#if 0
|
||||
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
int vp = (v+1)%LLs;
|
||||
int vm = (v+LLs-1)%LLs;
|
||||
|
||||
spProj5m(hp, psi[ss+vp]);
|
||||
spProj5p(hm, psi[ss+vm]);
|
||||
|
||||
if (vp <= v){ rotate(hp, hp, 1); }
|
||||
if (vm >= v){ rotate(hm, hm, nsimd-1); }
|
||||
|
||||
hp = 0.5*hp;
|
||||
hm = 0.5*hm;
|
||||
|
||||
spRecon5m(fp, hp);
|
||||
spRecon5p(fm, hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v];
|
||||
chi[ss+v] = chi[ss+v] + u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] + l[v]*fm;
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp = (v==LLs-1) ? 0 : v+1;
|
||||
int vm = (v==0) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(2)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(2)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(2)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(3)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(3)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(3)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(0)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(0)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(0)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(1)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(1)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(1)(2);
|
||||
|
||||
if(vp <= v){
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
|
||||
if(vm >= v){
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
// Can force these to real arithmetic and save 2x.
|
||||
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
|
||||
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
|
||||
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
|
||||
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
|
||||
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
|
||||
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
|
||||
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
|
||||
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
|
||||
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
|
||||
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
|
||||
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
|
||||
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0), p_00);
|
||||
vstream(chi[ss+v]()(0)(1), p_01);
|
||||
vstream(chi[ss+v]()(0)(2), p_02);
|
||||
vstream(chi[ss+v]()(1)(0), p_10);
|
||||
vstream(chi[ss+v]()(1)(1), p_11);
|
||||
vstream(chi[ss+v]()(1)(2), p_12);
|
||||
vstream(chi[ss+v]()(2)(0), p_20);
|
||||
vstream(chi[ss+v]()(2)(1), p_21);
|
||||
vstream(chi[ss+v]()(2)(2), p_22);
|
||||
vstream(chi[ss+v]()(3)(0), p_30);
|
||||
vstream(chi[ss+v]()(3)(1), p_31);
|
||||
vstream(chi[ss+v]()(3)(2), p_32);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
int nsimd = Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd> > u(LLs);
|
||||
Vector<iSinglet<Simd> > l(LLs);
|
||||
Vector<iSinglet<Simd> > d(LLs);
|
||||
|
||||
assert(Ls/LLs == nsimd);
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type* u_p = (scalar_type*) &u[0];
|
||||
scalar_type* l_p = (scalar_type*) &l[0];
|
||||
scalar_type* d_p = (scalar_type*) &d[0];
|
||||
|
||||
for(int o=0; o<LLs; o++){ // outer
|
||||
for(int i=0; i<nsimd; i++){ //inner
|
||||
int s = o + i*LLs;
|
||||
int ss = o*nsimd + i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
|
||||
|
||||
#if 0
|
||||
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
int vp = (v+1)%LLs;
|
||||
int vm = (v+LLs-1)%LLs;
|
||||
|
||||
spProj5p(hp, psi[ss+vp]);
|
||||
spProj5m(hm, psi[ss+vm]);
|
||||
|
||||
if(vp <= v){ rotate(hp, hp, 1); }
|
||||
if(vm >= v){ rotate(hm, hm, nsimd-1); }
|
||||
|
||||
hp = hp*0.5;
|
||||
hm = hm*0.5;
|
||||
spRecon5p(fp, hp);
|
||||
spRecon5m(fm, hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp = (v == LLs-1) ? 0 : v+1;
|
||||
int vm = (v == 0 ) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(0)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(0)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(0)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(1)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(1)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(1)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(2)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(2)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(2)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(3)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(3)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(3)(2);
|
||||
|
||||
if (vp <= v){
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
|
||||
if(vm >= v){
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
|
||||
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
|
||||
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
|
||||
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
|
||||
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
|
||||
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
|
||||
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
|
||||
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
|
||||
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
|
||||
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
|
||||
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
|
||||
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0), p_00);
|
||||
vstream(chi[ss+v]()(0)(1), p_01);
|
||||
vstream(chi[ss+v]()(0)(2), p_02);
|
||||
vstream(chi[ss+v]()(1)(0), p_10);
|
||||
vstream(chi[ss+v]()(1)(1), p_11);
|
||||
vstream(chi[ss+v]()(1)(2), p_12);
|
||||
vstream(chi[ss+v]()(2)(0), p_20);
|
||||
vstream(chi[ss+v]()(2)(1), p_21);
|
||||
vstream(chi[ss+v]()(2)(2), p_22);
|
||||
vstream(chi[ss+v]()(3)(0), p_30);
|
||||
vstream(chi[ss+v]()(3)(1), p_31);
|
||||
vstream(chi[ss+v]()(3)(2), p_32);
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
#ifdef AVX512
|
||||
#include<simd/Intel512common.h>
|
||||
#include<simd/Intel512avx.h>
|
||||
#include<simd/Intel512single.h>
|
||||
#endif
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
|
||||
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
|
||||
{
|
||||
#ifndef AVX512
|
||||
{
|
||||
SiteHalfSpinor BcastP;
|
||||
SiteHalfSpinor BcastM;
|
||||
SiteHalfSpinor SiteChiP;
|
||||
SiteHalfSpinor SiteChiM;
|
||||
|
||||
// Ls*Ls * 2 * 12 * vol flops
|
||||
for(int s1=0; s1<LLs; s1++){
|
||||
|
||||
for(int s2=0; s2<LLs; s2++){
|
||||
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
|
||||
|
||||
int s = s2 + l*LLs;
|
||||
int lex = s2 + LLs*site;
|
||||
|
||||
if( s2==0 && l==0 ){
|
||||
SiteChiP=zero;
|
||||
SiteChiM=zero;
|
||||
}
|
||||
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
|
||||
}}
|
||||
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
|
||||
}}
|
||||
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
|
||||
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
|
||||
}}
|
||||
}}
|
||||
|
||||
{
|
||||
int lex = s1 + LLs*site;
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
|
||||
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
|
||||
}}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
{
|
||||
// pointers
|
||||
// MASK_REGS;
|
||||
#define Chi_00 %%zmm1
|
||||
#define Chi_01 %%zmm2
|
||||
#define Chi_02 %%zmm3
|
||||
#define Chi_10 %%zmm4
|
||||
#define Chi_11 %%zmm5
|
||||
#define Chi_12 %%zmm6
|
||||
#define Chi_20 %%zmm7
|
||||
#define Chi_21 %%zmm8
|
||||
#define Chi_22 %%zmm9
|
||||
#define Chi_30 %%zmm10
|
||||
#define Chi_31 %%zmm11
|
||||
#define Chi_32 %%zmm12
|
||||
|
||||
#define BCAST0 %%zmm13
|
||||
#define BCAST1 %%zmm14
|
||||
#define BCAST2 %%zmm15
|
||||
#define BCAST3 %%zmm16
|
||||
#define BCAST4 %%zmm17
|
||||
#define BCAST5 %%zmm18
|
||||
#define BCAST6 %%zmm19
|
||||
#define BCAST7 %%zmm20
|
||||
#define BCAST8 %%zmm21
|
||||
#define BCAST9 %%zmm22
|
||||
#define BCAST10 %%zmm23
|
||||
#define BCAST11 %%zmm24
|
||||
|
||||
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
|
||||
for(int s1=0; s1<LLs; s1++){
|
||||
|
||||
for(int s2=0; s2<LLs; s2++){
|
||||
|
||||
int lex = s2 + LLs*site;
|
||||
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
|
||||
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
|
||||
uint64_t a2 = (uint64_t) &psi[lex];
|
||||
|
||||
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
|
||||
if((s2+l)==0) {
|
||||
asm(
|
||||
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
|
||||
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
|
||||
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
|
||||
VBCASTCDUP(0,%2,BCAST0)
|
||||
VBCASTCDUP(1,%2,BCAST1)
|
||||
VBCASTCDUP(2,%2,BCAST2)
|
||||
VBCASTCDUP(3,%2,BCAST3)
|
||||
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
|
||||
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
|
||||
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
|
||||
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
|
||||
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
|
||||
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
|
||||
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
|
||||
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
|
||||
VMULMEM(0,%1,BCAST8,Chi_22)
|
||||
VMULMEM(0,%1,BCAST9,Chi_30)
|
||||
VMULMEM(0,%1,BCAST10,Chi_31)
|
||||
VMULMEM(0,%1,BCAST11,Chi_32)
|
||||
: : "r" (a0), "r" (a1), "r" (a2) );
|
||||
} else {
|
||||
asm(
|
||||
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
|
||||
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
|
||||
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
|
||||
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
|
||||
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
|
||||
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
|
||||
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
|
||||
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
|
||||
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
|
||||
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
|
||||
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
|
||||
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
|
||||
: : "r" (a0), "r" (a1), "r" (a2) );
|
||||
}
|
||||
a0 = a0 + incr;
|
||||
a1 = a1 + incr;
|
||||
a2 = a2 + sizeof(Simd::scalar_type);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int lexa = s1+LLs*site;
|
||||
asm (
|
||||
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
|
||||
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
|
||||
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
|
||||
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
|
||||
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef Chi_00
|
||||
#undef Chi_01
|
||||
#undef Chi_02
|
||||
#undef Chi_10
|
||||
#undef Chi_11
|
||||
#undef Chi_12
|
||||
#undef Chi_20
|
||||
#undef Chi_21
|
||||
#undef Chi_22
|
||||
#undef Chi_30
|
||||
#undef Chi_31
|
||||
#undef Chi_32
|
||||
|
||||
#undef BCAST0
|
||||
#undef BCAST1
|
||||
#undef BCAST2
|
||||
#undef BCAST3
|
||||
#undef BCAST4
|
||||
#undef BCAST5
|
||||
#undef BCAST6
|
||||
#undef BCAST7
|
||||
#undef BCAST8
|
||||
#undef BCAST9
|
||||
#undef BCAST10
|
||||
#undef BCAST11
|
||||
#endif
|
||||
};
|
||||
|
||||
// Z-mobius version
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
|
||||
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
|
||||
{
|
||||
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
|
||||
exit(-1);
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int LLs = psi._grid->_rdimensions[0];
|
||||
int vol = psi._grid->oSites()/LLs;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
Vector<iSinglet<Simd> > Matp;
|
||||
Vector<iSinglet<Simd> > Matm;
|
||||
Vector<iSinglet<Simd> > *_Matp;
|
||||
Vector<iSinglet<Simd> > *_Matm;
|
||||
|
||||
// MooeeInternalCompute(dag,inv,Matp,Matm);
|
||||
if(inv && dag){
|
||||
_Matp = &this->MatpInvDag;
|
||||
_Matm = &this->MatmInvDag;
|
||||
}
|
||||
|
||||
if(inv && (!dag)){
|
||||
_Matp = &this->MatpInv;
|
||||
_Matm = &this->MatmInv;
|
||||
}
|
||||
|
||||
if(!inv){
|
||||
MooeeInternalCompute(dag, inv, Matp, Matm);
|
||||
_Matp = &Matp;
|
||||
_Matm = &Matm;
|
||||
}
|
||||
|
||||
assert(_Matp->size() == Ls*LLs);
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
if(switcheroo<Coeff_t>::iscomplex()){
|
||||
parallel_for(auto site=0; site<vol; site++){
|
||||
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
|
||||
}
|
||||
} else {
|
||||
parallel_for(auto site=0; site<vol; site++){
|
||||
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
#ifdef DOMAIN_WALL_EOFA_DPERP_VEC
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplF);
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplFH);
|
||||
|
||||
template void DomainWallEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
template void DomainWallEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
@ -1,6 +1,6 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/Fermion_base_aggregate.h
|
||||
|
||||
@ -38,6 +38,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
// - ContinuedFractionFermion5D.cc
|
||||
// - WilsonFermion.cc
|
||||
// - WilsonKernels.cc
|
||||
// - DomainWallEOFAFermion.cc
|
||||
// - MobiusEOFAFermion.cc
|
||||
//
|
||||
// The explicit instantiation is only avoidable if we move this source to headers and end up with include/parse/recompile
|
||||
// for EVERY .cc file. This define centralises the list and restores global push of impl cases
|
||||
@ -55,8 +57,9 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
|
||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h> // Cayley types
|
||||
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusFermion.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
|
||||
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
|
||||
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
|
||||
@ -113,6 +116,14 @@ typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
|
||||
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
|
||||
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
|
||||
|
||||
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
|
||||
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
|
||||
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
|
||||
|
||||
typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
|
||||
typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
|
||||
typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
|
||||
|
||||
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
|
||||
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
|
||||
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
|
||||
@ -121,6 +132,14 @@ typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
|
||||
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
|
||||
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
|
||||
|
||||
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
|
||||
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
|
||||
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
|
||||
|
||||
typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
|
||||
typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
|
||||
typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
|
||||
|
||||
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
|
||||
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
|
||||
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
|
||||
@ -129,7 +148,7 @@ typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
|
||||
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
|
||||
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
|
||||
|
||||
// Ls vectorised
|
||||
// Ls vectorised
|
||||
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
|
||||
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
|
||||
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
|
||||
@ -138,6 +157,14 @@ typedef DomainWallFermion<DomainWallVec5dImplRL> DomainWallFermionVec5dRL;
|
||||
typedef DomainWallFermion<DomainWallVec5dImplFH> DomainWallFermionVec5dFH;
|
||||
typedef DomainWallFermion<DomainWallVec5dImplDF> DomainWallFermionVec5dDF;
|
||||
|
||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplR> DomainWallEOFAFermionVec5dR;
|
||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplF> DomainWallEOFAFermionVec5dF;
|
||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplD> DomainWallEOFAFermionVec5dD;
|
||||
|
||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplRL> DomainWallEOFAFermionVec5dRL;
|
||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplFH> DomainWallEOFAFermionVec5dFH;
|
||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplDF> DomainWallEOFAFermionVec5dDF;
|
||||
|
||||
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
|
||||
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
|
||||
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
|
||||
@ -146,6 +173,14 @@ typedef MobiusFermion<DomainWallVec5dImplRL> MobiusFermionVec5dRL;
|
||||
typedef MobiusFermion<DomainWallVec5dImplFH> MobiusFermionVec5dFH;
|
||||
typedef MobiusFermion<DomainWallVec5dImplDF> MobiusFermionVec5dDF;
|
||||
|
||||
typedef MobiusEOFAFermion<DomainWallVec5dImplR> MobiusEOFAFermionVec5dR;
|
||||
typedef MobiusEOFAFermion<DomainWallVec5dImplF> MobiusEOFAFermionVec5dF;
|
||||
typedef MobiusEOFAFermion<DomainWallVec5dImplD> MobiusEOFAFermionVec5dD;
|
||||
|
||||
typedef MobiusEOFAFermion<DomainWallVec5dImplRL> MobiusEOFAFermionVec5dRL;
|
||||
typedef MobiusEOFAFermion<DomainWallVec5dImplFH> MobiusEOFAFermionVec5dFH;
|
||||
typedef MobiusEOFAFermion<DomainWallVec5dImplDF> MobiusEOFAFermionVec5dDF;
|
||||
|
||||
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
|
||||
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
|
||||
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
|
||||
@ -206,6 +241,14 @@ typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
|
||||
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
|
||||
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
|
||||
|
||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
|
||||
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
|
||||
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
|
||||
|
||||
typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
|
||||
typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
|
||||
typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
|
||||
|
||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
|
||||
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
|
||||
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
|
||||
@ -222,6 +265,14 @@ typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
|
||||
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
|
||||
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
|
||||
|
||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
|
||||
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
|
||||
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
|
||||
|
||||
typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
|
||||
typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
|
||||
typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
|
||||
|
||||
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
|
||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
|
||||
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
|
||||
|
@ -538,6 +538,12 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <class ref>
|
||||
inline void loadLinkElement(Simd ®, ref &memory) {
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds._grid,GaugeGrid);
|
||||
|
502
lib/qcd/action/fermion/MobiusEOFAFermion.cc
Normal file
502
lib/qcd/action/fermion/MobiusEOFAFermion.cc
Normal file
@ -0,0 +1,502 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template<class Impl>
|
||||
MobiusEOFAFermion<Impl>::MobiusEOFAFermion(
|
||||
GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3,
|
||||
RealD _shift, int _pm, RealD _M5,
|
||||
RealD _b, RealD _c, const ImplParams &p) :
|
||||
AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
|
||||
FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
|
||||
_shift, _pm, _M5, _b, _c, p)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
RealD eps = 1.0;
|
||||
Approx::zolotarev_data *zdata = Approx::higham(eps, this->Ls);
|
||||
assert(zdata->n == this->Ls);
|
||||
|
||||
std::cout << GridLogMessage << "MobiusEOFAFermion (b=" << _b <<
|
||||
",c=" << _c << ") with Ls=" << Ls << std::endl;
|
||||
this->SetCoefficientsTanh(zdata, _b, _c);
|
||||
std::cout << GridLogMessage << "EOFA parameters: (mq1=" << _mq1 <<
|
||||
",mq2=" << _mq2 << ",mq3=" << _mq3 << ",shift=" << _shift <<
|
||||
",pm=" << _pm << ")" << std::endl;
|
||||
|
||||
Approx::zolotarev_free(zdata);
|
||||
|
||||
if(_shift != 0.0){
|
||||
SetCoefficientsPrecondShiftOps();
|
||||
} else {
|
||||
Mooee_shift.resize(Ls, 0.0);
|
||||
MooeeInv_shift_lc.resize(Ls, 0.0);
|
||||
MooeeInv_shift_norm.resize(Ls, 0.0);
|
||||
MooeeInvDag_shift_lc.resize(Ls, 0.0);
|
||||
MooeeInvDag_shift_norm.resize(Ls, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
RealD alpha = this->alpha;
|
||||
|
||||
Din = zero;
|
||||
if((sign == 1) && (dag == 0)) { // \Omega_{+}
|
||||
for(int s=0; s<Ls; ++s){
|
||||
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,Ls-s-1)/std::pow(1.0+alpha,Ls-s), psi, s, 0);
|
||||
}
|
||||
} else if((sign == -1) && (dag == 0)) { // \Omega_{-}
|
||||
for(int s=0; s<Ls; ++s){
|
||||
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,s)/std::pow(1.0+alpha,s+1), psi, s, 0);
|
||||
}
|
||||
} else if((sign == 1 ) && (dag == 1)) { // \Omega_{+}^{\dagger}
|
||||
for(int sp=0; sp<Ls; ++sp){
|
||||
axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,Ls-sp-1)/std::pow(1.0+alpha,Ls-sp), psi, 0, sp);
|
||||
}
|
||||
} else if((sign == -1) && (dag == 1)) { // \Omega_{-}^{\dagger}
|
||||
for(int sp=0; sp<Ls; ++sp){
|
||||
axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,sp)/std::pow(1.0+alpha,sp+1), psi, 0, sp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is the operator relating the usual Ddwf to TWQCD's EOFA Dirac operator (arXiv:1706.05843, Eqn. 6).
|
||||
// It also relates the preconditioned and unpreconditioned systems described in Appendix B.2.
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
RealD b = 0.5 * ( 1.0 + this->alpha );
|
||||
RealD c = 0.5 * ( 1.0 - this->alpha );
|
||||
RealD mq1 = this->mq1;
|
||||
|
||||
for(int s=0; s<Ls; ++s){
|
||||
if(s == 0) {
|
||||
axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, 1.0, chi, mq1*c, psi, s, Ls-1);
|
||||
} else if(s == (Ls-1)) {
|
||||
axpby_ssp_pminus(chi, b, psi, mq1*c, psi, s, 0);
|
||||
axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
RealD m = this->mq1;
|
||||
RealD c = 0.5 * this->alpha;
|
||||
RealD d = 0.5;
|
||||
|
||||
RealD DtInv_p(0.0), DtInv_m(0.0);
|
||||
RealD N = std::pow(c+d,Ls) + m*std::pow(c-d,Ls);
|
||||
FermionField tmp(this->FermionGrid());
|
||||
|
||||
for(int s=0; s<Ls; ++s){
|
||||
for(int sp=0; sp<Ls; ++sp){
|
||||
|
||||
DtInv_p = m * std::pow(-1.0,s-sp+1) * std::pow(c-d,Ls+s-sp) / std::pow(c+d,s-sp+1) / N;
|
||||
DtInv_p += (s < sp) ? 0.0 : std::pow(-1.0,s-sp) * std::pow(c-d,s-sp) / std::pow(c+d,s-sp+1);
|
||||
DtInv_m = m * std::pow(-1.0,sp-s+1) * std::pow(c-d,Ls+sp-s) / std::pow(c+d,sp-s+1) / N;
|
||||
DtInv_m += (s > sp) ? 0.0 : std::pow(-1.0,sp-s) * std::pow(c-d,sp-s) / std::pow(c+d,sp-s+1);
|
||||
|
||||
if(sp == 0){
|
||||
axpby_ssp_pplus (tmp, 0.0, tmp, DtInv_p, psi, s, sp);
|
||||
axpby_ssp_pminus(tmp, 0.0, tmp, DtInv_m, psi, s, sp);
|
||||
} else {
|
||||
axpby_ssp_pplus (tmp, 1.0, tmp, DtInv_p, psi, s, sp);
|
||||
axpby_ssp_pminus(tmp, 1.0, tmp, DtInv_m, psi, s, sp);
|
||||
}
|
||||
|
||||
}}
|
||||
}
|
||||
|
||||
/*****************************************************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
RealD MobiusEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField Din(psi._grid);
|
||||
|
||||
this->Meooe5D(psi, Din);
|
||||
this->DW(Din, chi, DaggerNo);
|
||||
axpby(chi, 1.0, 1.0, chi, psi);
|
||||
this->M5D(psi, chi);
|
||||
return(norm2(chi));
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
RealD MobiusEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField Din(psi._grid);
|
||||
|
||||
this->DW(psi, Din, DaggerYes);
|
||||
this->MeooeDag5D(Din, chi);
|
||||
this->M5Ddag(psi, chi);
|
||||
axpby(chi, 1.0, 1.0, chi, psi);
|
||||
return(norm2(chi));
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
std::vector<Coeff_t> diag(Ls,1.0);
|
||||
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
|
||||
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
|
||||
|
||||
// no shift term
|
||||
if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
|
||||
|
||||
// fused M + shift operation
|
||||
else{ this->M5D_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
std::vector<Coeff_t> diag(Ls,1.0);
|
||||
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
|
||||
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
|
||||
|
||||
// no shift term
|
||||
if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
|
||||
|
||||
// fused M + shift operation
|
||||
else{ this->M5Ddag_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
|
||||
}
|
||||
|
||||
// half checkerboard operations
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
// coefficients of Mooee
|
||||
std::vector<Coeff_t> diag = this->bee;
|
||||
std::vector<Coeff_t> upper(Ls);
|
||||
std::vector<Coeff_t> lower(Ls);
|
||||
for(int s=0; s<Ls; s++){
|
||||
upper[s] = -this->cee[s];
|
||||
lower[s] = -this->cee[s];
|
||||
}
|
||||
upper[Ls-1] *= -this->mq1;
|
||||
lower[0] *= -this->mq1;
|
||||
|
||||
// no shift term
|
||||
if(this->shift == 0.0){ this->M5D(psi, psi, chi, lower, diag, upper); }
|
||||
|
||||
// fused M + shift operation
|
||||
else { this->M5D_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
// coefficients of MooeeDag
|
||||
std::vector<Coeff_t> diag = this->bee;
|
||||
std::vector<Coeff_t> upper(Ls);
|
||||
std::vector<Coeff_t> lower(Ls);
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
upper[s] = -this->cee[s+1];
|
||||
lower[s] = this->mq1*this->cee[Ls-1];
|
||||
} else if(s==(Ls-1)) {
|
||||
upper[s] = this->mq1*this->cee[0];
|
||||
lower[s] = -this->cee[s-1];
|
||||
} else {
|
||||
upper[s] = -this->cee[s+1];
|
||||
lower[s] = -this->cee[s-1];
|
||||
}
|
||||
}
|
||||
|
||||
// no shift term
|
||||
if(this->shift == 0.0){ this->M5Ddag(psi, psi, chi, lower, diag, upper); }
|
||||
|
||||
// fused M + shift operation
|
||||
else{ this->M5Ddag_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
|
||||
}
|
||||
|
||||
/****************************************************************************************/
|
||||
|
||||
// Computes coefficients for applying Cayley preconditioned shift operators
|
||||
// (Mooee + \Delta) --> Mooee_shift
|
||||
// (Mooee + \Delta)^{-1} --> MooeeInv_shift_lc, MooeeInv_shift_norm
|
||||
// (Mooee + \Delta)^{-dag} --> MooeeInvDag_shift_lc, MooeeInvDag_shift_norm
|
||||
// For the latter two cases, the operation takes the form
|
||||
// [ (Mooee + \Delta)^{-1} \psi ]_{i} = Mooee_{ij} \psi_{j} +
|
||||
// ( MooeeInv_shift_norm )_{i} ( \sum_{j} [ MooeeInv_shift_lc ]_{j} P_{pm} \psi_{j} )
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int pm = this->pm;
|
||||
RealD alpha = this->alpha;
|
||||
RealD k = this->k;
|
||||
RealD mq1 = this->mq1;
|
||||
RealD shift = this->shift;
|
||||
|
||||
// Initialize
|
||||
Mooee_shift.resize(Ls);
|
||||
MooeeInv_shift_lc.resize(Ls);
|
||||
MooeeInv_shift_norm.resize(Ls);
|
||||
MooeeInvDag_shift_lc.resize(Ls);
|
||||
MooeeInvDag_shift_norm.resize(Ls);
|
||||
|
||||
// Construct Mooee_shift
|
||||
int idx(0);
|
||||
Coeff_t N = ( (pm == 1) ? 1.0 : -1.0 ) * (2.0*shift*k) *
|
||||
( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
|
||||
for(int s=0; s<Ls; ++s){
|
||||
idx = (pm == 1) ? (s) : (Ls-1-s);
|
||||
Mooee_shift[idx] = N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1);
|
||||
}
|
||||
|
||||
// Tridiagonal solve for MooeeInvDag_shift_lc
|
||||
{
|
||||
Coeff_t m(0.0);
|
||||
std::vector<Coeff_t> d = Mooee_shift;
|
||||
std::vector<Coeff_t> u(Ls,0.0);
|
||||
std::vector<Coeff_t> y(Ls,0.0);
|
||||
std::vector<Coeff_t> q(Ls,0.0);
|
||||
if(pm == 1){ u[0] = 1.0; }
|
||||
else{ u[Ls-1] = 1.0; }
|
||||
|
||||
// Tridiagonal matrix algorithm + Sherman-Morrison formula
|
||||
//
|
||||
// We solve
|
||||
// ( Mooee' + u \otimes v ) MooeeInvDag_shift_lc = Mooee_shift
|
||||
// where Mooee' is the tridiagonal part of Mooee_{+}, and
|
||||
// u = (1,0,...,0) and v = (0,...,0,mq1*cee[0]) are chosen
|
||||
// so that the outer-product u \otimes v gives the (0,Ls-1)
|
||||
// entry of Mooee_{+}.
