mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Compare commits
58 Commits
fce3852dff
...
04ca065281
Author | SHA1 | Date | |
---|---|---|---|
|
04ca065281 | ||
|
88d8fa43d7 | ||
|
3c49762875 | ||
|
436bf1d9d3 | ||
|
f70df6e195 | ||
|
b02d022993 | ||
|
94581e3c7a | ||
|
88b52cc045 | ||
|
56827d6ad6 | ||
|
db420525b3 | ||
|
2da09ae99b | ||
|
a38fb0e04a | ||
|
0a6e2f42c5 | ||
|
4924b3209e | ||
|
00f24f8765 | ||
|
f5b3d582b0 | ||
|
981c93d67a | ||
|
c020b78e02 | ||
|
9cd4128833 | ||
|
c8b17c9526 | ||
|
2ae2a81e85 | ||
|
69c869d345 | ||
|
df9b958c40 | ||
|
3d3376d1a3 | ||
|
21ed6ac0f4 | ||
|
7bb8ab7000 | ||
|
2c824c2641 | ||
|
391fd9cc6a | ||
|
bf4369f72d | ||
|
36600899e2 | ||
|
b9c70d156b | ||
|
eb89579fe7 | ||
|
0cfd13d18b | ||
|
63d9b8e8a3 | ||
|
d247031c98 | ||
|
affff3865f | ||
|
9c22655b5a | ||
|
99d879ea7f | ||
|
9d263d9a7d | ||
|
9015c229dc | ||
|
a7eabaad56 | ||
|
eeb4703b84 | ||
|
a07421b3d3 | ||
|
cda53b4068 | ||
|
df99f227c1 | ||
|
d536c67b9d | ||
|
f44f005dad | ||
|
26b2caf570 | ||
|
8bb078db25 | ||
|
b61ba40023 | ||
|
14d352ea4f | ||
|
1cf9ec1cce | ||
|
4b994a1bc7 | ||
|
e506d6d369 | ||
|
ab56ad8d7a | ||
|
3825329f8e | ||
|
c7bdf2c0e4 | ||
|
bf91778550 |
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,7 @@
|
||||
# Doxygen stuff
|
||||
html/*
|
||||
latex/*
|
||||
|
||||
# Compiled Object files #
|
||||
#########################
|
||||
*.slo
|
||||
|
697
Grid/algorithms/blas/BatchedBlas.h
Normal file
697
Grid/algorithms/blas/BatchedBlas.h
Normal file
@ -0,0 +1,697 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#error // need oneMKL version
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#ifdef GRID_HIP
|
||||
typedef hipblasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
typedef cudablasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
|
||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
|
||||
|
||||
class GridBLAS {
|
||||
public:
|
||||
|
||||
|
||||
static gridblasHandle_t gridblasHandle;
|
||||
static int gridblasInit;
|
||||
|
||||
static void Init(void)
|
||||
{
|
||||
if ( ! gridblasInit ) {
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << "cublasCreate"<<std::endl;
|
||||
cublasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << "hipblasCreate"<<std::endl;
|
||||
hipblasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
}
|
||||
}
|
||||
|
||||
// Force construct once
|
||||
GridBLAS() { Init(); };
|
||||
~GridBLAS() { };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// BLAS GEMM conventions:
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// - C = alpha A * B + beta C
|
||||
// Dimensions:
|
||||
// - C_m.n
|
||||
// - A_m.k
|
||||
// - B_k.n
|
||||
// - Flops = 8 M N K
|
||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
||||
// M=60, N=12
|
||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
void synchronise(void)
|
||||
{
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipDeviceSynchronize();
|
||||
assert(err==hipSuccess);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cudaDeviceSynchronize();
|
||||
assert(err==cudaSuccess);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
accelerator_barrier();
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<ComplexD> alpha_p(1);
|
||||
static deviceVector<ComplexD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex **)&Amk[0], lda,
|
||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// synchronise();
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<ComplexF> alpha_p(1);
|
||||
static deviceVector<ComplexF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasComplex *) &alpha_p[0],
|
||||
(hipblasComplex **)&Amk[0], lda,
|
||||
(hipblasComplex **)&Bkn[0], ldb,
|
||||
(hipblasComplex *) &beta_p[0],
|
||||
(hipblasComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuComplex *) &alpha_p[0],
|
||||
(cuComplex **)&Amk[0], lda,
|
||||
(cuComplex **)&Bkn[0], ldb,
|
||||
(cuComplex *) &beta_p[0],
|
||||
(cuComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Single precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<RealF> alpha_p(1);
|
||||
static deviceVector<RealF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<RealD> alpha_p(1);
|
||||
static deviceVector<RealD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasDgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#warning "oneMKL implementation not made "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
for(int i=0;i<10;i++){
|
||||
RealD t0 = usecond();
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
}
|
||||
return flops;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -176,6 +176,7 @@ template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
extern GridLogger GridLogWarning;
|
||||
extern GridLogger GridLogMessage;
|
||||
extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogDebug;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogDslash;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogIterative;
|
||||
extern GridLogger GridLogIntegrator;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern GridLogger GridLogMemory;
|
||||
extern GridLogger GridLogTracing;
|
||||
@ -191,6 +191,41 @@ extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
||||
template<typename... Args>
|
||||
inline std::string sjoin(Args&&... args) noexcept {
|
||||
std::ostringstream msg;
|
||||
(msg << ... << args);
|
||||
return msg.str();
|
||||
}
|
||||
|
||||
/*! @brief make log messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_log(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << GridLogMessage << msg << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make warning messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_warn(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make error messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_error(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make pass messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_pass(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
#define _NBACKTRACE (256)
|
||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
||||
|
||||
|
389
Grid/qcd/smearing/HISQSmearing.h
Normal file
389
Grid/qcd/smearing/HISQSmearing.h
Normal file
@ -0,0 +1,389 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/smearing/HISQSmearing.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: D. A. Clarke <clarke.davida@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/*
|
||||
@file HISQSmearing.h
|
||||
@brief Declares classes related to HISQ smearing
|
||||
*/
|
||||
|
||||
|
||||
#pragma once
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// TODO: find a way to fold this into the stencil header. need to access grid to get
|
||||
// Nd, since you don't want to inherit from QCD.h
|
||||
/*! @brief append arbitrary shift path to shifts */
|
||||
template<typename... Args>
|
||||
void appendShift(std::vector<Coordinate>& shifts, int dir, Args... args) {
|
||||
Coordinate shift(Nd,0);
|
||||
generalShift(shift, dir, args...);
|
||||
// push_back creates an element at the end of shifts and
|
||||
// assigns the data in the argument to it.
|
||||
shifts.push_back(shift);
|
||||
}
|
||||
|
||||
|
||||
/*! @brief figure out the stencil index from mu and nu */
|
||||
accelerator_inline int stencilIndex(int mu, int nu) {
|
||||
// Nshifts depends on how you built the stencil
|
||||
int Nshifts = 6;
|
||||
return Nshifts*nu + Nd*Nshifts*mu;
|
||||
}
|
||||
|
||||
|
||||
/*! @brief structure holding the link treatment */
|
||||
struct SmearingParameters{
|
||||
SmearingParameters(){}
|
||||
Real c_1; // 1 link
|
||||
Real c_naik; // Naik term
|
||||
Real c_3; // 3 link
|
||||
Real c_5; // 5 link
|
||||
Real c_7; // 7 link
|
||||
Real c_lp; // 5 link Lepage
|
||||
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
|
||||
: c_1(c1),
|
||||
c_naik(cnaik),
|
||||
c_3(c3),
|
||||
c_5(c5),
|
||||
c_7(c7),
|
||||
c_lp(clp){}
|
||||
};
|
||||
|
||||
|
||||
/*! @brief create fat links from link variables */
|
||||
template<class Gimpl>
|
||||
class Smear_HISQ : public Gimpl {
|
||||
|
||||
private:
|
||||
GridCartesian* const _grid;
|
||||
SmearingParameters _linkTreatment;
|
||||
|
||||
public:
|
||||
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
typedef typename Gimpl::GaugeField GF;
|
||||
typedef typename Gimpl::GaugeLinkField LF;
|
||||
typedef typename Gimpl::ComplexField CF;
|
||||
|
||||
// Don't allow default values here.
|
||||
Smear_HISQ(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
|
||||
: _grid(grid),
|
||||
_linkTreatment(c1,cnaik,c3,c5,c7,clp) {
|
||||
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
|
||||
assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
|
||||
}
|
||||
|
||||
// Allow to pass a pointer to a C-style, double array for MILC convenience
|
||||
Smear_HISQ(GridCartesian* grid, double* coeff)
|
||||
: _grid(grid),
|
||||
_linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) {
|
||||
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
|
||||
assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
|
||||
}
|
||||
|
||||
~Smear_HISQ() {}
|
||||
|
||||
// Intent: OUT--u_smr, u_naik
|
||||
// IN--u_thin
|
||||
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
|
||||
|
||||
SmearingParameters lt = this->_linkTreatment;
|
||||
auto grid = this->_grid;
|
||||
|
||||
// Create a padded cell of extra padding depth=1 and fill the padding.
