1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 22:07:05 +01:00

Compare commits

..

351 Commits

Author SHA1 Message Date
1ba25a0d8c more I/O benchmark code cleaning 2020-10-07 15:38:41 +01:00
9ba3647bdf script to convert I/O benchmark logs to CSV 2020-10-07 15:35:03 +01:00
5ee832f738 I/O benchmark code cleaning 2020-10-07 15:31:51 +01:00
e9c5a271a8 fixing potential issues with log alignment and timer I/O 2020-10-06 17:58:16 +01:00
acac2d6938 standard C/C++ I/O in benchmark 2020-10-06 17:57:00 +01:00
ace9cd64bb dpcpp happy 2020-09-29 08:03:46 -07:00
a3e2aeb603 dpcpp options happiness 2020-09-29 06:50:10 -07:00
049dd25785 Revert accidental commit thanks michael 2020-09-23 04:13:50 -04:00
d43d372294 Merge pull request #311 from mmphys/bugfix/MPIasynch
Asynchronous calls removed - reflect this in Communicator_none.cc
2020-09-22 10:41:48 -04:00
b71a081cba Asynchronous calls removed - reflect this in Communicator_none.cc
(Opportunistic doc update - OpenMP support on Mac OS)
2020-09-21 09:33:23 +01:00
c48909590b MPI asynch call removal 2020-09-17 20:47:32 +01:00
446ef40570 HIP IPC 2020-09-17 20:31:46 +01:00
81441e98f4 HIP runs sensible 2020-09-16 03:35:03 +01:00
ecd3f890f5 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-09-16 02:30:14 +01:00
1c881ce23c HIP does not like half2 visible members x and y so must define own Half2 2020-09-16 02:28:33 +01:00
dacbbdd051 Hip Happy Birthday 2020-09-16 00:37:02 +01:00
2859955a03 HIP requires "inline" 2020-09-16 00:36:13 +01:00
cc220abd1d inline for HIP 2020-09-16 00:35:38 +01:00
d1c0c0197e HipCC requires inline on definition 2020-09-16 00:35:06 +01:00
fd9424ef27 innlines required to make HIP happy 2020-09-16 00:34:32 +01:00
a5c35c4024 Make HIP / Vega happy 2020-09-16 00:33:53 +01:00
e03b64dc06 HIP default flaags to work on ROCM 2020-09-16 00:33:09 +01:00
4677c40195 HIP improvements 2020-09-16 00:32:27 +01:00
288c615782 Hip improvements 2020-09-16 00:31:50 +01:00
48e81cf6f8 Hip Pragmas 2020-09-16 00:31:03 +01:00
65b724bb5f 2 level hddcr 2020-09-03 21:46:43 -04:00
6dbd117aa5 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-09-03 20:30:49 -04:00
198b29f618 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-09-03 20:29:54 -04:00
a8309638d4 UVM check in MPI calls 2020-09-03 20:29:26 -04:00
f98a4e880e Merge pull request #310 from kostrzewa/accelerator_vector_stream_op_no_backspace
do not use backspace in AcceleratorVector (Coordinate) output stream operator
2020-09-03 20:24:59 -04:00
8244caff25 Remove the asynchronous non-Stencil calls. 2020-09-03 18:52:55 -04:00
bcd7895362 Include cuda.h 2020-09-03 15:49:13 -04:00
85b1c5df39 A never hit case that is not 100% confident is asserted for safety 2020-09-03 15:48:16 -04:00
b4255140d6 Stale data member eliminated 2020-09-03 15:47:46 -04:00
0c3095e173 Comms buffers to device memory 2020-09-03 15:45:35 -04:00
d3ce60713d UVM, Device and Lattice/aligned allocators 2020-09-03 15:44:13 -04:00
eac1f08b7b Close expressions passed as an argument 2020-09-01 15:30:33 -04:00
1654c4f3c0 Closure improved 2020-09-01 15:29:45 -04:00
8807d998bc closure improved 2020-09-01 15:29:11 -04:00
5791021dcd Speed up Cshift more with coalesced 2020-09-01 15:28:15 -04:00
c273fb051c Peek poke laattice 2020-09-01 15:27:59 -04:00
c545530170 little worry large Nbasis doesnt compile GPU 2020-09-01 00:14:33 -04:00
d982a5b6d5 Fix coaarsened 2020-09-01 00:14:04 -04:00
15ca8637f3 No norms in HermOp 2020-09-01 00:13:32 -04:00
cbc995b74c Made better interface 2020-09-01 00:12:54 -04:00
8b74174d74 Eigen tensor serialisatiino happy undeer GPU. Regret agreeing to let us couple Eigen types to Grid IO 2020-09-01 00:03:26 -04:00
e21fef17df real and imag part not in ET 2020-08-31 23:56:26 -04:00
3d27708f07 Basic where test 2020-08-31 23:55:49 -04:00
b918744184 Prettificatoin 2020-08-31 23:54:46 -04:00
7d14a3c086 Where working 2020-08-31 23:53:46 -04:00
e14a84317d GPU math unary calls 2020-08-31 23:50:49 -04:00
6c31b99f1f I knew coupling Eigen Tensor to Grid serialisation was a bad iddea.
Now the complex is different on GPU creates probblems
2020-08-31 23:49:19 -04:00
9522dcd611 Remove dead commented ouot coode 2020-08-31 23:40:29 -04:00
ed469898dc coalesced ET expressions 2020-08-31 23:38:40 -04:00
1eee94a809 Sorting real/im in read coalesced GPU ET 2020-08-31 23:36:49 -04:00
54523369a3 do not use backspace in Coordinate output stream operator 2020-08-31 19:39:36 +02:00
a98c91c2a5 Merge pull request #309 from kostrzewa/format_benchmark_wilson_sweep
Format benchmark wilson sweep
2020-08-31 12:43:46 -04:00
a9b92867a8 use tabulator 2020-08-31 18:41:17 +02:00
65920faeba correct formatting of Benchmark_wilson_sweep output 2020-08-31 18:39:27 +02:00
3448b7387c Almost there to coalesced ET 2020-08-26 17:04:49 -04:00
47b89d2739 Pragma protection improvementt 2020-08-26 17:04:27 -04:00
1efe30d6cc SLurm stop nodes using same GPU 2020-08-21 02:02:53 +02:00
0b787e9fe0 Avoid namespaec collision to make gcc happy 2020-08-20 22:23:29 +02:00
37ec4b241c Default thread count sensible 2020-08-20 22:12:31 +02:00
90ea7dfa99 Accelerator loops for device resident comms buf 2020-08-19 22:40:44 +02:00
f866d7c33e Merge pull request #307 from lehner/feature/gpt
Merged Nils's A64FX and minor fixes (MemoryManager::InitMessage, Tensor_index zeroit, ...)
2020-08-18 23:27:21 -04:00
542bdef198 cleanup comments 2020-08-14 18:39:44 +02:00
06007db3d9 true shm_none implementation with GPUs that disables the use of device shared memory for the stencils 2020-08-14 18:37:00 +02:00
12e6059a70 Merge branch 'feature/gpt' of https://github.com/lehner/Grid into feature/gpt 2020-08-13 16:16:52 +02:00
dbaa24ebf6 further GPU memory access fixes (with this GPT passes all single-rank tests on non-summit GPUs) 2020-08-13 16:14:15 +02:00
3276aa67dc Update 2020-08-12 14:15:53 -04:00
3b30b9f0c0 Merge branch 'feature/gpt' of https://github.com/lehner/Grid into feature/gpt 2020-08-06 16:59:17 +02:00
69db4816f7 fix variable capture in Scatter_plane_merge on accelerators 2020-08-06 16:57:16 +02:00
3abe09025a when using SHM_NONE allow multiple ranks per node but without using shared memory 2020-08-06 14:42:38 +02:00
e33878e0de Trigger re-run of CI 2020-08-06 11:50:24 +02:00
27b4fbf3f0 assert for forbidden code path and fix check for faster CPU codepath in basisRotate 2020-08-03 07:57:33 -04:00
968a90633a Zero -> zeroit in Tensor_index 2020-07-31 02:07:17 -04:00
6365a89ba3 create separate InitMessage for MemoryManager that can be called after communicator setup 2020-07-30 07:25:05 -04:00
ddbb008694 Merge pull request #10 from lehner/feature/gpt-sycl
Feature/gpt sycl
2020-07-30 13:12:09 +02:00
7997e0a449 Merge branch 'feature/gpt' into feature/gpt-sycl 2020-07-30 13:11:31 +02:00
197612bc7a fast cpu basisRotate and other small cleanups 2020-07-30 07:08:54 -04:00
0e88bf4bff remove Nils's default pragma 2020-07-29 10:24:35 -04:00
3e64d78469 include versions.h again and add back asserts in Test_simd 2020-07-29 10:18:05 -04:00
2004611def Merge pull request #9 from nmeyer-ur/feature/a64fx-2
Feature/a64fx 2
2020-07-29 14:54:20 +02:00
a2868c96a4 Merge pull request #8 from paboyle/develop
Doc recompile
2020-07-29 14:10:07 +02:00
7cf7f11e1a Doc recompile 2020-07-22 14:44:11 -04:00
ea7f8fda5e fix typo 2020-07-22 09:34:05 +02:00
906b78811b exit in Init when using --comms-overlap 2020-07-22 08:57:01 +02:00
97703b181b Merge pull request #7 from paboyle/develop
Merge current develop
2020-07-12 16:24:53 +02:00
d9474c6cb6 compiler-independent build using --enable-simd=A64FX 2020-07-09 10:07:02 +02:00
bbd145382b enable --enable-simd=A64FX in configure 2020-07-08 12:43:51 +02:00
1b08cb7300 Merge branch 'develop' into feature/a64fx-2 2020-07-08 08:18:18 +02:00
337d9dc043 move barrier in Benchmark_wilson 2020-07-08 08:13:40 +02:00
8726e94ea7 merge upstream develop 2020-07-07 20:26:47 +02:00
67db4993c2 reset head, update SVE readme 2020-07-07 19:54:52 +02:00
f1f655d92b Merge pull request #304 from Heinrich-BR/develop
ScalarImpl.h updates
2020-07-06 10:16:03 +01:00
43334e88c3 Tiny change in a comment for clarity 2020-07-04 16:11:16 +01:00
4f1e66b044 Fixed HMC SU(N) integrator which was causing fields to leave Lie Algebra manifold for N>2 2020-07-04 03:53:06 +01:00
fd3c8b0e85 correct build instructions qp4 2020-07-01 09:00:38 +02:00
1635c263ee disable TOFU by default 2020-06-30 19:27:08 +02:00
64fe5b21b4 Merge pull request #298 from rrhodgson/feature/baryon
Update baryon 2pt and add 3pt function
2020-06-29 18:45:00 +01:00
ee9889821d Runs through to coarse space solve 2020-06-29 12:59:52 -04:00
eb470aa6dc Update to baryon and added comments/fix whitespace 2020-06-29 09:43:01 +01:00
77af9a3ddc Baryon revert sign 2020-06-26 10:08:42 +01:00
102089798c BaryonUtils: update to autoView 2020-06-25 16:41:58 +01:00
39cea8b5a7 Merge branch 'develop' into feature/baryon 2020-06-25 16:24:07 +01:00
a65f66d2db Merge branch 'feature/baryon3pt' into feature/baryon 2020-06-25 16:20:59 +01:00
936c5ecf69 Reduction GPU no compile fix 2020-06-24 17:28:31 -04:00
22cfbdbbb3 Boost precision in inner products in single 2020-06-24 12:52:31 -04:00
093d1ee21b Force initial values 2020-06-24 08:54:49 -04:00
d6ba2581ce Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-06-24 08:25:08 -04:00
577c064184 Memory manager initialise earlier 2020-06-24 08:24:38 -04:00
2ff1fa6fad UVM used shared for CPU alloccations andd ddont migrate 2020-06-23 22:14:56 -04:00
70be1bd8be Adding code under development 2020-06-23 10:24:21 -04:00
4ef50ba31f Baryon speedup 2020-06-23 11:44:20 +01:00
3e97a26f90 BaryonGamm3pt threads -> accelerator 2020-06-23 11:35:32 +01:00
599f28f6ef Baryon bug fixes 2020-06-23 11:10:26 +01:00
c48da35921 Memory Vector UVM and Lattice alignedAllocator separate 2020-06-22 20:21:53 -04:00
6c5fa8dcd8 Aligned allocate on CPU put through this interface 2020-06-20 14:34:29 -04:00
0d2f913a1a String.h for linux 2020-06-20 09:37:31 -04:00
5b117865b2 Merge pull request #6 from paboyle/sycl
Sycl
2020-06-20 09:44:44 +02:00
1a74816c25 Hopeefully fixed 2020-06-19 17:50:52 -04:00
73de335256 Merge branch 'develop' into sycl 2020-06-19 17:44:16 -04:00
228fd450ce Typo fix (excusee - my keyboard is starting to break) 2020-06-19 17:36:05 -04:00
b949cf6b12 PeekLocal needs a view to keep thread safe.
ALLOCATION_CACHEE reenable
2020-06-19 17:13:27 -04:00
11bc1aeadc TThread count defaultt to fastest 2020-06-19 14:30:35 -04:00
66005929af Set up the cache size on all ranks 2020-06-19 12:50:54 -04:00
05bbc49a99 Edge case in GetShmDim check 2020-06-19 12:01:23 -04:00
ff7c847735 Merge branch 'sycl' of https://github.com/paboyle/Grid into sycl 2020-06-19 01:22:16 -04:00
1aa988b2af Comms overlap fix UVM case 2020-06-19 01:21:14 -04:00
edf17708a8 Range improvement 2020-06-18 22:41:06 -04:00
81a8209749 ConvertType for blockInnerProduct 2020-06-18 11:53:21 -04:00
a87e45ba25 SVE readme update 2020-06-18 11:23:08 +02:00
465856331a switch back to serialized; wrong results on single too 2020-06-15 15:39:39 +02:00
cc958aa9ed switch back to standard MPI_init due to wrong results in Benchmark_wilson using comms-overlap 2020-06-15 14:21:38 +02:00
f46f029dbb Merge pull request #292 from lehner/feature/gpt-sycl
Catch edge case in SharedMemoryMPI::GetShmDims; Change default units …
2020-06-14 13:43:27 -04:00
3dccd7aa2c Catch edge case in SharedMemoryMPI::GetShmDims; Change default units to consistent MB in init args; Want last element not past last element in MemoryManagerCache.cc 2020-06-14 13:26:01 -04:00
a25e4b3d0c pred 32/64 for float/double instead of 8 in VLA patch 2020-06-13 14:44:37 +02:00
d1210ca12a switch to double/float instead of float64_t/float32_t in VLA patch 2020-06-13 13:59:32 +02:00
36ea0e222a type traits for ComplexF/D in VLA patch; cosmetics in VLS intrinsics 2020-06-13 13:42:35 +02:00
65e6e7da6f Merge pull request #291 from lehner/feature/gpt-sycl
Feature/gpt sycl
2020-06-12 20:42:32 -04:00
b5e87e8d97 summit compile fixes 2020-06-12 18:16:12 -04:00
5f5807d60a cleanup 2020-06-12 14:48:23 -04:00
92281ec22d add 3 op Mult for VLA 2020-06-12 18:49:05 +02:00
87266ce099 comment out fcmla in vector types: need also MultAddReal 2020-06-12 18:37:19 +02:00
2a23f133e8 reenable fcmla for VLA 2020-06-12 17:30:38 +02:00
8dbf790f62 correct tbl2 for sp 2020-06-12 17:12:34 +02:00
2402b4940e vec_imm in float 2020-06-12 15:17:38 +02:00
2111052fbe apply VLA patch for memcpy reduction suggested by Arm, CAS-162542-D6W7Z7 2020-06-12 14:49:19 +02:00
7974acff54 merged sycl to feature-gpt 2020-06-12 06:49:38 -04:00
f0d17d2b49 Added Baryon3pt code 2020-06-12 11:35:52 +01:00
244c003a1b Updated Baryon code 2020-06-12 11:00:25 +01:00
0174f5f742 look for librt when using shm=shmopen 2020-06-11 16:50:43 +01:00
32b2b59be4 Offload 2020-06-10 20:36:26 -04:00
86bb0cc24b Keep on GPU 2020-06-10 20:00:00 -04:00
84c19587e7 Offload 2020-06-10 19:59:31 -04:00
237ce92540 Offload loops 2020-06-10 19:59:11 -04:00
a7ffc61e82 acceleratorSIMTlane() 2020-06-10 19:58:33 -04:00
fd97f64612 Merge branch 'sycl' of https://github.com/paboyle/Grid into sycl 2020-06-10 12:58:13 -04:00
8720aecb80 Offload more loops 2020-06-10 12:57:55 -04:00
cdf0a04fc5 Merge branch 'develop' into sycl 2020-06-09 04:00:12 -04:00
616d3dd737 CCommpile updates 2020-06-08 18:57:41 -04:00
8b066baca8 Implement transient mechanism 2020-06-08 18:28:53 -04:00
e97f3688db Fix the HMC issue - kernel was launchnig asynchronously 2020-06-08 17:01:15 -04:00
433766ac62 revert Add/SubTimesI and prefetching in stencil
This reverts commit 9b2699226c.
2020-06-08 12:02:53 +02:00
93a37c8f68 test prefetch to L2 in stencil 2020-06-08 09:39:50 +02:00
89a1e78390 Merge branch 'sycl' of https://github.com/paboyle/Grid into sycl 2020-06-05 23:20:37 -04:00
ffbb3fc02c Merge pull request #287 from felixerben/baryon-cleaner
slightly cleaner baryon 2pt code
2020-06-05 22:54:52 -04:00
5a73ef3647 Minor tweak to compile 2020-06-05 21:50:15 -04:00
87e5d2f4b7 Merge branch 'sycl' of https://www.github.com/paboyle/Grid into sycl 2020-06-05 17:32:21 -07:00
d720f10758 Liink error fix 2020-06-05 17:29:20 -07:00
14fcd0912a Merge branch 'sycl' of https://github.com/paboyle/Grid into sycl 2020-06-05 19:14:17 -04:00
3111c0bd4f Single precisiono hardwire 2020-06-05 19:13:27 -04:00
e03064490e Merge branch 'sycl' of https://github.com/paboyle/Grid into sycl 2020-06-05 18:53:39 -04:00
1a4c8c3387 Global edit with change to View usage. autoView() creates a wrapper object that closes the view when scope closes. 2020-06-05 18:52:35 -04:00
2b1e259441 Decode of SYCL devices fix 2020-06-04 17:16:55 -07:00
f39c2a240b Priintinig and device memory size detection 2020-06-04 14:58:03 -04:00
0d95805cde Print improvement 2020-06-03 22:50:32 -04:00
f67830587f Accelerator loop use 2020-06-03 22:50:09 -04:00
6bf7f839ff Better printing and logging 2020-06-03 09:28:57 -04:00
e3147881a9 Cache scheme 2020-06-03 09:23:48 -04:00
9872c76825 introduce AddTimesI and SubTimesI; slight benefit in operators, but < 1%; breaks all other impls 2020-06-03 15:20:13 +02:00
fb559614ad Initialise meemory manager 2020-06-03 09:12:47 -04:00
e93e12b6a4 More verbose SYCL setup 2020-06-03 09:12:11 -04:00
0c3112cd94 Use view mechanism 2020-06-03 09:11:51 -04:00
8cfd5d2639 Need lattice view 2020-06-03 09:11:28 -04:00
1c9f20b15e Views must be closed 2020-06-03 09:10:29 -04:00
32237895bd Reorg memory manager for O(1) hash table 2020-06-03 09:09:52 -04:00
5ee3ea2144 round-up after testing of prefetches in stencil close 2020-06-03 11:58:20 +02:00
9fcb47ee63 Explicit error message instead of infinite loop in GlobalSharedMemory::GetShmDims 2020-06-02 07:44:38 -04:00
5050833b42 revert changes due to performance penalty in Wilson using MPI 2020-06-02 13:08:57 +02:00
7bee4ebb54 correct predication for svcadd 2020-06-02 10:51:39 +02:00
71cf9851e7 correct type for vecd in TimesI and TimesMinusI 2020-06-02 10:44:15 +02:00
b4735c9904 correct zero in svcadd 2020-06-02 10:38:05 +02:00
9b2699226c use fcadd in TimesI and TimesMinusI instead of tbl and neg 2020-06-02 10:32:44 +02:00
5f52804907 update calculation of data 2020-05-30 10:55:17 +02:00
936071773e correct throughput in wilson and dwf 2020-05-29 22:15:59 +02:00
1732f9319e more mods; counters seem to work correctly 2020-05-29 18:44:00 +02:00
91c81cab30 some corrections; compiles on my laptop; untested 2020-05-29 18:19:22 +02:00
38164f8480 include counters in WilsonFermionImplementation.h 2020-05-29 17:59:26 +02:00
f013979791 add counter support in WilsonFermion.h 2020-05-29 17:13:59 +02:00
e947b563ea add space in stencil output 2020-05-29 17:11:17 +02:00
5cb3530c34 enable counters in Benchmark_wilson 2020-05-29 15:44:52 +02:00
250008372f update SVE readme 2020-05-29 15:44:25 +02:00
1d252d0922 Accelerator inline 2020-05-28 11:45:25 -04:00
006cc8a8f1 Staggereed move to accelerator 2020-05-28 08:33:06 -04:00
4fedd8d29f switch to MPI_THREAD_SERIALIZED instead of SINGLE 2020-05-27 14:08:34 +02:00
cf2938688a Sycl unhappy fix 2020-05-25 08:36:53 -07:00
ee63721bad int unhappiness sycl fix 2020-05-25 08:36:24 -07:00
22c5168d70 Sycl happier 2020-05-25 08:35:56 -07:00
949ac3cd24 Must avoid non-trivial copy constructors 2020-05-25 08:35:28 -07:00
7bc0166c1c SYCLL maknig happy - must avoid non ttrivial copy constructors 2020-05-25 08:34:19 -07:00
cb0d1b3399 hopefullly fix buildd fail 2020-05-24 21:27:00 -04:00
d1f1ccc705 HIP changes 2020-05-24 21:18:49 -04:00
c7519a237a Assertions fail on HIP foor unknown reasons - dedbugging 2020-05-24 14:02:47 -04:00
32be2b13d3 Updates for HiP 2020-05-24 14:00:55 -04:00
92b342a477 Hip reduction too 2020-05-24 13:50:28 -04:00
556da86ac3 HIP fp16 2020-05-24 13:41:58 -04:00
8285e41574 View location / access mode 2020-05-21 16:14:41 -04:00
f999408e92 View locatoin and access mode 2020-05-21 16:14:20 -04:00
a7abda89e2 View location & access mode 2020-05-21 16:13:59 -04:00
7860a50f70 Make view specify where and drive data motion - first cut.
This is a compile tiime option --enable-unified=yes/no
2020-05-21 16:13:16 -04:00
6ddcef1bca fix build error enabling fcmla/mac in vector types for VLA 2020-05-21 21:21:03 +02:00
8c5a5fdfce disable fcmla in vector type building for VLA 2020-05-21 19:41:42 +02:00
046b1cbbc0 enable fcmla in tensor arithmetics; fixed-size works, VLA does not compile 2020-05-21 19:39:07 +02:00
a65ce237c1 clean up; Exch1 VLA sp+dp integrate, tested, working 2020-05-21 09:48:06 +02:00
cd27f1005d clean up; Exch1 sp integrate, tested, working 2020-05-21 08:45:43 +02:00
f8c0a59221 clean up; Exch1 dp integrate, tested, working 2020-05-21 02:48:14 +02:00
832485699f save some cycles in HtoD and DtoH by direct instead of multi-pass conversion 2020-05-20 23:04:35 +02:00
81484a4760 symmetrize Mult and MultAddComplex 2020-05-20 22:36:45 +02:00
9a86059761 symmetrize VLA and fixed size build messages 2020-05-20 20:05:42 +02:00
b780b7b7a0 guard prevents multiple TOFU messages 2020-05-20 19:20:59 +02:00
9e085bd04e guard prevents multiple A64FX build messages 2020-05-20 19:16:30 +02:00
6c6812a5ca GB/s output 2020-05-20 12:26:57 +01:00
8358ee38c4 pull develop 2020-05-19 08:56:18 -04:00
1f154fe652 some cleanup in BaryonUtils 2020-05-19 13:48:56 +01:00
d708c0258d some cleanup in BaryonUtils 2020-05-19 13:48:00 +01:00
a7635fd5ba summit mem 2020-05-18 17:52:26 -04:00
6b6bf537d3 comment out mac in vector types 2020-05-18 20:36:16 +02:00
323a651c71 correct typo 2020-05-18 19:58:27 +02:00
9f212679f1 support fcmla in vector_types, untested 2020-05-18 19:55:18 +02:00
032f7dde1a update SVE readme, asm generator 2020-05-18 19:10:36 +02:00
ebb60330c9 Automatic data motion options beginning 2020-05-17 16:34:25 -04:00
50b1db1e8b implemented correct _m form (using 3 operands instead of 2) 2020-05-15 10:01:05 +02:00
015d8bb38a introduced assertions in Benchmark_wilson, removed data output from Benchmark_dwf 2020-05-15 09:15:50 +02:00
10a34312dc some fixed-size code clean up 2020-05-14 23:20:16 +02:00
db8c0e7584 replaced _x form with _m form when using even/odd predication 2020-05-14 23:17:35 +02:00
32fbdf4fb1 Merge pull request #5 from paboyle/develop
Sync upstream
2020-05-13 09:02:56 +02:00
a9847aa866 Dependence fix 2020-05-12 20:03:37 -04:00
d15ccad8a7 switched to vec* in Reduce 2020-05-12 20:41:14 +02:00
0009b5cee8 updated SVE_README 2020-05-12 19:02:33 +02:00
20d1941a45 enabled asm kernels for fixed-size A64FXFIXEDSIZE 2020-05-12 19:01:12 +02:00
d24d8e8398 Use X-direction as more bits meaningful on CUDA.
2^31-1 shoulddd always bee enough for SIMD and thread reduced local volume

e.g. 32*2^31 = 2^36 = (2^9)^4 or 512^4 ias big enough.