|
||||
//
|
||||
// We do this as two solves: Mooee'*y = d and Mooee'*q = u,
|
||||
// and then construct the solution to the original system
|
||||
// MooeeInvDag_shift_lc = y - <v,y> / ( 1 + <v,q> ) q
|
||||
if(pm == 1){
|
||||
for(int s=1; s<Ls; ++s){
|
||||
m = -this->cee[s] / this->bee[s-1];
|
||||
d[s] -= m*d[s-1];
|
||||
u[s] -= m*u[s-1];
|
||||
}
|
||||
}
|
||||
y[Ls-1] = d[Ls-1] / this->bee[Ls-1];
|
||||
q[Ls-1] = u[Ls-1] / this->bee[Ls-1];
|
||||
for(int s=Ls-2; s>=0; --s){
|
||||
if(pm == 1){
|
||||
y[s] = d[s] / this->bee[s];
|
||||
q[s] = u[s] / this->bee[s];
|
||||
} else {
|
||||
y[s] = ( d[s] + this->cee[s]*y[s+1] ) / this->bee[s];
|
||||
q[s] = ( u[s] + this->cee[s]*q[s+1] ) / this->bee[s];
|
||||
}
|
||||
}
|
||||
|
||||
// Construct MooeeInvDag_shift_lc
|
||||
for(int s=0; s<Ls; ++s){
|
||||
if(pm == 1){
|
||||
MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[0]*y[Ls-1] /
|
||||
(1.0+mq1*this->cee[0]*q[Ls-1]) * q[s];
|
||||
} else {
|
||||
MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[Ls-1]*y[0] /
|
||||
(1.0+mq1*this->cee[Ls-1]*q[0]) * q[s];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute remaining coefficients
|
||||
N = (pm == 1) ? (1.0 + MooeeInvDag_shift_lc[Ls-1]) : (1.0 + MooeeInvDag_shift_lc[0]);
|
||||
for(int s=0; s<Ls; ++s){
|
||||
|
||||
// MooeeInv_shift_lc
|
||||
if(pm == 1){ MooeeInv_shift_lc[s] = std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s); }
|
||||
else{ MooeeInv_shift_lc[s] = std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s); }
|
||||
|
||||
// MooeeInv_shift_norm
|
||||
MooeeInv_shift_norm[s] = -MooeeInvDag_shift_lc[s] /
|
||||
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N;
|
||||
|
||||
// MooeeInvDag_shift_norm
|
||||
if(pm == 1){ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s) /
|
||||
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
|
||||
else{ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s) /
|
||||
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Recompute coefficients for a different value of shift constant
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
|
||||
{
|
||||
this->shift = new_shift;
|
||||
if(new_shift != 0.0){
|
||||
SetCoefficientsPrecondShiftOps();
|
||||
} else {
|
||||
int Ls = this->Ls;
|
||||
Mooee_shift.resize(Ls,0.0);
|
||||
MooeeInv_shift_lc.resize(Ls,0.0);
|
||||
MooeeInv_shift_norm.resize(Ls,0.0);
|
||||
MooeeInvDag_shift_lc.resize(Ls,0.0);
|
||||
MooeeInvDag_shift_norm.resize(Ls,0.0);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
|
||||
Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
GridBase* grid = this->FermionRedBlackGrid();
|
||||
int LLs = grid->_rdimensions[0];
|
||||
|
||||
if(LLs == Ls){ return; } // Not vectorised in 5th direction
|
||||
|
||||
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
|
||||
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
|
||||
|
||||
for(int s=0; s<Ls; s++){
|
||||
Pplus(s,s) = this->bee[s];
|
||||
Pminus(s,s) = this->bee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pminus(s,s+1) = -this->cee[s];
|
||||
Pplus(s+1,s) = -this->cee[s+1];
|
||||
}
|
||||
|
||||
Pplus (0,Ls-1) = this->mq1*this->cee[0];
|
||||
Pminus(Ls-1,0) = this->mq1*this->cee[Ls-1];
|
||||
|
||||
if(this->shift != 0.0){
|
||||
RealD c = 0.5 * this->alpha;
|
||||
RealD d = 0.5;
|
||||
RealD N = this->shift * this->k * ( std::pow(c+d,Ls) + this->mq1*std::pow(c-d,Ls) );
|
||||
if(this->pm == 1) {
|
||||
for(int s=0; s<Ls; ++s){
|
||||
Pplus(s,Ls-1) += N * std::pow(-1.0,s) * std::pow(c-d,s) / std::pow(c+d,Ls+s+1);
|
||||
}
|
||||
} else {
|
||||
for(int s=0; s<Ls; ++s){
|
||||
Pminus(s,0) += N * std::pow(-1.0,s+1) * std::pow(c-d,Ls-1-s) / std::pow(c+d,2*Ls-s);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Eigen::MatrixXcd PplusMat ;
|
||||
Eigen::MatrixXcd PminusMat;
|
||||
|
||||
if(inv) {
|
||||
PplusMat = Pplus.inverse();
|
||||
PminusMat = Pminus.inverse();
|
||||
} else {
|
||||
PplusMat = Pplus;
|
||||
PminusMat = Pminus;
|
||||
}
|
||||
|
||||
if(dag){
|
||||
PplusMat.adjointInPlace();
|
||||
PminusMat.adjointInPlace();
|
||||
}
|
||||
|
||||
typedef typename SiteHalfSpinor::scalar_type scalar_type;
|
||||
const int Nsimd = Simd::Nsimd();
|
||||
Matp.resize(Ls*LLs);
|
||||
Matm.resize(Ls*LLs);
|
||||
|
||||
for(int s2=0; s2<Ls; s2++){
|
||||
for(int s1=0; s1<LLs; s1++){
|
||||
int istride = LLs;
|
||||
int ostride = 1;
|
||||
Simd Vp;
|
||||
Simd Vm;
|
||||
scalar_type *sp = (scalar_type*) &Vp;
|
||||
scalar_type *sm = (scalar_type*) &Vm;
|
||||
for(int l=0; l<Nsimd; l++){
|
||||
if(switcheroo<Coeff_t>::iscomplex()) {
|
||||
sp[l] = PplusMat (l*istride+s1*ostride,s2);
|
||||
sm[l] = PminusMat(l*istride+s1*ostride,s2);
|
||||
} else {
|
||||
// if real
|
||||
scalar_type tmp;
|
||||
tmp = PplusMat (l*istride+s1*ostride,s2);
|
||||
sp[l] = scalar_type(tmp.real(),tmp.real());
|
||||
tmp = PminusMat(l*istride+s1*ostride,s2);
|
||||
sm[l] = scalar_type(tmp.real(),tmp.real());
|
||||
}
|
||||
}
|
||||
Matp[LLs*s2+s1] = Vp;
|
||||
Matm[LLs*s2+s1] = Vm;
|
||||
}}
|
||||
}
|
||||
|
||||
FermOpTemplateInstantiate(MobiusEOFAFermion);
|
||||
GparityFermOpTemplateInstantiate(MobiusEOFAFermion);
|
||||
|
||||
}}
|
133
lib/qcd/action/fermion/MobiusEOFAFermion.h
Normal file
133
lib/qcd/action/fermion/MobiusEOFAFermion.h
Normal file
@ -0,0 +1,133 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_MOBIUS_EOFA_FERMION_H
|
||||
#define GRID_QCD_MOBIUS_EOFA_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template<class Impl>
|
||||
class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
// Shift operator coefficients for red-black preconditioned Mobius EOFA
|
||||
std::vector<Coeff_t> Mooee_shift;
|
||||
std::vector<Coeff_t> MooeeInv_shift_lc;
|
||||
std::vector<Coeff_t> MooeeInv_shift_norm;
|
||||
std::vector<Coeff_t> MooeeInvDag_shift_lc;
|
||||
std::vector<Coeff_t> MooeeInvDag_shift_norm;
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
|
||||
// EOFA-specific operations
|
||||
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
|
||||
virtual void Dtilde (const FermionField& in, FermionField& out);
|
||||
virtual void DtildeInv (const FermionField& in, FermionField& out);
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField& in, FermionField& out);
|
||||
virtual RealD Mdag (const FermionField& in, FermionField& out);
|
||||
|
||||
// half checkerboard operations
|
||||
virtual void Mooee (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeDag (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInv (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInv_shift (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInvDag (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInvDag_shift(const FermionField& in, FermionField& out);
|
||||
|
||||
virtual void M5D (const FermionField& psi, FermionField& chi);
|
||||
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Instantiate different versions depending on Impl
|
||||
/////////////////////////////////////////////////////
|
||||
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
|
||||
|
||||
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
|
||||
std::vector<Coeff_t>& shift_coeffs);
|
||||
|
||||
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
|
||||
|
||||
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
|
||||
std::vector<Coeff_t>& shift_coeffs);
|
||||
|
||||
void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
|
||||
|
||||
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
|
||||
|
||||
void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
|
||||
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
|
||||
|
||||
void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
|
||||
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
|
||||
|
||||
virtual void RefreshShiftCoefficients(RealD new_shift);
|
||||
|
||||
// Constructors
|
||||
MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
|
||||
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
|
||||
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
|
||||
|
||||
protected:
|
||||
void SetCoefficientsPrecondShiftOps(void);
|
||||
};
|
||||
}}
|
||||
|
||||
#define INSTANTIATE_DPERP_MOBIUS_EOFA(A)\
|
||||
template void MobiusEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
|
||||
template void MobiusEOFAFermion<A>::M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
|
||||
template void MobiusEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
|
||||
template void MobiusEOFAFermion<A>::M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
|
||||
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
|
||||
template void MobiusEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
|
||||
template void MobiusEOFAFermion<A>::MooeeInv_shift(const FermionField& psi, FermionField& chi); \
|
||||
template void MobiusEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi); \
|
||||
template void MobiusEOFAFermion<A>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi);
|
||||
|
||||
#undef MOBIUS_EOFA_DPERP_DENSE
|
||||
#define MOBIUS_EOFA_DPERP_CACHE
|
||||
#undef MOBIUS_EOFA_DPERP_LINALG
|
||||
#define MOBIUS_EOFA_DPERP_VEC
|
||||
|
||||
#endif
|
429
lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
Normal file
429
lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
Normal file
@ -0,0 +1,429 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi, const FermionField &phi, FermionField &chi,
|
||||
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
GridBase *grid = psi._grid;
|
||||
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
for(int s=0; s<Ls; s++){
|
||||
auto tmp = psi._odata[0];
|
||||
if(s==0){
|
||||
spProj5m(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+Ls-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else if(s==(Ls-1)) {
|
||||
spProj5m(tmp, psi._odata[ss+0]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else {
|
||||
spProj5m(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
|
||||
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
|
||||
std::vector<Coeff_t> &shift_coeffs)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
|
||||
GridBase *grid = psi._grid;
|
||||
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
for(int s=0; s<Ls; s++){
|
||||
auto tmp = psi._odata[0];
|
||||
if(s==0){
|
||||
spProj5m(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+Ls-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else if(s==(Ls-1)) {
|
||||
spProj5m(tmp, psi._odata[ss+0]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else {
|
||||
spProj5m(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5p(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
}
|
||||
if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+shift_s]); }
|
||||
else{ spProj5m(tmp, psi._odata[ss+shift_s]); }
|
||||
chi[ss+s] = chi[ss+s] + shift_coeffs[s]*tmp;
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi, const FermionField &phi, FermionField &chi,
|
||||
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
GridBase *grid = psi._grid;
|
||||
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
auto tmp = psi._odata[0];
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
spProj5p(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+Ls-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else if(s==(Ls-1)) {
|
||||
spProj5p(tmp, psi._odata[ss+0]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else {
|
||||
spProj5p(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
|
||||
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
|
||||
std::vector<Coeff_t> &shift_coeffs)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
|
||||
GridBase *grid = psi._grid;
|
||||
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
chi[ss+Ls-1] = zero;
|
||||
auto tmp = psi._odata[0];
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
spProj5p(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+Ls-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else if(s==(Ls-1)) {
|
||||
spProj5p(tmp, psi._odata[ss+0]);
|
||||
chi[ss+s] = chi[ss+s] + diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
} else {
|
||||
spProj5p(tmp, psi._odata[ss+s+1]);
|
||||
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
|
||||
spProj5m(tmp, psi._odata[ss+s-1]);
|
||||
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
|
||||
}
|
||||
if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+s]); }
|
||||
else{ spProj5m(tmp, psi._odata[ss+s]); }
|
||||
chi[ss+shift_s] = chi[ss+shift_s] + shift_coeffs[s]*tmp;
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
|
||||
|
||||
GridBase *grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
|
||||
auto tmp = psi._odata[0];
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
chi[ss] = psi[ss]; // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
spProj5p(tmp, chi[ss+s-1]);
|
||||
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp;
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
spProj5m(tmp, chi[ss+s]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp;
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
|
||||
spProj5p(tmp, chi[ss+Ls-1]);
|
||||
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp;
|
||||
}
|
||||
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
|
||||
|
||||
// Apply U^{-1}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
spProj5m(tmp, chi[ss+s+1]);
|
||||
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp;
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
GridBase *grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
|
||||
auto tmp1 = psi._odata[0];
|
||||
auto tmp2 = psi._odata[0];
|
||||
auto tmp2_spProj = psi._odata[0];
|
||||
|
||||
// Apply (L^{\prime})^{-1} and accumulate MooeeInv_shift_lc[j]*psi[j] in tmp2
|
||||
chi[ss] = psi[ss]; // chi[0]=psi[0]
|
||||
tmp2 = MooeeInv_shift_lc[0]*psi[ss];
|
||||
for(int s=1; s<Ls; s++){
|
||||
spProj5p(tmp1, chi[ss+s-1]);
|
||||
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
|
||||
tmp2 = tmp2 + MooeeInv_shift_lc[s]*psi[ss+s];
|
||||
}
|
||||
if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
|
||||
else{ spProj5m(tmp2_spProj, tmp2); }
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
spProj5m(tmp1, chi[ss+s]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
|
||||
spProj5p(tmp1, chi[ss+Ls-1]);
|
||||
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp1;
|
||||
}
|
||||
// chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
|
||||
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
|
||||
spProj5m(tmp1, chi[ss+Ls-1]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
|
||||
|
||||
// Apply U^{-1} and add shift term
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
|
||||
spProj5m(tmp1, chi[ss+s]);
|
||||
chi[ss+s] = chi[ss+s] + MooeeInv_shift_norm[s]*tmp2_spProj;
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
|
||||
|
||||
GridBase *grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
|
||||
auto tmp = psi._odata[0];
|
||||
|
||||
// Apply (U^{\prime})^{-dag}
|
||||
chi[ss] = psi[ss];
|
||||
for(int s=1; s<Ls; s++){
|
||||
spProj5m(tmp, chi[ss+s-1]);
|
||||
chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp;
|
||||
}
|
||||
|
||||
// U_m^{-\dag}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
spProj5p(tmp, chi[ss+s]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp;
|
||||
}
|
||||
|
||||
// L_m^{-\dag} D^{-dag}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
spProj5m(tmp, chi[ss+Ls-1]);
|
||||
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp;
|
||||
}
|
||||
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
|
||||
|
||||
// Apply L^{-dag}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
spProj5p(tmp, chi[ss+s+1]);
|
||||
chi[ss+s] = chi[ss+s] - this->lee[s]*tmp;
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
GridBase *grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
|
||||
|
||||
auto tmp1 = psi._odata[0];
|
||||
auto tmp2 = psi._odata[0];
|
||||
auto tmp2_spProj = psi._odata[0];
|
||||
|
||||
// Apply (U^{\prime})^{-dag} and accumulate MooeeInvDag_shift_lc[j]*psi[j] in tmp2
|
||||
chi[ss] = psi[ss];
|
||||
tmp2 = MooeeInvDag_shift_lc[0]*psi[ss];
|
||||
for(int s=1; s<Ls; s++){
|
||||
spProj5m(tmp1, chi[ss+s-1]);
|
||||
chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp1;
|
||||
tmp2 = tmp2 + MooeeInvDag_shift_lc[s]*psi[ss+s];
|
||||
}
|
||||
if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
|
||||
else{ spProj5m(tmp2_spProj, tmp2); }
|
||||
|
||||
// U_m^{-\dag}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
spProj5p(tmp1, chi[ss+s]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp1;
|
||||
}
|
||||
|
||||
// L_m^{-\dag} D^{-dag}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
spProj5m(tmp1, chi[ss+Ls-1]);
|
||||
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp1;
|
||||
}
|
||||
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
|
||||
spProj5p(tmp1, chi[ss+Ls-1]);
|
||||
chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInvDag_shift_norm[Ls-1]*tmp2_spProj;
|
||||
|
||||
// Apply L^{-dag}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
chi[ss+s] = chi[ss+s] - this->lee[s]*tmp1;
|
||||
spProj5p(tmp1, chi[ss+s]);
|
||||
chi[ss+s] = chi[ss+s] + MooeeInvDag_shift_norm[s]*tmp2_spProj;
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
#ifdef MOBIUS_EOFA_DPERP_CACHE
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
184
lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
Normal file
184
lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
Normal file
@ -0,0 +1,184 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int LLs = psi._grid->_rdimensions[0];
|
||||
int vol = psi._grid->oSites()/LLs;
|
||||
|
||||
int pm = this->pm;
|
||||
RealD shift = this->shift;
|
||||
RealD alpha = this->alpha;
|
||||
RealD k = this->k;
|
||||
RealD mq1 = this->mq1;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
assert(Ls==LLs);
|
||||
|
||||
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
|
||||
for(int s=0;s<Ls;s++){
|
||||
Pplus(s,s) = this->bee[s];
|
||||
Pminus(s,s) = this->bee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pminus(s,s+1) = -this->cee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pplus(s+1,s) = -this->cee[s+1];
|
||||
}
|
||||
Pplus (0,Ls-1) = mq1*this->cee[0];
|
||||
Pminus(Ls-1,0) = mq1*this->cee[Ls-1];
|
||||
|
||||
if(shift != 0.0){
|
||||
Coeff_t N = 2.0 * ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
|
||||
for(int s=0; s<Ls; ++s){
|
||||
if(pm == 1){ Pplus(s,Ls-1) += shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
|
||||
else{ Pminus(Ls-1-s,Ls-1) -= shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
|
||||
}
|
||||
}
|
||||
|
||||
Eigen::MatrixXd PplusMat ;
|
||||
Eigen::MatrixXd PminusMat;
|
||||
|
||||
if(inv){
|
||||
PplusMat = Pplus.inverse();
|
||||
PminusMat = Pminus.inverse();
|
||||
} else {
|
||||
PplusMat = Pplus;
|
||||
PminusMat = Pminus;
|
||||
}
|
||||
|
||||
if(dag){
|
||||
PplusMat.adjointInPlace();
|
||||
PminusMat.adjointInPlace();
|
||||
}
|
||||
|
||||
// For the non-vectorised s-direction this is simple
|
||||
|
||||
for(auto site=0; site<vol; site++){
|
||||
|
||||
SiteSpinor SiteChi;
|
||||
SiteHalfSpinor SitePplus;
|
||||
SiteHalfSpinor SitePminus;
|
||||
|
||||
for(int s1=0; s1<Ls; s1++){
|
||||
SiteChi = zero;
|
||||
for(int s2=0; s2<Ls; s2++){
|
||||
int lex2 = s2 + Ls*site;
|
||||
if(PplusMat(s1,s2) != 0.0){
|
||||
spProj5p(SitePplus,psi[lex2]);
|
||||
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
|
||||
}
|
||||
if(PminusMat(s1,s2) != 0.0){
|
||||
spProj5m(SitePminus, psi[lex2]);
|
||||
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
|
||||
}
|
||||
}
|
||||
chi[s1+Ls*site] = SiteChi*0.5;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef MOBIUS_EOFA_DPERP_DENSE
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
|
||||
|
||||
template void MobiusEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
|
||||
|
||||
template void MobiusEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
290
lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
Normal file
290
lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
Normal file
@ -0,0 +1,290 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
|
||||
// Pminus fowards
|
||||
// Pplus backwards
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
|
||||
std::vector<Coeff_t>& shift_coeffs)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
|
||||
std::vector<Coeff_t>& shift_coeffs)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
|
||||
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
int Ls = this->Ls;
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply U^{-1}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi._grid);
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
axpby_ssp(tmp, czero, tmp, this->MooeeInv_shift_lc[0], psi, 0, 0);
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
|
||||
axpby_ssp(tmp, one, tmp, this->MooeeInv_shift_lc[s], psi, 0, s);
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply U^{-1} and add shift term
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
|
||||
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
int Ls = this->Ls;
|
||||
|
||||
// Apply (U^{\prime})^{-dagger}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply L^{-dagger}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi._grid);
|
||||
|
||||
// Apply (U^{\prime})^{-dagger} and accumulate (MooeeInvDag_shift_lc)_{j} \psi_{j} in tmp[0]
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
axpby_ssp(tmp, czero, tmp, this->MooeeInvDag_shift_lc[0], psi, 0, 0);
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
|
||||
axpby_ssp(tmp, one, tmp, this->MooeeInvDag_shift_lc[s], psi, 0, s);
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply L^{-dagger} and add shift
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef MOBIUS_EOFA_DPERP_LINALG
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
983
lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
Normal file
983
lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
Normal file
@ -0,0 +1,983 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
const int nsimd = Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd>> u(LLs);
|
||||
Vector<iSinglet<Simd>> l(LLs);
|
||||
Vector<iSinglet<Simd>> d(LLs);
|
||||
|
||||
assert(Ls/LLs == nsimd);
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type* u_p = (scalar_type*) &u[0];
|
||||
scalar_type* l_p = (scalar_type*) &l[0];
|
||||
scalar_type* d_p = (scalar_type*) &d[0];
|
||||
|
||||
for(int o=0; o<LLs; o++){ // outer
|
||||
for(int i=0; i<nsimd; i++){ //inner
|
||||
int s = o + i*LLs;
|
||||
int ss = o*nsimd + i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
assert(Nc == 3);
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
|
||||
|
||||
#if 0
|
||||
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
int vp = (v+1)%LLs;
|
||||
int vm = (v+LLs-1)%LLs;
|
||||
|
||||
spProj5m(hp, psi[ss+vp]);
|
||||
spProj5p(hm, psi[ss+vm]);
|
||||
|
||||
if (vp <= v){ rotate(hp, hp, 1); }
|
||||
if (vm >= v){ rotate(hm, hm, nsimd-1); }
|
||||
|
||||
hp = 0.5*hp;
|
||||
hm = 0.5*hm;
|
||||
|
||||
spRecon5m(fp, hp);
|
||||
spRecon5p(fm, hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v];
|
||||
chi[ss+v] = chi[ss+v] + u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] + l[v]*fm;
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp = (v == LLs-1) ? 0 : v+1;
|
||||
int vm = (v == 0) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(2)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(2)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(2)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(3)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(3)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(3)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(0)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(0)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(0)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(1)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(1)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(1)(2);
|
||||
|
||||
if(vp <= v){
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
|
||||
if(vm >= v){
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
// Can force these to real arithmetic and save 2x.
