mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Compare commits
	
		
			300 Commits
		
	
	
		
			release/0.
			...
			hotfix/vir
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 5d7e0d18b9 | |||
| 4072408b6f | |||
| bd76b47fbf | |||
| 18ce23aa75 | |||
| 
						 | 
					ffa7fe0cc2 | ||
| 
						 | 
					6b979f0a69 | ||
| 
						 | 
					fc4db5e963 | ||
| 
						 | 
					6252ffaf76 | ||
| 
						 | 
					af64c1c6b6 | ||
| 
						 | 
					866f48391a | ||
| 
						 | 
					a4df527d74 | ||
| 
						 | 
					5764d21161 | ||
| 
						 | 
					496d04cd85 | ||
| 
						 | 
					10e6d7c6ce | ||
| 
						 | 
					c42e25e5b8 | ||
| 
						 | 
					58e020b62a | ||
| 
						 | 
					a7e1aceeca | ||
| 
						 | 
					7212432f43 | ||
| 
						 | 
					4a261fab30 | ||
| 
						 | 
					6af97069b9 | ||
| 
						 | 
					5068413cdb | ||
| 
						 | 
					71c6960eea | ||
| 
						 | 
					ddf6d5c9e3 | ||
| 
						 | 
					900e01f49b | ||
| 
						 | 
					2376156fbc | ||
| 
						 | 
					5c85774ee3 | ||
| 
						 | 
					d8a9a745d8 | ||
| 
						 | 
					dcf172da3b | ||
| 
						 | 
					d57ed25071 | ||
| 
						 | 
					8a1b9073f9 | ||
| 
						 | 
					1a7114d4b9 | ||
| 
						 | 
					3f385f717c | ||
| 
						 | 
					c180a52518 | ||
| 
						 | 
					90130e25e9 | ||
| 
						 | 
					23298acb81 | ||
| 
						 | 
					52384e34cf | ||
| 
						 | 
					d0bb033ea2 | ||
| 
						 | 
					c6621806ca | ||
| 
						 | 
					0b6f0f6d2f | ||
| 
						 | 
					b5b759df73 | ||
| 
						 | 
					7db8dd7a95 | ||
| 
						 | 
					8b43be39c0 | ||
| 
						 | 
					f17f879206 | ||
| 
						 | 
					68428fceab | ||
| 
						 | 
					4135f2dcd1 | ||
| 
						 | 
					c5bdf61215 | ||
| 
						 | 
					88e218e8ee | ||
| 
						 | 
					0f2b786436 | ||
| 
						 | 
					e1c326558a | ||
| 
						 | 
					a997d24743 | ||
| 
						 | 
					861e5d7f4c | ||
| 
						 | 
					14cc142a14 | ||
| 
						 | 
					f36b87deb5 | ||
| 
						 | 
					eeb6e0a6e3 | ||
| 
						 | 
					cad5b187dd | ||
| 
						 | 
					87697eb07e | ||
| 
						 | 
					83d86943db | ||
| 
						 | 
					e82cf1d311 | ||
| 
						 | 
					1db58a8acc | ||
| 
						 | 
					472ed2dd5c | ||
| 
						 | 
					4f85672674 | ||
| 
						 | 
					dc747c54be | ||
| 
						 | 
					140684d706 | ||
| 
						 | 
					5bb7ba92fa | ||
| 
						 | 
					b54d0f3c73 | ||
| 
						 | 
					ff6777a98d | ||
| 
						 | 
					dc6a38f177 | ||
| 
						 | 
					82c1ecf60f | ||
| 
						 | 
					67f569354e | ||
| 
						 | 
					5fa573dfd3 | ||
| 
						 | 
					f6402cb6c4 | ||
| 
						 | 
					bae6c263dc | ||
| 
						 | 
					d71672dca9 | ||
| 
						 | 
					121c9e2ceb | ||
| 
						 | 
					63a30ae34f | ||
| 
						 | 
					7d8231ba32 | ||
| 
						 | 
					b690b1cbe9 | ||
| 
						 | 
					c0fb20fc03 | ||
| 
						 | 
					bc9579dac6 | ||
| 
						 | 
					a5c77f8b95 | ||
| 
						 | 
					3dbfce5223 | ||
| 
						 | 
					e51eaedc56 | ||
| 
						 | 
					e2a938e7f7 | ||
| 
						 | 
					ddad25211b | ||
| 
						 | 
					6209120de9 | ||
| 
						 | 
					fe6e8f5ac6 | ||
| 
						 | 
					ee84dcb400 | ||
| 
						 | 
					0ae0e5f436 | ||
| 
						 | 
					e047616571 | ||
| 
						 | 
					1af7572c61 | ||
| 
						 | 
					653039695b | ||
| 
						 | 
					ca62abd203 | ||
| 
						 | 
					e74666a09c | ||
| 
						 | 
					45a001e078 | ||
| 
						 | 
					0352da34f0 | ||
| 
						 | 
					7d302a525d | ||
| 
						 | 
					e2e269e03b | ||
| 
						 | 
					0db4f1803f | ||
| 
						 | 
					5fe480d81c | ||
| 
						 | 
					0566fc6267 | ||
| 
						 | 
					a11c12e2e7 | ||
| 
						 | 
					006268f556 | ||
| 
						 | 
					78acae9b50 | ||
| 
						 | 
					a3927a8a27 | ||
| 
						 | 
					d9dd9a5b5f | ||
| 
						 | 
					eae1c02111 | ||
| 
						 | 
					132d841b05 | ||
| 
						 | 
					2e8c3b0ddb | ||
| 
						 | 
					991667ba5e | ||
| 
						 | 
					8a07b52009 | ||
| 
						 | 
					2bcff94b52 | ||
| 
						 | 
					d089739e2f | ||
| 
						 | 
					204c283e16 | ||
| 
						 | 
					551a5f8dc8 | ||
| 
						 | 
					c82b164f6b | ||
| 
						 | 
					584a3ee45c | ||
| 
						 | 
					eec0c9eb7d | ||
| 
						 | 
					66d001ec9e | ||
| 
						 | 
					fad2f969d9 | ||
| 
						 | 
					48165c1dc1 | ||
| 
						 | 
					25df2d2c3b | ||
| 
						 | 
					af9ecb8b41 | ||
| 
						 | 
					234324599e | ||
| 
						 | 
					97448a93dc | ||
| 
						 | 
					70c83ec3be | ||
| 
						 | 
					8f4e2ee545 | ||
| 
						 | 
					e8bfbf2f7c | ||
| 
						 | 
					9e81b42981 | ||
| 
						 | 
					6c9eef9726 | ||
| 
						 | 
					7ffbc3e98e | ||
| 
						 | 
					68e4d833dd | ||
| 
						 | 
					a2cefaa53a | ||
| 
						 | 
					a0d682687e | ||
| 
						 | 
					eb552c3ecd | ||
| 
						 | 
					97cce103d7 | ||
| 
						 | 
					87ac7104f8 | ||
| 
						 | 
					e4c117aabf | ||
| 
						 | 
					5b128a6f9f | ||
| 
						 | 
					19da647e3c | ||
| 
						 | 
					1713de35c0 | ||
| 
						 | 
					1177b8f661 | ||
| 
						 | 
					442bfb3d42 | ||
| 
						 | 
					e7d9b75fdd | ||
| 
						 | 
					3d0e3ec363 | ||
| 
						 | 
					3c1c51f9aa | ||
| 
						 | 
					8cc3c522c3 | ||
| 
						 | 
					5c87342108 | ||
| 
						 | 
					66177bfbe2 | ||
| 
						 | 
					5205e68963 | ||
| 
						 | 
					cd5cf6d614 | ||
| 
						 | 
					5abb19eab0 | ||
| 
						 | 
					06d7b88c78 | ||
| 
						 | 
					cf72799735 | ||
| 
						 | 
					cdb8fcc269 | ||
| 
						 | 
					b4f4130901 | ||
| 
						 | 
					bb049847d5 | ||
| 
						 | 
					fd33c835dd | ||
| 
						 | 
					21371a7e5b | ||
| 
						 | 
					abfaa00d3e | ||
| 
						 | 
					efee33c55d | ||
| 
						 | 
					db0fe6ddbb | ||
| 
						 | 
					8a9e647120 | ||
| 
						 | 
					e6dcb821ad | ||
| 
						 | 
					9bff188f02 | ||
| 
						 | 
					111b30ca1d | ||
| 
						 | 
					24182ca8bf | ||
| 
						 | 
					ee2d7369b3 | ||
| 
						 | 
					7c686d29c9 | ||
| 
						 | 
					e8a0a1e75d | ||
| 
						 | 
					730be89abf | ||
| 
						 | 
					f991ad7d5c | ||
| 
						 | 
					b3f33f82f7 | ||
| 
						 | 
					a34a6e059f | ||
| 
						 | 
					1333319941 | ||
| 
						 | 
					9295ed8d20 | ||
| 
						 | 
					19cc7653fb | ||
| 
						 | 
					5752538661 | ||
| 
						 | 
					ca40a1b00b | ||
| 
						 | 
					659fac9dfb | ||
| 
						 | 
					4dc3d6fce0 | ||
| 
						 | 
					95b640cb6b | ||
| 
						 | 
					2cb5bedc15 | ||
| 
						 | 
					806b02bddf | ||
| 
						 | 
					de40395773 | ||
| 
						 | 
					7ba4788715 | ||
| 
						 | 
					06d9ce1a02 | ||
| 
						 | 
					75bb6b2b40 | ||
| 
						 | 
					74f10c2dc0 | ||
| 
						 | 
					a93d5459d4 | ||
| 
						 | 
					9c21add0c6 | ||
| 
						 | 
					639aab6563 | ||
| 
						 | 
					8137cc7049 | ||
| 
						 | 
					60e63dca1d | ||
| 
						 | 
					486409574e | ||
| 
						 | 
					a913b8be12 | ||
| 
						 | 
					2239751850 | ||
| 
						 | 
					9b20f1449c | ||
| 
						 | 
					b99453083d | ||
| 
						 | 
					943fbb914d | ||
| 
						 | 
					ca4603580d | ||
| 
						 | 
					f73db8f1f3 | ||
| 
						 | 
					f7217d12d2 | ||
| 
						 | 
					fab50c57d9 | ||
| 
						 | 
					3440534fbf | ||
| 
						 | 
					177b1a7ec6 | ||
| 
						 | 
					58182fe345 | ||
| 
						 | 
					1f907d330d | ||
| 
						 | 
					b0fe664e9d | ||
| 
						 | 
					c0f8482402 | ||
| 
						 | 
					3544965f54 | ||
| 
						 | 
					33e4a0caee | ||
| 
						 | 
					1f903d9296 | ||
| 
						 | 
					4df1e0987f | ||
| 
						 | 
					588c2f3cb1 | ||
| 
						 | 
					bd99fd608c | ||
| 
						 | 
					57b442d0de | ||
| 
						 | 
					751a4562d7 | ||
| 
						 | 
					ca66301dee | ||
| 
						 | 
					808bb59206 | ||
| 
						 | 
					4b7f51d19d | ||
| 
						 | 
					d03152fac4 | ||
| 
						 | 
					137f190258 | ||
| 
						 | 
					53d01312b3 | ||
| 
						 | 
					220050822a | ||
| 
						 | 
					87ad76d81b | ||
| 
						 | 
					4ac1094856 | ||
| 
						 | 
					d44a57b0af | ||
| 
						 | 
					dc000d10ee | ||
| 
						 | 
					3685f391cf | ||
| 
						 | 
					efd7338a00 | ||
| 
						 | 
					e1e7b1e224 | ||
| 
						 | 
					7319d4e1ad | ||
| 
						 | 
					fd933420c6 | ||
| 
						 | 
					8208a6214f | ||
| 
						 | 
					3d8146b596 | ||
| 
						 | 
					31efa5c4da | ||
| 
						 | 
					d10d30dda8 | ||
| 
						 | 
					0e9666bc92 | ||
| 
						 | 
					6efd80f104 | ||
| 
						 | 
					fdef7a1a8c | ||
| 
						 | 
					501bb117bf | ||
| 
						 | 
					05ca7dc252 | ||
| 
						 | 
					e9648a1635 | ||
| 
						 | 
					9a9f4a111f | ||
| 
						 | 
					1ad54d049d | ||
| 
						 | 
					57bd0a0a22 | ||
| 
						 | 
					b49db84b08 | ||
| 
						 | 
					583f7c52f3 | ||
| 
						 | 
					58a86c9164 | ||
| 
						 | 
					a25b32847f | ||
| 
						 | 
					6f1a2e132b | ||
| 
						 | 
					b1ede7b46d | ||
| 
						 | 
					e762c940c2 | ||
| 
						 | 
					6a1a198144 | ||
| 
						 | 
					34faa39f4f | ||
| 
						 | 
					5ddea3829d | ||
| 
						 | 
					7eb29cf529 | ||
| 
						 | 
					f729b9b889 | ||
| 
						 | 
					4f997c5f04 | ||
| 
						 | 
					d3496d2fe0 | ||
| 
						 | 
					60f4cb0ffd | ||
| 
						 | 
					136d843ce7 | ||
| 
						 | 
					18028f4309 | ||
| 
						 | 
					5164016740 | ||
| 
						 | 
					d83beaa890 | ||
| 
						 | 
					f9f05e995b | ||
| 
						 | 
					e651b9e7ab | ||
| 
						 | 
					47b4e91473 | ||
| 
						 | 
					3f31afa4fc | ||
| 
						 | 
					f82ce67624 | ||
| 
						 | 
					b52e8ef65a | ||
| 
						 | 
					2594e3c230 | ||
| 
						 | 
					8cedb45af2 | ||
| 
						 | 
					aa008cbe99 | ||
| 
						 | 
					6fb6ca5b6b | ||
| 
						 | 
					b8ee19691c | ||
| 
						 | 
					6121397587 | ||
| 
						 | 
					0417b96896 | ||
| 
						 | 
					81fe4c937e | ||
| 
						 | 
					f77f3a6598 | ||
| 
						 | 
					239afb18fb | ||
| 
						 | 
					ef820a26cd | ||
| 
						 | 
					65abe4d0d3 | ||
| 
						 | 
					5012adfebf | ||
| 
						 | 
					b808d48fa1 | ||
| 
						 | 
					83f818a99d | ||
| 
						 | 
					387397374a | ||
| 
						 | 
					bb5c16b97f | ||
| 
						 | 
					0d80eeb545 | ||
| 
						 | 
					b0f4eee78b | ||
| 
						 | 
					5340e50427 | ||
| 
						 | 
					0f1c5b08a1 | ||
| 
						 | 
					70988e43d2 | ||
| 
						 | 
					aab3bcb46f | ||
| 
						 | 
					da06d15f73 | ||
| 
						 | 
					e8b1251b8c | ||
| 
						 | 
					fad5a74a4b | ||
| 
						 | 
					e83f6a6ae9 | ||
| 
						 | 
					6283d11d50 | ||
| 
						 | 
					6616d5d090 | 
@@ -44,9 +44,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridStd.h>
 | 
			
		||||
#include <Grid/threads/Pragmas.h>
 | 
			
		||||
#include <Grid/perfmon/Timer.h>
 | 
			
		||||
#include <Grid/perfmon/PerfCount.h>
 | 
			
		||||
//#include <Grid/perfmon/PerfCount.h>
 | 
			
		||||
#include <Grid/util/Util.h>
 | 
			
		||||
#include <Grid/log/Log.h>
 | 
			
		||||
#include <Grid/perfmon/Tracing.h>
 | 
			
		||||
#include <Grid/allocator/Allocator.h>
 | 
			
		||||
#include <Grid/simd/Simd.h>
 | 
			
		||||
#include <Grid/threads/ThreadReduction.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/qcd/QCD.h>
 | 
			
		||||
#include <Grid/qcd/spin/Spin.h>
 | 
			
		||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
			
		||||
#include <Grid/qcd/utils/Utils.h>
 | 
			
		||||
#include <Grid/qcd/representations/Representations.h>
 | 
			
		||||
NAMESPACE_CHECK(GridQCDCore);
 | 
			
		||||
 
 | 
			
		||||
@@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -324,9 +324,9 @@ public:
 | 
			
		||||
  GridBase*        _cbgrid;
 | 
			
		||||
  int hermitian;
 | 
			
		||||
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> Stencil; 
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> StencilEven;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,int> StencilOdd;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil; 
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
 | 
			
		||||
 | 
			
		||||
  std::vector<CoarseMatrix> A;
 | 
			
		||||
  std::vector<CoarseMatrix> Aeven;
 | 
			
		||||
@@ -631,7 +631,7 @@ public:
 | 
			
		||||
    assert(Aself != nullptr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
			
		||||
                       const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    int point = geom.npoint-1;
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
@@ -694,7 +694,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
 | 
			
		||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
 | 
			
		||||
                    const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
@@ -784,9 +784,9 @@ public:
 | 
			
		||||
    _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,_cbgrid),
 | 
			
		||||
    Aodd(geom.npoint,_cbgrid),
 | 
			
		||||
@@ -804,9 +804,9 @@ public:
 | 
			
		||||
    _cbgrid(&CoarseRBGrid),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
			
		||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
    Aodd(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
 
 | 
			
		||||
@@ -526,6 +526,7 @@ public:
 | 
			
		||||
      (*this)(Linop,in[k],out[k]);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  virtual ~OperatorFunction(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class LinearFunction {
 | 
			
		||||
@@ -541,6 +542,7 @@ public:
 | 
			
		||||
      (*this)(in[i], out[i]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual ~LinearFunction(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
 | 
			
		||||
 
 | 
			
		||||
@@ -258,26 +258,12 @@ public:
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
#if 0
 | 
			
		||||
      auto y_v = y.View();
 | 
			
		||||
      auto Tn_v = Tn->View();
 | 
			
		||||
      auto Tnp_v = Tnp->View();
 | 
			
		||||
      auto Tnm_v = Tnm->View();
 | 
			
		||||
      constexpr int Nsimd = vector_type::Nsimd();
 | 
			
		||||
      accelerator_for(ss, in.Grid()->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
      });
 | 
			
		||||
      if ( Coeffs[n] != 0.0) {
 | 
			
		||||
	axpy(out,Coeffs[n],*Tnp,out);
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
      axpby(y,xscale,mscale,y,(*Tn));
 | 
			
		||||
      axpby(*Tnp,2.0,-1.0,y,(*Tnm));
 | 
			
		||||
      if ( Coeffs[n] != 0.0) {
 | 
			
		||||
	axpy(out,Coeffs[n],*Tnp,out);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
 
 | 
			
		||||
@@ -58,6 +58,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
@@ -117,9 +118,13 @@ public:
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    RealD usecs = -usecond();
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k;
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
      GridStopWatch IterationTimer;
 | 
			
		||||
      IterationTimer.Start();
 | 
			
		||||
      c = cp;
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
@@ -152,31 +157,41 @@ public:
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
			
		||||
      IterationTimer.Stop();
 | 
			
		||||
      if ( (k % 500) == 0 ) {
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
 | 
			
		||||
                << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
			
		||||
      } else { 
 | 
			
		||||
	std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
			
		||||
		  << " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	usecs +=usecond();
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
        Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
        p = mmp - src;
 | 
			
		||||
 | 
			
		||||
	GridBase *grid = src.Grid();
 | 
			
		||||
	RealD DwfFlops = (1452. )*grid->gSites()*4*k
 | 
			
		||||
   	               + (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
 | 
			
		||||
        RealD srcnorm = std::sqrt(norm2(src));
 | 
			
		||||
        RealD resnorm = std::sqrt(norm2(p));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k 
 | 
			
		||||
		  << "\tComputed residual " << std::sqrt(cp / ssq)
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogIterative << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
    RealD TrueResidual;
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
@@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
 | 
			
		||||
    TotalInnerIterations = 0;
 | 
			
		||||
	
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
@@ -97,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
    sol_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
@@ -105,7 +108,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
    precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
 | 
			
		||||
    
 | 
			
		||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
@@ -120,7 +126,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d);
 | 
			
		||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      sol_f = Zero();
 | 
			
		||||
@@ -130,6 +136,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	(*guesser)(src_f, sol_f);
 | 
			
		||||
 | 
			
		||||
      //Inner CG
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
      CG_f.Tolerance = inner_tol;
 | 
			
		||||
      InnerCGtimer.Start();
 | 
			
		||||
      CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
@@ -138,7 +145,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      
 | 
			
		||||
      //Convert sol back to double and add to double prec solution
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(tmp_d, sol_f);
 | 
			
		||||
      precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
			
		||||
@@ -150,6 +157,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
    TrueResidual = CG_d.TrueResidual;
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -44,7 +44,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  //  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
@@ -52,7 +52,7 @@ public:
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : 
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    shifts(_shifts)
 | 
			
		||||
  { 
 | 
			
		||||
@@ -84,6 +84,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShift");
 | 
			
		||||
  
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
  
 | 
			
		||||
@@ -182,6 +183,9 @@ public:
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
@@ -321,8 +325,8 @@ public:
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMarix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tAXPY     " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;	
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										373
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										373
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,373 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//PB Pure single, then double fixup
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterationsMshift;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq) : 
 | 
			
		||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
    MaxIterations(20000)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
 | 
			
		||||
    std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	psi_f[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      rsqf[s] =rsq[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      //      ps_d[s] = src_d;
 | 
			
		||||
      precisionChangeFast(ps_f[s],src_d);
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
    r_d = p_d;
 | 
			
		||||
    
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    precisionChangeFast(p_f,p_d);
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    precisionChangeFast(tmp_d,mmp_f);
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
      precisionChangeFast(psi_f[s],psi_d[s]);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
			
		||||
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChangeFast(r_f, r_d);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_f[s],a,ps_f[s],r_f);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChangeFast(p_f, p_d); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChangeFast(mmp_d, mmp_f); // From Float to Double
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
			
		||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
      RealD rn = norm2(p_d);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update single precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsqf[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	for(int s=0;s<nshift;s++){
 | 
			
		||||
	  precisionChangeFast(psi_d[s],psi_f[s]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	if ( all_converged ){
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										416
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										416
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,416 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
    
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//Linop to add shift to input linop, used in cleanup CG
 | 
			
		||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class ShiftedLinop: public LinearOperatorBase<Field>{
 | 
			
		||||
public:
 | 
			
		||||
  LinearOperatorBase<Field> &linop_base;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
 | 
			
		||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
			
		||||
  
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    linop_base.HermOp(in, out);
 | 
			
		||||
    axpy(out, shift, in, out);
 | 
			
		||||
  }    
 | 
			
		||||
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterationsMshift;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq) : 
 | 
			
		||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
    MaxIterations(20000)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
 | 
			
		||||
    
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      rsqf[s] =rsq[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps_d[s] = src_d;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
    r_d = p_d;
 | 
			
		||||
    
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    precisionChange(p_f, p_d, pc_wk_d_to_s);
 | 
			
		||||
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
			
		||||
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_d[s],a,ps_d[s],r_d);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
			
		||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p_d);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update double precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Perform reliable update if necessary; otherwise update residual from single-prec mmp
 | 
			
		||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k % ReliableUpdateFreq == 0){
 | 
			
		||||
	RealD c_old = c;
 | 
			
		||||
	//Replace r with true residual
 | 
			
		||||
	MatrixTimer.Start();  
 | 
			
		||||
	Linop_d.HermOp(psi_d[0],mmp_d); 
 | 
			
		||||
	MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
	AXPYTimer.Start();
 | 
			
		||||
	axpy(mmp_d,mass[0],psi_d[0],mmp_d);
 | 
			
		||||
 | 
			
		||||
	c = axpy_norm(r_d, -1.0, mmp_d, src_d);
 | 
			
		||||
	AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsqf[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	if ( all_converged ){
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -48,7 +48,7 @@ public:
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
  GridBase* SinglePrecGrid;
 | 
			
		||||
  RealD Delta; //reliable update parameter
 | 
			
		||||
  RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
 | 
			
		||||
 | 
			
		||||
  //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
			
		||||
  LinearOperatorBase<FieldF> *Linop_fallback;
 | 
			
		||||
@@ -65,7 +65,9 @@ public:
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv),
 | 
			
		||||
      DoFinalCleanup(true),
 | 
			
		||||
      Linop_fallback(NULL)
 | 
			
		||||
  {};
 | 
			
		||||
  {
 | 
			
		||||
    assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
			
		||||
    Linop_fallback = &_Linop_fallback;
 | 
			
		||||
@@ -73,6 +75,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  void operator()(const FieldD &src, FieldD &psi) {
 | 
			
		||||
    GRID_TRACE("ConjugateGradientReliableUpdate");
 | 
			
		||||
    LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
			
		||||
    bool using_fallback = false;
 | 
			
		||||
      
 | 
			
		||||
@@ -115,9 +118,12 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //Single prec initialization
 | 
			
		||||
    precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    r_f.Checkerboard() = r.Checkerboard();
 | 
			
		||||
    precisionChange(r_f, r);
 | 
			
		||||
    precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
			
		||||
 | 
			
		||||
    FieldF psi_f(r_f);
 | 
			
		||||
    psi_f = Zero();
 | 
			
		||||
@@ -133,7 +139,8 @@ public:
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k = 0;
 | 
			
		||||
    int l = 0;
 | 
			
		||||
@@ -172,7 +179,9 @@ public:
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	//Although not written in the paper, I assume that I have to add on the final solution
 | 
			
		||||
	precisionChange(mmp, psi_f);
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
	
 | 
			
		||||
	
 | 
			
		||||
@@ -193,7 +202,10 @@ public:
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
	ReliableUpdatesPerformed = l;
 | 
			
		||||
	  
 | 
			
		||||
@@ -213,14 +225,21 @@ public:
 | 
			
		||||
      else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
			
		||||
		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
			
		||||
	precisionChange(mmp, psi_f);
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
 | 
			
		||||
	MatrixTimer.Start();
 | 
			
		||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	MatrixTimer.Stop();
 | 
			
		||||
	
 | 
			
		||||
	r = src - mmp;
 | 
			
		||||
 | 
			
		||||
	psi_f = Zero();
 | 
			
		||||
	precisionChange(r_f, r);
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	cp = norm2(r);
 | 
			
		||||
	MaxResidSinceLastRelUp = cp;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										1412
									