|
||||
int depth = 1;
|
||||
PaddedCell Ghost(depth,grid);
|
||||
GF Ughost = Ghost.Exchange(u_thin);
|
||||
|
||||
// This is where auxiliary N-link fields and the final smear will be stored.
|
||||
GF Ughost_fat(Ughost.Grid());
|
||||
GF Ughost_3link(Ughost.Grid());
|
||||
GF Ughost_5linkA(Ughost.Grid());
|
||||
GF Ughost_5linkB(Ughost.Grid());
|
||||
|
||||
// mu-nu plane stencil. We allow mu==nu to make indexing the stencil easier,
|
||||
// but these entries will not be used.
|
||||
std::vector<Coordinate> shifts;
|
||||
for(int mu=0;mu<Nd;mu++)
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
appendShift(shifts,mu);
|
||||
appendShift(shifts,nu);
|
||||
appendShift(shifts,shiftSignal::NO_SHIFT);
|
||||
appendShift(shifts,mu,Back(nu));
|
||||
appendShift(shifts,Back(nu));
|
||||
appendShift(shifts,Back(mu));
|
||||
}
|
||||
|
||||
// A GeneralLocalStencil has two indices: a site and stencil index
|
||||
GeneralLocalStencil gStencil(Ughost.Grid(),shifts);
|
||||
|
||||
// This is where contributions from the smearing get added together
|
||||
Ughost_fat=Zero();
|
||||
|
||||
// This loop handles 3-, 5-, and 7-link constructs, minus Lepage and Naik.
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
// TODO: This approach is slightly memory inefficient. It uses 25% extra memory
|
||||
Ughost_3link =Zero();
|
||||
Ughost_5linkA=Zero();
|
||||
Ughost_5linkB=Zero();
|
||||
|
||||
// Create the accessors
|
||||
autoView(U_v , Ughost , AcceleratorRead);
|
||||
autoView(U_fat_v , Ughost_fat , AcceleratorWrite);
|
||||
autoView(U_3link_v , Ughost_3link , AcceleratorWrite);
|
||||
autoView(U_5linkA_v, Ughost_5linkA, AcceleratorWrite);
|
||||
autoView(U_5linkB_v, Ughost_5linkB, AcceleratorWrite);
|
||||
|
||||
// We infer some types that will be needed in the calculation.
|
||||
typedef decltype(gStencil.GetEntry(0,0)) stencilElement;
|
||||
typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix;
|
||||
|
||||
int Nsites = U_v.size();
|
||||
auto gStencil_v = gStencil.View();
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
U3matrix U0, U1, U2, U3, U4, U5, W;
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
if(nu==mu) continue;
|
||||
int s = stencilIndex(mu,nu);
|
||||
|
||||
// The stencil gives us support points in the mu-nu plane that we will use to
|
||||
// grab the links we need.
|
||||
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
|
||||
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
|
||||
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
|
||||
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
|
||||
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
|
||||
SE5 = gStencil_v.GetEntry(s+5,site); int x_m_mu = SE5->_offset;
|
||||
|
||||
// When you're deciding whether to take an adjoint, the question is: how is the
|
||||
// stored link oriented compared to the one you want? If I imagine myself travelling
|
||||
// with the to-be-updated link, I have two possible, alternative 3-link paths I can
|
||||
// take, one starting by going to the left, the other starting by going to the right.
|
||||
U0 = coalescedReadGeneralPermute(U_v[x_p_mu ](nu),SE0->_permute,Nd);
|
||||
U1 = coalescedReadGeneralPermute(U_v[x_p_nu ](mu),SE1->_permute,Nd);
|
||||
U2 = coalescedReadGeneralPermute(U_v[x ](nu),SE2->_permute,Nd);
|
||||
U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
|
||||
U4 = coalescedReadGeneralPermute(U_v[x_m_nu ](mu),SE4->_permute,Nd);
|
||||
U5 = coalescedReadGeneralPermute(U_v[x_m_nu ](nu),SE4->_permute,Nd);
|
||||
|
||||
// "left" "right"
|
||||
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
|
||||
|
||||
// Save 3-link construct for later and add to smeared field.
|
||||
coalescedWrite(U_3link_v[x](nu), W);
|
||||
|
||||
// The index operator (x) returns the coalesced read on GPU. The view [] index returns
|
||||
// a reference to the vector object. The [x](mu) returns a reference to the densely
|
||||
// packed (contiguous in memory) mu-th element of the vector object. On CPU,
|
||||
// coalescedRead/Write is the identity mapping assigning vector object to vector object.
|
||||
// But on GPU it's non-trivial and maps scalar object to vector object and vice versa.
|
||||
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_3*W);
|
||||
}
|
||||
})
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
U3matrix U0, U1, U2, U3, U4, U5, W;
|
||||
int sigmaIndex = 0;
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
if(nu==mu) continue;
|
||||
int s = stencilIndex(mu,nu);
|
||||
for(int rho=0;rho<Nd;rho++) {
|
||||
if (rho == mu || rho == nu) continue;
|
||||
|
||||
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
|
||||
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
|
||||
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
|
||||
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
|
||||
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
|
||||
|
||||
U0 = coalescedReadGeneralPermute( U_v[x_p_mu ](nu ),SE0->_permute,Nd);
|
||||
U1 = coalescedReadGeneralPermute(U_3link_v[x_p_nu ](rho),SE1->_permute,Nd);
|
||||
U2 = coalescedReadGeneralPermute( U_v[x ](nu ),SE2->_permute,Nd);
|
||||
U3 = coalescedReadGeneralPermute( U_v[x_p_mu_m_nu](nu ),SE3->_permute,Nd);
|
||||
U4 = coalescedReadGeneralPermute(U_3link_v[x_m_nu ](rho),SE4->_permute,Nd);
|
||||
U5 = coalescedReadGeneralPermute( U_v[x_m_nu ](nu ),SE4->_permute,Nd);
|
||||
|
||||
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
|
||||
|
||||
if(sigmaIndex<3) {
|
||||
coalescedWrite(U_5linkA_v[x](rho), W);
|
||||
} else {
|
||||
coalescedWrite(U_5linkB_v[x](rho), W);
|
||||
}
|
||||
|
||||
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_5*W);
|
||||
sigmaIndex++;
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
U3matrix U0, U1, U2, U3, U4, U5, W;
|
||||
int sigmaIndex = 0;
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
if(nu==mu) continue;
|
||||
int s = stencilIndex(mu,nu);
|
||||
for(int rho=0;rho<Nd;rho++) {
|
||||
if (rho == mu || rho == nu) continue;
|
||||
|
||||
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
|
||||
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
|
||||
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
|
||||
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
|
||||
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
|
||||
|
||||
U0 = coalescedReadGeneralPermute(U_v[x_p_mu](nu),SE0->_permute,Nd);
|
||||
if(sigmaIndex<3) {
|
||||
U1 = coalescedReadGeneralPermute(U_5linkB_v[x_p_nu](rho),SE1->_permute,Nd);
|
||||
} else {
|
||||
U1 = coalescedReadGeneralPermute(U_5linkA_v[x_p_nu](rho),SE1->_permute,Nd);
|
||||
}
|
||||
U2 = coalescedReadGeneralPermute(U_v[x](nu),SE2->_permute,Nd);
|
||||
U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
|
||||
if(sigmaIndex<3) {
|
||||
U4 = coalescedReadGeneralPermute(U_5linkB_v[x_m_nu](rho),SE4->_permute,Nd);
|
||||
} else {
|
||||
U4 = coalescedReadGeneralPermute(U_5linkA_v[x_m_nu](rho),SE4->_permute,Nd);
|
||||
}
|
||||
U5 = coalescedReadGeneralPermute(U_v[x_m_nu](nu),SE4->_permute,Nd);
|
||||
|
||||
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
|
||||
|
||||
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_7*W);
|
||||
sigmaIndex++;
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
} // end mu loop
|
||||
|
||||
// c1, c3, c5, c7 construct contributions
|
||||
u_smr = Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
|
||||
|
||||
// Load up U and V std::vectors to access thin and smeared links.
|
||||
std::vector<LF> U(Nd, grid);
|
||||
std::vector<LF> V(Nd, grid);
|
||||
std::vector<LF> Vnaik(Nd, grid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(u_thin, mu);
|
||||
V[mu] = PeekIndex<LorentzIndex>(u_smr, mu);
|
||||
}
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
// Naik
|
||||
Vnaik[mu] = lt.c_naik*Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftIdentityForward(U[mu],mu)));
|
||||
|
||||
// LePage
|
||||
for (int nu_h=1;nu_h<Nd;nu_h++) {
|
||||
int nu=(mu+nu_h)%Nd;
|
||||
// nu, nu, mu, Back(nu), Back(nu)
|
||||
V[mu] = V[mu] + lt.c_lp*Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu],nu)))))
|
||||
// Back(nu), Back(nu), mu, nu, nu
|
||||
+ lt.c_lp*Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftIdentityForward(U[nu],nu)))));
|
||||
}
|
||||
}
|
||||
|
||||
// Put V back into u_smr.