|
||||
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
|
||||
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
|
||||
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
|
||||
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
|
||||
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
|
||||
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
|
||||
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
|
||||
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
|
||||
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
|
||||
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
|
||||
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
|
||||
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0), p_00);
|
||||
vstream(chi[ss+v]()(0)(1), p_01);
|
||||
vstream(chi[ss+v]()(0)(2), p_02);
|
||||
vstream(chi[ss+v]()(1)(0), p_10);
|
||||
vstream(chi[ss+v]()(1)(1), p_11);
|
||||
vstream(chi[ss+v]()(1)(2), p_12);
|
||||
vstream(chi[ss+v]()(2)(0), p_20);
|
||||
vstream(chi[ss+v]()(2)(1), p_21);
|
||||
vstream(chi[ss+v]()(2)(2), p_22);
|
||||
vstream(chi[ss+v]()(3)(0), p_30);
|
||||
vstream(chi[ss+v]()(3)(1), p_31);
|
||||
vstream(chi[ss+v]()(3)(2), p_32);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
|
||||
std::vector<Coeff_t>& shift_coeffs)
|
||||
{
|
||||
#if 0
|
||||
|
||||
this->M5D(psi, phi, chi, lower, diag, upper);
|
||||
|
||||
// FIXME: possible gain from vectorizing shift operation as well?
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
const int nsimd = Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd>> u(LLs);
|
||||
Vector<iSinglet<Simd>> l(LLs);
|
||||
Vector<iSinglet<Simd>> d(LLs);
|
||||
Vector<iSinglet<Simd>> s(LLs);
|
||||
|
||||
assert(Ls/LLs == nsimd);
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type* u_p = (scalar_type*) &u[0];
|
||||
scalar_type* l_p = (scalar_type*) &l[0];
|
||||
scalar_type* d_p = (scalar_type*) &d[0];
|
||||
scalar_type* s_p = (scalar_type*) &s[0];
|
||||
|
||||
for(int o=0; o<LLs; o++){ // outer
|
||||
for(int i=0; i<nsimd; i++){ //inner
|
||||
int s = o + i*LLs;
|
||||
int ss = o*nsimd + i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
s_p[ss] = shift_coeffs[s];
|
||||
}}
|
||||
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
assert(Nc == 3);
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
|
||||
|
||||
int vs = (this->pm == 1) ? LLs-1 : 0;
|
||||
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(2)(0) : psi[ss+vs]()(0)(0);
|
||||
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(2)(1) : psi[ss+vs]()(0)(1);
|
||||
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(2)(2) : psi[ss+vs]()(0)(2);
|
||||
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(3)(0) : psi[ss+vs]()(1)(0);
|
||||
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(3)(1) : psi[ss+vs]()(1)(1);
|
||||
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(3)(2) : psi[ss+vs]()(1)(2);
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp = (v == LLs-1) ? 0 : v+1;
|
||||
int vm = (v == 0) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(2)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(2)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(2)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(3)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(3)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(3)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(0)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(0)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(0)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(1)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(1)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(1)(2);
|
||||
|
||||
if(vp <= v){
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
|
||||
if(this->pm == 1 && vs <= v){
|
||||
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
|
||||
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
|
||||
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
|
||||
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
|
||||
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
|
||||
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
|
||||
}
|
||||
|
||||
if(vm >= v){
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
if(this->pm == -1 && vs >= v){
|
||||
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
|
||||
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
|
||||
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
|
||||
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
|
||||
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
|
||||
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
|
||||
}
|
||||
|
||||
// Can force these to real arithmetic and save 2x.
|
||||
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
|
||||
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
|
||||
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
|
||||
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
|
||||
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
|
||||
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
|
||||
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
|
||||
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
|
||||
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
|
||||
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
|
||||
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
|
||||
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0), p_00);
|
||||
vstream(chi[ss+v]()(0)(1), p_01);
|
||||
vstream(chi[ss+v]()(0)(2), p_02);
|
||||
vstream(chi[ss+v]()(1)(0), p_10);
|
||||
vstream(chi[ss+v]()(1)(1), p_11);
|
||||
vstream(chi[ss+v]()(1)(2), p_12);
|
||||
vstream(chi[ss+v]()(2)(0), p_20);
|
||||
vstream(chi[ss+v]()(2)(1), p_21);
|
||||
vstream(chi[ss+v]()(2)(2), p_22);
|
||||
vstream(chi[ss+v]()(3)(0), p_30);
|
||||
vstream(chi[ss+v]()(3)(1), p_31);
|
||||
vstream(chi[ss+v]()(3)(2), p_32);
|
||||
}
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
|
||||
{
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
int nsimd = Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd>> u(LLs);
|
||||
Vector<iSinglet<Simd>> l(LLs);
|
||||
Vector<iSinglet<Simd>> d(LLs);
|
||||
|
||||
assert(Ls/LLs == nsimd);
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type* u_p = (scalar_type*) &u[0];
|
||||
scalar_type* l_p = (scalar_type*) &l[0];
|
||||
scalar_type* d_p = (scalar_type*) &d[0];
|
||||
|
||||
for(int o=0; o<LLs; o++){ // outer
|
||||
for(int i=0; i<nsimd; i++){ //inner
|
||||
int s = o + i*LLs;
|
||||
int ss = o*nsimd + i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
|
||||
|
||||
#if 0
|
||||
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
int vp = (v+1)%LLs;
|
||||
int vm = (v+LLs-1)%LLs;
|
||||
|
||||
spProj5p(hp, psi[ss+vp]);
|
||||
spProj5m(hm, psi[ss+vm]);
|
||||
|
||||
if(vp <= v){ rotate(hp, hp, 1); }
|
||||
if(vm >= v){ rotate(hm, hm, nsimd-1); }
|
||||
|
||||
hp = hp*0.5;
|
||||
hm = hm*0.5;
|
||||
spRecon5p(fp, hp);
|
||||
spRecon5m(fm, hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp = (v == LLs-1) ? 0 : v+1;
|
||||
int vm = (v == 0 ) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(0)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(0)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(0)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(1)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(1)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(1)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(2)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(2)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(2)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(3)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(3)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(3)(2);
|
||||
|
||||
if (vp <= v){
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
|
||||
if(vm >= v){
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
|
||||
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
|
||||
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
|
||||
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
|
||||
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
|
||||
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
|
||||
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
|
||||
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
|
||||
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
|
||||
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
|
||||
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
|
||||
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0), p_00);
|
||||
vstream(chi[ss+v]()(0)(1), p_01);
|
||||
vstream(chi[ss+v]()(0)(2), p_02);
|
||||
vstream(chi[ss+v]()(1)(0), p_10);
|
||||
vstream(chi[ss+v]()(1)(1), p_11);
|
||||
vstream(chi[ss+v]()(1)(2), p_12);
|
||||
vstream(chi[ss+v]()(2)(0), p_20);
|
||||
vstream(chi[ss+v]()(2)(1), p_21);
|
||||
vstream(chi[ss+v]()(2)(2), p_22);
|
||||
vstream(chi[ss+v]()(3)(0), p_30);
|
||||
vstream(chi[ss+v]()(3)(1), p_31);
|
||||
vstream(chi[ss+v]()(3)(2), p_32);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
|
||||
std::vector<Coeff_t>& shift_coeffs)
|
||||
{
|
||||
#if 0
|
||||
|
||||
this->M5Ddag(psi, phi, chi, lower, diag, upper);
|
||||
|
||||
// FIXME: possible gain from vectorizing shift operation as well?
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
GridBase* grid = psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
int nsimd = Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd>> u(LLs);
|
||||
Vector<iSinglet<Simd>> l(LLs);
|
||||
Vector<iSinglet<Simd>> d(LLs);
|
||||
Vector<iSinglet<Simd>> s(LLs);
|
||||
|
||||
assert(Ls/LLs == nsimd);
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type* u_p = (scalar_type*) &u[0];
|
||||
scalar_type* l_p = (scalar_type*) &l[0];
|
||||
scalar_type* d_p = (scalar_type*) &d[0];
|
||||
scalar_type* s_p = (scalar_type*) &s[0];
|
||||
|
||||
for(int o=0; o<LLs; o++){ // outer
|
||||
for(int i=0; i<nsimd; i++){ //inner
|
||||
int s = o + i*LLs;
|
||||
int ss = o*nsimd + i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
s_p[ss] = shift_coeffs[s];
|
||||
}}
|
||||
|
||||
this->M5Dcalls++;
|
||||
this->M5Dtime -= usecond();
|
||||
|
||||
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
|
||||
|
||||
int vs = (this->pm == 1) ? LLs-1 : 0;
|
||||
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(0)(0) : psi[ss+vs]()(2)(0);
|
||||
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(0)(1) : psi[ss+vs]()(2)(1);
|
||||
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(0)(2) : psi[ss+vs]()(2)(2);
|
||||
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(1)(0) : psi[ss+vs]()(3)(0);
|
||||
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(1)(1) : psi[ss+vs]()(3)(1);
|
||||
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(1)(2) : psi[ss+vs]()(3)(2);
|
||||
|
||||
for(int v=0; v<LLs; v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp = (v == LLs-1) ? 0 : v+1;
|
||||
int vm = (v == 0 ) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(0)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(0)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(0)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(1)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(1)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(1)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(2)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(2)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(2)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(3)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(3)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(3)(2);
|
||||
|
||||
if (vp <= v){
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
|
||||
if(this->pm == 1 && vs <= v){
|
||||
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
|
||||
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
|
||||
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
|
||||
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
|
||||
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
|
||||
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
|
||||
}
|
||||
|
||||
if(vm >= v){
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
if(this->pm == -1 && vs >= v){
|
||||
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
|
||||
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
|
||||
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
|
||||
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
|
||||
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
|
||||
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
|
||||
}
|
||||
|
||||
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
|
||||
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
|
||||
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
|
||||
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
|
||||
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
|
||||
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
|
||||
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
|
||||
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
|
||||
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
|
||||
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
|
||||
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
|
||||
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
|
||||
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
|
||||
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0), p_00);
|
||||
vstream(chi[ss+v]()(0)(1), p_01);
|
||||
vstream(chi[ss+v]()(0)(2), p_02);
|
||||
vstream(chi[ss+v]()(1)(0), p_10);
|
||||
vstream(chi[ss+v]()(1)(1), p_11);
|
||||
vstream(chi[ss+v]()(1)(2), p_12);
|
||||
vstream(chi[ss+v]()(2)(0), p_20);
|
||||
vstream(chi[ss+v]()(2)(1), p_21);
|
||||
vstream(chi[ss+v]()(2)(2), p_22);
|
||||
vstream(chi[ss+v]()(3)(0), p_30);
|
||||
vstream(chi[ss+v]()(3)(1), p_31);
|
||||
vstream(chi[ss+v]()(3)(2), p_32);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
this->M5Dtime += usecond();
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef AVX512
|
||||
#include<simd/Intel512common.h>
|
||||
#include<simd/Intel512avx.h>
|
||||
#include<simd/Intel512single.h>
|
||||
#endif
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
|
||||
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
|
||||
{
|
||||
#ifndef AVX512
|
||||
{
|
||||
SiteHalfSpinor BcastP;
|
||||
SiteHalfSpinor BcastM;
|
||||
SiteHalfSpinor SiteChiP;
|
||||
SiteHalfSpinor SiteChiM;
|
||||
|
||||
// Ls*Ls * 2 * 12 * vol flops
|
||||
for(int s1=0; s1<LLs; s1++){
|
||||
|
||||
for(int s2=0; s2<LLs; s2++){
|
||||
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
|
||||
|
||||
int s = s2 + l*LLs;
|
||||
int lex = s2 + LLs*site;
|
||||
|
||||
if( s2==0 && l==0 ){
|
||||
SiteChiP=zero;
|
||||
SiteChiM=zero;
|
||||
}
|
||||
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
|
||||
}}
|
||||
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
|
||||
}}
|
||||
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
|
||||
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
|
||||
}}
|
||||
}}
|
||||
|
||||
{
|
||||
int lex = s1 + LLs*site;
|
||||
for(int sp=0; sp<2; sp++){
|
||||
for(int co=0; co<Nc; co++){
|
||||
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
|
||||
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
|
||||
}}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
{
|
||||
// pointers
|
||||
// MASK_REGS;
|
||||
#define Chi_00 %%zmm1
|
||||
#define Chi_01 %%zmm2
|
||||
#define Chi_02 %%zmm3
|
||||
#define Chi_10 %%zmm4
|
||||
#define Chi_11 %%zmm5
|
||||
#define Chi_12 %%zmm6
|
||||
#define Chi_20 %%zmm7
|
||||
#define Chi_21 %%zmm8
|
||||
#define Chi_22 %%zmm9
|
||||
#define Chi_30 %%zmm10
|
||||
#define Chi_31 %%zmm11
|
||||
#define Chi_32 %%zmm12
|
||||
|
||||
#define BCAST0 %%zmm13
|
||||
#define BCAST1 %%zmm14
|
||||
#define BCAST2 %%zmm15
|
||||
#define BCAST3 %%zmm16
|
||||
#define BCAST4 %%zmm17
|
||||
#define BCAST5 %%zmm18
|
||||
#define BCAST6 %%zmm19
|
||||
#define BCAST7 %%zmm20
|
||||
#define BCAST8 %%zmm21
|
||||
#define BCAST9 %%zmm22
|
||||
#define BCAST10 %%zmm23
|
||||
#define BCAST11 %%zmm24
|
||||
|
||||
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
|
||||
|
||||
for(int s1=0; s1<LLs; s1++){
|
||||
|
||||
for(int s2=0; s2<LLs; s2++){
|
||||
|
||||
int lex = s2 + LLs*site;
|
||||
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
|
||||
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
|
||||
uint64_t a2 = (uint64_t) &psi[lex];
|
||||
|
||||
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
|
||||
|
||||
if((s2+l)==0) {
|
||||
asm(
|
||||
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
|
||||
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
|
||||
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
|
||||
VBCASTCDUP(0,%2,BCAST0)
|
||||
VBCASTCDUP(1,%2,BCAST1)
|
||||
VBCASTCDUP(2,%2,BCAST2)
|
||||
VBCASTCDUP(3,%2,BCAST3)
|
||||
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
|
||||
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
|
||||
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
|
||||
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
|
||||
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
|
||||
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
|
||||
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
|
||||
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
|
||||
VMULMEM(0,%1,BCAST8,Chi_22)
|
||||
VMULMEM(0,%1,BCAST9,Chi_30)
|
||||
VMULMEM(0,%1,BCAST10,Chi_31)
|
||||
VMULMEM(0,%1,BCAST11,Chi_32)
|
||||
: : "r" (a0), "r" (a1), "r" (a2) );
|
||||
} else {
|
||||
asm(
|
||||
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
|
||||
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
|
||||
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
|
||||
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
|
||||
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
|
||||
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
|
||||
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
|
||||
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
|
||||
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
|
||||
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
|
||||
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
|
||||
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
|
||||
: : "r" (a0), "r" (a1), "r" (a2) );
|
||||
}
|
||||
|
||||
a0 = a0 + incr;
|
||||
a1 = a1 + incr;
|
||||
a2 = a2 + sizeof(Simd::scalar_type);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int lexa = s1+LLs*site;
|
||||
asm (
|
||||
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
|
||||
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
|
||||
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
|
||||
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
|
||||
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef Chi_00
|
||||
#undef Chi_01
|
||||
#undef Chi_02
|
||||
#undef Chi_10
|
||||
#undef Chi_11
|
||||
#undef Chi_12
|
||||
#undef Chi_20
|
||||
#undef Chi_21
|
||||
#undef Chi_22
|
||||
#undef Chi_30
|
||||
#undef Chi_31
|
||||
#undef Chi_32
|
||||
|
||||
#undef BCAST0
|
||||
#undef BCAST1
|
||||
#undef BCAST2
|
||||
#undef BCAST3
|
||||
#undef BCAST4
|
||||
#undef BCAST5
|
||||
#undef BCAST6
|
||||
#undef BCAST7
|
||||
#undef BCAST8
|
||||
#undef BCAST9
|
||||
#undef BCAST10
|
||||
#undef BCAST11
|
||||
|
||||
#endif
|
||||
};
|
||||
|
||||
// Z-mobius version
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
|
||||
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
|
||||
{
|
||||
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
|
||||
exit(-1);
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int LLs = psi._grid->_rdimensions[0];
|
||||
int vol = psi._grid->oSites()/LLs;
|
||||
|
||||
chi.checkerboard = psi.checkerboard;
|
||||
|
||||
Vector<iSinglet<Simd>> Matp;
|
||||
Vector<iSinglet<Simd>> Matm;
|
||||
Vector<iSinglet<Simd>>* _Matp;
|
||||
Vector<iSinglet<Simd>>* _Matm;
|
||||
|
||||
// MooeeInternalCompute(dag,inv,Matp,Matm);
|
||||
if(inv && dag){
|
||||
_Matp = &this->MatpInvDag;
|
||||
_Matm = &this->MatmInvDag;
|
||||
}
|
||||
|
||||
if(inv && (!dag)){
|
||||
_Matp = &this->MatpInv;
|
||||
_Matm = &this->MatmInv;
|
||||
}
|
||||
|
||||
if(!inv){
|
||||
MooeeInternalCompute(dag, inv, Matp, Matm);
|
||||
_Matp = &Matp;
|
||||
_Matm = &Matm;
|
||||
}
|
||||
|
||||
assert(_Matp->size() == Ls*LLs);
|
||||
|
||||
this->MooeeInvCalls++;
|
||||
this->MooeeInvTime -= usecond();
|
||||
|
||||
if(switcheroo<Coeff_t>::iscomplex()){
|
||||
parallel_for(auto site=0; site<vol; site++){
|
||||
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
|
||||
}
|
||||
} else {
|
||||
parallel_for(auto site=0; site<vol; site++){
|
||||
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
|
||||
}
|
||||
}
|
||||
|
||||
this->MooeeInvTime += usecond();
|
||||
}
|
||||
|
||||
#ifdef MOBIUS_EOFA_DPERP_VEC
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplF);
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplFH);
|
||||
|
||||
template void MobiusEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
template void MobiusEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
#endif
|
||||
|
||||
}}
|
@ -30,60 +30,181 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
#define REGISTER
|
||||
|
||||
#define LOAD_CHIMU \
|
||||
{const SiteSpinor & ref (in._odata[offset]); \
|
||||
Chimu_00=ref()(0)(0);\
|
||||
Chimu_01=ref()(0)(1);\
|
||||
Chimu_02=ref()(0)(2);\
|
||||
Chimu_10=ref()(1)(0);\
|
||||
Chimu_11=ref()(1)(1);\
|
||||
Chimu_12=ref()(1)(2);\
|
||||
Chimu_20=ref()(2)(0);\
|
||||
Chimu_21=ref()(2)(1);\
|
||||
Chimu_22=ref()(2)(2);\
|
||||
Chimu_30=ref()(3)(0);\
|
||||
Chimu_31=ref()(3)(1);\
|
||||
Chimu_32=ref()(3)(2);}
|
||||
#define LOAD_CHIMU_BODY(F) \
|
||||
Chimu_00=ref(F)(0)(0); \
|
||||
Chimu_01=ref(F)(0)(1); \
|
||||
Chimu_02=ref(F)(0)(2); \
|
||||
Chimu_10=ref(F)(1)(0); \
|
||||
Chimu_11=ref(F)(1)(1); \
|
||||
Chimu_12=ref(F)(1)(2); \
|
||||
Chimu_20=ref(F)(2)(0); \
|
||||
Chimu_21=ref(F)(2)(1); \
|
||||
Chimu_22=ref(F)(2)(2); \
|
||||
Chimu_30=ref(F)(3)(0); \
|
||||
Chimu_31=ref(F)(3)(1); \
|
||||
Chimu_32=ref(F)(3)(2)
|
||||
|
||||
#define LOAD_CHI\
|
||||
{const SiteHalfSpinor &ref(buf[offset]); \
|
||||
Chi_00 = ref()(0)(0);\
|
||||
Chi_01 = ref()(0)(1);\
|
||||
Chi_02 = ref()(0)(2);\
|
||||