								
								Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1412
									
								
								Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -44,6 +44,7 @@ public:
 | 
			
		||||
				  int, MinRes);    // Must restart
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//This class is the input parameter class for some testing programs
 | 
			
		||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
			
		||||
@@ -145,16 +146,24 @@ public:
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  RealD                             _coarse_relax_tol;
 | 
			
		||||
  std::vector<FineField>        &_subspace;
 | 
			
		||||
 | 
			
		||||
  int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
 | 
			
		||||
                                //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
 | 
			
		||||
                                //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
 | 
			
		||||
                                //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
 | 
			
		||||
                                //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
 | 
			
		||||
  
 | 
			
		||||
  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
			
		||||
					   OperatorFunction<FineField>   &smoother,
 | 
			
		||||
					   LinearOperatorBase<FineField> &Linop,
 | 
			
		||||
					   std::vector<FineField>        &subspace,
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3) 
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3,
 | 
			
		||||
					   int largestEvalIdxForReport=-1) 
 | 
			
		||||
    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol)  
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    CoarseField v(B);
 | 
			
		||||
@@ -177,12 +186,26 @@ public:
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
 | 
			
		||||
      std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
 | 
			
		||||
      RealD tmp_eval;
 | 
			
		||||
      ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
 | 
			
		||||
  //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
 | 
			
		||||
  //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
 | 
			
		||||
  //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
 | 
			
		||||
  //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)  
 | 
			
		||||
  {
 | 
			
		||||
    evalMaxApprox = 1.0; //cf above
 | 
			
		||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
			
		||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
			
		||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
			
		||||
@@ -201,13 +224,13 @@ public:
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    fv -= eval*fB;
 | 
			
		||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    if( (vv<eresid*eresid) ) return 1;
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -285,6 +308,10 @@ public:
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //The block inner product is the inner product on the fine grid locally summed over the blocks
 | 
			
		||||
  //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
 | 
			
		||||
  //vectors under the block inner product. This step must be performed after computing the fine grid
 | 
			
		||||
  //eigenvectors and before computing the coarse grid eigenvectors.    
 | 
			
		||||
  void Orthogonalise(void ) {
 | 
			
		||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
@@ -328,6 +355,8 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
 | 
			
		||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
@@ -376,25 +405,31 @@ public:
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
 | 
			
		||||
  //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
 | 
			
		||||
  //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
 | 
			
		||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
			
		||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
			
		||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op);
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1); 
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
			
		||||
 | 
			
		||||
    //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
@@ -405,6 +440,14 @@ public:
 | 
			
		||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Get the fine eigenvector 'i' by reconstruction
 | 
			
		||||
  void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
 | 
			
		||||
    blockPromote(evec_coarse[i],evec,subspace);  
 | 
			
		||||
    eval = evals_coarse[i];
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,6 +29,8 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. 
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
 
 | 
			
		||||
@@ -144,8 +144,8 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  assert(AccCache.accLock==0); // Cannot evict so logic bomb
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
  if (AccCache.cpuLock!=0) return;
 | 
			
		||||
  if(AccCache.state==AccDirty) {
 | 
			
		||||
    Flush(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
@@ -532,6 +532,7 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
    assert(AccCache.LRU_entry==it);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
			
		||||
 | 
			
		||||
  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
			
		||||
    auto &AccCache = it->second;
 | 
			
		||||
    
 | 
			
		||||
@@ -548,6 +549,7 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
    
 | 
			
		||||
    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
			
		||||
      assert(AccCache.LRU_valid==0);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
			
		||||
		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
			
		||||
		<< "\t cpuLock  " << AccCache.cpuLock
 | 
			
		||||
@@ -566,6 +568,7 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
			
		||||
  assert(LruCnt == LRU.size());
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::PrintState(void* _CpuPtr)
 | 
			
		||||
 
 | 
			
		||||
@@ -53,10 +53,11 @@ public:
 | 
			
		||||
  // Communicator should know nothing of the physics grid, only processor grid.
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  int              _Nprocessors;     // How many in all
 | 
			
		||||
  Coordinate _processors;      // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  int              _processor;       // linear processor rank
 | 
			
		||||
  Coordinate _processor_coor;  // linear processor coordinate
 | 
			
		||||
  unsigned long    _ndimension;
 | 
			
		||||
  Coordinate _shm_processors;  // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  Coordinate _processors;      // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  Coordinate _processor_coor;  // linear processor coordinate
 | 
			
		||||
  static Grid_MPI_Comm      communicator_world;
 | 
			
		||||
  Grid_MPI_Comm             communicator;
 | 
			
		||||
  std::vector<Grid_MPI_Comm> communicator_halo;
 | 
			
		||||
@@ -97,14 +98,16 @@ public:
 | 
			
		||||
  int                      BossRank(void)          ;
 | 
			
		||||
  int                      ThisRank(void)          ;
 | 
			
		||||
  const Coordinate & ThisProcessorCoor(void) ;
 | 
			
		||||
  const Coordinate & ShmGrid(void)  { return _shm_processors; }  ;
 | 
			
		||||
  const Coordinate & ProcessorGrid(void)     ;
 | 
			
		||||
  int                      ProcessorCount(void)    ;
 | 
			
		||||
  int                ProcessorCount(void)    ;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static int  RankWorld(void) ;
 | 
			
		||||
  static void BroadcastWorld(int root,void* data, int bytes);
 | 
			
		||||
  static void BarrierWorld(void);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reduction
 | 
			
		||||
@@ -128,7 +131,7 @@ public:
 | 
			
		||||
  template<class obj> void GlobalSum(obj &o){
 | 
			
		||||
    typedef typename obj::scalar_type scalar_type;
 | 
			
		||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
			
		||||
    scalar_type * ptr = (scalar_type *)& o;
 | 
			
		||||
    scalar_type * ptr = (scalar_type *)& o; // Safe alias 
 | 
			
		||||
    GlobalSumVector(ptr,words);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
@@ -142,17 +145,17 @@ public:
 | 
			
		||||
		      int bytes);
 | 
			
		||||
  
 | 
			
		||||
  double StencilSendToRecvFrom(void *xmit,
 | 
			
		||||
			       int xmit_to_rank,
 | 
			
		||||
			       int xmit_to_rank,int do_xmit,
 | 
			
		||||
			       void *recv,
 | 
			
		||||
			       int recv_from_rank,
 | 
			
		||||
			       int recv_from_rank,int do_recv,
 | 
			
		||||
			       int bytes,int dir);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				    void *xmit,
 | 
			
		||||
				    int xmit_to_rank,
 | 
			
		||||
				    int xmit_to_rank,int do_xmit,
 | 
			
		||||
				    void *recv,
 | 
			
		||||
				    int recv_from_rank,
 | 
			
		||||
				    int bytes,int dir);
 | 
			
		||||
				    int recv_from_rank,int do_recv,
 | 
			
		||||
				    int xbytes,int rbytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
			
		||||
 
 | 
			
		||||
@@ -106,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
  // Remap using the shared memory optimising routine
 | 
			
		||||
  // The remap creates a comm which must be freed
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm);
 | 
			
		||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm,_shm_processors);
 | 
			
		||||
  InitFromMPICommunicator(processors,optimal_comm);
 | 
			
		||||
  SetCommunicator(optimal_comm);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
@@ -124,12 +124,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
			
		||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
			
		||||
  Coordinate parent_processors    (_ndimension,1);
 | 
			
		||||
 | 
			
		||||
  Coordinate shm_processors       (_ndimension,1);
 | 
			
		||||
  // Can make 5d grid from 4d etc...
 | 
			
		||||
  int pad = _ndimension-parent_ndimension;
 | 
			
		||||
  for(int d=0;d<parent_ndimension;d++){
 | 
			
		||||
    parent_processor_coor[pad+d]=parent._processor_coor[d];
 | 
			
		||||
    parent_processors    [pad+d]=parent._processors[d];
 | 
			
		||||
    shm_processors       [pad+d]=parent._shm_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -154,6 +155,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
    ccoor[d] = parent_processor_coor[d] % processors[d];
 | 
			
		||||
    scoor[d] = parent_processor_coor[d] / processors[d];
 | 
			
		||||
    ssize[d] = parent_processors[d]     / processors[d];
 | 
			
		||||
    if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
 | 
			
		||||
@@ -335,23 +337,23 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int dest,
 | 
			
		||||
						     int dest, int dox,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int from,
 | 
			
		||||
						     int from, int dor,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,
 | 
			
		||||
							 int bytes,int dir)
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
@@ -370,37 +372,34 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
    tag= dir+from*32;
 | 
			
		||||
    ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(rrq);
 | 
			
		||||
    off_node_bytes+=bytes;
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
    tag= dir+_processor*32;
 | 
			
		||||
    ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    list.push_back(xrq);
 | 
			
		||||
    off_node_bytes+=bytes;
 | 
			
		||||
  } else {
 | 
			
		||||
    // TODO : make a OMP loop on CPU, call threaded bcopy
 | 
			
		||||
    void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
    assert(shm!=NULL);
 | 
			
		||||
    //    std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
 | 
			
		||||
    acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //  if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
 | 
			
		||||
  //    this->StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  //  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  //   std::cout << "Copy Synchronised\n"<<std::endl;
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
@@ -436,6 +435,10 @@ int CartesianCommunicator::RankWorld(void){
 | 
			
		||||
  MPI_Comm_rank(communicator_world,&r);
 | 
			
		||||
  return r;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void){
 | 
			
		||||
  int ierr = MPI_Barrier(communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
 
 | 
			
		||||
@@ -45,12 +45,14 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) 
 | 
			
		||||
  : CartesianCommunicator(processors) 
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  srank=0;
 | 
			
		||||
  SetCommunicator(communicator_world);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
@@ -102,6 +104,7 @@ int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
			
		||||
void CartesianCommunicator::Barrier(void){}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void) { }
 | 
			
		||||
int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
			
		||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
			
		||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
			
		||||
@@ -111,21 +114,21 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int xmit_to_rank,
 | 
			
		||||
						     int xmit_to_rank,int dox,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int recv_from_rank,
 | 
			
		||||
						     int recv_from_rank,int dor,
 | 
			
		||||
						     int bytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int xmit_to_rank,
 | 
			
		||||
							 int xmit_to_rank,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int recv_from_rank,
 | 
			
		||||
							 int bytes, int dir)
 | 
			
		||||
							 int recv_from_rank,int dor,
 | 
			
		||||
							 int xbytes,int rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
  return xbytes+rbytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -91,6 +91,59 @@ void *SharedMemory::ShmBufferSelf(void)
 | 
			
		||||
  //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
 | 
			
		||||
  return ShmCommBufs[ShmRank];
 | 
			
		||||
}
 | 
			
		||||
static inline int divides(int a,int b)
 | 
			
		||||
{
 | 
			
		||||
  return ( b == ( (b/a)*a ) );
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Allow user to configure through environment variable
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    std::vector<int> IntShmDims;
 | 
			
		||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
			
		||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    long ShmSize = 1;
 | 
			
		||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
			
		||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
			
		||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
    }
 | 
			
		||||
    assert(ShmSize == WorldShmSize);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension = WorldDims.size();
 | 
			
		||||
  ShmDims=Coordinate(ndimension,1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> primes({2,3,5});
 | 
			
		||||
 | 
			
		||||
  int dim = 0;
 | 
			
		||||
  int last_dim = ndimension - 1;
 | 
			
		||||
  int AutoShmSize = 1;
 | 
			
		||||
  while(AutoShmSize != WorldShmSize) {
 | 
			
		||||
    int p;
 | 
			
		||||
    for(p=0;p<primes.size();p++) {
 | 
			
		||||
      int prime=primes[p];
 | 
			
		||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
			
		||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
			
		||||
  AutoShmSize*=prime;
 | 
			
		||||
  ShmDims[dim]*=prime;
 | 
			
		||||
  last_dim = dim;
 | 
			
		||||
  break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if (p == primes.size() && last_dim == dim) {
 | 
			
		||||
      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
			
		||||
      exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
    dim=(dim+1) %ndimension;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -93,9 +93,10 @@ public:
 | 
			
		||||
  // Create an optimal reordered communicator that makes MPI_Cart_create get it right
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
 | 
			
		||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Provide shared memory facilities off comm world
 | 
			
		||||
 
 | 
			
		||||
@@ -29,6 +29,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <pwd.h>
 | 
			
		||||
#include <syscall.h>
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
#include <cuda_runtime_api.h>
 | 
			
		||||
@@ -153,7 +154,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
 | 
			
		||||
  }
 | 
			
		||||
  return log2size;
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
{
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Look and see if it looks like an HPE 8600 based on hostname conventions
 | 
			
		||||
@@ -166,63 +167,14 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
 | 
			
		||||
  gethostname(name,namelen);
 | 
			
		||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
			
		||||
 | 
			
		||||
  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
 | 
			
		||||
  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm);
 | 
			
		||||
  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
 | 
			
		||||
  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
 | 
			
		||||
}
 | 
			
		||||
static inline int divides(int a,int b)
 | 
			
		||||
{
 | 
			
		||||
  return ( b == ( (b/a)*a ) );
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Allow user to configure through environment variable
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    std::vector<int> IntShmDims;
 | 
			
		||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
			
		||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    long ShmSize = 1;
 | 
			
		||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
			
		||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
			
		||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
    }
 | 
			
		||||
    assert(ShmSize == WorldShmSize);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension = WorldDims.size();
 | 
			
		||||
  ShmDims=Coordinate(ndimension,1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> primes({2,3,5});
 | 
			
		||||
 | 
			
		||||
  int dim = 0;
 | 
			
		||||
  int last_dim = ndimension - 1;
 | 
			
		||||
  int AutoShmSize = 1;
 | 
			
		||||
  while(AutoShmSize != WorldShmSize) {
 | 
			
		||||
    int p;
 | 
			
		||||
    for(p=0;p<primes.size();p++) {
 | 
			
		||||
      int prime=primes[p];
 | 
			
		||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
			
		||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
			
		||||
	AutoShmSize*=prime;
 | 
			
		||||
	ShmDims[dim]*=prime;
 | 
			
		||||
	last_dim = dim;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if (p == primes.size() && last_dim == dim) {
 | 
			
		||||
      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
			
		||||
      exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
    dim=(dim+1) %ndimension;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Assert power of two shm_size.
 | 
			
		||||
@@ -295,7 +247,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  Coordinate HyperCoor(ndimension);
 | 
			
		||||
 | 
			
		||||
  GetShmDims(WorldDims,ShmDims);
 | 
			
		||||
 | 
			
		||||
  SHM = ShmDims;
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish torus of processes and nodes with sub-blockings
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -342,7 +295,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify subblock of ranks on node spreading across dims
 | 
			
		||||
@@ -354,6 +307,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
			
		||||
  Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension);
 | 
			
		||||
 | 
			
		||||
  GetShmDims(WorldDims,ShmDims);
 | 
			
		||||
  SHM=ShmDims;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish torus of processes and nodes with sub-blockings
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -521,7 +476,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  }
 | 
			
		||||
  if ( WorldRank == 0 ){
 | 
			
		||||
    std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
  std::cout<< "Setting up IPC"<<std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -48,9 +48,10 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
  _ShmSetup=1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
{
 | 
			
		||||
  optimal_comm = WorldComm;
 | 
			
		||||
  SHM = Coordinate(processors.size(),1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -63,7 +63,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
 | 
			
		||||
  typename std::remove_const<vobj>::type ret;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  //  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
			
		||||
 
 | 
			
		||||
@@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
@@ -53,6 +54,7 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
@@ -70,6 +72,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
@@ -86,6 +89,7 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
@@ -106,6 +110,7 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -119,6 +124,7 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -133,6 +139,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -146,6 +153,7 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -163,6 +171,7 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -177,6 +186,7 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -191,6 +201,7 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -204,6 +215,7 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
@@ -218,6 +230,7 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  GRID_TRACE("axpy");
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
@@ -231,6 +244,7 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  GRID_TRACE("axpby");
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
@@ -246,11 +260,13 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpy_norm");
 | 
			
		||||
    return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpby_norm");
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -117,6 +117,7 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
@@ -140,6 +141,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
@@ -163,6 +165,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
 
 | 
			
		||||
@@ -32,7 +32,6 @@ template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -82,7 +81,6 @@ template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -130,7 +128,6 @@ template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
 
 | 
			
		||||
@@ -96,9 +96,6 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
@@ -125,14 +122,17 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  typename vobj::scalar_object s;
 | 
			
		||||
  peekSite(s,l,site);
 | 
			
		||||
  return s;
 | 
			
		||||
}        
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
        
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
			
		||||
@@ -173,11 +173,11 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
  
 | 
			
		||||
  scalar_type * vp = (scalar_type *)&l[odx];
 | 
			
		||||
  const vector_type *vp = (const vector_type *) &l[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
      
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    pt[w] = vp[idx+w*Nsimd];
 | 
			
		||||
    pt[w] = getlane(vp[w],idx);
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  return;
 | 
			
		||||
@@ -210,10 +210,10 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
 | 
			
		||||
  scalar_type * vp = (scalar_type *)&l[odx];
 | 
			
		||||
  vector_type * vp = (vector_type *)&l[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    vp[idx+w*Nsimd] = pt[w];
 | 
			
		||||
    putlane(vp[w],pt[w],idx);
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -94,10 +94,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    ssum = ssum+sumarray[i];
 | 
			
		||||
  } 
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object ssobj;
 | 
			
		||||
  ssobj ret = ssum;
 | 
			
		||||
  return ret;
 | 
			
		||||
  return ssum;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
Threaded max, don't use for now
 | 
			
		||||
@@ -236,7 +233,6 @@ template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  ComplexD  nrm;
 | 
			
		||||
  
 | 
			
		||||
@@ -246,6 +242,7 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
  // Might make all code paths go this way.
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
@@ -254,15 +251,31 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
    // This code could read coalesce
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, 1,{
 | 
			
		||||
	auto x_l = left_v[ss];
 | 
			
		||||
	auto y_l = right_v[ss];
 | 
			
		||||
	inner_tmp_v[ss]=innerProductD(x_l,y_l);
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
    
 | 
			
		||||
  {
 | 
			
		||||
    autoView( left_v , left, AcceleratorRead);
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  // This is in single precision and fails some tests
 | 
			
		||||
  auto anrm = sum(inner_tmp_v,sites);  
 | 
			
		||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
			
		||||
  nrm = anrm;
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
@@ -295,8 +308,7 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  conformable(z,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  //  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  RealD  nrm;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid = x.Grid();
 | 
			
		||||
@@ -308,17 +320,29 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  autoView( x_v, x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v, y, AcceleratorRead);
 | 
			
		||||
  autoView( z_v, z, AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, 1,{
 | 
			
		||||
      auto tmp = a*x_v[ss]+b*y_v[ss];
 | 
			
		||||
      inner_tmp_v[ss]=innerProductD(tmp,tmp);
 | 
			
		||||
      z_v[ss]=tmp;
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
			
		||||
#endif
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  return nrm; 
 | 
			
		||||
}
 | 
			
		||||
@@ -328,7 +352,6 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
{
 | 
			
		||||
  conformable(left,right);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  Vector<ComplexD> tmp(2);
 | 
			
		||||
 | 
			
		||||
@@ -472,6 +495,14 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
  grid->GlobalSumVector(ptr, words);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> inline
 | 
			
		||||
std::vector<typename vobj::scalar_object> 
 | 
			
		||||
sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<typename vobj::scalar_object> result;
 | 
			
		||||
  sliceSum(Data,result,orthogdim);
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
@@ -576,7 +607,8 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
 | 
			
		||||
			    int orthogdim,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
{
 | 
			
		||||
  // perhaps easier to just promote A to a field and use regular madd
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -607,8 +639,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
			
		||||
    for(int l=0;l<Nsimd;l++){
 | 
			
		||||
      grid->iCoorFromIindex(icoor,l);
 | 
			
		||||
      int ldx =r+icoor[orthogdim]*rd;
 | 
			
		||||
      scalar_type *as =(scalar_type *)&av;
 | 
			
		||||
      as[l] = scalar_type(a[ldx])*zscale;
 | 
			
		||||
      av.putlane(scalar_type(a[ldx])*zscale,l);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    tensor_reduced at; at=av;
 | 
			
		||||
@@ -648,7 +679,6 @@ template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -702,7 +732,6 @@ template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
@@ -756,7 +785,6 @@ template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
 
 | 
			
		||||
@@ -211,13 +211,25 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
			
		||||
  assert(ok);
 | 
			
		||||
 | 
			
		||||
  Integer smemSize = numThreads * sizeof(sobj);
 | 
			
		||||
 | 
			
		||||
  // Move out of UVM
 | 
			
		||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
			
		||||
  // as running this on the default stream fools the synchronise
 | 
			
		||||
#undef UVM_BLOCK_BUFFER  
 | 
			
		||||
#ifndef UVM_BLOCK_BUFFER  
 | 
			
		||||
  commVector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
			
		||||
#else
 | 
			
		||||
  Vector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  auto result = buffer_v[0];
 | 
			
		||||
  result = *buffer_v;
 | 
			
		||||
#endif
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -250,8 +262,6 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type  vector;
 | 
			
		||||
  typedef typename vobj::scalar_typeD scalarD;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobj;
 | 
			
		||||
  sobj ret;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -424,9 +424,33 @@ public:
 | 
			
		||||
    // MT implementation does not implement fast discard even though
 | 
			
		||||
    // in principle this is possible
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
#if 1
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int gidx;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
	int rank;
 | 
			
		||||
	Coordinate pcoor;
 | 
			
		||||
	Coordinate lcoor;
 | 
			
		||||
	Coordinate gcoor;
 | 
			
		||||
	_grid->LocalIndexToLocalCoor(lidx,lcoor);
 | 
			
		||||
	pcoor=_grid->ThisProcessorCoor();
 | 
			
		||||
	_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
 | 
			
		||||
	_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
 | 
			
		||||
 | 
			
		||||
	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
			
		||||
 | 
			
		||||
	assert(rank == _grid->ThisRank() );
 | 
			
		||||
	
 | 
			
		||||
	int l_idx=generator_idx(o_idx,i_idx);
 | 
			
		||||
	_generators[l_idx] = master_engine;
 | 
			
		||||
	Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    // Everybody loops over global volume.
 | 
			
		||||
    thread_for( gidx, _grid->_gsites, {
 | 
			
		||||
 | 
			
		||||
	// Where is it?
 | 
			
		||||
	int rank;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
@@ -443,6 +467,7 @@ public:
 | 
			
		||||
	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
#else 
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Machine and thread decomposition dependent seeding is efficient
 | 
			
		||||
 
 | 
			
		||||
@@ -194,11 +194,11 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
 | 
			
		||||
  out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
 | 
			
		||||
  precisionChange(out,in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
 | 
			
		||||
  Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
 | 
			
		||||
  precisionChange(out,in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename T1,typename T2>
 | 
			
		||||
@@ -726,10 +726,10 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
 | 
			
		||||
      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
 | 
			
		||||
      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
 | 
			
		||||
      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
			
		||||
      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
			
		||||
      vector_type * fp = (vector_type *)&f_v[odx_f];
 | 
			
		||||
      vector_type * tp = (vector_type *)&t_v[odx_t];
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd];  // FIXME IF RRII layout, type pun no worke
 | 
			
		||||
	tp[w].putlane(fp[w].getlane(idx_f),idx_t);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
@@ -904,7 +904,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
@@ -1129,9 +1129,27 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Convert a Lattice from one precision to another
 | 
			
		||||
//Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field)
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename VobjOut::vector_type Vout;
 | 
			
		||||
  typedef typename VobjIn::vector_type Vin;
 | 
			
		||||
  const int N = sizeof(VobjOut)/sizeof(Vout);
 | 
			
		||||
  conformable(out.Grid(),in.Grid());
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  int nsimd = out.Grid()->Nsimd();
 | 
			
		||||
  autoView( out_v  , out, AcceleratorWrite);
 | 
			
		||||
  autoView(  in_v ,   in, AcceleratorRead);
 | 
			
		||||
  accelerator_for(idx,out.Grid()->oSites(),1,{
 | 
			
		||||
      Vout *vout = (Vout *)&out_v[idx];
 | 
			
		||||
      Vin  *vin  = (Vin  *)&in_v[idx];
 | 
			
		||||
      precisionChange(vout,vin,N);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
//Convert a Lattice from one precision to another (original, slow implementation)
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
{
 | 
			
		||||
  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
			
		||||
  for(int d=0;d<out.Grid()->Nd();d++){
 | 
			
		||||
@@ -1146,7 +1164,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
 | 
			
		||||
  int ndim = out.Grid()->Nd();
 | 
			
		||||
  int out_nsimd = out_grid->Nsimd();
 | 
			
		||||
    
 | 
			
		||||
  int in_nsimd = in_grid->Nsimd();
 | 
			
		||||
  std::vector<Coordinate > out_icoor(out_nsimd);
 | 
			
		||||
      
 | 
			
		||||
  for(int lane=0; lane < out_nsimd; lane++){
 | 
			
		||||
@@ -1177,6 +1195,128 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
 | 
			
		||||
class precisionChangeWorkspace{
 | 
			
		||||
  std::pair<Integer,Integer>* fmap_device; //device pointer
 | 
			
		||||
  //maintain grids for checking
 | 
			
		||||
  GridBase* _out_grid;
 | 
			
		||||
  GridBase* _in_grid;
 | 
			
		||||
public:
 | 
			
		||||
  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
 | 
			
		||||
    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
			
		||||
    assert(out_grid->Nd() == in_grid->Nd());
 | 
			
		||||
    for(int d=0;d<out_grid->Nd();d++){
 | 
			
		||||
      assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    int Nsimd_out = out_grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
    std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
 | 
			
		||||
    for(int lane=0; lane < out_grid->Nsimd(); lane++)
 | 
			
		||||
      out_grid->iCoorFromIindex(out_icorrs[lane], lane);
 | 
			
		||||
  
 | 
			
		||||
    std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
 | 
			
		||||
    thread_for(out_oidx,out_grid->oSites(),{
 | 
			
		||||
	Coordinate out_ocorr; 
 | 
			
		||||
	out_grid->oCoorFromOindex(out_ocorr, out_oidx);
 | 
			
		||||
      
 | 
			
		||||
	Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
 | 
			
		||||
	for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
 | 
			
		||||
	  out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
 | 
			
		||||
	
 | 
			
		||||
	  //int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
 | 
			
		||||
	  //Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
 | 
			
		||||
	  //Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
 | 
			
		||||
	  int in_oidx = 0, in_lane = 0;
 | 
			
		||||
	  for(int d=0;d<in_grid->_ndimension;d++){
 | 
			
		||||
	    in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
 | 
			
		||||
	    in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
 | 
			
		||||
	  }
 | 
			
		||||
	  fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    //Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
 | 
			
		||||
    size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
 | 
			
		||||
    fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
 | 
			
		||||
    acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Prevent moving or copying
 | 
			
		||||
  precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
 | 
			
		||||
  precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
 | 
			
		||||
  precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
 | 
			
		||||
  precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
 | 
			
		||||
  
 | 
			
		||||
  std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
 | 
			
		||||
 | 
			
		||||
  void checkGrids(GridBase* out, GridBase* in) const{
 | 
			
		||||
    conformable(out, _out_grid);
 | 
			
		||||
    conformable(in, _in_grid);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ~precisionChangeWorkspace(){
 | 
			
		||||
    acceleratorFreeDevice(fmap_device);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
 | 
			
		||||
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
 | 
			
		||||
  if(out.Grid() == in.Grid()){
 | 
			
		||||
    precisionChangeFast(out,in);
 | 
			
		||||
    return 1;
 | 
			
		||||
  }else{
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
 | 
			
		||||
//which contains the mapping data.
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
 | 
			
		||||
  if(_precisionChangeFastWrap(out,in,0)) return;
 | 
			
		||||
  
 | 
			
		||||
  static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
 | 
			
		||||
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  constexpr int Nsimd_out = VobjOut::Nsimd();
 | 
			
		||||
 | 
			
		||||
  workspace.checkGrids(out.Grid(),in.Grid());
 | 
			
		||||
  std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
 | 
			
		||||
 | 
			
		||||
  //Do the copy/precision change
 | 
			
		||||
  autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
  autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
 | 
			
		||||
      std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
 | 
			
		||||
      for(int out_lane=0; out_lane < Nsimd_out; out_lane++){      
 | 
			
		||||
	int in_oidx = fmap_osite[out_lane].first;
 | 
			
		||||
	int in_lane = fmap_osite[out_lane].second;
 | 
			
		||||
	copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
 | 
			
		||||
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
			
		||||
  if(_precisionChangeFastWrap(out,in,0)) return;   
 | 
			
		||||
  precisionChangeWorkspace workspace(out.Grid(), in.Grid());
 | 
			
		||||
  precisionChange(out, in, workspace);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Communicate between grids
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -42,9 +42,11 @@ using namespace Grid;
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class NerscIO : public BinaryIO { 
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vLorentzColourMatrixD> GaugeField;
 | 
			
		||||
 | 
			
		||||
  // Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
 | 
			
		||||
  static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
 | 
			
		||||
 | 
			
		||||
  static inline void truncate(std::string file){
 | 
			
		||||
    std::ofstream fout(file,std::ios::out);
 | 
			
		||||
  }
 | 
			
		||||
@@ -203,7 +205,7 @@ public:
 | 
			
		||||
      std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										102
									
								
								Grid/qcd/QCD.h
									
									
									