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
PokeIndex<LorentzIndex>(u_smr , V[mu] , mu);
|
||||
PokeIndex<LorentzIndex>(u_naik, Vnaik[mu], mu);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Intent: OUT--u_proj
|
||||
// IN--u_mu
|
||||
void projectU3(GF& u_proj, GF& u_mu) const {
|
||||
|
||||
auto grid = this->_grid;
|
||||
|
||||
LF V(grid), Q(grid), sqrtQinv(grid), id_3(grid), diff(grid);
|
||||
CF c0(grid), c1(grid), c2(grid), g0(grid), g1(grid), g2(grid), S(grid), R(grid), theta(grid),
|
||||
u(grid), v(grid), w(grid), den(grid), f0(grid), f1(grid), f2(grid);
|
||||
|
||||
// Follow MILC 10.1103/PhysRevD.82.074501, eqs (B2-B3) and (C1-C8)
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
V = PeekIndex<LorentzIndex>(u_mu, mu);
|
||||
Q = adj(V)*V;
|
||||
c0 = real(trace(Q));
|
||||
c1 = (1/2.)*real(trace(Q*Q));
|
||||
c2 = (1/3.)*real(trace(Q*Q*Q));
|
||||
S = (1/3.)*c1-(1/18.)*c0*c0;
|
||||
if (norm2(S)<1e-28) {
|
||||
g0 = (1/3.)*c0; g1 = g0; g2 = g1;
|
||||
} else {
|
||||
R = (1/2.)*c2-(1/3. )*c0*c1+(1/27.)*c0*c0*c0;
|
||||
theta = acos(R*pow(S,-1.5));
|
||||
g0 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta-2*M_PI/3.);
|
||||
g1 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta );
|
||||
g2 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta+2*M_PI/3.);
|
||||
}
|
||||
// if (fabs(Q.determinant()/(g0*g1*g2)-1.0) > 1e-5) { SVD }
|
||||
u = sqrt(g0) + sqrt(g1) + sqrt(g2);
|
||||
v = sqrt(g0*g1) + sqrt(g0*g2) + sqrt(g1*g2);
|
||||
w = sqrt(g0*g1*g2);
|
||||
den = w*(u*v-w);
|
||||
f0 = (-w*(u*u+v)+u*v*v)/den;
|
||||
f1 = (-w-u*u*u+2.*u*v)/den;
|
||||
f2 = u/den;
|
||||
id_3 = 1.;
|
||||
|
||||
sqrtQinv = f0*id_3 + f1*Q + f2*Q*Q;
|
||||
|
||||
PokeIndex<LorentzIndex>(u_proj, V*sqrtQinv, mu);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// void derivative(const GaugeField& Gauge) const {
|
||||
// };
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -5,4 +5,5 @@
|
||||
#include <Grid/qcd/smearing/StoutSmearing.h>
|
||||
#include <Grid/qcd/smearing/GaugeConfiguration.h>
|
||||
#include <Grid/qcd/smearing/WilsonFlow.h>
|
||||
#include <Grid/qcd/smearing/HISQSmearing.h>
|
||||
|
||||
|
@ -137,5 +137,55 @@ public:
|
||||
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Some machinery to streamline making a stencil
|
||||
////////////////////////////////////////////////
|
||||
|
||||
class shiftSignal {
|
||||
public:
|
||||
enum {
|
||||
BACKWARD_CONST = 16,
|
||||
NO_SHIFT = -1
|
||||
};
|
||||
};
|
||||
|
||||
// TODO: put a check somewhere that BACKWARD_CONST > Nd!
|
||||
|
||||
/*! @brief signals that you want to go backwards in direction dir */
|
||||
inline int Back(const int dir) {
|
||||
// generalShift will use BACKWARD_CONST to determine whether we step forward or
|
||||
// backward. Trick inspired by SIMULATeQCD.
|
||||
return dir + shiftSignal::BACKWARD_CONST;
|
||||
}
|
||||
|
||||
/*! @brief shift one unit in direction dir */
|
||||
template<typename... Args>
|
||||
void generalShift(Coordinate& shift, int dir) {
|
||||
if (dir >= shiftSignal::BACKWARD_CONST) {
|
||||
dir -= shiftSignal::BACKWARD_CONST;
|
||||
shift[dir]+=-1;
|
||||
} else if (dir == shiftSignal::NO_SHIFT) {
|
||||
; // do nothing
|
||||
} else {
|
||||
shift[dir]+=1;
|
||||
}
|
||||
}
|
||||
|
||||
/*! @brief follow a path of directions, shifting one unit in each direction */
|
||||
template<typename... Args>
|
||||
void generalShift(Coordinate& shift, int dir, Args... args) {
|
||||
if (dir >= shiftSignal::BACKWARD_CONST) {
|
||||
dir -= shiftSignal::BACKWARD_CONST;
|
||||
shift[dir]+=-1;
|
||||
} else if (dir == shiftSignal::NO_SHIFT) {
|
||||
; // do nothing
|
||||
} else {
|
||||
shift[dir]+=1;
|
||||
}
|
||||
generalShift(shift, args...);
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
963
benchmarks/Benchmark_usqcd.cc
Normal file
963
benchmarks/Benchmark_usqcd.cc
Normal file
@ -0,0 +1,963 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./benchmarks/Benchmark_usqcd.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
std::vector<int> L_list;
|
||||
std::vector<int> Ls_list;
|
||||
std::vector<double> mflop_list;
|
||||
|
||||
double mflop_ref;
|
||||
double mflop_ref_err;
|
||||
|
||||
int NN_global;
|
||||
|
||||
FILE * FP;
|
||||
|
||||
struct time_statistics{
|
||||
double mean;
|
||||
double err;
|
||||
double min;
|
||||
double max;
|
||||
|
||||
void statistics(std::vector<double> v){
|
||||
double sum = std::accumulate(v.begin(), v.end(), 0.0);
|
||||
mean = sum / v.size();
|
||||
|
||||
std::vector<double> diff(v.size());
|
||||
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
|
||||
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
|
||||
err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
|
||||
|
||||
auto result = std::minmax_element(v.begin(), v.end());
|
||||
min = *result.first;
|
||||
max = *result.second;
|
||||
}
|
||||
};
|
||||
|
||||
void comms_header(){
|
||||
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
|
||||
<<"bytes\t MB/s uni (err/min/max) \t\t MB/s bidi (err/min/max)"<<std::endl;
|
||||
};
|
||||
|
||||
struct controls {
|
||||
int Opt;
|
||||
int CommsOverlap;
|
||||
Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
|
||||
};
|
||||
|
||||
class Benchmark {
|
||||
public:
|
||||
static void Decomposition (void ) {
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
|
||||
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tMPI tasks : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tvReal : "<<sizeof(vReal )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vReal::Nsimd()))<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tvRealF : "<<sizeof(vRealF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tvRealD : "<<sizeof(vRealD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealD::Nsimd()))<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tvComplex : "<<sizeof(vComplex )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplex::Nsimd()))<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tvComplexF : "<<sizeof(vComplexF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexF::Nsimd()))<<std::endl;
|
||||
std::cout<<GridLogMessage<<"\tvComplexD : "<<sizeof(vComplexD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexD::Nsimd()))<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
static void Comms(void)
|
||||
{
|
||||
int Nloop=200;
|
||||
int nmu=0;
|
||||
int maxlat=32;
|
||||
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
|
||||
|
||||
std::vector<double> t_time(Nloop);
|
||||
time_statistics timestat;
|
||||
|
||||
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
|
||||
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
|
||||
comms_header();
|
||||
|
||||
fprintf(FP,"Communications\n\n");
|
||||
fprintf(FP,"Packet bytes, direction, GB/s per node\n");
|
||||
for(int lat=16;lat<=maxlat;lat+=8){
|
||||
// for(int Ls=8;Ls<=8;Ls*=2){
|
||||
{ int Ls=12;
|
||||
|
||||
Coordinate latt_size ({lat*mpi_layout[0],
|
||||
lat*mpi_layout[1],
|
||||
lat*mpi_layout[2],
|
||||
lat*mpi_layout[3]});
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
RealD Nrank = Grid._Nprocessors;
|
||||
RealD Nnode = Grid.NodeCount();
|
||||
RealD ppn = Nrank/Nnode;
|
||||
|
||||
std::vector<HalfSpinColourVectorD *> xbuf(8);
|
||||
std::vector<HalfSpinColourVectorD *> rbuf(8);
|
||||
//Grid.ShmBufferFreeAll();
|
||||
uint64_t bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
|
||||
for(int d=0;d<8;d++){
|
||||
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
|
||||
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
|
||||
// bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
|
||||
// bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
|
||||
}
|
||||
|
||||
// int ncomm;
|
||||
double dbytes;
|
||||
|
||||
for(int dir=0;dir<8;dir++) {
|
||||
int mu =dir % 4;
|
||||
if (mpi_layout[mu]>1 ) {
|
||||
|
||||
std::vector<double> times(Nloop);
|
||||
for(int i=0;i<Nloop;i++){
|
||||
|
||||
dbytes=0;
|
||||
double start=usecond();
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
|
||||
if ( dir == mu ) {
|
||||
int comm_proc=1;
|
||||
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
} else {
|
||||
int comm_proc = mpi_layout[mu]-1;
|
||||