Chi_10 = ref()(1)(0);\
|
||||
Chi_11 = ref()(1)(1);\
|
||||
Chi_12 = ref()(1)(2);}
|
||||
#define LOAD_CHIMU(DIR,F,PERM) \
|
||||
{ const SiteSpinor & ref (in._odata[offset]); LOAD_CHIMU_BODY(F); }
|
||||
|
||||
#define LOAD_CHI_BODY(F) \
|
||||
Chi_00 = ref(F)(0)(0);\
|
||||
Chi_01 = ref(F)(0)(1);\
|
||||
Chi_02 = ref(F)(0)(2);\
|
||||
Chi_10 = ref(F)(1)(0);\
|
||||
Chi_11 = ref(F)(1)(1);\
|
||||
Chi_12 = ref(F)(1)(2)
|
||||
|
||||
#define LOAD_CHI(DIR,F,PERM) \
|
||||
{const SiteHalfSpinor &ref(buf[offset]); LOAD_CHI_BODY(F); }
|
||||
|
||||
|
||||
//G-parity implementations using in-place intrinsic ops
|
||||
|
||||
//1l 1h -> 1h 1l
|
||||
//0l 0h , 1h 1l -> 0l 1h 0h,1l
|
||||
//0h,1l -> 1l,0h
|
||||
//if( (distance == 1 && !perm_will_occur) || (distance == -1 && perm_will_occur) )
|
||||
//Pulled fermion through forwards face, GPBC on upper component
|
||||
//Need 0= 0l 1h 1= 1l 0h
|
||||
//else if( (distance == -1 && !perm) || (distance == 1 && perm) )
|
||||
//Pulled fermion through backwards face, GPBC on lower component
|
||||
//Need 0= 1l 0h 1= 0l 1h
|
||||
|
||||
//1l 1h -> 1h 1l
|
||||
//0l 0h , 1h 1l -> 0l 1h 0h,1l
|
||||
#define DO_TWIST_0L_1H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3) \
|
||||
permute##PERM(tmp1, ref(1)(S)(C)); \
|
||||
exchange##PERM(tmp2,tmp3, ref(0)(S)(C), tmp1); \
|
||||
INTO = tmp2;
|
||||
|
||||
//0l 0h -> 0h 0l
|
||||
//1l 1h, 0h 0l -> 1l 0h, 1h 0l
|
||||
#define DO_TWIST_1L_0H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3) \
|
||||
permute##PERM(tmp1, ref(0)(S)(C)); \
|
||||
exchange##PERM(tmp2,tmp3, ref(1)(S)(C), tmp1); \
|
||||
INTO = tmp2;
|
||||
|
||||
|
||||
|
||||
|
||||
#define LOAD_CHI_SETUP(DIR,F) \
|
||||
g = F; \
|
||||
direction = st._directions[DIR]; \
|
||||
distance = st._distances[DIR]; \
|
||||
sl = st._grid->_simd_layout[direction]; \
|
||||
inplace_twist = 0; \
|
||||
if(SE->_around_the_world && this->Params.twists[DIR % 4]){ \
|
||||
if(sl == 1){ \
|
||||
g = (F+1) % 2; \
|
||||
}else{ \
|
||||
inplace_twist = 1; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM) \
|
||||
{ const SiteSpinor &ref(in._odata[offset]); \
|
||||
LOAD_CHI_SETUP(DIR,F); \
|
||||
if(!inplace_twist){ \
|
||||
LOAD_CHIMU_BODY(g); \
|
||||
}else{ \
|
||||
if( ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
|
||||
( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
|
||||
DO_TWIST_0L_1H(Chimu_00,0,0,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chimu_01,0,1,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_0L_1H(Chimu_02,0,2,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chimu_10,1,0,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_0L_1H(Chimu_11,1,1,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chimu_12,1,2,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_0L_1H(Chimu_20,2,0,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chimu_21,2,1,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_0L_1H(Chimu_22,2,2,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chimu_30,3,0,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_0L_1H(Chimu_31,3,1,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chimu_32,3,2,F,PERM, U_11,U_20,U_21); \
|
||||
}else{ \
|
||||
DO_TWIST_1L_0H(Chimu_00,0,0,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chimu_01,0,1,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_1L_0H(Chimu_02,0,2,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chimu_10,1,0,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_1L_0H(Chimu_11,1,1,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chimu_12,1,2,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_1L_0H(Chimu_20,2,0,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chimu_21,2,1,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_1L_0H(Chimu_22,2,2,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chimu_30,3,0,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_1L_0H(Chimu_31,3,1,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chimu_32,3,2,F,PERM, U_11,U_20,U_21); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
#define LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM) \
|
||||
{ const SiteHalfSpinor &ref(buf[offset]); \
|
||||
LOAD_CHI_SETUP(DIR,F); \
|
||||
if(!inplace_twist){ \
|
||||
LOAD_CHI_BODY(g); \
|
||||
}else{ \
|
||||
if( ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
|
||||
( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
|
||||
DO_TWIST_0L_1H(Chi_00,0,0,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chi_01,0,1,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_0L_1H(Chi_02,0,2,F,PERM, UChi_00,UChi_01,UChi_02); \
|
||||
DO_TWIST_0L_1H(Chi_10,1,0,F,PERM, UChi_10,UChi_11,UChi_12); \
|
||||
DO_TWIST_0L_1H(Chi_11,1,1,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_0L_1H(Chi_12,1,2,F,PERM, U_11,U_20,U_21); \
|
||||
}else{ \
|
||||
DO_TWIST_1L_0H(Chi_00,0,0,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chi_01,0,1,F,PERM, U_11,U_20,U_21); \
|
||||
DO_TWIST_1L_0H(Chi_02,0,2,F,PERM, UChi_00,UChi_01,UChi_02); \
|
||||
DO_TWIST_1L_0H(Chi_10,1,0,F,PERM, UChi_10,UChi_11,UChi_12); \
|
||||
DO_TWIST_1L_0H(Chi_11,1,1,F,PERM, U_00,U_01,U_10); \
|
||||
DO_TWIST_1L_0H(Chi_12,1,2,F,PERM, U_11,U_20,U_21); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
#define LOAD_CHI_GPARITY(DIR,F,PERM) LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM)
|
||||
#define LOAD_CHIMU_GPARITY(DIR,F,PERM) LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM)
|
||||
|
||||
// To splat or not to splat depends on the implementation
|
||||
#define MULT_2SPIN(A)\
|
||||
{auto & ref(U._odata[sU](A)); \
|
||||
Impl::loadLinkElement(U_00,ref()(0,0)); \
|
||||
Impl::loadLinkElement(U_10,ref()(1,0)); \
|
||||
Impl::loadLinkElement(U_20,ref()(2,0)); \
|
||||
Impl::loadLinkElement(U_01,ref()(0,1)); \
|
||||
Impl::loadLinkElement(U_11,ref()(1,1)); \
|
||||
Impl::loadLinkElement(U_21,ref()(2,1)); \
|
||||
UChi_00 = U_00*Chi_00;\
|
||||
UChi_10 = U_00*Chi_10;\
|
||||
UChi_01 = U_10*Chi_00;\
|
||||
UChi_11 = U_10*Chi_10;\
|
||||
UChi_02 = U_20*Chi_00;\
|
||||
UChi_12 = U_20*Chi_10;\
|
||||
UChi_00+= U_01*Chi_01;\
|
||||
UChi_10+= U_01*Chi_11;\
|
||||
UChi_01+= U_11*Chi_01;\
|
||||
UChi_11+= U_11*Chi_11;\
|
||||
UChi_02+= U_21*Chi_01;\
|
||||
UChi_12+= U_21*Chi_11;\
|
||||
Impl::loadLinkElement(U_00,ref()(0,2)); \
|
||||
Impl::loadLinkElement(U_10,ref()(1,2)); \
|
||||
Impl::loadLinkElement(U_20,ref()(2,2)); \
|
||||
UChi_00+= U_00*Chi_02;\
|
||||
UChi_10+= U_00*Chi_12;\
|
||||
UChi_01+= U_10*Chi_02;\
|
||||
UChi_11+= U_10*Chi_12;\
|
||||
UChi_02+= U_20*Chi_02;\
|
||||
UChi_12+= U_20*Chi_12;}
|
||||
#define MULT_2SPIN_BODY \
|
||||
Impl::loadLinkElement(U_00,ref()(0,0)); \
|
||||
Impl::loadLinkElement(U_10,ref()(1,0)); \
|
||||
Impl::loadLinkElement(U_20,ref()(2,0)); \
|
||||
Impl::loadLinkElement(U_01,ref()(0,1)); \
|
||||
Impl::loadLinkElement(U_11,ref()(1,1)); \
|
||||
Impl::loadLinkElement(U_21,ref()(2,1)); \
|
||||
UChi_00 = U_00*Chi_00; \
|
||||
UChi_10 = U_00*Chi_10; \
|
||||
UChi_01 = U_10*Chi_00; \
|
||||
UChi_11 = U_10*Chi_10; \
|
||||
UChi_02 = U_20*Chi_00; \
|
||||
UChi_12 = U_20*Chi_10; \
|
||||
UChi_00+= U_01*Chi_01; \
|
||||
UChi_10+= U_01*Chi_11; \
|
||||
UChi_01+= U_11*Chi_01; \
|
||||
UChi_11+= U_11*Chi_11; \
|
||||
UChi_02+= U_21*Chi_01; \
|
||||
UChi_12+= U_21*Chi_11; \
|
||||
Impl::loadLinkElement(U_00,ref()(0,2)); \
|
||||
Impl::loadLinkElement(U_10,ref()(1,2)); \
|
||||
Impl::loadLinkElement(U_20,ref()(2,2)); \
|
||||
UChi_00+= U_00*Chi_02; \
|
||||
UChi_10+= U_00*Chi_12; \
|
||||
UChi_01+= U_10*Chi_02; \
|
||||
UChi_11+= U_10*Chi_12; \
|
||||
UChi_02+= U_20*Chi_02; \
|
||||
UChi_12+= U_20*Chi_12
|
||||
|
||||
|
||||
#define MULT_2SPIN(A,F) \
|
||||
{auto & ref(U._odata[sU](A)); MULT_2SPIN_BODY; }
|
||||
|
||||
#define MULT_2SPIN_GPARITY(A,F) \
|
||||
{auto & ref(U._odata[sU](F)(A)); MULT_2SPIN_BODY; }
|
||||
|
||||
|
||||
#define PERMUTE_DIR(dir) \
|
||||
@ -307,84 +428,87 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
result_31-= UChi_11; \
|
||||
result_32-= UChi_12;
|
||||
|
||||
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
|
||||
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
SE=st.GetEntry(ptype,DIR,ss); \
|
||||
offset = SE->_offset; \
|
||||
local = SE->_is_local; \
|
||||
perm = SE->_permute; \
|
||||
if ( local ) { \
|
||||
LOAD_CHIMU; \
|
||||
LOAD_CHIMU_IMPL(DIR,F,PERM); \
|
||||
PROJ; \
|
||||
if ( perm) { \
|
||||
PERMUTE_DIR(PERM); \
|
||||
} \
|
||||
} else { \
|
||||
LOAD_CHI; \
|
||||
LOAD_CHI_IMPL(DIR,F,PERM); \
|
||||
} \
|
||||
MULT_2SPIN(DIR); \
|
||||
MULT_2SPIN_IMPL(DIR,F); \
|
||||
RECON;
|
||||
|
||||
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
|
||||
|
||||
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
SE=st.GetEntry(ptype,DIR,ss); \
|
||||
offset = SE->_offset; \
|
||||
local = SE->_is_local; \
|
||||
perm = SE->_permute; \
|
||||
if ( local ) { \
|
||||
LOAD_CHIMU; \
|
||||
LOAD_CHIMU_IMPL(DIR,F,PERM); \
|
||||
PROJ; \
|
||||
if ( perm) { \
|
||||
PERMUTE_DIR(PERM); \
|
||||
} \
|
||||
} else if ( st.same_node[DIR] ) { \
|
||||
LOAD_CHI; \
|
||||
LOAD_CHI_IMPL(DIR,F,PERM); \
|
||||
} \
|
||||
if (local || st.same_node[DIR] ) { \
|
||||
MULT_2SPIN(DIR); \
|
||||
MULT_2SPIN_IMPL(DIR,F); \
|
||||
RECON; \
|
||||
}
|
||||
|
||||
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
|
||||
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
SE=st.GetEntry(ptype,DIR,ss); \
|
||||
offset = SE->_offset; \
|
||||
local = SE->_is_local; \
|
||||
perm = SE->_permute; \
|
||||
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
|
||||
LOAD_CHI; \
|
||||
MULT_2SPIN(DIR); \
|
||||
LOAD_CHI_IMPL(DIR,F,PERM); \
|
||||
MULT_2SPIN_IMPL(DIR,F); \
|
||||
RECON; \
|
||||
nmu++; \
|
||||
}
|
||||
|
||||
#define HAND_RESULT(ss) \
|
||||
#define HAND_RESULT(ss,F) \
|
||||
{ \
|
||||
SiteSpinor & ref (out._odata[ss]); \
|
||||
vstream(ref()(0)(0),result_00); \
|
||||
vstream(ref()(0)(1),result_01); \
|
||||
vstream(ref()(0)(2),result_02); \
|
||||
vstream(ref()(1)(0),result_10); \
|
||||
vstream(ref()(1)(1),result_11); \
|
||||
vstream(ref()(1)(2),result_12); \
|
||||
vstream(ref()(2)(0),result_20); \
|
||||
vstream(ref()(2)(1),result_21); \
|
||||
vstream(ref()(2)(2),result_22); \
|
||||
vstream(ref()(3)(0),result_30); \
|
||||
vstream(ref()(3)(1),result_31); \
|
||||
vstream(ref()(3)(2),result_32); \
|
||||
vstream(ref(F)(0)(0),result_00); \
|
||||
vstream(ref(F)(0)(1),result_01); \
|
||||
vstream(ref(F)(0)(2),result_02); \
|
||||
vstream(ref(F)(1)(0),result_10); \
|
||||
vstream(ref(F)(1)(1),result_11); \
|
||||
vstream(ref(F)(1)(2),result_12); \
|
||||
vstream(ref(F)(2)(0),result_20); \
|
||||
vstream(ref(F)(2)(1),result_21); \
|
||||
vstream(ref(F)(2)(2),result_22); \
|
||||
vstream(ref(F)(3)(0),result_30); \
|
||||
vstream(ref(F)(3)(1),result_31); \
|
||||
vstream(ref(F)(3)(2),result_32); \
|
||||
}
|
||||
|
||||
#define HAND_RESULT_EXT(ss) \
|
||||
#define HAND_RESULT_EXT(ss,F) \
|
||||
if (nmu){ \
|
||||
SiteSpinor & ref (out._odata[ss]); \
|
||||
ref()(0)(0)+=result_00; \
|
||||
ref()(0)(1)+=result_01; \
|
||||
ref()(0)(2)+=result_02; \
|
||||
ref()(1)(0)+=result_10; \
|
||||
ref()(1)(1)+=result_11; \
|
||||
ref()(1)(2)+=result_12; \
|
||||
ref()(2)(0)+=result_20; \
|
||||
ref()(2)(1)+=result_21; \
|
||||
ref()(2)(2)+=result_22; \
|
||||
ref()(3)(0)+=result_30; \
|
||||
ref()(3)(1)+=result_31; \
|
||||
ref()(3)(2)+=result_32; \
|
||||
ref(F)(0)(0)+=result_00; \
|
||||
ref(F)(0)(1)+=result_01; \
|
||||
ref(F)(0)(2)+=result_02; \
|
||||
ref(F)(1)(0)+=result_10; \
|
||||
ref(F)(1)(1)+=result_11; \
|
||||
ref(F)(1)(2)+=result_12; \
|
||||
ref(F)(2)(0)+=result_20; \
|
||||
ref(F)(2)(1)+=result_21; \
|
||||
ref(F)(2)(2)+=result_22; \
|
||||
ref(F)(3)(0)+=result_30; \
|
||||
ref(F)(3)(1)+=result_31; \
|
||||
ref(F)(3)(2)+=result_32; \
|
||||
}
|
||||
|
||||
|
||||
@ -463,15 +587,18 @@ WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGauge
|
||||
int offset,local,perm, ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
|
||||
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
|
||||
HAND_RESULT(ss);
|
||||
#define HAND_DOP_SITE(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_RESULT(ss,F)
|
||||
|
||||
HAND_DOP_SITE(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -485,16 +612,19 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,Doub
|
||||
|
||||
StencilEntry *SE;
|
||||
int offset,local,perm, ptype;
|
||||
|
||||
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
|
||||
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
|
||||
HAND_RESULT(ss);
|
||||
|
||||
#define HAND_DOP_SITE_DAG(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_RESULT(ss,F)
|
||||
|
||||
HAND_DOP_SITE_DAG(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
|
||||
}
|
||||
|
||||
template<class Impl> void
|
||||
@ -509,16 +639,20 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
|
||||
|
||||
int offset,local,perm, ptype;
|
||||
StencilEntry *SE;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
|
||||
HAND_RESULT(ss);
|
||||
|
||||
#define HAND_DOP_SITE_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
ZERO_RESULT; \
|
||||
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_RESULT(ss,F)
|
||||
|
||||
HAND_DOP_SITE_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -532,16 +666,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,D
|
||||
|
||||
StencilEntry *SE;
|
||||
int offset,local,perm, ptype;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
|
||||
HAND_RESULT(ss);
|
||||
|
||||
#define HAND_DOP_SITE_DAG_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
ZERO_RESULT; \
|
||||
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_RESULT(ss,F)
|
||||
|
||||
HAND_DOP_SITE_DAG_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
|
||||
}
|
||||
|
||||
template<class Impl> void
|
||||
@ -557,16 +695,20 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
|
||||
int offset,local,perm, ptype;
|
||||
StencilEntry *SE;
|
||||
int nmu=0;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
|
||||
HAND_RESULT_EXT(ss);
|
||||
|
||||
#define HAND_DOP_SITE_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
ZERO_RESULT; \
|
||||
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_RESULT_EXT(ss,F)
|
||||
|
||||
HAND_DOP_SITE_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -581,16 +723,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
|
||||
StencilEntry *SE;
|
||||
int offset,local,perm, ptype;
|
||||
int nmu=0;
|
||||
ZERO_RESULT;
|
||||
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
|
||||
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
|
||||
HAND_RESULT_EXT(ss);
|
||||
|
||||
#define HAND_DOP_SITE_DAG_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
|
||||
ZERO_RESULT; \
|
||||
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
|
||||
HAND_RESULT_EXT(ss,F)
|
||||
|
||||
HAND_DOP_SITE_DAG_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////
|
||||
@ -646,11 +792,124 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
|
||||
const FermionField &in, \
|
||||
FermionField &out){ assert(0); } \
|
||||
|
||||
HAND_SPECIALISE_EMPTY(GparityWilsonImplF);
|
||||
HAND_SPECIALISE_EMPTY(GparityWilsonImplD);
|
||||
HAND_SPECIALISE_EMPTY(GparityWilsonImplFH);
|
||||
HAND_SPECIALISE_EMPTY(GparityWilsonImplDF);
|
||||
|
||||
|
||||
#define HAND_SPECIALISE_GPARITY(IMPL) \
|
||||
template<> void \
|
||||
WilsonKernels<IMPL>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
|
||||
int ss,int sU,const FermionField &in, FermionField &out) \
|
||||
{ \
|
||||
typedef IMPL Impl; \
|
||||
typedef typename Simd::scalar_type S; \
|
||||
typedef typename Simd::vector_type V; \
|
||||
\
|
||||
HAND_DECLARATIONS(ignore); \
|
||||
\
|
||||
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
|
||||
StencilEntry *SE; \
|
||||
HAND_DOP_SITE(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
HAND_DOP_SITE(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
} \
|
||||
\
|
||||
template<> \
|
||||
void WilsonKernels<IMPL>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
|
||||
int ss,int sU,const FermionField &in, FermionField &out) \
|
||||
{ \
|
||||
typedef IMPL Impl; \
|
||||
typedef typename Simd::scalar_type S; \
|
||||
typedef typename Simd::vector_type V; \
|
||||
\
|
||||
HAND_DECLARATIONS(ignore); \
|
||||
\
|
||||
StencilEntry *SE; \
|
||||
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
|
||||
HAND_DOP_SITE_DAG(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
HAND_DOP_SITE_DAG(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
} \
|
||||
\
|
||||
template<> void \
|
||||
WilsonKernels<IMPL>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
|
||||
int ss,int sU,const FermionField &in, FermionField &out) \
|
||||
{ \
|
||||
typedef IMPL Impl; \
|
||||
typedef typename Simd::scalar_type S; \
|
||||
typedef typename Simd::vector_type V; \
|
||||
\
|
||||
HAND_DECLARATIONS(ignore); \
|
||||
\
|
||||
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
|
||||
StencilEntry *SE; \
|
||||
HAND_DOP_SITE_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
HAND_DOP_SITE_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
} \
|
||||
\
|
||||
template<> \
|
||||
void WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
|
||||
int ss,int sU,const FermionField &in, FermionField &out) \
|
||||
{ \
|
||||
typedef IMPL Impl; \
|
||||
typedef typename Simd::scalar_type S; \
|
||||
typedef typename Simd::vector_type V; \
|
||||
\
|
||||
HAND_DECLARATIONS(ignore); \
|
||||
\
|
||||
StencilEntry *SE; \
|
||||
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
|
||||
HAND_DOP_SITE_DAG_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
HAND_DOP_SITE_DAG_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
} \
|
||||
\
|
||||
template<> void \
|
||||
WilsonKernels<IMPL>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
|
||||
int ss,int sU,const FermionField &in, FermionField &out) \
|
||||
{ \
|
||||
typedef IMPL Impl; \
|
||||
typedef typename Simd::scalar_type S; \
|
||||
typedef typename Simd::vector_type V; \
|
||||
\
|
||||
HAND_DECLARATIONS(ignore); \
|
||||
\
|
||||
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
|
||||
StencilEntry *SE; \
|
||||
int nmu=0; \
|
||||
HAND_DOP_SITE_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
nmu = 0; \
|
||||
HAND_DOP_SITE_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
} \
|
||||
template<> \
|
||||
void WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
|
||||
int ss,int sU,const FermionField &in, FermionField &out) \
|
||||
{ \
|
||||
typedef IMPL Impl; \
|
||||
typedef typename Simd::scalar_type S; \
|
||||
typedef typename Simd::vector_type V; \
|
||||
\
|
||||
HAND_DECLARATIONS(ignore); \
|
||||
\
|
||||
StencilEntry *SE; \
|
||||
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
|
||||
int nmu=0; \
|
||||
HAND_DOP_SITE_DAG_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
nmu = 0; \
|
||||
HAND_DOP_SITE_DAG_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
|
||||
}
|
||||
|
||||
|
||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplF);
|
||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplD);
|
||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplFH);
|
||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplDF);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
////////////// Wilson ; uses this implementation /////////////////////
|
||||
|
||||
#define INSTANTIATE_THEM(A) \
|
||||
|
264
lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Normal file
264
lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Normal file
@ -0,0 +1,264 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Implementation of exact one flavour algorithm (EOFA) //
|
||||
// using fermion classes defined in: //
|
||||
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
|
||||
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
|
||||
// arXiv: 1403.1683, 1706.05843 //
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
|
||||
private:
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
public:
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
|
||||
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
// Spin projection
|
||||
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
|
||||
{
|
||||
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
// using a rational approximation to the inverse square root
|
||||
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// Use chronological inverter to forecast solutions across poles
|
||||
std::vector<FermionField> prev_solns;
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
Phi = eta * N;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
RealD gamma_l(0.0);
|
||||
spProj(eta, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
tmp[1] = zero;
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero; // Just use zero as the initial guess
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(eta, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
tmp[1] = zero;
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero;
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
};
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// S = <\Phi|\Phi>
|
||||
RealD action(norm2(Phi));
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
Solver(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
Solver(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi (Lop.FermionGrid());
|
||||
FermionField Omega_spProj_Phi(Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField Chi (Lop.FermionGrid());
|
||||
FermionField g5_R5_Chi (Lop.FermionGrid());
|
||||
|
||||
GaugeField force(Lop.GaugeGrid());
|
||||
|
||||
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
|
||||
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
Solver(Lop, CG_src, spProj_Phi);
|
||||
Lop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = Lop.k * force;
|
||||
|
||||
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
|
||||
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
Solver(Rop, CG_src, spProj_Phi);
|
||||
Rop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = dSdU - Rop.k * force;
|
||||
};
|
||||
};
|
||||
}}
|
||||
|
||||
#endif
|
@ -38,5 +38,6 @@ directory
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||
|
||||
#endif
|
||||
|
@ -231,7 +231,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
Field Pfg(U._grid);
|
||||
Ufg = U;
|
||||
Pfg = zero;
|
||||
std::cout << GridLogMessage << "FG update " << fg_dt << " " << ep