									
									
								
							
							
						
						
									
										102
									
								
								Grid/qcd/QCD.h
									
									
									
									
									
								
							@@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
#define ColourIndex  (2)
 | 
			
		||||
#define SpinIndex    (1)
 | 
			
		||||
#define LorentzIndex (0)
 | 
			
		||||
#define GparityFlavourIndex (0)
 | 
			
		||||
 | 
			
		||||
// Also should make these a named enum type
 | 
			
		||||
static constexpr int DaggerNo=0;
 | 
			
		||||
@@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
 | 
			
		||||
template <typename T> using IfCoarsened    = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
 | 
			
		||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
 | 
			
		||||
 | 
			
		||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
 | 
			
		||||
 | 
			
		||||
// ChrisK very keen to add extra space for Gparity doubling.
 | 
			
		||||
//
 | 
			
		||||
// Also add domain wall index, in a way where Wilson operator 
 | 
			
		||||
@@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector      = iScalar<iVector<iVec
 | 
			
		||||
    template<typename vtype> using iSpinColourSpinColourMatrix  = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename vtype> using iGparityFlavourVector                = iVector<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
template<typename vtype> using iGparitySpinColourVector       = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityHalfSpinColourVector   = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
 | 
			
		||||
// Spin matrix
 | 
			
		||||
typedef iSpinMatrix<Complex  >          SpinMatrix;
 | 
			
		||||
@@ -121,6 +126,7 @@ typedef iSpinMatrix<ComplexD >          SpinMatrixD;
 | 
			
		||||
typedef iSpinMatrix<vComplex >          vSpinMatrix;
 | 
			
		||||
typedef iSpinMatrix<vComplexF>          vSpinMatrixF;
 | 
			
		||||
typedef iSpinMatrix<vComplexD>          vSpinMatrixD;
 | 
			
		||||
typedef iSpinMatrix<vComplexD2>         vSpinMatrixD2;
 | 
			
		||||
 | 
			
		||||
// Colour Matrix
 | 
			
		||||
typedef iColourMatrix<Complex  >        ColourMatrix;
 | 
			
		||||
@@ -130,6 +136,7 @@ typedef iColourMatrix<ComplexD >        ColourMatrixD;
 | 
			
		||||
typedef iColourMatrix<vComplex >        vColourMatrix;
 | 
			
		||||
typedef iColourMatrix<vComplexF>        vColourMatrixF;
 | 
			
		||||
typedef iColourMatrix<vComplexD>        vColourMatrixD;
 | 
			
		||||
typedef iColourMatrix<vComplexD2>       vColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// SpinColour matrix
 | 
			
		||||
typedef iSpinColourMatrix<Complex  >    SpinColourMatrix;
 | 
			
		||||
@@ -139,6 +146,7 @@ typedef iSpinColourMatrix<ComplexD >    SpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourMatrix<vComplex >    vSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexF>    vSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexD>    vSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourMatrix<vComplexD2>   vSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// SpinColourSpinColour matrix
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<Complex  >    SpinColourSpinColourMatrix;
 | 
			
		||||
@@ -148,6 +156,7 @@ typedef iSpinColourSpinColourMatrix<ComplexD >    SpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplex >    vSpinColourSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexF>    vSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD>    vSpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD2>   vSpinColourSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// SpinColourSpinColour matrix
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<Complex  >    SpinColourSpinColourMatrix;
 | 
			
		||||
@@ -157,24 +166,38 @@ typedef iSpinColourSpinColourMatrix<ComplexD >    SpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplex >    vSpinColourSpinColourMatrix;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexF>    vSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD>    vSpinColourSpinColourMatrixD;
 | 
			
		||||
typedef iSpinColourSpinColourMatrix<vComplexD2>   vSpinColourSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// LorentzColour
 | 
			
		||||
typedef iLorentzColourMatrix<Complex  > LorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplex >  vLorentzColourMatrix;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexF>  vLorentzColourMatrixF;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD>  vLorentzColourMatrixD;
 | 
			
		||||
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// DoubleStored gauge field
 | 
			
		||||
typedef iDoubleStoredColourMatrix<Complex  > DoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplex >  vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF>  vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD>  vDoubleStoredColourMatrixD;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD2> vDoubleStoredColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour matrix
 | 
			
		||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplex>   vGparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexF>  vGparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexD>  vGparityFlavourMatrixD;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexD2> vGparityFlavourMatrixD2;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Spin vector
 | 
			
		||||
typedef iSpinVector<Complex >           SpinVector;
 | 
			
		||||
@@ -184,6 +207,7 @@ typedef iSpinVector<ComplexD>           SpinVectorD;
 | 
			
		||||
typedef iSpinVector<vComplex >           vSpinVector;
 | 
			
		||||
typedef iSpinVector<vComplexF>           vSpinVectorF;
 | 
			
		||||
typedef iSpinVector<vComplexD>           vSpinVectorD;
 | 
			
		||||
typedef iSpinVector<vComplexD2>          vSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
// Colour vector
 | 
			
		||||
typedef iColourVector<Complex >         ColourVector;
 | 
			
		||||
@@ -193,6 +217,7 @@ typedef iColourVector<ComplexD>         ColourVectorD;
 | 
			
		||||
typedef iColourVector<vComplex >         vColourVector;
 | 
			
		||||
typedef iColourVector<vComplexF>         vColourVectorF;
 | 
			
		||||
typedef iColourVector<vComplexD>         vColourVectorD;
 | 
			
		||||
typedef iColourVector<vComplexD2>        vColourVectorD2;
 | 
			
		||||
 | 
			
		||||
// SpinColourVector
 | 
			
		||||
typedef iSpinColourVector<Complex >     SpinColourVector;
 | 
			
		||||
@@ -202,6 +227,7 @@ typedef iSpinColourVector<ComplexD>     SpinColourVectorD;
 | 
			
		||||
typedef iSpinColourVector<vComplex >     vSpinColourVector;
 | 
			
		||||
typedef iSpinColourVector<vComplexF>     vSpinColourVectorF;
 | 
			
		||||
typedef iSpinColourVector<vComplexD>     vSpinColourVectorD;
 | 
			
		||||
typedef iSpinColourVector<vComplexD2>    vSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
// HalfSpin vector
 | 
			
		||||
typedef iHalfSpinVector<Complex >       HalfSpinVector;
 | 
			
		||||
@@ -211,15 +237,27 @@ typedef iHalfSpinVector<ComplexD>       HalfSpinVectorD;
 | 
			
		||||
typedef iHalfSpinVector<vComplex >       vHalfSpinVector;
 | 
			
		||||
typedef iHalfSpinVector<vComplexF>       vHalfSpinVectorF;
 | 
			
		||||
typedef iHalfSpinVector<vComplexD>       vHalfSpinVectorD;
 | 
			
		||||
typedef iHalfSpinVector<vComplexD2>      vHalfSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
// HalfSpinColour vector
 | 
			
		||||
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
 | 
			
		||||
    
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex >  vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF>  vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD>  vHalfSpinColourVectorD;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD2> vHalfSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour vector
 | 
			
		||||
typedef iGparityFlavourVector<Complex >         GparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexF>         GparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexD>         GparityFlavourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourVector<vComplex >         vGparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexF>         vGparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexD>         vGparityFlavourVectorD;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexD2>        vGparityFlavourVectorD2;
 | 
			
		||||
    
 | 
			
		||||
// singlets
 | 
			
		||||
typedef iSinglet<Complex >         TComplex;     // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
@@ -229,6 +267,7 @@ typedef iSinglet<ComplexD>         TComplexD;    // FIXME This is painful. Tenso
 | 
			
		||||
typedef iSinglet<vComplex >        vTComplex ;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexF>        vTComplexF;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexD>        vTComplexD;   // what if we don't know the tensor structure
 | 
			
		||||
typedef iSinglet<vComplexD2>       vTComplexD2;   // what if we don't know the tensor structure
 | 
			
		||||
 | 
			
		||||
typedef iSinglet<Real >            TReal;        // Shouldn't need these; can I make it work without?
 | 
			
		||||
typedef iSinglet<RealF>            TRealF;       // Shouldn't need these; can I make it work without?
 | 
			
		||||
@@ -246,47 +285,58 @@ typedef iSinglet<Integer >         TInteger;
 | 
			
		||||
typedef Lattice<vColourMatrix>          LatticeColourMatrix;
 | 
			
		||||
typedef Lattice<vColourMatrixF>         LatticeColourMatrixF;
 | 
			
		||||
typedef Lattice<vColourMatrixD>         LatticeColourMatrixD;
 | 
			
		||||
typedef Lattice<vColourMatrixD2>        LatticeColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinMatrix>            LatticeSpinMatrix;
 | 
			
		||||
typedef Lattice<vSpinMatrixF>           LatticeSpinMatrixF;
 | 
			
		||||
typedef Lattice<vSpinMatrixD>           LatticeSpinMatrixD;
 | 
			
		||||
typedef Lattice<vSpinMatrixD2>          LatticeSpinMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourMatrix>      LatticeSpinColourMatrix;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixF>     LatticeSpinColourMatrixF;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixD>     LatticeSpinColourMatrixD;
 | 
			
		||||
typedef Lattice<vSpinColourMatrixD2>    LatticeSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrix>      LatticeSpinColourSpinColourMatrix;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixF>     LatticeSpinColourSpinColourMatrixF;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixD>     LatticeSpinColourSpinColourMatrixD;
 | 
			
		||||
typedef Lattice<vSpinColourSpinColourMatrixD2>    LatticeSpinColourSpinColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vLorentzColourMatrix>  LatticeLorentzColourMatrix;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrix>   LatticeLorentzColourMatrix;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixF>  LatticeLorentzColourMatrixF;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD>  LatticeLorentzColourMatrixD;
 | 
			
		||||
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
// DoubleStored gauge field
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrix>  LatticeDoubleStoredColourMatrix;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrix>   LatticeDoubleStoredColourMatrix;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixF>  LatticeDoubleStoredColourMatrixF;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD>  LatticeDoubleStoredColourMatrixD;
 | 
			
		||||
typedef Lattice<vDoubleStoredColourMatrixD2> LatticeDoubleStoredColourMatrixD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinVector>            LatticeSpinVector;
 | 
			
		||||
typedef Lattice<vSpinVectorF>           LatticeSpinVectorF;
 | 
			
		||||
typedef Lattice<vSpinVectorD>           LatticeSpinVectorD;
 | 
			
		||||
typedef Lattice<vSpinVectorD2>          LatticeSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vColourVector>          LatticeColourVector;
 | 
			
		||||
typedef Lattice<vColourVectorF>         LatticeColourVectorF;
 | 
			
		||||
typedef Lattice<vColourVectorD>         LatticeColourVectorD;
 | 
			
		||||
typedef Lattice<vColourVectorD2>        LatticeColourVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vSpinColourVector>      LatticeSpinColourVector;
 | 
			
		||||
typedef Lattice<vSpinColourVectorF>     LatticeSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vSpinColourVectorD>     LatticeSpinColourVectorD;
 | 
			
		||||
typedef Lattice<vSpinColourVectorD2>    LatticeSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vHalfSpinVector>        LatticeHalfSpinVector;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorF>       LatticeHalfSpinVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorD>       LatticeHalfSpinVectorD;
 | 
			
		||||
typedef Lattice<vHalfSpinVectorD2>      LatticeHalfSpinVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vHalfSpinColourVector>  LatticeHalfSpinColourVector;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVector>   LatticeHalfSpinColourVector;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorF>  LatticeHalfSpinColourVectorF;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD>  LatticeHalfSpinColourVectorD;
 | 
			
		||||
typedef Lattice<vHalfSpinColourVectorD2> LatticeHalfSpinColourVectorD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTReal>            LatticeReal;
 | 
			
		||||
typedef Lattice<vTRealF>           LatticeRealF;
 | 
			
		||||
@@ -295,6 +345,7 @@ typedef Lattice<vTRealD>           LatticeRealD;
 | 
			
		||||
typedef Lattice<vTComplex>         LatticeComplex;
 | 
			
		||||
typedef Lattice<vTComplexF>        LatticeComplexF;
 | 
			
		||||
typedef Lattice<vTComplexD>        LatticeComplexD;
 | 
			
		||||
typedef Lattice<vTComplexD2>       LatticeComplexD2;
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vTInteger>         LatticeInteger; // Predicates for "where"
 | 
			
		||||
 | 
			
		||||
@@ -302,37 +353,42 @@ typedef Lattice<vTInteger>         LatticeInteger; // Predicates for "where"
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Physical names for things
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
typedef LatticeHalfSpinColourVector  LatticeHalfFermion;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
 | 
			
		||||
typedef LatticeHalfSpinColourVector   LatticeHalfFermion;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorF  LatticeHalfFermionF;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorD  LatticeHalfFermionD;
 | 
			
		||||
typedef LatticeHalfSpinColourVectorD2 LatticeHalfFermionD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeSpinColourVector      LatticeFermion;
 | 
			
		||||
typedef LatticeSpinColourVectorF     LatticeFermionF;
 | 
			
		||||
typedef LatticeSpinColourVectorD     LatticeFermionD;
 | 
			
		||||
typedef LatticeSpinColourVectorD2    LatticeFermionD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeSpinColourMatrix                LatticePropagator;
 | 
			
		||||
typedef LatticeSpinColourMatrixF               LatticePropagatorF;
 | 
			
		||||
typedef LatticeSpinColourMatrixD               LatticePropagatorD;
 | 
			
		||||
typedef LatticeSpinColourMatrixD2              LatticePropagatorD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeLorentzColourMatrix             LatticeGaugeField;
 | 
			
		||||
typedef LatticeLorentzColourMatrixF            LatticeGaugeFieldF;
 | 
			
		||||
typedef LatticeLorentzColourMatrixD            LatticeGaugeFieldD;
 | 
			
		||||
typedef LatticeLorentzColourMatrixD2           LatticeGaugeFieldD2;
 | 
			
		||||
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrix        LatticeDoubledGaugeField;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixF       LatticeDoubledGaugeFieldF;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixD       LatticeDoubledGaugeFieldD;
 | 
			
		||||
typedef LatticeDoubleStoredColourMatrixD2      LatticeDoubledGaugeFieldD2;
 | 
			
		||||
 | 
			
		||||
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
 | 
			
		||||
 | 
			
		||||
// Uhgg... typing this hurt  ;)
 | 
			
		||||
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
 | 
			
		||||
typedef Lattice<vColourVector>          LatticeStaggeredFermion;    
 | 
			
		||||
typedef Lattice<vColourVectorF>         LatticeStaggeredFermionF;    
 | 
			
		||||
typedef Lattice<vColourVectorD>         LatticeStaggeredFermionD;    
 | 
			
		||||
typedef Lattice<vColourVectorD2>        LatticeStaggeredFermionD2;    
 | 
			
		||||
 | 
			
		||||
typedef Lattice<vColourMatrix>          LatticeStaggeredPropagator; 
 | 
			
		||||
typedef Lattice<vColourMatrixF>         LatticeStaggeredPropagatorF; 
 | 
			
		||||
typedef Lattice<vColourMatrixD>         LatticeStaggeredPropagatorD; 
 | 
			
		||||
typedef Lattice<vColourMatrixD2>        LatticeStaggeredPropagatorD2; 
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Peek and Poke named after physics attributes
 | 
			
		||||
 
 | 
			
		||||
@@ -40,9 +40,47 @@ class Action
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  bool is_smeared = false;
 | 
			
		||||
  RealD deriv_norm_sum;
 | 
			
		||||
  RealD deriv_max_sum;
 | 
			
		||||
  RealD Fdt_norm_sum;
 | 
			
		||||
  RealD Fdt_max_sum;
 | 
			
		||||
  int   deriv_num;
 | 
			
		||||
  RealD deriv_us;
 | 
			
		||||
  RealD S_us;
 | 
			
		||||
  RealD refresh_us;
 | 
			
		||||
  void  reset_timer(void)        {
 | 
			
		||||
    deriv_us = S_us = refresh_us = 0.0;
 | 
			
		||||
    deriv_norm_sum = deriv_max_sum=0.0;
 | 
			
		||||
    Fdt_max_sum =  Fdt_norm_sum = 0.0;
 | 
			
		||||
    deriv_num=0;
 | 
			
		||||
  }
 | 
			
		||||
  void  deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) {
 | 
			
		||||
    if ( max > deriv_max_sum ) {
 | 
			
		||||
      deriv_max_sum=max;
 | 
			
		||||
    }
 | 
			
		||||
    deriv_norm_sum+=nrm;
 | 
			
		||||
    if ( Fdt_max > Fdt_max_sum ) {
 | 
			
		||||
      Fdt_max_sum=Fdt_max;
 | 
			
		||||
    }
 | 
			
		||||
    Fdt_norm_sum+=Fdt_nrm; deriv_num++;
 | 
			
		||||
  }
 | 
			
		||||
  RealD deriv_max_average(void)       { return deriv_max_sum; };
 | 
			
		||||
  RealD deriv_norm_average(void)      { return deriv_norm_sum/deriv_num; };
 | 
			
		||||
  RealD Fdt_max_average(void)         { return Fdt_max_sum; };
 | 
			
		||||
  RealD Fdt_norm_average(void)        { return Fdt_norm_sum/deriv_num; };
 | 
			
		||||
  RealD deriv_timer(void)        { return deriv_us; };
 | 
			
		||||
  RealD S_timer(void)            { return S_us; };
 | 
			
		||||
  RealD refresh_timer(void)      { return refresh_us; };
 | 
			
		||||
  void deriv_timer_start(void)   { deriv_us-=usecond(); }
 | 
			
		||||
  void deriv_timer_stop(void)    { deriv_us+=usecond(); }
 | 
			
		||||
  void refresh_timer_start(void) { refresh_us-=usecond(); }
 | 
			
		||||
  void refresh_timer_stop(void)  { refresh_us+=usecond(); }
 | 
			
		||||
  void S_timer_start(void)       { S_us-=usecond(); }
 | 
			
		||||
  void S_timer_stop(void)        { S_us+=usecond(); }
 | 
			
		||||
  // Heatbath?
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) = 0;                             // evaluate the action
 | 
			
		||||
  virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ;  // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0;        // evaluate the action derivative
 | 
			
		||||
  virtual std::string action_name()    = 0;                             // return the action name
 | 
			
		||||
  virtual std::string LogParameters()  = 0;                             // prints action parameters
 | 
			
		||||
 
 | 
			
		||||
@@ -37,6 +37,10 @@ NAMESPACE_CHECK(ActionSet);
 | 
			
		||||
#include <Grid/qcd/action/ActionParams.h>
 | 
			
		||||
NAMESPACE_CHECK(ActionParams);
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/filters/MomentumFilter.h>
 | 
			
		||||
#include <Grid/qcd/action/filters/DirichletFilter.h>
 | 
			
		||||
#include <Grid/qcd/action/filters/DDHMCFilter.h>
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Gauge Actions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -34,27 +34,45 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// These can move into a params header and be given MacroMagic serialisation
 | 
			
		||||
 | 
			
		||||
struct GparityWilsonImplParams {
 | 
			
		||||
  Coordinate twists;
 | 
			
		||||
  GparityWilsonImplParams() : twists(Nd, 0) {};
 | 
			
		||||
                     //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
  Coordinate dirichlet; // Blocksize of dirichlet BCs
 | 
			
		||||
  int  partialDirichlet;
 | 
			
		||||
  GparityWilsonImplParams() : twists(Nd, 0) {
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
struct WilsonImplParams {
 | 
			
		||||
  bool overlapCommsCompute;
 | 
			
		||||
  Coordinate dirichlet; // Blocksize of dirichlet BCs
 | 
			
		||||
  int  partialDirichlet;
 | 
			
		||||
  AcceleratorVector<Real,Nd> twist_n_2pi_L;
 | 
			
		||||
  AcceleratorVector<Complex,Nd> boundary_phases;
 | 
			
		||||
  WilsonImplParams()  {
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
    boundary_phases.resize(Nd, 1.0);
 | 
			
		||||
      twist_n_2pi_L.resize(Nd, 0.0);
 | 
			
		||||
  };
 | 
			
		||||
  WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
 | 
			
		||||
    twist_n_2pi_L.resize(Nd, 0.0);
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct StaggeredImplParams {
 | 
			
		||||
  StaggeredImplParams()  {};
 | 
			
		||||
  Coordinate dirichlet; // Blocksize of dirichlet BCs
 | 
			
		||||
  int  partialDirichlet;
 | 
			
		||||
  StaggeredImplParams()
 | 
			
		||||
  {
 | 
			
		||||
    partialDirichlet=0;
 | 
			
		||||
    dirichlet.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
  struct OneFlavourRationalParams : Serializable {
 | 
			
		||||
@@ -63,9 +81,11 @@ struct StaggeredImplParams {
 | 
			
		||||
				    RealD, hi, 
 | 
			
		||||
				    int,   MaxIter, 
 | 
			
		||||
				    RealD, tolerance, 
 | 
			
		||||
				    RealD, mdtolerance, 
 | 
			
		||||
				    int,   degree, 
 | 
			
		||||
				    int,   precision,
 | 
			
		||||
				    int,   BoundsCheckFreq);
 | 
			
		||||
				    int,   BoundsCheckFreq,
 | 
			
		||||
				    RealD, BoundsCheckTol);
 | 
			
		||||
    
 | 
			
		||||
  // MaxIter and tolerance, vectors??
 | 
			
		||||
    
 | 
			
		||||
@@ -76,16 +96,62 @@ struct StaggeredImplParams {
 | 
			
		||||
				RealD tol      = 1.0e-8, 
 | 
			
		||||
                           	int _degree    = 10,
 | 
			
		||||
				int _precision = 64,
 | 
			
		||||
				int _BoundsCheckFreq=20)
 | 
			
		||||
				int _BoundsCheckFreq=20,
 | 
			
		||||
				RealD mdtol    = 1.0e-6,
 | 
			
		||||
				double _BoundsCheckTol=1e-6)
 | 
			
		||||
      : lo(_lo),
 | 
			
		||||
	hi(_hi),
 | 
			
		||||
	MaxIter(_maxit),
 | 
			
		||||
	tolerance(tol),
 | 
			
		||||
        mdtolerance(mdtol),
 | 
			
		||||
	degree(_degree),
 | 
			
		||||
        precision(_precision),
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq),
 | 
			
		||||
        BoundsCheckTol(_BoundsCheckTol){};
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  /*Action parameters for the generalized rational action
 | 
			
		||||
    The approximation is for (M^dag M)^{1/inv_pow}
 | 
			
		||||
    where inv_pow is the denominator of the fractional power.
 | 
			
		||||
    Default inv_pow=2 for square root, making this equivalent to 
 | 
			
		||||
    the OneFlavourRational action
 | 
			
		||||
  */
 | 
			
		||||
    struct RationalActionParams : Serializable {
 | 
			
		||||
    GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams, 
 | 
			
		||||
				    int, inv_pow, 
 | 
			
		||||
				    RealD, lo, //low eigenvalue bound of rational approx
 | 
			
		||||
				    RealD, hi, //high eigenvalue bound of rational approx
 | 
			
		||||
				    int,   MaxIter,  //maximum iterations in msCG
 | 
			
		||||
				    RealD, action_tolerance,  //msCG tolerance in action evaluation
 | 
			
		||||
				    int,   action_degree, //rational approx tolerance in action evaluation
 | 
			
		||||
				    RealD, md_tolerance,  //msCG tolerance in MD integration
 | 
			
		||||
				    int,   md_degree, //rational approx tolerance in MD integration
 | 
			
		||||
				    int,   precision, //precision of floating point arithmetic
 | 
			
		||||
				    int,   BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
 | 
			
		||||
  // constructor 
 | 
			
		||||
  RationalActionParams(int _inv_pow = 2,
 | 
			
		||||
		       RealD _lo      = 0.0, 
 | 
			
		||||
		       RealD _hi      = 1.0, 
 | 
			
		||||
		       int _maxit     = 1000,
 | 
			
		||||
		       RealD _action_tolerance      = 1.0e-8, 
 | 
			
		||||
		       int _action_degree    = 10,
 | 
			
		||||
		       RealD _md_tolerance      = 1.0e-8, 
 | 
			
		||||
		       int _md_degree    = 10,
 | 
			
		||||
		       int _precision = 64,
 | 
			
		||||
		       int _BoundsCheckFreq=20)
 | 
			
		||||
    : inv_pow(_inv_pow), 
 | 
			
		||||
      lo(_lo),
 | 
			
		||||
      hi(_hi),
 | 
			
		||||
      MaxIter(_maxit),
 | 
			
		||||
      action_tolerance(_action_tolerance),
 | 
			
		||||
      action_degree(_action_degree),
 | 
			
		||||
      md_tolerance(_md_tolerance),
 | 
			
		||||
      md_degree(_md_degree),
 | 
			
		||||
      precision(_precision),
 | 
			
		||||
      BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -71,6 +71,7 @@ public:
 | 
			
		||||
  RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; };
 | 
			
		||||
  RealD MassPlus(void) { return mass_plus; };
 | 
			
		||||
  RealD MassMinus(void) { return mass_minus; };
 | 
			
		||||
 | 
			
		||||
  void  SetMass(RealD _mass) { 
 | 
			
		||||
    mass_plus=mass_minus=_mass; 
 | 
			
		||||
    SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c);  // Reset coeffs
 | 
			
		||||
@@ -182,16 +183,6 @@ public:
 | 
			
		||||
		  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		  RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  void CayleyReport(void);
 | 
			
		||||
  void CayleyZeroCounters(void);
 | 
			
		||||
 | 
			
		||||
  double M5Dflops;
 | 
			
		||||
  double M5Dcalls;
 | 
			
		||||
  double M5Dtime;
 | 
			
		||||
 | 
			
		||||
  double MooeeInvFlops;
 | 
			
		||||
  double MooeeInvCalls;
 | 
			
		||||
  double MooeeInvTime;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
 
 | 
			
		||||
@@ -140,6 +140,7 @@ public:
 | 
			
		||||
    return NMAX;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static int getNMAX(Lattice<iImplClover<vComplexD2>> &t, RealD R) {return getNMAX(1e-12,R);}
 | 
			
		||||
  static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
 | 
			
		||||
  static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										291
									
								
								Grid/qcd/action/fermion/DWFSlow.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										291
									