Where 32 is gpu_threads * Nsimd = 8*4
2020-05-12 10:35:49 -04:00
162e4bb567 no automatic prefetching for now 2020-05-12 07:01:23 -04:00
07c0c02f8c Speed up Cshift 2020-05-11 17:02:01 -04:00
8c31c065b5 Keep the Vector fixed to protect it from realloc 2020-05-11 17:00:30 -04:00
b7c76ede29 Removed some assertions in Test_simd and removed exit() in Reduce 2020-05-11 22:43:00 +02:00
05edf803bd corrected typo 2020-05-12 03:59:59 +09:00
b1c86900b2 Merge pull request #4 from paboyle/develop
merge
2020-05-11 20:59:29 +02:00
78b8e40f83 switched to gcc's internal data types 2020-05-11 18:11:23 +02:00
fc2e9850d3 temporarily enable TOFU by default when using A64FX or A64FXFIXEDSIZE 2020-05-11 13:25:02 +02:00
ffaaed679e MPI_THREAD_SINGLE hack for Fugaku, enabled by -DTOFU 2020-05-11 13:21:39 +02:00
bbbee5660d First compiile on HiP 2020-05-10 05:28:09 -04:00
b2fd8b993a fixed-size clean up 2020-05-09 22:53:42 +02:00
291ee8c3d0 updated fixed-size implementation; only Exch1 and prefetches missing 2020-05-09 22:18:02 +02:00
e1a5b3ea49 unions for tables eliminate explicit loads, gcc does not complain 2020-05-09 21:21:57 +02:00
55a55660cb reverted changes 2020-05-09 12:48:42 +02:00
52081acfa5 NVCC compile fixes 2020-05-08 13:14:12 -04:00
f8b8e00090 Systematise the accelerator primitives and locate to Grid/threads/Accelerator.h / Accelerator.cc
Aim to reduce the amount of cuda and other code variations floating around all over the place.

Will move GpuInit iinto Accelerator.cc from Init.cc
Need to worry about SharedMemoryMPI.cc and the Peer2Peer windows
2020-05-08 06:23:55 -07:00
ceb8b374da API change v3 2020-05-08 15:04:44 +02:00
4bc2ad2894 API change v2 2020-05-08 15:00:25 +02:00
798af3e68f retry changing StoD API 2020-05-08 14:34:59 +02:00
b0ef2367f3 testing alternate call to PrecisionChange 2020-05-08 14:22:44 +02:00
71a7350a85 changed 2nd argument in Reduce to native vector type 2020-05-08 12:26:51 +02:00
6f79369955 trying to get rid of macro definition error 2020-05-08 12:19:24 +02:00
f9cb6b979f corrected more typos 2020-05-08 12:11:01 +02:00
ed4d9d17f8 corrected type 2020-05-08 12:09:22 +02:00
fbed02690d some changes in breaking out A64FX: use -DA64FXFIXEDSIZE for fixed size, but also define GEN 2020-05-08 12:05:31 +02:00
39f3ae5b1d corrected more types 2020-05-08 11:07:14 +02:00
e64bec8c8e pulled SVE typedefs out of Optimization 2020-05-08 11:04:21 +02:00
0893b4e552 fixed typos in PrecisionChange 2020-05-08 10:59:07 +02:00
92f0f29670 fixed double overloading vecf in Div, corrected typos 2020-05-08 10:57:23 +02:00
48a340a9d1 GEN seems to defined by default -> some fixes applied 2020-05-08 10:47:49 +02:00
f45621109b placed typedefs in Optimization 2020-05-08 10:41:52 +02:00
32d1a0bbea added even more debug output 2020-05-08 10:39:26 +02:00
267cce66a1 added more debug output 2020-05-08 10:29:28 +02:00
3417147b11 added real fma, corrected typos in tbls; integrated, must supply A64FXGCC with GEN in configure 2020-05-08 10:20:19 +02:00
b338719bc8 first transition to fixed-size done, excl. Exch; next step: integration 2020-05-07 22:33:28 +02:00
2b81cbe2c2 first attempt to introduce tables using fixed-size; still incomplete 2020-05-07 22:01:19 +02:00
acff9d6ed2 transition to fixed size data types almost done; still incomplete 2020-05-07 21:24:07 +02:00
a306a49788 first mods for fixed size; still incomplete 2020-05-07 19:07:49 +02:00
7ef03c5368 updated SVE readme 2020-05-06 16:30:37 +02:00
28a1fcaaff First compile against SYCL 2020-05-05 11:13:27 -07:00
5abec5b8a9 SVE_readme update, update Grid_vector_types.h 2020-04-25 13:48:26 +02:00
499edc0636 updated SVE_README.txt; defined ARMCLANGCOMPAT macro 2020-04-25 13:41:24 +02:00
d990e61be3 armclang 20.1 settings in SVE readme 2020-04-25 12:11:43 +02:00
3edb2dc2da removed -static from gcc CXXFLAGS 2020-04-24 13:04:34 +02:00
345721220e resolved merge conflict 2020-04-24 10:14:21 +02:00
6db68d6ecb added SVE configure for armclang and gcc 2020-04-24 10:10:47 +02:00
09f0963d1f changes in configure.ac ; to be verified 2020-04-23 11:27:03 +02:00
6f44e3c192 reverted changes in configure.ac ; included SVE configure readme 2020-04-23 11:18:50 +02:00
5893888f87 removed default no-strict-aliasing for gcc-10.0.1 exclusively 2020-04-22 19:29:55 +02:00
39b448affb Merge remote-tracking branch 'origin/develop' into feature/a64fx-2 2020-04-22 17:34:12 +02:00
e54a8f05a9 Exchange1 with generic version for now, should use svtbl2 in final version 2020-04-20 22:45:27 +02:00
64b72fc17f testing gcc 10.0.1: build errors in Exchange1 using -DA64FX and in Lattice_base.h building Dslash only 2020-04-19 01:25:40 +02:00
6fdce60492 revised BodyA64FX; 990 GiB/s Wilson, 687 GiB/s DW using intrinsics (armclang 20.0) 2020-04-16 22:43:32 +02:00
852db4626a re-introduced HOTFIX cause Grid binaries give wrong results otherwise; checked in good gridverter.py 2020-04-15 18:22:19 +02:00
6504a098cc 999 GiB/s Wilson; 694 GiB/s DW (DP) 2020-04-15 15:06:52 +02:00
79a385faca disabled armclang hotfix cause armclang 20.0 performance gets a little 2020-04-15 11:46:55 +02:00
c12a67030a 980 GiB/s Wilson; 680 GiB/s DW (DP) 2020-04-15 10:55:06 +02:00
581392f2f2 now with pf, best results so far using intrinsics+pf 2020-04-12 22:06:14 +02:00
113f277b6a enable dslash asm using -DA64FXASM, additionaly -DDSLASHINTRIN for intrinsics impl 2020-04-11 04:55:01 +02:00
974586bedc Dslash finally works; cleaned up; uses MOVPRFX in assembly 2020-04-10 22:26:40 +02:00
160f78c1e4 changed debug output to variable direct 3 2020-04-10 12:23:07 +02:00
7e4e1bbbc2 changed debug output to variable direct 2 2020-04-10 12:22:04 +02:00
e699b7e9f9 changed debug output to variable direct 2020-04-10 12:18:30 +02:00
a28bc0de90 debug register address test in WilsonHand 2020-04-10 12:07:45 +02:00
14d0fe4d6c added predication in WilsonHand 2020-04-10 12:04:00 +02:00
0ad2e0815c debug output in WilsonHand 2020-04-10 11:56:29 +02:00
1c8ca05e16 Merge branch 'feature/a64fx-2' of https://github.com/nmeyer-ur/Grid into feature/a64fx-2 2020-04-09 23:32:19 +02:00
dc9c8340bb switched to DSLASHINTRIN for A64FX Dslash intrinsics 2020-04-09 23:30:23 +02:00
19eef97503 specialized A64FX Dslash kernels 2020-04-09 23:25:25 +02:00
635246ce50 corrected typo 2020-04-09 21:42:50 +02:00
5cdbb7e71e fixed A64FX Dslash; compiles, but does not specialize -> assertion 2020-04-09 21:23:39 +02:00
8123590a1b changes 2020-04-09 16:45:47 +02:00
86c9c4da8b changes 2020-04-09 16:40:06 +02:00
cd1efee866 changes 2020-04-09 16:35:13 +02:00
bd310932f7 changes 2020-04-09 16:32:31 +02:00
304762e7ac changes 2020-04-09 16:26:01 +02:00
d79ab03a6c changes 2020-04-09 16:19:25 +02:00
d5708e0eb2 more changes 2020-04-09 15:43:34 +02:00
123f6b7a61 more changes 2020-04-09 15:17:19 +02:00
2b6457dd9a added xp/xm recon accum 2020-04-09 15:13:19 +02:00
b367cbd422 defined ADD_RESULT 2020-04-09 15:08:45 +02:00
e252c1aca3 addressing 2020-04-09 15:03:12 +02:00
b140c6a4f9 addressing 2020-04-09 15:01:15 +02:00
326de36467 revised sU addressing scheme 2020-04-09 14:44:25 +02:00
9f224a1647 fixed typo in single 2020-04-09 14:30:21 +02:00
bb46ba9b5f fixed array size in single 2020-04-09 14:28:45 +02:00
dd5a22b36b revised declarations 2020-04-09 14:21:27 +02:00
1ea85b9972 Disabled build message 2020-04-09 13:47:21 +02:00
8fb63f1c25 added A64FX Wilson kernels single precision 2020-04-09 13:41:04 +02:00
77fa586f6c introduced A64FX Wilson kernels 2020-04-09 13:30:06 +02:00
15238e8d5e reduce acle works, clean up 2020-04-03 20:40:44 +02:00
b27e31957a reduce acle revised 2020-04-03 19:46:15 +02:00
46927771e3 reduce acle still needs overhaul 2020-04-03 19:30:48 +02:00
d8cea77707 define simd width in header 2020-04-03 19:22:25 +02:00
5f8a76d490 clean up, reduction in acle 2020-04-03 19:18:24 +02:00
28d49a3b60 build problem resolved 2020-04-03 16:52:48 +02:00
b4c624ece6 added A64FX support 2020-04-03 15:43:23 +02:00
2c22db841a Added momentum scaling to scalar HMC theories in order to follow UKQCD/CPS conventions 2020-04-02 17:38:47 +01:00
203 changed files with 18532 additions and 3632 deletions

View File

@ -47,9 +47,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h>
#include <Grid/log/Log.h>
#include <Grid/allocator/AlignedAllocator.h>
#include <Grid/allocator/Allocator.h>
#include <Grid/simd/Simd.h>
#include <Grid/threads/Threads.h>
#include <Grid/threads/ThreadReduction.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/util/Sha.h>
#include <Grid/communicator/Communicator.h>

View File

@ -6,6 +6,7 @@
///////////////////
#include <cassert>
#include <complex>
#include <memory>
#include <vector>
#include <array>
#include <string>

View File

@ -18,21 +18,28 @@
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")
#undef __CUDA_ARCH__
#undef __NVCC__
#undef __CUDACC__
#undef __CUDA_ARCH__
#define __NVCC__REDEFINE__
#endif
/* SYCL save and restore compile environment*/
#ifdef __SYCL_DEVICE_ONLY__
#ifdef GRID_SYCL
#pragma push
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#undef EIGEN_USE_SYCL
#define EIGEN_DONT_VECTORIZE
//#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif
/* HIP save and restore compile environment*/
#ifdef GRID_HIP
#pragma push
#pragma push_macro("__HIP_DEVICE_COMPILE__")
#endif
#define EIGEN_NO_HIP
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
@ -51,6 +58,12 @@
#pragma pop
#endif
/*HIP restore*/
#ifdef __HIP__REDEFINE__
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -21,7 +21,7 @@ if BUILD_HDF5
extra_headers+=serialisation/Hdf5Type.h
endif
all: version-cache
all: version-cache Version.h
version-cache:
@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
@ -42,7 +42,7 @@ version-cache:
fi;\
rm -f vertmp
Version.h:
Version.h: version-cache
cp version-cache Version.h
.PHONY: version-cache

View File

@ -29,9 +29,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHMS_H
#define GRID_ALGORITHMS_H
NAMESPACE_CHECK(algorithms);
#include <Grid/algorithms/SparseMatrix.h>
#include <Grid/algorithms/LinearOperator.h>
#include <Grid/algorithms/Preconditioner.h>
NAMESPACE_CHECK(SparseMatrix);
#include <Grid/algorithms/approx/Zolotarev.h>
#include <Grid/algorithms/approx/Chebyshev.h>
@ -41,10 +43,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
#include <Grid/algorithms/approx/ZMobius.h>
NAMESPACE_CHECK(approx);
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad);
#include <Grid/algorithms/iterative/BiCGSTAB.h>
NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <Grid/algorithms/iterative/NormalEquations.h>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
@ -62,7 +66,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/PowerMethod.h>
NAMESPACE_CHECK(PowerMethod);
#include <Grid/algorithms/CoarsenedMatrix.h>
NAMESPACE_CHECK(CoarsendMatrix);
#include <Grid/algorithms/FFT.h>
#endif

View File

@ -1,14 +1,3 @@
// blockZaxpy in bockPromote - 3s, 5%
// noncoalesced linalg in Preconditionoer ~ 3s 5%
// Lancos tuning or replace 10-20s ~ 25%, open ended
// setup tuning 5s ~ 8%
// -- e.g. ordermin, orderstep tunables.
// MdagM path without norm in LinOp code. few seconds
// Mdir calc blocking kernels
// Fuse kernels in blockMaskedInnerProduct
// preallocate Vectors in Cayley 5D ~ few percent few seconds
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -91,34 +80,7 @@ public:
}
directions [2*_d]=0;
displacements[2*_d]=0;
//// report back
std::cout<<GridLogMessage<<"directions :";
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
std::cout<<std::endl;
std::cout<<GridLogMessage<<"displacements :";
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
std::cout<<std::endl;
}
/*
// Original cleaner code
Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
for(int d=0;d<dimension;d++){
directions[2*d ] = d;
directions[2*d+1] = d;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
}
directions [2*dimension]=0;
displacements[2*dimension]=0;
}
std::vector<int> GetDelta(int point) {
std::vector<int> delta(dimension,0);
delta[directions[point]] = displacements[point];
return delta;
};
*/
};
@ -149,25 +111,7 @@ public:
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 2"<<std::endl; // Really have to do twice? Yuck
// blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
// CheckOrthogonal();
}
void CheckOrthogonal(void){
CoarseVector iProj(CoarseGrid);
CoarseVector eProj(CoarseGrid);
for(int i=0;i<nbasis;i++){
blockProject(iProj,subspace[i],subspace);
eProj=Zero();
accelerator_for(ss, CoarseGrid->oSites(),1,{
eProj[ss](i)=CComplex(1.0);
});
eProj=eProj - iProj;
std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
}
std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl;
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
@ -175,11 +119,6 @@ public:
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
void CreateSubspaceRandom(GridParallelRNG &RNG){
for(int i=0;i<nbasis;i++){
random(RNG,subspace[i]);
}
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
@ -190,12 +129,12 @@ public:
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
@ -218,7 +157,7 @@ public:
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
#if 1
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
@ -280,10 +219,10 @@ public:
hermop.HermOp(*Tn,y);
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
@ -313,201 +252,6 @@ public:
}
assert(b==nn);
}
#endif
#if 0
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
FineField combined(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
#define FILTERb(llo,hhi,oorder) \
{ \
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
Cheb(hermop,noise,Mn); \
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
subspace[b] = Mn; \
hermop.Op(Mn,tmp); \
std::cout<<GridLogMessage << oorder<< " Cheb filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
b++; \
}
// JacobiPolynomial<FineField> Cheb(0.002,60.0,1500,-0.5,3.5); \
RealD alpha=-0.8;
RealD beta =-0.8;
#define FILTER(llo,hhi,oorder) \
{ \
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
/* JacobiPolynomial<FineField> Cheb(0.0,60.0,oorder,alpha,beta);*/\
Cheb(hermop,noise,Mn); \
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
subspace[b] = Mn; \
hermop.Op(Mn,tmp); \
std::cout<<GridLogMessage << oorder<< "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
b++; \
}
#define FILTERc(llo,hhi,oorder) \
{ \
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
Cheb(hermop,noise,combined); \
}
double node = 0.000;
FILTERb(lo,hi,orderfilter);// 0
// FILTERc(node,hi,51);// 0
noise = Mn;
int base = 0;
int mult = 100;
FILTER(node,hi,base+1*mult);
FILTER(node,hi,base+2*mult);
FILTER(node,hi,base+3*mult);
FILTER(node,hi,base+4*mult);
FILTER(node,hi,base+5*mult);
FILTER(node,hi,base+6*mult);
FILTER(node,hi,base+7*mult);
FILTER(node,hi,base+8*mult);
FILTER(node,hi,base+9*mult);
FILTER(node,hi,base+10*mult);
FILTER(node,hi,base+11*mult);
FILTER(node,hi,base+12*mult);
FILTER(node,hi,base+13*mult);
FILTER(node,hi,base+14*mult);
FILTER(node,hi,base+15*mult);
assert(b==nn);
}
#endif
#if 0
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
FineField combined(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
Chebyshev<FineField> JacobiPoly(0.005,60.,1500);
// JacobiPolynomial<FineField> JacobiPoly(0.002,60.0,1500,-0.5,3.5);
//JacobiPolynomial<FineField> JacobiPoly(0.03,60.0,500,-0.5,3.5);
// JacobiPolynomial<FineField> JacobiPoly(0.00,60.0,1000,-0.5,3.5);
JacobiPoly(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
// subspace[b] = tmp; b++;
// }
}
#define FILTER(lambda) \
{ \
hermop.HermOp(subspace[0],tmp); \
tmp = tmp - lambda *subspace[0]; \
scale = std::pow(norm2(tmp),-0.5); \
tmp=tmp*scale; \
subspace[b] = tmp; \
hermop.Op(subspace[b],tmp); \
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
b++; \
}
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
// subspace[b] = tmp; b++;
// }
FILTER(2.0e-5);
FILTER(2.0e-4);
FILTER(4.0e-4);
FILTER(8.0e-4);
FILTER(8.0e-4);
FILTER(2.0e-3);
FILTER(3.0e-3);
FILTER(4.0e-3);
FILTER(5.0e-3);
FILTER(6.0e-3);
FILTER(2.5e-3);
FILTER(3.5e-3);
FILTER(4.5e-3);
FILTER(5.5e-3);
FILTER(6.5e-3);
// FILTER(6.0e-5);//6
// FILTER(7.0e-5);//8
// FILTER(8.0e-5);//9
// FILTER(9.0e-5);//3
/*
// FILTER(1.0e-4);//10
FILTER(2.0e-4);//11
// FILTER(3.0e-4);//12
// FILTER(4.0e-4);//13
FILTER(5.0e-4);//14
FILTER(6.0e-3);//4
FILTER(7.0e-4);//1
FILTER(8.0e-4);//7
FILTER(9.0e-4);//15
FILTER(1.0e-3);//2
FILTER(2.0e-3);//2
FILTER(3.0e-3);//2
FILTER(4.0e-3);//2
FILTER(5.0e-3);//2
FILTER(6.0e-3);//2
FILTER(7.0e-3);//2
FILTER(8.0e-3);//2
FILTER(1.0e-2);//2
*/
std::cout << GridLogMessage <<"Jacobi filtering done" <<std::endl;
assert(b==nn);
}
#endif
};
@ -535,7 +279,7 @@ public:
CartesianStencil<siteVector,siteVector,int> Stencil;
std::vector<CoarseMatrix> A;
///////////////////////
// Interface
///////////////////////
@ -549,13 +293,13 @@ public:
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
auto in_v = in.View();
auto out_v = out.View();
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -572,24 +316,25 @@ public:
int ptype;
StencilEntry *SE;
int lane=SIMTlane(Nsimd);
for(int point=0;point<geom.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
synchronise();
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res,lane);
});
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
};
void Mdag (const CoarseVector &in, CoarseVector &out)
@ -617,11 +362,11 @@ public:
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
auto out_v = out.View();
auto in_v = in.View();
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
@ -635,45 +380,21 @@ public:
int ptype;
StencilEntry *SE;
int lane=SIMTlane(Nsimd);
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
synchronise();
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res,lane);
coalescedWrite(out_v[ss](b),res);
});
#if 0
accelerator_for(ss,Grid()->oSites(),1,{
siteVector res = Zero();
siteVector nbr;
int ptype;
StencilEntry *SE;
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local&&SE->_permute) {
permute(nbr,in_v[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in_v[SE->_offset];
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
synchronise();
res = res + Aview_p[point][ss]*nbr;
out_v[ss]=res;
});
#endif
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
@ -841,10 +562,10 @@ public:
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
auto iZProj_v = iZProj.View() ;
auto oZProj_v = oZProj.View() ;
auto A_p = A[p].View();
auto A_self = A[self_stencil].View();
autoView( iZProj_v , iZProj, AcceleratorRead) ;
autoView( oZProj_v , oZProj, AcceleratorRead) ;
autoView( A_p , A[p], AcceleratorWrite);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
@ -860,11 +581,11 @@ public:
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
{
auto tmp_ = tmp.View();
auto evenmask_ = evenmask.View();
auto oddmask_ = oddmask.View();
auto Mphie_ = Mphie.View();
auto Mphio_ = Mphio.View();
autoView( tmp_ , tmp, AcceleratorWrite);
autoView( evenmask_ , evenmask, AcceleratorRead);
autoView( oddmask_ , oddmask, AcceleratorRead);
autoView( Mphie_ , Mphie, AcceleratorRead);
autoView( Mphio_ , Mphio, AcceleratorRead);
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
});
@ -872,8 +593,8 @@ public:
blockProject(SelfProj,tmp,Subspace.subspace);
auto SelfProj_ = SelfProj.View();
auto A_self = A[self_stencil].View();
autoView( SelfProj_ , SelfProj, AcceleratorRead);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
for(int j=0;j<nbasis;j++){
@ -887,33 +608,8 @@ public:
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
// AssertHermitian();
// ForceDiagonal();
}
#if 0
///////////////////////////
// test code worth preserving in if block
///////////////////////////
std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl;
for(int p=0;p<geom.npoint;p++){
std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl;
std::cout<<GridLogMessage<< A[p] << std::endl;
}
std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl;
phi=Subspace.subspace[0];
std::vector<int> bc(FineGrid->_ndimension,0);
blockPick(Grid(),phi,tmp,bc); // Pick out a block
linop.Op(tmp,Mphi); // Apply big dop
blockProject(iProj,Mphi,Subspace.subspace); // project it and print it
std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl;
std::cout<<GridLogMessage<< iProj <<std::endl;
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
#endif
void ForceHermitian(void) {
CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
@ -933,27 +629,6 @@ public:
}
}
}
void AssertHermitian(void) {
CoarseMatrix AA (Grid());
CoarseMatrix AAc (Grid());
CoarseMatrix Diff (Grid());
for(int d=0;d<4;d++){
int dd=d+1;
AAc = Cshift(A[2*d+1],dd,1);
AA = A[2*d];
Diff = AA - adj(AAc);
std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl;
std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl;
}
Diff = A[8] - adj(A[8]);
std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl;
std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -1,4 +1,3 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -37,7 +36,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
#endif
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
@ -191,7 +189,7 @@ public:
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
auto pgbuf_v = pgbuf.View();
autoView(pgbuf_v , pgbuf, CpuWrite);
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -232,15 +230,18 @@ public:
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
thread_for(idx, sgrid->lSites(),{
{
autoView(r_v,result,CpuRead);
autoView(p_v,pgbuf,CpuWrite);
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
peekLocalSite(s,r_v,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
});
pokeLocalSite(s,p_v,cbuf);
});
}
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
}
@ -269,15 +270,19 @@ public:
flops+= flops_call*NN;
// writing out result
thread_for(idx,sgrid->lSites(),{
{
autoView(pgbuf_v,pgbuf,CpuRead);
autoView(result_v,result,CpuWrite);
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf,cgbuf);
pokeLocalSite(s,result,clbuf);
});
peekLocalSite(s,pgbuf_v,cgbuf);
pokeLocalSite(s,result_v,clbuf);
});
}
result = result*div;
// destroying plan

View File

@ -122,12 +122,14 @@ class BiCGSTAB : public OperatorFunction<Field>
LinearCombTimer.Start();
bo = beta * omega;
auto p_v = p.View();
auto r_v = r.View();
auto v_v = v.View();
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
{
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
@ -142,16 +144,20 @@ class BiCGSTAB : public OperatorFunction<Field>
alpha = rho / Calpha.real();
LinearCombTimer.Start();
auto h_v = h.View();
auto psi_v = psi.View();
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
auto s_v = s.View();
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
{
autoView( p_v , p, AcceleratorRead);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
autoView( psi_v,psi, AcceleratorRead);
autoView( h_v , h, AcceleratorWrite);
autoView( s_v , s, AcceleratorWrite);
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
@ -166,13 +172,19 @@ class BiCGSTAB : public OperatorFunction<Field>
omega = Comega.real() / norm2(t);
LinearCombTimer.Start();
auto t_v = t.View();
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
{
autoView( psi_v,psi, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
autoView( h_v , h, AcceleratorRead);
autoView( s_v , s, AcceleratorRead);
autoView( t_v , t, AcceleratorRead);
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
}
LinearCombTimer.Stop();
cp = norm2(r);
LinalgTimer.Stop();