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
|
||||
<< std::endl;
|
||||
// prepare_fg; no prediction/result cache for now
|
||||
// could relax CG stopping conditions for the
|
||||
|
@ -72,7 +72,7 @@ protected:
|
||||
}
|
||||
|
||||
virtual unsigned int Ls(){
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
virtual void print_parameters(){
|
||||
@ -97,7 +97,7 @@ class HMC_FermionOperatorModuleFactory
|
||||
: public Factory < FermionOperatorModuleBase<QCD::FermionOperator<FermionImpl> > , Reader<ReaderClass> > {
|
||||
public:
|
||||
// use SINGLETON FUNCTOR MACRO HERE
|
||||
typedef Reader<ReaderClass> TheReader;
|
||||
typedef Reader<ReaderClass> TheReader;
|
||||
|
||||
HMC_FermionOperatorModuleFactory(const HMC_FermionOperatorModuleFactory& e) = delete;
|
||||
void operator=(const HMC_FermionOperatorModuleFactory& e) = delete;
|
||||
@ -122,7 +122,7 @@ namespace QCD{
|
||||
// Modules
|
||||
class WilsonFermionParameters : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
|
||||
RealD, mass);
|
||||
};
|
||||
|
||||
@ -144,7 +144,7 @@ class WilsonFermionModule: public FermionOperatorModule<WilsonFermion, FermionIm
|
||||
|
||||
class MobiusFermionParameters : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
|
||||
RealD, mass,
|
||||
RealD, M5,
|
||||
RealD, b,
|
||||
@ -166,7 +166,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
|
||||
auto GridMod = this->GridRefs[0];
|
||||
auto GridMod5d = this->GridRefs[1];
|
||||
typename FermionImpl::GaugeField U(GridMod->get_full());
|
||||
this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
|
||||
this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
|
||||
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
|
||||
this->Par_.mass, this->Par_.M5, this->Par_.b, this->Par_.c));
|
||||
}
|
||||
@ -175,7 +175,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
|
||||
|
||||
class DomainWallFermionParameters : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
|
||||
RealD, mass,
|
||||
RealD, M5,
|
||||
unsigned int, Ls);
|
||||
@ -195,16 +195,49 @@ class DomainWallFermionModule: public FermionOperatorModule<DomainWallFermion, F
|
||||
auto GridMod = this->GridRefs[0];
|
||||
auto GridMod5d = this->GridRefs[1];
|
||||
typename FermionImpl::GaugeField U(GridMod->get_full());
|
||||
this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
|
||||
this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
|
||||
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
|
||||
this->Par_.mass, this->Par_.M5));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class DomainWallEOFAFermionParameters : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallEOFAFermionParameters,
|
||||
RealD, mq1,
|
||||
RealD, mq2,
|
||||
RealD, mq3,
|
||||
RealD, shift,
|
||||
int, pm,
|
||||
RealD, M5,
|
||||
unsigned int, Ls);
|
||||
};
|
||||
|
||||
template <class FermionImpl >
|
||||
class DomainWallEOFAFermionModule: public FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> {
|
||||
typedef FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> FermBase;
|
||||
using FermBase::FermBase; // for constructors
|
||||
|
||||
virtual unsigned int Ls(){
|
||||
return this->Par_.Ls;
|
||||
}
|
||||
|
||||
// acquire resource
|
||||
virtual void initialize(){
|
||||
auto GridMod = this->GridRefs[0];
|
||||
auto GridMod5d = this->GridRefs[1];
|
||||
typename FermionImpl::GaugeField U(GridMod->get_full());
|
||||
this->FOPtr.reset(new DomainWallEOFAFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
|
||||
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
|
||||
this->Par_.mq1, this->Par_.mq2, this->Par_.mq3,
|
||||
this->Par_.shift, this->Par_.pm, this->Par_.M5));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // QCD
|
||||
} // Grid
|
||||
|
||||
|
||||
#endif //FERMIONOPERATOR_MODULES_H
|
||||
#endif //FERMIONOPERATOR_MODULES_H
|
||||
|
@ -60,7 +60,7 @@ GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian
|
||||
simd5.push_back(FourDimGrid->_simd_layout[d]);
|
||||
mpi5.push_back(FourDimGrid->_processors[d]);
|
||||
}
|
||||
return new GridCartesian(latt5,simd5,mpi5);
|
||||
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
|
||||
}
|
||||
|
||||
|
||||
@ -68,18 +68,14 @@ GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridC
|
||||
{
|
||||
int N4=FourDimGrid->_ndimension;
|
||||
int cbd=1;
|
||||
std::vector<int> latt5(1,Ls);
|
||||
std::vector<int> simd5(1,1);
|
||||
std::vector<int> mpi5(1,1);
|
||||
std::vector<int> cb5(1,0);
|
||||
|
||||
for(int d=0;d<N4;d++){
|
||||
latt5.push_back(FourDimGrid->_fdimensions[d]);
|
||||
simd5.push_back(FourDimGrid->_simd_layout[d]);
|
||||
mpi5.push_back(FourDimGrid->_processors[d]);
|
||||
cb5.push_back( 1);
|
||||
}
|
||||
return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd);
|
||||
}
|
||||
GridCartesian *tmp = makeFiveDimGrid(Ls,FourDimGrid);
|
||||
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
|
||||
delete tmp;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
@ -97,26 +93,24 @@ GridCartesian *SpaceTimeGrid::makeFiveDimDWFGrid(int Ls,const GridCartes
|
||||
simd5.push_back(1);
|
||||
mpi5.push_back(FourDimGrid->_processors[d]);
|
||||
}
|
||||
return new GridCartesian(latt5,simd5,mpi5);
|
||||
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Interface is inefficient and forces the deletion
|
||||
// Pass in the non-redblack grid
|
||||
///////////////////////////////////////////////////
|
||||
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
|
||||
{
|
||||
int N4=FourDimGrid->_ndimension;
|
||||
int nsimd = FourDimGrid->Nsimd();
|
||||
int cbd=1;
|
||||
std::vector<int> latt5(1,Ls);
|
||||
std::vector<int> simd5(1,nsimd);
|
||||
std::vector<int> mpi5(1,1);
|
||||
std::vector<int> cb5(1,0);
|
||||
|
||||
for(int d=0;d<N4;d++){
|
||||
latt5.push_back(FourDimGrid->_fdimensions[d]);
|
||||
simd5.push_back(1);
|
||||
mpi5.push_back(FourDimGrid->_processors[d]);
|
||||
cb5.push_back(1);
|
||||
}
|
||||
return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd);
|
||||
}
|
||||
GridCartesian *tmp = makeFiveDimDWFGrid(Ls,FourDimGrid);
|
||||
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
|
||||
delete tmp;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
@ -86,7 +86,7 @@ namespace Grid {
|
||||
or element<T>::is_number;
|
||||
};
|
||||
|
||||
// Vector flatening utility class ////////////////////////////////////////////
|
||||
// Vector flattening utility class ////////////////////////////////////////////
|
||||
// Class to flatten a multidimensional std::vector
|
||||
template <typename V>
|
||||
class Flatten
|
||||
|
@ -42,6 +42,7 @@ JSONWriter::~JSONWriter(void)
|
||||
|
||||
// write prettified JSON to file
|
||||
std::ofstream os(fileName_);
|
||||
//std::cout << "JSONWriter::~JSONWriter" << std::endl;
|
||||
os << std::setw(2) << json::parse(ss_.str()) << std::endl;
|
||||
}
|
||||
|
||||
@ -56,6 +57,7 @@ void JSONWriter::push(const string &s)
|
||||
|
||||
void JSONWriter::pop(void)
|
||||
{
|
||||
//std::cout << "JSONWriter::pop" << std::endl;
|
||||
delete_comma();
|
||||
ss_ << "},";
|
||||
}
|
||||
@ -67,20 +69,22 @@ void JSONWriter::delete_comma()
|
||||
ss_.str(dlast);
|
||||
}
|
||||
|
||||
|
||||
// here we are hitting a g++ bug (Bug 56480)
|
||||
// compiles fine with clang
|
||||
// have to wrap in the Grid namespace
|
||||
// annoying, but necessary for TravisCI
|
||||
namespace Grid
|
||||
{
|
||||
template<>
|
||||
void JSONWriter::writeDefault(const std::string &s,
|
||||
const std::string &x)
|
||||
void JSONWriter::writeDefault(const std::string &s, const std::string &x)
|
||||
{
|
||||
//std::cout << "JSONWriter::writeDefault(string) : " << s << std::endl;
|
||||
std::ostringstream os;
|
||||
os << std::boolalpha << x;
|
||||
if (s.size())
|
||||
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
|
||||
ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
|
||||
else
|
||||
ss_ << "\"" << x << "\" ," ;
|
||||
ss_ << os.str() << " ," ;
|
||||
}
|
||||
}// namespace Grid
|
||||
|
||||
@ -138,6 +142,7 @@ void JSONReader::pop(void)
|
||||
|
||||
bool JSONReader::nextElement(const std::string &s)
|
||||
{
|
||||
// Work in progress
|
||||
// JSON dictionaries do not support multiple names
|
||||
// Same name objects must be packed in vectors
|
||||
++it_;
|
||||
|
@ -58,10 +58,15 @@ namespace Grid
|
||||
void writeDefault(const std::string &s, const std::complex<U> &x);
|
||||
template <typename U>
|
||||
void writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
template <typename U, typename P>
|
||||
void writeDefault(const std::string &s, const std::pair<U,P> &x);
|
||||
|
||||
template<std::size_t N>
|
||||
void writeDefault(const std::string &s, const char(&x)[N]);
|
||||
|
||||
void writeDefault(const std::string &s, const std::string &x);
|
||||
|
||||
|
||||
private:
|
||||
void delete_comma();
|
||||
std::string fileName_;
|
||||
@ -82,6 +87,8 @@ namespace Grid
|
||||
void readDefault(const std::string &s, std::complex<U> &output);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, std::vector<U> &output);
|
||||
template <typename U, typename P>
|
||||
void readDefault(const std::string &s, std::pair<U,P> &output);
|
||||
private:
|
||||
json jobject_; // main object
|
||||
json jcur_; // current json object
|
||||
@ -106,7 +113,7 @@ namespace Grid
|
||||
template <typename U>
|
||||
void JSONWriter::writeDefault(const std::string &s, const U &x)
|
||||
{
|
||||
//std::cout << "JSONReader::writeDefault(U) : " << s << std::endl;
|
||||
//std::cout << "JSONWriter::writeDefault(U) : " << s << " " << x <<std::endl;
|
||||
std::ostringstream os;
|
||||
os << std::boolalpha << x;
|
||||
if (s.size())
|
||||
@ -118,7 +125,7 @@ namespace Grid
|
||||
template <typename U>
|
||||
void JSONWriter::writeDefault(const std::string &s, const std::complex<U> &x)
|
||||
{
|
||||
//std::cout << "JSONReader::writeDefault(complex) : " << s << std::endl;
|
||||
//std::cout << "JSONWriter::writeDefault(complex) : " << s << " " << x << std::endl;
|
||||
std::ostringstream os;
|
||||
os << "["<< std::boolalpha << x.real() << ", " << x.imag() << "]";
|
||||
if (s.size())
|
||||
@ -127,10 +134,22 @@ namespace Grid
|
||||
ss_ << os.str() << " ," ;
|
||||
}
|
||||
|
||||
template <typename U, typename P>
|
||||
void JSONWriter::writeDefault(const std::string &s, const std::pair<U,P> &x)
|
||||
{
|
||||
//std::cout << "JSONWriter::writeDefault(pair) : " << s << " " << x << std::endl;
|
||||
std::ostringstream os;
|
||||
os << "["<< std::boolalpha << "\""<< x.first << "\" , \"" << x.second << "\" ]";
|
||||
if (s.size())
|
||||
ss_ << "\""<< s << "\" : " << os.str() << " ," ;
|
||||
else
|
||||
ss_ << os.str() << " ," ;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void JSONWriter::writeDefault(const std::string &s, const std::vector<U> &x)
|
||||
{
|
||||
//std::cout << "JSONReader::writeDefault(vec U) : " << s << std::endl;
|
||||
//std::cout << "JSONWriter::writeDefault(vec U) : " << s << std::endl;
|
||||
|
||||
if (s.size())
|
||||
ss_ << " \""<<s<<"\" : [";
|
||||
@ -146,12 +165,12 @@ namespace Grid
|
||||
|
||||
template<std::size_t N>
|
||||
void JSONWriter::writeDefault(const std::string &s, const char(&x)[N]){
|
||||
//std::cout << "JSONReader::writeDefault(char U) : " << s << std::endl;
|
||||
//std::cout << "JSONWriter::writeDefault(char U) : " << s << " " << x << std::endl;
|
||||
|
||||
if (s.size())
|
||||
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
|
||||
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
|
||||
else
|
||||
ss_ << "\"" << x << "\" ," ;
|
||||
ss_ << "\"" << x << "\" ," ;
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
@ -173,11 +192,35 @@ namespace Grid
|
||||
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
template <typename U, typename P>
|
||||
void JSONReader::readDefault(const std::string &s, std::pair<U,P> &output)
|
||||
{
|
||||
U first;
|
||||
P second;
|
||||
json j;
|
||||
if (s.size()){
|
||||
//std::cout << "JSONReader::readDefault(pair) : " << s << " | "<< jcur_[s] << std::endl;
|
||||
j = jcur_[s];
|
||||
} else {
|
||||
j = jcur_;
|
||||
}
|
||||
json::iterator it = j.begin();
|
||||
jcur_ = *it;
|
||||
read("", first);
|
||||
it++;
|
||||
jcur_ = *it;
|
||||
read("", second);
|
||||
output = std::pair<U,P>(first,second);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <typename U>
|
||||
void JSONReader::readDefault(const std::string &s, std::complex<U> &output)
|
||||
{
|
||||
U tmp1, tmp2;
|
||||
//std::cout << "JSONReader::readDefault( complex U) : " << s << " : "<< jcur_ << std::endl;
|
||||
//std::cout << "JSONReader::readDefault(complex U) : " << s << " : "<< jcur_ << std::endl;
|
||||
json j = jcur_;
|
||||
json::iterator it = j.begin();
|
||||
jcur_ = *it;
|
||||
|
@ -70,8 +70,8 @@ XmlReader::XmlReader(const char *xmlstring,string toplev) : fileName_("")
|
||||
pugi::xml_parse_result result;
|
||||
result = doc_.load_string(xmlstring);
|
||||
if ( !result ) {
|
||||
cerr << "XML error description: " << result.description() << "\n";
|
||||
cerr << "XML error offset : " << result.offset << "\n";
|
||||
cerr << "XML error description (from char *): " << result.description() << "\nXML\n"<< xmlstring << "\n";
|
||||
cerr << "XML error offset (from char *) " << result.offset << "\nXML\n"<< xmlstring <<"\n";
|
||||
abort();
|
||||
}
|
||||
if ( toplev == std::string("") ) {
|
||||
@ -87,8 +87,8 @@ XmlReader::XmlReader(const string &fileName,string toplev) : fileName_(fileName)
|
||||
pugi::xml_parse_result result;
|
||||
result = doc_.load_file(fileName_.c_str());
|
||||
if ( !result ) {
|
||||
cerr << "XML error description: " << result.description() << "\n";
|
||||
cerr << "XML error offset : " << result.offset << "\n";
|
||||
cerr << "XML error description: " << result.description() <<" "<< fileName_ <<"\n";
|
||||
cerr << "XML error offset : " << result.offset <<" "<< fileName_ <<"\n";
|
||||
abort();
|
||||
}
|
||||
if ( toplev == std::string("") ) {
|
||||
|
@ -82,11 +82,11 @@ namespace Optimization {
|
||||
double tmp[2]={a,b};
|
||||
return vld1q_f64(tmp);
|
||||
}
|
||||
//Real double // N:tbc
|
||||
//Real double
|
||||
inline float64x2_t operator()(double a){
|
||||
return vdupq_n_f64(a);
|
||||
}
|
||||
//Integer // N:tbc
|
||||
//Integer
|
||||
inline uint32x4_t operator()(Integer a){
|
||||
return vdupq_n_u32(a);
|
||||
}
|
||||
@ -124,33 +124,32 @@ namespace Optimization {
|
||||
// Nils: Vset untested; not used currently in Grid at all;
|
||||
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
|
||||
struct Vset{
|
||||
// Complex float // N:ok
|
||||
// Complex float
|
||||
inline float32x4_t operator()(Grid::ComplexF *a){
|
||||
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
|
||||
return vld1q_f32(tmp);
|
||||
}
|
||||
// Complex double // N:ok
|
||||
// Complex double
|
||||
inline float64x2_t operator()(Grid::ComplexD *a){
|
||||
double tmp[2]={a[0].imag(),a[0].real()};
|
||||
return vld1q_f64(tmp);
|
||||
}
|
||||
// Real float // N:ok
|
||||
// Real float
|
||||
inline float32x4_t operator()(float *a){
|
||||
float tmp[4]={a[3],a[2],a[1],a[0]};
|
||||
return vld1q_f32(tmp);
|
||||
}
|
||||
// Real double // N:ok
|
||||
// Real double
|
||||
inline float64x2_t operator()(double *a){
|
||||
double tmp[2]={a[1],a[0]};
|
||||
return vld1q_f64(tmp);
|
||||
}
|
||||
// Integer // N:ok
|
||||
// Integer
|
||||
inline uint32x4_t operator()(Integer *a){
|
||||
return vld1q_dup_u32(a);
|
||||
}
|
||||
};
|
||||
|
||||
// N:leaving as is
|
||||
template <typename Out_type, typename In_type>
|
||||
struct Reduce{
|
||||
//Need templated class to overload output type
|
||||
@ -249,9 +248,9 @@ namespace Optimization {
|
||||
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
|
||||
|
||||
// no fma, use mul and add
|
||||
//float32x4_t r5;
|
||||
//r5 = vmulq_f32(r0, a);
|
||||
//return vaddq_f32(r4, r5);
|
||||
// float32x4_t r5;
|
||||
// r5 = vmulq_f32(r0, a);
|
||||
// return vaddq_f32(r4, r5);
|
||||
}
|
||||
// Complex double
|
||||
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
|
||||
@ -272,9 +271,9 @@ namespace Optimization {
|
||||
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
|
||||
|
||||
// no fma, use mul and add
|
||||
//float64x2_t r5;
|
||||
//r5 = vmulq_f64(r0, a);
|
||||
//return vaddq_f64(r4, r5);
|
||||
// float64x2_t r5;
|
||||
// r5 = vmulq_f64(r0, a);
|
||||
// return vaddq_f64(r4, r5);
|
||||
}
|
||||
};
|
||||
|
||||
@ -421,11 +420,6 @@ namespace Optimization {
|
||||
}
|
||||
}
|
||||
|
||||
// working, but no restriction on n
|
||||
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
|
||||
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
|
||||
|
||||
// restriction on n
|
||||
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
|
||||
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
|
||||
|
||||
@ -441,7 +435,7 @@ namespace Optimization {
|
||||
sb = vcvt_high_f32_f16(h);
|
||||
// there is no direct conversion from lower float32x4_t to float64x2_t
|
||||
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
|
||||
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
|
||||
// float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
|
||||
// workaround for clang
|
||||
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
|
||||
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
|
||||
@ -547,7 +541,7 @@ namespace Optimization {
|
||||
|
||||
|
||||
//Complex double Reduce
|
||||
template<> // N:by Boyle
|
||||
template<>
|
||||
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
|
||||
u128d conv; conv.v = in;
|
||||
return Grid::ComplexD(conv.f[0],conv.f[1]);
|
||||
@ -562,9 +556,7 @@ namespace Optimization {
|
||||
//Integer Reduce
|
||||
template<>
|
||||
inline Integer Reduce<Integer, uint32x4_t>::operator()(uint32x4_t in){
|
||||
// FIXME unimplemented
|
||||
printf("Reduce : Missing integer implementation -> FIX\n");
|
||||
assert(0);
|
||||
return vaddvq_u32(in);
|
||||
}
|
||||
}
|
||||
|
||||
@ -603,4 +595,5 @@ namespace Optimization {
|
||||
typedef Optimization::TimesMinusI TimesMinusISIMD;
|
||||
typedef Optimization::TimesI TimesISIMD;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -376,7 +376,18 @@ class Grid_simd {
|
||||
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
|
||||
}
|
||||
}
|
||||
|
||||
friend inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
|
||||
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
|
||||
}
|
||||
friend inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
|
||||
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
|
||||
}
|
||||
friend inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
|
||||
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
|
||||
}
|
||||
friend inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
|
||||
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// General permute; assumes vector length is same across
|
||||
// all subtypes; may not be a good assumption, but could
|
||||
|
@ -400,11 +400,13 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
|
||||
if ( sshift[0] == sshift[1] ) {
|
||||
if (splice_dim) {
|
||||
splicetime-=usecond();
|
||||
same_node = same_node && GatherSimd(source,dimension,shift,0x3,compress,face_idx);
|
||||
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
|
||||
same_node = same_node && tmp;
|
||||
splicetime+=usecond();
|
||||
} else {
|
||||
nosplicetime-=usecond();
|
||||
same_node = same_node && Gather(source,dimension,shift,0x3,compress,face_idx);
|
||||
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx);
|
||||
same_node = same_node && tmp;
|
||||
nosplicetime+=usecond();
|
||||
}
|
||||
} else {
|
||||
@ -412,13 +414,15 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
|
||||
splicetime-=usecond();
|
||||
// if checkerboard is unfavourable take two passes
|
||||
// both with block stride loop iteration
|
||||
same_node = same_node && GatherSimd(source,dimension,shift,0x1,compress,face_idx);
|
||||
same_node = same_node && GatherSimd(source,dimension,shift,0x2,compress,face_idx);
|
||||
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx);
|
||||
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx);
|
||||
same_node = same_node && tmp1 && tmp2;
|
||||
splicetime+=usecond();
|
||||
} else {
|
||||
nosplicetime-=usecond();
|
||||
same_node = same_node && Gather(source,dimension,shift,0x1,compress,face_idx);
|
||||
same_node = same_node && Gather(source,dimension,shift,0x2,compress,face_idx);
|
||||
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx);
|
||||
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx);
|
||||
same_node = same_node && tmp1 && tmp2;
|
||||
nosplicetime+=usecond();
|
||||
}
|
||||
}
|
||||
|
@ -175,7 +175,7 @@ class TensorIndexRecursion {
|
||||
}
|
||||
}
|
||||
template<class vtype,int N> inline static
|
||||
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0)),N> &arg, int i,int j)
|
||||
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0,0)),N> &arg, int i,int j)
|
||||
{
|
||||
for(int ii=0;ii<N;ii++){
|
||||
TensorIndexRecursion<Level-1>::pokeIndex(ret._internal[ii],arg._internal[ii],i,j);
|
||||
@ -191,7 +191,7 @@ class TensorIndexRecursion {
|
||||
}}
|
||||
}
|
||||
template<class vtype,int N> inline static
|
||||
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0)),N> &arg, int i,int j)
|
||||
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0,0)),N> &arg, int i,int j)
|
||||
{
|
||||
for(int ii=0;ii<N;ii++){
|
||||
for(int jj=0;jj<N;jj++){
|
||||
|
@ -51,7 +51,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#define PARALLEL_CRITICAL
|
||||
#endif
|
||||
|
||||
#define parallel_region PARALLEL_REGION
|
||||
#define parallel_for PARALLEL_FOR_LOOP for
|
||||
#define parallel_for_internal PARALLEL_FOR_LOOP_INTERN for
|
||||
#define parallel_for_nest2 PARALLEL_NESTED_LOOP2 for
|
||||
|
||||
namespace Grid {
|
||||
|
@ -208,7 +208,7 @@ static int Grid_is_initialised = 0;
|
||||
|
||||
void Grid_init(int *argc,char ***argv)
|
||||
{
|
||||
GridLogger::StopWatch.Start();
|
||||
GridLogger::GlobalStopWatch.Start();
|
||||
|
||||
std::string arg;
|
||||
|
||||
@ -243,6 +243,12 @@ void Grid_init(int *argc,char ***argv)
|
||||
fname<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(fname.str().c_str(),"w",stdout);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
|
||||
std::ostringstream ename;
|
||||
ename<<"Grid.stderr.";
|
||||