								
								Grid/qcd/action/fermion/DWFSlow.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,291 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DWFSlow.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2022
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
class DWFSlowFermion : public FermionOperator<Impl>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *GaugeGrid(void) { return _grid4; }
 | 
			
		||||
  GridBase *GaugeRedBlackGrid(void) { return _cbgrid4; }
 | 
			
		||||
  GridBase *FermionGrid(void) { return _grid; }
 | 
			
		||||
  GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
 | 
			
		||||
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // override multiply; cut number routines if pass dagger argument
 | 
			
		||||
  // and also make interface more uniformly consistent
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void  M(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(_grid);
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
    Dhop(in,tmp,DaggerNo);
 | 
			
		||||
    out = out + tmp;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  Mdag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(_grid);
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
    Dhop(in,tmp,DaggerYes);
 | 
			
		||||
    out = out + tmp;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // half checkerboard operations 5D redblack so just site identiy
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  void Meooe(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( in.Checkerboard() == Odd ) {
 | 
			
		||||
      this->DhopEO(in,out,DaggerNo);
 | 
			
		||||
    } else {
 | 
			
		||||
      this->DhopOE(in,out,DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void MeooeDag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( in.Checkerboard() == Odd ) {
 | 
			
		||||
      this->DhopEO(in,out,DaggerYes);
 | 
			
		||||
    } else {
 | 
			
		||||
      this->DhopOE(in,out,DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // allow override for twisted mass and clover
 | 
			
		||||
  virtual void Mooee(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MooeeDag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (5.0 - M5) * in;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MooeeInv(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (1.0/(5.0 - M5)) * in;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void MooeeInvDag(const FermionField &in, FermionField &out)
 | 
			
		||||
  {
 | 
			
		||||
    out = (1.0/(5.0 - M5)) * in;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass,std::vector<double> twist) {} ;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////
 | 
			
		||||
  // Derivative interface
 | 
			
		||||
  ////////////////////////
 | 
			
		||||
  // Interface calls an internal routine
 | 
			
		||||
  void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)  { assert(0);};
 | 
			
		||||
  void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
 | 
			
		||||
  void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // non-hermitian hopping term; half cb or both
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void Dhop(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(in.Grid());
 | 
			
		||||
    Dhop5(in,out,MassField,MassField,dag );
 | 
			
		||||
    for(int mu=0;mu<4;mu++){
 | 
			
		||||
      DhopDirU(in,Umu[mu],Umu[mu],tmp,mu,dag );    out = out + tmp;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void DhopOE(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(in.Grid());
 | 
			
		||||
    assert(in.Checkerboard()==Even);
 | 
			
		||||
    Dhop5(in,out,MassFieldOdd,MassFieldEven,dag);
 | 
			
		||||
    for(int mu=0;mu<4;mu++){
 | 
			
		||||
      DhopDirU(in,UmuOdd[mu],UmuEven[mu],tmp,mu,dag );    out = out + tmp;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void DhopEO(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    FermionField tmp(in.Grid());
 | 
			
		||||
    assert(in.Checkerboard()==Odd);
 | 
			
		||||
    Dhop5(in,out, MassFieldEven,MassFieldOdd ,dag );  
 | 
			
		||||
    for(int mu=0;mu<4;mu++){
 | 
			
		||||
      DhopDirU(in,UmuEven[mu],UmuOdd[mu],tmp,mu,dag );    out = out + tmp;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Multigrid assistance; force term uses too
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ assert(0);};
 | 
			
		||||
  void MdirAll(const FermionField &in, std::vector<FermionField> &out)   { assert(0);};
 | 
			
		||||
  void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { assert(0);};
 | 
			
		||||
  void DhopDirAll(const FermionField &in, std::vector<FermionField> &out)    { assert(0);};
 | 
			
		||||
  void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { assert(0);};
 | 
			
		||||
 | 
			
		||||
  void DhopDirU(const FermionField &in, const GaugeLinkField &U5e, const GaugeLinkField &U5o, FermionField &out, int mu, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    RealD     sgn= 1.0;
 | 
			
		||||
    if (dag ) sgn=-1.0;
 | 
			
		||||
 | 
			
		||||
    Gamma::Algebra Gmu [] = {
 | 
			
		||||
			 Gamma::Algebra::GammaX,
 | 
			
		||||
			 Gamma::Algebra::GammaY,
 | 
			
		||||
			 Gamma::Algebra::GammaZ,
 | 
			
		||||
			 Gamma::Algebra::GammaT
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    //    mass is  1,1,1,1,-m has to multiply the round the world term
 | 
			
		||||
    FermionField tmp (in.Grid());
 | 
			
		||||
    tmp = U5e * Cshift(in,mu+1,1);
 | 
			
		||||
    out = tmp - Gamma(Gmu[mu])*tmp*sgn;
 | 
			
		||||
    
 | 
			
		||||
    tmp = Cshift(adj(U5o)*in,mu+1,-1);
 | 
			
		||||
    out = out + tmp + Gamma(Gmu[mu])*tmp*sgn;
 | 
			
		||||
 | 
			
		||||
    out = -0.5*out;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Dhop5(const FermionField &in, FermionField &out, ComplexField &massE, ComplexField &massO, int dag)
 | 
			
		||||
  {
 | 
			
		||||
    // Mass term.... must multiple the round world with mass = 1,1,1,1, -m
 | 
			
		||||
    RealD     sgn= 1.0;
 | 
			
		||||
    if (dag ) sgn=-1.0;
 | 
			
		||||
 | 
			
		||||
    Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
 | 
			
		||||
    FermionField tmp (in.Grid());
 | 
			
		||||
    tmp = massE*Cshift(in,0,1);
 | 
			
		||||
    out = tmp - G5*tmp*sgn;
 | 
			
		||||
    
 | 
			
		||||
    tmp = Cshift(massO*in,0,-1);
 | 
			
		||||
    out = out + tmp + G5*tmp*sgn;
 | 
			
		||||
    out = -0.5*out;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Constructor
 | 
			
		||||
  DWFSlowFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
		 GridRedBlackCartesian &Hgrid, RealD _mass, RealD _M5)
 | 
			
		||||
    :
 | 
			
		||||
    _grid(&Fgrid),
 | 
			
		||||
    _cbgrid(&Hgrid),
 | 
			
		||||
    _grid4(_Umu.Grid()),
 | 
			
		||||
    Umu(Nd,&Fgrid),
 | 
			
		||||
    UmuEven(Nd,&Hgrid),
 | 
			
		||||
    UmuOdd(Nd,&Hgrid),
 | 
			
		||||
    MassField(&Fgrid),
 | 
			
		||||
    MassFieldEven(&Hgrid),
 | 
			
		||||
    MassFieldOdd(&Hgrid),
 | 
			
		||||
    M5(_M5),
 | 
			
		||||
    mass(_mass),
 | 
			
		||||
    _tmp(&Hgrid)
 | 
			
		||||
    {
 | 
			
		||||
      Ls=Fgrid._fdimensions[0];
 | 
			
		||||
      ImportGauge(_Umu);
 | 
			
		||||
 | 
			
		||||
      typedef typename FermionField::scalar_type scalar;
 | 
			
		||||
 | 
			
		||||
      Lattice<iScalar<vInteger> > coor(&Fgrid);
 | 
			
		||||
      LatticeCoordinate(coor, 0); // Scoor
 | 
			
		||||
      ComplexField one(&Fgrid);
 | 
			
		||||
      MassField =scalar(-mass);
 | 
			
		||||
      one       =scalar(1.0);
 | 
			
		||||
      MassField =where(coor==Integer(Ls-1),MassField,one);
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	pickCheckerboard(Even,UmuEven[mu],Umu[mu]);
 | 
			
		||||
	pickCheckerboard(Odd ,UmuOdd[mu],Umu[mu]);
 | 
			
		||||
      }
 | 
			
		||||
      pickCheckerboard(Even,MassFieldEven,MassField);
 | 
			
		||||
      pickCheckerboard(Odd ,MassFieldOdd,MassField);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  // DoubleStore impl dependent
 | 
			
		||||
  void ImportGauge(const GaugeField &_Umu4)
 | 
			
		||||
  {
 | 
			
		||||
    GaugeLinkField U4(_grid4);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U4 = PeekIndex<LorentzIndex>(_Umu4, mu);
 | 
			
		||||
      for(int s=0;s<this->Ls;s++){
 | 
			
		||||
	InsertSlice(U4,Umu[mu],s,0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Data members require to support the functionality
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  virtual RealD Mass(void) { return mass; }
 | 
			
		||||
  virtual int   isTrivialEE(void) { return 1; };
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD M5;
 | 
			
		||||
  int Ls;
 | 
			
		||||
 | 
			
		||||
  GridBase *_grid4;
 | 
			
		||||
  GridBase *_grid;
 | 
			
		||||
  GridBase *_cbgrid4;
 | 
			
		||||
  GridBase *_cbgrid;
 | 
			
		||||
 | 
			
		||||
  // Copy of the gauge field , with even and odd subsets
 | 
			
		||||
  std::vector<GaugeLinkField> Umu;
 | 
			
		||||
  std::vector<GaugeLinkField> UmuEven;
 | 
			
		||||
  std::vector<GaugeLinkField> UmuOdd;
 | 
			
		||||
  ComplexField MassField;
 | 
			
		||||
  ComplexField MassFieldEven;
 | 
			
		||||
  ComplexField MassFieldOdd;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void ContractConservedCurrent(PropagatorField &q_in_1,
 | 
			
		||||
                                PropagatorField &q_in_2,
 | 
			
		||||
                                PropagatorField &q_out,
 | 
			
		||||
                                PropagatorField &phys_src,
 | 
			
		||||
                                Current curr_type,
 | 
			
		||||
                                unsigned int mu){}
 | 
			
		||||
  void SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
                           PropagatorField &q_out,
 | 
			
		||||
                           PropagatorField &phys_src,
 | 
			
		||||
                           Current curr_type,
 | 
			
		||||
                           unsigned int mu,
 | 
			
		||||
                           unsigned int tmin,
 | 
			
		||||
			   unsigned int tmax,
 | 
			
		||||
			   ComplexField &lattice_cmplx){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef DWFSlowFermion<WilsonImplF> DWFSlowFermionF;
 | 
			
		||||
typedef DWFSlowFermion<WilsonImplD> DWFSlowFermionD;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -47,6 +47,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Fermion operators / actions
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/DWFSlow.h>       // Slow DWF
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion.h>       // 4d wilson like
 | 
			
		||||
NAMESPACE_CHECK(Wilson);
 | 
			
		||||
@@ -112,28 +113,21 @@ NAMESPACE_CHECK(DWFutils);
 | 
			
		||||
// Cayley 5d
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonImplR> WilsonFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonImplD2> WilsonFermionD2;
 | 
			
		||||
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
 | 
			
		||||
//typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
 | 
			
		||||
//typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonTwoIndexAntiSymmetricFermionR;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Twisted mass fermion
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
 | 
			
		||||
 | 
			
		||||
@@ -141,23 +135,20 @@ typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
 | 
			
		||||
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonImplD2> WilsonCloverFermionD2;
 | 
			
		||||
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR;
 | 
			
		||||
typedef WilsonExpClover<WilsonImplD2> WilsonExpCloverFermionD2;
 | 
			
		||||
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
 | 
			
		||||
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
@@ -165,161 +156,108 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
 | 
			
		||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Domain Wall fermions
 | 
			
		||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplD2> DomainWallFermionD2;
 | 
			
		||||
 | 
			
		||||
//typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
 | 
			
		||||
//typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
 | 
			
		||||
//typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplD2> DomainWallEOFAFermionD2;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
 | 
			
		||||
//typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
 | 
			
		||||
//typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
 | 
			
		||||
typedef MobiusFermion<WilsonImplD2> MobiusFermionD2;
 | 
			
		||||
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
 | 
			
		||||
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
 | 
			
		||||
//typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
 | 
			
		||||
//typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplD2> MobiusEOFAFermionD2;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
 | 
			
		||||
//typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
 | 
			
		||||
//typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplD2> ZMobiusFermionD2;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
 | 
			
		||||
//typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
 | 
			
		||||
//typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
// Ls vectorised
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplD2> ScaledShamirFermionD2;
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
 | 
			
		||||
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplR> MobiusZolotarevFermionR;
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplD2> MobiusZolotarevFermionD2;
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
 | 
			
		||||
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplR> ShamirZolotarevFermionR;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplD2> ShamirZolotarevFermionD2;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
 | 
			
		||||
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplR> OverlapWilsonCayleyTanhFermionR;
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD2> OverlapWilsonCayleyTanhFermionD2;
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
 | 
			
		||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplR> OverlapWilsonCayleyZolotarevFermionR;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD2> OverlapWilsonCayleyZolotarevFermionD2;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
 | 
			
		||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
// Continued fraction
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplR> OverlapWilsonContFracTanhFermionR;
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplD2> OverlapWilsonContFracTanhFermionD2;
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
 | 
			
		||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplR> OverlapWilsonContFracZolotarevFermionR;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD2> OverlapWilsonContFracZolotarevFermionD2;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
 | 
			
		||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
// Partial fraction
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplR> OverlapWilsonPartialFractionTanhFermionR;
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD2> OverlapWilsonPartialFractionTanhFermionD2;
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
 | 
			
		||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
 | 
			
		||||
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplR> OverlapWilsonPartialFractionZolotarevFermionR;
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD2> OverlapWilsonPartialFractionZolotarevFermionD2;
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
 | 
			
		||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
 | 
			
		||||
 | 
			
		||||
// Gparity cases; partial list until tested
 | 
			
		||||
typedef WilsonFermion<GparityWilsonImplR>     GparityWilsonFermionR;
 | 
			
		||||
typedef WilsonFermion<GparityWilsonImplF>     GparityWilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<GparityWilsonImplD>     GparityWilsonFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef WilsonFermion<GparityWilsonImplRL>     GparityWilsonFermionRL;
 | 
			
		||||
//typedef WilsonFermion<GparityWilsonImplFH>     GparityWilsonFermionFH;
 | 
			
		||||
//typedef WilsonFermion<GparityWilsonImplDF>     GparityWilsonFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
 | 
			
		||||
//typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
 | 
			
		||||
//typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionD2;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
 | 
			
		||||
//typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
 | 
			
		||||
//typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionD2;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
 | 
			
		||||
//typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
 | 
			
		||||
//typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionD2;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
 | 
			
		||||
//typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
 | 
			
		||||
//typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionD2;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
//typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
 | 
			
		||||
//typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
 | 
			
		||||
//typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
 | 
			
		||||
 | 
			
		||||
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
 | 
			
		||||
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
 | 
			
		||||
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
 | 
			
		||||
 | 
			
		||||
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
 | 
			
		||||
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
 | 
			
		||||
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -49,6 +49,8 @@ public:
 | 
			
		||||
 | 
			
		||||
  virtual FermionField &tmp(void) = 0;
 | 
			
		||||
 | 
			
		||||
  virtual void DirichletBlock(const Coordinate & _Block) { assert(0); };
 | 
			
		||||
  
 | 
			
		||||
  GridBase * Grid(void)   { return FermionGrid(); };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,18 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Policy implementation for G-parity boundary conditions
 | 
			
		||||
 | 
			
		||||
  Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
 | 
			
		||||
  field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
 | 
			
		||||
  with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
 | 
			
		||||
  to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
 | 
			
		||||
  either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
 | 
			
		||||
 | 
			
		||||
  Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
  mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
 */
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
 | 
			
		||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
 | 
			
		||||
public:
 | 
			
		||||
@@ -113,7 +125,7 @@ public:
 | 
			
		||||
    || ((distance== 1)&&(icoor[direction]==1))
 | 
			
		||||
    || ((distance==-1)&&(icoor[direction]==0));
 | 
			
		||||
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
 | 
			
		||||
 | 
			
		||||
    //Apply the links
 | 
			
		||||
    int f_upper = permute_lane ? 1 : 0;
 | 
			
		||||
@@ -139,10 +151,10 @@ public:
 | 
			
		||||
    assert((distance == 1) || (distance == -1));  // nearest neighbour stencil hard code
 | 
			
		||||
    assert((sl == 1) || (sl == 2));
 | 
			
		||||
 | 
			
		||||
    if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
 | 
			
		||||
    //If this site is an global boundary site, perform the G-parity flavor twist
 | 
			
		||||
    if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
      if ( sl == 2 ) {
 | 
			
		||||
       
 | 
			
		||||
	//Only do the twist for lanes on the edge of the physical node
 | 
			
		||||
	ExtractBuffer<sobj> vals(Nsimd);
 | 
			
		||||
 | 
			
		||||
	extract(chi,vals);
 | 
			
		||||
@@ -197,6 +209,19 @@ public:
 | 
			
		||||
    reg = memory;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
 | 
			
		||||
  inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
 | 
			
		||||
    autoView(poke_f0_v, poke_f0, CpuRead);
 | 
			
		||||
    autoView(poke_f1_v, poke_f1, CpuRead);
 | 
			
		||||
    autoView(Uds_v, Uds, CpuWrite);
 | 
			
		||||
    thread_foreach(ss,poke_f0_v,{
 | 
			
		||||
	Uds_v[ss](0)(mu) = poke_f0_v[ss]();
 | 
			
		||||
	Uds_v[ss](1)(mu) = poke_f1_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(Uds.Grid(),GaugeGrid);
 | 
			
		||||
@@ -207,14 +232,19 @@ public:
 | 
			
		||||
    GaugeLinkField Uconj(GaugeGrid);
 | 
			
		||||
   
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
        
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
          
 | 
			
		||||
      LatticeCoordinate(coor,mu);
 | 
			
		||||
 | 
			
		||||
    //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
    //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs        
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      Uconj = conjugate(U);
 | 
			
		||||
     
 | 
			
		||||
      // Implement the isospin rotation sign on the boundary between f=1 and f=0
 | 
			
		||||
      // This phase could come from a simple bc 1,1,-1,1 ..
 | 
			
		||||
      int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
@@ -229,7 +259,7 @@ public:
 | 
			
		||||
	thread_foreach(ss,U_v,{
 | 
			
		||||
	    Uds_v[ss](0)(mu) = U_v[ss]();
 | 
			
		||||
	    Uds_v[ss](1)(mu) = Uconj_v[ss]();
 | 
			
		||||
	  });
 | 
			
		||||
	});
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = adj(Cshift(U    ,mu,-1));      // correct except for spanning the boundary
 | 
			
		||||
@@ -260,6 +290,38 @@ public:
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    { //periodic / antiperiodic temporal BCs
 | 
			
		||||
      int mu = Nd-1;
 | 
			
		||||
      int L   = GaugeGrid->GlobalDimensions()[mu];
 | 
			
		||||
      int Lmu = L - 1;
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
      U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
 | 
			
		||||
      
 | 
			
		||||
      GaugeLinkField *Upoke = &U;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){ //antiperiodic
 | 
			
		||||
	Utmp =  where(coor == Lmu, -U, U);
 | 
			
		||||
	Upoke = &Utmp;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links      
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
 | 
			
		||||
 | 
			
		||||
      //Get the barrel-shifted field
 | 
			
		||||
      Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
 | 
			
		||||
      Upoke = &Utmp;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){
 | 
			
		||||
	U = where(coor == 0, -Utmp, Utmp);  //boundary phase
 | 
			
		||||
	Upoke = &U;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      Uconj = conjugate(*Upoke);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
 | 
			
		||||
@@ -298,28 +360,48 @@ public:
 | 
			
		||||
  inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
 | 
			
		||||
 | 
			
		||||
    int Ls = Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
        
 | 
			
		||||
    GaugeLinkField tmp(mat.Grid());
 | 
			
		||||
    tmp = Zero();
 | 
			
		||||
    int Ls=Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
    
 | 
			
		||||
    {
 | 
			
		||||
      autoView( tmp_v , tmp, CpuWrite);
 | 
			
		||||
      autoView( Atilde_v , Atilde, CpuRead);
 | 
			
		||||
      autoView( Btilde_v , Btilde, CpuRead);
 | 
			
		||||
      thread_for(ss,tmp.Grid()->oSites(),{
 | 
			
		||||
	  for (int s = 0; s < Ls; s++) {
 | 
			
		||||
	    int sF = s + Ls * ss;
 | 
			
		||||
	    auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
 | 
			
		||||
	    tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
      GridBase *GaugeGrid = mat.Grid();
 | 
			
		||||
      Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      autoView( mat_v , mat, AcceleratorWrite);
 | 
			
		||||
      autoView( Btilde_v , Btilde, AcceleratorRead);
 | 
			
		||||
      autoView( Atilde_v , Atilde, AcceleratorRead);
 | 
			
		||||
      accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{	  
 | 
			
		||||
  	  int sU=sss;
 | 
			
		||||
  	  typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
 | 
			
		||||
  	  ColorMatrixType sum;
 | 
			
		||||
  	  zeroit(sum);
 | 
			
		||||
  	  for(int s=0;s<Ls;s++){
 | 
			
		||||
  	    int sF = s+Ls*sU;
 | 
			
		||||
  	    for(int spn=0;spn<Ns;spn++){ //sum over spin
 | 
			
		||||
	      //Flavor 0
 | 
			
		||||
  	      auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
 | 
			
		||||
  	      auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
 | 
			
		||||
  	      sum = sum + outerProduct(bb,aa);
 | 
			
		||||
 | 
			
		||||
  	      //Flavor 1
 | 
			
		||||
  	      bb = coalescedRead(Btilde_v[sF](1)(spn) );
 | 
			
		||||
  	      aa = coalescedRead(Atilde_v[sF](1)(spn) );
 | 
			
		||||
  	      sum = sum + conjugate(outerProduct(bb,aa));
 | 
			
		||||
  	    }
 | 
			
		||||
  	  }	    
 | 
			
		||||
  	  coalescedWrite(mat_v[sU](mu)(), sum);
 | 
			
		||||
  	});
 | 
			
		||||
    }
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat, tmp, mu);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -47,18 +47,6 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -52,18 +52,6 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -47,18 +47,6 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Performance monitoring
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -32,17 +32,218 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
// Wilson compressor will need FaceGather policies for:
 | 
			
		||||
// Periodic, Dirichlet, and partial Dirichlet for DWF
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
const int dwf_compressor_depth=2;
 | 
			
		||||
#define DWF_COMPRESS
 | 
			
		||||
class FaceGatherPartialDWF
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
 | 
			