View File

@ -140,13 +140,15 @@ public:
b = cp / c;
LinearCombTimer.Start();
auto psi_v = psi.View();
auto p_v = p.View();
auto r_v = r.View();
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
{
autoView( psi_v , psi, AcceleratorWrite);
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();

View File

@ -0,0 +1,241 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_NON_HERM_H
#define GRID_PREC_GCR_NON_HERM_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.Op(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b, zAz;
RealD zAAz;
ComplexD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
LinalgTimer.Start();
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= innerProduct(q[peri_k],r); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -6,93 +6,6 @@ NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
int PointerCache::NcacheSmall = PointerCache::NcacheSmallMax;
#ifdef GRID_CUDA
int PointerCache::Ncache = 32;
#else
int PointerCache::Ncache = 8;
#endif
int PointerCache::Victim;
int PointerCache::VictimSmall;
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::NcacheMax];
PointerCache::PointerCacheEntry PointerCache::EntriesSmall[PointerCache::NcacheSmallMax];
void PointerCache::Init(void)
{
char * str;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) Ncache = atoi(str);
if ( (Ncache<0) || (Ncache > NcacheMax)) Ncache = NcacheMax;
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) NcacheSmall = atoi(str);
if ( (NcacheSmall<0) || (NcacheSmall > NcacheSmallMax)) NcacheSmall = NcacheSmallMax;
// printf("Aligned alloocator cache: large %d/%d small %d/%d\n",Ncache,NcacheMax,NcacheSmall,NcacheSmallMax);
}
void *PointerCache::Insert(void *ptr,size_t bytes)
{
if (bytes < GRID_ALLOC_SMALL_LIMIT )
return Insert(ptr,bytes,EntriesSmall,NcacheSmall,VictimSmall);
return Insert(ptr,bytes,Entries,Ncache,Victim);
}
void *PointerCache::Insert(void *ptr,size_t bytes,PointerCacheEntry *entries,int ncache,int &victim)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
return ret;
}
void *PointerCache::Lookup(size_t bytes)
{
if (bytes < GRID_ALLOC_SMALL_LIMIT )
return Lookup(bytes,EntriesSmall,NcacheSmall);
return Lookup(bytes,Entries,Ncache);
}
void *PointerCache::Lookup(size_t bytes,PointerCacheEntry *entries,int ncache)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
return entries[e].address;
}
}
return NULL;
}
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__

View File

@ -26,129 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALIGNED_ALLOCATOR_H
#define GRID_ALIGNED_ALLOCATOR_H
#ifdef HAVE_MALLOC_MALLOC_H
#include <malloc/malloc.h>
#endif
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#ifdef HAVE_MM_MALLOC_H
#include <mm_malloc.h>
#endif
#define POINTER_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096)
#pragma once
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
class PointerCache {
private:
/*Pinning pages is costly*/
/*Could maintain separate large and small allocation caches*/
/* Could make these configurable, perhaps up to a max size*/
static const int NcacheSmallMax=128;
static const int NcacheMax=16;
static int NcacheSmall;
static int Ncache;
typedef struct {
void *address;
size_t bytes;
int valid;
} PointerCacheEntry;
static PointerCacheEntry Entries[NcacheMax];
static int Victim;
static PointerCacheEntry EntriesSmall[NcacheSmallMax];
static int VictimSmall;
public:
static void Init(void);
static void *Insert(void *ptr,size_t bytes) ;
static void *Insert(void *ptr,size_t bytes,PointerCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes) ;
static void *Lookup(size_t bytes,PointerCacheEntry *entries,int ncache) ;
};
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#ifdef GRID_NVCC
#define profilerCudaMeminfo \
{ size_t f, t ; cudaMemGetInfo ( &f,&t); std::cout << GridLogDebug << "[Memory debug] Cuda free "<<f<<"/"<<t << std::endl;}
#else
#define profilerCudaMeminfo
#endif
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
} \
profilerCudaMeminfo;
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
////////////////////////////////////////////////////////////////////
// A lattice of something, but assume the something is SIMDized.
////////////////////////////////////////////////////////////////////
template<typename _Tp>
class alignedAllocator {
public:
@ -172,89 +53,122 @@ public:
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
#ifdef POINTER_CACHE
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
#else
pointer ptr = nullptr;
#endif
#ifdef GRID_NVCC
////////////////////////////////////
// Unified (managed) memory
////////////////////////////////////
if ( ptr == (_Tp *) NULL ) {
// printf(" alignedAllocater cache miss %ld bytes ",bytes); BACKTRACEFP(stdout);
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (_Tp *) NULL;
std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
assert(0);
}
}
assert( ptr != (_Tp *)NULL);
#else
//////////////////////////////////////////////////////////////////////////////////////////
// 2MB align; could make option probably doesn't need configurability
//////////////////////////////////////////////////////////////////////////////////////////
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
#endif
assert( ptr != (_Tp *)NULL);
//////////////////////////////////////////////////
// First touch optimise in threaded loop
//////////////////////////////////////////////////
uint64_t *cp = (uint64_t *)ptr;
thread_for(n,bytes/sizeof(uint64_t), { // need only one touch per page
cp[n]=0;
});
#endif
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n) {
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
#ifdef POINTER_CACHE
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
#else
pointer __freeme = __p;
#endif
#ifdef GRID_NVCC
if ( __freeme ) cudaFree((void *)__freeme);
#else
#ifdef HAVE_MM_MALLOC_H
if ( __freeme ) _mm_free((void *)__freeme);
#else
if ( __freeme ) free((void *)__freeme);
#endif
#endif
MemoryManager::CpuFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor, eventually it must be avoided
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
//void construct(pointer __p, const _Tp& __val) { };
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////
// Unified virtual memory
//////////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class uvmAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef uvmAllocator<_Tp1> other; };
uvmAllocator() throw() { }
uvmAllocator(const uvmAllocator&) throw() { }
template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
~uvmAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::SharedFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Device memory
////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class devAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
devAllocator() throw() { }
devAllocator(const devAllocator&) throw() { }
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
~devAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::AcceleratorFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using commAllocator = alignedAllocator<T>;
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,alignedAllocator<T> >;
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
//template<class T> using commAllocator = devAllocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,4 @@
#pragma once
#include <Grid/allocator/MemoryStats.h>
#include <Grid/allocator/MemoryManager.h>
#include <Grid/allocator/AlignedAllocator.h>

View File

@ -0,0 +1,254 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
/*Allocation types, saying which pointer cache should be used*/
#define Cpu (0)
#define CpuSmall (1)
#define Acc (2)
#define AccSmall (3)
#define Shared (4)
#define SharedSmall (5)
uint64_t total_shared;
uint64_t total_device;
uint64_t total_host;;
void MemoryManager::PrintBytes(void)
{
std::cout << " MemoryManager : "<<total_shared<<" shared bytes "<<std::endl;
std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
std::cout << " MemoryManager : "<<total_host <<" cpu bytes "<<std::endl;
}
//////////////////////////////////////////////////////////////////////
// Data tables for recently freed pooiniter caches
//////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
//////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils
//////////////////////////////////////////////////////////////////////
void *MemoryManager::AcceleratorAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Acc);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocDevice(bytes);
total_device+=bytes;
}
return ptr;
}
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
{
void *__freeme = Insert(ptr,bytes,Acc);
if ( __freeme ) {
acceleratorFreeDevice(__freeme);
total_device-=bytes;
// PrintBytes();
}
}
void *MemoryManager::SharedAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Shared);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
total_shared+=bytes;
// std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
// PrintBytes();
}
return ptr;
}
void MemoryManager::SharedFree (void *ptr,size_t bytes)
{
void *__freeme = Insert(ptr,bytes,Shared);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
total_shared-=bytes;
// PrintBytes();
}
}
#ifdef GRID_UVM
void *MemoryManager::CpuAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
total_host+=bytes;
}
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
total_host-=bytes;
}
}
#else
void *MemoryManager::CpuAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocCpu(bytes);
total_host+=bytes;
}
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeCpu(__freeme);
total_host-=bytes;
}
}
#endif
//////////////////////////////////////////
// call only once
//////////////////////////////////////////
void MemoryManager::Init(void)
{
char * str;
int Nc;
int NcS;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[Cpu]=Nc;
Ncache[Acc]=Nc;
Ncache[Shared]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuSmall]=Nc;
Ncache[AccSmall]=Nc;
Ncache[SharedSmall]=Nc;
}
}
}
void MemoryManager::InitMessage(void) {
#ifndef GRID_UVM
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
#endif
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
#endif
#ifdef GRID_UVM
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
#endif
#else
std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type + small;
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);
#else
return ptr;
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
return ret;
}
void *MemoryManager::Lookup(size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type+small;
return Lookup(bytes,Entries[cache],Ncache[cache]);
#else
return NULL;
#endif
}
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
return entries[e].address;
}
}
return NULL;
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1,182 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryManager.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <list>
#include <unordered_map>
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define ALLOCATION_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096)
/*Pinning pages is costly*/
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum ViewAdvise {
AdviseDefault = 0x0, // Regular data
AdviseInfrequentUse = 0x1 // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
// AdviseTransient = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
// AdviseAcceleratorWriteDiscard = 0x4 // Field will be written in entirety on device
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
AcceleratorRead = 0x01,
AcceleratorWrite = 0x02,
AcceleratorWriteDiscard = 0x04,
CpuRead = 0x08,
CpuWrite = 0x10,
CpuWriteDiscard = 0x10 // same for now
};
class MemoryManager {
private:
////////////////////////////////////////////////////////////
// For caching recently freed allocations
////////////////////////////////////////////////////////////
typedef struct {
void *address;
size_t bytes;
int valid;
} AllocationCacheEntry;
static const int NallocCacheMax=128;
static const int NallocType=6;
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
static int Victim[NallocType];
static int Ncache[NallocType];
/////////////////////////////////////////////////
// Free pool
/////////////////////////////////////////////////
static void *Insert(void *ptr,size_t bytes,int type) ;
static void *Lookup(size_t bytes,int type) ;
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
static void PrintBytes(void);
public:
static void Init(void);
static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes);
static void CpuFree (void *ptr,size_t bytes);
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
static uint64_t DeviceBytes;
static uint64_t DeviceLRUBytes;
static uint64_t DeviceMaxBytes;
static uint64_t HostToDeviceBytes;
static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer;
private:
#ifndef GRID_UVM
//////////////////////////////////////////////////////////////////////
// Data tables for ViewCache
//////////////////////////////////////////////////////////////////////
typedef std::list<uint64_t> LRU_t;
typedef typename LRU_t::iterator LRUiterator;
typedef struct {
int LRU_valid;
LRUiterator LRU_entry;
uint64_t CpuPtr;
uint64_t AccPtr;
size_t bytes;
uint32_t transient;
uint32_t state;
uint32_t accLock;
uint32_t cpuLock;
} AcceleratorViewEntry;
typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
typedef typename AccViewTable_t::iterator AccViewTableIterator ;
static AccViewTable_t AccViewTable;
static LRU_t LRU;
/////////////////////////////////////////////////
// Device motion
/////////////////////////////////////////////////
static void Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EvictVictims(uint64_t bytes); // Frees up <bytes>
static void Evict(AcceleratorViewEntry &AccCache);
static void Flush(AcceleratorViewEntry &AccCache);
static void Clone(AcceleratorViewEntry &AccCache);
static void AccDiscard(AcceleratorViewEntry &AccCache);
static void CpuDiscard(AcceleratorViewEntry &AccCache);
// static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table
static int EntryPresent(uint64_t CpuPtr);
static void EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EntryErase (uint64_t CpuPtr);
static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
static void EntrySet (uint64_t CpuPtr,AcceleratorViewEntry &entry);
static void AcceleratorViewClose(uint64_t AccPtr);
static uint64_t AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
static void NotifyDeletion(void * CpuPtr);
public:
static void Print(void);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,468 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
#define dprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
MemoryManager::LRU_t MemoryManager::LRU;
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
////////////////////////////////////
// Priority ordering for unlocked entries
// Empty
// CpuDirty
// Consistent
// AccDirty
////////////////////////////////////
#define Empty (0x0) /*Entry unoccupied */
#define CpuDirty (0x1) /*CPU copy is golden, Acc buffer MAY not be allocated*/
#define Consistent (0x2) /*ACC copy AND CPU copy are valid */
#define AccDirty (0x4) /*ACC copy is golden */
#define EvictNext (0x8) /*Priority for eviction*/
/////////////////////////////////////////////////
// Mechanics of data table maintenance
/////////////////////////////////////////////////
int MemoryManager::EntryPresent(uint64_t CpuPtr)
{
if(AccViewTable.empty()) return 0;
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
return count;
}
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
assert(!EntryPresent(CpuPtr));
AcceleratorViewEntry AccCache;
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty;
AccCache.LRU_valid=0;
AccCache.transient=0;
AccCache.accLock=0;
AccCache.cpuLock=0;
AccViewTable[CpuPtr] = AccCache;
}
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
{
assert(EntryPresent(CpuPtr));
auto AccCacheIterator = AccViewTable.find(CpuPtr);
assert(AccCacheIterator!=AccViewTable.end());
return AccCacheIterator;
}
void MemoryManager::EntryErase(uint64_t CpuPtr)
{
auto AccCache = EntryLookup(CpuPtr);
AccViewTable.erase(CpuPtr);
}
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
if (AccCache.transient) {
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
} else {
LRU.push_front(AccCache.CpuPtr);
AccCache.LRU_entry = LRU.begin();
}
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
LRU.erase(AccCache.LRU_entry);
AccCache.LRU_valid = 0;
DeviceLRUBytes-=AccCache.bytes;
}
/////////////////////////////////////////////////
// Accelerator cache motion & consistency logic
/////////////////////////////////////////////////
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////
// Remove from Accelerator, remove entry, without flush
// Cannot be locked. If allocated Must be in LRU pool.
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove entry
// Cannot be locked. If allocated must be in LRU pool.
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
Flush(AccCache);
}
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==AccDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
// dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
}
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==CpuDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
// dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
AccCache.state=Consistent;
}
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state!=Empty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
AccCache.state=AccDirty;
}
/////////////////////////////////////////////////////////////////////////////////
// View management
/////////////////////////////////////////////////////////////////////////////////
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
} else {
assert(0);
}
}
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
} else {
assert(0);
return NULL;
}
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
assert(LRU.size()>0);
uint64_t victim = LRU.back();
auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second;
Evict(AccCache);
}
}
}
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
/*
* State transitions and actions
*
* Action State StateNext Flush Clone
*
* AccRead Empty Consistent - Y
* AccWrite Empty AccDirty - Y
* AccRead CpuDirty Consistent - Y
* AccWrite CpuDirty AccDirty - Y
* AccRead Consistent Consistent - -
* AccWrite Consistent AccDirty - -
* AccRead AccDirty AccDirty - -
* AccWrite AccDirty AccDirty - -
*/
if(AccCache.state==Empty) {
assert(AccCache.LRU_valid==0);
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Cpu starts primary
if(mode==AcceleratorWriteDiscard){
CpuDiscard(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite){
Clone(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite) {
Clone(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
// printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
// printf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
// printf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else {
assert(0);
}
// If view is opened on device remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
LRUremove(AccCache);
}
int transient =hint;
AccCache.transient= transient? EvictNext : 0;
return AccCache.AccPtr;
}
////////////////////////////////////
// look up & decrement lock count
////////////////////////////////////
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock==0);
assert(AccCache.accLock>0);
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
LRUinsert(AccCache);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock>0);
assert(AccCache.accLock==0);
AccCache.cpuLock--;
}
/*
* Action State StateNext Flush Clone
*
* CpuRead Empty CpuDirty - -
* CpuWrite Empty CpuDirty - -
* CpuRead CpuDirty CpuDirty - -
* CpuWrite CpuDirty CpuDirty - -
* CpuRead Consistent Consistent - -
* CpuWrite Consistent CpuDirty - -
* CpuRead AccDirty Consistent Y -
* CpuWrite AccDirty CpuDirty Y -
*/
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes==bytes);
}
if(AccCache.state==Empty) {
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
AccCache.accLock= 0;
AccCache.cpuLock= 1;
} else if(AccCache.state==CpuDirty ){
// AccPtr dont care, deferred allocate
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
AccCache.cpuLock++;
} else if(AccCache.state==Consistent) {
assert(AccCache.AccPtr != (uint64_t)NULL);
if(mode==CpuWrite)
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
else
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
AccCache.cpuLock++;
} else if(AccCache.state==AccDirty) {
assert(AccCache.AccPtr != (uint64_t)NULL);
Flush(AccCache);
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
AccCache.cpuLock++;
} else {
assert(0); // should be unreachable
}
AccCache.transient= transient? EvictNext : 0;
return AccCache.CpuPtr;
}
void MemoryManager::NotifyDeletion(void *_ptr)
{
// Look up in ViewCache
uint64_t ptr = (uint64_t)_ptr;
if(EntryPresent(ptr)) {
auto e = EntryLookup(ptr);
AccDiscard(e->second);
}
}
void MemoryManager::Print(void)
{
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "Memory Manager " << std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
}
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
};
int MemoryManager::isOpen (void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
return AccCache.cpuLock+AccCache.accLock;
} else {
return 0;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,24 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
#warning "Grid is assuming unified virtual memory address space"
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping
/////////////////////////////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::Print(void){};
void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,67 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1,95 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryStats.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
}
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
NAMESPACE_END(Grid);

View File

@ -81,6 +81,7 @@ public:
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
public:

View File

@ -38,6 +38,7 @@ class GridCartesian: public GridBase {
public:
int dummy;
Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
@ -104,6 +105,7 @@ public:
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
@ -114,6 +116,8 @@ public:
for (int d = 0; d < _ndimension; d++)
{
_checker_dim_mask[d]=0;
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];

View File

@ -35,12 +35,28 @@ static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex, Coordinate &rdim, Coordinate &chk_dim_msk)
{
int nd=rdim.size();
Coordinate coor(nd);
Lexicographic::CoorFromIndex(coor,oindex,rdim);
int linear=0;
for(int d=0;d<nd;d++){
if(chk_dim_msk[d])
linear=linear+coor[d];
}
return (linear&0x1);
}
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
Coordinate _checker_dim_mask;
// Coordinate _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;

View File

@ -138,21 +138,6 @@ public:
int recv_from_rank,
int bytes);
void SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
@ -35,7 +35,7 @@ Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
// First initialise of comms system
////////////////////////////////////////////
void CartesianCommunicator::Init(int *argc, char ***argv)
void CartesianCommunicator::Init(int *argc, char ***argv)
{
int flag;
@ -43,8 +43,16 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#if defined (TOFU) // FUGAKU, credits go to Issaku Kanamori
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
// other comms schemes are ok
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
#else
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0);
@ -91,7 +99,7 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialises from communicator_world
////////////////////////////////////////////////////////////////////////////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
MPI_Comm optimal_comm;
////////////////////////////////////////////////////
@ -110,7 +118,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
@ -127,7 +135,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
//////////////////////////////////////////////////////////////////////////////////////////////////////
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
// int Nparent = parent._processors ;
// int Nparent = parent._processors ;
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
@ -149,13 +157,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
int crank;
int crank;
// Mpi uses the reverse Lexico convention to us; so reversed routines called
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
MPI_Comm comm_split;
if ( Nchild > 1 ) {
if ( Nchild > 1 ) {
////////////////////////////////////////////////////////////////
// Split the communicator
@ -180,11 +188,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
SetCommunicator(comm_split);
///////////////////////////////////////////////
// Free the temp communicator
// Free the temp communicator
///////////////////////////////////////////////
MPI_Comm_free(&comm_split);
if(0){
if(0){
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
for(int d=0;d<processors.size();d++){
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
@ -245,7 +253,7 @@ CartesianCommunicator::~CartesianCommunicator()
for(int i=0;i<communicator_halo.size();i++){
MPI_Comm_free(&communicator_halo[i]);
}
}
}
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
@ -294,60 +302,28 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
int myrank = _processor;
int ierr;
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
// Enforce no UVM in comms, device or host OK
assert(acceleratorIsCommunicable(xmit));
assert(acceleratorIsCommunicable(recv));
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
// Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest,
void *recv,
@ -367,7 +343,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int from,
int bytes,int dir)
{
int ncomm =communicator_halo.size();
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
@ -397,21 +373,13 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
off_node_bytes+=bytes;
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
@ -422,6 +390,13 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
assert(ierr==0);
list.resize(0);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
//{
//}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
@ -436,8 +411,8 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
communicator);
assert(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
@ -470,7 +445,7 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
// (Turns up on 32^3 x 64 Gparity too)
MPI_Datatype object;
int iwords;
int iwords;
int ibytes;
iwords = words;
ibytes = bytes;
@ -483,5 +458,3 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
}
NAMESPACE_END(Grid);

View File

@ -77,15 +77,6 @@ void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes)
{
assert(0);
}
// Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit,
@ -96,20 +87,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
@ -137,10 +114,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int recv_from_rank,
int bytes, int dir)
{
std::vector<CommsRequest_t> list;
// Discard the "dir"
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
SendToRecvFromComplete(list);
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
@ -150,13 +123,10 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int recv_from_rank,
int bytes, int dir)
{
// Discard the "dir"
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void){};

View File

@ -29,9 +29,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <pwd.h>
#ifdef GRID_NVCC
#ifdef GRID_CUDA
#include <cuda_runtime_api.h>
#endif
#ifdef GRID_HIP
#include <hip/hip_runtime_api.h>
#endif
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryMpi: "
@ -47,7 +50,12 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
#else
MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm);
#endif
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
@ -170,17 +178,24 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
for(int p=0;p<primes.size();p++) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
@ -413,7 +428,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_NVCC
#if defined(GRID_CUDA) ||defined(GRID_HIP)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -433,27 +448,18 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
#ifdef GRID_IBM_SUMMIT
// IBM Jsrun makes cuda Device numbering screwy and not match rank
std::cout << "IBM Summit or similar - NOT setting device to WorldShmRank"<<std::endl;
#else
std::cout << "setting device to WorldShmRank"<<std::endl;
cudaSetDevice(WorldShmRank);
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
auto err = cudaMalloc(&ShmCommBuf, bytes);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
@ -461,19 +467,31 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
for(int r=0;r<WorldShmSize;r++){
#ifndef GRID_MPI3_SHM_NONE
//////////////////////////////////////////////////
// If it is me, pass around the IPC access key
//////////////////////////////////////////////////
#ifdef GRID_CUDA
cudaIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
hipIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = hipIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
//////////////////////////////////////////////////
// Share this IPC handle across the Shm Comm
//////////////////////////////////////////////////
@ -490,17 +508,31 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// If I am not the source, overwrite thisBuf with remote buffer
///////////////////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
#ifdef GRID_CUDA
if ( r!=WorldShmRank ) {
err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
if ( r!=WorldShmRank ) {
auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
///////////////////////////////////////////////////////////////
// Save a copy of the device buffers
///////////////////////////////////////////////////////////////
WorldShmCommBufs[r] = thisBuf;
#else
WorldShmCommBufs[r] = ShmCommBuf;
#endif
}
_ShmAllocBytes=bytes;
@ -677,7 +709,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
/////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
#ifdef GRID_NVCC
#ifdef GRID_CUDA
cudaMemset(dest,0,bytes);
#else
bzero(dest,bytes);
@ -685,7 +717,7 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
{
#ifdef GRID_NVCC
#ifdef GRID_CUDA
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
#else
bcopy(src,dest,bytes);
@ -705,7 +737,11 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
#else
MPI_Comm_split(comm, rank, 0, &ShmComm);
#endif
MPI_Comm_rank(ShmComm ,&ShmRank);
MPI_Comm_size(ShmComm ,&ShmSize);
ShmCommBufs.resize(ShmSize);

View File

@ -52,23 +52,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<typename Op, typename T1>
auto Cshift(const LatticeUnaryExpression<Op,T1> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2>
auto Cshift(const LatticeBinaryExpression<Op,T1,T2> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2, class T3>
auto Cshift(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{
return Cshift(closure(expr),dim,shift);
}

View File

@ -29,6 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
extern Vector<std::pair<int,int> > Cshift_table;
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
@ -46,16 +48,16 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
int e2=rhs.Grid()->_slice_block[dimension];
int ent = 0;
static Vector<std::pair<int,int> > table; table.resize(e1*e2);
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int stride=rhs.Grid()->_slice_stride[dimension];
auto rhs_v = rhs.View();
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
}
}
} else {
@ -65,14 +67,19 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
int o = n*stride;
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb &cbmask ) {
table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
}
}
}
}
thread_for(i,ent,{
buffer[table[i].first]=rhs_v[table[i].second];
});
{
autoView(rhs_v , rhs, AcceleratorRead);
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
}
}
///////////////////////////////////////////////////////////////////
@ -95,36 +102,38 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int e2=rhs.Grid()->_slice_block[dimension];
int n1=rhs.Grid()->_slice_stride[dimension];
auto rhs_v = rhs.View();
if ( cbmask ==0x3){
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for2d(n,e1,b,e2,1,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
});
} else {
autoView(rhs_v , rhs, AcceleratorRead);
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << " Dense packed buffer WARNING " <<std::endl;
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
accelerator_for2d(n,e1,b,e2,1,{
Coordinate coor;
int o=n*n1;
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
}
});
});
}
}
@ -145,7 +154,8 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
int e2=rhs.Grid()->_slice_block[dimension];
int stride=rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ent =0;
if ( cbmask ==0x3 ) {
@ -154,7 +164,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
for(int b=0;b<e2;b++){
int o =n*rhs.Grid()->_slice_stride[dimension];
int bo =n*rhs.Grid()->_slice_block[dimension];
table[ent++] = std::pair<int,int>(so+o+b,bo+b);
Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b);
}
}
@ -165,16 +175,20 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
int o =n*rhs.Grid()->_slice_stride[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
table[ent++]=std::pair<int,int> (so+o+b,bo++);
Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++);
}
}
}
}
auto rhs_v = rhs.View();
thread_for(i,ent,{
rhs_v[table[i].first]=buffer[table[i].second];
});
{
autoView( rhs_v, rhs, AcceleratorWrite);
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
}
}
//////////////////////////////////////////////////////
@ -194,21 +208,22 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) {
auto rhs_v = rhs.View();
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
autoView( rhs_v , rhs, AcceleratorWrite);
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
accelerator_for2d(n,e1,b,e2,1,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
}
});
});
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
auto rhs_v = rhs.View();
assert(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs.Grid()->_slice_stride[dimension];
@ -225,6 +240,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
//////////////////////////////////////////////////////
// local to node block strided copies
//////////////////////////////////////////////////////
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -239,14 +255,16 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs.Grid()->_slice_block[dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ent=0;
if(cbmask == 0x3 ){
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
table[ent++] = std::pair<int,int>(lo+o,ro+o);
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
} else {
@ -255,23 +273,24 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
int o =n*stride+b;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
if ( ocb&cbmask ) {
table[ent++] = std::pair<int,int>(lo+o,ro+o);
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
}
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
{
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
}
}
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
@ -285,29 +304,33 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
int e2=rhs.Grid()->_slice_block [dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ent=0;
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
}
}
//////////////////////////////////////////////////////