ename<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(ename.str().c_str(),"w",stderr);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
|
@ -7,7 +7,7 @@ namespace Grid{
|
||||
class Lexicographic {
|
||||
public:
|
||||
|
||||
static inline void CoorFromIndex (std::vector<int>& coor,int index,std::vector<int> &dims){
|
||||
static inline void CoorFromIndex (std::vector<int>& coor,int index,const std::vector<int> &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=0;d<nd;d++){
|
||||
@ -16,7 +16,7 @@ namespace Grid{
|
||||
}
|
||||
}
|
||||
|
||||
static inline void IndexFromCoor (std::vector<int>& coor,int &index,std::vector<int> &dims){
|
||||
static inline void IndexFromCoor (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
@ -26,6 +26,25 @@ namespace Grid{
|
||||
}
|
||||
}
|
||||
|
||||
static inline void IndexFromCoorReversed (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
index = index+stride*coor[d];
|
||||
stride=stride*dims[d];
|
||||
}
|
||||
}
|
||||
static inline void CoorFromIndexReversed (std::vector<int>& coor,int index,const std::vector<int> &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
coor[d] = index % dims[d];
|
||||
index = index / dims[d];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_serialisation.cc
|
||||
|
||||
@ -29,12 +29,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3);
|
||||
|
||||
|
||||
class myclass: Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
|
||||
@ -79,14 +78,14 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
|
||||
// writer needs to be destroyed so that writing physically happens
|
||||
{
|
||||
W writer(filename);
|
||||
|
||||
|
||||
write(writer, "testobject", object);
|
||||
}
|
||||
|
||||
|
||||
R reader(filename);
|
||||
O buf;
|
||||
bool good;
|
||||
|
||||
|
||||
read(reader, "testobject", buf);
|
||||
good = (object == buf);
|
||||
std::cout << name << " IO test: " << (good ? "success" : "failure");
|
||||
@ -98,7 +97,7 @@ int main(int argc,char **argv)
|
||||
{
|
||||
std::cout << "==== basic IO" << std::endl;
|
||||
XmlWriter WR("bother.xml");
|
||||
|
||||
|
||||
// test basic type writing
|
||||
std::cout << "-- basic writing to 'bother.xml'..." << std::endl;
|
||||
push(WR,"BasicTypes");
|
||||
@ -112,12 +111,12 @@ int main(int argc,char **argv)
|
||||
write(WR,"d",d);
|
||||
write(WR,"b",b);
|
||||
pop(WR);
|
||||
|
||||
|
||||
// test serializable class writing
|
||||
myclass obj(1234); // non-trivial constructor
|
||||
std::vector<myclass> vec;
|
||||
std::pair<myenum, myenum> pair;
|
||||
|
||||
|
||||
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
|
||||
write(WR,"obj",obj);
|
||||
WR.write("obj2", obj);
|
||||
@ -132,11 +131,11 @@ int main(int argc,char **argv)
|
||||
std::cout << "-- serialisable class comparison:" << std::endl;
|
||||
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
|
||||
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
|
||||
|
||||
|
||||
write(WR, "objpair", pair);
|
||||
std::cout << "-- pair writing to std::cout:" << std::endl;
|
||||
std::cout << pair << std::endl;
|
||||
|
||||
|
||||
// read tests
|
||||
std::cout << "\n==== IO self-consistency tests" << std::endl;
|
||||
//// XML
|
||||
@ -151,6 +150,11 @@ int main(int argc,char **argv)
|
||||
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
|
||||
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
|
||||
ioTest<TextWriter, TextReader>("iotest.dat", pair, "text (pair of objects)");
|
||||
//// text
|
||||
ioTest<JSONWriter, JSONReader>("iotest.json", obj, "JSON (object) ");
|
||||
ioTest<JSONWriter, JSONReader>("iotest.json", vec, "JSON (vector of objects)");
|
||||
ioTest<JSONWriter, JSONReader>("iotest.json", pair, "JSON (pair of objects)");
|
||||
|
||||
//// HDF5
|
||||
#undef HAVE_HDF5
|
||||
#ifdef HAVE_HDF5
|
||||
@ -158,13 +162,13 @@ int main(int argc,char **argv)
|
||||
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
|
||||
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", pair, "HDF5 (pair of objects)");
|
||||
#endif
|
||||
|
||||
|
||||
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
|
||||
typedef std::vector<std::vector<std::vector<double>>> vec3d;
|
||||
|
||||
|
||||
vec3d dv, buf;
|
||||
double d = 0.;
|
||||
|
||||
|
||||
dv.resize(4);
|
||||
for (auto &v1: dv)
|
||||
{
|
||||
@ -180,14 +184,14 @@ int main(int argc,char **argv)
|
||||
}
|
||||
std::cout << "original 3D vector:" << std::endl;
|
||||
std::cout << dv << std::endl;
|
||||
|
||||
|
||||
Flatten<vec3d> flatdv(dv);
|
||||
|
||||
|
||||
std::cout << "\ndimensions:" << std::endl;
|
||||
std::cout << flatdv.getDim() << std::endl;
|
||||
std::cout << "\nflattened vector:" << std::endl;
|
||||
std::cout << flatdv.getFlatVector() << std::endl;
|
||||
|
||||
|
||||
Reconstruct<vec3d> rec(flatdv.getFlatVector(), flatdv.getDim());
|
||||
std::cout << "\nreconstructed vector:" << std::endl;
|
||||
std::cout << flatdv.getVector() << std::endl;
|
||||
@ -199,10 +203,12 @@ int main(int argc,char **argv)
|
||||
|
||||
{
|
||||
JSONWriter JW("bother.json");
|
||||
|
||||
|
||||
// test basic type writing
|
||||
myenum a = myenum::red;
|
||||
push(JW,"BasicTypes");
|
||||
write(JW,std::string("i16"),i16);
|
||||
write(JW,"myenum",a);
|
||||
write(JW,"u16",u16);
|
||||
write(JW,"i32",i32);
|
||||
write(JW,"u32",u32);
|
||||
@ -212,23 +218,25 @@ int main(int argc,char **argv)
|
||||
write(JW,"d",d);
|
||||
write(JW,"b",b);
|
||||
pop(JW);
|
||||
|
||||
|
||||
|
||||
// test serializable class writing
|
||||
myclass obj(1234); // non-trivial constructor
|
||||
std::cout << obj << std::endl;
|
||||
std::cout << "-- serialisable class writing to 'bother.json'..." << std::endl;
|
||||
write(JW,"obj",obj);
|
||||
JW.write("obj2", obj);
|
||||
|
||||
std::cout << obj << std::endl;
|
||||
|
||||
|
||||
|
||||
std::vector<myclass> vec;
|
||||
vec.push_back(myclass(1234));
|
||||
vec.push_back(myclass(5678));
|
||||
vec.push_back(myclass(3838));
|
||||
write(JW, "objvec", vec);
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
JSONReader RD("bother.json");
|
||||
myclass jcopy1;
|
||||
@ -238,8 +246,9 @@ int main(int argc,char **argv)
|
||||
std::cout << "Loaded (JSON) -----------------" << std::endl;
|
||||
std::cout << jcopy1 << std::endl << jveccopy1 << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
|
||||
/*
|
||||
// This is still work in progress
|
||||
{
|
||||
// Testing the next element function
|
||||
|
@ -1,4 +1,4 @@
|
||||
SUBDIRS = . core forces hmc solver debug smearing IO
|
||||
SUBDIRS = . core forces hmc solver debug smearing IO lanczos
|
||||
|
||||
if BUILD_CHROMA_REGRESSION
|
||||
SUBDIRS+= qdpxx
|
||||
|
@ -80,31 +80,47 @@ int main (int argc, char ** argv)
|
||||
|
||||
|
||||
LatticeFermionD src_o(FrbGrid);
|
||||
LatticeFermionD result_o(FrbGrid);
|
||||
LatticeFermionD result_o_2(FrbGrid);
|
||||
LatticeFermionD result_cg(FrbGrid);
|
||||
pickCheckerboard(Odd,src_o,src);
|
||||
result_o.checkerboard = Odd;
|
||||
result_o = zero;
|
||||
result_o_2.checkerboard = Odd;
|
||||
result_o_2 = zero;
|
||||
result_cg.checkerboard = Odd;
|
||||
result_cg = zero;
|
||||
LatticeFermionD result_mcg(result_cg);
|
||||
LatticeFermionD result_rlcg(result_cg);
|
||||
|
||||
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
|
||||
SchurDiagMooeeOperator<DomainWallFermionFH,LatticeFermionF> HermOpEO_f(Ddwf_f);
|
||||
|
||||
//#define DO_MIXED_CG
|
||||
#define DO_RLUP_CG
|
||||
|
||||
#ifdef DO_MIXED_CG
|
||||
std::cout << "Starting mixed CG" << std::endl;
|
||||
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(1.0e-8, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
|
||||
mCG.InnerTolerance = 3.0e-5;
|
||||
mCG(src_o,result_o);
|
||||
mCG(src_o,result_mcg);
|
||||
#endif
|
||||
|
||||
#ifdef DO_RLUP_CG
|
||||
std::cout << "Starting reliable update CG" << std::endl;
|
||||
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> rlCG(1.e-8, 10000, 0.1, FrbGrid_f, HermOpEO_f, HermOpEO);
|
||||
rlCG(src_o,result_rlcg);
|
||||
#endif
|
||||
|
||||
std::cout << "Starting regular CG" << std::endl;
|
||||
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
|
||||
CG(HermOpEO,src_o,result_o_2);
|
||||
CG(HermOpEO,src_o,result_cg);
|
||||
|
||||
LatticeFermionD diff_o(FrbGrid);
|
||||
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
|
||||
|
||||
std::cout << "Diff between mixed and regular CG: " << diff << std::endl;
|
||||
#ifdef DO_MIXED_CG
|
||||
LatticeFermionD diff_mcg(FrbGrid);
|
||||
RealD vdiff_mcg = axpy_norm(diff_mcg, -1.0, result_cg, result_mcg);
|
||||
std::cout << "Diff between mixed and regular CG: " << vdiff_mcg << std::endl;
|
||||
#endif
|
||||
|
||||
#ifdef DO_RLUP_CG
|
||||
LatticeFermionD diff_rlcg(FrbGrid);
|
||||
RealD vdiff_rlcg = axpy_norm(diff_rlcg, -1.0, result_cg, result_rlcg);
|
||||
std::cout << "Diff between reliable update and regular CG: " << vdiff_rlcg << std::endl;
|
||||
#endif
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -48,7 +48,7 @@ int main(int argc, char ** argv) {
|
||||
double volume = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian rbFine(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian rbFine(&Fine);
|
||||
GridParallelRNG fRNG(&Fine);
|
||||
|
||||
// fRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
|
@ -47,7 +47,7 @@ int main (int argc, char ** argv)
|
||||
mask[0]=0;
|
||||
|
||||
GridCartesian Fine (latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBFine(latt_size,simd_layout,mpi_layout,mask,1);
|
||||
GridRedBlackCartesian RBFine(&Fine,mask,1);
|
||||
|
||||
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
|
@ -47,7 +47,7 @@ int main (int argc, char ** argv)
|
||||
mask[0]=0;
|
||||
|
||||
GridCartesian Fine (latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBFine(latt_size,simd_layout,mpi_layout,mask,1);
|
||||
GridRedBlackCartesian RBFine(&Fine,mask,1);
|
||||
|
||||
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
|
239
tests/core/Test_dwf_eofa_even_odd.cc
Normal file
239
tests/core/Test_dwf_eofa_even_odd.cc
Normal file
@ -0,0 +1,239 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/core/Test_dwf_eofa_even_odd.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
template<class d>
|
||||
struct scal {
|
||||
d internal;
|
||||
};
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
const int Ls = 8;
|
||||
// GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
|
||||
LatticeFermion src (FGrid); random(RNG5, src);
|
||||
LatticeFermion phi (FGrid); random(RNG5, phi);
|
||||
LatticeFermion chi (FGrid); random(RNG5, chi);
|
||||
LatticeFermion result(FGrid); result = zero;
|
||||
LatticeFermion ref (FGrid); ref = zero;
|
||||
LatticeFermion tmp (FGrid); tmp = zero;
|
||||
LatticeFermion err (FGrid); err = zero;
|
||||
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
|
||||
std::vector<LatticeColourMatrix> U(4,UGrid);
|
||||
|
||||
// Only one non-zero (y)
|
||||
Umu = zero;
|
||||
for(int nn=0; nn<Nd; nn++){
|
||||
random(RNG4, U[nn]);
|
||||
if(nn>0){ U[nn] = zero; }
|
||||
PokeIndex<LorentzIndex>(Umu, U[nn], nn);
|
||||
}
|
||||
|
||||
RealD mq1 = 0.1;
|
||||
RealD mq2 = 0.5;
|
||||
RealD mq3 = 1.0;
|
||||
RealD shift = 0.1234;
|
||||
RealD M5 = 1.8;
|
||||
int pm = 1;
|
||||
DomainWallEOFAFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mq1, mq2, mq3, shift, pm, M5);
|
||||
|
||||
LatticeFermion src_e (FrbGrid);
|
||||
LatticeFermion src_o (FrbGrid);
|
||||
LatticeFermion r_e (FrbGrid);
|
||||
LatticeFermion r_o (FrbGrid);
|
||||
LatticeFermion r_eo (FGrid);
|
||||
LatticeFermion r_eeoo(FGrid);
|
||||
|
||||
std::cout << GridLogMessage << "==========================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Testing that Meo + Moe + Moo + Mee = Munprec " << std::endl;
|
||||
std::cout << GridLogMessage << "==========================================================" << std::endl;
|
||||
|
||||
pickCheckerboard(Even, src_e, src);
|
||||
pickCheckerboard(Odd, src_o, src);
|
||||
|
||||
Ddwf.Meooe(src_e, r_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
|
||||
Ddwf.Meooe(src_o, r_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
|
||||
setCheckerboard(r_eo, r_o);
|
||||
setCheckerboard(r_eo, r_e);
|
||||
|
||||
Ddwf.Mooee(src_e, r_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
|
||||
Ddwf.Mooee(src_o, r_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
|
||||
setCheckerboard(r_eeoo, r_e);
|
||||
setCheckerboard(r_eeoo, r_o);
|
||||
|
||||
r_eo = r_eo + r_eeoo;
|
||||
Ddwf.M(src, ref);
|
||||
|
||||
// std::cout << GridLogMessage << r_eo << std::endl;
|
||||
// std::cout << GridLogMessage << ref << std::endl;
|
||||
|
||||
err = ref - r_eo;
|
||||
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
|
||||
|
||||
LatticeComplex cerr(FGrid);
|
||||
cerr = localInnerProduct(err,err);
|
||||
// std::cout << GridLogMessage << cerr << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
|
||||
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
LatticeFermion chi_e (FrbGrid);
|
||||
LatticeFermion chi_o (FrbGrid);
|
||||
|
||||
LatticeFermion dchi_e(FrbGrid);
|
||||
LatticeFermion dchi_o(FrbGrid);
|
||||
|
||||
LatticeFermion phi_e (FrbGrid);
|
||||
LatticeFermion phi_o (FrbGrid);
|
||||
|
||||
LatticeFermion dphi_e(FrbGrid);
|
||||
LatticeFermion dphi_o(FrbGrid);
|
||||
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
pickCheckerboard(Even, phi_e, phi);
|
||||
pickCheckerboard(Odd , phi_o, phi);
|
||||
|
||||
Ddwf.Meooe (chi_e, dchi_o);
|
||||
Ddwf.Meooe (chi_o, dchi_e);
|
||||
Ddwf.MeooeDag(phi_e, dphi_o);
|
||||
Ddwf.MeooeDag(phi_o, dphi_e);
|
||||
|
||||
ComplexD pDce = innerProduct(phi_e, dchi_e);
|
||||
ComplexD pDco = innerProduct(phi_o, dchi_o);
|
||||
ComplexD cDpe = innerProduct(chi_e, dphi_e);
|
||||
ComplexD cDpo = innerProduct(chi_o, dphi_o);
|
||||
|
||||
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
|
||||
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce-conj(cDpo) << std::endl;
|
||||
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco-conj(cDpe) << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
|
||||
Ddwf.Mooee (chi_e, src_e);
|
||||
Ddwf.MooeeInv(src_e, phi_e);
|
||||
|
||||
Ddwf.Mooee (chi_o, src_o);
|
||||
Ddwf.MooeeInv(src_o, phi_o);
|
||||
|
||||
setCheckerboard(phi, phi_e);
|
||||
setCheckerboard(phi, phi_o);
|
||||
|
||||
err = phi - chi;
|
||||
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test MeeInvDag MeeDag = 1 " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
|
||||
Ddwf.MooeeDag (chi_e, src_e);
|
||||
Ddwf.MooeeInvDag(src_e, phi_e);
|
||||
|
||||
Ddwf.MooeeDag (chi_o, src_o);
|
||||
Ddwf.MooeeInvDag(src_o, phi_o);
|
||||
|
||||
setCheckerboard(phi, phi_e);
|
||||
setCheckerboard(phi, phi_o);
|
||||
|
||||
err = phi - chi;
|
||||
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test MpcDagMpc is Hermitian " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
random(RNG5, phi);
|
||||
random(RNG5, chi);
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
pickCheckerboard(Even, phi_e, phi);
|
||||
pickCheckerboard(Odd , phi_o, phi);
|
||||
RealD t1,t2;
|
||||
|
||||
SchurDiagMooeeOperator<DomainWallEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
|
||||
HermOpEO.MpcDagMpc(chi_e, dchi_e, t1, t2);
|
||||
HermOpEO.MpcDagMpc(chi_o, dchi_o, t1, t2);
|
||||
|
||||
HermOpEO.MpcDagMpc(phi_e, dphi_e, t1, t2);
|
||||
HermOpEO.MpcDagMpc(phi_o, dphi_o, t1, t2);
|
||||
|
||||
pDce = innerProduct(phi_e, dchi_e);
|
||||
pDco = innerProduct(phi_o, dchi_o);
|
||||
cDpe = innerProduct(chi_e, dphi_e);
|
||||
cDpo = innerProduct(chi_o, dphi_o);
|
||||
|
||||
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
|
||||
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDco-conj(cDpo) << std::endl;
|
||||
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDce-conj(cDpe) << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -47,7 +47,7 @@ int main (int argc, char ** argv)
|
||||
vol = vol * latt_size[d];
|
||||
}
|
||||
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGRID(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGRID(&GRID);
|
||||
|
||||
LatticeComplexD one(&GRID);
|
||||
LatticeComplexD zz(&GRID);
|
||||
|
@ -33,22 +33,68 @@ using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
|
||||
//typedef GparityDomainWallFermionD GparityDiracOp;
|
||||
//typedef DomainWallFermionD StandardDiracOp;
|
||||
//#define DOP_PARAMS
|
||||
|
||||
typedef GparityMobiusFermionD GparityDiracOp;
|
||||
typedef MobiusFermionD StandardDiracOp;
|
||||
#define DOP_PARAMS ,1.5, 0.5
|
||||
|
||||
|
||||
typedef typename GparityDiracOp::FermionField GparityFermionField;
|
||||
typedef typename GparityDiracOp::GaugeField GparityGaugeField;
|
||||
typedef typename GparityFermionField::vector_type vComplexType;
|
||||
|
||||
typedef typename StandardDiracOp::FermionField StandardFermionField;
|
||||
typedef typename StandardDiracOp::GaugeField StandardGaugeField;
|
||||
|
||||
enum{ same_vComplex = std::is_same<vComplexType, typename StandardFermionField::vector_type>::value };
|
||||
static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIMD complex type");
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
const int nu = 3;
|
||||
int nu = 0;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
if(std::string(argv[i]) == "--Gparity-dir"){
|
||||
std::stringstream ss; ss << argv[i+1]; ss >> nu;
|
||||
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* Testing Gparity Dirac operator "<<std::endl;
|
||||
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexType::Nsimd()<<std::endl;
|
||||
#ifdef GRID_OMP
|
||||
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
|
||||
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
|
||||
#endif
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED Nc=3 WilsonKernels" <<std::endl;
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
|
||||
const int Ls=4;
|
||||
const int L =4;
|
||||
std::vector<int> latt_2f(Nd,L);
|
||||
std::vector<int> latt_1f(Nd,L); latt_1f[nu] = 2*L;
|
||||
//const int L =4;
|
||||
//std::vector<int> latt_2f(Nd,L);
|
||||
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> latt_2f = GridDefaultLatt();
|
||||
std::vector<int> latt_1f(latt_2f); latt_1f[nu] = 2*latt_2f[nu];
|
||||
int L = latt_2f[nu];
|
||||
|
||||
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexType::Nsimd());
|
||||
|
||||
std::cout << GridLogMessage << "SIMD layout: ";
|
||||
for(int i=0;i<simd_layout.size();i++) std::cout << simd_layout[i] << " ";
|
||||
std::cout << std::endl;
|
||||
|
||||
std::vector<int> mpi_layout = GridDefaultMpi(); //node layout
|
||||
|
||||
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
|
||||
@ -67,13 +113,13 @@ int main (int argc, char ** argv)
|
||||
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
|
||||
|
||||
LatticeGaugeField Umu_2f(UGrid_2f);
|
||||
GparityGaugeField Umu_2f(UGrid_2f);
|
||||
SU3::HotConfiguration(RNG4_2f,Umu_2f);
|
||||
|
||||
LatticeFermion src (FGrid_2f);
|
||||
LatticeFermion tmpsrc(FGrid_2f);
|
||||
FermionField src_2f(FGrid_2f);
|
||||
LatticeFermion src_1f(FGrid_1f);
|
||||
StandardFermionField src (FGrid_2f);
|
||||
StandardFermionField tmpsrc(FGrid_2f);
|
||||
GparityFermionField src_2f(FGrid_2f);
|
||||
StandardFermionField src_1f(FGrid_1f);
|
||||
|
||||
// Replicate fermion source
|
||||
random(RNG5_2f,src);
|
||||
@ -81,8 +127,8 @@ int main (int argc, char ** argv)
|
||||
tmpsrc=src*2.0;
|
||||
PokeIndex<0>(src_2f,tmpsrc,1);
|
||||
|
||||
LatticeFermion result_1f(FGrid_1f); result_1f=zero;
|
||||
LatticeGaugeField Umu_1f(UGrid_1f);
|
||||
StandardFermionField result_1f(FGrid_1f); result_1f=zero;
|
||||
StandardGaugeField Umu_1f(UGrid_1f);
|
||||
Replicate(Umu_2f,Umu_1f);
|
||||
|
||||
//Coordinate grid for reference
|
||||
@ -92,7 +138,7 @@ int main (int argc, char ** argv)
|
||||
//Copy-conjugate the gauge field
|
||||
//First C-shift the lattice by Lx/2
|
||||
{
|
||||
LatticeGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
|
||||
StandardGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
|
||||
Umu_1f = where( xcoor_1f >= Integer(L), Umu_shift, Umu_1f );
|
||||
|
||||
// hack test to check the same
|
||||
@ -101,7 +147,7 @@ int main (int argc, char ** argv)
|
||||
cout << GridLogMessage << "Umu diff " << norm2(Umu_shift)<<std::endl;
|
||||
|
||||
//Make the gauge field antiperiodic in nu-direction
|
||||
LatticeColourMatrix Unu(UGrid_1f);
|
||||
decltype(PeekIndex<LorentzIndex>(Umu_1f,nu)) Unu(UGrid_1f);
|
||||
Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
|
||||
Unu = where(xcoor_1f == Integer(2*L-1), -Unu, Unu);
|
||||
PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
|
||||
@ -115,33 +161,33 @@ int main (int argc, char ** argv)
|
||||
|
||||
RealD mass=0.0;
|
||||
RealD M5=1.8;
|
||||
DomainWallFermionR Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5);
|
||||
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
|
||||
|
||||
LatticeFermion src_o_1f(FrbGrid_1f);
|
||||
LatticeFermion result_o_1f(FrbGrid_1f);
|
||||
StandardFermionField src_o_1f(FrbGrid_1f);
|
||||
StandardFermionField result_o_1f(FrbGrid_1f);
|
||||
pickCheckerboard(Odd,src_o_1f,src_1f);
|
||||
result_o_1f=zero;
|
||||
|
||||
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
|
||||
SchurDiagMooeeOperator<StandardDiracOp,StandardFermionField> HermOpEO(Ddwf);
|
||||
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
|
||||
CG(HermOpEO,src_o_1f,result_o_1f);
|
||||
|
||||
// const int nu = 3;
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1;
|
||||
GparityDomainWallFermionR::ImplParams params;
|
||||
GparityDiracOp::ImplParams params;
|
||||
params.twists = twists;
|
||||
GparityDomainWallFermionR GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5,params);
|
||||
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
|
||||
|
||||
for(int disp=-1;disp<=1;disp+=2)
|
||||
for(int mu=0;mu<5;mu++)
|
||||
{
|
||||
FermionField Dsrc_2f(FGrid_2f);
|
||||
GparityFermionField Dsrc_2f(FGrid_2f);
|
||||
|
||||
LatticeFermion Dsrc_1f(FGrid_1f);
|
||||
LatticeFermion Dsrc_2freplica(FGrid_1f);
|
||||
LatticeFermion Dsrc_2freplica0(FGrid_1f);
|
||||
LatticeFermion Dsrc_2freplica1(FGrid_1f);
|
||||
StandardFermionField Dsrc_1f(FGrid_1f);
|
||||
StandardFermionField Dsrc_2freplica(FGrid_1f);
|
||||
StandardFermionField Dsrc_2freplica0(FGrid_1f);
|
||||
StandardFermionField Dsrc_2freplica1(FGrid_1f);
|
||||
|
||||
if ( mu ==0 ) {
|
||||
std::cout << GridLogMessage<< " Cross checking entire hopping term"<<std::endl;
|
||||
@ -156,8 +202,8 @@ int main (int argc, char ** argv)