		||||
#else
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) { return 1;}
 | 
			
		||||
#endif
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
 | 
			
		||||
				   const Lattice<vobj> &rhs,
 | 
			
		||||
				   cobj *buffer,
 | 
			
		||||
				   compressor &compress,
 | 
			
		||||
				   int off,int so,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    //DWF only hack: If a direction that is OFF node we use Partial Dirichlet
 | 
			
		||||
    //  Shrinks local and remote comms buffers
 | 
			
		||||
    GridBase *Grid = rhs.Grid();
 | 
			
		||||
    int Ls = Grid->_rdimensions[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else 
 | 
			
		||||
    int depth=Ls/2;
 | 
			
		||||
#endif
 | 
			
		||||
    std::pair<int,int> *table_v = & table[0];
 | 
			
		||||
    auto rhs_v = rhs.View(AcceleratorRead);
 | 
			
		||||
    int vol=table.size()/Ls;
 | 
			
		||||
    accelerator_forNB( idx,table.size(), vobj::Nsimd(), {
 | 
			
		||||
	Integer i=idx/Ls;
 | 
			
		||||
	Integer s=idx%Ls;
 | 
			
		||||
	Integer sc=depth+s-(Ls-depth);
 | 
			
		||||
	if(s<depth)     compress.Compress(buffer[off+i+s*vol],rhs_v[so+table_v[idx].second]);
 | 
			
		||||
	if(s>=Ls-depth) compress.Compress(buffer[off+i+sc*vol],rhs_v[so+table_v[idx].second]);
 | 
			
		||||
    });
 | 
			
		||||
    rhs_v.ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  template<class decompressor,class Decompression>
 | 
			
		||||
  static void DecompressFace(decompressor decompress,Decompression &dd)
 | 
			
		||||
  {
 | 
			
		||||
    auto Ls = dd.dims[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else
 | 
			
		||||
    int depth=Ls/2;
 | 
			
		||||
#endif    
 | 
			
		||||
    // Just pass in the Grid
 | 
			
		||||
    auto kp = dd.kernel_p;
 | 
			
		||||
    auto mp = dd.mpi_p;
 | 
			
		||||
    int size= dd.buffer_size;
 | 
			
		||||
    int vol= size/Ls;
 | 
			
		||||
    accelerator_forNB(o,size,1,{
 | 
			
		||||
	int idx=o/Ls;
 | 
			
		||||
	int   s=o%Ls;
 | 
			
		||||
	if ( s < depth ) {
 | 
			
		||||
	  int oo=s*vol+idx;
 | 
			
		||||
	  kp[o]=mp[oo];
 | 
			
		||||
	} else if ( s >= Ls-depth ) {
 | 
			
		||||
	  int sc = depth + s - (Ls-depth);
 | 
			
		||||
	  int oo=sc*vol+idx; 
 | 
			
		||||
	  kp[o]=mp[oo];
 | 
			
		||||
	} else {
 | 
			
		||||
	  kp[o] = Zero();//fill rest with zero if partial dirichlet
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need to gather *interior portions* for ALL s-slices in simd directions
 | 
			
		||||
  // Do the gather as need to treat SIMD lanes differently, and insert zeroes on receive side
 | 
			
		||||
  // Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				    compressor &compress,int type,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *Grid = rhs.Grid();
 | 
			
		||||
    int Ls = Grid->_rdimensions[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else
 | 
			
		||||
    int depth = Ls/2;
 | 
			
		||||
#endif
 | 
			
		||||
    
 | 
			
		||||
    // insertion of zeroes...
 | 
			
		||||
    assert( (table.size()&0x1)==0);
 | 
			
		||||
    int num=table.size()/2;
 | 
			
		||||
    int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
 | 
			
		||||
    
 | 
			
		||||
    auto rhs_v = rhs.View(AcceleratorRead);
 | 
			
		||||
    auto p0=&pointers[0][0];
 | 
			
		||||
    auto p1=&pointers[1][0];
 | 
			
		||||
    auto tp=&table[0];
 | 
			
		||||
    int nnum=num/Ls;
 | 
			
		||||
    accelerator_forNB(j, num, vobj::Nsimd(), {
 | 
			
		||||
	//  Reorders both local and remote comms buffers
 | 
			
		||||
	//  
 | 
			
		||||
	int s  = j % Ls;
 | 
			
		||||
	int sp1 = (s+depth)%Ls;  // peri incremented s slice
 | 
			
		||||
	
 | 
			
		||||
	int hxyz= j/Ls;
 | 
			
		||||
 | 
			
		||||
	int xyz0= hxyz*2; // xyzt part of coor
 | 
			
		||||
	int xyz1= hxyz*2+1;
 | 
			
		||||
	
 | 
			
		||||
	int jj= hxyz + sp1*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
 | 
			
		||||
	
 | 
			
		||||
	int kk0= xyz0*Ls + s ; // s=0 goes to s=1
 | 
			
		||||
	int kk1= xyz1*Ls + s ; // s=Ls-1 -> s=0
 | 
			
		||||
	compress.CompressExchange(p0[jj],p1[jj],
 | 
			
		||||
				  rhs_v[so+tp[kk0 ].second], // Same s, consecutive xyz sites
 | 
			
		||||
				  rhs_v[so+tp[kk1 ].second], 
 | 
			
		||||
				  type);
 | 
			
		||||
    });
 | 
			
		||||
    rhs_v.ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  // Merge routine is for SIMD faces
 | 
			
		||||
  template<class decompressor,class Merger>
 | 
			
		||||
  static void MergeFace(decompressor decompress,Merger &mm)
 | 
			
		||||
  {
 | 
			
		||||
    auto Ls = mm.dims[0];
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
    int depth=dwf_compressor_depth;
 | 
			
		||||
#else
 | 
			
		||||
    int depth = Ls/2;
 | 
			
		||||
#endif
 | 
			
		||||
    int  num= mm.buffer_size/2; // relate vol and Ls to buffer size
 | 
			
		||||
    auto mp = &mm.mpointer[0];
 | 
			
		||||
    auto vp0= &mm.vpointers[0][0]; // First arg is exchange first
 | 
			
		||||
    auto vp1= &mm.vpointers[1][0];
 | 
			
		||||
    auto type= mm.type;
 | 
			
		||||
    int nnum = num/Ls;
 | 
			
		||||
    accelerator_forNB(o,num,Merger::Nsimd,{
 | 
			
		||||
 | 
			
		||||
	int  s=o%Ls;
 | 
			
		||||
	int hxyz=o/Ls; // xyzt related component
 | 
			
		||||
	int xyz0=hxyz*2;
 | 
			
		||||
	int xyz1=hxyz*2+1;
 | 
			
		||||
 | 
			
		||||
	int sp = (s+depth)%Ls; 
 | 
			
		||||
	int jj= hxyz + sp*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
 | 
			
		||||
 | 
			
		||||
	int oo0= s+xyz0*Ls;
 | 
			
		||||
	int oo1= s+xyz1*Ls;
 | 
			
		||||
 | 
			
		||||
	// same ss0, ss1 pair goes to new layout
 | 
			
		||||
	decompress.Exchange(mp[oo0],mp[oo1],vp0[jj],vp1[jj],type);
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
class FaceGatherDWFMixedBCs
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
#ifdef DWF_COMPRESS
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
 | 
			
		||||
#else 
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) {return 1;}
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
 | 
			
		||||
					 const Lattice<vobj> &rhs,
 | 
			
		||||
					 cobj *buffer,
 | 
			
		||||
					 compressor &compress,
 | 
			
		||||
					 int off,int so,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " face gather simple DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if(partial) FaceGatherPartialDWF::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
 | 
			
		||||
    else        FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				    compressor &compress,int type,int partial)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " face gather exch DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if(partial) FaceGatherPartialDWF::Gather_plane_exchange(table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
 | 
			
		||||
    else        FaceGatherSimple::Gather_plane_exchange    (table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
 | 
			
		||||
  }
 | 
			
		||||
  template<class decompressor,class Merger>
 | 
			
		||||
  static void MergeFace(decompressor decompress,Merger &mm)
 | 
			
		||||
  {
 | 
			
		||||
    int partial = mm.partial;
 | 
			
		||||
    //    std::cout << " merge DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if ( partial ) FaceGatherPartialDWF::MergeFace(decompress,mm);
 | 
			
		||||
    else           FaceGatherSimple::MergeFace(decompress,mm);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class decompressor,class Decompression>
 | 
			
		||||
  static void DecompressFace(decompressor decompress,Decompression &dd)
 | 
			
		||||
  {
 | 
			
		||||
    int partial = dd.partial;
 | 
			
		||||
    //    std::cout << " decompress DWF partial "<<partial <<std::endl;
 | 
			
		||||
    if ( partial ) FaceGatherPartialDWF::DecompressFace(decompress,dd);
 | 
			
		||||
    else           FaceGatherSimple::DecompressFace(decompress,dd);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// optimised versions supporting half precision too
 | 
			
		||||
// optimised versions supporting half precision too??? Deprecate
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector,typename SFINAE = void >
 | 
			
		||||
class WilsonCompressorTemplate;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Could make FaceGather a template param, but then behaviour is runtime not compile time
 | 
			
		||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
 | 
			
		||||
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
 | 
			
		||||
				typename std::enable_if<std::is_same<_HCspinor,_Hspinor>::value>::type >
 | 
			
		||||
class WilsonCompressorTemplate  : public FaceGatherDWFMixedBCs
 | 
			
		||||
//  : public FaceGatherSimple
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
@@ -79,172 +280,81 @@ public:
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Exchange includes precision change if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Exchange(SiteHalfSpinor *mp,
 | 
			
		||||
				   const SiteHalfSpinor * __restrict__ vp0,
 | 
			
		||||
				   const SiteHalfSpinor * __restrict__ vp1,
 | 
			
		||||
				   Integer type,Integer o) const {
 | 
			
		||||
  accelerator_inline void Exchange(SiteHalfSpinor &mp0,
 | 
			
		||||
				   SiteHalfSpinor &mp1,
 | 
			
		||||
				   const SiteHalfSpinor & vp0,
 | 
			
		||||
				   const SiteHalfSpinor & vp1,
 | 
			
		||||
				   Integer type) const {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
    exchangeSIMT(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
 | 
			
		||||
    exchangeSIMT(mp0,mp1,vp0,vp1,type);
 | 
			
		||||
#else
 | 
			
		||||
    SiteHalfSpinor tmp1;
 | 
			
		||||
    SiteHalfSpinor tmp2;
 | 
			
		||||
    exchange(tmp1,tmp2,vp0[o],vp1[o],type);
 | 
			
		||||
    vstream(mp[2*o  ],tmp1);
 | 
			
		||||
    vstream(mp[2*o+1],tmp2);
 | 
			
		||||
    exchange(tmp1,tmp2,vp0,vp1,type);
 | 
			
		||||
    vstream(mp0,tmp1);
 | 
			
		||||
    vstream(mp1,tmp2);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Have a decompression step if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Decompress(SiteHalfSpinor * __restrict__ out,
 | 
			
		||||
				     SiteHalfSpinor * __restrict__ in, Integer o) const {    
 | 
			
		||||
    assert(0);
 | 
			
		||||
  accelerator_inline void Decompress(SiteHalfSpinor &out,
 | 
			
		||||
				     SiteHalfSpinor &in) const {    
 | 
			
		||||
    out = in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Compress Exchange                                 */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void CompressExchange(SiteHalfSpinor * __restrict__ out0,
 | 
			
		||||
					   SiteHalfSpinor * __restrict__ out1,
 | 
			
		||||
					   const SiteSpinor * __restrict__ in,
 | 
			
		||||
					   Integer j,Integer k, Integer m,Integer type) const
 | 
			
		||||
  accelerator_inline void CompressExchange(SiteHalfSpinor &out0,
 | 
			
		||||
					   SiteHalfSpinor &out1,
 | 
			
		||||
					   const SiteSpinor &in0,
 | 
			
		||||
					   const SiteSpinor &in1,
 | 
			
		||||
					   Integer type) const
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
    typedef SiteSpinor vobj;
 | 
			
		||||
    typedef SiteHalfSpinor hvobj;
 | 
			
		||||
    typedef decltype(coalescedRead(*in))    sobj;
 | 
			
		||||
    typedef decltype(coalescedRead(*out0)) hsobj;
 | 
			
		||||
    typedef decltype(coalescedRead(in0))    sobj;
 | 
			
		||||
    typedef decltype(coalescedRead(out0)) hsobj;
 | 
			
		||||
 | 
			
		||||
    constexpr unsigned int Nsimd = vobj::Nsimd();
 | 
			
		||||
    unsigned int mask = Nsimd >> (type + 1);
 | 
			
		||||
    int lane = acceleratorSIMTlane(Nsimd);
 | 
			
		||||
    int j0 = lane &(~mask); // inner coor zero
 | 
			
		||||
    int j1 = lane |(mask) ; // inner coor one
 | 
			
		||||
    const vobj *vp0 = &in[k];  // out0[j] = merge low bit of type from in[k] and in[m] 
 | 
			
		||||
    const vobj *vp1 = &in[m];  // out1[j] = merge hi  bit of type from in[k] and in[m]
 | 
			
		||||
    const vobj *vp = (lane&mask) ? vp1:vp0;// if my lane has high bit take vp1, low bit take vp0
 | 
			
		||||
    auto sa = coalescedRead(*vp,j0); // lane to read for out 0, NB 50% read coalescing
 | 
			
		||||
    auto sb = coalescedRead(*vp,j1); // lane to read for out 1
 | 
			
		||||
    const vobj *vp0 = &in0;
 | 
			
		||||
    const vobj *vp1 = &in1;
 | 
			
		||||
    const vobj *vp = (lane&mask) ? vp1:vp0;
 | 
			
		||||
    auto sa = coalescedRead(*vp,j0);
 | 
			
		||||
    auto sb = coalescedRead(*vp,j1);
 | 
			
		||||
    hsobj psa, psb;
 | 
			
		||||
    projector::Proj(psa,sa,mu,dag);  // spin project the result0
 | 
			
		||||
    projector::Proj(psb,sb,mu,dag);  // spin project the result1
 | 
			
		||||
    coalescedWrite(out0[j],psa);
 | 
			
		||||
    coalescedWrite(out1[j],psb);
 | 
			
		||||
    projector::Proj(psa,sa,mu,dag);
 | 
			
		||||
    projector::Proj(psb,sb,mu,dag);
 | 
			
		||||
    coalescedWrite(out0,psa);
 | 
			
		||||
    coalescedWrite(out1,psb);
 | 
			
		||||
#else
 | 
			
		||||
    SiteHalfSpinor temp1, temp2;
 | 
			
		||||
    SiteHalfSpinor temp3, temp4;
 | 
			
		||||
    projector::Proj(temp1,in[k],mu,dag);
 | 
			
		||||
    projector::Proj(temp2,in[m],mu,dag);
 | 
			
		||||
    projector::Proj(temp1,in0,mu,dag);
 | 
			
		||||
    projector::Proj(temp2,in1,mu,dag);
 | 
			
		||||
    exchange(temp3,temp4,temp1,temp2,type);
 | 
			
		||||
    vstream(out0[j],temp3);
 | 
			
		||||
    vstream(out1[j],temp4);
 | 
			
		||||
    vstream(out0,temp3);
 | 
			
		||||
    vstream(out1,temp4);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Pass the info to the stencil */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline bool DecompressionStep(void) const { return false; }
 | 
			
		||||
  accelerator_inline bool DecompressionStep(void) const {
 | 
			
		||||
    return false;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
 | 
			
		||||
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
 | 
			
		||||
				typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
  int mu,dag;  
 | 
			
		||||
 | 
			
		||||
  void Point(int p) { mu=p; };
 | 
			
		||||
 | 
			
		||||
  WilsonCompressorTemplate(int _dag=0){
 | 
			
		||||
    dag = _dag;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  typedef _Spinor         SiteSpinor;
 | 
			
		||||
  typedef _Hspinor     SiteHalfSpinor;
 | 
			
		||||
  typedef _HCspinor SiteHalfCommSpinor;
 | 
			
		||||
  typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
 | 
			
		||||
  typedef typename SiteHalfSpinor::vector_type     vComplexHigh;
 | 
			
		||||
  constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
 | 
			
		||||
 | 
			
		||||
  accelerator_inline int CommDatumSize(void) const {
 | 
			
		||||
    return sizeof(SiteHalfCommSpinor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Compress includes precision change if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
 | 
			
		||||
    SiteHalfSpinor hsp;
 | 
			
		||||
    SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
 | 
			
		||||
    projector::Proj(hsp,in,mu,dag);
 | 
			
		||||
    precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
 | 
			
		||||
  }
 | 
			
		||||
  accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
    typedef decltype(coalescedRead(buf)) sobj;
 | 
			
		||||
    sobj sp;
 | 
			
		||||
    auto sin = coalescedRead(in);
 | 
			
		||||
    projector::Proj(sp,sin,mu,dag);
 | 
			
		||||
    coalescedWrite(buf,sp);
 | 
			
		||||
#else
 | 
			
		||||
    projector::Proj(buf,in,mu,dag);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Exchange includes precision change if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Exchange(SiteHalfSpinor *mp,
 | 
			
		||||
                       SiteHalfSpinor *vp0,
 | 
			
		||||
                       SiteHalfSpinor *vp1,
 | 
			
		||||
		       Integer type,Integer o) const {
 | 
			
		||||
    SiteHalfSpinor vt0,vt1;
 | 
			
		||||
    SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
 | 
			
		||||
    SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
 | 
			
		||||
    precisionChange((vComplexHigh *)&vt0,(vComplexLow *)&vpp0[o],Nw);
 | 
			
		||||
    precisionChange((vComplexHigh *)&vt1,(vComplexLow *)&vpp1[o],Nw);
 | 
			
		||||
    exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Have a decompression step if mpi data is not same */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o) const {
 | 
			
		||||
    SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
 | 
			
		||||
    precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Compress Exchange                                 */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline void CompressExchange(SiteHalfSpinor *out0,
 | 
			
		||||
			       SiteHalfSpinor *out1,
 | 
			
		||||
			       const SiteSpinor *in,
 | 
			
		||||
			       Integer j,Integer k, Integer m,Integer type) const {
 | 
			
		||||
    SiteHalfSpinor temp1, temp2,temp3,temp4;
 | 
			
		||||
    SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
 | 
			
		||||
    SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
 | 
			
		||||
    projector::Proj(temp1,in[k],mu,dag);
 | 
			
		||||
    projector::Proj(temp2,in[m],mu,dag);
 | 
			
		||||
    exchange(temp3,temp4,temp1,temp2,type);
 | 
			
		||||
    precisionChange((vComplexLow *)&hout0[j],(vComplexHigh *)&temp3,Nw);
 | 
			
		||||
    precisionChange((vComplexLow *)&hout1[j],(vComplexHigh *)&temp4,Nw);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  /* Pass the info to the stencil */
 | 
			
		||||
  /*****************************************************/
 | 
			
		||||
  accelerator_inline bool DecompressionStep(void) const { return true; }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define DECLARE_PROJ(Projector,Compressor,spProj)			\
 | 
			
		||||
  class Projector {							\
 | 
			
		||||
  public:								\
 | 
			
		||||
@@ -294,11 +404,7 @@ public:
 | 
			
		||||
  typedef typename Base::View_type View_type;
 | 
			
		||||
  typedef typename Base::StencilVector StencilVector;
 | 
			
		||||
 | 
			
		||||
  void ZeroCountersi(void)  {  }
 | 
			
		||||
  void Reporti(int calls)  {  }
 | 
			
		||||
 | 
			
		||||
  std::vector<int> surface_list;
 | 
			
		||||
 | 
			
		||||
  //  Vector<int> surface_list;
 | 
			
		||||
  WilsonStencil(GridBase *grid,
 | 
			
		||||
		int npoints,
 | 
			
		||||
		int checkerboard,
 | 
			
		||||
@@ -306,11 +412,11 @@ public:
 | 
			
		||||
		const std::vector<int> &distances,Parameters p)  
 | 
			
		||||
    : CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p) 
 | 
			
		||||
  { 
 | 
			
		||||
    ZeroCountersi();
 | 
			
		||||
    surface_list.resize(0);
 | 
			
		||||
    //    surface_list.resize(0);
 | 
			
		||||
    this->same_node.resize(npoints);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  void BuildSurfaceList(int Ls,int vol4){
 | 
			
		||||
 | 
			
		||||
    // find same node for SHM
 | 
			
		||||
@@ -331,7 +437,8 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
  template < class compressor>
 | 
			
		||||
  void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress) 
 | 
			
		||||
  {
 | 
			
		||||
@@ -377,28 +484,29 @@ public:
 | 
			
		||||
 | 
			
		||||
    int dag = compress.dag;
 | 
			
		||||
    int face_idx=0;
 | 
			
		||||
#define vet_same_node(a,b) \
 | 
			
		||||
      { auto tmp = b;  }
 | 
			
		||||
    if ( dag ) { 
 | 
			
		||||
      assert(this->same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
 | 
			
		||||
      assert(this->same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
 | 
			
		||||
      assert(this->same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
 | 
			
		||||
      assert(this->same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
 | 
			
		||||
      assert(this->same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
 | 
			
		||||
      assert(this->same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
 | 
			
		||||
      assert(this->same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
 | 
			
		||||
      assert(this->same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XpCompress,Xp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YpCompress,Yp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TpCompress,Tp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XmCompress,Xm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YmCompress,Ym,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TmCompress,Tm,face_idx));
 | 
			
		||||
    } else {
 | 
			
		||||
      assert(this->same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
 | 
			
		||||
      assert(this->same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
 | 
			
		||||
      assert(this->same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
 | 
			
		||||
      assert(this->same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
 | 
			
		||||
      assert(this->same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
 | 
			
		||||
      assert(this->same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
 | 
			
		||||
      assert(this->same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
 | 
			
		||||
      assert(this->same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XmCompress,Xp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YmCompress,Yp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TmCompress,Tp,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XpCompress,Xm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YpCompress,Ym,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
 | 
			
		||||
      vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TpCompress,Tm,face_idx));
 | 
			
		||||
    }
 | 
			
		||||
    this->face_table_computed=1;
 | 
			
		||||
    assert(this->u_comm_offset==this->_unified_buffer_size);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -74,20 +74,6 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
 | 
			
		||||
  double DerivCalls;
 | 
			
		||||
  double DerivCommTime;
 | 
			
		||||
  double DerivComputeTime;
 | 
			
		||||
  double DerivDhopComputeTime;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // override multiply; cut number routines if pass dagger argument
 | 
			
		||||
  // and also make interface more uniformly consistent
 | 
			
		||||
 
 | 
			
		||||
@@ -75,19 +75,8 @@ public:
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  void Report(void);
 | 
			
		||||
  void ZeroCounters(void);
 | 
			
		||||
  double DhopCalls;
 | 
			
		||||
  double DhopCommTime;
 | 
			
		||||
  double DhopComputeTime;
 | 
			
		||||
  double DhopComputeTime2;
 | 
			
		||||
  double DhopFaceTime;
 | 
			
		||||
  double DhopTotalTime;
 | 
			
		||||
 | 
			
		||||
  double DerivCalls;
 | 
			
		||||
  double DerivCommTime;
 | 
			
		||||
  double DerivComputeTime;
 | 
			
		||||
  double DerivDhopComputeTime;
 | 
			
		||||
  int Dirichlet;
 | 
			
		||||
  Coordinate Block; 
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
@@ -173,7 +162,10 @@ public:
 | 
			
		||||
		  GridCartesian         &FourDimGrid,
 | 
			
		||||
		  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		  double _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  virtual void DirichletBlock(const Coordinate & block)
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
  // Constructors
 | 
			
		||||
  /*
 | 
			
		||||
    WilsonFermion5D(int simd, 
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
 | 
			
		||||
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  static const int Dimension = Representation::Dimension;
 | 
			
		||||
  static const bool isFundamental = Representation::isFundamental;
 | 
			
		||||
  static const bool LsVectorised=false;
 | 
			
		||||
@@ -242,19 +242,13 @@ public:
 | 
			
		||||
typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffReal > WilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD;  // Double
 | 
			
		||||
 | 
			
		||||
//typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL;  // Real.. whichever prec
 | 
			
		||||
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH;  // Float
 | 
			
		||||
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF;  // Double
 | 
			
		||||
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > WilsonImplD2;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
 | 
			
		||||
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffComplex > ZWilsonImplD2; // Double
 | 
			
		||||
 | 
			
		||||
//typedef WilsonImpl<vComplex,  FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
 | 
			
		||||
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
 | 
			
		||||
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
 | 
			
		||||
 
 | 
			
		||||
typedef WilsonImpl<vComplex,  AdjointRepresentation, CoeffReal > WilsonAdjImplR;   // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD;  // Double
 | 
			
		||||
 
 | 
			
		||||
@@ -52,13 +52,6 @@ public:
 | 
			
		||||
  typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;   
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#define SYCL_HACK
 | 
			
		||||
#endif  
 | 
			
		||||
#ifdef SYCL_HACK
 | 
			
		||||
  static void HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p, SiteDoubledGaugeField *U,SiteHalfSpinor  *buf,
 | 
			
		||||
			       int ss,int sU,const SiteSpinor *in, SiteSpinor *out);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  static void DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf,
 | 
			
		||||
			 int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
 
 | 
			
		||||
@@ -152,58 +152,6 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
 | 
			
		||||
{
 | 
			
		||||
  this->Report();
 | 
			
		||||
  Coordinate latt = GridDefaultLatt();          
 | 
			
		||||
  RealD volume = this->Ls;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP     = this->_FourDimGrid->_Nprocessors;
 | 
			
		||||
  if ( M5Dcalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### M5D calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D Number of M5D Calls     : " << M5Dcalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls       : " << M5Dtime / M5Dcalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Flops = 10.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
    RealD mflops = 10.0*(Nc*Ns)*volume*M5Dcalls/M5Dtime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Bytes = sizeof(Real) * (Nc*Ns*Nreim) * Ls * vol * (read+write) (/2 for red black counting)
 | 
			