View File

@ -0,0 +1,4 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
Vector<std::pair<int,int> > Cshift_table;
NAMESPACE_END(Grid);

View File

@ -26,6 +26,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/lattice/Lattice_view.h>
#include <Grid/lattice/Lattice_base.h>
#include <Grid/lattice/Lattice_conformable.h>
#include <Grid/lattice/Lattice_ET.h>
@ -36,6 +37,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
//#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h>

View File

@ -42,9 +42,24 @@ NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
#ifdef GRID_SIMT
// drop to scalar in SIMT; cleaner in fact
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
Integer mask = TensorRemove(predicate);
typename std::remove_const<vobj>::type ret= iffalse;
if (mask) ret=iftrue;
return ret;
}
#else
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
@ -68,6 +83,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftru
merge(ret, falsevals);
return ret;
}
#endif
/////////////////////////////////////////////////////
//Specialization of getVectorType for lattices
@ -81,26 +97,62 @@ struct getVectorType<Lattice<T> >{
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
template<class sobj,
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
{
return arg[ss];
return arg(ss);
}
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// whole vector return, used only for expression return type inference
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj vecEval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)
{
auto view = arg.AcceleratorView(ViewRead);
return view[ss];
return arg[ss];
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
// vecEval needed (but never called as all expressions offloaded) to infer the return type
// in SIMT contexts of closure.
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
{
return expr.op.func( vecEval(ss, expr.arg1) );
}
// vecEval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
{
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
}
// vecEval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
{
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand coalesced
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
@ -108,23 +160,41 @@ auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
{
return expr.op.func( eval(ss, expr.arg1) );
}
///////////////////////
// eval two operands
///////////////////////
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
///////////////////////
// eval three operands
///////////////////////
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
-> decltype(expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3)))
{
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
#ifdef GRID_SIMT
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
typedef typename std::remove_reference<rvobj>::type vobj;
const int Nsimd = vobj::vector_type::Nsimd();
auto vpred = vecEval(ss,expr.arg1);
ExtractBuffer<Integer> mask(Nsimd);
extract<vInteger, Integer>(TensorRemove(vpred), mask);
int s = acceleratorSIMTlane(Nsimd);
return expr.op.func(mask[s],
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#else
return expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#endif
}
//////////////////////////////////////////////////////////////////////////
@ -180,16 +250,12 @@ inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
cb = lat.Checkerboard();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) // non-lattice leaf
{
}
inline void CBFromExpression(int &cb, const T1 &notlat) {} // non-lattice leaf
template <typename Op, typename T1> inline
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
{
@ -204,13 +270,74 @@ inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2,
CBFromExpression(cb, expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewOpen
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &lat) // Lattice leaf
{
lat.ViewOpen(AcceleratorRead);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // rrecurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
ExpressionViewOpen(expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewClose
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose( T1 &lat) // Lattice leaf
{
lat.ViewClose();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
ExpressionViewClose(expr.arg3); // recurse AST
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
@ -221,8 +348,6 @@ GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
@ -241,10 +366,10 @@ GridUnopClass(UnaryExp, exp(a));
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
template <class _left, class _right> \
static auto accelerator_inline \
func(const left &lhs, const right &rhs) \
func(const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
@ -264,10 +389,10 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
template <class _predicate,class _left, class _right> \
static auto accelerator_inline \
func(const predicate &pred, const left &lhs, const right &rhs) \
func(const _predicate &pred, const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
@ -275,17 +400,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
};
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<predicate,
typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
(predicatedWhere<
typename std::remove_reference<_predicate>::type,
typename std::remove_reference<_left>::type,
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_UNOP(name) name
#define GRID_BINOP(name) name
#define GRID_TRINOP(name) name
#define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
@ -337,8 +462,6 @@ GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
@ -371,29 +494,36 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))> ret(expr);
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))> ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
auto function(Expression &expr) -> decltype(function(closure(expr))) \
{ \
return function(closure(expr)); \
}
#undef GRID_UNOP
#undef GRID_BINOP

View File

@ -37,9 +37,9 @@ NAMESPACE_BEGIN(Grid);
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
conformable(ret,rhs);
conformable(lhs,rhs);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
@ -56,13 +56,13 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
auto tmp =ret_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
@ -73,9 +73,9 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -89,9 +89,9 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -108,8 +108,8 @@ template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
mult(&tmp,&lhs_v(ss),&rhs);
@ -121,10 +121,10 @@ template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto tmp =ret_v(ss);
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
@ -135,8 +135,8 @@ template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -148,8 +148,8 @@ template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -165,8 +165,8 @@ template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
@ -179,10 +179,10 @@ template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto tmp =ret_v(ss);
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
@ -193,8 +193,8 @@ template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
@ -206,8 +206,8 @@ template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
@ -221,9 +221,9 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto x_v = x.AcceleratorView(ViewRead);
auto y_v = y.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+y_v(ss);
coalescedWrite(ret_v[ss],tmp);
@ -234,9 +234,9 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto x_v = x.AcceleratorView(ViewRead);
auto y_v = y.AcceleratorView(ViewRead);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(ret_v[ss],tmp);

View File

@ -29,6 +29,7 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#define STREAMING_STORES
@ -37,180 +38,6 @@ NAMESPACE_BEGIN(Grid);
extern int GridCshiftPermuteMap[4][16];
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum LatticeAcceleratorAdvise {
AdviseInfrequentUse = 0x1, // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
AdviseReadMostly = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
ViewRead = 0x1,
ViewWrite = 0x2,
ViewReadWrite = 0x3
};
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
protected:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { };
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
accelerator_inline void Advise(int advise) {
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
if (advise & AdviseInfrequentUse) {
cudaMemAdvise(_odata,_odata_size*sizeof(vobj),cudaMemAdviseSetPreferredLocation,cudaCpuDeviceId);
}
if (advise & AdviseReadMostly) {
cudaMemAdvise(_odata,_odata_size*sizeof(vobj),cudaMemAdviseSetReadMostly,-1);
}
#endif
#endif
};
accelerator_inline void AcceleratorPrefetch(int accessMode = ViewReadWrite) { // will use accessMode in future
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
int target;
cudaGetDevice(&target);
cudaMemPrefetchAsync(_odata,_odata_size*sizeof(vobj),target);
#endif
#endif
};
accelerator_inline void HostPrefetch(int accessMode = ViewReadWrite) { // will use accessMode in future
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
cudaMemPrefetchAsync(_odata,_odata_size*sizeof(vobj),cudaCpuDeviceId);
#endif
#endif
};
};
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_for and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
public:
// Rvalue
#ifdef __CUDA_ARCH__
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const { return coalescedRead(this->_odata[i]); }
#else
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
{
}
};
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
@ -246,38 +73,33 @@ private:
dealloc();
this->_odata_size = size;
if ( size )
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
}
public:
/////////////////////////////////////////////////////////////////////////////////
// Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
/////////////////////////////////////////////////////////////////////////////////
void SetViewMode(ViewMode mode) {
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (void) const // deprecated, should pick AcceleratorView for accelerator_for
{ // and HostView for thread_for
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
LatticeView<vobj> View (ViewMode mode) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
return accessor;
}
LatticeView<vobj> AcceleratorView(int mode = ViewReadWrite) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
accessor.AcceleratorPrefetch(mode);
return accessor;
}
LatticeView<vobj> HostView(int mode = ViewReadWrite) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
accessor.HostPrefetch(mode);
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
@ -297,12 +119,16 @@ public:
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto me = AcceleratorView(ViewWrite);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
@ -317,11 +143,15 @@ public:
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto me = AcceleratorView(ViewWrite);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
@ -335,11 +165,15 @@ public:
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto me = AcceleratorView(ViewWrite);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
//GridFromExpression is tricky to do
@ -390,10 +224,11 @@ public:
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
auto me = View();
auto me = View(CpuWrite);
thread_for(ss,me.size(),{
me[ss] = r;
me[ss]= r;
});
me.ViewClose();
return *this;
}
@ -403,11 +238,12 @@ public:
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid) {
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
SetViewMode(mode);
}
// virtual ~Lattice(void) = default;
@ -445,11 +281,12 @@ public:
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto me = AcceleratorView(ViewWrite);
auto him= r.AcceleratorView(ViewRead);
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
@ -459,11 +296,12 @@ public:
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto me = AcceleratorView(ViewWrite);
auto him= r.AcceleratorView(ViewRead);
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////

View File

@ -51,34 +51,39 @@ template<class VField, class Matrix>
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View()) View;
auto tmp_v = basis[0].AcceleratorView(ViewReadWrite);
Vector<View> basis_v(basis.size(),tmp_v);
typedef typename std::remove_reference<decltype(tmp_v[0])>::type vobj;
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].AcceleratorView(ViewReadWrite);
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
#ifndef GRID_NVCC
#if ( (!defined(GRID_SYCL)) && (!defined(GRID_CUDA)) && (!defined(GRID_HIP)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
std::vector < vobj > B(Nm); // Thread private
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
return;
@ -90,13 +95,13 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
Vector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
Qt_p[i]=Qt(j,k);
});
});
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
@ -133,26 +138,30 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
});
}
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].AcceleratorView()) View;
typedef decltype(basis[0].View(AcceleratorRead)) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
auto result_v=result.AcceleratorView(ViewWrite);
Vector<View> basis_v(basis.size(),result_v);
Vector<View> basis_v; basis_v.reserve(basis.size());
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].AcceleratorView(ViewRead);
basis_v.push_back(basis[k].View(AcceleratorRead));
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
@ -160,6 +169,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>

View File

@ -42,34 +42,6 @@ NAMESPACE_BEGIN(Grid);
typedef iScalar<vInteger> vPredicate ;
/*
template <class iobj, class vobj, class robj> accelerator_inline
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
*/
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
@ -78,9 +50,9 @@ template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
});
@ -93,8 +65,8 @@ template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vPredicate> ret(lhs.Grid());
auto lhs_v = lhs.View();
auto ret_v = ret.View();
autoView( lhs_v, lhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, lhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs);
});
@ -107,8 +79,8 @@ template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
auto rhs_v = rhs.View();
auto ret_v = ret.View();
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs,rhs_v[ss]);
});

View File

@ -37,7 +37,7 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
auto l_v = l.View();
autoView(l_v, l, CpuWrite);
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
@ -51,23 +51,5 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
});
};
// LatticeCoordinate();
// FIXME for debug; deprecate this; made obscelete by
template<class vobj> void lex_sites(Lattice<vobj> &l){
auto l_v = l.View();
Real *v_ptr = (Real *)&l_v[0];
size_t o_len = l.Grid()->oSites();
size_t v_len = sizeof(vobj)/sizeof(vRealF);
size_t vec_len = vRealF::Nsimd();
for(int i=0;i<o_len;i++){
for(int j=0;j<v_len;j++){
for(int vv=0;vv<vec_len;vv+=2){
v_ptr[i*v_len*vec_len+j*vec_len+vv ]= i+vv*500;
v_ptr[i*v_len*vec_len+j*vec_len+vv+1]= i+vv*500;
}
}}
}
NAMESPACE_END(Grid);

View File

@ -43,8 +43,8 @@ template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
auto rhs_v = rhs.View();
auto ret_v = ret.View();
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
});
@ -56,9 +56,9 @@ template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
});
@ -73,9 +73,9 @@ inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Latt
typedef decltype(coalescedRead(ll())) sll;
typedef decltype(coalescedRead(rr())) srr;
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),1,{
// FIXME had issues with scalar version of outer
// Use vector [] operator and don't read coalesce this loop

View File

@ -51,9 +51,9 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto X_v = X.View();
auto Y_v = Y.View();
auto R_v = R.View();
autoView( X_v , X, CpuRead);
autoView( Y_v , Y, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
@ -97,8 +97,8 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto X_v = X.View();
auto R_v = R.View();
autoView( X_v , X, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
@ -156,8 +156,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
autoView( lhs_v , lhs, CpuRead);
autoView( rhs_v , rhs, CpuRead);
thread_region {
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);

View File

@ -46,9 +46,9 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Ind
{
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
auto ret_v = ret.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
});
return ret;
@ -58,9 +58,9 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd
{
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
auto ret_v = ret.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
});
return ret;
@ -72,18 +72,18 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
{
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
});
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
{
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
});
}
@ -111,7 +111,7 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
auto l_v = l.View();
autoView( l_v , l, CpuWrite);
if ( rank == grid->ThisRank() ) {
extract(l_v[odx],buf);
buf[idx] = s;
@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
auto l_v = l.View();
autoView( l_v , l, CpuWrite);
extract(l_v[odx],buf);
s = buf[idx];
@ -151,21 +151,21 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
// Must be CPU read view
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
GridBase *grid = l.Grid();
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid = l.getGrid();
assert(l.mode==CpuRead);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -173,8 +173,7 @@ inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
idx= grid->iIndex(site);
odx= grid->oIndex(site);
auto l_v = l.View();
scalar_type * vp = (scalar_type *)&l_v[odx];
scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
@ -183,18 +182,27 @@ inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
return;
};
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuRead);
peekLocalSite(s,lv,site);
return;
};
GridBase *grid=l.Grid();
// Must be CPU write view
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid=l.getGrid();
assert(l.mode==CpuWrite);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -202,13 +210,19 @@ inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
idx= grid->iIndex(site);
odx= grid->oIndex(site);
auto l_v = l.View();
scalar_type * vp = (scalar_type *)&l_v[odx];
scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
return;
};
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuWrite);
pokeLocalSite(s,lv,site);
return;
};

View File

@ -0,0 +1,79 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reality.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REAL_IMAG_H
#define GRID_LATTICE_REAL_IMAG_H
// FIXME .. this is the sector of the code
// I am most worried about the directions
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =real(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =imag(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto real(const Expression &expr) -> decltype(real(closure(expr)))
{
return real(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto imag(const Expression &expr) -> decltype(imag(closure(expr)))
{
return imag(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -40,9 +40,11 @@ NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
auto lhs_v = lhs.View();
auto ret_v = ret.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
});
@ -51,9 +53,11 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
auto lhs_v = lhs.View();
auto ret_v = ret.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss)));
});

View File

@ -25,7 +25,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <Grid/Grid_Eigen_Dense.h>
#ifdef GRID_NVCC
#if defined(GRID_CUDA)||defined(GRID_HIP)
#include <Grid/lattice/Lattice_reduction_gpu.h>
#endif
@ -39,7 +39,36 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_object sobj;
const int Nsimd = vobj::Nsimd();
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
@ -63,23 +92,43 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
ssum = ssum+sumarray[i];
}
return ssum;
typedef typename vobj::scalar_object ssobj;
ssobj ret = ssum;
return ret;
}
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
#ifdef GRID_NVCC
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sum_gpu(arg,osites);
#else
return sum_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
auto arg_v = arg.View();
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum(&arg_v[0],osites);
auto ssum= sum_gpu(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
@ -101,43 +150,30 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
ComplexD nrm;
GridBase *grid = left.Grid();
// Might make all code paths go this way.
auto left_v = left.AcceleratorView(ViewRead);
auto right_v=right.AcceleratorView(ViewRead);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
#ifdef GRID_NVCC
// GPU - SIMT lane compliance...
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
// Might make all code paths go this way.
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
})
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, 1,{
auto x_l = left_v[ss];
auto y_l = right_v[ss];
inner_tmp_v[ss]=innerProductD(x_l,y_l);
});
}
// This is in single precision and fails some tests
// Need a sumD that sums in double
nrm = TensorRemove(sumD_gpu(inner_tmp_v,sites));
#else
// CPU
typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v[ss];
auto y_l = right_v[ss];
inner_tmp_v[ss]=innerProductD(x_l,y_l);
})
nrm = TensorRemove(sum(inner_tmp_v,sites));
#endif
auto anrm = sum(inner_tmp_v,sites);
nrm = anrm;
return nrm;
}
@ -175,40 +211,24 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
GridBase *grid = x.Grid();
auto x_v=x.AcceleratorView(ViewRead);
auto y_v=y.AcceleratorView(ViewRead);
auto z_v=z.AcceleratorView(ViewWrite);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
#ifdef GRID_NVCC
// GPU
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD_gpu(inner_tmp_v,sites)));
#else
// CPU
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
accelerator_for( ss, sites, 1,{
auto tmp = a*x_v[ss]+b*y_v[ss];
inner_tmp_v[ss]=innerProductD(tmp,tmp);
z_v[ss]=tmp;
});
// Already promoted to double
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm);
return nrm;
}
@ -224,47 +244,29 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
GridBase *grid = left.Grid();
auto left_v=left.AcceleratorView(ViewRead);
auto right_v=right.AcceleratorView(ViewRead);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
#ifdef GRID_NVCC
// GPU
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
typedef decltype(innerProduct(left_v[0],left_v[0])) norm_t;
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
autoView(left_v,left, AcceleratorRead);
autoView(right_v,right,AcceleratorRead);
accelerator_for( ss, sites, 1,{
auto left_tmp = left_v[ss];
inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]);
norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp);
});
}
accelerator_for( ss, sites, nsimd,{
auto left_tmp = left_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(left_tmp,right_v(ss)));
coalescedWrite(norm_tmp_v[ss],innerProduct(left_tmp,left_tmp));
});
tmp[0] = TensorRemove(sumD_gpu(inner_tmp_v,sites));
tmp[1] = TensorRemove(sumD_gpu(norm_tmp_v,sites));
#else
// CPU
typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
typedef decltype(innerProductD(left_v[0],left_v[0])) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto left_tmp = left_v(ss);
inner_tmp_v[ss] = innerProductD(left_tmp,right_v(ss));
norm_tmp_v[ss] = innerProductD(left_tmp,left_tmp);
});
// Already promoted to double
tmp[0] = TensorRemove(sum(inner_tmp_v,sites));
tmp[1] = TensorRemove(sum(norm_tmp_v,sites));
#endif
grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector
ip = tmp[0];
nrm = real(tmp[1]);
@ -335,7 +337,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
auto Data_v=Data.View();
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
@ -413,8 +415,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
auto lhv=lhs.View();
auto rhv=rhs.View();
autoView( lhv, lhs, CpuRead);
autoView( rhv, rhs, CpuRead);
thread_for( r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
@ -521,14 +523,12 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
tensor_reduced at; at=av;
auto Rv=R.View();
auto Xv=X.View();
auto Yv=Y.View();
thread_for_collapse(2, n, e1, {
for(int b=0;b<e2;b++){
autoView( Rv, R, CpuWrite);
autoView( Xv, X, CpuRead);
autoView( Yv, Y, CpuRead);
thread_for2d( n, e1, b,e2, {
int ss= so+n*stride+b;
Rv[ss] = at*Xv[ss]+Yv[ss];
}
});
}
};
@ -581,9 +581,9 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto X_v=X.View();
auto Y_v=Y.View();
auto R_v=R.View();
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
thread_region
{
Vector<vobj> s_x(Nblock);
@ -628,13 +628,14 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
// int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto R_v = R.View();
auto X_v = X.View();
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
thread_region
{
std::vector<vobj> s_x(Nblock);
@ -692,8 +693,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::vector_typeD vector_typeD;
auto lhs_v=lhs.View();
auto rhs_v=rhs.View();
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
thread_region
{
std::vector<vobj> Left(Nblock);

View File

@ -1,7 +1,14 @@
NAMESPACE_BEGIN(Grid);
#define WARP_SIZE 32
#ifdef GRID_HIP
extern hipDeviceProp_t *gpu_props;
#define WARP_SIZE 64
#endif
#ifdef GRID_CUDA
extern cudaDeviceProp *gpu_props;
#define WARP_SIZE 32
#endif
__device__ unsigned int retirementCount = 0;
template <class Iterator>
@ -19,7 +26,12 @@ template <class Iterator>
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
#ifdef GRID_CUDA
cudaGetDevice(&device);
#endif
#ifdef GRID_HIP
hipGetDevice(&device);
#endif
Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
@ -53,7 +65,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
__syncwarp();
acceleratorSynchronise();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
@ -67,9 +79,9 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
__syncwarp();
acceleratorSynchronise();
}
__syncthreads();
acceleratorSynchroniseAll();
if (threadIdx.x == 0) {
beta = Zero();
@ -79,7 +91,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
__syncthreads();
acceleratorSynchroniseAll();
}
@ -147,7 +159,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
sobj *smem = (sobj *)shmem_pointer;
// wait until all outstanding memory instructions in this thread are finished
__threadfence();
acceleratorFence();
if (tid==0) {
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
@ -156,8 +168,8 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
}
// each thread must read the correct value of amLast
__syncthreads();
acceleratorSynchroniseAll();
if (amLast) {
// reduce buffer[0], ..., buffer[gridDim.x-1]
Iterator i = tid;
@ -199,13 +211,7 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
sobj *buffer_v = &buffer[0];
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
cudaDeviceSynchronize();
cudaError err = cudaGetLastError();
if ( cudaSuccess != err ) {
printf("Cuda error %s\n",cudaGetErrorString( err ));
exit(0);
}
accelerator_barrier();
auto result = buffer_v[0];
return result;
}

View File

@ -375,7 +375,7 @@ public:
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
int words = sizeof(scalar_object) / sizeof(scalar_type);
auto l_v = l.View();
autoView(l_v, l, CpuWrite);
thread_for( ss, osites, {
ExtractBuffer<scalar_object> buf(Nsimd);
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
@ -461,8 +461,8 @@ public:
}
{
// Obtain one reseeded generator per thread
int Nthread = GridThread::GetThreads();
// Obtain one reseeded generator per thread
int Nthread = 32; // Hardwire a good level or parallelism
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);

View File

@ -42,8 +42,8 @@ template<class vobj>
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
{
Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
autoView(ret_v , ret, AcceleratorWrite);
autoView(lhs_v , lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
});
@ -58,8 +58,8 @@ template<int Index,class vobj>
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
{
Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
});