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
}
|
||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
|
||||
(void *)&rbuf[dir][0], recv_from_rank,
|
||||
bytes);
|
||||
dbytes+=bytes;
|
||||
|
||||
double stop=usecond();
|
||||
t_time[i] = stop-start; // microseconds
|
||||
|
||||
}
|
||||
timestat.statistics(t_time);
|
||||
|
||||
dbytes=dbytes*ppn;
|
||||
double xbytes = dbytes*0.5;
|
||||
double bidibytes = dbytes;
|
||||
|
||||
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
|
||||
<< bytes << " \t "
|
||||
<<xbytes/timestat.mean<<" \t "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " \t "
|
||||
<<xbytes/timestat.max <<" "<< xbytes/timestat.min
|
||||
<< "\t\t"<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
|
||||
<< bidibytes/timestat.max << " " << bidibytes/timestat.min << std::endl;
|
||||
fprintf(FP,"%ld, %d, %f\n",(long)bytes,dir,bidibytes/timestat.mean/1000.);
|
||||
}
|
||||
}
|
||||
for(int d=0;d<8;d++){
|
||||
acceleratorFreeDevice(xbuf[d]);
|
||||
acceleratorFreeDevice(rbuf[d]);
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(FP,"\n\n");
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
static void Memory(void)
|
||||
{
|
||||
const int Nvec=8;
|
||||
typedef Lattice< iVector< vReal,Nvec> > LatticeVec;
|
||||
typedef iVector<vReal,Nvec> Vec;
|
||||
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vReal::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
fprintf(FP,"Memory Bandwidth\n\n");
|
||||
fprintf(FP,"Bytes, GB/s per node\n");
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
// uint64_t NP;
|
||||
uint64_t NN;
|
||||
|
||||
|
||||
uint64_t lmax=32;
|
||||
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
|
||||
|
||||
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
for(int lat=8;lat<=lmax;lat+=8){
|
||||
|
||||
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
// NP= Grid.RankCount();
|
||||
NN =Grid.NodeCount();
|
||||
|
||||
Vec rn ; random(sRNG,rn);
|
||||
|
||||
LatticeVec z(&Grid); z=Zero();
|
||||
LatticeVec x(&Grid); x=Zero();
|
||||
LatticeVec y(&Grid); y=Zero();
|
||||
double a=2.0;
|
||||
|
||||
uint64_t Nloop=NLOOP;
|
||||
|
||||
double start=usecond();
|
||||
for(int i=0;i<Nloop;i++){
|
||||
z=a*x-y;
|
||||
}
|
||||
double stop=usecond();
|
||||
double time = (stop-start)/Nloop*1000;
|
||||
|
||||
double flops=vol*Nvec*2;// mul,add
|
||||
double bytes=3.0*vol*Nvec*sizeof(Real);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
|
||||
<< "\t\t"<< bytes/time/NN <<std::endl;
|
||||
|
||||
fprintf(FP,"%ld, %f\n",(long)bytes,bytes/time/NN/1000.);
|
||||
|
||||
}
|
||||
fprintf(FP,"\n\n");
|
||||
};
|
||||
|
||||
|
||||
static void BLAS(void)
|
||||
{
|
||||
//int nbasis, int nrhs, int coarseVol
|
||||
int basis[] = { 16,32,64 };
|
||||
int rhs[] = { 8,16,32 };
|
||||
int vols[] = { 4*4*4*4, 8*8*8*8, 8*8*16*16 };
|
||||
|
||||
GridBLAS blas;
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / node (coarse mrhs)"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
|
||||
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
for(int v=0;v<3;v++){
|
||||
int M=basis[b];
|
||||
int N=rhs[r];
|
||||
int K=basis[b];
|
||||
int BATCH=vols[v];
|
||||
double p=blas.benchmark(M,rhs[r],vols[v],1);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
|
||||
}}}
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / node (block project)"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
for(int v=0;v<2;v++){
|
||||
int M=basis[b];
|
||||
int N=rhs[r];
|
||||
int K=vols[2];
|
||||
int BATCH=vols[v];
|
||||
double p=blas.benchmark(M,rhs[r],vols[v],1);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
|
||||
}}}
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / node (block promote)"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
for(int v=0;v<2;v++){
|
||||
int M=rhs[r];
|
||||
int N=vols[2];
|
||||
int K=basis[b];
|
||||
int BATCH=vols[v];
|
||||
double p=blas.benchmark(M,rhs[r],vols[v],1);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
|
||||
}}}
|
||||
fprintf(FP,"\n\n\n");
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
};
|
||||
|
||||
|
||||
static void SU4(void)
|
||||
{
|
||||
const int Nc4=4;
|
||||
typedef Lattice< iMatrix< vComplexF,Nc4> > LatticeSU4;
|
||||
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= Benchmarking z = y*x SU(4) bandwidth"<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
uint64_t NN;
|
||||
|
||||
|
||||
uint64_t lmax=32;
|
||||
|
||||
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
for(int lat=8;lat<=lmax;lat+=8){
|
||||
|
||||
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
NN =Grid.NodeCount();
|
||||
|
||||
|
||||
LatticeSU4 z(&Grid); z=Zero();
|
||||
LatticeSU4 x(&Grid); x=Zero();
|
||||
LatticeSU4 y(&Grid); y=Zero();
|
||||
// double a=2.0;
|
||||
|
||||
uint64_t Nloop=NLOOP;
|
||||
|
||||
double start=usecond();
|
||||
for(int i=0;i<Nloop;i++){
|
||||
z=x*y;
|
||||
}
|
||||
double stop=usecond();
|
||||
double time = (stop-start)/Nloop*1000;
|
||||
|
||||
double flops=vol*Nc4*Nc4*(6+(Nc4-1)*8);// mul,add
|
||||
double bytes=3.0*vol*Nc4*Nc4*2*sizeof(RealF);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
|
||||
<< "\t\t"<< bytes/time/NN <<std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
static double DWF(int Ls,int L)
|
||||
{
|
||||
RealD mass=0.1;
|
||||
RealD M5 =1.8;
|
||||
|
||||
double mflops;
|
||||
double mflops_best = 0;
|
||||
double mflops_worst= 0;
|
||||
std::vector<double> mflops_all;
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Set/Get the layout & grid size
|
||||
///////////////////////////////////////////////////////
|
||||
int threads = GridThread::GetThreads();
|
||||
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
|
||||
Coordinate local({L,L,L,L});
|
||||
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
|
||||
|
||||
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
uint64_t NP = TmpGrid->RankCount();
|
||||
uint64_t NN = TmpGrid->NodeCount();
|
||||
NN_global=NN;
|
||||
uint64_t SHM=NP/NN;
|
||||
|
||||
|
||||
///////// Welcome message ////////////
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Nc : "<<Nc<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
|
||||
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
///////// Lattice Init ////////////
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
|
||||
///////// RNG Init ////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
|
||||
|
||||
typedef DomainWallFermionF Action;
|
||||
typedef typename Action::FermionField Fermion;
|
||||
typedef LatticeGaugeFieldF Gauge;
|
||||
|
||||
///////// Source preparation ////////////
|
||||
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
|
||||
Fermion src (FGrid); random(RNG5,src);
|
||||
Fermion src_e (FrbGrid);
|
||||
Fermion src_o (FrbGrid);
|
||||
Fermion r_e (FrbGrid);
|
||||
Fermion r_o (FrbGrid);
|
||||
Fermion r_eo (FGrid);
|
||||
Action Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
|
||||
{
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd,src_o,src);
|
||||
|
||||
const int num_cases = 1;
|
||||
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
|
||||
|
||||
controls Cases [] = {
|
||||
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent }
|
||||
};
|
||||
|
||||
for(int c=0;c<num_cases;c++) {
|
||||
|
||||
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
|
||||
WilsonKernelsStatic::Opt = Cases[c].Opt;
|
||||
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
int nwarm = 10;
|
||||
double t0=usecond();
|
||||
FGrid->Barrier();
|
||||
for(int i=0;i<nwarm;i++){
|
||||
Dw.DhopEO(src_o,r_e,DaggerNo);
|
||||
}
|
||||
FGrid->Barrier();
|
||||
double t1=usecond();
|
||||
uint64_t ncall = 500;
|
||||
|
||||
FGrid->Broadcast(0,&ncall,sizeof(ncall));
|
||||
|
||||
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
|
||||
|
||||
time_statistics timestat;
|
||||
std::vector<double> t_time(ncall);
|
||||
for(uint64_t i=0;i<ncall;i++){
|
||||
t0=usecond();
|
||||
Dw.DhopEO(src_o,r_e,DaggerNo);
|
||||
t1=usecond();
|
||||
t_time[i] = t1-t0;
|
||||
}
|
||||
FGrid->Barrier();
|
||||
|
||||
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
|
||||
|
||||
// Nc=3 gives
|
||||
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
|
||||