		||||
    // read = 2 ( psi[ss+s+1] and psi[ss+s-1] count as 1 )
 | 
			
		||||
    // write = 1
 | 
			
		||||
    RealD Gbytes = sizeof(Real) * (Nc*Ns*2) * volume * 3 /2. * 1.e-9;
 | 
			
		||||
    std::cout << GridLogMessage << "Average bandwidth (GB/s)                 : " << Gbytes/M5Dtime*M5Dcalls*1.e6 << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( MooeeInvCalls > 0 ) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls     : " << MooeeInvCalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls            : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    RealD mflops = ( -16.*Nc*Ns+this->Ls*(1.+18.*Nc*Ns) )*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    // Flops = MADD * Ls *Ls *4dvol * spin/colour/complex
 | 
			
		||||
    RealD mflops = 2.0*24*this->Ls*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
 | 
			
		||||
{
 | 
			
		||||
  this->ZeroCounters();
 | 
			
		||||
  M5Dflops=0;
 | 
			
		||||
  M5Dcalls=0;
 | 
			
		||||
  M5Dtime=0;
 | 
			
		||||
  MooeeInvFlops=0;
 | 
			
		||||
  MooeeInvCalls=0;
 | 
			
		||||
  MooeeInvTime=0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
void CayleyFermion5D<Impl>::M5D   (const FermionField &psi, FermionField &chi)
 | 
			
		||||
{
 | 
			
		||||
@@ -646,7 +594,6 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
 | 
			
		||||
  assert(mass_plus == mass_minus);
 | 
			
		||||
  RealD mass = mass_plus;
 | 
			
		||||
  
 | 
			
		||||
#if (!defined(GRID_HIP))
 | 
			
		||||
  Gamma::Algebra Gmu [] = {
 | 
			
		||||
    Gamma::Algebra::GammaX,
 | 
			
		||||
    Gamma::Algebra::GammaY,
 | 
			
		||||
@@ -765,7 +712,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
 | 
			
		||||
    else          q_out +=     C;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -832,7 +779,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if (!defined(GRID_HIP))
 | 
			
		||||
  int tshift = (mu == Nd-1) ? 1 : 0;
 | 
			
		||||
  unsigned int LLt    = GridDefaultLatt()[Tp];
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
@@ -952,7 +898,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
 | 
			
		||||
    InsertSlice(L_Q, q_out, s , 0);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
#undef Pp
 | 
			
		||||
#undef Pm
 | 
			
		||||
@@ -960,88 +905,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
 | 
			
		||||
#undef TopRowWithSource
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void CayleyFermion5D<Impl>::MooeeInternalCompute(int dag, int inv,
 | 
			
		||||
						 Vector<iSinglet<Simd> > & Matp,
 | 
			
		||||
						 Vector<iSinglet<Simd> > & Matm)
 | 
			
		||||
{
 | 
			
		||||
  int Ls=this->Ls;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = this->FermionRedBlackGrid();
 | 
			
		||||
  int LLs = grid->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
  if ( LLs == Ls ) {
 | 
			
		||||
    return; // Not vectorised in 5th direction
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd Pplus  = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
  Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
  
 | 
			
		||||
  for(int s=0;s<Ls;s++){
 | 
			
		||||
    Pplus(s,s) = bee[s];
 | 
			
		||||
    Pminus(s,s)= bee[s];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  for(int s=0;s<Ls-1;s++){
 | 
			
		||||
    Pminus(s,s+1) = -cee[s];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  for(int s=0;s<Ls-1;s++){
 | 
			
		||||
    Pplus(s+1,s) = -cee[s+1];
 | 
			
		||||
  }
 | 
			
		||||
  Pplus (0,Ls-1) = mass*cee[0];
 | 
			
		||||
  Pminus(Ls-1,0) = mass*cee[Ls-1];
 | 
			
		||||
  
 | 
			
		||||
  Eigen::MatrixXcd PplusMat ;
 | 
			
		||||
  Eigen::MatrixXcd PminusMat;
 | 
			
		||||
  
 | 
			
		||||
  if ( inv ) {
 | 
			
		||||
    PplusMat =Pplus.inverse();
 | 
			
		||||
    PminusMat=Pminus.inverse();
 | 
			
		||||
  } else { 
 | 
			
		||||
    PplusMat =Pplus;
 | 
			
		||||
    PminusMat=Pminus;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if(dag){
 | 
			
		||||
    PplusMat.adjointInPlace();
 | 
			
		||||
    PminusMat.adjointInPlace();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  typedef typename SiteHalfSpinor::scalar_type scalar_type;
 | 
			
		||||
  const int Nsimd=Simd::Nsimd();
 | 
			
		||||
  Matp.resize(Ls*LLs);
 | 
			
		||||
  Matm.resize(Ls*LLs);
 | 
			
		||||
 | 
			
		||||
  for(int s2=0;s2<Ls;s2++){
 | 
			
		||||
    for(int s1=0;s1<LLs;s1++){
 | 
			
		||||
      int istride = LLs;
 | 
			
		||||
      int ostride = 1;
 | 
			
		||||
      Simd Vp;
 | 
			
		||||
      Simd Vm;
 | 
			
		||||
      scalar_type *sp = (scalar_type *)&Vp;
 | 
			
		||||
      scalar_type *sm = (scalar_type *)&Vm;
 | 
			
		||||
      for(int l=0;l<Nsimd;l++){
 | 
			
		||||
	if ( switcheroo<Coeff_t>::iscomplex() ) {
 | 
			
		||||
	  sp[l] = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
	  sm[l] = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
	} else { 
 | 
			
		||||
	  // if real
 | 
			
		||||
	  scalar_type tmp;
 | 
			
		||||
	  tmp = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
	  sp[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
	  tmp = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
	  sm[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      Matp[LLs*s2+s1] = Vp;
 | 
			
		||||
      Matm[LLs*s2+s1] = Vm;
 | 
			
		||||
    }}
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -63,23 +63,18 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
 | 
			
		||||
 | 
			
		||||
  // 10 = 3 complex mult + 2 complex add
 | 
			
		||||
  // Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  uint64_t nloop = grid->oSites();
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss= sss*Ls;
 | 
			
		||||
    uint64_t s = sss%Ls;
 | 
			
		||||
    uint64_t ss= sss-s;
 | 
			
		||||
    typedef decltype(coalescedRead(psi[0])) spinor;
 | 
			
		||||
    spinor tmp1, tmp2;
 | 
			
		||||
    for(int s=0;s<Ls;s++){
 | 
			
		||||
      uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
      uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
      spProj5m(tmp1,psi(idx_u));
 | 
			
		||||
      spProj5p(tmp2,psi(idx_l));
 | 
			
		||||
      coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
    }
 | 
			
		||||
    uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
    uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
    spProj5m(tmp1,psi(idx_u));
 | 
			
		||||
    spProj5p(tmp2,psi(idx_l));
 | 
			
		||||
    coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
@@ -105,23 +100,18 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
 | 
			
		||||
  int Ls=this->Ls;
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  uint64_t nloop = grid->oSites();
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
    uint64_t s = sss%Ls;
 | 
			
		||||
    uint64_t ss= sss-s;
 | 
			
		||||
    typedef decltype(coalescedRead(psi[0])) spinor;
 | 
			
		||||
    spinor tmp1,tmp2;
 | 
			
		||||
    for(int s=0;s<Ls;s++){
 | 
			
		||||
      uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
      uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
      spProj5p(tmp1,psi(idx_u));
 | 
			
		||||
      spProj5m(tmp2,psi(idx_l));
 | 
			
		||||
      coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
    }
 | 
			
		||||
    uint64_t idx_u = ss+((s+1)%Ls);
 | 
			
		||||
    uint64_t idx_l = ss+((s+Ls-1)%Ls);
 | 
			
		||||
    spProj5p(tmp1,psi(idx_u));
 | 
			
		||||
    spProj5m(tmp2,psi(idx_l));
 | 
			
		||||
    coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -142,8 +132,6 @@ CayleyFermion5D<Impl>::MooeeInv    (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
  auto pleem = & leem[0];
 | 
			
		||||
  auto pueem = & ueem[0];
 | 
			
		||||
 | 
			
		||||
  MooeeInvCalls++;
 | 
			
		||||
  MooeeInvTime-=usecond();
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -180,8 +168,6 @@ CayleyFermion5D<Impl>::MooeeInv    (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  MooeeInvTime+=usecond();
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -204,10 +190,6 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
 | 
			
		||||
  assert(psi.Checkerboard() == psi.Checkerboard());
 | 
			
		||||
 | 
			
		||||
  MooeeInvCalls++;
 | 
			
		||||
  MooeeInvTime-=usecond();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  uint64_t nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -244,7 +226,6 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  MooeeInvTime+=usecond();
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -94,10 +94,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
 | 
			
		||||
      d_p[ss] = diag[s];
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
 | 
			
		||||
  assert(Nc==3);
 | 
			
		||||
 | 
			
		||||
  thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
 | 
			
		||||
@@ -198,7 +194,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
@@ -242,8 +237,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
 | 
			
		||||
      d_p[ss] = diag[s];
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
  M5Dcalls++;
 | 
			
		||||
  M5Dtime-=usecond();
 | 
			
		||||
  thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
 | 
			
		||||
#if 0
 | 
			
		||||
    alignas(64) SiteHalfSpinor hp;
 | 
			
		||||
@@ -339,7 +332,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  });
 | 
			
		||||
  M5Dtime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -813,9 +805,6 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
 | 
			
		||||
  }
 | 
			
		||||
  assert(_Matp->size()==Ls*LLs);
 | 
			
		||||
 | 
			
		||||
  MooeeInvCalls++;
 | 
			
		||||
  MooeeInvTime-=usecond();
 | 
			
		||||
 | 
			
		||||
  if ( switcheroo<Coeff_t>::iscomplex() ) {
 | 
			
		||||
    thread_loop( (auto site=0;site<vol;site++),{
 | 
			
		||||
      MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
 | 
			
		||||
@@ -825,7 +814,7 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
 | 
			
		||||
      MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  MooeeInvTime+=usecond();
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -54,8 +54,6 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
 | 
			
		||||
  auto pupper = &upper[0];
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
  
 | 
			
		||||
  auto nloop=grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
@@ -71,7 +69,6 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -91,8 +88,6 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  auto nloop=grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
@@ -108,7 +103,6 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -127,8 +121,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
 | 
			
		||||
  auto pleem = & this->leem[0];
 | 
			
		||||
  auto pueem = & this->ueem[0];
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
  uint64_t nloop=grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -164,7 +156,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -185,8 +176,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
 | 
			
		||||
 | 
			
		||||
  assert(psi.Checkerboard() == psi.Checkerboard());
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
  auto nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -223,7 +212,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -298,45 +298,33 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
  int len =  U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  //  st.HaloExchangeOptGather(in,compressor); // Wilson compressor
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Remove explicit thread mapping introduced for OPA reasons.
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=0;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime +=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2-=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=0;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -347,22 +335,14 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
  Compressor compressor;
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
 //double t1=usecond();
 | 
			
		||||
  DhopTotalTime -= usecond();
 | 
			
		||||
  DhopCommTime -= usecond();
 | 
			
		||||
  st.HaloExchange(in,compressor);
 | 
			
		||||
  DhopCommTime += usecond();
 | 
			
		||||
  
 | 
			
		||||
  DhopComputeTime -= usecond();
 | 
			
		||||
  // Dhop takes the 4d grid from U, and makes a 5d index for fermion
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime += usecond();
 | 
			
		||||
  DhopTotalTime   += usecond();
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
/*CHANGE END*/
 | 
			
		||||
 | 
			
		||||
@@ -371,7 +351,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -383,7 +362,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -395,7 +373,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(),FermionGrid()); // verifies full grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -404,58 +381,6 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
 | 
			
		||||
  DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::Report(void) 
 | 
			
		||||
{
 | 
			
		||||
  Coordinate latt = GridDefaultLatt();          
 | 
			
		||||
  RealD volume = Ls;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP = _FourDimGrid->_Nprocessors;
 | 
			
		||||
  RealD NN = _FourDimGrid->NodeCount();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Number of DhopEO Calls   : " 
 | 
			
		||||
	    << DhopCalls   << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D TotalTime   /Calls       : " 
 | 
			
		||||
	    << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D CommTime    /Calls       : " 
 | 
			
		||||
	    << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D ComputeTime/Calls        : " 
 | 
			
		||||
	    << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
  // Average the compute time
 | 
			
		||||
  _FourDimGrid->GlobalSum(DhopComputeTime);
 | 
			
		||||
  DhopComputeTime/=NP;
 | 
			
		||||
 | 
			
		||||
  RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopTotalTime    = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Implement the general interface. Here we use SAME mass on all slices
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -334,7 +334,6 @@ void ImprovedStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionF
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(), _grid);  // verifies full grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -346,7 +345,6 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -359,7 +357,6 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -418,47 +415,33 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
 | 
			
		||||
  Compressor compressor; 
 | 
			
		||||
  int len =  U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);
 | 
			
		||||
  DhopFaceTime+= usecond();
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Removed explicit thread comms
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  DhopComputeTime    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=0;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime +=usecond();
 | 
			
		||||
 | 
			
		||||
  // First to enter, last to leave timing
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=0;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2    += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -471,78 +454,16 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Le
 | 
			
		||||
{
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime    -= usecond();
 | 
			
		||||
  Compressor compressor;
 | 
			
		||||
  st.HaloExchange(in, compressor);
 | 
			
		||||
  DhopCommTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime += usecond();
 | 
			
		||||
  DhopTotalTime   += usecond();
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reporting
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::Report(void) 
 | 
			
		||||
{
 | 
			
		||||
  Coordinate latt = _grid->GlobalDimensions();
 | 
			
		||||
  RealD volume = 1;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP = _grid->_Nprocessors;
 | 
			
		||||
  RealD NN = _grid->NodeCount();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion Number of DhopEO Calls   : " 
 | 
			
		||||
	    << DhopCalls   << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion TotalTime   /Calls       : " 
 | 
			
		||||
	    << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion CommTime    /Calls       : " 
 | 
			
		||||
	    << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion ComputeTime/Calls        : " 
 | 
			
		||||
	    << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
  // Average the compute time
 | 
			
		||||
  _grid->GlobalSum(DhopComputeTime);
 | 
			
		||||
  DhopComputeTime/=NP;
 | 
			
		||||
 | 
			
		||||
  RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void ImprovedStaggeredFermion<Impl>::ZeroCounters(void) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////// 
 | 
			
		||||
// Conserved current - not yet implemented.
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -55,9 +55,6 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss = sss*Ls;
 | 
			
		||||
@@ -73,7 +70,6 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -99,9 +95,6 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
 | 
			
		||||
  auto pshift_coeffs = &shift_coeffs[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss = sss*Ls;
 | 
			
		||||
@@ -122,7 +115,6 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -143,9 +135,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
 | 
			
		||||
  auto plower = &lower[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(), {
 | 
			
		||||
    uint64_t ss = sss*Ls;
 | 
			
		||||
@@ -161,8 +150,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
 | 
			
		||||
      coalescedWrite(chi[ss+s], pdiag[s]*phi(ss+s) + pupper[s]*tmp1 + plower[s]*tmp2);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -186,9 +173,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
 | 
			
		||||
  auto pshift_coeffs = &shift_coeffs[0];
 | 
			
		||||
 | 
			
		||||
  // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
  this->M5Dcalls++;
 | 
			
		||||
  this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
  auto pm = this->pm;
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
@@ -217,7 +201,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->M5Dtime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -237,9 +220,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
 | 
			
		||||
 | 
			
		||||
  if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -277,7 +257,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
   
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -297,8 +276,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
 | 
			
		||||
  auto pueem= & this->ueem[0];
 | 
			
		||||
  auto pMooeeInv_shift_lc   = &MooeeInv_shift_lc[0];
 | 
			
		||||
  auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
@@ -343,7 +320,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -363,9 +339,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
 | 
			
		||||
  auto pleem= & this->leem[0];
 | 
			
		||||
  auto pueem= & this->ueem[0];
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
    uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -402,7 +375,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
 | 
			
		||||
      coalescedWrite(chi[ss+s],res);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -423,9 +395,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
 | 
			
		||||
  auto pMooeeInvDag_shift_lc   = &MooeeInvDag_shift_lc[0];
 | 
			
		||||
  auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvCalls++;
 | 
			
		||||
  this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
  int nloop = grid->oSites()/Ls;
 | 
			
		||||
  accelerator_for(sss,nloop,Simd::Nsimd(),{
 | 
			
		||||
      uint64_t ss=sss*Ls;
 | 
			
		||||
@@ -469,7 +438,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  this->MooeeInvTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -263,7 +263,6 @@ void NaiveStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionFiel
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(), _grid);  // verifies full grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -275,7 +274,6 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -288,7 +286,6 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=1;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -345,47 +342,33 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, L
 | 
			
		||||
  Compressor compressor; 
 | 
			
		||||
  int len =  U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);
 | 
			
		||||
  DhopFaceTime+= usecond();
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Removed explicit thread comms
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  DhopComputeTime    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=0;
 | 
			
		||||
    Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime +=usecond();
 | 
			
		||||
 | 
			
		||||
  // First to enter, last to leave timing
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime    -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2    -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=0;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2    += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -396,78 +379,16 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Lebes
 | 
			
		||||
{
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  DhopTotalTime   -= usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime    -= usecond();
 | 
			
		||||
  Compressor compressor;
 | 
			
		||||
  st.HaloExchange(in, compressor);
 | 
			
		||||
  DhopCommTime    += usecond();
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime -= usecond();
 | 
			
		||||
  {
 | 
			
		||||
    int interior=1;
 | 
			
		||||
    int exterior=1;
 | 
			
		||||
    Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime += usecond();
 | 
			
		||||
  DhopTotalTime   += usecond();
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reporting
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::Report(void) 
 | 
			
		||||
{
 | 
			
		||||
  Coordinate latt = _grid->GlobalDimensions();
 | 
			
		||||
  RealD volume = 1;  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
  RealD NP = _grid->_Nprocessors;
 | 
			
		||||
  RealD NN = _grid->NodeCount();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion Number of DhopEO Calls   : " 
 | 
			
		||||
	    << DhopCalls   << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion TotalTime   /Calls       : " 
 | 
			
		||||
	    << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion CommTime    /Calls       : " 
 | 
			
		||||
	    << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion ComputeTime/Calls        : " 
 | 
			
		||||
	    << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
  // Average the compute time
 | 
			
		||||
  _grid->GlobalSum(DhopComputeTime);
 | 
			
		||||
  DhopComputeTime/=NP;
 | 
			
		||||
 | 
			
		||||
  RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
  std::cout << GridLogMessage << "NaiveStaggeredFermion StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void NaiveStaggeredFermion<Impl>::ZeroCounters(void) 
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////// 
 | 
			
		||||
// Conserved current - not yet implemented.
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -60,8 +60,13 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
 | 
			
		||||
  UmuOdd (_FourDimRedBlackGrid),
 | 
			
		||||
  Lebesgue(_FourDimGrid),
 | 
			
		||||
  LebesgueEvenOdd(_FourDimRedBlackGrid),
 | 
			
		||||
  _tmp(&FiveDimRedBlackGrid)
 | 
			
		||||
  _tmp(&FiveDimRedBlackGrid),
 | 
			
		||||
  Dirichlet(0)
 | 
			
		||||
{
 | 
			
		||||
  Stencil.lo     = &Lebesgue;
 | 
			
		||||
  StencilEven.lo = &LebesgueEvenOdd;
 | 
			
		||||
  StencilOdd.lo  = &LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  // some assertions
 | 
			
		||||
  assert(FiveDimGrid._ndimension==5);
 | 
			
		||||
  assert(FourDimGrid._ndimension==4);
 | 
			
		||||
@@ -91,6 +96,19 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
 | 
			
		||||
    assert(FourDimRedBlackGrid._simd_layout[d]  ==FourDimGrid._simd_layout[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( p.dirichlet.size() == Nd+1) {
 | 
			
		||||
    Coordinate block = p.dirichlet;
 | 
			
		||||
    if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
 | 
			
		||||
      Dirichlet = 1;
 | 
			
		||||
      std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
 | 
			
		||||
      Block = block;
 | 
			
		||||
    }
 | 
			
		||||
  } else {
 | 
			
		||||
    Coordinate block(Nd+1,0);
 | 
			
		||||
    Block = block;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (Impl::LsVectorised) { 
 | 
			
		||||
 | 
			
		||||
    int nsimd = Simd::Nsimd();
 | 
			
		||||
@@ -125,99 +143,38 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
 | 
			
		||||
  StencilEven.BuildSurfaceList(LLs,vol4);
 | 
			
		||||
   StencilOdd.BuildSurfaceList(LLs,vol4);
 | 
			
		||||
 | 
			
		||||
   //  std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
 | 
			
		||||
   //                       <<" " << StencilEven.surface_list.size()<<std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
     
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::Report(void)
 | 
			
		||||
{
 | 
			
		||||
  RealD NP     = _FourDimGrid->_Nprocessors;
 | 
			
		||||
  RealD NN     = _FourDimGrid->NodeCount();
 | 
			
		||||
  RealD volume = Ls;  
 | 
			
		||||
  Coordinate latt = _FourDimGrid->GlobalDimensions();
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
 | 
			
		||||
  if ( DhopCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Number of DhopEO Calls   : " << DhopCalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D TotalTime   /Calls        : " << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D CommTime    /Calls        : " << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D FaceTime    /Calls        : " << DhopFaceTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D ComputeTime1/Calls        : " << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D ComputeTime2/Calls        : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Average the compute time
 | 
			
		||||
    _FourDimGrid->GlobalSum(DhopComputeTime);
 | 
			
		||||
    DhopComputeTime/=NP;
 | 
			
		||||
    RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD Fullmflops = 1344*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  if ( DerivCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls    : " <<DerivCalls <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls           : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls        : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls   : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NP << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NP << std::endl;  }
 | 
			
		||||
 | 
			
		||||
  if (DerivCalls > 0 || DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
  }
 | 
			
		||||
  if ( DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D Stencil     Reporti()"    <<std::endl;  Stencil.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilEven Reporti()"<<std::endl;  StencilEven.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion5D StencilOdd  Reporti()" <<std::endl;  StencilOdd.Reporti(DhopCalls);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::ZeroCounters(void) {
 | 
			
		||||
  DhopCalls       = 0;
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopComputeTime2= 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
 | 
			
		||||
  DerivCalls       = 0;
 | 
			
		||||
  DerivCommTime    = 0;
 | 
			
		||||
  DerivComputeTime = 0;
 | 
			
		||||
  DerivDhopComputeTime = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
  Stencil.ZeroCountersi();
 | 
			
		||||
  StencilEven.ZeroCountersi();
 | 
			
		||||
  StencilOdd.ZeroCountersi();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
 | 
			
		||||
{
 | 
			
		||||
  GaugeField HUmu(_Umu.Grid());
 | 
			
		||||
  HUmu = _Umu*(-0.5);
 | 
			
		||||
  if ( Dirichlet ) {
 | 
			
		||||
 | 
			
		||||
    if ( this->Params.partialDirichlet ) {
 | 
			
		||||
      std::cout << GridLogMessage << " partialDirichlet BCs " <<Block<<std::endl;
 | 
			
		||||
    } else {
 | 
			
		||||
      std::cout << GridLogMessage << " FULL Dirichlet BCs " <<Block<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    std:: cout << GridLogMessage << "Checking block size multiple of rank boundaries for Dirichlet"<<std::endl;
 | 
			
		||||
    for(int d=0;d<Nd;d++) {
 | 
			
		||||
      int GaugeBlock = Block[d+1];
 | 
			
		||||
      int ldim=GaugeGrid()->LocalDimensions()[d];
 | 
			
		||||
      if (GaugeBlock) assert( (GaugeBlock%ldim)==0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (!this->Params.partialDirichlet) {
 | 
			
		||||
      std::cout << GridLogMessage << " Dirichlet filtering gauge field BCs block " <<Block<<std::endl;
 | 
			
		||||
      Coordinate GaugeBlock(Nd);
 | 
			
		||||
      for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
 | 
			
		||||
      DirichletFilter<GaugeField> Filter(GaugeBlock);
 | 
			
		||||
      Filter.applyFilter(HUmu);
 | 
			
		||||
    } else {
 | 
			
		||||
      std::cout << GridLogMessage << " Dirichlet "<< Dirichlet << " NOT filtered gauge field" <<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
 | 
			
		||||
  pickCheckerboard(Even,UmuEven,Umu);
 | 
			
		||||
  pickCheckerboard(Odd ,UmuOdd,Umu);
 | 
			
		||||
@@ -259,7 +216,6 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
					  const FermionField &B,
 | 
			
		||||
					  int dag)
 | 
			
		||||
{
 | 
			
		||||
  DerivCalls++;
 | 
			
		||||
  assert((dag==DaggerNo) ||(dag==DaggerYes));
 | 
			
		||||
 | 
			
		||||
  conformable(st.Grid(),A.Grid());
 | 
			
		||||
@@ -270,15 +226,12 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
  FermionField Btilde(B.Grid());
 | 
			
		||||
  FermionField Atilde(B.Grid());
 | 
			
		||||
 | 
			
		||||
  DerivCommTime-=usecond();
 | 
			
		||||
  st.HaloExchange(B,compressor);
 | 
			
		||||
  DerivCommTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  Atilde=A;
 | 
			
		||||
  int LLs = B.Grid()->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  DerivComputeTime-=usecond();
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flip gamma if dag
 | 
			
		||||
@@ -290,8 +243,6 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
    // Call the single hop
 | 
			
		||||
    ////////////////////////
 | 
			
		||||
 | 
			
		||||
    DerivDhopComputeTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    int Usites = U.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
 | 
			
		||||
@@ -299,10 +250,8 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
 | 
			
		||||
    ////////////////////////////
 | 
			
		||||
    // spin trace outer product
 | 
			
		||||
    ////////////////////////////
 | 
			
		||||
    DerivDhopComputeTime += usecond();
 | 
			
		||||
    Impl::InsertForce5D(mat, Btilde, Atilde, mu);
 | 
			
		||||
  }
 | 
			
		||||
  DerivComputeTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -360,12 +309,10 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
 | 
			