View File

@ -47,11 +47,12 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full){
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
{
half.Checkerboard() = cb;
auto half_v = half.View();
auto full_v = full.View();
autoView( half_v, half, CpuWrite);
autoView( full_v, full, CpuRead);
thread_for(ss, full.Grid()->oSites(),{
int cbos;
Coordinate coor;
@ -64,11 +65,11 @@ template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,con
}
});
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
{
int cb = half.Checkerboard();
auto half_v = half.View();
auto full_v = full.View();
autoView( half_v , half, CpuRead);
autoView( full_v , full, CpuWrite);
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
@ -96,15 +97,15 @@ accelerator_inline void convertType(ComplexF & out, const std::complex<float> &
out = in;
}
#ifdef __CUDA_ARCH__
#ifdef GRID_SIMT
accelerator_inline void convertType(vComplexF & out, const ComplexF & in) {
((ComplexF*)&out)[SIMTlane(vComplexF::Nsimd())] = in;
((ComplexF*)&out)[acceleratorSIMTlane(vComplexF::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD & out, const ComplexD & in) {
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd())] = in;
((ComplexD*)&out)[acceleratorSIMTlane(vComplexD::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd()*2)] = in;
((ComplexD*)&out)[acceleratorSIMTlane(vComplexD::Nsimd()*2)] = in;
}
#endif
@ -151,12 +152,11 @@ accelerator_inline void convertType(T & out, const T & in) {
template<typename T1,typename T2>
accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
auto out_v = out.AcceleratorView(ViewWrite);
auto in_v = in.AcceleratorView(ViewRead);
autoView( out_v , out,AcceleratorWrite);
autoView( in_v , in ,AcceleratorRead);
accelerator_for(ss,out_v.size(),T1::Nsimd(),{
convertType(out_v[ss],in_v(ss));
});
});
}
////////////////////////////////////////////////////////////////////////////////////////////
@ -164,19 +164,20 @@ accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs)
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View()[0],rhs.View()[0])))>>
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View(CpuRead)[0],rhs.View(CpuRead)[0])))>>
{
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
typedef decltype(TensorRemove(innerProductD2(lhs_v[0],rhs_v[0]))) t_inner;
Lattice<iScalar<t_inner>> ret(lhs.Grid());
auto ret_v = ret.AcceleratorView(ViewWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
{
autoView(ret_v, ret,AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
convertType(ret_v[ss],innerProductD2(lhs_v(ss),rhs_v(ss)));
});
}
return ret;
}
@ -194,14 +195,13 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
// auto fineData_ = fineData.View();
auto coarseData_ = coarseData.AcceleratorView(ViewWrite);
auto ip_ = ip.AcceleratorView(ViewReadWrite);
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
for(int v=0;v<nbasis;v++) {
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
});
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
@ -210,68 +210,6 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
}
}
template<class vobj,class CComplex,int nbasis>
inline void blockProject1(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
typedef iVector<CComplex,nbasis > coarseSiteData;
coarseSiteData elide;
typedef decltype(coalescedRead(elide)) ScalarComplex;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i],fineData);
}
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d] == fine->_rdimensions[d]);
}
int blockVol = fine->oSites()/coarse->oSites();
coarseData=Zero();
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
////////////////////////////////////////////////////////////////////////////////////////////////////////
// To make this lock free, loop over coars parallel, and then loop over fine associated with coarse.
// Otherwise do fine inner product per site, and make the update atomic
////////////////////////////////////////////////////////////////////////////////////////////////////////
accelerator_for( sci, nbasis*coarse->oSites(), vobj::Nsimd(), {
auto sc=sci/nbasis;
auto i=sci%nbasis;
auto Basis_ = Basis[i].View();
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
int sf;
decltype(innerProduct(Basis_(sf),fineData_(sf))) reduce=Zero();
for(int sb=0;sb<blockVol;sb++){
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r);
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d]+coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
reduce=reduce+innerProduct(Basis_(sf),fineData_(sf));
}
coalescedWrite(coarseData_[sc](i),reduce);
});
return;
}
template<class vobj,class vobj2,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
@ -298,10 +236,12 @@ template<class vobj,class vobj2,class CComplex>
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
auto fineZ_ = fineZ.AcceleratorView(ViewWrite);
auto fineX_ = fineX.AcceleratorView(ViewRead);
auto fineY_ = fineY.AcceleratorView(ViewRead);
auto coarseA_= coarseA.AcceleratorView(ViewRead);
autoView( fineZ_ , fineZ, AcceleratorWrite);
autoView( fineX_ , fineX, AcceleratorRead);
autoView( fineY_ , fineY, AcceleratorRead);
autoView( coarseA_, coarseA, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
@ -309,12 +249,12 @@ template<class vobj,class vobj2,class CComplex>
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
// z = A x + y
#ifdef __CUDA_ARCH__
#ifdef GRID_SIMT
typename vobj2::tensor_reduced::scalar_object cA;
typename vobj::scalar_object cAx;
#else
@ -344,15 +284,16 @@ template<class vobj,class CComplex>
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
auto CoarseInner_ = CoarseInner.AcceleratorView(ViewWrite);
auto coarse_inner_ = coarse_inner.AcceleratorView(ViewReadWrite);
// Precision promotion
fine_inner = localInnerProductD(fineX,fineY);
fine_inner = localInnerProductD<vobj>(fineX,fineY);
blockSum(coarse_inner,fine_inner);
accelerator_for(ss, coarse->oSites(), 1, {
{
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
}
@ -370,14 +311,15 @@ inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
auto CoarseInner_ = CoarseInner.AcceleratorView(ViewWrite);
auto coarse_inner_ = coarse_inner.AcceleratorView(ViewReadWrite);
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
{
autoView( CoarseInner_ , CoarseInner, AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner, AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
}
}
template<class vobj,class CComplex>
@ -408,14 +350,19 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
}
int blockVol = fine->oSites()/coarse->oSites();
auto coarseData_ = coarseData.AcceleratorView(ViewReadWrite);
auto fineData_ = fineData.AcceleratorView(ViewRead);
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
for(int sb=0;sb<blockVol;sb++){
@ -425,7 +372,7 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
@ -510,8 +457,8 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
autoView( fineData_ , fineData, AcceleratorWrite);
autoView( coarseData_ , coarseData, AcceleratorRead);
// Loop with a cache friendly loop ordering
accelerator_for(sf,fine->oSites(),1,{
@ -524,7 +471,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
auto basis_ = Basis[i].View();
/* auto basis_ = Basis[i], );*/
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
}
@ -543,7 +490,14 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
fineData=Zero();
for(int i=0;i<nbasis;i++) {
Lattice<iScalar<CComplex> > ip = PeekIndex<0>(coarseData,i);
auto ip_ = ip.AcceleratorView(ViewRead);
//Lattice<CComplex> cip(coarse);
//autoView( cip_ , cip, AcceleratorWrite);
//autoView( ip_ , ip, AcceleratorRead);
//accelerator_forNB(sc,coarse->oSites(),CComplex::Nsimd(),{
// coalescedWrite(cip_[sc], ip_(sc)());
// });
//blockZAXPY<vobj,CComplex >(fineData,cip,Basis[i],fineData);
blockZAXPY(fineData,ip,Basis[i],fineData);
}
}
@ -571,15 +525,17 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
assert(ig->lSites() == og->lSites());
}
autoView(in_v,in,CpuRead);
autoView(out_v,out,CpuWrite);
thread_for(idx, ig->lSites(),{
sobj s;
ssobj ss;
Coordinate lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(s,in,lcoor);
peekLocalSite(s,in_v,lcoor);
ss=s;
pokeLocalSite(ss,out,lcoor);
pokeLocalSite(ss,out_v,lcoor);
});
}
@ -614,8 +570,9 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
auto t_v = To.AcceleratorView(ViewWrite);
auto f_v = From.AcceleratorView(ViewRead);
autoView( t_v , To, AcceleratorWrite);
autoView( f_v , From, AcceleratorRead);
accelerator_for(idx,Fg->lSites(),1,{
sobj s;
Coordinate Fcoor(nd);
@ -638,8 +595,6 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int w=0;w<words;w++){
tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke
}
// peekLocalSite(s,From,Fcoor);
// pokeLocalSite(s,To ,Tcoor);
}
});
}
@ -670,6 +625,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -682,8 +639,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
});
}
@ -711,6 +668,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -723,8 +682,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
});
}
@ -752,6 +711,8 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -760,8 +721,8 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
}
});
}
@ -789,6 +750,8 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -797,8 +760,8 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
}
});
}
@ -862,7 +825,7 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
}
//loop over outer index
auto in_v = in.View();
autoView( in_v , in, CpuRead);
thread_for(in_oidx,in_grid->oSites(),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> out_ptrs(in_nsimd);
@ -955,7 +918,7 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
auto out_v = out.View();
autoView( out_v , out, CpuWrite);
thread_for(oidx, grid->oSites(),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> ptrs(nsimd);
@ -1058,7 +1021,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
auto out_v = out.View();
autoView( out_v , out, CpuWrite);
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);

View File

@ -42,8 +42,8 @@ NAMESPACE_BEGIN(Grid);
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss], transpose(lhs_v(ss)));
});
@ -58,8 +58,8 @@ template<int Index,class vobj>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))>
{
Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss)));
});

View File

@ -35,8 +35,8 @@ NAMESPACE_BEGIN(Grid);
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
Lattice<obj> ret_i(rhs_i.Grid());
auto rhs = rhs_i.View();
auto ret = ret_i.View();
autoView( rhs, rhs_i, AcceleratorRead);
autoView( ret, ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),1,{
ret[ss]=pow(rhs[ss],y);
@ -45,8 +45,8 @@ template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
}
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
auto rhs = rhs_i.View();
auto ret = ret_i.View();
autoView( rhs , rhs_i, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],mod(rhs(ss),y));
@ -56,8 +56,8 @@ template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
auto ret = ret_i.View();
auto rhs = rhs_i.View();
autoView( ret , ret_i, AcceleratorWrite);
autoView( rhs , rhs_i, AcceleratorRead);
ret.Checkerboard() = rhs_i.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],div(rhs(ss),y));
@ -67,8 +67,8 @@ template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
Lattice<obj> ret_i(rhs_i.Grid());
auto rhs = rhs_i.View();
auto ret = ret_i.View();
autoView( rhs , rhs_i, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp));

168
Grid/lattice/Lattice_view.h Normal file
View File

@ -0,0 +1,168 @@
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
protected:
//public:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
ViewAdvise advise;
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr), advise(AdviseDefault) { };
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline ViewAdvise Advise(void) const { return advise; };
accelerator_inline ViewAdvise &Advise(void) { return this->advise; }; // can assign advise on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
// Host only
GridBase * getGrid(void) const { return _grid; };
};
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_for and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
public:
// Rvalue
ViewMode mode;
void * cpu_ptr;
#ifdef GRID_SIMT
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const {
return coalescedRead(this->_odata[i]);
}
#else
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me){}
LatticeView(const LatticeView<vobj> &refer_to_me) = default; // Trivially copyable
LatticeView(const LatticeAccelerator<vobj> &refer_to_me,ViewMode mode) : LatticeAccelerator<vobj> (refer_to_me)
{
this->ViewOpen(mode);
}
// Host functions
void ViewOpen(ViewMode mode)
{ // Translate the pointer, could save a copy. Could use a "Handle" and not save _odata originally in base
// std::cout << "View Open"<<std::hex<<this->_odata<<std::dec <<std::endl;
this->cpu_ptr = (void *)this->_odata;
this->mode = mode;
this->_odata =(vobj *)
MemoryManager::ViewOpen(this->cpu_ptr,
this->_odata_size*sizeof(vobj),
mode,
this->advise);
}
void ViewClose(void)
{ // Inform the manager
// std::cout << "View Close"<<std::hex<<this->cpu_ptr<<std::dec <<std::endl;
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
// Little autoscope assister
template<class View>
class ViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
ViewCloser(View &_v) : v(_v) {};
~ViewCloser() { v.ViewClose(); }
};
#define autoView(l_v,l,mode) \
auto l_v = l.View(mode); \
ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
NAMESPACE_END(Grid);

View File

@ -130,6 +130,8 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
std::ios_base::fmtflags f(stream.flags());
stream << log.background()<< std::left;
if (log.topWidth > 0)
{
@ -152,6 +154,8 @@ public:
<< now << log.background() << " : " ;
}
stream << log.colour();
stream.flags(f);
return stream;
} else {
return devnull;

View File

@ -44,7 +44,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <sys/syscall.h>
#endif
#ifdef __x86_64__
#ifdef GRID_NVCC
#ifdef GRID_CUDA
accelerator_inline uint64_t __rdtsc(void) { return 0; }
accelerator_inline uint64_t __rdpmc(int ) { return 0; }
#else
@ -112,7 +112,6 @@ class PerformanceCounter {
private:
typedef struct {
public:
uint32_t type;
uint64_t config;
const char *name;

View File

@ -12773,7 +12773,7 @@ namespace pugi
#undef PUGI__THROW_ERROR
#undef PUGI__CHECK_ERROR
#ifdef GRID_NVCC
#ifdef GRID_CUDA
#pragma pop
#endif

View File

@ -114,19 +114,22 @@ public:
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uadj, U, mu);
}
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
autoView(Umu_v,Umu,CpuRead);
autoView(Uadj_v,Uadj,CpuRead);
autoView(Uds_v,Uds,CpuWrite);
thread_for( lidx, GaugeGrid->lSites(), {
Coordinate lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUmu, Umu, lcoor);
peekLocalSite(ScalarUmu, Umu_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
peekLocalSite(ScalarUmu, Uadj, lcoor);
peekLocalSite(ScalarUmu, Uadj_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
pokeLocalSite(ScalarUds, Uds, lcoor);
}
pokeLocalSite(ScalarUds, Uds_v, lcoor);
});
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu)

View File

@ -57,6 +57,7 @@ NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
#include <Grid/qcd/action/fermion/NaiveStaggeredFermion.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
NAMESPACE_CHECK(Staggered);
@ -282,11 +283,15 @@ typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
#ifndef GRID_NVCC
#ifndef GRID_CUDA
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplR> ImprovedStaggeredFermionVec5dR;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplF> ImprovedStaggeredFermionVec5dF;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplD> ImprovedStaggeredFermionVec5dD;

View File

@ -96,11 +96,11 @@ public:
int sl = St._simd_layout[direction];
Coordinate icoor;
#ifdef __CUDA_ARCH__
#ifdef GRID_SIMT
_Spinor tmp;
const int Nsimd =SiteDoubledGaugeField::Nsimd();
int s = SIMTlane(Nsimd);
int s = acceleratorSIMTlane(Nsimd);
St.iCoorFromIindex(icoor,s);
int mmu = mu % Nd;
@ -232,15 +232,17 @@ public:
if ( Params.twists[mu] ) {
Uconj = where(coor==neglink,-Uconj,Uconj);
}
auto U_v = U.View();
auto Uds_v = Uds.View();
auto Uconj_v = Uconj.View();
auto Utmp_v= Utmp.View();
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
{
autoView( U_v , U, CpuRead);
autoView( Uconj_v , Uconj, CpuRead);
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
}
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
Uconj = adj(Cshift(Uconj,mu,-1));
@ -250,19 +252,25 @@ public:
Utmp = where(coor==0,Uconj,Utmp);
}
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
});
{
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
});
}
Utmp = Uconj;
if ( Params.twists[mu] ) {
Utmp = where(coor==0,U,Utmp);
}
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
});
{
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
});
}
}
}
@ -272,11 +280,14 @@ public:
GaugeLinkField link(mat.Grid());
// use lorentz for flavour as hack.
auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
auto link_v = link.View();
auto tmp_v = tmp.View();
thread_foreach(ss,tmp_v,{
link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
});
{
autoView( link_v , link, CpuWrite);
autoView( tmp_v , tmp, CpuRead);
thread_foreach(ss,tmp_v,{
link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
});
}
PokeIndex<LorentzIndex>(mat, link, mu);
return;
}
@ -306,16 +317,18 @@ public:
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
auto tmp_v = tmp.View();
auto Atilde_v = Atilde.View();
auto Btilde_v = Btilde.View();
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
{
autoView( tmp_v , tmp, CpuWrite);
autoView( Atilde_v , Atilde, CpuRead);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}

View File

@ -61,8 +61,8 @@ public:
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
@ -208,7 +208,7 @@ public:
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
///////////////////////////////////////////////////////////////
// Conserved current utilities

View File

@ -0,0 +1,194 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggered.h
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_NAIVE_STAG_FERMION_H
#define GRID_QCD_NAIVE_STAG_FERMION_H
NAMESPACE_BEGIN(Grid);
class NaiveStaggeredFermionStatic {
public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 8;
};
template <class Impl>
class NaiveStaggeredFermion : public StaggeredKernels<Impl>, public NaiveStaggeredFermionStatic {
public:
INHERIT_IMPL_TYPES(Impl);
typedef StaggeredKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid; }
GridBase *GaugeRedBlackGrid(void) { return _cbgrid; }
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
void M(const FermionField &in, FermionField &out);
void Mdag(const FermionField &in, FermionField &out);
/////////////////////////////////////////////////////////
// half checkerboard operations
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out);
void MeooeDag(const FermionField &in, FermionField &out);
void Mooee(const FermionField &in, FermionField &out);
void MooeeDag(const FermionField &in, FermionField &out);
void MooeeInv(const FermionField &in, FermionField &out);
void MooeeInvDag(const FermionField &in, FermionField &out);
////////////////////////
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv (GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
///////////////////////////////////////////////////////////////
void Dhop (const FermionField &in, FermionField &out, int dag);
void DhopOE(const FermionField &in, FermionField &out, int dag);
void DhopEO(const FermionField &in, FermionField &out, int dag);
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl &st,
DoubledGaugeField &U,
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
// Grid own interface Constructor
//////////////////////////////////////////////////////////////////////////
NaiveStaggeredFermion(GaugeField &_U, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p = ImplParams());
NaiveStaggeredFermion(GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p = ImplParams());
// DoubleStore impl dependent
void ImportGauge (const GaugeField &_U );
DoubledGaugeField &GetU(void) { return Umu ; } ;
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
// protected:
public:
// any other parameters of action ???
virtual int isTrivialEE(void) { return 1; };
virtual RealD Mass(void) { return mass; }
RealD mass;
RealD u0;
RealD c1;
GridBase *_grid;
GridBase *_cbgrid;
// Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu);
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &srct,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
};
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
NAMESPACE_END(Grid);
#endif

View File

@ -47,23 +47,37 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
public:
void DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp);
public:
void DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp);
protected:
///////////////////////////////////////////////////////////////////////////////////////
// Generic Nc kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
template<int Naik>
static accelerator_inline
void DhopSiteGeneric(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
void DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &lo,
template<int Naik> static accelerator_inline
void DhopSiteGenericInt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
void DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &lo,
template<int Naik> static accelerator_inline
void DhopSiteGenericExt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
@ -71,15 +85,21 @@ public:
///////////////////////////////////////////////////////////////////////////////////////
// Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
template<int Naik> static accelerator_inline
void DhopSiteHand(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
void DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
template<int Naik> static accelerator_inline
void DhopSiteHandInt(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
void DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
template<int Naik> static accelerator_inline
void DhopSiteHandExt(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
@ -87,27 +107,11 @@ public:
///////////////////////////////////////////////////////////////////////////////////////
// Asm Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
void DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
///////////////////////////////////////////////////////////////////////////////////////////////////
// Generic interface; fan out to right routine
///////////////////////////////////////////////////////////////////////////////////////////////////
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int interior=1,int exterior=1);
void DhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int interior=1,int exterior=1);
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int dag, int interior,int exterior);
public:

View File

@ -113,20 +113,7 @@ public:
inline void InsertGaugeField(DoubledGaugeField &U_ds,const GaugeLinkField &U,int mu)
{
GridBase *GaugeGrid = U_ds.Grid();
thread_for(lidx, GaugeGrid->lSites(),{
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
Coordinate lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, U_ds, lcoor);
peekLocalSite(ScalarU, U, lcoor);
ScalarUds(mu) = ScalarU();
});
assert(0);
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term

View File

@ -257,15 +257,16 @@ private:
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
public:
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
@ -281,9 +282,9 @@ private:
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -F_v[i]()();
T_v[i]()(1, 0) = F_v[i]()();
@ -299,9 +300,9 @@ private:
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
T_v[i]()(1, 1) = timesI(F_v[i]()());
@ -317,9 +318,9 @@ private:
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesI(F_v[i]()());
T_v[i]()(1, 0) = timesI(F_v[i]()());
@ -335,9 +336,9 @@ private:
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -(F_v[i]()());
T_v[i]()(1, 0) = (F_v[i]()());
@ -354,9 +355,9 @@ private:
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesI(F_v[i]()());
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());

View File

@ -50,14 +50,14 @@ public:
double, nu);
WilsonAnisotropyCoefficients():
isAnisotropic(false),
t_direction(Nd-1),
xi_0(1.0),
isAnisotropic(false),
t_direction(Nd-1),
xi_0(1.0),
nu(1.0){}
};
template <class Impl>
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
@ -74,6 +74,20 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopTotalTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
@ -138,7 +152,7 @@ public:
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p = ImplParams(),
const ImplParams &p = ImplParams(),
const WilsonAnisotropyCoefficients &anis = WilsonAnisotropyCoefficients() );
// DoubleStore impl dependent
@ -170,9 +184,9 @@ public:
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
@ -186,7 +200,7 @@ public:
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
@ -196,5 +210,3 @@ typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
NAMESPACE_END(Grid);

View File

@ -215,7 +215,7 @@ public:
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};

View File

@ -106,10 +106,10 @@ public:
const _SpinorField & phi,
int mu)
{
auto out_v= out.View();
auto phi_v= phi.View();
auto Umu_v= Umu.View();
thread_for(sss,out.Grid()->oSites(),{
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
accelerator_for(sss,out.Grid()->oSites(),1,{
multLink(out_v[sss],Umu_v[sss],phi_v[sss],mu);
});
}
@ -191,18 +191,19 @@ public:
int Ls=Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
auto tmp_v = tmp.View();
auto Btilde_v = Btilde.View();
auto Atilde_v = Atilde.View();
thread_for(sss,tmp.Grid()->oSites(),{
int sU=sss;
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
tmp_v[sU] = tmp_v[sU]+ traceIndex<SpinIndex>(outerProduct(Btilde_v[sF],Atilde_v[sF])); // ordering here
}
});
{
autoView( tmp_v , tmp, AcceleratorWrite);
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,tmp.Grid()->oSites(),1,{
int sU=sss;
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
tmp_v[sU] = tmp_v[sU]+ traceIndex<SpinIndex>(outerProduct(Btilde_v[sF],Atilde_v[sF])); // ordering here
}
});
}
PokeIndex<LorentzIndex>(mat,tmp,mu);
}
};

View File

@ -180,7 +180,7 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls : " << MooeeInvCalls << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
#ifdef GRID_NVCC
#ifdef GRID_CUDA
RealD mflops = ( -16.*Nc*Ns+this->Ls*(1.+18.*Nc*Ns) )*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
@ -642,7 +642,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type,
unsigned int mu)
{
#ifndef GRID_NVCC
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
@ -799,7 +799,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
LatticeInteger zz (UGrid); zz=0.0;
PropagatorField zz (UGrid); zz=0.0;
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
for (int s=0;s<Ls;s++) {
@ -826,7 +826,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
#endif
#ifndef GRID_NVCC
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
int tshift = (mu == Nd-1) ? 1 : 0;
////////////////////////////////////////////////
// GENERAL CAYLEY CASE
@ -850,7 +850,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
LatticeInteger zz (UGrid); zz=0.0;
PropagatorField zz (UGrid); zz=0.0;
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
for(int s=0;s<Ls;s++){

View File

@ -50,9 +50,9 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,AcceleratorRead);
autoView(phi , phi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
@ -93,9 +93,9 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
{
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,AcceleratorRead);
autoView(phi , phi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
@ -131,8 +131,8 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
int Ls=this->Ls;
@ -193,8 +193,8 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
GridBase *grid=psi_i.Grid();
int Ls=this->Ls;
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
auto plee = & lee [0];
auto pdee = & dee [0];

View File

@ -65,9 +65,9 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi, psi_i,CpuRead);
autoView(phi, phi_i,CpuRead);
autoView(chi, chi_i,CpuWrite);
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd= Simd::Nsimd();
@ -213,9 +213,9 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
auto psi=psi_i.View();
auto phi=phi_i.View();
auto chi=chi_i.View();
autoView(psi,psi_i,CpuRead);
autoView(phi,phi_i,CpuRead);
autoView(chi,chi_i,CpuWrite);
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd= Simd::Nsimd();
@ -357,8 +357,8 @@ CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi_i, FermionField
Vector<iSinglet<Simd> > &Matm)
{
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,CpuRead);
autoView(chi , chi_i,CpuWrite);
#ifndef AVX512
{
SiteHalfSpinor BcastP;
@ -535,8 +535,8 @@ CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi_i, FermionField
EnableIf<Impl::LsVectorised,int> sfinae=0;
#ifndef AVX512
{
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,CpuRead);
autoView(chi , chi_i,CpuWrite);
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
@ -586,8 +586,8 @@ CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi_i, FermionField
}
#else
{
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i,CpuRead);
autoView(chi , chi_i,CpuWrite);
// pointers
// MASK_REGS;
#define Chi_00 %zmm0

View File

@ -46,9 +46,9 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
chi_i.Checkerboard() = psi_i.Checkerboard();
int Ls = this->Ls;
GridBase* grid = psi_i.Grid();
auto phi = phi_i.View();
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView( phi , phi_i, AcceleratorRead);
autoView( psi , psi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
@ -82,9 +82,9 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
GridBase* grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView( psi , psi_i, AcceleratorRead);
autoView( phi , phi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
@ -116,8 +116,8 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase* grid = psi_i.Grid();
auto psi=psi_i.View();
auto chi=chi_i.View();
autoView( psi, psi_i, AcceleratorRead);
autoView( chi, chi_i, AcceleratorWrite);
int Ls = this->Ls;
auto plee = & this->lee[0];
@ -172,8 +172,8 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase* grid = psi_i.Grid();
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView( psi, psi_i, AcceleratorRead);
autoView( chi, chi_i, AcceleratorWrite);
int Ls = this->Ls;
auto plee = & this->lee[0];