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
|
||||
// double flops=(1344.0*volume)/2;
|
||||
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + 2*Nd*Nc*Ns + 2*Nd*Nc*Ns*2;
|
||||
|
||||
double flops=(fps*volume)/2;
|
||||
double mf_hi, mf_lo, mf_err;
|
||||
|
||||
timestat.statistics(t_time);
|
||||
mf_hi = flops/timestat.min;
|
||||
mf_lo = flops/timestat.max;
|
||||
mf_err= flops/timestat.min * timestat.err/timestat.mean;
|
||||
|
||||
mflops = flops/timestat.mean;
|
||||
mflops_all.push_back(mflops);
|
||||
if ( mflops_best == 0 ) mflops_best = mflops;
|
||||
if ( mflops_worst== 0 ) mflops_worst= mflops;
|
||||
if ( mflops>mflops_best ) mflops_best = mflops;
|
||||
if ( mflops<mflops_worst) mflops_worst= mflops;
|
||||
|
||||
std::cout<<GridLogMessage<< "Deo FlopsPerSite is "<<fps<<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
|
||||
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
|
||||
std::cout<<GridLogMessage <<fmt << std::endl;
|
||||
std::cout<<GridLogMessage ;
|
||||
|
||||
for(int i=0;i<mflops_all.size();i++){
|
||||
std::cout<<mflops_all[i]/NN<<" ; " ;
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
}
|
||||
return mflops_best;
|
||||
}
|
||||
|
||||
|
||||
static double Staggered(int L)
|
||||
{
|
||||
double mflops;
|
||||
double mflops_best = 0;
|
||||
double mflops_worst= 0;
|
||||
std::vector<double> mflops_all;
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Set/Get the layout & grid size
|
||||
///////////////////////////////////////////////////////
|
||||
int threads = GridThread::GetThreads();
|
||||
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
|
||||
Coordinate local({L,L,L,L});
|
||||
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
|
||||
|
||||
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
uint64_t NP = TmpGrid->RankCount();
|
||||
uint64_t NN = TmpGrid->NodeCount();
|
||||
NN_global=NN;
|
||||
uint64_t SHM=NP/NN;
|
||||
|
||||
|
||||
///////// Welcome message ////////////
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "Benchmark ImprovedStaggered on "<<L<<"^4 local volume "<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
|
||||
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
///////// Lattice Init ////////////
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
|
||||
|
||||
///////// RNG Init ////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
|
||||
|
||||
RealD mass=0.1;
|
||||
RealD c1=9.0/8.0;
|
||||
RealD c2=-1.0/24.0;
|
||||
RealD u0=1.0;
|
||||
|
||||
typedef ImprovedStaggeredFermionF Action;
|
||||
typedef typename Action::FermionField Fermion;
|
||||
typedef LatticeGaugeFieldF Gauge;
|
||||
|
||||
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
|
||||
|
||||
typename Action::ImplParams params;
|
||||
Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
|
||||
|
||||
///////// Source preparation ////////////
|
||||
Fermion src (FGrid); random(RNG4,src);
|
||||
Fermion src_e (FrbGrid);
|
||||
Fermion src_o (FrbGrid);
|
||||
Fermion r_e (FrbGrid);
|
||||
Fermion r_o (FrbGrid);
|
||||
Fermion r_eo (FGrid);
|
||||
|
||||
{
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd,src_o,src);
|
||||
|
||||
const int num_cases = 1;
|
||||
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
|
||||
|
||||
controls Cases [] = {
|
||||
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
|
||||
};
|
||||
|
||||
for(int c=0;c<num_cases;c++) {
|
||||
|
||||
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
|
||||
StaggeredKernelsStatic::Opt = Cases[c].Opt;
|
||||
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc StaggeredKernels" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
int nwarm = 10;
|
||||
double t0=usecond();
|
||||
FGrid->Barrier();
|
||||
for(int i=0;i<nwarm;i++){
|
||||
Ds.DhopEO(src_o,r_e,DaggerNo);
|
||||
}
|
||||
FGrid->Barrier();
|
||||
double t1=usecond();
|
||||
uint64_t ncall = 500;
|
||||
|
||||
FGrid->Broadcast(0,&ncall,sizeof(ncall));
|
||||
|
||||
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
|
||||
|
||||
time_statistics timestat;
|
||||
std::vector<double> t_time(ncall);
|
||||
for(uint64_t i=0;i<ncall;i++){
|
||||
t0=usecond();
|
||||
Ds.DhopEO(src_o,r_e,DaggerNo);
|
||||
t1=usecond();
|
||||
t_time[i] = t1-t0;
|
||||
}
|
||||
FGrid->Barrier();
|
||||
|
||||
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
|
||||
double flops=(1146.0*volume)/2;
|
||||
double mf_hi, mf_lo, mf_err;
|
||||
|
||||
timestat.statistics(t_time);
|
||||
mf_hi = flops/timestat.min;
|
||||
mf_lo = flops/timestat.max;
|
||||
mf_err= flops/timestat.min * timestat.err/timestat.mean;
|
||||
|
||||
mflops = flops/timestat.mean;
|
||||
mflops_all.push_back(mflops);
|
||||
if ( mflops_best == 0 ) mflops_best = mflops;
|
||||
if ( mflops_worst== 0 ) mflops_worst= mflops;
|
||||
if ( mflops>mflops_best ) mflops_best = mflops;
|
||||
if ( mflops<mflops_worst) mflops_worst= mflops;
|
||||
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
|
||||
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
|
||||
std::cout<<GridLogMessage <<fmt << std::endl;
|
||||
std::cout<<GridLogMessage ;
|
||||
|
||||
for(int i=0;i<mflops_all.size();i++){
|
||||
std::cout<<mflops_all[i]/NN<<" ; " ;
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
return mflops_best;
|
||||
}
|
||||
|
||||
static double Clover(int L)
|
||||
{
|
||||
double mflops;
|
||||
double mflops_best = 0;
|
||||
double mflops_worst= 0;
|
||||
std::vector<double> mflops_all;
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Set/Get the layout & grid size
|
||||
///////////////////////////////////////////////////////
|
||||
int threads = GridThread::GetThreads();
|
||||
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
|
||||
Coordinate local({L,L,L,L});
|
||||
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
|
||||
|
||||
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
uint64_t NP = TmpGrid->RankCount();
|
||||
uint64_t NN = TmpGrid->NodeCount();
|
||||
NN_global=NN;
|
||||
uint64_t SHM=NP/NN;
|
||||
|
||||
|
||||
///////// Welcome message ////////////
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "Benchmark Clover on "<<L<<"^4 local volume "<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
|
||||
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
|
||||
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
|
||||
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
///////// Lattice Init ////////////
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
|
||||
|
||||
///////// RNG Init ////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
|
||||
|
||||
RealD mass=0.1;
|
||||
RealD csw=1.0;
|
||||
|
||||
typedef WilsonCloverFermionF Action;
|
||||
typedef typename Action::FermionField Fermion;
|
||||
typedef LatticeGaugeFieldF Gauge;
|
||||
|
||||
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
|
||||
|
||||
Action Dc(Umu,*FGrid,*FrbGrid,mass,csw,csw);
|
||||
|
||||
///////// Source preparation ////////////
|
||||
Fermion src (FGrid); random(RNG4,src);
|
||||
Fermion r (FGrid);
|
||||
|
||||
{
|
||||
|
||||
const int num_cases = 1;
|
||||
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
|
||||
|
||||
controls Cases [] = {
|
||||
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
|
||||
};
|
||||
|
||||
for(int c=0;c<num_cases;c++) {
|
||||
|
||||
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
|
||||
WilsonKernelsStatic::Opt = Cases[c].Opt;
|
||||
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
int nwarm = 10;
|
||||
double t0=usecond();
|
||||
FGrid->Barrier();
|
||||
for(int i=0;i<nwarm;i++){
|
||||
Dc.M(src,r);
|
||||
}
|
||||
FGrid->Barrier();
|
||||
double t1=usecond();
|
||||
uint64_t ncall = 500;
|
||||
|
||||
FGrid->Broadcast(0,&ncall,sizeof(ncall));
|
||||
|
||||
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
|
||||
|
||||
time_statistics timestat;
|
||||
std::vector<double> t_time(ncall);
|
||||
for(uint64_t i=0;i<ncall;i++){
|
||||
t0=usecond();
|
||||
Dc.M(src,r);
|
||||
t1=usecond();
|
||||
t_time[i] = t1-t0;
|
||||
}
|
||||
FGrid->Barrier();
|
||||
|
||||
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
|
||||
double flops=(1344+ 24+6*6*8*2)*volume;
|
||||
double mf_hi, mf_lo, mf_err;
|
||||
|
||||
timestat.statistics(t_time);
|
||||