		||||
                                         DoubledGaugeField & U,
 | 
			
		||||
                                         const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopTotalTime-=usecond();
 | 
			
		||||
  if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
 | 
			
		||||
    DhopInternalOverlappedComms(st,lo,U,in,out,dag);
 | 
			
		||||
  else 
 | 
			
		||||
    DhopInternalSerialComms(st,lo,U,in,out,dag);
 | 
			
		||||
  DhopTotalTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -374,6 +321,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
 | 
			
		||||
							DoubledGaugeField & U,
 | 
			
		||||
							const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopInternalOverlappedComms");
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
@@ -382,53 +330,58 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Start comms  // Gather intranode and extra node differentiated??
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.HaloExchangeOptGather(in,compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Gather");
 | 
			
		||||
    st.HaloExchangeOptGather(in,compressor);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  auto id=traceStart("Communicate overlapped");
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Overlap with comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MergeSHM");
 | 
			
		||||
    st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute interior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagInterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopInterior");
 | 
			
		||||
    Kernels::DhopKernel   (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Complete comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime   +=usecond();
 | 
			
		||||
  traceStop(id);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute exterior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Merge");
 | 
			
		||||
    st.CommsMerge(compressor);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagExterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopExterior");
 | 
			
		||||
    Kernels::DhopKernel   (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -438,29 +391,30 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOr
 | 
			
		||||
						    const FermionField &in, 
 | 
			
		||||
						    FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopInternalSerialComms");
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
 | 
			
		||||
  int LLs = in.Grid()->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("HaloExchange");
 | 
			
		||||
    st.HaloExchangeOpt(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  DhopCommTime-=usecond();
 | 
			
		||||
  st.HaloExchangeOpt(in,compressor);
 | 
			
		||||
  DhopCommTime+=usecond();
 | 
			
		||||
  
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt;
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDag");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("Dhop");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -472,7 +426,6 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(),FermionRedBlackGrid());    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -484,7 +437,6 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(),FermionGrid()); // verifies full grid
 | 
			
		||||
  conformable(in.Grid(),out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -539,12 +491,17 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
 | 
			
		||||
  LatComplex    sk(_grid);  sk = Zero();
 | 
			
		||||
  LatComplex    sk2(_grid); sk2= Zero();
 | 
			
		||||
  LatComplex    W(_grid); W= Zero();
 | 
			
		||||
  LatComplex    a(_grid); a= Zero();
 | 
			
		||||
  LatComplex    one  (_grid); one = ScalComplex(1.0,0.0);
 | 
			
		||||
  LatComplex 	cosha(_grid);
 | 
			
		||||
  LatComplex 	kmu(_grid);
 | 
			
		||||
  LatComplex 	Wea(_grid);
 | 
			
		||||
  LatComplex 	Wema(_grid);
 | 
			
		||||
  LatComplex 	ea(_grid);
 | 
			
		||||
  LatComplex 	ema(_grid);
 | 
			
		||||
  LatComplex 	eaLs(_grid);
 | 
			
		||||
  LatComplex 	emaLs(_grid);
 | 
			
		||||
  LatComplex 	ea2Ls(_grid);
 | 
			
		||||
  LatComplex 	ema2Ls(_grid);
 | 
			
		||||
  LatComplex 	sinha(_grid);
 | 
			
		||||
  LatComplex 	sinhaLs(_grid);
 | 
			
		||||
  LatComplex 	coshaLs(_grid);
 | 
			
		||||
@@ -579,39 +536,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  cosha = (one + W*W + sk) / (abs(W)*2.0);
 | 
			
		||||
 | 
			
		||||
  // FIXME Need a Lattice acosh
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    autoView(cosha_v,cosha,CpuRead);
 | 
			
		||||
    autoView(a_v,a,CpuWrite);
 | 
			
		||||
    for(int idx=0;idx<_grid->lSites();idx++){
 | 
			
		||||
      Coordinate lcoor(Nd);
 | 
			
		||||
      Tcomplex cc;
 | 
			
		||||
      //    RealD sgn;
 | 
			
		||||
      _grid->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
      peekLocalSite(cc,cosha_v,lcoor);
 | 
			
		||||
      assert((double)real(cc)>=1.0);
 | 
			
		||||
      assert(fabs((double)imag(cc))<=1.0e-15);
 | 
			
		||||
      cc = ScalComplex(::acosh(real(cc)),0.0);
 | 
			
		||||
      pokeLocalSite(cc,a_v,lcoor);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Wea = ( exp( a) * abs(W)  );
 | 
			
		||||
  Wema= ( exp(-a) * abs(W)  );
 | 
			
		||||
  sinha = 0.5*(exp( a) - exp(-a));
 | 
			
		||||
  sinhaLs = 0.5*(exp( a*Ls) - exp(-a*Ls));
 | 
			
		||||
  coshaLs = 0.5*(exp( a*Ls) + exp(-a*Ls));
 | 
			
		||||
  ea = (cosha + sqrt(cosha*cosha-one));
 | 
			
		||||
  ema= (cosha - sqrt(cosha*cosha-one));
 | 
			
		||||
  eaLs = pow(ea,Ls);
 | 
			
		||||
  emaLs= pow(ema,Ls);
 | 
			
		||||
  ea2Ls = pow(ea,2.0*Ls);
 | 
			
		||||
  ema2Ls= pow(ema,2.0*Ls);
 | 
			
		||||
  Wea= abs(W) * ea;
 | 
			
		||||
  Wema= abs(W) * ema;
 | 
			
		||||
  //  a=log(ea);
 | 
			
		||||
  
 | 
			
		||||
  sinha = 0.5*(ea - ema);
 | 
			
		||||
  sinhaLs = 0.5*(eaLs-emaLs);
 | 
			
		||||
  coshaLs = 0.5*(eaLs+emaLs);
 | 
			
		||||
 | 
			
		||||
  A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
 | 
			
		||||
  F = exp( a*Ls) * (one - Wea + (Wema - one) * mass*mass);
 | 
			
		||||
  F = F + exp(-a*Ls) * (Wema - one + (one - Wea) * mass*mass);
 | 
			
		||||
  F = eaLs * (one - Wea + (Wema - one) * mass*mass);
 | 
			
		||||
  F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
 | 
			
		||||
  F = F - abs(W) * sinha * 4.0 * mass;
 | 
			
		||||
 | 
			
		||||
  Bpp =  (A/F) * (exp(-a*Ls*2.0) - one) * (one - Wema) * (one - mass*mass * one);
 | 
			
		||||
  Bmm =  (A/F) * (one - exp(a*Ls*2.0)) * (one - Wea) * (one - mass*mass * one);
 | 
			
		||||
  App =  (A/F) * (exp(-a*Ls*2.0) - one) * exp(-a) * (exp(-a) - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  Amm =  (A/F) * (one - exp(a*Ls*2.0)) * exp(a) * (exp(a) - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  Bpp =  (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
 | 
			
		||||
  Bmm =  (A/F) * (one - ea2Ls)  * (one - Wea) * (one - mass*mass * one);
 | 
			
		||||
  App =  (A/F) * (ema2Ls - one) * ema * (ema - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  Amm =  (A/F) * (one - ea2Ls)  * ea  * (ea  - abs(W)) * (one - mass*mass * one);
 | 
			
		||||
  ABpm = (A/F) * abs(W) * sinha * 2.0  * (one + mass * coshaLs * 2.0 + mass*mass * one);
 | 
			
		||||
 | 
			
		||||
  //P+ source, P- source
 | 
			
		||||
@@ -634,29 +581,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
 | 
			
		||||
      buf1_4d = Zero();
 | 
			
		||||
      ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
 | 
			
		||||
      //G(s,t)
 | 
			
		||||
      bufR_4d = bufR_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf1_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf1_4d;
 | 
			
		||||
      bufR_4d = bufR_4d + A * eaLs * pow(ema,f) * signW * buf1_4d + A * emaLs * pow(ea,f) * signW * buf1_4d;
 | 
			
		||||
      //A++*exp(a(s+t))
 | 
			
		||||
      bufR_4d = bufR_4d + App * exp(a*ss) * exp(a*tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + App * pow(ea,ss) * pow(ea,tt) * signW * buf1_4d ;
 | 
			
		||||
      //A+-*exp(a(s-t))
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf1_4d ;
 | 
			
		||||
      //A-+*exp(a(-s+t))
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf1_4d ;
 | 
			
		||||
      //A--*exp(a(-s-t))
 | 
			
		||||
      bufR_4d = bufR_4d + Amm * exp(-a*ss) * exp(-a*tt) * signW * buf1_4d ;
 | 
			
		||||
      bufR_4d = bufR_4d + Amm * pow(ema,ss) * pow(ema,tt) * signW * buf1_4d ;
 | 
			
		||||
 | 
			
		||||
      //GL
 | 
			
		||||
      buf2_4d = Zero();
 | 
			
		||||
      ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
 | 
			
		||||
      //G(s,t)
 | 
			
		||||
      bufL_4d = bufL_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf2_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf2_4d;
 | 
			
		||||
      bufL_4d = bufL_4d + A * eaLs * pow(ema,f) * signW * buf2_4d + A * emaLs * pow(ea,f) * signW * buf2_4d;
 | 
			
		||||
      //B++*exp(a(s+t))
 | 
			
		||||
      bufL_4d = bufL_4d + Bpp * exp(a*ss) * exp(a*tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + Bpp * pow(ea,ss) * pow(ea,tt) * signW * buf2_4d ;
 | 
			
		||||
      //B+-*exp(a(s-t))
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf2_4d ;
 | 
			
		||||
      //B-+*exp(a(-s+t))
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf2_4d ;
 | 
			
		||||
      //B--*exp(a(-s-t))
 | 
			
		||||
      bufL_4d = bufL_4d + Bmm * exp(-a*ss) * exp(-a*tt) * signW * buf2_4d ;
 | 
			
		||||
      bufL_4d = bufL_4d + Bmm * pow(ema,ss) * pow(ema,tt) * signW * buf2_4d ;
 | 
			
		||||
    }
 | 
			
		||||
    InsertSlice(bufR_4d, GR, (ss-1), 0);
 | 
			
		||||
    InsertSlice(bufL_4d, GL, (ss-1), 0);
 | 
			
		||||
@@ -775,28 +722,12 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
 | 
			
		||||
  W = one - M5 + sk2;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Cosh alpha -> alpha
 | 
			
		||||
  // Cosh alpha -> exp(+/- alpha)
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  cosha =  (one + W*W + sk) / (abs(W)*2.0);
 | 
			
		||||
 | 
			
		||||
  // FIXME Need a Lattice acosh
 | 
			
		||||
  {
 | 
			
		||||
  autoView(cosha_v,cosha,CpuRead);
 | 
			
		||||
  autoView(a_v,a,CpuWrite);
 | 
			
		||||
  for(int idx=0;idx<_grid->lSites();idx++){
 | 
			
		||||
    Coordinate lcoor(Nd);
 | 
			
		||||
    Tcomplex cc;
 | 
			
		||||
    //    RealD sgn;
 | 
			
		||||
    _grid->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    peekLocalSite(cc,cosha_v,lcoor);
 | 
			
		||||
    assert((double)real(cc)>=1.0);
 | 
			
		||||
    assert(fabs((double)imag(cc))<=1.0e-15);
 | 
			
		||||
    cc = ScalComplex(::acosh(real(cc)),0.0);
 | 
			
		||||
    pokeLocalSite(cc,a_v,lcoor);
 | 
			
		||||
  }}
 | 
			
		||||
  
 | 
			
		||||
  Wea = ( exp( a) * abs(W)  );
 | 
			
		||||
  Wema= ( exp(-a) * abs(W)  );
 | 
			
		||||
  Wea = abs(W)*(cosha + sqrt(cosha*cosha-one));
 | 
			
		||||
  Wema= abs(W)*(cosha - sqrt(cosha*cosha-one));
 | 
			
		||||
  
 | 
			
		||||
  num   = num + ( one - Wema ) * mass * in;
 | 
			
		||||
  denom= ( Wea - one ) + mass*mass * (one - Wema); 
 | 
			
		||||
 
 | 
			
		||||
@@ -60,6 +60,9 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
      _tmp(&Hgrid),
 | 
			
		||||
      anisotropyCoeff(anis)
 | 
			
		||||
{
 | 
			
		||||
  Stencil.lo     = &Lebesgue;
 | 
			
		||||
  StencilEven.lo = &LebesgueEvenOdd;
 | 
			
		||||
  StencilOdd.lo  = &LebesgueEvenOdd;
 | 
			
		||||
  // Allocate the required comms buffer
 | 
			
		||||
  ImportGauge(_Umu);
 | 
			
		||||
  if  (anisotropyCoeff.isAnisotropic){
 | 
			
		||||
@@ -76,91 +79,6 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
  StencilOdd.BuildSurfaceList(1,vol4);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::Report(void)
 | 
			
		||||
{
 | 
			
		||||
  RealD NP = _grid->_Nprocessors;
 | 
			
		||||
  RealD NN = _grid->NodeCount();
 | 
			
		||||
  RealD volume = 1;
 | 
			
		||||
  Coordinate latt = _grid->GlobalDimensions();
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
 | 
			
		||||
 | 
			
		||||
  if ( DhopCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Number of DhopEO Calls   : " << DhopCalls   << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion TotalTime   /Calls        : " << DhopTotalTime   / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion CommTime    /Calls        : " << DhopCommTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion FaceTime    /Calls        : " << DhopFaceTime    / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion ComputeTime1/Calls        : " << DhopComputeTime / DhopCalls << " us" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion ComputeTime2/Calls        : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
 | 
			
		||||
 | 
			
		||||
    // Average the compute time
 | 
			
		||||
    _grid->GlobalSum(DhopComputeTime);
 | 
			
		||||
    DhopComputeTime/=NP;
 | 
			
		||||
    RealD mflops = 1320*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call                : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank       : " << mflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node       : " << mflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD Fullmflops = 1320*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)         : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
 | 
			
		||||
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  if ( DerivCalls > 0 ) {
 | 
			
		||||
    std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Number of Deriv Calls    : " <<DerivCalls <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion CommTime/Calls           : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion ComputeTime/Calls        : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Dhop ComputeTime/Calls   : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    // how to count flops here?
 | 
			
		||||
    RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call               ? : " << mflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node      ? : " << mflops/NP << std::endl;
 | 
			
		||||
 | 
			
		||||
    // how to count flops here?
 | 
			
		||||
    RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call (full)        ? : " << Fullmflops << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Average mflops/s per call per node (full) ? : " << Fullmflops/NP << std::endl;  }
 | 
			
		||||
 | 
			
		||||
  if (DerivCalls > 0 || DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Stencil"    <<std::endl;  Stencil.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilEven"<<std::endl;  StencilEven.Report();
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilOdd" <<std::endl;  StencilOdd.Report();
 | 
			
		||||
  }
 | 
			
		||||
  if ( DhopCalls > 0){
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion Stencil     Reporti()"    <<std::endl;  Stencil.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilEven Reporti()"<<std::endl;  StencilEven.Reporti(DhopCalls);
 | 
			
		||||
    std::cout << GridLogMessage << "WilsonFermion StencilOdd  Reporti()" <<std::endl;  StencilOdd.Reporti(DhopCalls);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::ZeroCounters(void) {
 | 
			
		||||
  DhopCalls       = 0; // ok
 | 
			
		||||
  DhopCommTime    = 0;
 | 
			
		||||
  DhopComputeTime = 0;
 | 
			
		||||
  DhopComputeTime2= 0;
 | 
			
		||||
  DhopFaceTime    = 0;
 | 
			
		||||
  DhopTotalTime   = 0;
 | 
			
		||||
 | 
			
		||||
  DerivCalls       = 0; // ok
 | 
			
		||||
  DerivCommTime    = 0;
 | 
			
		||||
  DerivComputeTime = 0;
 | 
			
		||||
  DerivDhopComputeTime = 0;
 | 
			
		||||
 | 
			
		||||
  Stencil.ZeroCounters();
 | 
			
		||||
  StencilEven.ZeroCounters();
 | 
			
		||||
  StencilOdd.ZeroCounters();
 | 
			
		||||
  Stencil.ZeroCountersi();
 | 
			
		||||
  StencilEven.ZeroCountersi();
 | 
			
		||||
  StencilOdd.ZeroCountersi();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
 | 
			
		||||
{
 | 
			
		||||
@@ -320,7 +238,6 @@ template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
                                        GaugeField &mat, const FermionField &A,
 | 
			
		||||
                                        const FermionField &B, int dag) {
 | 
			
		||||
  DerivCalls++;
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
@@ -329,11 +246,8 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
  FermionField Atilde(B.Grid());
 | 
			
		||||
  Atilde = A;
 | 
			
		||||
 | 
			
		||||
  DerivCommTime-=usecond();
 | 
			
		||||
  st.HaloExchange(B, compressor);
 | 
			
		||||
  DerivCommTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  DerivComputeTime-=usecond();
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flip gamma (1+g)<->(1-g) if dag
 | 
			
		||||
@@ -341,7 +255,6 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
    int gamma = mu;
 | 
			
		||||
    if (!dag) gamma += Nd;
 | 
			
		||||
 | 
			
		||||
    DerivDhopComputeTime -= usecond();
 | 
			
		||||
    int Ls=1;
 | 
			
		||||
    Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
 | 
			
		||||
 | 
			
		||||
@@ -349,9 +262,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
    // spin trace outer product
 | 
			
		||||
    //////////////////////////////////////////////////
 | 
			
		||||
    Impl::InsertForce4D(mat, Btilde, Atilde, mu);
 | 
			
		||||
    DerivDhopComputeTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
  DerivComputeTime += usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -398,7 +309,6 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls+=2;
 | 
			
		||||
  conformable(in.Grid(), _grid);  // verifies full grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
@@ -410,7 +320,6 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -423,7 +332,6 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopCalls++;
 | 
			
		||||
  conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
  conformable(in.Grid(), out.Grid());  // drops the cb check
 | 
			
		||||
 | 
			
		||||
@@ -488,14 +396,12 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
                                       const FermionField &in,
 | 
			
		||||
                                       FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  DhopTotalTime-=usecond();
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
 | 
			
		||||
    DhopInternalOverlappedComms(st,lo,U,in,out,dag);
 | 
			
		||||
  else
 | 
			
		||||
#endif
 | 
			
		||||
    DhopInternalSerial(st,lo,U,in,out,dag);
 | 
			
		||||
  DhopTotalTime+=usecond();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -504,6 +410,7 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
 | 
			
		||||
						      const FermionField &in,
 | 
			
		||||
						      FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopOverlapped");
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
@@ -514,53 +421,55 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  std::vector<std::vector<CommsRequest_t> > requests;
 | 
			
		||||
  st.Prepare();
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.HaloGather(in,compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Gather");
 | 
			
		||||
    st.HaloGather(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  DhopCommTime -=usecond();
 | 
			
		||||
  tracePush("Communication");
 | 
			
		||||
  st.CommunicateBegin(requests);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Overlap with comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMergeSHM(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MergeSHM");
 | 
			
		||||
    st.CommsMergeSHM(compressor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute interior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt;
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagInterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopInterior");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // Complete comms
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  st.CommunicateComplete(requests);
 | 
			
		||||
  DhopCommTime   +=usecond();
 | 
			
		||||
 | 
			
		||||
  DhopFaceTime-=usecond();
 | 
			
		||||
  st.CommsMerge(compressor);
 | 
			
		||||
  DhopFaceTime+=usecond();
 | 
			
		||||
  tracePop("Communication");
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("Merge");
 | 
			
		||||
    st.CommsMerge(compressor);
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
  // do the compute exterior
 | 
			
		||||
  /////////////////////////////
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime2-=usecond();
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDagExterior");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("DhopExterior");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime2+=usecond();
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -570,20 +479,22 @@ void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
                                       const FermionField &in,
 | 
			
		||||
                                       FermionField &out, int dag)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("DhopSerial");
 | 
			
		||||
  assert((dag == DaggerNo) || (dag == DaggerYes));
 | 
			
		||||
  Compressor compressor(dag);
 | 
			
		||||
  DhopCommTime-=usecond();
 | 
			
		||||
  st.HaloExchange(in, compressor);
 | 
			
		||||
  DhopCommTime+=usecond();
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("HaloExchange");
 | 
			
		||||
    st.HaloExchange(in, compressor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  DhopComputeTime-=usecond();
 | 
			
		||||
  int Opt = WilsonKernelsStatic::Opt;
 | 
			
		||||
  if (dag == DaggerYes) {
 | 
			
		||||
    GRID_TRACE("DhopDag");
 | 
			
		||||
    Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
 | 
			
		||||
  } else {
 | 
			
		||||
    GRID_TRACE("Dhop");
 | 
			
		||||
    Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
 | 
			
		||||
  }
 | 
			
		||||
  DhopComputeTime+=usecond();
 | 
			
		||||
};
 | 
			
		||||
/*Change ends */
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -72,20 +72,15 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
 | 
			
		||||
  if (SE->_is_local) {						\
 | 
			
		||||
    int perm= SE->_permute;					\
 | 
			
		||||
    auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane);	\
 | 
			
		||||
    spProj(chi,tmp);						\
 | 
			
		||||
  } else if ( st.same_node[Dir] ) {				\
 | 
			
		||||
    chi = coalescedRead(buf[SE->_offset],lane);			\
 | 
			
		||||
  }								\
 | 
			
		||||
  acceleratorSynchronise();						\
 | 
			
		||||
  if (SE->_is_local || st.same_node[Dir] ) {			\
 | 
			
		||||
    Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);		\
 | 
			
		||||
    Recon(result, Uchi);					\
 | 
			
		||||
  }								\
 | 
			
		||||
    spProj(chi,tmp);							\
 | 
			
		||||
    Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);			\
 | 
			
		||||
    Recon(result, Uchi);						\
 | 
			
		||||
  }									\
 | 
			
		||||
  acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon)		\
 | 
			
		||||
  SE = st.GetEntry(ptype, Dir, sF);				\
 | 
			
		||||
  if ((!SE->_is_local) && (!st.same_node[Dir]) ) {		\
 | 
			
		||||
  if (!SE->_is_local ) {		\
 | 
			
		||||
    auto chi = coalescedRead(buf[SE->_offset],lane);		\
 | 
			
		||||
    Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);		\
 | 
			
		||||
    Recon(result, Uchi);					\
 | 
			
		||||
@@ -416,19 +411,6 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
#undef LoopBody
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_TMP(A) \
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
  auto U_p = & U_v[0];							\
 | 
			
		||||
  auto in_p = & in_v[0];						\
 | 
			
		||||
  auto out_p = & out_v[0];						\
 | 
			
		||||
  auto st_p = st_v._entries_p;						\
 | 
			
		||||
  auto st_perm = st_v._permute_type;					\
 | 
			
		||||
  accelerator_forNB( ss, NN, Simd::Nsimd(), {				\
 | 
			
		||||
      int sF = ss;							\
 | 
			
		||||
      int sU = ss/Ls;							\
 | 
			
		||||
      WilsonKernels<Impl>::A(st_perm,st_p,U_p,buf,sF,sU,in_p,out_p);	\
 | 
			
		||||
    });									\
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALLNB(A)						\
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
@@ -440,12 +422,34 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_EXT(A)						\
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
  const uint64_t    sz = st.surface_list.size();			\
 | 
			
		||||
  auto ptr = &st.surface_list[0];					\
 | 
			
		||||
  accelerator_forNB( ss, sz, Simd::Nsimd(), {				\
 | 
			
		||||
      int sF = ptr[ss];							\
 | 
			
		||||
      int sU = ss/Ls;							\
 | 
			
		||||
      WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v);		\
 | 
			
		||||
    });									
 | 
			
		||||
 | 
			
		||||
#define ASM_CALL(A)							\
 | 
			
		||||
  thread_for( ss, Nsite, {						\
 | 
			
		||||
  thread_for( sss, Nsite, {						\
 | 
			
		||||
    int ss = st.lo->Reorder(sss);					\
 | 
			
		||||
    int sU = ss;							\
 | 
			
		||||
    int sF = ss*Ls;							\
 | 
			
		||||
    WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v);		\
 | 
			
		||||
  });
 | 
			
		||||
#define ASM_CALL_SLICE(A)						\
 | 
			
		||||
  auto grid = in.Grid() ;						\
 | 
			
		||||
  int nt = grid->LocalDimensions()[4];					\
 | 
			
		||||
  int nxyz = Nsite/nt ;							\
 | 
			
		||||
  for(int t=0;t<nt;t++){						\
 | 
			
		||||
  thread_for( sss, nxyz, {						\
 | 
			
		||||
    int ss = t*nxyz+sss;						\
 | 
			
		||||
    int sU = ss;							\
 | 
			
		||||
    int sF = ss*Ls;							\
 | 
			
		||||
    WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v);		\
 | 
			
		||||
    });}
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf,
 | 
			
		||||
@@ -508,7 +512,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteDagExt);     return;}
 | 
			
		||||
#endif
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
   }
 | 
			
		||||
   assert(0 && " Kernel optimisation case not covered ");
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -9,6 +9,7 @@ STAG5_IMPL_LIST=""
 | 
			
		||||
WILSON_IMPL_LIST=" \
 | 
			
		||||
	   WilsonImplF \
 | 
			
		||||
	   WilsonImplD \
 | 
			
		||||
	   WilsonImplD2 \
 | 
			
		||||
	   WilsonAdjImplF \
 | 
			
		||||
	   WilsonAdjImplD \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplF \
 | 
			
		||||
@@ -25,8 +26,9 @@ COMPACT_WILSON_IMPL_LIST=" \
 | 
			
		||||
DWF_IMPL_LIST=" \
 | 
			
		||||
	   WilsonImplF \
 | 
			
		||||
	   WilsonImplD \
 | 
			
		||||
	   WilsonImplD2 \
 | 
			
		||||
	   ZWilsonImplF \
 | 
			
		||||
	   ZWilsonImplD "
 | 
			
		||||
	   ZWilsonImplD2 "
 | 
			
		||||
 | 
			
		||||
GDWF_IMPL_LIST=" \
 | 
			
		||||
	   GparityWilsonImplF \
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										115
									