View File

@ -221,10 +221,10 @@ void ImprovedStaggeredFermion5D<Impl>::DhopDir(const FermionField &in, FermionFi
Compressor compressor;
Stencil.HaloExchange(in,compressor);
auto Umu_v = Umu.View();
auto UUUmu_v = UUUmu.View();
auto in_v = in.View();
auto out_v = out.View();
autoView( Umu_v , Umu, CpuRead);
autoView( UUUmu_v , UUUmu, CpuRead);
autoView( in_v , in, CpuRead);
autoView( out_v , out, CpuWrite);
thread_for( ss,Umu.Grid()->oSites(),{
for(int s=0;s<Ls;s++){
int sU=ss;
@ -281,11 +281,9 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOr
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef GRID_OMP
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else
#endif
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
}
@ -294,9 +292,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef GRID_OMP
// assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor;
int LLs = in.Grid()->_rdimensions[0];
@ -305,99 +301,42 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
DhopFaceTime-=usecond();
st.Prepare();
st.HaloGather(in,compressor);
DhopFaceTime+=usecond();
DhopCommTime -=usecond();
std::vector<std::vector<CommsRequest_t> > requests;
st.CommunicateBegin(requests);
// st.HaloExchangeOptGather(in,compressor); // Wilson compressor
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
DhopFaceTime+=usecond();
double ctime=0;
double ptime=0;
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Ugly explicit thread mapping introduced for OPA reasons.
// Remove explicit thread mapping introduced for OPA reasons.
//////////////////////////////////////////////////////////////////////////////////////////////////////
#pragma omp parallel reduction(max:ctime) reduction(max:ptime)
DhopComputeTime-=usecond();
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
double start = usecond();
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = U.Grid()->oSites(); // 4d vol
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
auto U_v = U.View();
auto UUU_v = UUU.View();
auto in_v = in.View();
auto out_v = out.View();
if (dag == DaggerYes) {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
// Interior = 1; Exterior = 0; must implement for staggered
Kernels::DhopSiteDag(st,lo,U_v,UUU_v,st.CommBuf(),LLs,sU,in_v,out_v,1,0); //<---------
}
} else {
for (int ss = myblock; ss < myblock+myn; ++ss) {
// Interior = 1; Exterior = 0;
int sU = ss;
Kernels::DhopSite(st,lo,U_v,UUU_v,st.CommBuf(),LLs,sU,in_v,out_v,1,0); //<------------
}
}
ptime = usecond() - start;
} else {
double start = usecond();
st.CommunicateThreaded();
ctime = usecond() - start;
}
int interior=1;
int exterior=0;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopCommTime += ctime;
DhopComputeTime+=ptime;
// First to enter, last to leave timing
st.CollateThreads();
DhopComputeTime+=usecond();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
DhopComputeTime2-=usecond();
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
auto U_v = U.View();
auto UUU_v = UUU.View();
auto in_v = in.View();
auto out_v = out.View();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
thread_for( ss,sz,{
int sU = st.surface_list[ss];
Kernels::DhopSiteDag(st,lo,U_v,UUU_v,st.CommBuf(),LLs,sU,in_v,out_v,0,1); //<----------
});
} else {
int sz=st.surface_list.size();
thread_for( ss,sz,{
int sU = st.surface_list[ss];
Kernels::DhopSite(st,lo,U_v,UUU_v,st.CommBuf(),LLs,sU,in_v,out_v,0,1);//<----------
});
DhopComputeTime2-=usecond();
{
int interior=0;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime2+=usecond();
#else
assert(0);
#endif
}
template<class Impl>
@ -408,8 +347,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
Compressor compressor;
int LLs = in.Grid()->_rdimensions[0];
//double t1=usecond();
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
@ -418,28 +355,13 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
DhopComputeTime -= usecond();
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
auto U_v = U.View();
auto UUU_v = UUU.View();
auto in_v = in.View();
auto out_v = out.View();
if (dag == DaggerYes) {
thread_for( ss,U.Grid()->oSites(),{
int sU=ss;
Kernels::DhopSiteDag(st, lo, U_v, UUU_v, st.CommBuf(), LLs, sU,in_v, out_v);
});
} else {
thread_for( ss,U.Grid()->oSites(),{
int sU=ss;
Kernels::DhopSite(st,lo,U_v,UUU_v,st.CommBuf(),LLs,sU,in_v,out_v);
});
{
int interior=1;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
//double t2=usecond();
//std::cout << __FILE__ << " " << __func__ << " Total Time " << DhopTotalTime << std::endl;
//std::cout << __FILE__ << " " << __func__ << " Total Time Org " << t2-t1 << std::endl;
//std::cout << __FILE__ << " " << __func__ << " Comml Time " << DhopCommTime << std::endl;
//std::cout << __FILE__ << " " << __func__ << " Compute Time " << DhopComputeTime << std::endl;
}
/*CHANGE END*/

View File

@ -258,10 +258,10 @@ void ImprovedStaggeredFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGauge
////////////////////////
// Call the single hop
////////////////////////
auto U_v = U.View();
auto UUU_v = UUU.View();
auto B_v = B.View();
auto Btilde_v = Btilde.View();
autoView( U_v , U, CpuRead);
autoView( UUU_v , UUU, CpuRead);
autoView( B_v , B, CpuWrite);
autoView( Btilde_v , Btilde, CpuWrite);
thread_for(sss,B.Grid()->oSites(),{
Kernels::DhopDirKernel(st, U_v, UUU_v, st.CommBuf(), sss, sss, B_v, Btilde_v, mu,1);
});
@ -386,10 +386,10 @@ void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionFiel
Compressor compressor;
Stencil.HaloExchange(in, compressor);
auto Umu_v = Umu.View();
auto UUUmu_v = UUUmu.View();
auto in_v = in.View();
auto out_v = out.View();
autoView( Umu_v , Umu, CpuRead);
autoView( UUUmu_v , UUUmu, CpuRead);
autoView( in_v , in, CpuRead);
autoView( out_v , out, CpuWrite);
thread_for( sss, in.Grid()->oSites(),{
Kernels::DhopDirKernel(Stencil, Umu_v, UUUmu_v, Stencil.CommBuf(), sss, sss, in_v, out_v, dir, disp);
});
@ -403,11 +403,9 @@ void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder
const FermionField &in,
FermionField &out, int dag)
{
#ifdef GRID_OMP
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else
#endif
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
}
template <class Impl>
@ -417,7 +415,6 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
const FermionField &in,
FermionField &out, int dag)
{
#ifdef GRID_OMP
Compressor compressor;
int len = U.Grid()->oSites();
@ -426,60 +423,30 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
DhopFaceTime -= usecond();
st.Prepare();
st.HaloGather(in,compressor);
st.CommsMergeSHM(compressor);
DhopFaceTime += usecond();
DhopCommTime -=usecond();
std::vector<std::vector<CommsRequest_t> > requests;
st.CommunicateBegin(requests);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+= usecond();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Ugly explicit thread mapping introduced for OPA reasons.
// Removed explicit thread comms
//////////////////////////////////////////////////////////////////////////////////////////////////////
DhopComputeTime -= usecond();
#pragma omp parallel
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = len;
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
auto U_v = U.View();
auto UUU_v = UUU.View();
auto in_v = in.View();
auto out_v = out.View();
if (dag == DaggerYes) {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
// Interior = 1; Exterior = 0; must implement for staggered
Kernels::DhopSiteDag(st,lo,U_v,UUU_v,st.CommBuf(),1,sU,in_v,out_v,1,0);
}
} else {
for (int ss = myblock; ss < myblock+myn; ++ss) {
// Interior = 1; Exterior = 0;
int sU = ss;
Kernels::DhopSite(st,lo,U_v,UUU_v,st.CommBuf(),1,sU,in_v,out_v,1,0);
}
}
} else {
st.CommunicateThreaded();
}
int interior=1;
int exterior=0;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
// First to enter, last to leave timing
DhopFaceTime -= usecond();
st.CommsMerge(compressor);
@ -487,28 +454,11 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
DhopComputeTime2 -= usecond();
{
auto U_v = U.View();
auto UUU_v = UUU.View();
auto in_v = in.View();
auto out_v = out.View();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
thread_for(ss,sz,{
int sU = st.surface_list[ss];
Kernels::DhopSiteDag(st,lo,U_v,UUU_v,st.CommBuf(),1,sU,in_v,out_v,0,1);
});
} else {
int sz=st.surface_list.size();
thread_for(ss,sz,{
int sU = st.surface_list[ss];
Kernels::DhopSite(st,lo,U_v,UUU_v,st.CommBuf(),1,sU,in_v,out_v,0,1);
});
}
int interior=0;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime2 += usecond();
#else
assert(0);
#endif
}
@ -528,19 +478,11 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Le
st.HaloExchange(in, compressor);
DhopCommTime += usecond();
auto U_v = U.View();
auto UUU_v = UUU.View();
auto in_v = in.View();
auto out_v = out.View();
DhopComputeTime -= usecond();
if (dag == DaggerYes) {
thread_for(sss, in.Grid()->oSites(),{
Kernels::DhopSiteDag(st, lo, U_v, UUU_v, st.CommBuf(), 1, sss, in_v, out_v);
});
} else {
thread_for(sss, in.Grid()->oSites(),{
Kernels::DhopSite(st, lo, U_v, UUU_v, st.CommBuf(), 1, sss, in_v, out_v);
});
{
int interior=1;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();

View File

@ -44,9 +44,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(phi , phi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
@ -84,9 +84,9 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(phi , phi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
auto pm = this->pm;
int shift_s = (pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
@ -132,9 +132,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(phi , phi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
@ -174,9 +174,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(phi , phi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
@ -226,8 +226,8 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
auto plee = & this->lee [0];
auto pdee = & this->dee [0];
@ -286,8 +286,8 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
auto pm = this->pm;
auto plee = & this->lee [0];
@ -354,8 +354,8 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
int Ls = this->Ls;
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
auto plee = & this->lee [0];
auto pdee = & this->dee [0];
@ -410,8 +410,8 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
auto psi = psi_i.View();
auto chi = chi_i.View();
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
int Ls = this->Ls;
auto pm = this->pm;

View File

@ -0,0 +1,499 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion.cc
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////
// Constructor and gauge import
/////////////////////////////////
template <class Impl>
NaiveStaggeredFermion<Impl>::NaiveStaggeredFermion(GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid,
RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p)
: Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil(&Fgrid, npoint, Even, directions, displacements,p),
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd(&Hgrid),
_tmp(&Hgrid)
{
int vol4;
int LLs=1;
c1=_c1;
u0=_u0;
vol4= _grid->oSites();
Stencil.BuildSurfaceList(LLs,vol4);
vol4= _cbgrid->oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
}
template <class Impl>
NaiveStaggeredFermion<Impl>::NaiveStaggeredFermion(GaugeField &_U, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p)
: NaiveStaggeredFermion(Fgrid,Hgrid,_mass,_c1,_u0,p)
{
ImportGauge(_U);
}
////////////////////////////////////////////////////////////
// Momentum space propagator should be
// https://arxiv.org/pdf/hep-lat/9712010.pdf
//
// mom space action.
// gamma_mu i ( c1 sin pmu + c2 sin 3 pmu ) + m
//
// must track through staggered flavour/spin reduction in literature to
// turn to free propagator for the one component chi field, a la page 4/5
// of above link to implmement fourier based solver.
////////////////////////////////////////////////////////////
template <class Impl>
void NaiveStaggeredFermion<Impl>::CopyGaugeCheckerboards(void)
{
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::ImportGauge(const GaugeField &_U)
{
GaugeLinkField U(GaugeGrid());
DoubledGaugeField _UUU(GaugeGrid());
////////////////////////////////////////////////////////
// Double Store should take two fields for Naik and one hop separately.
// Discard teh Naik as Naive
////////////////////////////////////////////////////////
Impl::DoubleStore(GaugeGrid(), _UUU, Umu, _U, _U );
////////////////////////////////////////////////////////
// Apply scale factors to get the right fermion Kinetic term
// Could pass coeffs into the double store to save work.
// 0.5 ( U p(x+mu) - Udag(x-mu) p(x-mu) )
////////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Umu, U*( 0.5*c1/u0), mu );
U = PeekIndex<LorentzIndex>(Umu, mu+4);
PokeIndex<LorentzIndex>(Umu, U*(-0.5*c1/u0), mu+4);
}
CopyGaugeCheckerboards();
}
/////////////////////////////
// Implement the interface
/////////////////////////////
template <class Impl>
void NaiveStaggeredFermion<Impl>::M(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerNo);
axpy(out, mass, in, out);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerYes);
axpy(out, mass, in, out);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::Meooe(const FermionField &in, FermionField &out) {
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out) {
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::Mooee(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(mass);
out = scal * in;
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
out = (1.0 / (mass)) * in;
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in, out);
}
///////////////////////////////////
// Internal
///////////////////////////////////
template <class Impl>
void NaiveStaggeredFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
GaugeField & mat,
const FermionField &A, const FermionField &B, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor;
FermionField Btilde(B.Grid());
FermionField Atilde(B.Grid());
Atilde = A;
st.HaloExchange(B, compressor);
for (int mu = 0; mu < Nd; mu++) {
////////////////////////
// Call the single hop
////////////////////////
autoView( U_v , U, CpuRead);
autoView( B_v , B, CpuWrite);
autoView( Btilde_v , Btilde, CpuWrite);
thread_for(sss,B.Grid()->oSites(),{
Kernels::DhopDirKernel(st, U_v, U_v, st.CommBuf(), sss, sss, B_v, Btilde_v, mu,1);
});
assert(0);// need to figure out the force interface with a blasted three link term.
}
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
conformable(U.Grid(), _grid);
conformable(U.Grid(), V.Grid());
conformable(U.Grid(), mat.Grid());
mat.Checkerboard() = U.Checkerboard();
DerivInternal(Stencil, Umu, mat, U, V, dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
conformable(U.Grid(), _cbgrid);
conformable(U.Grid(), V.Grid());
conformable(U.Grid(), mat.Grid());
assert(V.Checkerboard() == Even);
assert(U.Checkerboard() == Odd);
mat.Checkerboard() = Odd;
DerivInternal(StencilEven, UmuOdd, mat, U, V, dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
conformable(U.Grid(), _cbgrid);
conformable(U.Grid(), V.Grid());
conformable(U.Grid(), mat.Grid());
assert(V.Checkerboard() == Odd);
assert(U.Checkerboard() == Even);
mat.Checkerboard() = Even;
DerivInternal(StencilOdd, UmuEven, mat, U, V, dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=2;
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=1;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=1;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
{
DhopDir(in, out, dir, disp);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
{
assert(0); // Not implemented yet
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
{
Compressor compressor;
Stencil.HaloExchange(in, compressor);
autoView( Umu_v , Umu, CpuRead);
autoView( in_v , in, CpuRead);
autoView( out_v , out, CpuWrite);
// thread_for( sss, in.Grid()->oSites(),{
// Kernels::DhopDirKernel(Stencil, Umu_v, Stencil.CommBuf(), sss, sss, in_v, out_v, dir, disp);
// });
assert(0);
};
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
DhopInternalSerialComms(st,lo,U,in,out,dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
Compressor compressor;
int len = U.Grid()->oSites();
DhopTotalTime -= usecond();
DhopFaceTime -= usecond();
st.Prepare();
st.HaloGather(in,compressor);
DhopFaceTime += usecond();
DhopCommTime -=usecond();
std::vector<std::vector<CommsRequest_t> > requests;
st.CommunicateBegin(requests);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+= usecond();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Removed explicit thread comms
//////////////////////////////////////////////////////////////////////////////////////////////////////
DhopComputeTime -= usecond();
{
int interior=1;
int exterior=0;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
// First to enter, last to leave timing
DhopFaceTime -= usecond();
st.CommsMerge(compressor);
DhopFaceTime -= usecond();
DhopComputeTime2 -= usecond();
{
int interior=0;
int exterior=1;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
DhopComputeTime2 += usecond();
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
Compressor compressor;
st.HaloExchange(in, compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
{
int interior=1;
int exterior=1;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
};
////////////////////////////////////////////////////////////////
// Reporting
////////////////////////////////////////////////////////////////
template<class Impl>
void NaiveStaggeredFermion<Impl>::Report(void)
{
Coordinate latt = _grid->GlobalDimensions();
RealD volume = 1; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion Number of DhopEO Calls : "
<< DhopCalls << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion TotalTime /Calls : "
<< DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion CommTime /Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "NaiveStaggeredFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "NaiveStaggeredFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
template<class Impl>
void NaiveStaggeredFermion<Impl>::ZeroCounters(void)
{
DhopCalls = 0;
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopFaceTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
////////////////////////////////////////////////////////
// Conserved current - not yet implemented.
////////////////////////////////////////////////////////
template <class Impl>
void NaiveStaggeredFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu)
{
assert(0);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{
assert(0);
}
NAMESPACE_END(Grid);

View File

@ -618,10 +618,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
void StaggeredKernels<Impl>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
{
assert(0);
@ -680,12 +680,13 @@ void StaggeredKernels<Impl>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
gauge2 =(uint64_t)&UU[sU]( Z ); \
gauge3 =(uint64_t)&UU[sU]( T );
// This is the single precision 5th direction vectorised kernel
#include <Grid/simd/Intel512single.h>
template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
{
#ifdef AVX512
@ -702,9 +703,10 @@ template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl
StencilEntry *SE2;
StencilEntry *SE3;
for(int s=0;s<LLs;s++){
// for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// int sF=s+LLs*sU;
{
// Xp, Yp, Zp, Tp
PREPARE(Xp,Yp,Zp,Tp,0,U);
LOAD_CHI(addr0,addr1,addr2,addr3);
@ -736,10 +738,10 @@ template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl
}
#include <Grid/simd/Intel512double.h>
template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dag)
{
#ifdef AVX512
@ -756,8 +758,9 @@ template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl
StencilEntry *SE2;
StencilEntry *SE3;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// for(int s=0;s<LLs;s++){
// int sF=s+LLs*sU;
{
// Xp, Yp, Zp, Tp
PREPARE(Xp,Yp,Zp,Tp,0,U);
LOAD_CHI(addr0,addr1,addr2,addr3);
@ -821,10 +824,10 @@ template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl
// This is the single precision 5th direction vectorised kernel
#include <Grid/simd/Intel512single.h>
template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
{
#ifdef AVX512
@ -841,9 +844,9 @@ template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st,
StencilEntry *SE2;
StencilEntry *SE3;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// for(int s=0;s<LLs;s++){
// int sF=s+LLs*sU;
{
// Xp, Yp, Zp, Tp
PREPARE(Xp,Yp,Zp,Tp,0,U);
LOAD_CHIa(addr0,addr1);
@ -890,10 +893,10 @@ template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st,
}
#include <Grid/simd/Intel512double.h>
template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
{
#ifdef AVX512
@ -910,9 +913,9 @@ template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilImpl &st,
StencilEntry *SE2;
StencilEntry *SE3;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// for(int s=0;s<LLs;s++){
// int sF=s+LLs*sU;
{
// Xp, Yp, Zp, Tp
PREPARE(Xp,Yp,Zp,Tp,0,U);
LOAD_CHIa(addr0,addr1);

View File

@ -146,9 +146,10 @@ NAMESPACE_BEGIN(Grid);
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteHand(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag)
{
typedef typename Simd::scalar_type S;
@ -181,8 +182,9 @@ void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
StencilEntry *SE;
int skew;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// for(int s=0;s<LLs;s++){
// int sF=s+LLs*sU;
{
skew = 0;
HAND_STENCIL_LEG_BEGIN(Xp,3,skew,even);
@ -193,6 +195,7 @@ void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
HAND_STENCIL_LEG (U,Ym,2,skew,odd);
HAND_STENCIL_LEG (U,Zm,1,skew,even);
HAND_STENCIL_LEG (U,Tm,0,skew,odd);
if (Naik) {
skew = 8;
HAND_STENCIL_LEG(UUU,Xp,3,skew,even);
HAND_STENCIL_LEG(UUU,Yp,2,skew,odd);
@ -202,7 +205,7 @@ void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
HAND_STENCIL_LEG(UUU,Ym,2,skew,odd);
HAND_STENCIL_LEG(UUU,Zm,1,skew,even);
HAND_STENCIL_LEG(UUU,Tm,0,skew,odd);
}
if ( dag ) {
result()()(0) = - even_0 - odd_0;
result()()(1) = - even_1 - odd_1;
@ -218,9 +221,10 @@ void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteHandInt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag)
{
typedef typename Simd::scalar_type S;
@ -253,8 +257,9 @@ void StaggeredKernels<Impl>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
StencilEntry *SE;
int skew;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// for(int s=0;s<LLs;s++){
// int sF=s+LLs*sU;
{
even_0 = Zero(); even_1 = Zero(); even_2 = Zero();
odd_0 = Zero(); odd_1 = Zero(); odd_2 = Zero();
@ -268,6 +273,7 @@ void StaggeredKernels<Impl>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
HAND_STENCIL_LEG_INT(U,Ym,2,skew,odd);
HAND_STENCIL_LEG_INT(U,Zm,1,skew,even);
HAND_STENCIL_LEG_INT(U,Tm,0,skew,odd);
if (Naik) {
skew = 8;
HAND_STENCIL_LEG_INT(UUU,Xp,3,skew,even);
HAND_STENCIL_LEG_INT(UUU,Yp,2,skew,odd);
@ -277,7 +283,7 @@ void StaggeredKernels<Impl>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
HAND_STENCIL_LEG_INT(UUU,Ym,2,skew,odd);
HAND_STENCIL_LEG_INT(UUU,Zm,1,skew,even);
HAND_STENCIL_LEG_INT(UUU,Tm,0,skew,odd);
}
// Assume every site must be connected to at least one interior point. No 1^4 subvols.
if ( dag ) {
result()()(0) = - even_0 - odd_0;
@ -294,9 +300,10 @@ void StaggeredKernels<Impl>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteHandExt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag)
{
typedef typename Simd::scalar_type S;
@ -329,8 +336,9 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
StencilEntry *SE;
int skew;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// for(int s=0;s<LLs;s++){
// int sF=s+LLs*sU;
{
even_0 = Zero(); even_1 = Zero(); even_2 = Zero();
odd_0 = Zero(); odd_1 = Zero(); odd_2 = Zero();
@ -344,6 +352,7 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
HAND_STENCIL_LEG_EXT(U,Ym,2,skew,odd);
HAND_STENCIL_LEG_EXT(U,Zm,1,skew,even);
HAND_STENCIL_LEG_EXT(U,Tm,0,skew,odd);
if (Naik) {
skew = 8;
HAND_STENCIL_LEG_EXT(UUU,Xp,3,skew,even);
HAND_STENCIL_LEG_EXT(UUU,Yp,2,skew,odd);
@ -353,7 +362,7 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
HAND_STENCIL_LEG_EXT(UUU,Ym,2,skew,odd);
HAND_STENCIL_LEG_EXT(UUU,Zm,1,skew,even);
HAND_STENCIL_LEG_EXT(UUU,Tm,0,skew,odd);
}
// Add sum of all exterior connected stencil legs
if ( nmu ) {
if ( dag ) {
@ -370,6 +379,7 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
}
}
/*
#define DHOP_SITE_HAND_INSTANTIATE(IMPL) \
template void StaggeredKernels<IMPL>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
@ -385,7 +395,7 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
*/
#undef LOAD_CHI
NAMESPACE_END(Grid);

View File

@ -37,9 +37,9 @@ NAMESPACE_BEGIN(Grid);
if (SE->_is_local ) { \
if (SE->_permute) { \
chi_p = &chi; \
permute(chi, in[SE->_offset], ptype); \
permute(chi, in[SE->_offset], ptype); \
} else { \
chi_p = &in[SE->_offset]; \
chi_p = &in[SE->_offset]; \
} \
} else { \
chi_p = &buf[SE->_offset]; \
@ -51,15 +51,15 @@ NAMESPACE_BEGIN(Grid);
if (SE->_is_local ) { \
if (SE->_permute) { \
chi_p = &chi; \
permute(chi, in[SE->_offset], ptype); \
permute(chi, in[SE->_offset], ptype); \
} else { \
chi_p = &in[SE->_offset]; \
chi_p = &in[SE->_offset]; \
} \
} else if ( st.same_node[Dir] ) { \
chi_p = &buf[SE->_offset]; \
} \
if (SE->_is_local || st.same_node[Dir] ) { \
multLink(Uchi, U[sU], *chi_p, Dir); \
multLink(Uchi, U[sU], *chi_p, Dir); \
}
#define GENERIC_STENCIL_LEG_EXT(U,Dir,skew,multLink) \
@ -67,7 +67,7 @@ NAMESPACE_BEGIN(Grid);
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
nmu++; \
chi_p = &buf[SE->_offset]; \
multLink(Uchi, U[sU], *chi_p, Dir); \
multLink(Uchi, U[sU], *chi_p, Dir); \
}
template <class Impl>
@ -78,10 +78,12 @@ StaggeredKernels<Impl>::StaggeredKernels(const ImplParams &p) : Base(p){};
// Int, Ext, Int+Ext cases for comms overlap
////////////////////////////////////////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteGeneric(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int dag) {
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out, int dag)
{
const SiteSpinor *chi_p;
SiteSpinor chi;
SiteSpinor Uchi;
@ -89,8 +91,10 @@ void StaggeredKernels<Impl>::DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
int ptype;
int skew;
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
// for(int s=0;s<LLs;s++){
//
// int sF=LLs*sU+s;
{
skew = 0;
GENERIC_STENCIL_LEG(U,Xp,skew,Impl::multLink);
GENERIC_STENCIL_LEG(U,Yp,skew,Impl::multLinkAdd);
@ -100,6 +104,7 @@ void StaggeredKernels<Impl>::DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
GENERIC_STENCIL_LEG(U,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Tm,skew,Impl::multLinkAdd);
if ( Naik ) {
skew=8;
GENERIC_STENCIL_LEG(UUU,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Yp,skew,Impl::multLinkAdd);
@ -109,6 +114,7 @@ void StaggeredKernels<Impl>::DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
GENERIC_STENCIL_LEG(UUU,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Tm,skew,Impl::multLinkAdd);
}
if ( dag ) {
Uchi = - Uchi;
}
@ -120,9 +126,10 @@ void StaggeredKernels<Impl>::DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
// Only contributions from interior of our node
///////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &lo,
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag) {
const SiteSpinor *chi_p;
SiteSpinor chi;
@ -131,8 +138,9 @@ void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &
int ptype;
int skew ;
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
// for(int s=0;s<LLs;s++){
// int sF=LLs*sU+s;
{
skew = 0;
Uchi=Zero();
GENERIC_STENCIL_LEG_INT(U,Xp,skew,Impl::multLinkAdd);
@ -143,6 +151,7 @@ void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &
GENERIC_STENCIL_LEG_INT(U,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Tm,skew,Impl::multLinkAdd);
if ( Naik ) {
skew=8;
GENERIC_STENCIL_LEG_INT(UUU,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Yp,skew,Impl::multLinkAdd);
@ -152,6 +161,7 @@ void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &
GENERIC_STENCIL_LEG_INT(UUU,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Tm,skew,Impl::multLinkAdd);
}
if ( dag ) {
Uchi = - Uchi;
}
@ -164,9 +174,10 @@ void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &
// Only contributions from exterior of our node
///////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &lo,
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag) {
const SiteSpinor *chi_p;
// SiteSpinor chi;
@ -176,8 +187,9 @@ void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &
int nmu=0;
int skew ;
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
// for(int s=0;s<LLs;s++){
// int sF=LLs*sU+s;
{
skew = 0;
Uchi=Zero();
GENERIC_STENCIL_LEG_EXT(U,Xp,skew,Impl::multLinkAdd);
@ -188,6 +200,7 @@ void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &
GENERIC_STENCIL_LEG_EXT(U,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Tm,skew,Impl::multLinkAdd);
if ( Naik ) {
skew=8;
GENERIC_STENCIL_LEG_EXT(UUU,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Yp,skew,Impl::multLinkAdd);
@ -197,7 +210,7 @@ void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &
GENERIC_STENCIL_LEG_EXT(UUU,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Tm,skew,Impl::multLinkAdd);
}
if ( nmu ) {
if ( dag ) {
out[sF] = out[sF] - Uchi;
@ -211,72 +224,9 @@ void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &
////////////////////////////////////////////////////////////////////////////////////
// Driving / wrapping routine to select right kernel
////////////////////////////////////////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,
int interior,int exterior)
{
int dag=1;
DhopSite(st,lo,U,UUU,buf,LLs,sU,in,out,dag,interior,exterior);
};
template <class Impl>
void StaggeredKernels<Impl>::DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,
int interior,int exterior)
{
int dag=0;
DhopSite(st,lo,U,UUU,buf,LLs,sU,in,out,dag,interior,exterior);
};
template <class Impl>
void StaggeredKernels<Impl>::DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionFieldView &in, FermionFieldView &out,
int dag,int interior,int exterior)
{
switch(Opt) {
#ifdef AVX512
case OptInlineAsm:
if ( interior && exterior ) {
DhopSiteAsm(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else {
std::cout << GridLogError << "Cannot overlap comms and compute with Staggered assembly"<<std::endl;
assert(0);
}
break;
#endif
case OptHandUnroll:
if ( interior && exterior ) {
DhopSiteHand (st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( interior ) {
DhopSiteHandInt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( exterior ) {
DhopSiteHandExt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
}
break;
case OptGeneric:
if ( interior && exterior ) {
DhopSiteGeneric (st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( interior ) {
DhopSiteGenericInt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( exterior ) {
DhopSiteGenericExt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
}
break;
default:
std::cout<<"Oops Opt = "<<Opt<<std::endl;
assert(0);
break;
}
};
template <class Impl>
void StaggeredKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int disp)
template <class Impl>
void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp)
{
// Disp should be either +1,-1,+3,-3
// What about "dag" ?
@ -285,6 +235,108 @@ void StaggeredKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeFieldVi
assert(0);
}
#define KERNEL_CALLNB(A,improved) \
const uint64_t NN = Nsite*Ls; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
ThisKernel:: template A<improved>(st_v,U_v,UUU_v,buf,sF,sU,in_v,out_v,dag); \
});
#define KERNEL_CALL(A,improved) KERNEL_CALLNB(A,improved); accelerator_barrier();
#define ASM_CALL(A) \
const uint64_t NN = Nsite*Ls; \
thread_for( ss, NN, { \
int sF = ss; \
int sU = ss/Ls; \
ThisKernel::A(st_v,U_v,UUU_v,buf,sF,sU,in_v,out_v,dag); \
});
template <class Impl>
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{
GridBase *FGrid=in.Grid();
GridBase *UGrid=U.Grid();
typedef StaggeredKernels<Impl> ThisKernel;
autoView( UUU_v , UUU, AcceleratorRead);
autoView( U_v , U, AcceleratorRead);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( st_v , st, AcceleratorRead);
SiteSpinor * buf = st.CommBuf();
int Ls=1;
if(FGrid->Nd()==UGrid->Nd()+1){
Ls = FGrid->_rdimensions[0];
}
int Nsite = UGrid->oSites();
if( interior && exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
if (Opt == OptInlineAsm ) { ASM_CALL(DhopSiteAsm); return;}
#endif
} else if( interior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1); return;}
#endif
} else if( exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1); return;}
#endif
}
assert(0 && " Kernel optimisation case not covered ");
}
template <class Impl>
void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{
GridBase *FGrid=in.Grid();
GridBase *UGrid=U.Grid();
typedef StaggeredKernels<Impl> ThisKernel;
autoView( UUU_v , U, AcceleratorRead);
autoView( U_v , U, AcceleratorRead);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( st_v , st, AcceleratorRead);
SiteSpinor * buf = st.CommBuf();
int Ls=1;
if(FGrid->Nd()==UGrid->Nd()+1){
Ls = FGrid->_rdimensions[0];
}
int Nsite = UGrid->oSites();
if( interior && exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0); return;}
#endif
} else if( interior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0); return;}
#endif
} else if( exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0); return;}
#endif
}
}
#undef KERNEL_CALLNB
#undef KERNEL_CALL
#undef ASM_CALL
NAMESPACE_END(Grid);