mf_hi = flops/timestat.min;
|
||||
mf_lo = flops/timestat.max;
|
||||
mf_err= flops/timestat.min * timestat.err/timestat.mean;
|
||||
|
||||
mflops = flops/timestat.mean;
|
||||
mflops_all.push_back(mflops);
|
||||
if ( mflops_best == 0 ) mflops_best = mflops;
|
||||
if ( mflops_worst== 0 ) mflops_worst= mflops;
|
||||
if ( mflops>mflops_best ) mflops_best = mflops;
|
||||
if ( mflops<mflops_worst) mflops_worst= mflops;
|
||||
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per rank "<< mflops/NP<<std::endl;
|
||||
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per node "<< mflops/NN<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
|
||||
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
|
||||
std::cout<<GridLogMessage <<fmt << std::endl;
|
||||
std::cout<<GridLogMessage ;
|
||||
|
||||
for(int i=0;i<mflops_all.size();i++){
|
||||
std::cout<<mflops_all[i]/NN<<" ; " ;
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
return mflops_best;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
if (GlobalSharedMemory::WorldRank==0) {
|
||||
FP = fopen("Benchmark_usqcd.csv","w");
|
||||
} else {
|
||||
FP = fopen("/dev/null","w");
|
||||
}
|
||||
|
||||
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
|
||||
#ifdef KNL
|
||||
LebesgueOrder::Block = std::vector<int>({8,2,2,2});
|
||||
#else
|
||||
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
|
||||
#endif
|
||||
Benchmark::Decomposition();
|
||||
|
||||
int do_su4=0;
|
||||
int do_memory=1;
|
||||
int do_comms =1;
|
||||
int do_blas =1;
|
||||
|
||||
int sel=4;
|
||||
std::vector<int> L_list({8,12,16,24,32});
|
||||
int selm1=sel-1;
|
||||
|
||||
std::vector<double> clover;
|
||||
std::vector<double> dwf4;
|
||||
std::vector<double> staggered;
|
||||
|
||||
int Ls=1;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Clover dslash 4D vectorised" <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
clover.push_back(Benchmark::Clover(L_list[l]));
|
||||
}
|
||||
|
||||
Ls=12;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
double result = Benchmark::DWF(Ls,L_list[l]) ;
|
||||
dwf4.push_back(result);
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Improved Staggered dslash 4D vectorised" <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
double result = Benchmark::Staggered(L_list[l]) ;
|
||||
staggered.push_back(result);
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "L \t\t Clover \t\t DWF4 \t\t Staggered" <<std::endl;
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
int NN=NN_global;
|
||||
if ( do_memory ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
Benchmark::Memory();
|
||||
}
|
||||
|
||||
if ( do_blas ) {
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
Benchmark::BLAS();
|
||||
#endif
|
||||
}
|
||||
|
||||
if ( do_su4 ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
Benchmark::SU4();
|
||||
}
|
||||
|
||||
if ( do_comms ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
Benchmark::Comms();
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
|
||||
fprintf(FP,"Per node summary table\n");
|
||||
fprintf(FP,"\n");
|
||||
fprintf(FP,"L , Wilson, DWF4, Staggered\n");
|
||||
fprintf(FP,"\n");
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
|
||||
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
|
||||
}
|
||||
fprintf(FP,"\n");
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
|
||||
std::cout<<std::setprecision(3);
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
fclose(FP);
|
||||
}
|
183
examples/Example_plaquette.cc
Normal file
183
examples/Example_plaquette.cc
Normal file
@ -0,0 +1,183 @@
|
||||
/*
|
||||
* Example_plaquette.cc
|
||||
*
|
||||
* D. Clarke
|
||||
*
|
||||
* Here I just want to create an incredibly simple main to get started with GRID and get used
|
||||
* to its syntax. If the reader is like me, they vaguely understand something about lattice coding,
|
||||
* they don't know a ton of C++, don't know much of the fine details, and certainly know nothing about GRID.
|
||||
*
|
||||
* Once you've made a new executable, like this one, you can bootstrap.sh again. At this point,
|
||||
* the code should be able to find your new executable. You can tell that bootstrap.sh worked by
|
||||
* having a look at Make.inc. You should see your executable inside there.
|
||||
*
|
||||
* Warning: This code illustrative only, not well tested, and not meant for production use. The best
|
||||
* way to read this code is to start at the main.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
// All your mains should have this
|
||||
#include <Grid/Grid.h>
|
||||
using namespace Grid;
|
||||
|
||||
|
||||
// This copies what already exists in WilsonLoops.h. The point here is to be pedagogical and explain in
|
||||
// detail what everything does so we can see how GRID works.
|
||||
template <class Gimpl> class WLoops : public Gimpl {
|
||||
public:
|
||||
// Gimpl seems to be an arbitrary class. Within this class, it is expected that certain types are
|
||||
// already defined, things like Scalar and Field. This macro includes a bunch of #typedefs that
|
||||
// implement this equivalence at compile time.
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
// Some example Gimpls can be found in GaugeImplementations.h, at the bottom. These are in turn built
|
||||
// out of GaugeImplTypes, which can be found in GaugeImplTypes.h. The GaugeImplTypes contain the base
|
||||
// field/vector/link/whatever types. These inherit from iScalar, iVector, and iMatrix objects, which
|
||||
// are sort of the building blocks for gerenal math objects. The "i" at the beginning of these names
|
||||
// indicates that they should be for internal use only. It seems like these base types have the
|
||||
// acceleration, e.g. SIMD or GPU or what-have-you, abstracted away. How you accelerate these things
|
||||
// appears to be controlled through a template parameter called vtype.
|
||||
|
||||
// The general math/physics objects, such as a color matrix, are built up by nesting these objects.
|
||||
// For instance a general color matrix has two color indices, so it's built up like
|
||||
// iScalar<iScalar<iMatrix<vtype ...
|
||||
// where the levels going from the inside out are color, spin, then Lorentz indices. Scalars have
|
||||
// no indices, so it's what we use when such an index isn't needed. Lattice objects are made by one
|
||||
// higher level of indexing using iVector.
|
||||
|
||||
// These types will be used for U and U_mu objects, respectively.
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
// U_mu_nu(x)
|
||||
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu) {
|
||||
// Calls like CovShiftForward and CovShiftBackward have 3 arguments, and they multiply together
|
||||
// the first and last argument. (Second arg gives the shift direction.) The CovShiftIdentityBackward
|
||||
// has meanwhile only two arguments; it just returns the shifted (adjoint since backward) link.
|
||||
plaq = Gimpl::CovShiftForward(U[mu],mu,
|
||||
// Means Link*Cshift(field,mu,1), arguments are Link, mu, field in that order.
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
// This means Cshift(adj(Link), mu, -1)
|
||||
Gimpl::CovShiftIdentityBackward(U[nu], nu))));
|
||||
}
|
||||
|
||||
// tr U_mu_nu(x)
|
||||
static void traceDirPlaquette(ComplexField &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu) {
|
||||
// This .Grid() syntax seems to get the pointer to the GridBase. Apparently this is needed as argument
|
||||
// to instantiate a Lattice object.
|
||||
GaugeMat sp(U[0].Grid());
|
||||
dirPlaquette(sp, U, mu, nu);
|
||||
plaq = trace(sp);
|
||||
}
|
||||
|
||||
// sum_mu_nu tr U_mu_nu(x)
|
||||
static void sitePlaquette(ComplexField &Plaq, const std::vector<GaugeMat> &U) {
|
||||
ComplexField sitePlaq(U[0].Grid());
|
||||
Plaq = Zero();
|
||||
// Nd=4 and Nc=3 are set as global constants in QCD.h
|
||||
for (int mu = 1; mu < Nd; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sum_mu_nu_x Re tr U_mu_nu(x)
|
||||
static RealD sumPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// Umu is a GaugeLorentz object, and as such has a non-trivial Lorentz index. We can
|
||||
// access the element in the mu Lorentz index with this PeekIndex syntax.