|
||||
std::cout << GridLogMessage << "S norms "<< norm2(src_2f) << " " << norm2(src_1f) <<std::endl;
|
||||
std::cout << GridLogMessage << "D norms "<< norm2(Dsrc_2f)<< " " << norm2(Dsrc_1f) <<std::endl;
|
||||
|
||||
LatticeFermion Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
|
||||
LatticeFermion Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
|
||||
StandardFermionField Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
|
||||
StandardFermionField Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
|
||||
|
||||
// Dsrc_2f1 = Dsrc_2f1 - Dsrc_2f0;
|
||||
// std::cout << GridLogMessage << " Cross check two halves " <<norm2(Dsrc_2f1)<<std::endl;
|
||||
@ -174,20 +220,20 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
|
||||
{
|
||||
FermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
|
||||
FermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
|
||||
GparityFermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
|
||||
GparityFermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
|
||||
|
||||
FermionField chi_e (FrbGrid_2f);
|
||||
FermionField chi_o (FrbGrid_2f);
|
||||
GparityFermionField chi_e (FrbGrid_2f);
|
||||
GparityFermionField chi_o (FrbGrid_2f);
|
||||
|
||||
FermionField dchi_e (FrbGrid_2f);
|
||||
FermionField dchi_o (FrbGrid_2f);
|
||||
GparityFermionField dchi_e (FrbGrid_2f);
|
||||
GparityFermionField dchi_o (FrbGrid_2f);
|
||||
|
||||
FermionField phi_e (FrbGrid_2f);
|
||||
FermionField phi_o (FrbGrid_2f);
|
||||
GparityFermionField phi_e (FrbGrid_2f);
|
||||
GparityFermionField phi_o (FrbGrid_2f);
|
||||
|
||||
FermionField dphi_e (FrbGrid_2f);
|
||||
FermionField dphi_o (FrbGrid_2f);
|
||||
GparityFermionField dphi_e (FrbGrid_2f);
|
||||
GparityFermionField dphi_o (FrbGrid_2f);
|
||||
|
||||
pickCheckerboard(Even,chi_e,chi);
|
||||
pickCheckerboard(Odd ,chi_o,chi);
|
||||
@ -212,14 +258,14 @@ int main (int argc, char ** argv)
|
||||
|
||||
}
|
||||
|
||||
FermionField result_2f(FGrid_2f); result_2f=zero;
|
||||
FermionField src_o_2f(FrbGrid_2f);
|
||||
FermionField result_o_2f(FrbGrid_2f);
|
||||
GparityFermionField result_2f(FGrid_2f); result_2f=zero;
|
||||
GparityFermionField src_o_2f(FrbGrid_2f);
|
||||
GparityFermionField result_o_2f(FrbGrid_2f);
|
||||
pickCheckerboard(Odd,src_o_2f,src_2f);
|
||||
result_o_2f=zero;
|
||||
|
||||
ConjugateGradient<FermionField> CG2f(1.0e-8,10000);
|
||||
SchurDiagMooeeOperator<GparityDomainWallFermionR,FermionField> HermOpEO2f(GPDdwf);
|
||||
ConjugateGradient<GparityFermionField> CG2f(1.0e-8,10000);
|
||||
SchurDiagMooeeOperator<GparityDiracOp,GparityFermionField> HermOpEO2f(GPDdwf);
|
||||
CG2f(HermOpEO2f,src_o_2f,result_o_2f);
|
||||
|
||||
std::cout << "2f cb "<<result_o_2f.checkerboard<<std::endl;
|
||||
@ -227,10 +273,10 @@ int main (int argc, char ** argv)
|
||||
|
||||
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
|
||||
|
||||
LatticeFermion res0o (FrbGrid_2f);
|
||||
LatticeFermion res1o (FrbGrid_2f);
|
||||
LatticeFermion res0 (FGrid_2f);
|
||||
LatticeFermion res1 (FGrid_2f);
|
||||
StandardFermionField res0o (FrbGrid_2f);
|
||||
StandardFermionField res1o (FrbGrid_2f);
|
||||
StandardFermionField res0 (FGrid_2f);
|
||||
StandardFermionField res1 (FGrid_2f);
|
||||
|
||||
res0=zero;
|
||||
res1=zero;
|
||||
@ -244,9 +290,9 @@ int main (int argc, char ** argv)
|
||||
setCheckerboard(res0,res0o);
|
||||
setCheckerboard(res1,res1o);
|
||||
|
||||
LatticeFermion replica (FGrid_1f);
|
||||
LatticeFermion replica0(FGrid_1f);
|
||||
LatticeFermion replica1(FGrid_1f);
|
||||
StandardFermionField replica (FGrid_1f);
|
||||
StandardFermionField replica0(FGrid_1f);
|
||||
StandardFermionField replica1(FGrid_1f);
|
||||
Replicate(res0,replica0);
|
||||
Replicate(res1,replica1);
|
||||
|
||||
|
@ -40,7 +40,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
@ -84,7 +84,7 @@ int main(int argc, char **argv) {
|
||||
double volume = latt_size[0] * latt_size[1] * latt_size[2] * latt_size[3];
|
||||
|
||||
GridCartesian Fine(latt_size, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian rbFine(latt_size, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian rbFine(&Fine);
|
||||
GridParallelRNG FineRNG(&Fine);
|
||||
GridSerialRNG SerialRNG;
|
||||
GridSerialRNG SerialRNG1;
|
||||
|
241
tests/core/Test_mobius_eofa_even_odd.cc
Normal file
241
tests/core/Test_mobius_eofa_even_odd.cc
Normal file
@ -0,0 +1,241 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/core/Test_dwf_eofa_even_odd.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
template<class d>
|
||||
struct scal {
|
||||
d internal;
|
||||
};
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
const int Ls = 8;
|
||||
// GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
|
||||
LatticeFermion src (FGrid); random(RNG5, src);
|
||||
LatticeFermion phi (FGrid); random(RNG5, phi);
|
||||
LatticeFermion chi (FGrid); random(RNG5, chi);
|
||||
LatticeFermion result(FGrid); result = zero;
|
||||
LatticeFermion ref (FGrid); ref = zero;
|
||||
LatticeFermion tmp (FGrid); tmp = zero;
|
||||
LatticeFermion err (FGrid); err = zero;
|
||||
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
|
||||
std::vector<LatticeColourMatrix> U(4,UGrid);
|
||||
|
||||
// Only one non-zero (y)
|
||||
Umu = zero;
|
||||
for(int nn=0; nn<Nd; nn++){
|
||||
random(RNG4, U[nn]);
|
||||
if(nn>0){ U[nn] = zero; }
|
||||
PokeIndex<LorentzIndex>(Umu, U[nn], nn);
|
||||
}
|
||||
|
||||
RealD b = 2.5;
|
||||
RealD c = 1.5;
|
||||
RealD mq1 = 0.1;
|
||||
RealD mq2 = 0.5;
|
||||
RealD mq3 = 1.0;
|
||||
RealD shift = 0.1234;
|
||||
RealD M5 = 1.8;
|
||||
int pm = 1;
|
||||
MobiusEOFAFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mq1, mq2, mq3, shift, pm, M5, b, c);
|
||||
|
||||
LatticeFermion src_e (FrbGrid);
|
||||
LatticeFermion src_o (FrbGrid);
|
||||
LatticeFermion r_e (FrbGrid);
|
||||
LatticeFermion r_o (FrbGrid);
|
||||
LatticeFermion r_eo (FGrid);
|
||||
LatticeFermion r_eeoo(FGrid);
|
||||
|
||||
std::cout << GridLogMessage << "==========================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Testing that Meo + Moe + Moo + Mee = Munprec " << std::endl;
|
||||
std::cout << GridLogMessage << "==========================================================" << std::endl;
|
||||
|
||||
pickCheckerboard(Even, src_e, src);
|
||||
pickCheckerboard(Odd, src_o, src);
|
||||
|
||||
Ddwf.Meooe(src_e, r_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
|
||||
Ddwf.Meooe(src_o, r_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
|
||||
setCheckerboard(r_eo, r_o);
|
||||
setCheckerboard(r_eo, r_e);
|
||||
|
||||
Ddwf.Mooee(src_e, r_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
|
||||
Ddwf.Mooee(src_o, r_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
|
||||
setCheckerboard(r_eeoo, r_e);
|
||||
setCheckerboard(r_eeoo, r_o);
|
||||
|
||||
r_eo = r_eo + r_eeoo;
|
||||
Ddwf.M(src, ref);
|
||||
|
||||
// std::cout << GridLogMessage << r_eo << std::endl;
|
||||
// std::cout << GridLogMessage << ref << std::endl;
|
||||
|
||||
err = ref - r_eo;
|
||||
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
|
||||
|
||||
LatticeComplex cerr(FGrid);
|
||||
cerr = localInnerProduct(err,err);
|
||||
// std::cout << GridLogMessage << cerr << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
|
||||
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
LatticeFermion chi_e (FrbGrid);
|
||||
LatticeFermion chi_o (FrbGrid);
|
||||
|
||||
LatticeFermion dchi_e(FrbGrid);
|
||||
LatticeFermion dchi_o(FrbGrid);
|
||||
|
||||
LatticeFermion phi_e (FrbGrid);
|
||||
LatticeFermion phi_o (FrbGrid);
|
||||
|
||||
LatticeFermion dphi_e(FrbGrid);
|
||||
LatticeFermion dphi_o(FrbGrid);
|
||||
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
pickCheckerboard(Even, phi_e, phi);
|
||||
pickCheckerboard(Odd , phi_o, phi);
|
||||
|
||||
Ddwf.Meooe (chi_e, dchi_o);
|
||||
Ddwf.Meooe (chi_o, dchi_e);
|
||||
Ddwf.MeooeDag(phi_e, dphi_o);
|
||||
Ddwf.MeooeDag(phi_o, dphi_e);
|
||||
|
||||
ComplexD pDce = innerProduct(phi_e, dchi_e);
|
||||
ComplexD pDco = innerProduct(phi_o, dchi_o);
|
||||
ComplexD cDpe = innerProduct(chi_e, dphi_e);
|
||||
ComplexD cDpo = innerProduct(chi_o, dphi_o);
|
||||
|
||||
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
|
||||
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce-conj(cDpo) << std::endl;
|
||||
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco-conj(cDpe) << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
|
||||
Ddwf.Mooee (chi_e, src_e);
|
||||
Ddwf.MooeeInv(src_e, phi_e);
|
||||
|
||||
Ddwf.Mooee (chi_o, src_o);
|
||||
Ddwf.MooeeInv(src_o, phi_o);
|
||||
|
||||
setCheckerboard(phi, phi_e);
|
||||
setCheckerboard(phi, phi_o);
|
||||
|
||||
err = phi - chi;
|
||||
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test MeeInvDag MeeDag = 1 " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
|
||||
Ddwf.MooeeDag (chi_e, src_e);
|
||||
Ddwf.MooeeInvDag(src_e, phi_e);
|
||||
|
||||
Ddwf.MooeeDag (chi_o, src_o);
|
||||
Ddwf.MooeeInvDag(src_o, phi_o);
|
||||
|
||||
setCheckerboard(phi, phi_e);
|
||||
setCheckerboard(phi, phi_o);
|
||||
|
||||
err = phi - chi;
|
||||
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
std::cout << GridLogMessage << "= Test MpcDagMpc is Hermitian " << std::endl;
|
||||
std::cout << GridLogMessage << "==============================================================" << std::endl;
|
||||
|
||||
random(RNG5, phi);
|
||||
random(RNG5, chi);
|
||||
pickCheckerboard(Even, chi_e, chi);
|
||||
pickCheckerboard(Odd , chi_o, chi);
|
||||
pickCheckerboard(Even, phi_e, phi);
|
||||
pickCheckerboard(Odd , phi_o, phi);
|
||||
RealD t1,t2;
|
||||
|
||||
SchurDiagMooeeOperator<MobiusEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
|
||||
HermOpEO.MpcDagMpc(chi_e, dchi_e, t1, t2);
|
||||
HermOpEO.MpcDagMpc(chi_o, dchi_o, t1, t2);
|
||||
|
||||
HermOpEO.MpcDagMpc(phi_e, dphi_e, t1, t2);
|
||||
HermOpEO.MpcDagMpc(phi_o, dphi_o, t1, t2);
|
||||
|
||||
pDce = innerProduct(phi_e, dchi_e);
|
||||
pDco = innerProduct(phi_o, dchi_o);
|
||||
cDpe = innerProduct(chi_e, dphi_e);
|
||||
cDpo = innerProduct(chi_o, dphi_o);
|
||||
|
||||
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
|
||||
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDco-conj(cDpo) << std::endl;
|
||||
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDce-conj(cDpe) << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -40,7 +40,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
@ -51,7 +51,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
@ -52,7 +52,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
@ -37,8 +37,15 @@ RealD InverseApproximation(RealD x){
|
||||
RealD SqrtApproximation(RealD x){
|
||||
return std::sqrt(x);
|
||||
}
|
||||
RealD Approximation32(RealD x){
|
||||
return std::pow(x,-1.0/32.0);
|
||||
}
|
||||
RealD Approximation2(RealD x){
|
||||
return std::pow(x,-1.0/2.0);
|
||||
}
|
||||
|
||||
RealD StepFunction(RealD x){
|
||||
if ( x<0.1 ) return 1.0;
|
||||
if ( x<10.0 ) return 1.0;
|
||||
else return 0.0;
|
||||
}
|
||||
|
||||
@ -56,7 +63,6 @@ int main (int argc, char ** argv)
|
||||
|
||||
Chebyshev<LatticeFermion> ChebyInv(lo,hi,2000,InverseApproximation);
|
||||
|
||||
|
||||
{
|
||||
std::ofstream of("chebyinv");
|
||||
ChebyInv.csv(of);
|
||||
@ -78,7 +84,6 @@ int main (int argc, char ** argv)
|
||||
|
||||
|
||||
ChebyStep.JacksonSmooth();
|
||||
|
||||
{
|
||||
std::ofstream of("chebystepjack");
|
||||
ChebyStep.csv(of);
|
||||
@ -100,5 +105,30 @@ int main (int argc, char ** argv)
|
||||
ChebyNE.csv(of);
|
||||
}
|
||||
|
||||
lo=0.0;
|
||||
hi=4.0;
|
||||
Chebyshev<LatticeFermion> Cheby32(lo,hi,2000,Approximation32);
|
||||
{
|
||||
std::ofstream of("cheby32");
|
||||
Cheby32.csv(of);
|
||||
}
|
||||
Cheby32.JacksonSmooth();
|
||||
{
|
||||
std::ofstream of("cheby32jack");
|
||||
Cheby32.csv(of);
|
||||
}
|
||||
|
||||
Chebyshev<LatticeFermion> ChebySqrt(lo,hi,2000,Approximation2);
|
||||
{
|
||||
std::ofstream of("chebysqrt");
|
||||
ChebySqrt.csv(of);
|
||||
}
|
||||
ChebySqrt.JacksonSmooth();
|
||||
{
|
||||
std::ofstream of("chebysqrtjack");
|
||||
ChebySqrt.csv(of);
|
||||
}
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
102
tests/debug/Test_heatbath_dwf_eofa.cc
Normal file
102
tests/debug/Test_heatbath_dwf_eofa.cc
Normal file
@ -0,0 +1,102 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
|
||||
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
|
||||
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
// Parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Npoles = 12;
|
||||
const RealD mf = 0.01;
|
||||
const RealD mpv = 1.0;
|
||||
const RealD M5 = 1.8;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
DomainWallEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5);
|
||||
DomainWallEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5);
|
||||
|
||||
// Construct the action and test the heatbath (zero initial guess)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
// Construct the action and test the heatbath (forecasted initial guesses)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
108
tests/debug/Test_heatbath_dwf_eofa_gparity.cc
Normal file
108
tests/debug/Test_heatbath_dwf_eofa_gparity.cc
Normal file
@ -0,0 +1,108 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
|
||||
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
|
||||
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
typedef GparityWilsonImplR FermionImplPolicy;
|
||||
typedef GparityDomainWallEOFAFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
// Parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Npoles = 12;
|
||||
const RealD mf = 0.01;
|
||||
const RealD mpv = 1.0;
|
||||
const RealD M5 = 1.8;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
// GparityDomainWallFermionR::ImplParams params;
|
||||
FermionAction::ImplParams params;
|
||||
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, params);
|
||||
FermionAction Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, params);
|
||||
|
||||
// Construct the action and test the heatbath (zero initial guess)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
// Construct the action and test the heatbath (forecasted initial guesses)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
104
tests/debug/Test_heatbath_mobius_eofa.cc
Normal file
104
tests/debug/Test_heatbath_mobius_eofa.cc
Normal file
@ -0,0 +1,104 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
|
||||
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
|
||||
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
// Parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Npoles = 12;
|
||||
const RealD b = 2.5;
|
||||
const RealD c = 1.5;
|
||||
const RealD mf = 0.01;
|
||||
const RealD mpv = 1.0;
|
||||
const RealD M5 = 1.8;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
MobiusEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c);
|
||||
|
||||
// Construct the action and test the heatbath (zero initial guess)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
// Construct the action and test the heatbath (forecasted initial guesses)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
109
tests/debug/Test_heatbath_mobius_eofa_gparity.cc
Normal file
109
tests/debug/Test_heatbath_mobius_eofa_gparity.cc
Normal file
@ -0,0 +1,109 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
|
||||
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
|
||||
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
typedef GparityWilsonImplR FermionImplPolicy;
|
||||
typedef GparityMobiusEOFAFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
// Parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Npoles = 12;
|
||||
const RealD b = 2.5;
|
||||
const RealD c = 1.5;
|
||||
const RealD mf = 0.01;
|
||||
const RealD mpv = 1.0;
|
||||
const RealD M5 = 1.8;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
FermionAction::ImplParams params;
|
||||
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c, params);
|
||||
FermionAction Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c, params);
|
||||
|
||||
// Construct the action and test the heatbath (zero initial guess)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
// Construct the action and test the heatbath (forecasted initial guesses)
|
||||
{
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
|
||||
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
|
||||
|
||||
Meofa.refresh(Umu, RNG5);
|
||||
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
206
tests/debug/Test_reweight_dwf_eofa.cc
Normal file
206
tests/debug/Test_reweight_dwf_eofa.cc
Normal file
@ -0,0 +1,206 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
// parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Nhits = 25;
|
||||
const int max_iter = 5000;
|
||||
const RealD mf = 0.1;
|
||||
const RealD mb = 0.11;
|
||||
const RealD M5 = 1.8;
|
||||
const RealD stop_tol = 1.0e-12;
|
||||
|
||||
RealD mean(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ mean += data[i]; }
|
||||
return mean/RealD(N);
|
||||
}
|
||||
|
||||
RealD jack_mean(const std::vector<RealD>& data, int sample)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
|
||||
return mean/RealD(N-1);
|
||||
}
|
||||
|
||||
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
|
||||
{
|
||||
int N = jacks.size();
|
||||
RealD std(0.0);
|
||||
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
|
||||
return std::sqrt(RealD(N-1)/RealD(N)*std);
|
||||
}
|
||||
|
||||
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
std::vector<RealD> jack_samples(N);
|
||||
std::vector<RealD> jack_stats(2);
|
||||
|
||||
jack_stats[0] = mean(data);
|
||||
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
|
||||
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
|
||||
return jack_stats;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: "
|
||||
<< grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
// Initialize RHMC fermion operators
|
||||
DomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5);
|
||||
DomainWallFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5);
|
||||
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> MdagM(Ddwf_f);
|
||||
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> VdagV(Ddwf_b);
|
||||
|
||||
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
|
||||
double lo = 0.0001;
|
||||
double hi = 95.0;
|
||||
int precision = 64;
|
||||
int degree = 12;
|
||||
AlgRemez remez(lo, hi, precision);
|
||||
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(degree, 1, 4);
|
||||
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
|
||||
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
|
||||
|
||||
// Stochastically estimate reweighting factor via RHMC
|
||||
RealD scale = std::sqrt(0.5);
|
||||
std::vector<RealD> rw_rhmc(Nhits);
|
||||
ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter);
|
||||
ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter);
|
||||
std::cout.precision(12);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
LatticeFermion Phi (Ddwf_f.FermionGrid());
|
||||
LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid());
|
||||
std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
pickCheckerboard(Odd, PhiOdd, Phi);
|
||||
|
||||
// evaluate -log(rw)
|
||||
msCG_V(VdagV, PhiOdd, tmp[0]);
|
||||
msCG_M(MdagM, tmp[0], tmp[1]);
|
||||
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Initialize EOFA fermion operators
|
||||
RealD shift_L = 0.0;
|
||||
RealD shift_R = -1.0;
|
||||
int pm = 1;
|
||||
DomainWallEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5);
|
||||
DomainWallEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5);
|
||||
MdagMLinearOperator<DomainWallEOFAFermionR, LatticeFermion> LdagL(Deofa_L);
|
||||
MdagMLinearOperator<DomainWallEOFAFermionR, LatticeFermion> RdagR(Deofa_R);
|
||||
|
||||
// Stochastically estimate reweighting factor via EOFA
|
||||
RealD k = Deofa_L.k;
|
||||
std::vector<RealD> rw_eofa(Nhits);
|
||||
ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter);
|
||||
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
LatticeFermion Phi (Deofa_L.FermionGrid());
|
||||
LatticeFermion spProj_Phi(Deofa_L.FermionGrid());
|
||||
std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
// evaluate -log(rw)
|
||||
// LH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_L, tmp[1], tmp[0]);
|
||||
Deofa_L.Omega(tmp[0], tmp[1], -1, 1);
|
||||
rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real();
|
||||
|
||||
// RH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_R, tmp[1], tmp[0]);
|
||||
Deofa_R.Omega(tmp[0], tmp[1], 1, 1);
|
||||
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real();
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
|
||||
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
|
||||
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
|
||||
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
209
tests/debug/Test_reweight_dwf_eofa_gparity.cc
Normal file
209
tests/debug/Test_reweight_dwf_eofa_gparity.cc
Normal file
@ -0,0 +1,209 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_reweight_dwf_eofa_gparity.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
|
||||
|
||||
// parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Nhits = 10;
|
||||
const int max_iter = 5000;
|
||||
const RealD mf = 0.1;
|
||||
const RealD mb = 0.11;
|
||||
const RealD M5 = 1.8;
|
||||
const RealD stop_tol = 1.0e-12;
|
||||
|
||||
RealD mean(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ mean += data[i]; }
|
||||
return mean/RealD(N);
|
||||
}
|
||||
|
||||
RealD jack_mean(const std::vector<RealD>& data, int sample)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
|
||||
return mean/RealD(N-1);
|
||||
}
|
||||
|
||||
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
|
||||
{
|
||||
int N = jacks.size();
|
||||
RealD std(0.0);
|
||||
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
|
||||
return std::sqrt(RealD(N-1)/RealD(N)*std);
|
||||
}
|
||||
|
||||
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
std::vector<RealD> jack_samples(N);
|
||||
std::vector<RealD> jack_stats(2);
|
||||
|
||||
jack_stats[0] = mean(data);
|
||||
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
|
||||
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
|
||||
return jack_stats;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: "
|
||||
<< grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