View File

@ -98,32 +98,35 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
Coordinate lcoor;
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
for (int site = 0; site < lvol; site++)
{
grid->LocalIndexToLocalCoor(site, lcoor);
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
peekLocalSite(Qx, CloverTerm, lcoor);
Qxinv = Zero();
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
EigenInvCloverOp = EigenCloverOp.inverse();
//std::cout << EigenInvCloverOp << std::endl;
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CloverTermInv, lcoor);
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
for (int site = 0; site < lvol; site++) {
grid->LocalIndexToLocalCoor(site, lcoor);
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
peekLocalSite(Qx, CTv, lcoor);
Qxinv = Zero();
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
EigenInvCloverOp = EigenCloverOp.inverse();
//std::cout << EigenInvCloverOp << std::endl;
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CTIv, lcoor);
}
}
// Separate the even and odd parts

View File

@ -580,16 +580,21 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
cosha = (one + W*W + sk) / (abs(W)*2.0);
// FIXME Need a Lattice acosh
for(int idx=0;idx<_grid->lSites();idx++){
Coordinate lcoor(Nd);
Tcomplex cc;
// RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a,lcoor);
{
autoView(cosha_v,cosha,CpuRead);
autoView(a_v,a,CpuWrite);
for(int idx=0;idx<_grid->lSites();idx++){
Coordinate lcoor(Nd);
Tcomplex cc;
// RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha_v,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a_v,lcoor);
}
}
Wea = ( exp( a) * abs(W) );
@ -775,17 +780,20 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
cosha = (one + W*W + sk) / (abs(W)*2.0);
// FIXME Need a Lattice acosh
{
autoView(cosha_v,cosha,CpuRead);
autoView(a_v,a,CpuWrite);
for(int idx=0;idx<_grid->lSites();idx++){
Coordinate lcoor(Nd);
Tcomplex cc;
// RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha,lcoor);
peekLocalSite(cc,cosha_v,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a,lcoor);
}
pokeLocalSite(cc,a_v,lcoor);
}}
Wea = ( exp( a) * abs(W) );
Wema= ( exp(-a) * abs(W) );

View File

@ -43,7 +43,7 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p,
const WilsonAnisotropyCoefficients &anis)
:
:
Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
@ -67,11 +67,101 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
diag_mass = 4.0 + mass;
}
int vol4;
vol4=Fgrid.oSites();
Stencil.BuildSurfaceList(1,vol4);
vol4=Hgrid.oSites();
StencilEven.BuildSurfaceList(1,vol4);
StencilOdd.BuildSurfaceList(1,vol4);
}
template<class Impl>
void WilsonFermion<Impl>::Report(void)
{
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
RealD volume = 1;
Coordinate latt = _grid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion Number of DhopEO Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1320*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1320*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
}
if ( DerivCalls > 0 ) {
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
std::cout << GridLogMessage << "WilsonFermion Number of Deriv Calls : " <<DerivCalls <<std::endl;
std::cout << GridLogMessage << "WilsonFermion CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
// how to count flops here?
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call ? : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node ? : " << mflops/NP << std::endl;
// how to count flops here?
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) ? : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full) ? : " << Fullmflops/NP << std::endl; }
if (DerivCalls > 0 || DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "WilsonFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
if ( DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
}
}
template<class Impl>
void WilsonFermion<Impl>::ZeroCounters(void) {
DhopCalls = 0; // ok
DhopCommTime = 0;
DhopComputeTime = 0;
DhopComputeTime2= 0;
DhopFaceTime = 0;
DhopTotalTime = 0;
DerivCalls = 0; // ok
DerivCommTime = 0;
DerivComputeTime = 0;
DerivDhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
Stencil.ZeroCountersi();
StencilEven.ZeroCountersi();
StencilOdd.ZeroCountersi();
}
template <class Impl>
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu.Grid());
@ -102,7 +192,7 @@ void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
/////////////////////////////
template <class Impl>
void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerNo);
@ -110,7 +200,7 @@ void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerYes);
@ -118,7 +208,7 @@ void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
@ -128,7 +218,7 @@ void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
@ -136,9 +226,9 @@ void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(diag_mass);
@ -146,80 +236,80 @@ void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(diag_mass))*in;
}
template<class Impl>
void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
template<class Impl>
void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m,std::vector<double> twist)
{
{
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
// what type LatticeComplex
// what type LatticeComplex
conformable(_grid,out.Grid());
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
Coordinate latt_size = _grid->_fdimensions;
FermionField num (_grid); num = Zero();
LatComplex wilson(_grid); wilson= Zero();
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex denom(_grid); denom= Zero();
LatComplex kmu(_grid);
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
// momphase = n * 2pi / L
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
wilson = wilson + 2.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in); // derivative term
denom=denom + sin(kmu)*sin(kmu);
}
wilson = wilson + _m; // 2 sin^2 k/2 + m
num = num + wilson*in; // -i gmu sin k + 2 sin^2 k/2 + m
denom= denom+wilson*wilson; // sin^2 k + (2 sin^2 k/2 + m)^2
denom= one/denom;
out = num*denom; // [ -i gmu sin k + 2 sin^2 k/2 + m] / [ sin^2 k + (2 sin^2 k/2 + m)^2 ]
}
///////////////////////////////////
// Internal
@ -229,6 +319,7 @@ template <class Impl>
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
GaugeField &mat, const FermionField &A,
const FermionField &B, int dag) {
DerivCalls++;
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
@ -237,8 +328,11 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
FermionField Atilde(B.Grid());
Atilde = A;
DerivCommTime-=usecond();
st.HaloExchange(B, compressor);
DerivCommTime+=usecond();
DerivComputeTime-=usecond();
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma (1+g)<->(1-g) if dag
@ -246,6 +340,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
int gamma = mu;
if (!dag) gamma += Nd;
DerivDhopComputeTime -= usecond();
int Ls=1;
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
@ -253,11 +348,13 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
// spin trace outer product
//////////////////////////////////////////////////
Impl::InsertForce4D(mat, Btilde, Atilde, mu);
DerivDhopComputeTime += usecond();
}
DerivComputeTime += usecond();
}
template <class Impl>
void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
conformable(U.Grid(), _grid);
conformable(U.Grid(), V.Grid());
@ -269,13 +366,13 @@ void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, cons
}
template <class Impl>
void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
conformable(U.Grid(), _cbgrid);
conformable(U.Grid(), V.Grid());
//conformable(U.Grid(), mat.Grid()); not general, leaving as a comment (Guido)
// Motivation: look at the SchurDiff operator
assert(V.Checkerboard() == Even);
assert(U.Checkerboard() == Odd);
mat.Checkerboard() = Odd;
@ -284,7 +381,7 @@ void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, co
}
template <class Impl>
void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
conformable(U.Grid(), _cbgrid);
conformable(U.Grid(), V.Grid());
@ -298,7 +395,7 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
}
template <class Impl>
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
@ -309,7 +406,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
}
template <class Impl>
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -321,7 +418,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
}
template <class Impl>
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -333,18 +430,18 @@ void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int d
}
template <class Impl>
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
{
DhopDir(in, out, dir, disp);
}
template <class Impl>
void WilsonFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
void WilsonFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
{
DhopDirAll(in, out);
}
template <class Impl>
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in, compressor);
@ -356,12 +453,12 @@ void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int
DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
};
template <class Impl>
void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in, compressor);
assert((out.size()==8)||(out.size()==9));
assert((out.size()==8)||(out.size()==9));
for(int dir=0;dir<Nd;dir++){
for(int disp=-1;disp<=1;disp+=2){
@ -374,7 +471,7 @@ void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<Fermion
}
}
template <class Impl>
void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
{
int Ls=1;
uint64_t Nsite=in.oSites();
@ -385,22 +482,23 @@ template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
FermionField &out, int dag)
{
DhopTotalTime-=usecond();
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
#endif
DhopInternalSerial(st,lo,U,in,out,dag);
DhopTotalTime+=usecond();
}
template <class Impl>
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
@ -412,38 +510,53 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
/////////////////////////////
std::vector<std::vector<CommsRequest_t> > requests;
st.Prepare();
DhopFaceTime-=usecond();
st.HaloGather(in,compressor);
DhopFaceTime+=usecond();
DhopCommTime -=usecond();
st.CommunicateBegin(requests);
/////////////////////////////
// Overlap with comms
/////////////////////////////
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+=usecond();
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt;
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
}
}
DhopComputeTime+=usecond();
/////////////////////////////
// Complete comms
/////////////////////////////
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
/////////////////////////////
// do the compute exterior
/////////////////////////////
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
}
DhopComputeTime2+=usecond();
};
@ -451,24 +564,28 @@ template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
DhopCommTime-=usecond();
st.HaloExchange(in, compressor);
DhopCommTime+=usecond();
DhopComputeTime-=usecond();
int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
}
DhopComputeTime+=usecond();
};
/*Change ends */
/*******************************************************************************
* Conserved current utilities for Wilson fermions, for contracting propagators
* to make a conserved current sink or inserting the conserved current
* to make a conserved current sink or inserting the conserved current
* sequentially.
******************************************************************************/
template <class Impl>
@ -483,103 +600,23 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
conformable(_grid, q_in_1.Grid());
conformable(_grid, q_in_2.Grid());
conformable(_grid, q_out.Grid());
#if 0
PropagatorField tmp1(_grid), tmp2(_grid);
q_out = Zero();
// Forward, need q1(x + mu), q2(x). Backward, need q1(x), q2(x + mu).
// Inefficient comms method but not performance critical.
tmp1 = Cshift(q_in_1, mu, 1);
tmp2 = Cshift(q_in_2, mu, 1);
auto tmp1_v = tmp1.View();
auto tmp2_v = tmp2.View();
auto q_in_1_v=q_in_1.View();
auto q_in_2_v=q_in_2.View();
auto q_out_v = q_out.View();
auto Umu_v = Umu.View();
thread_for(sU, Umu.Grid()->oSites(),{
Kernels::ContractConservedCurrentSiteFwd(tmp1_v[sU],
q_in_2_v[sU],
q_out_v[sU],
Umu_v, sU, mu);
Kernels::ContractConservedCurrentSiteBwd(q_in_1_v[sU],
tmp2_v[sU],
q_out_v[sU],
Umu_v, sU, mu);
});
#else
#endif
assert(0);
}
template <class Impl>
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{
conformable(_grid, q_in.Grid());
conformable(_grid, q_out.Grid());
#if 0
// Lattice<iSinglet<Simd>> ph(_grid), coor(_grid);
Complex i(0.0,1.0);
PropagatorField tmpFwd(_grid), tmpBwd(_grid), tmp(_grid);
unsigned int tshift = (mu == Tp) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
q_out = Zero();
LatticeInteger coords(_grid);
LatticeCoordinate(coords, Tp);
// Need q(x + mu) and q(x - mu).
tmp = Cshift(q_in, mu, 1);
tmpFwd = tmp*lattice_cmplx;
tmp = lattice_cmplx*q_in;
tmpBwd = Cshift(tmp, mu, -1);
auto coords_v = coords.View();
auto tmpFwd_v = tmpFwd.View();
auto tmpBwd_v = tmpBwd.View();
auto Umu_v = Umu.View();
auto q_out_v = q_out.View();
thread_for(sU, Umu.Grid()->oSites(), {
// Compute the sequential conserved current insertion only if our simd
// object contains a timeslice we need.
vPredicate t_mask;
t_mask() = ((coords_v[sU] >= tmin) && (coords_v[sU] <= tmax));
Integer timeSlices = Reduce(t_mask());
if (timeSlices > 0) {
Kernels::SeqConservedCurrentSiteFwd(tmpFwd_v[sU],
q_out_v[sU],
Umu_v, sU, mu, t_mask);
}
// Repeat for backward direction.
t_mask() = ((coords_v[sU] >= (tmin + tshift)) &&
(coords_v[sU] <= (tmax + tshift)));
//if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3)
unsigned int t0 = 0;
if((tmax==LLt-1) && (tshift==1)) t_mask() = (t_mask() || (coords_v[sU] == t0 ));
timeSlices = Reduce(t_mask());
if (timeSlices > 0) {
Kernels::SeqConservedCurrentSiteBwd(tmpBwd_v[sU],
q_out_v[sU],
Umu_v, sU, mu, t_mask);
}
});
#else
#endif
assert(0);
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1,574 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernelsAsmA64FX.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
//#if defined(A64FXASM)
#if defined(A64FX)
// safety include
#include <arm_sve.h>
// undefine everything related to kernels
#include <simd/Fujitsu_A64FX_undef.h>
// enable A64FX body
#define WILSONKERNELSASMBODYA64FX
//#pragma message("A64FX Dslash: WilsonKernelsAsmBodyA64FX.h")
///////////////////////////////////////////////////////////
// If we are A64FX specialise the single precision routine
///////////////////////////////////////////////////////////
#if defined(DSLASHINTRIN)
//#pragma message ("A64FX Dslash: intrin")
#include <simd/Fujitsu_A64FX_intrin_single.h>
#else
#pragma message ("A64FX Dslash: asm")
#include <simd/Fujitsu_A64FX_asm_single.h>
#endif
/// Switch off the 5d vectorised code optimisations
#undef DWFVEC5D
/////////////////////////////////////////////////////////////////
// XYZT vectorised, undag Kernel, single
/////////////////////////////////////////////////////////////////
#undef KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, single
/////////////////////////////////////////////////////////////////
#define KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
// undefine
#include <simd/Fujitsu_A64FX_undef.h>
///////////////////////////////////////////////////////////
// If we are A64FX specialise the double precision routine
///////////////////////////////////////////////////////////
#if defined(DSLASHINTRIN)
#include <simd/Fujitsu_A64FX_intrin_double.h>
#else
#include <simd/Fujitsu_A64FX_asm_double.h>
#endif
// former KNL
//#define MAYBEPERM(A,perm) if (perm) { A ; }
//#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN(ptr,pf)
//#define COMPLEX_SIGNS(isigns) vComplexD *isigns = &signsD[0];
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
/////////////////////////////////////////////////////////////////
// XYZT vectorised, undag Kernel, double
/////////////////////////////////////////////////////////////////
#undef KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, double
/////////////////////////////////////////////////////////////////
#define KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
// undefs
#undef WILSONKERNELSASMBODYA64FX
#include <simd/Fujitsu_A64FX_undef.h>
#endif //A64FXASM

View File

@ -0,0 +1,380 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: WilsonKernelsAsmBodyA64FX.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifdef KERNEL_DAG
#define DIR0_PROJ XP_PROJ
#define DIR1_PROJ YP_PROJ
#define DIR2_PROJ ZP_PROJ
#define DIR3_PROJ TP_PROJ
#define DIR4_PROJ XM_PROJ
#define DIR5_PROJ YM_PROJ
#define DIR6_PROJ ZM_PROJ
#define DIR7_PROJ TM_PROJ
#define DIR0_RECON XP_RECON
#define DIR1_RECON YP_RECON_ACCUM
#define DIR2_RECON ZP_RECON_ACCUM
#define DIR3_RECON TP_RECON_ACCUM
#define DIR4_RECON XM_RECON_ACCUM
#define DIR5_RECON YM_RECON_ACCUM
#define DIR6_RECON ZM_RECON_ACCUM
#define DIR7_RECON TM_RECON_ACCUM
#else
#define DIR0_PROJ XM_PROJ
#define DIR1_PROJ YM_PROJ
#define DIR2_PROJ ZM_PROJ
#define DIR3_PROJ TM_PROJ
#define DIR4_PROJ XP_PROJ
#define DIR5_PROJ YP_PROJ
#define DIR6_PROJ ZP_PROJ
#define DIR7_PROJ TP_PROJ
#define DIR0_RECON XM_RECON
#define DIR1_RECON YM_RECON_ACCUM
#define DIR2_RECON ZM_RECON_ACCUM
#define DIR3_RECON TM_RECON_ACCUM
#define DIR4_RECON XP_RECON_ACCUM
#define DIR5_RECON YP_RECON_ACCUM
#define DIR6_RECON ZP_RECON_ACCUM
#define DIR7_RECON TP_RECON_ACCUM
#endif
//using namespace std;
#undef SHOW
//#define SHOW
#undef WHERE
#ifdef INTERIOR_AND_EXTERIOR
#define WHERE "INT_AND_EXT"
#endif
#ifdef INTERIOR
#define WHERE "INT"
#endif
#ifdef EXTERIOR
#define WHERE "EXT"
#endif
//#pragma message("here")
////////////////////////////////////////////////////////////////////////////////
// Comms then compute kernel
////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR_AND_EXTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD_CHIMU(base); \
LOAD_TABLE(PERMUTE_DIR); \
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
} else { \
LOAD_CHI(base); \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
PREFETCH_CHIMU_L2(basep); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PREFETCH1_CHIMU(base); \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif
////////////////////////////////////////////////////////////////////////////////
// Pre comms kernel -- prefetch like normal because it is mostly right
////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD_CHIMU(base); \
LOAD_TABLE(PERMUTE_DIR); \
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
}else if ( st.same_node[Dir] ) {LOAD_CHI(base);} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
if ( local || st.same_node[Dir] ) { \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
PREFETCH_CHIMU_L2(basep); \
} else { PREFETCH_CHIMU(base); } \
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PREFETCH1_CHIMU(base); \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif
////////////////////////////////////////////////////////////////////////////////
// Post comms kernel
////////////////////////////////////////////////////////////////////////////////
#ifdef EXTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
nmu++; \
}
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
nmu=0; \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++;\
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
nmu++; \
}
#define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
#endif
{
int nmu;
int local,perm, ptype;
uint64_t base;
uint64_t basep;
const uint64_t plocal =(uint64_t) & in[0];
MASK_REGS;
int nmax=U.oSites();
for(int site=0;site<Ns;site++) {
#ifndef EXTERIOR
// int sU =lo.Reorder(ssU);
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
// int sUn=lo.Reorder(ssn);
int sUn=ssn;
LOCK_GAUGE(0);
#else
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
int sUn=ssn;
#endif
for(int s=0;s<Ls;s++) {
ss =sU*Ls+s;
ssn=sUn*Ls+s;
int ent=ss*8;// 2*Ndim
int nent=ssn*8;
uint64_t delta_base, delta_base_p;
ASM_LEG_XP(Xp,Yp,PERMUTE_DIR3,DIR0_PROJ,DIR0_RECON);
#ifdef SHOW
float rescale = 64. * 12.;
std::cout << "=================================================================" << std::endl;
std::cout << "ss = " << ss << " ssn = " << ssn << std::endl;
std::cout << "sU = " << sU << " ssU = " << ssU << std::endl;
std::cout << " " << std::endl;
std::cout << "Dir = " << Xp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Xp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Yp,Zp,PERMUTE_DIR2,DIR1_PROJ,DIR1_RECON);
#ifdef SHOW
std::cout << "Dir = " << Yp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Yp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Zp,Tp,PERMUTE_DIR1,DIR2_PROJ,DIR2_RECON);
#ifdef SHOW
std::cout << "Dir = " << Zp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Zp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Tp,Xm,PERMUTE_DIR0,DIR3_PROJ,DIR3_RECON);
#ifdef SHOW
std::cout << "Dir = " << Tp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Tp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Xm,Ym,PERMUTE_DIR3,DIR4_PROJ,DIR4_RECON);
#ifdef SHOW
std::cout << "Dir = " << Xm << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Xm] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Ym,Zm,PERMUTE_DIR2,DIR5_PROJ,DIR5_RECON);
#ifdef SHOW
std::cout << "Dir = " << Ym << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Ym] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Zm,Tm,PERMUTE_DIR1,DIR6_PROJ,DIR6_RECON);
#ifdef SHOW
std::cout << "Dir = " << Zm << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Zm] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Tm,Xp,PERMUTE_DIR0,DIR7_PROJ,DIR7_RECON);
#ifdef SHOW
std::cout << "Dir = " << Tm << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Tm] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
#ifdef EXTERIOR
if (nmu==0) break;
// if (nmu!=0) std::cout << "EXT "<<sU<<std::endl;
#endif
base = (uint64_t) &out[ss];
basep= st.GetPFInfo(nent,plocal); ent++;
basep = (uint64_t) &out[ssn];
RESULT(base,basep);
#ifdef SHOW
std::cout << "Dir = FINAL " << WHERE<< std::endl;;
base_ss = base;
std::cout << "base = " << (base - (uint64_t) &out[0])/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
}
ssU++;
UNLOCK_GAUGE(0);
}
}
#undef DIR0_PROJ
#undef DIR1_PROJ
#undef DIR2_PROJ
#undef DIR3_PROJ
#undef DIR4_PROJ
#undef DIR5_PROJ
#undef DIR6_PROJ
#undef DIR7_PROJ
#undef DIR0_RECON
#undef DIR1_RECON
#undef DIR2_RECON
#undef DIR3_RECON
#undef DIR4_RECON
#undef DIR5_RECON
#undef DIR6_RECON
#undef DIR7_RECON
#undef ASM_LEG
#undef ASM_LEG_XP
#undef RESULT

View File

@ -646,7 +646,7 @@ NAMESPACE_BEGIN(Grid);
HAND_RESULT_EXT(ss,F)
#define HAND_SPECIALISE_GPARITY(IMPL) \
template<> void \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
{ \
@ -662,7 +662,7 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
{ \
@ -678,7 +678,7 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE_DAG(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
{ \
@ -694,7 +694,7 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
{ \
@ -710,7 +710,7 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE_DAG_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
{ \
@ -727,7 +727,7 @@ NAMESPACE_BEGIN(Grid);
nmu = 0; \
HAND_DOP_SITE_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
template<> void \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
{ \