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
ComplexField Plaq(Umu.Grid());
|
||||
sitePlaquette(Plaq, U);
|
||||
// I guess this should be the line that sums over all space-time sites.
|
||||
auto Tp = sum(Plaq);
|
||||
// Until now, we have been working with objects inside the tensor nest. This TensorRemove gets
|
||||
// rid of the tensor nest to return whatever is inside.
|
||||
auto p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
|
||||
// < Re tr U_mu_nu(x) >
|
||||
static RealD avgPlaquette(const GaugeLorentz &Umu) {
|
||||
// Real double type
|
||||
RealD sumplaq = sumPlaquette(Umu);
|
||||
// gSites() is the number of global sites. there is also lSites() for local sites.
|
||||
double vol = Umu.Grid()->gSites();
|
||||
// The number of orientations. 4*3/2=6 for Nd=4, as known.
|
||||
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
|
||||
return sumplaq / vol / faces / Nc;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Next we show an example of how to construct an input parameter class. We first inherit
|
||||
// from Serializable. Then all class data members have to be defined using the
|
||||
// GRID_SERIALIZABLE_CLASS_MEMBERS macro. This variadic macro allows for arbitrarily many
|
||||
// class data members. In the below case, we make a parameter file holding the configuration
|
||||
// name. Here, it expects the name to be labeled with "conf_name" in the configuration file.
|
||||
struct ConfParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(
|
||||
ConfParameters,
|
||||
std::string, conf_name);
|
||||
|
||||
template <class ReaderClass>
|
||||
ConfParameters(Reader<ReaderClass>& Reader){
|
||||
// If we are reading an XML file, it should be structured like:
|
||||
// <grid>
|
||||
// <parameters>
|
||||
// <conf_name>l20t20b06498a_nersc.302500</conf_name>
|
||||
// </parameters>
|
||||
// </grid>
|
||||
read(Reader, "parameters", *this);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// This syntax lets you pass command line arguments to main. An asterisk means that what follows is
|
||||
// a pointer. Two asterisks means what follows is a pointer to an array.
|
||||
int main (int argc, char **argv)
|
||||
{
|
||||
// This initializes Grid. Some command line options include
|
||||
// --mpi n.n.n.n
|
||||
// --threads n
|
||||
// --grid n.n.n.n
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
// This is where you would specify a custom lattice size, if not from the command line. Here
|
||||
// Nd is a global quantity that is currently set to 4.
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
Coordinate latt_size = GridDefaultLatt();
|
||||
|
||||
// Instantiate the spacetime Grid on which everything will be built.
|
||||
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
// The PeriodicGimplD type is what you want for gauge matrices. There is also a LatticeGaugeFieldD
|
||||
// type that you can use, which will work perfectly with what follows.
|
||||
PeriodicGimplD::Field U(&GRID);
|
||||
|
||||
// Here we read in the parameter file params.json to get conf_name. The last argument is what the
|
||||
// top organizational level is called in the param file.
|
||||
XmlReader Reader("Example_plaquette.xml",false, "grid");
|
||||
ConfParameters param(Reader);
|
||||
|
||||
// Load a lattice from SIMULATeQCD into U. SIMULATeQCD finds plaquette = 0.6381995717
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration(U, header, param.conf_name);
|
||||
|
||||
// Let's see what we find.
|
||||
RealD plaq = WLoops<PeriodicGimplD>::avgPlaquette(U);
|
||||
|
||||
// This is how you make log messages.
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1) << "Plaquette = " << plaq << std::endl;
|
||||
|
||||
// To wrap things up.
|
||||
Grid_finalize();
|
||||
}
|
@ -1,4 +1,3 @@
|
||||
BREW=/opt/local/
|
||||
MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
|
||||
CXXFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib/ CXX=c++-13 MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
|
||||
|
||||
|
||||
|
@ -32,6 +32,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
// This is to optimize the SIMD
|
||||
template<class vobj> void gpermute(vobj & inout,int perm){
|
||||
vobj tmp=inout;
|
||||
if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
|
||||
@ -40,6 +41,7 @@ template<class vobj> void gpermute(vobj & inout,int perm){
|
||||
if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
|
||||
}
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
@ -47,20 +49,21 @@ int main (int argc, char ** argv)
|
||||
Coordinate latt_size = GridDefaultLatt();
|
||||
Coordinate simd_layout= GridDefaultSimd(Nd,vComplexD::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
std::cout << " mpi "<<mpi_layout<<std::endl;
|
||||
std::cout << " simd "<<simd_layout<<std::endl;
|
||||
std::cout << " latt "<<latt_size<<std::endl;
|
||||
std::cout << GridLogMessage << " mpi "<<mpi_layout<<std::endl;
|
||||
std::cout << GridLogMessage << " simd "<<simd_layout<<std::endl;
|
||||
std::cout << GridLogMessage << " latt "<<latt_size<<std::endl;
|
||||
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
// Initialize configuration as hot start.
|
||||
GridParallelRNG pRNG(&GRID);
|
||||
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
LatticeGaugeField Umu(&GRID);
|
||||
|
||||
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||
|
||||
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
LatticeComplex trplaq(&GRID);
|
||||
|
||||
// Store Umu in U. Peek/Poke mean respectively getElement/setElement.
|
||||
std::vector<LatticeColourMatrix> U(Nd, Umu.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
@ -70,9 +73,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
LatticeComplex cplaq(&GRID); cplaq=Zero();
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Create a padded cell of extra padding depth=1
|
||||
/////////////////////////////////////////////////
|
||||
int depth = 1;
|
||||
PaddedCell Ghost(depth,&GRID);
|
||||
LatticeGaugeField Ughost = Ghost.Exchange(Umu);
|
||||
@ -114,18 +115,25 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
#endif
|
||||
|
||||
///// Array for the site plaquette
|
||||
// Array for the site plaquette
|
||||
GridBase *GhostGrid = Ughost.Grid();
|
||||
LatticeComplex gplaq(GhostGrid);
|
||||
|
||||
// Now we're going to put together the "stencil" that will be useful to us when
|
||||
// calculating the plaquette. Our eventual goal is to make the product
|
||||
// Umu(x) Unu(x+mu) Umu^dag(x+nu) Unu^dag(x),
|
||||
// which requires, in order, the sites x, x+mu, x+nu, and x. We arrive at these
|
||||
// sites relative to x through "shifts", which is represented here by a 4-d
|
||||
// vector of 0s (no movement) and 1s (shift one unit) at each site. The
|
||||
// "stencil" is the set of all these shifts.
|
||||
std::vector<Coordinate> shifts;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int nu=mu+1;nu<Nd;nu++){
|
||||
|
||||
// Umu(x) Unu(x+mu) Umu^dag(x+nu) Unu^dag(x)
|
||||
Coordinate shift_0(Nd,0);
|
||||
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
|
||||
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
|
||||
// push_back creates an element at the end of shifts and
|
||||
// assigns the data in the argument to it.
|
||||
shifts.push_back(shift_0);
|
||||
shifts.push_back(shift_mu);
|
||||
shifts.push_back(shift_nu);
|
||||
@ -135,41 +143,51 @@ int main (int argc, char ** argv)
|
||||
GeneralLocalStencil gStencil(GhostGrid,shifts);
|
||||
|
||||
gplaq=Zero();
|
||||
{
|
||||
autoView( gp_v , gplaq, CpuWrite);
|
||||
autoView( t_v , trplaq, CpuRead);
|
||||
autoView( U_v , Ughost, CpuRead);
|
||||
for(int ss=0;ss<gp_v.size();ss++){
|
||||
int s=0;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int nu=mu+1;nu<Nd;nu++){
|
||||
|
||||
auto SE0 = gStencil.GetEntry(s+0,ss);
|
||||
auto SE1 = gStencil.GetEntry(s+1,ss);
|
||||
auto SE2 = gStencil.GetEntry(s+2,ss);
|
||||
auto SE3 = gStencil.GetEntry(s+3,ss);
|
||||
// Before doing accelerator stuff, there is an opening and closing of "Views". I guess the
|
||||
// "Views" are stored in *_v variables listed below.
|
||||
autoView( gp_v , gplaq, CpuWrite);
|
||||
autoView( t_v , trplaq, CpuRead);
|
||||
autoView( U_v , Ughost, CpuRead);
|
||||
|
||||
int o0 = SE0->_offset;
|
||||
int o1 = SE1->_offset;
|
||||
int o2 = SE2->_offset;
|
||||
int o3 = SE3->_offset;
|
||||
// This is now a loop over stencil shift elements. That is, s increases as we make our
|
||||
// way through the spacetimes sites, but also as we make our way around the plaquette.