// Initialize RHMC fermion operators
|
||||
GparityDomainWallFermionR::ImplParams params;
|
||||
GparityDomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, params);
|
||||
GparityDomainWallFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, params);
|
||||
SchurDiagMooeeOperator<GparityDomainWallFermionR, FermionField> MdagM(Ddwf_f);
|
||||
SchurDiagMooeeOperator<GparityDomainWallFermionR, FermionField> VdagV(Ddwf_b);
|
||||
|
||||
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
|
||||
double lo = 0.0001;
|
||||
double hi = 95.0;
|
||||
int precision = 64;
|
||||
int degree = 12;
|
||||
AlgRemez remez(lo, hi, precision);
|
||||
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(degree, 1, 4);
|
||||
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
|
||||
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
|
||||
|
||||
// Stochastically estimate reweighting factor via RHMC
|
||||
RealD scale = std::sqrt(0.5);
|
||||
std::vector<RealD> rw_rhmc(Nhits);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(max_iter, PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(max_iter, PowerNegQuarter);
|
||||
std::cout.precision(12);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
FermionField Phi (Ddwf_f.FermionGrid());
|
||||
FermionField PhiOdd (Ddwf_f.FermionRedBlackGrid());
|
||||
std::vector<FermionField> tmp(2, Ddwf_f.FermionRedBlackGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
pickCheckerboard(Odd, PhiOdd, Phi);
|
||||
|
||||
// evaluate -log(rw)
|
||||
msCG_V(VdagV, PhiOdd, tmp[0]);
|
||||
msCG_M(MdagM, tmp[0], tmp[1]);
|
||||
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Initialize EOFA fermion operators
|
||||
RealD shift_L = 0.0;
|
||||
RealD shift_R = -1.0;
|
||||
int pm = 1;
|
||||
GparityDomainWallEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, params);
|
||||
GparityDomainWallEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, params);
|
||||
MdagMLinearOperator<GparityDomainWallEOFAFermionR, FermionField> LdagL(Deofa_L);
|
||||
MdagMLinearOperator<GparityDomainWallEOFAFermionR, FermionField> RdagR(Deofa_R);
|
||||
|
||||
// Stochastically estimate reweighting factor via EOFA
|
||||
RealD k = Deofa_L.k;
|
||||
std::vector<RealD> rw_eofa(Nhits);
|
||||
ConjugateGradient<FermionField> CG(stop_tol, max_iter);
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SchurSolver(CG);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
FermionField Phi (Deofa_L.FermionGrid());
|
||||
FermionField spProj_Phi(Deofa_L.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Deofa_L.FermionGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
// evaluate -log(rw)
|
||||
// LH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_L, tmp[1], tmp[0]);
|
||||
Deofa_L.Omega(tmp[0], tmp[1], -1, 1);
|
||||
rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real();
|
||||
|
||||
// RH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_R, tmp[1], tmp[0]);
|
||||
Deofa_R.Omega(tmp[0], tmp[1], 1, 1);
|
||||
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real();
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
|
||||
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
|
||||
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
|
||||
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
215
tests/debug/Test_reweight_mobius_eofa.cc
Normal file
215
tests/debug/Test_reweight_mobius_eofa.cc
Normal file
@ -0,0 +1,215 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
// parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Nhits = 10;
|
||||
const int max_iter = 5000;
|
||||
const RealD b = 2.5;
|
||||
const RealD c = 1.5;
|
||||
const RealD mf = 0.1;
|
||||
const RealD mb = 0.11;
|
||||
const RealD M5 = 1.8;
|
||||
const RealD stop_tol = 1.0e-12;
|
||||
|
||||
RealD mean(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ mean += data[i]; }
|
||||
return mean/RealD(N);
|
||||
}
|
||||
|
||||
RealD jack_mean(const std::vector<RealD>& data, int sample)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
|
||||
return mean/RealD(N-1);
|
||||
}
|
||||
|
||||
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
|
||||
{
|
||||
int N = jacks.size();
|
||||
RealD std(0.0);
|
||||
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
|
||||
return std::sqrt(RealD(N-1)/RealD(N)*std);
|
||||
}
|
||||
|
||||
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
std::vector<RealD> jack_samples(N);
|
||||
std::vector<RealD> jack_stats(2);
|
||||
|
||||
jack_stats[0] = mean(data);
|
||||
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
|
||||
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
|
||||
return jack_stats;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: "
|
||||
<< grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
// Initialize RHMC fermion operators
|
||||
MobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c);
|
||||
MobiusFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, b, c);
|
||||
SchurDiagMooeeOperator<MobiusFermionR, LatticeFermion> MdagM(Ddwf_f);
|
||||
SchurDiagMooeeOperator<MobiusFermionR, LatticeFermion> VdagV(Ddwf_b);
|
||||
|
||||
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
|
||||
double lo = 0.0001;
|
||||
double hi = 95.0;
|
||||
int precision = 64;
|
||||
int degree = 12;
|
||||
AlgRemez remez(lo, hi, precision);
|
||||
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(degree, 1, 4);
|
||||
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
|
||||
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
|
||||
|
||||
// Stochastically estimate reweighting factor via RHMC
|
||||
RealD scale = std::sqrt(0.5);
|
||||
std::vector<RealD> rw_rhmc(Nhits);
|
||||
ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter);
|
||||
ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter);
|
||||
std::cout.precision(12);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
LatticeFermion Phi (Ddwf_f.FermionGrid());
|
||||
LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid());
|
||||
std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
pickCheckerboard(Odd, PhiOdd, Phi);
|
||||
|
||||
// evaluate -log(rw)
|
||||
msCG_V(VdagV, PhiOdd, tmp[0]);
|
||||
msCG_M(MdagM, tmp[0], tmp[1]);
|
||||
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Initialize EOFA fermion operators
|
||||
RealD shift_L = 0.0;
|
||||
RealD shift_R = -1.0;
|
||||
int pm = 1;
|
||||
MobiusEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, b, c);
|
||||
MobiusEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, b, c);
|
||||
MdagMLinearOperator<MobiusEOFAFermionR, LatticeFermion> LdagL(Deofa_L);
|
||||
MdagMLinearOperator<MobiusEOFAFermionR, LatticeFermion> RdagR(Deofa_R);
|
||||
|
||||
// Stochastically estimate reweighting factor via EOFA
|
||||
RealD k = Deofa_L.k;
|
||||
std::vector<RealD> rw_eofa(Nhits);
|
||||
ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter);
|
||||
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
|
||||
|
||||
// Compute -log(Z), where: ( RHMC det ratio ) = Z * ( EOFA det ratio )
|
||||
RealD Z = std::pow(b+c+1.0,Ls) + mf*std::pow(b+c-1.0,Ls);
|
||||
Z /= std::pow(b+c+1.0,Ls) + mb*std::pow(b+c-1.0,Ls);
|
||||
Z = -12.0*grid_dim[0]*grid_dim[1]*grid_dim[2]*grid_dim[3]*std::log(Z);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
LatticeFermion Phi (Deofa_L.FermionGrid());
|
||||
LatticeFermion spProj_Phi(Deofa_L.FermionGrid());
|
||||
std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
// evaluate -log(rw)
|
||||
// LH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_L, tmp[1], tmp[0]);
|
||||
Deofa_L.Dtilde(tmp[0], tmp[1]);
|
||||
Deofa_L.Omega(tmp[1], tmp[0], -1, 1);
|
||||
rw_eofa[hit] = Z - k*innerProduct(spProj_Phi,tmp[0]).real();
|
||||
|
||||
// RH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_R, tmp[1], tmp[0]);
|
||||
Deofa_R.Dtilde(tmp[0], tmp[1]);
|
||||
Deofa_R.Omega(tmp[1], tmp[0], 1, 1);
|
||||
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[0]).real();
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
|
||||
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
|
||||
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
|
||||
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
218
tests/debug/Test_reweight_mobius_eofa_gparity.cc
Normal file
218
tests/debug/Test_reweight_mobius_eofa_gparity.cc
Normal file
@ -0,0 +1,218 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
|
||||
|
||||
// parameters for test
|
||||
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
|
||||
const int Ls = 8;
|
||||
const int Nhits = 10;
|
||||
const int max_iter = 5000;
|
||||
const RealD b = 2.5;
|
||||
const RealD c = 1.5;
|
||||
const RealD mf = 0.1;
|
||||
const RealD mb = 0.11;
|
||||
const RealD M5 = 1.8;
|
||||
const RealD stop_tol = 1.0e-12;
|
||||
|
||||
RealD mean(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ mean += data[i]; }
|
||||
return mean/RealD(N);
|
||||
}
|
||||
|
||||
RealD jack_mean(const std::vector<RealD>& data, int sample)
|
||||
{
|
||||
int N = data.size();
|
||||
RealD mean(0.0);
|
||||
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
|
||||
return mean/RealD(N-1);
|
||||
}
|
||||
|
||||
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
|
||||
{
|
||||
int N = jacks.size();
|
||||
RealD std(0.0);
|
||||
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
|
||||
return std::sqrt(RealD(N-1)/RealD(N)*std);
|
||||
}
|
||||
|
||||
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
|
||||
{
|
||||
int N = data.size();
|
||||
std::vector<RealD> jack_samples(N);
|
||||
std::vector<RealD> jack_stats(2);
|
||||
|
||||
jack_stats[0] = mean(data);
|
||||
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
|
||||
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
|
||||
return jack_stats;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
// Initialize spacetime grid
|
||||
std::cout << GridLogMessage << "Lattice dimensions: "
|
||||
<< grid_dim << " Ls: " << Ls << std::endl;
|
||||
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
|
||||
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Set up RNGs
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
// Random gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
||||
// Initialize RHMC fermion operators
|
||||
GparityDomainWallFermionR::ImplParams params;
|
||||
GparityMobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c, params);
|
||||
GparityMobiusFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, b, c, params);
|
||||
SchurDiagMooeeOperator<GparityMobiusFermionR, FermionField> MdagM(Ddwf_f);
|
||||
SchurDiagMooeeOperator<GparityMobiusFermionR, FermionField> VdagV(Ddwf_b);
|
||||
|
||||
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
|
||||
double lo = 0.0001;
|
||||
double hi = 95.0;
|
||||
int precision = 64;
|
||||
int degree = 12;
|
||||
AlgRemez remez(lo, hi, precision);
|
||||
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(degree, 1, 4);
|
||||
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
|
||||
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
|
||||
|
||||
// Stochastically estimate reweighting factor via RHMC
|
||||
RealD scale = std::sqrt(0.5);
|
||||
std::vector<RealD> rw_rhmc(Nhits);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(max_iter, PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(max_iter, PowerNegQuarter);
|
||||
std::cout.precision(12);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
FermionField Phi (Ddwf_f.FermionGrid());
|
||||
FermionField PhiOdd (Ddwf_f.FermionRedBlackGrid());
|
||||
std::vector<FermionField> tmp(2, Ddwf_f.FermionRedBlackGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
pickCheckerboard(Odd, PhiOdd, Phi);
|
||||
|
||||
// evaluate -log(rw)
|
||||
msCG_V(VdagV, PhiOdd, tmp[0]);
|
||||
msCG_M(MdagM, tmp[0], tmp[1]);
|
||||
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Initialize EOFA fermion operators
|
||||
RealD shift_L = 0.0;
|
||||
RealD shift_R = -1.0;
|
||||
int pm = 1;
|
||||
GparityMobiusEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, b, c, params);
|
||||
GparityMobiusEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, b, c, params);
|
||||
MdagMLinearOperator<GparityMobiusEOFAFermionR, FermionField> LdagL(Deofa_L);
|
||||
MdagMLinearOperator<GparityMobiusEOFAFermionR, FermionField> RdagR(Deofa_R);
|
||||
|
||||
// Stochastically estimate reweighting factor via EOFA
|
||||
RealD k = Deofa_L.k;
|
||||
std::vector<RealD> rw_eofa(Nhits);
|
||||
ConjugateGradient<FermionField> CG(stop_tol, max_iter);
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SchurSolver(CG);
|
||||
|
||||
// Compute -log(Z), where: ( RHMC det ratio ) = Z * ( EOFA det ratio )
|
||||
RealD Z = std::pow(b+c+1.0,Ls) + mf*std::pow(b+c-1.0,Ls);
|
||||
Z /= std::pow(b+c+1.0,Ls) + mb*std::pow(b+c-1.0,Ls);
|
||||
Z = -12.0*grid_dim[0]*grid_dim[1]*grid_dim[2]*grid_dim[3]*std::log(Z);
|
||||
|
||||
for(int hit=0; hit<Nhits; hit++){
|
||||
|
||||
// Gaussian source
|
||||
FermionField Phi (Deofa_L.FermionGrid());
|
||||
FermionField spProj_Phi(Deofa_L.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Deofa_L.FermionGrid());
|
||||
gaussian(RNG5, Phi);
|
||||
Phi = Phi*scale;
|
||||
|
||||
// evaluate -log(rw)
|
||||
// LH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_L, tmp[1], tmp[0]);
|
||||
Deofa_L.Dtilde(tmp[0], tmp[1]);
|
||||
Deofa_L.Omega(tmp[1], tmp[0], -1, 1);
|
||||
rw_eofa[hit] = 2.0*Z - k*innerProduct(spProj_Phi,tmp[0]).real();
|
||||
|
||||
// RH term
|
||||
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
|
||||
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SchurSolver(Deofa_R, tmp[1], tmp[0]);
|
||||
Deofa_R.Dtilde(tmp[0], tmp[1]);
|
||||
Deofa_R.Omega(tmp[1], tmp[0], 1, 1);
|
||||
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[0]).real();
|
||||
std::cout << std::endl << "==================================================" << std::endl;
|
||||
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
|
||||
std::cout << std::endl << "==================================================" << std::endl << std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
|
||||
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
|
||||
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
|
||||
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
164
tests/forces/Test_dwf_force_eofa.cc
Normal file
164
tests/forces/Test_dwf_force_eofa.cc
Normal file
@ -0,0 +1,164 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/forces/Test_dwf_force_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
int main (int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
|
||||
const int Ls = 8;
|
||||
|
||||
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Want a different conf at every run
|
||||
// First create an instance of an engine.
|
||||
std::random_device rnd_device;
|
||||
// Specify the engine and distribution.
|
||||
std::mt19937 mersenne_engine(rnd_device());
|
||||
std::uniform_int_distribution<int> dist(1, 100);
|
||||
|
||||
auto gen = std::bind(dist, mersenne_engine);
|
||||
std::vector<int> seeds4(4);
|
||||
generate(begin(seeds4), end(seeds4), gen);
|
||||
|
||||
//std::vector<int> seeds4({1,2,3,5});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
LatticeFermion phi (FGrid); gaussian(RNG5, phi);
|
||||
LatticeFermion Mphi (FGrid);
|
||||
LatticeFermion MphiPrime (FGrid);
|
||||
|
||||
LatticeGaugeField U(UGrid);
|
||||
SU3::HotConfiguration(RNG4,U);
|
||||
|
||||
////////////////////////////////////
|
||||
// Unmodified matrix element
|
||||
////////////////////////////////////
|
||||
RealD mf = 0.01;
|
||||
RealD mb = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
DomainWallEOFAFermionR Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5);
|
||||
DomainWallEOFAFermionR Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5);
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
|
||||
|
||||
Meofa.refresh(U, RNG5);
|
||||
RealD S = Meofa.S(U); // pdag M p
|
||||
|
||||
// get the deriv of phidag M phi with respect to "U"
|
||||
LatticeGaugeField UdSdU(UGrid);
|
||||
Meofa.deriv(U, UdSdU);
|
||||
|
||||
////////////////////////////////////
|
||||
// Modify the gauge field a little
|
||||
////////////////////////////////////
|
||||
RealD dt = 0.0001;
|
||||
|
||||
LatticeColourMatrix mommu(UGrid);
|
||||
LatticeColourMatrix forcemu(UGrid);
|
||||
LatticeGaugeField mom(UGrid);
|
||||
LatticeGaugeField Uprime(UGrid);
|
||||
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
|
||||
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
|
||||
|
||||
PokeIndex<LorentzIndex>(mom, mommu, mu);
|
||||
|
||||
// fourth order exponential approx
|
||||
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
|
||||
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
|
||||
}
|
||||
}
|
||||
|
||||
/*Ddwf.ImportGauge(Uprime);
|
||||
Ddwf.M (phi,MphiPrime);
|
||||
|
||||
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
|
||||
RealD Sprime = Meofa.S(Uprime);
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Use derivative to estimate dS
|
||||
//////////////////////////////////////////////
|
||||
|
||||
LatticeComplex dS(UGrid);
|
||||
dS = zero;
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
|
||||
mommu = Ta(mommu)*2.0;
|
||||
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
|
||||
}
|
||||
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
|
||||
mommu = PeekIndex<LorentzIndex>(mom, mu);
|
||||
|
||||
// Update PF action density
|
||||
dS = dS + trace(mommu*forcemu)*dt;
|
||||
}
|
||||
|
||||
ComplexD dSpred = sum(dS);
|
||||
|
||||
/*std::cout << GridLogMessage << " S " << S << std::endl;
|
||||
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
|
||||
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
|
||||
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
|
||||
printf("\nS = %1.15e\n", S);
|
||||
printf("Sprime = %1.15e\n", Sprime);
|
||||
printf("dS = %1.15e\n", Sprime - S);
|
||||
printf("real(dS_predict) = %1.15e\n", dSpred.real());
|
||||
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
|
||||
|
||||
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
|
||||
|
||||
std::cout << GridLogMessage << "Done" << std::endl;
|
||||
Grid_finalize();
|
||||
}
|
169
tests/forces/Test_dwf_gpforce_eofa.cc
Normal file
169
tests/forces/Test_dwf_gpforce_eofa.cc
Normal file
@ -0,0 +1,169 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/forces/Test_dwf_force_eofa.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
typedef GparityWilsonImplR FermionImplPolicy;
|
||||
typedef GparityDomainWallEOFAFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
int main (int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
|
||||
const int Ls = 8;
|
||||
|
||||
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Want a different conf at every run
|
||||
// First create an instance of an engine.
|
||||
std::random_device rnd_device;
|
||||
// Specify the engine and distribution.
|
||||
std::mt19937 mersenne_engine(rnd_device());
|
||||
std::uniform_int_distribution<int> dist(1, 100);
|
||||
|
||||
auto gen = std::bind(dist, mersenne_engine);
|
||||
std::vector<int> seeds4(4);
|
||||
generate(begin(seeds4), end(seeds4), gen);
|
||||
|
||||
//std::vector<int> seeds4({1,2,3,5});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
FermionField phi (FGrid); gaussian(RNG5, phi);
|
||||
FermionField Mphi (FGrid);
|
||||
FermionField MphiPrime (FGrid);
|
||||
|
||||
LatticeGaugeField U(UGrid);
|
||||
SU3::HotConfiguration(RNG4,U);
|
||||
|
||||
////////////////////////////////////
|
||||
// Unmodified matrix element
|
||||
////////////////////////////////////
|
||||
RealD mf = 0.01;
|
||||
RealD mb = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
FermionAction::ImplParams params;
|
||||
FermionAction Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, params);
|
||||
FermionAction Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, params);
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
|
||||
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
|
||||
|
||||
Meofa.refresh(U, RNG5);
|
||||
RealD S = Meofa.S(U); // pdag M p
|
||||
|
||||
// get the deriv of phidag M phi with respect to "U"
|
||||
LatticeGaugeField UdSdU(UGrid);
|
||||
Meofa.deriv(U, UdSdU);
|
||||
|
||||
////////////////////////////////////
|
||||
// Modify the gauge field a little
|
||||
////////////////////////////////////
|
||||
RealD dt = 0.0001;
|
||||
|
||||
LatticeColourMatrix mommu(UGrid);
|
||||
LatticeColourMatrix forcemu(UGrid);
|
||||
LatticeGaugeField mom(UGrid);
|
||||
LatticeGaugeField Uprime(UGrid);
|
||||
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
|
||||
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
|
||||
|
||||
PokeIndex<LorentzIndex>(mom, mommu, mu);
|
||||
|
||||
// fourth order exponential approx
|
||||
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
|
||||
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
|
||||
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
|
||||
}
|
||||
}
|
||||
|
||||
/*Ddwf.ImportGauge(Uprime);
|
||||
Ddwf.M (phi,MphiPrime);
|
||||
|
||||
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
|
||||
RealD Sprime = Meofa.S(Uprime);
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Use derivative to estimate dS
|
||||
//////////////////////////////////////////////
|
||||
|
||||
LatticeComplex dS(UGrid);
|
||||
dS = zero;
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
|
||||
mommu = Ta(mommu)*2.0;
|
||||
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
|
||||
}
|
||||
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
|
||||
mommu = PeekIndex<LorentzIndex>(mom, mu);
|
||||
|
||||
// Update PF action density
|
||||
dS = dS + trace(mommu*forcemu)*dt;
|
||||
}
|
||||
|
||||
ComplexD dSpred = sum(dS);
|
||||
|
||||
/*std::cout << GridLogMessage << " S " << S << std::endl;
|
||||
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
|
||||
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
|
||||
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
|
||||
printf("\nS = %1.15e\n", S);
|
||||
printf("Sprime = %1.15e\n", Sprime);
|
||||
printf("dS = %1.15e\n", Sprime - S);
|
||||
printf("real(dS_predict) = %1.15e\n", dSpred.real());
|
||||
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
|
||||
|
||||
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
|
||||
|
||||
std::cout << GridLogMessage << "Done" << std::endl;
|
||||
Grid_finalize();
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user