View File

@ -495,7 +495,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Impl> void
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
@ -519,7 +519,7 @@ WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,Site
HAND_RESULT(ss);
}
template<class Impl>
template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
@ -542,7 +542,7 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView
HAND_RESULT(ss);
}
template<class Impl> void
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
@ -566,7 +566,7 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_RESULT(ss);
}
template<class Impl>
template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
@ -589,7 +589,7 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldVi
HAND_RESULT(ss);
}
template<class Impl> void
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
@ -614,7 +614,7 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_RESULT_EXT(ss);
}
template<class Impl>
template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{

View File

@ -0,0 +1,943 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernelsHand.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
#undef LOAD_CHIMU
#undef LOAD_CHI
#undef MULT_2SPIN
#undef PERMUTE_DIR
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XP_RECON_ACCUM
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef ZERO_RESULT
#undef Chimu_00
#undef Chimu_01
#undef Chimu_02
#undef Chimu_10
#undef Chimu_11
#undef Chimu_12
#undef Chimu_20
#undef Chimu_21
#undef Chimu_22
#undef Chimu_30
#undef Chimu_31
#undef Chimu_32
#undef HAND_STENCIL_LEG
#undef HAND_STENCIL_LEG_INT
#undef HAND_STENCIL_LEG_EXT
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT
#define REGISTER
#define LOAD_CHIMU \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
Chimu_02=ref()(0)(2);\
Chimu_10=ref()(1)(0);\
Chimu_11=ref()(1)(1);\
Chimu_12=ref()(1)(2);\
Chimu_20=ref()(2)(0);\
Chimu_21=ref()(2)(1);\
Chimu_22=ref()(2)(2);\
Chimu_30=ref()(3)(0);\
Chimu_31=ref()(3)(1);\
Chimu_32=ref()(3)(2);\
std::cout << std::endl << "DEBUG -- LOAD_CHIMU" << std::endl; \
std::cout << "Chimu_00 -- " << Chimu_00 << std::endl; \
std::cout << "Chimu_01 -- " << Chimu_01 << std::endl; \
std::cout << "Chimu_02 -- " << Chimu_02 << std::endl; \
std::cout << "Chimu_10 -- " << Chimu_10 << std::endl; \
std::cout << "Chimu_11 -- " << Chimu_11 << std::endl; \
std::cout << "Chimu_12 -- " << Chimu_12 << std::endl; \
std::cout << "Chimu_20 -- " << Chimu_20 << std::endl; \
std::cout << "Chimu_21 -- " << Chimu_21 << std::endl; \
std::cout << "Chimu_22 -- " << Chimu_22 << std::endl; \
std::cout << "Chimu_30 -- " << Chimu_30 << std::endl; \
std::cout << "Chimu_31 -- " << Chimu_31 << std::endl; \
std::cout << "Chimu_32 -- " << Chimu_32 << std::endl; \
}
#define LOAD_CHI\
{const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = ref()(0)(0);\
Chi_01 = ref()(0)(1);\
Chi_02 = ref()(0)(2);\
Chi_10 = ref()(1)(0);\
Chi_11 = ref()(1)(1);\
Chi_12 = ref()(1)(2);\
std::cout << std::endl << "DEBUG -- LOAD_CHI" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl; \
}
// To splat or not to splat depends on the implementation
#define MULT_2SPIN(A)\
{auto & ref(U[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
Impl::loadLinkElement(U_01,ref()(0,1)); \
Impl::loadLinkElement(U_11,ref()(1,1)); \
Impl::loadLinkElement(U_21,ref()(2,1)); \
UChi_00 = U_00*Chi_00;\
UChi_10 = U_00*Chi_10;\
UChi_01 = U_10*Chi_00;\
UChi_11 = U_10*Chi_10;\
UChi_02 = U_20*Chi_00;\
UChi_12 = U_20*Chi_10;\
UChi_00+= U_01*Chi_01;\
UChi_10+= U_01*Chi_11;\
UChi_01+= U_11*Chi_01;\
UChi_11+= U_11*Chi_11;\
UChi_02+= U_21*Chi_01;\
UChi_12+= U_21*Chi_11;\
Impl::loadLinkElement(U_00,ref()(0,2)); \
Impl::loadLinkElement(U_10,ref()(1,2)); \
Impl::loadLinkElement(U_20,ref()(2,2)); \
UChi_00+= U_00*Chi_02;\
UChi_10+= U_00*Chi_12;\
UChi_01+= U_10*Chi_02;\
UChi_11+= U_10*Chi_12;\
UChi_02+= U_20*Chi_02;\
UChi_12+= U_20*Chi_12;\
std::cout << std::endl << "DEBUG -- MULT_2SPIN" << std::endl; \
std::cout << "UChi_00 -- " << UChi_00 << std::endl; \
std::cout << "UChi_01 -- " << UChi_01 << std::endl; \
std::cout << "UChi_02 -- " << UChi_02 << std::endl; \
std::cout << "UChi_10 -- " << UChi_10 << std::endl; \
std::cout << "UChi_11 -- " << UChi_11 << std::endl; \
std::cout << "UChi_12 -- " << UChi_12 << std::endl; \
}
#define PERMUTE_DIR(dir) \
std::cout << std::endl << "DEBUG -- PERM PRE" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl; \
permute##dir(Chi_00,Chi_00);\
permute##dir(Chi_01,Chi_01);\
permute##dir(Chi_02,Chi_02);\
permute##dir(Chi_10,Chi_10);\
permute##dir(Chi_11,Chi_11);\
permute##dir(Chi_12,Chi_12);\
std::cout << std::endl << "DEBUG -- PERM POST" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
// hspin(0)=fspin(0)+timesI(fspin(3));
// hspin(1)=fspin(1)+timesI(fspin(2));
#define XP_PROJ \
Chi_00 = Chimu_00+timesI(Chimu_30);\
Chi_01 = Chimu_01+timesI(Chimu_31);\
Chi_02 = Chimu_02+timesI(Chimu_32);\
Chi_10 = Chimu_10+timesI(Chimu_20);\
Chi_11 = Chimu_11+timesI(Chimu_21);\
Chi_12 = Chimu_12+timesI(Chimu_22);\
std::cout << std::endl << "DEBUG -- XP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define YP_PROJ \
Chi_00 = Chimu_00-Chimu_30;\
Chi_01 = Chimu_01-Chimu_31;\
Chi_02 = Chimu_02-Chimu_32;\
Chi_10 = Chimu_10+Chimu_20;\
Chi_11 = Chimu_11+Chimu_21;\
Chi_12 = Chimu_12+Chimu_22;\
std::cout << std::endl << "DEBUG -- YP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define ZP_PROJ \
Chi_00 = Chimu_00+timesI(Chimu_20); \
Chi_01 = Chimu_01+timesI(Chimu_21); \
Chi_02 = Chimu_02+timesI(Chimu_22); \
Chi_10 = Chimu_10-timesI(Chimu_30); \
Chi_11 = Chimu_11-timesI(Chimu_31); \
Chi_12 = Chimu_12-timesI(Chimu_32);\
std::cout << std::endl << "DEBUG -- ZP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define TP_PROJ \
Chi_00 = Chimu_00+Chimu_20; \
Chi_01 = Chimu_01+Chimu_21; \
Chi_02 = Chimu_02+Chimu_22; \
Chi_10 = Chimu_10+Chimu_30; \
Chi_11 = Chimu_11+Chimu_31; \
Chi_12 = Chimu_12+Chimu_32;\
std::cout << std::endl << "DEBUG -- TP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
// hspin(0)=fspin(0)-timesI(fspin(3));
// hspin(1)=fspin(1)-timesI(fspin(2));
#define XM_PROJ \
Chi_00 = Chimu_00-timesI(Chimu_30);\
Chi_01 = Chimu_01-timesI(Chimu_31);\
Chi_02 = Chimu_02-timesI(Chimu_32);\
Chi_10 = Chimu_10-timesI(Chimu_20);\
Chi_11 = Chimu_11-timesI(Chimu_21);\
Chi_12 = Chimu_12-timesI(Chimu_22);\
std::cout << std::endl << "DEBUG -- XM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define YM_PROJ \
Chi_00 = Chimu_00+Chimu_30;\
Chi_01 = Chimu_01+Chimu_31;\
Chi_02 = Chimu_02+Chimu_32;\
Chi_10 = Chimu_10-Chimu_20;\
Chi_11 = Chimu_11-Chimu_21;\
Chi_12 = Chimu_12-Chimu_22;\
std::cout << std::endl << "DEBUG -- YM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define ZM_PROJ \
Chi_00 = Chimu_00-timesI(Chimu_20); \
Chi_01 = Chimu_01-timesI(Chimu_21); \
Chi_02 = Chimu_02-timesI(Chimu_22); \
Chi_10 = Chimu_10+timesI(Chimu_30); \
Chi_11 = Chimu_11+timesI(Chimu_31); \
Chi_12 = Chimu_12+timesI(Chimu_32);\
std::cout << std::endl << "DEBUG -- ZM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define TM_PROJ \
Chi_00 = Chimu_00-Chimu_20; \
Chi_01 = Chimu_01-Chimu_21; \
Chi_02 = Chimu_02-Chimu_22; \
Chi_10 = Chimu_10-Chimu_30; \
Chi_11 = Chimu_11-Chimu_31; \
Chi_12 = Chimu_12-Chimu_32;\
std::cout << std::endl << "DEBUG -- TM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
// fspin(0)=hspin(0);
// fspin(1)=hspin(1);
// fspin(2)=timesMinusI(hspin(1));
// fspin(3)=timesMinusI(hspin(0));
#define XP_RECON\
result_00 = UChi_00;\
result_01 = UChi_01;\
result_02 = UChi_02;\
result_10 = UChi_10;\
result_11 = UChi_11;\
result_12 = UChi_12;\
result_20 = timesMinusI(UChi_10);\
result_21 = timesMinusI(UChi_11);\
result_22 = timesMinusI(UChi_12);\
result_30 = timesMinusI(UChi_00);\
result_31 = timesMinusI(UChi_01);\
result_32 = timesMinusI(UChi_02);\
std::cout << std::endl << "DEBUG -- XP_RECON" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define XP_RECON_ACCUM\
result_00+=UChi_00;\
result_01+=UChi_01;\
result_02+=UChi_02;\
result_10+=UChi_10;\
result_11+=UChi_11;\
result_12+=UChi_12;\
result_20-=timesI(UChi_10);\
result_21-=timesI(UChi_11);\
result_22-=timesI(UChi_12);\
result_30-=timesI(UChi_00);\
result_31-=timesI(UChi_01);\
result_32-=timesI(UChi_02);\
std::cout << std::endl << "DEBUG -- XP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define XM_RECON\
result_00 = UChi_00;\
result_01 = UChi_01;\
result_02 = UChi_02;\
result_10 = UChi_10;\
result_11 = UChi_11;\
result_12 = UChi_12;\
result_20 = timesI(UChi_10);\
result_21 = timesI(UChi_11);\
result_22 = timesI(UChi_12);\
result_30 = timesI(UChi_00);\
result_31 = timesI(UChi_01);\
result_32 = timesI(UChi_02);\
std::cout << std::endl << "DEBUG -- XM_RECON" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define XM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= timesI(UChi_10);\
result_21+= timesI(UChi_11);\
result_22+= timesI(UChi_12);\
result_30+= timesI(UChi_00);\
result_31+= timesI(UChi_01);\
result_32+= timesI(UChi_02);\
std::cout << std::endl << "DEBUG -- XM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define YP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= UChi_10;\
result_21+= UChi_11;\
result_22+= UChi_12;\
result_30-= UChi_00;\
result_31-= UChi_01;\
result_32-= UChi_02;\
std::cout << std::endl << "DEBUG -- YP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define YM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= UChi_10;\
result_21-= UChi_11;\
result_22-= UChi_12;\
result_30+= UChi_00;\
result_31+= UChi_01;\
result_32+= UChi_02;\
std::cout << std::endl << "DEBUG -- YM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define ZP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= timesI(UChi_00); \
result_21-= timesI(UChi_01); \
result_22-= timesI(UChi_02); \
result_30+= timesI(UChi_10); \
result_31+= timesI(UChi_11); \
result_32+= timesI(UChi_12);\
std::cout << std::endl << "DEBUG -- ZP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define ZM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= timesI(UChi_00); \
result_21+= timesI(UChi_01); \
result_22+= timesI(UChi_02); \
result_30-= timesI(UChi_10); \
result_31-= timesI(UChi_11); \
result_32-= timesI(UChi_12);\
std::cout << std::endl << "DEBUG -- ZM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define TP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= UChi_00; \
result_21+= UChi_01; \
result_22+= UChi_02; \
result_30+= UChi_10; \
result_31+= UChi_11; \
result_32+= UChi_12;\
std::cout << std::endl << "DEBUG -- TP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define TM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= UChi_00; \
result_21-= UChi_01; \
result_22-= UChi_02; \
result_30-= UChi_10; \
result_31-= UChi_11; \
result_32-= UChi_12;\
std::cout << std::endl << "DEBUG -- TM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
vstream(ref()(0)(0),result_00); \
vstream(ref()(0)(1),result_01); \
vstream(ref()(0)(2),result_02); \
vstream(ref()(1)(0),result_10); \
vstream(ref()(1)(1),result_11); \
vstream(ref()(1)(2),result_12); \
vstream(ref()(2)(0),result_20); \
vstream(ref()(2)(1),result_21); \
vstream(ref()(2)(2),result_22); \
vstream(ref()(3)(0),result_30); \
vstream(ref()(3)(1),result_31); \
vstream(ref()(3)(2),result_32); \
std::cout << std::endl << "DEBUG -- RESULT" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;\
}
#define HAND_RESULT_EXT(ss) \
if (nmu){ \
SiteSpinor & ref (out[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
std::cout << std::endl << "DEBUG -- RESULT EXT" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;\
}
#define HAND_DECLARATIONS(a) \
Simd result_00; \
Simd result_01; \
Simd result_02; \
Simd result_10; \
Simd result_11; \
Simd result_12; \
Simd result_20; \
Simd result_21; \
Simd result_22; \
Simd result_30; \
Simd result_31; \
Simd result_32; \
Simd Chi_00; \
Simd Chi_01; \
Simd Chi_02; \
Simd Chi_10; \
Simd Chi_11; \
Simd Chi_12; \
Simd UChi_00; \
Simd UChi_01; \
Simd UChi_02; \
Simd UChi_10; \
Simd UChi_11; \
Simd UChi_12; \
Simd U_00; \
Simd U_10; \
Simd U_20; \
Simd U_01; \
Simd U_11; \
Simd U_21;\
Simd debugreg;\
svbool_t pg1; \
pg1 = svptrue_b64(); \
#define ZERO_RESULT \
result_00=Zero(); \
result_01=Zero(); \
result_02=Zero(); \
result_10=Zero(); \
result_11=Zero(); \
result_12=Zero(); \
result_20=Zero(); \
result_21=Zero(); \
result_22=Zero(); \
result_30=Zero(); \
result_31=Zero(); \
result_32=Zero();
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
NAMESPACE_BEGIN(Grid);
template<class Impl> void
WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset,local,perm, ptype;
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT_EXT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT_EXT(ss);
}
////////////// Wilson ; uses this implementation /////////////////////
NAMESPACE_END(Grid);
#undef LOAD_CHIMU
#undef LOAD_CHI
#undef MULT_2SPIN
#undef PERMUTE_DIR
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XP_RECON_ACCUM
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef ZERO_RESULT
#undef Chimu_00
#undef Chimu_01
#undef Chimu_02
#undef Chimu_10
#undef Chimu_11
#undef Chimu_12
#undef Chimu_20
#undef Chimu_21
#undef Chimu_22
#undef Chimu_30
#undef Chimu_31
#undef Chimu_32
#undef HAND_STENCIL_LEG
#undef HAND_STENCIL_LEG_INT
#undef HAND_STENCIL_LEG_EXT
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT

View File

@ -39,19 +39,21 @@ NAMESPACE_BEGIN(Grid);
// Generic implementation; move to different file?
////////////////////////////////////////////
/*
accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
{
#ifdef __CUDA_ARCH__
static_assert(sizeof(StencilEntry)==sizeof(uint4),"Unexpected Stencil Entry Size");
#ifdef GRID_SIMT
static_assert(sizeof(StencilEntry)==sizeof(uint4),"Unexpected Stencil Entry Size");
uint4 * mem_pun = (uint4 *)mem; // force 128 bit loads
uint4 * chip_pun = (uint4 *)&chip;
* chip_pun = * mem_pun;
#else
#else
chip = *mem;
#endif
return;
}
*/
#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
@ -61,10 +63,10 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
synchronise(); \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
@ -74,12 +76,12 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} else if ( st.same_node[Dir] ) { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
synchronise(); \
acceleratorSynchronise(); \
if (SE->_is_local || st.same_node[Dir] ) { \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
} \
synchronise();
acceleratorSynchronise();
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
@ -89,7 +91,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
Recon(result, Uchi); \
nmu++; \
} \
synchronise();
acceleratorSynchronise();
#define GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon) \
if (SE->_is_local ) { \
@ -99,9 +101,9 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
synchronise(); \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, dir, SE, st); \
Recon(result, Uchi);
Recon(result, Uchi);
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
@ -112,7 +114,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
@ -126,7 +128,7 @@ void WilsonKernels<Impl>::GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldV
StencilEntry *SE;
int ptype;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
GENERIC_STENCIL_LEG(Xp,spProjXp,spReconXp);
GENERIC_STENCIL_LEG(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG(Zp,spProjZp,accumReconZp);
@ -138,10 +140,10 @@ void WilsonKernels<Impl>::GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldV
coalescedWrite(out[sF],result,lane);
};
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -153,7 +155,7 @@ void WilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView
int ptype;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
GENERIC_STENCIL_LEG(Xm,spProjXp,spReconXp);
GENERIC_STENCIL_LEG(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG(Zm,spProjZp,accumReconZp);
@ -167,7 +169,7 @@ void WilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView
////////////////////////////////////////////////////////////////////
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
@ -181,7 +183,7 @@ void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFi
StencilEntry *SE;
int ptype;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_INT(Xp,spProjXp,accumReconXp);
@ -195,15 +197,15 @@ void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFi
coalescedWrite(out[sF], result,lane);
};
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
calcHalfSpinor chi;
// calcHalfSpinor *chi_p;
@ -225,7 +227,7 @@ void WilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeField
////////////////////////////////////////////////////////////////////
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
@ -239,7 +241,7 @@ void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFi
int ptype;
int nmu=0;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Yp,spProjYp,accumReconYp);
@ -249,17 +251,17 @@ void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFi
GENERIC_STENCIL_LEG_EXT(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tm,spProjTm,accumReconTm);
if ( nmu ) {
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
}
};
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -270,7 +272,7 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
int ptype;
int nmu=0;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Ym,spProjYp,accumReconYp);
@ -280,7 +282,7 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
GENERIC_STENCIL_LEG_EXT(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tp,spProjTm,accumReconTm);
if ( nmu ) {
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
@ -288,7 +290,7 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
};
#define DhopDirMacro(Dir,spProj,spRecon) \
template <class Impl> \
template <class Impl> accelerator_inline \
void WilsonKernels<Impl>::DhopDir##Dir(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF, \
int sU, const FermionFieldView &in, FermionFieldView &out, int dir) \
{ \
@ -300,12 +302,12 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
StencilEntry *SE; \
int ptype; \
const int Nsimd = SiteHalfSpinor::Nsimd(); \
const int lane=SIMTlane(Nsimd); \
const int lane=acceleratorSIMTlane(Nsimd); \
\
SE = st.GetEntry(ptype, dir, sF); \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,spRecon); \
coalescedWrite(out[sF], result,lane); \
}
}
DhopDirMacro(Xp,spProjXp,spReconXp);
DhopDirMacro(Yp,spProjYp,spReconYp);
@ -316,9 +318,9 @@ DhopDirMacro(Ym,spProjYm,spReconYm);
DhopDirMacro(Zm,spProjZm,spReconZm);
DhopDirMacro(Tm,spProjTm,spReconTm);
template <class Impl>
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -328,7 +330,7 @@ void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,Si
StencilEntry *SE;
int ptype;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=SIMTlane(Nsimd);
const int lane=acceleratorSIMTlane(Nsimd);
SE = st.GetEntry(ptype, dir, sF);
GENERIC_DHOPDIR_LEG(Xp,spProjXp,spReconXp);
@ -344,54 +346,55 @@ void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,Si
template <class Impl>
void WilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out)
int Nsite, const FermionField &in, std::vector<FermionField> &out)
{
auto U_v = U.View();
auto in_v = in.View();
auto st_v = st.View();
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(st_v ,st,AcceleratorRead);
auto out_Xm = out[0].View();
auto out_Ym = out[1].View();
auto out_Zm = out[2].View();
auto out_Tm = out[3].View();
auto out_Xp = out[4].View();
auto out_Yp = out[5].View();
auto out_Zp = out[6].View();
auto out_Tp = out[7].View();
accelerator_forNB(sss,Nsite*Ls,Simd::Nsimd(),{
int sU=sss/Ls;
int sF =sss;
DhopDirXm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Xm,0);
DhopDirYm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Ym,1);
DhopDirZm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Zm,2);
DhopDirTm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Tm,3);
DhopDirXp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Xp,4);
DhopDirYp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Yp,5);
DhopDirZp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Zp,6);
DhopDirTp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Tp,7);
autoView(out_Xm,out[0],AcceleratorWrite);
autoView(out_Ym,out[1],AcceleratorWrite);
autoView(out_Zm,out[2],AcceleratorWrite);
autoView(out_Tm,out[3],AcceleratorWrite);
autoView(out_Xp,out[4],AcceleratorWrite);
autoView(out_Yp,out[5],AcceleratorWrite);
autoView(out_Zp,out[6],AcceleratorWrite);
autoView(out_Tp,out[7],AcceleratorWrite);
auto CBp=st.CommBuf();
accelerator_for(sss,Nsite*Ls,Simd::Nsimd(),{
int sU=sss/Ls;
int sF =sss;
DhopDirXm(st_v,U_v,CBp,sF,sU,in_v,out_Xm,0);
DhopDirYm(st_v,U_v,CBp,sF,sU,in_v,out_Ym,1);
DhopDirZm(st_v,U_v,CBp,sF,sU,in_v,out_Zm,2);
DhopDirTm(st_v,U_v,CBp,sF,sU,in_v,out_Tm,3);
DhopDirXp(st_v,U_v,CBp,sF,sU,in_v,out_Xp,4);
DhopDirYp(st_v,U_v,CBp,sF,sU,in_v,out_Yp,5);
DhopDirZp(st_v,U_v,CBp,sF,sU,in_v,out_Zp,6);
DhopDirTp(st_v,U_v,CBp,sF,sU,in_v,out_Tp,7);
});
}
template <class Impl>
void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
{
assert(dirdisp<=7);
assert(dirdisp>=0);
auto U_v = U.View();
auto in_v = in.View();
auto out_v = out.View();
auto st_v = st.View();
autoView(U_v ,U ,AcceleratorRead);
autoView(in_v ,in ,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st ,AcceleratorRead);
auto CBp=st.CommBuf();
#define LoopBody(Dir) \
case Dir : \
accelerator_forNB(ss,Nsite,Simd::Nsimd(),{ \
case Dir : \
accelerator_for(ss,Nsite,Simd::Nsimd(),{ \
for(int s=0;s<Ls;s++){ \
int sU=ss; \
int sF = s+Ls*sU; \
DhopDir##Dir(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_v,dirdisp);\
DhopDir##Dir(st_v,U_v,CBp,sF,sU,in_v,out_v,dirdisp);\
} \
}); \
break;
@ -411,7 +414,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
break;
}
#undef LoopBody
}
}
#define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \
@ -421,7 +424,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
});
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define ASM_CALL(A) \
thread_for( ss, Nsite, { \
@ -433,28 +436,28 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
int interior,int exterior)
{
auto U_v = U.View();
auto in_v = in.View();
auto out_v = out.View();
auto st_v = st.View();
autoView(U_v , U,AcceleratorRead);
autoView(in_v , in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
if( interior && exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
#ifndef GRID_NVCC
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSite); return;}
#endif
} else if( interior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALLNB(GenericDhopSiteInt); return;}
#ifndef GRID_NVCC
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALLNB(HandDhopSiteInt); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
#endif
} else if( exterior ) {
} else if( exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteExt); return;}
#ifndef GRID_NVCC
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteExt); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteExt); return;}
#endif
@ -464,28 +467,28 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
template <class Impl>
void WilsonKernels<Impl>::DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
int interior,int exterior)
{
auto U_v = U.View();
auto in_v = in.View();
auto out_v = out.View();
auto st_v = st.View();
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st,AcceleratorRead);
if( interior && exterior ) {
if( interior && exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDag); return;}
#ifndef GRID_NVCC
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;}
#endif
} else if( interior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;}
#ifndef GRID_NVCC
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
#endif
} else if( exterior ) {
} else if( exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
#ifndef GRID_NVCC
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
#endif
@ -493,5 +496,8 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
assert(0 && " Kernel optimisation case not covered ");
}
NAMESPACE_END(Grid);
#undef KERNEL_CALLNB
#undef KERNEL_CALL
#undef ASM_CALL
NAMESPACE_END(Grid);

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion.cc
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
NAMESPACE_END(Grid);

View File

@ -0,0 +1,37 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/NaiveStaggeredFermion.cc
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/implementation/NaiveStaggeredFermionImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class NaiveStaggeredFermion<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1 @@
../NaiveStaggeredFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../NaiveStaggeredFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -4,11 +4,12 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -34,14 +35,17 @@ directory
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

Some files were not shown because too many files have changed in this diff Show More