|
||||
for(int ss=0;ss<gp_v.size();ss++){
|
||||
int s=0;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int nu=mu+1;nu<Nd;nu++){
|
||||
|
||||
auto U0 = U_v[o0](mu);
|
||||
auto U1 = U_v[o1](nu);
|
||||
auto U2 = adj(U_v[o2](mu));
|
||||
auto U3 = adj(U_v[o3](nu));
|
||||
auto SE0 = gStencil.GetEntry(s+0,ss);
|
||||
auto SE1 = gStencil.GetEntry(s+1,ss);
|
||||
auto SE2 = gStencil.GetEntry(s+2,ss);
|
||||
auto SE3 = gStencil.GetEntry(s+3,ss);
|
||||
|
||||
gpermute(U0,SE0->_permute);
|
||||
gpermute(U1,SE1->_permute);
|
||||
gpermute(U2,SE2->_permute);
|
||||
gpermute(U3,SE3->_permute);
|
||||
// Due to our strategy, each offset corresponds to a site.
|
||||
int o0 = SE0->_offset;
|
||||
int o1 = SE1->_offset;
|
||||
int o2 = SE2->_offset;
|
||||
int o3 = SE3->_offset;
|
||||
|
||||
gp_v[ss]() =gp_v[ss]() + trace( U0*U1*U2*U3 );
|
||||
s=s+4;
|
||||
}
|
||||
}
|
||||
auto U0 = U_v[o0](mu);
|
||||
auto U1 = U_v[o1](nu);
|
||||
auto U2 = adj(U_v[o2](mu));
|
||||
auto U3 = adj(U_v[o3](nu));
|
||||
|
||||
gpermute(U0,SE0->_permute);
|
||||
gpermute(U1,SE1->_permute);
|
||||
gpermute(U2,SE2->_permute);
|
||||
gpermute(U3,SE3->_permute);
|
||||
|
||||
gp_v[ss]() =gp_v[ss]() + trace( U0*U1*U2*U3 );
|
||||
s=s+4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Here is my understanding of this part: The padded cell has its own periodic BCs, so
|
||||
// if I take a step to the right at the right-most side of the cell, I end up on the
|
||||
// left-most side. This means that the plaquettes in the padding are wrong. Luckily
|
||||
// all we care about are the plaquettes in the cell, which we obtain from Extract.
|
||||
cplaq = Ghost.Extract(gplaq);
|
||||
RealD vol = cplaq.Grid()->gSites();
|
||||
RealD faces = (Nd * (Nd-1))/2;
|
||||
|
181
tests/smearing/Test_fatLinks.cc
Normal file
181
tests/smearing/Test_fatLinks.cc
Normal file
@ -0,0 +1,181 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/smearing/Test_fatLinks.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: D. A. Clarke <clarke.davida@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/*
|
||||
@file Test_fatLinks.cc
|
||||
@brief test of the HISQ smearing
|
||||
*/
|
||||
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
#include <Grid/qcd/smearing/HISQSmearing.h>
|
||||
using namespace Grid;
|
||||
|
||||
|
||||
/*! @brief parameter file to easily adjust Nloop */
|
||||
struct ConfParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(
|
||||
ConfParameters,
|
||||
int, benchmark,
|
||||
int, Nloop);
|
||||
|
||||
template <class ReaderClass>
|
||||
ConfParameters(Reader<ReaderClass>& Reader){
|
||||
read(Reader, "parameters", *this);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
bool testSmear(GridCartesian& GRID, LatticeGaugeFieldD Umu, LatticeGaugeFieldD Usmr, LatticeGaugeFieldD Unaik,
|
||||
LatticeGaugeFieldD Ucontrol, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) {
|
||||
Smear_HISQ<PeriodicGimplD> hisq_fat(&GRID,c1,cnaik,c3,c5,c7,clp);
|
||||
LatticeGaugeFieldD diff(&GRID), Uproj(&GRID);
|
||||
hisq_fat.smear(Usmr, Unaik, Umu);
|
||||
bool result;
|
||||
if (cnaik < 1e-30) { // Testing anything but Naik term
|
||||
diff = Ucontrol-Usmr;
|
||||
auto absDiff = norm2(diff)/norm2(Ucontrol);
|
||||
if (absDiff < 1e-30) {
|
||||
Grid_pass(" |Umu-Usmr|/|Umu| = ",absDiff);
|
||||
result = true;
|
||||
} else {
|
||||
Grid_error(" |Umu-Usmr|/|Umu| = ",absDiff);
|
||||
result = false;
|
||||
}
|
||||
} else { // Testing Naik specifically
|
||||
diff = Ucontrol-Unaik;
|
||||
auto absDiff = norm2(diff)/norm2(Ucontrol);
|
||||
if (absDiff < 1e-30) {
|
||||
Grid_pass(" |Umu-Unaik|/|Umu| = ",absDiff);
|
||||
result = true;
|
||||
} else {
|
||||
Grid_error(" |Umu-Unaik|/|Umu| = ",absDiff);
|
||||
result = false;
|
||||
}
|
||||
hisq_fat.projectU3(Uproj,Ucontrol);
|
||||
// NerscIO::writeConfiguration(Unaik,"nersc.l8t4b3360.naik");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
int main (int argc, char** argv) {
|
||||
|
||||
// Params for the test.
|
||||
int Ns = 8;
|
||||
int Nt = 4;
|
||||
Coordinate latt_size(Nd,0); latt_size[0]=Ns; latt_size[1]=Ns; latt_size[2]=Ns; latt_size[3]=Nt;
|
||||
std::string conf_in = "nersc.l8t4b3360";
|
||||
int threads = GridThread::GetThreads();
|
||||
|
||||
typedef LatticeGaugeFieldD LGF;
|
||||
|
||||
// Initialize the Grid
|
||||
Grid_init(&argc,&argv);
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
Grid_log("mpi = ",mpi_layout);
|
||||
Grid_log("simd = ",simd_layout);
|
||||
Grid_log("latt = ",latt_size);
|
||||
Grid_log("threads = ",threads);
|
||||
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
XmlReader Reader("fatParams.xml",false,"grid");
|
||||
ConfParameters param(Reader);
|
||||
if(param.benchmark) Grid_log(" Nloop = ",param.Nloop);
|
||||
|
||||
LGF Umu(&GRID), Usmr(&GRID), Unaik(&GRID), Ucontrol(&GRID);
|
||||
|
||||
// Read the configuration into Umu
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration(Umu, header, conf_in);
|
||||
|
||||
bool pass=true;
|
||||
|
||||
// Carry out various tests
|
||||
NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.357lplink.control");
|
||||
pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,1/64.,1/384.,-1/8.);
|
||||
NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.357link.control");
|
||||
pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,1/64.,1/384.,0.);
|
||||
NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.35link.control");
|
||||
pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,1/64.,0.,0.);
|
||||
NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.3link.control");
|
||||
pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,0.,0.,0.);
|
||||
NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.naik.control");
|
||||
pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,0.,0.8675309,0.,0.,0.,0.);
|
||||
|
||||
if(pass){
|
||||
Grid_pass("All tests passed.");
|
||||
} else {
|
||||
Grid_error("At least one test failed.");
|
||||
}
|
||||
|
||||
// Test a C-style instantiation
|
||||
double path_coeff[6] = {1, 2, 3, 4, 5, 6};
|
||||
Smear_HISQ<PeriodicGimplD> hisq_fat_Cstyle(&GRID,path_coeff);
|
||||
|
||||
if (param.benchmark) {
|
||||
|
||||
autoView(U_v, Umu, CpuRead); // Gauge accessor
|
||||
|
||||
// Read in lattice sequentially, Nloop times
|
||||
double lookupTime = 0.;
|
||||
for(int i=0;i<param.Nloop;i++) {
|
||||
double start = usecond();
|
||||
for(int ss=0;ss<U_v.size();ss++)
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
auto U1 = U_v[ss](mu);
|
||||
}
|
||||
double stop = usecond();
|
||||
lookupTime += stop-start; // microseconds
|
||||
}
|
||||
Grid_log("Time to lookup: ",lookupTime,"[ms]");
|
||||
|
||||
// Raise a matrix to the power nmat, for each link.
|
||||
auto U1 = U_v[0](0);
|
||||
for(int nmat=1;nmat<8;nmat++) {
|
||||
double multTime = 0.;
|
||||
for(int i=0;i<param.Nloop;i++) {
|
||||
double start=usecond();
|
||||
for(int ss=0;ss<U_v.size();ss++)
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
auto U2 = U1;
|
||||
for(int j=1;j<nmat;j++) {
|
||||
U2 *= U1;
|
||||
}
|
||||
}
|
||||
double stop=usecond();
|
||||
multTime += stop-start;
|
||||
}
|
||||
Grid_log("Time to multiply ",nmat," matrices: ",multTime," [ms]");
|
||||
}
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
Loading…
Reference in New Issue
Block a user