								
								Grid/qcd/action/filters/DDHMCFilter.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								Grid/qcd/action/filters/DDHMCFilter.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,115 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
//--------------------------------------------------------------------
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
// DDHMC filter with sub-block size B[mu]
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<typename GaugeField>
 | 
			
		||||
struct DDHMCFilter: public MomentumFilterBase<GaugeField>
 | 
			
		||||
{
 | 
			
		||||
  Coordinate Block;
 | 
			
		||||
  int Width;
 | 
			
		||||
  
 | 
			
		||||
  DDHMCFilter(const Coordinate &_Block,int _Width=2): Block(_Block) { Width=_Width; }
 | 
			
		||||
 | 
			
		||||
  void applyFilter(GaugeField &U) const override
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = U.Grid();
 | 
			
		||||
    Coordinate Global=grid->GlobalDimensions();
 | 
			
		||||
    GaugeField zzz(grid); zzz = Zero();
 | 
			
		||||
    LatticeInteger coor(grid); 
 | 
			
		||||
    
 | 
			
		||||
    auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
 | 
			
		||||
    ////////////////////////////////////////////////////
 | 
			
		||||
    // Zero BDY layers
 | 
			
		||||
    ////////////////////////////////////////////////////
 | 
			
		||||
    std::cout<<GridLogMessage<<" DDHMC Force Filter Block "<<Block<<" width " <<Width<<std::endl;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
 | 
			
		||||
      Integer B1 = Block[mu];
 | 
			
		||||
      if ( B1 && (B1 <= Global[mu]) ) {
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
 | 
			
		||||
	////////////////////////////////
 | 
			
		||||
	// OmegaBar - zero all links contained in slice B-1,0 and
 | 
			
		||||
	// mu links connecting to Omega
 | 
			
		||||
	////////////////////////////////
 | 
			
		||||
	if ( Width==1) { 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-1),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(0)   ,zzz,U); 
 | 
			
		||||
	  auto U_mu   = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
	  U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu); 
 | 
			
		||||
	  PokeIndex<LorentzIndex>(U, U_mu, mu);
 | 
			
		||||
	}
 | 
			
		||||
	if ( Width==2) { 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-2),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-1),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(0)   ,zzz,U); 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(1)   ,zzz,U); 
 | 
			
		||||
	  auto U_mu   = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
	  U_mu = where(mod(coor,B1)==Integer(B1-3),zzz_mu,U_mu); 
 | 
			
		||||
	  PokeIndex<LorentzIndex>(U, U_mu, mu);
 | 
			
		||||
	}
 | 
			
		||||
	if ( Width==3) { 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-3),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-2),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-1),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(0)   ,zzz,U); 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(1)   ,zzz,U); 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(2)   ,zzz,U); 
 | 
			
		||||
	  auto U_mu   = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
	  U_mu = where(mod(coor,B1)==Integer(B1-4),zzz_mu,U_mu); 
 | 
			
		||||
	  PokeIndex<LorentzIndex>(U, U_mu, mu);
 | 
			
		||||
	}
 | 
			
		||||
	if ( Width==4) { 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-4),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-3),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-2),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(B1-1),zzz,U);
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(0)   ,zzz,U); 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(1)   ,zzz,U); 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(2)   ,zzz,U); 
 | 
			
		||||
	  U    = where(mod(coor,B1)==Integer(3)   ,zzz,U); 
 | 
			
		||||
	  auto U_mu   = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
	  U_mu = where(mod(coor,B1)==Integer(B1-5),zzz_mu,U_mu); 
 | 
			
		||||
	  PokeIndex<LorentzIndex>(U, U_mu, mu);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
   
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										71
									
								
								Grid/qcd/action/filters/DirichletFilter.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								Grid/qcd/action/filters/DirichletFilter.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,71 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
//--------------------------------------------------------------------
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<typename MomentaField>
 | 
			
		||||
struct DirichletFilter: public MomentumFilterBase<MomentaField>
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MomentaField::vector_type vector_type; //SIMD-vectorized complex type
 | 
			
		||||
  typedef typename MomentaField::scalar_type scalar_type; //scalar complex type
 | 
			
		||||
 | 
			
		||||
  typedef iScalar<iScalar<iScalar<vector_type> > >            ScalarType; //complex phase for each site
 | 
			
		||||
  
 | 
			
		||||
  Coordinate Block;
 | 
			
		||||
  
 | 
			
		||||
  DirichletFilter(const Coordinate &_Block): Block(_Block){}
 | 
			
		||||
 | 
			
		||||
  void applyFilter(MomentaField &P) const override
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = P.Grid();
 | 
			
		||||
    typedef decltype(PeekIndex<LorentzIndex>(P, 0)) LatCM;
 | 
			
		||||
    ////////////////////////////////////////////////////
 | 
			
		||||
    // Zero strictly links crossing between domains
 | 
			
		||||
    ////////////////////////////////////////////////////
 | 
			
		||||
    LatticeInteger coor(grid); 
 | 
			
		||||
    LatCM zz(grid); zz = Zero();
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
      if ( (Block[mu]) && (Block[mu] <= grid->GlobalDimensions()[mu] ) ) {
 | 
			
		||||
	// If costly could provide Grid earlier and precompute masks
 | 
			
		||||
	std::cout << GridLogMessage << " Dirichlet in mu="<<mu<<std::endl;
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	auto P_mu = PeekIndex<LorentzIndex>(P, mu);
 | 
			
		||||
	P_mu = where(mod(coor,Block[mu])==Integer(Block[mu]-1),zz,P_mu);
 | 
			
		||||
	PokeIndex<LorentzIndex>(P, P_mu, mu);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -37,7 +37,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<typename MomentaField>
 | 
			
		||||
struct MomentumFilterBase{
 | 
			
		||||
  virtual void applyFilter(MomentaField &P) const;
 | 
			
		||||
  virtual void applyFilter(MomentaField &P) const = 0;
 | 
			
		||||
  virtual ~MomentumFilterBase(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//Do nothing
 | 
			
		||||
@@ -83,7 +84,6 @@ struct MomentumFilterApplyPhase: public MomentumFilterBase<MomentaField>{
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -69,6 +69,11 @@ public:
 | 
			
		||||
    return PeriodicBC::ShiftStaple(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Same as Cshift for periodic BCs
 | 
			
		||||
  static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
 | 
			
		||||
    return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return true; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -110,6 +115,11 @@ public:
 | 
			
		||||
      return PeriodicBC::CovShiftBackward(Link, mu, field);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //If mu is a conjugate BC direction
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U^T_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //else
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu mod L)
 | 
			
		||||
  static inline GaugeLinkField
 | 
			
		||||
  CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -129,6 +139,13 @@ public:
 | 
			
		||||
      return PeriodicBC::CovShiftIdentityForward(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //If mu is a conjugate BC direction
 | 
			
		||||
  //Out(x) = S_\mu(x+mu)  | x_\mu != L-1
 | 
			
		||||
  //       = S*_\mu(x+mu)  | x_\mu == L-1
 | 
			
		||||
  //else
 | 
			
		||||
  //Out(x) = S_\mu(x+mu mod L)
 | 
			
		||||
  //Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
 | 
			
		||||
  static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
    assert(_conjDirs.size() == Nd);
 | 
			
		||||
@@ -138,6 +155,27 @@ public:
 | 
			
		||||
      return PeriodicBC::ShiftStaple(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  //For conjugate BC direction
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //else
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu mod L)
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-\hat\mu mod L)
 | 
			
		||||
  static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
 | 
			
		||||
    assert(_conjDirs.size() == Nd);
 | 
			
		||||
    if(_conjDirs[mu]) 
 | 
			
		||||
      return ConjugateBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
    else     
 | 
			
		||||
      return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline std::vector<int> getDirections(void) { return _conjDirs; }
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return false; }
 | 
			
		||||
 
 | 
			
		||||
@@ -13,6 +13,31 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
 | 
			
		||||
      assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
     template<class Field> void ChebyBoundsCheck(LinearOperatorBase<Field> &HermOp,
 | 
			
		||||
						 Field &GaussNoise,
 | 
			
		||||
						 RealD lo,RealD hi) 
 | 
			
		||||
    {
 | 
			
		||||
      int orderfilter = 1000;
 | 
			
		||||
      Chebyshev<Field> Cheb(lo,hi,orderfilter);
 | 
			
		||||
 | 
			
		||||
      GridBase *FermionGrid = GaussNoise.Grid();
 | 
			
		||||
 | 
			
		||||
      Field X(FermionGrid);
 | 
			
		||||
      Field Z(FermionGrid);
 | 
			
		||||
 | 
			
		||||
      X=GaussNoise;
 | 
			
		||||
      RealD Nx = norm2(X);
 | 
			
		||||
      Cheb(HermOp,X,Z);
 | 
			
		||||
      RealD Nz = norm2(Z);
 | 
			
		||||
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      std::cout << " noise                    = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " Cheb x noise             = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " Ratio                    = "<<Nz/Nx<<std::endl;
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      assert( ((Nz/Nx)<1.0) && " ChebyBoundsCheck ");
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
 | 
			
		||||
						       LinearOperatorBase<Field> &HermOp,
 | 
			
		||||
@@ -40,13 +65,65 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      X=X-Y;
 | 
			
		||||
      RealD Nd = norm2(X);
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      std::cout << " noise                         = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " (MdagM^-1/2)^2  noise         = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " MdagM (MdagM^-1/2)^2  noise   = "<<Ny<<std::endl;
 | 
			
		||||
      std::cout << " noise - MdagM (MdagM^-1/2)^2  noise   = "<<Nd<<std::endl;
 | 
			
		||||
      std::cout << " | noise |^2                         = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " | (MdagM^-1/2)^2  noise |^2         = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " | MdagM (MdagM^-1/2)^2  noise |^2   = "<<Ny<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/2)^2  noise |^2  = "<<Nd<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/2)^2  noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* For a HermOp = M^dag M, check the approximation of  HermOp^{-1/inv_pow}
 | 
			
		||||
       by computing   |X -    HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X|  < tol  
 | 
			
		||||
       for noise X (aka GaussNoise).
 | 
			
		||||
       ApproxNegPow should be the rational approximation for   X^{-1/inv_pow}
 | 
			
		||||
    */
 | 
			
		||||
    template<class Field> void InversePowerBoundsCheck(int inv_pow,
 | 
			
		||||
						       int MaxIter,double tol,
 | 
			
		||||
						       LinearOperatorBase<Field> &HermOp,
 | 
			
		||||
						       Field &GaussNoise,
 | 
			
		||||
						       MultiShiftFunction &ApproxNegPow) 
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *FermionGrid = GaussNoise.Grid();
 | 
			
		||||
 | 
			
		||||
      Field X(FermionGrid);
 | 
			
		||||
      Field Y(FermionGrid);
 | 
			
		||||
      Field Z(FermionGrid);
 | 
			
		||||
 | 
			
		||||
      Field tmp1(FermionGrid), tmp2(FermionGrid);
 | 
			
		||||
 | 
			
		||||
      X=GaussNoise;
 | 
			
		||||
      RealD Nx = norm2(X);
 | 
			
		||||
 | 
			
		||||
      ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
 | 
			
		||||
 | 
			
		||||
      tmp1 = X;
 | 
			
		||||
      
 | 
			
		||||
      Field* in = &tmp1;
 | 
			
		||||
      Field* out = &tmp2;
 | 
			
		||||
      for(int i=0;i<inv_pow;i++){ //apply  [ Hermop^{-1/inv_pow}  ]^{inv_pow} X =   HermOp^{-1} X
 | 
			
		||||
	msCG(HermOp, *in, *out); //backwards conventions!
 | 
			
		||||
	if(i!=inv_pow-1) std::swap(in, out);
 | 
			
		||||
      }
 | 
			
		||||
      Z = *out;
 | 
			
		||||
 | 
			
		||||
      RealD Nz = norm2(Z);
 | 
			
		||||
 | 
			
		||||
      HermOp.HermOp(Z,Y);
 | 
			
		||||
      RealD Ny = norm2(Y);
 | 
			
		||||
 | 
			
		||||
      X=X-Y;
 | 
			
		||||
      RealD Nd = norm2(X);
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      std::cout << " | noise |^2                         = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2        = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2   = "<<Ny<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2  = "<<Nd<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise |  = "<<std::sqrt(Nd/Nx)<<std::endl;
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,163 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundaryBoson.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2021
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
// Two flavour ratio
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
template<class ImplD,class ImplF>
 | 
			
		||||
class DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion : public Action<typename ImplD::GaugeField> {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(ImplD);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
 | 
			
		||||
  RealD InnerStoppingCondition;
 | 
			
		||||
  RealD ActionStoppingCondition;
 | 
			
		||||
  RealD DerivativeStoppingCondition;
 | 
			
		||||
  FermionField Phi; // the pseudo fermion field for this trajectory
 | 
			
		||||
public:
 | 
			
		||||
  DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF>  &_NumOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
 | 
			
		||||
    : NumOp(_NumOp), 
 | 
			
		||||
      DerivativeStoppingCondition(_DerivativeTol),
 | 
			
		||||
      ActionStoppingCondition(_ActionTol),
 | 
			
		||||
      InnerStoppingCondition(_InnerTol),
 | 
			
		||||
      Phi(_NumOp.FermionGrid()) {};
 | 
			
		||||
 | 
			
		||||
  virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion";}
 | 
			
		||||
 | 
			
		||||
  virtual std::string LogParameters(){
 | 
			
		||||
    std::stringstream sstream;
 | 
			
		||||
    return sstream.str();
 | 
			
		||||
  }  
 | 
			
		||||
  
 | 
			
		||||
  virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
 | 
			
		||||
  {
 | 
			
		||||
    // P(phi) = e^{- phi^dag P^dag P phi}
 | 
			
		||||
    //
 | 
			
		||||
    // NumOp == P
 | 
			
		||||
    //
 | 
			
		||||
    // Take phi = P^{-1} eta  ; eta = P Phi
 | 
			
		||||
    //
 | 
			
		||||
    // P(eta) = e^{- eta^dag eta}
 | 
			
		||||
    //
 | 
			
		||||
    // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
    // 
 | 
			
		||||
    // So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
 | 
			
		||||
    //
 | 
			
		||||
    RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
    NumOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    NumOp.tol=ActionStoppingCondition;
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField eta(NumOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    gaussian(pRNG,eta);    eta=eta*scale;
 | 
			
		||||
    
 | 
			
		||||
    NumOp.ProjectBoundaryBar(eta);
 | 
			
		||||
    //DumpSliceNorm("eta",eta);
 | 
			
		||||
    NumOp.RInv(eta,Phi);
 | 
			
		||||
 | 
			
		||||
    //DumpSliceNorm("Phi",Phi);
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // S = phi^dag Pdag P phi
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
    NumOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    NumOp.tol=ActionStoppingCondition;
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField Y(NumOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    NumOp.R(Phi,Y);
 | 
			
		||||
 | 
			
		||||
    RealD action = norm2(Y);
 | 
			
		||||
 | 
			
		||||
    return action;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void deriv(const GaugeField &U,GaugeField & dSdU)
 | 
			
		||||
  {
 | 
			
		||||
    NumOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    NumOp.tol=DerivativeStoppingCondition;
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    GridBase *fgrid = NumOp.FermionGrid();
 | 
			
		||||
    GridBase *ugrid = NumOp.GaugeGrid();
 | 
			
		||||
 | 
			
		||||
    FermionField  X(fgrid);
 | 
			
		||||
    FermionField  Y(fgrid);
 | 
			
		||||
    FermionField  tmp(fgrid);
 | 
			
		||||
 | 
			
		||||
    GaugeField   force(ugrid);	
 | 
			
		||||
 | 
			
		||||
    FermionField DobiDdbPhi(fgrid);      // Vector A in my notes
 | 
			
		||||
    FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
 | 
			
		||||
    FermionField DoidP_Phi(fgrid);    // Vector E in my notes
 | 
			
		||||
    FermionField DobidDddDoidP_Phi(fgrid);    // Vector F in my notes
 | 
			
		||||
    
 | 
			
		||||
    FermionField P_Phi(fgrid);
 | 
			
		||||
    
 | 
			
		||||
    // P term
 | 
			
		||||
    NumOp.dBoundaryBar(Phi,tmp);
 | 
			
		||||
    NumOp.dOmegaBarInv(tmp,DobiDdbPhi);        // Vector A
 | 
			
		||||
    NumOp.dBoundary(DobiDdbPhi,tmp);
 | 
			
		||||
    NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi);      // Vector B
 | 
			
		||||
    P_Phi  = Phi - DoiDdDobiDdbPhi;
 | 
			
		||||
    NumOp.ProjectBoundaryBar(P_Phi);
 | 
			
		||||
    
 | 
			
		||||
    // P^dag P term
 | 
			
		||||
    NumOp.dOmegaDagInv(P_Phi,DoidP_Phi); // Vector E
 | 
			
		||||
    NumOp.dBoundaryDag(DoidP_Phi,tmp);
 | 
			
		||||
    NumOp.dOmegaBarDagInv(tmp,DobidDddDoidP_Phi);   // Vector F
 | 
			
		||||
    NumOp.dBoundaryBarDag(DobidDddDoidP_Phi,tmp);
 | 
			
		||||
 | 
			
		||||
    X = DobiDdbPhi;
 | 
			
		||||
    Y = DobidDddDoidP_Phi;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo);    dSdU=force;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes);   dSdU=dSdU+force;
 | 
			
		||||
 | 
			
		||||
    X = DoiDdDobiDdbPhi;
 | 
			
		||||
    Y = DoidP_Phi;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo);    dSdU=dSdU+force;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes);   dSdU=dSdU+force;
 | 
			
		||||
 | 
			
		||||
    dSdU *= -1.0;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -0,0 +1,158 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2021
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
// Two flavour ratio
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
template<class ImplD,class ImplF>
 | 
			
		||||
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(ImplD);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
 | 
			
		||||
  RealD ActionStoppingCondition;
 | 
			
		||||
  RealD DerivativeStoppingCondition;
 | 
			
		||||
  RealD InnerStoppingCondition;
 | 
			
		||||
 | 
			
		||||
  FermionField Phi; // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
  RealD refresh_action;
 | 
			
		||||
public:
 | 
			
		||||
  DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF>  &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
 | 
			
		||||
    : DenOp(_DenOp),
 | 
			
		||||
      DerivativeStoppingCondition(_DerivativeTol),
 | 
			
		||||
      ActionStoppingCondition(_ActionTol),
 | 
			
		||||
      InnerStoppingCondition(_InnerTol),
 | 
			
		||||
      Phi(_DenOp.FermionGrid()) {};
 | 
			
		||||
      
 | 
			
		||||
  virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
  virtual std::string LogParameters(){
 | 
			
		||||
    std::stringstream sstream;
 | 
			
		||||
    return sstream.str();
 | 
			
		||||
  }  
 | 
			
		||||
  
 | 
			
		||||
  virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
 | 
			
		||||
  {
 | 
			
		||||
    // P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
 | 
			
		||||
    //
 | 
			
		||||
    // DenOp == R
 | 
			
		||||
    //
 | 
			
		||||
    // Take phi = R eta  ; eta = R^-1 Phi
 | 
			
		||||
    //
 | 
			
		||||
    // P(eta) = e^{- eta^dag eta}
 | 
			
		||||
    //
 | 
			
		||||
    // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
    // 
 | 
			
		||||
    // So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
 | 
			
		||||
    //
 | 
			
		||||
    RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
    DenOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tol     =ActionStoppingCondition;
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField eta(DenOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    gaussian(pRNG,eta);    eta=eta*scale;
 | 
			
		||||
    
 | 
			
		||||
    DenOp.ProjectBoundaryBar(eta);
 | 
			
		||||
    DenOp.R(eta,Phi);
 | 
			
		||||
    //DumpSliceNorm("Phi",Phi);
 | 
			
		||||
    refresh_action = norm2(eta);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // S = phi^dag Rdag^-1 R^-1 phi
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
    DenOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tol=ActionStoppingCondition;
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField X(DenOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    DenOp.RInv(Phi,X);
 | 
			
		||||
 | 
			
		||||
    RealD action = norm2(X);
 | 
			
		||||
 | 
			
		||||
    return action;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void deriv(const GaugeField &U,GaugeField & dSdU)
 | 
			
		||||
  {
 | 
			
		||||
    DenOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tol=DerivativeStoppingCondition;
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    GridBase *fgrid = DenOp.FermionGrid();
 | 
			
		||||
    GridBase *ugrid = DenOp.GaugeGrid();
 | 
			
		||||
 | 
			
		||||
    FermionField  X(fgrid);
 | 
			
		||||
    FermionField  Y(fgrid);
 | 
			
		||||
    FermionField  tmp(fgrid);
 | 
			
		||||
 | 
			
		||||
    GaugeField   force(ugrid);	
 | 
			
		||||
 | 
			
		||||
    FermionField DiDdb_Phi(fgrid);      // Vector C in my notes
 | 
			
		||||
    FermionField DidRinv_Phi(fgrid);    // Vector D in my notes
 | 
			
		||||
    FermionField Rinv_Phi(fgrid);
 | 
			
		||||
 | 
			
		||||
//   FermionField RinvDagRinv_Phi(fgrid);
 | 
			
		||||
//   FermionField DdbdDidRinv_Phi(fgrid);
 | 
			
		||||
 | 
			
		||||
    // R^-1 term
 | 
			
		||||
    DenOp.dBoundaryBar(Phi,tmp);
 | 
			
		||||
    DenOp.Dinverse(tmp,DiDdb_Phi);            // Vector C
 | 
			
		||||
    Rinv_Phi = Phi - DiDdb_Phi;
 | 
			
		||||
    DenOp.ProjectBoundaryBar(Rinv_Phi); 
 | 
			
		||||
 
 | 
			
		||||
    // R^-dagger R^-1 term
 | 
			
		||||
    DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
 | 
			
		||||
/*
 | 
			
		||||
    DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
 | 
			
		||||
    RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
 | 
			
		||||
    DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
 | 
			
		||||
*/
 | 
			
		||||
    X = DiDdb_Phi;
 | 
			
		||||
    Y = DidRinv_Phi;
 | 
			
		||||
    DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo);    dSdU=force;
 | 
			
		||||
    DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes);   dSdU=dSdU+force;
 | 
			
		||||
    DumpSliceNorm("force",dSdU);
 | 
			
		||||
    dSdU *= -1.0;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -0,0 +1,237 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2021
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
// Two flavour ratio
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
template<class ImplD,class ImplF>
 | 
			
		||||
class DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion : public Action<typename ImplD::GaugeField> {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(ImplD);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
 | 
			
		||||
  SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
 | 
			
		||||
 | 
			
		||||
  RealD InnerStoppingCondition;
 | 
			
		||||
  RealD ActionStoppingCondition;
 | 
			
		||||
  RealD DerivativeStoppingCondition;
 | 
			
		||||
  
 | 
			
		||||
  FermionField Phi; // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF>  &_NumOp, 
 | 
			
		||||
						       SchurFactoredFermionOperator<ImplD,ImplF>  &_DenOp,
 | 
			
		||||
						       RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
 | 
			
		||||
    : NumOp(_NumOp), DenOp(_DenOp),
 | 
			
		||||
      Phi(_NumOp.PeriodicFermOpD.FermionGrid()),
 | 
			
		||||
      InnerStoppingCondition(_InnerTol),
 | 
			
		||||
      DerivativeStoppingCondition(_DerivativeTol),
 | 
			
		||||
      ActionStoppingCondition(_ActionTol)
 | 
			
		||||
  {};
 | 
			
		||||
      
 | 
			
		||||
  virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion";}
 | 
			
		||||
 
 | 
			
		||||
  virtual std::string LogParameters(){
 | 
			
		||||
    std::stringstream sstream;
 | 
			
		||||
    return sstream.str();
 | 
			
		||||
  }  
 | 
			
		||||
  
 | 
			
		||||
  virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
 | 
			
		||||
  {
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField eta(NumOp.PeriodicFermOpD.FermionGrid());
 | 
			
		||||
    FermionField tmp(NumOp.PeriodicFermOpD.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    // P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
 | 
			
		||||
    //
 | 
			
		||||
    // NumOp == P
 | 
			
		||||
    // DenOp == R
 | 
			
		||||
    //
 | 
			
		||||
    // Take phi = P^{-1} R eta  ; eta = R^-1 P Phi
 | 
			
		||||
    //
 | 
			
		||||
    // P(eta) = e^{- eta^dag eta}
 | 
			
		||||
    //
 | 
			
		||||
    // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
    // 
 | 
			
		||||
    // So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
 | 
			
		||||
    //
 | 
			
		||||
    RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
    gaussian(pRNG,eta);    eta=eta*scale;
 | 
			
		||||
    
 | 
			
		||||
    NumOp.ProjectBoundaryBar(eta);
 | 
			
		||||
    NumOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tol = ActionStoppingCondition;
 | 
			
		||||
    NumOp.tol = ActionStoppingCondition;
 | 
			
		||||
    DenOp.R(eta,tmp);
 | 
			
		||||
    NumOp.RInv(tmp,Phi);
 | 
			
		||||
    DumpSliceNorm("Phi",Phi);
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // S = phi^dag Pdag Rdag^-1 R^-1 P phi
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField X(NumOp.PeriodicFermOpD.FermionGrid());
 | 
			
		||||
    FermionField Y(NumOp.PeriodicFermOpD.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    NumOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tol = ActionStoppingCondition;
 | 
			
		||||
    NumOp.tol = ActionStoppingCondition;
 | 
			
		||||
    NumOp.R(Phi,Y);
 | 
			
		||||
    DenOp.RInv(Y,X);
 | 
			
		||||
 | 
			
		||||
    RealD action = norm2(X);
 | 
			
		||||
    //    std::cout << " DD boundary action is " <<action<<std::endl;
 | 
			
		||||
 | 
			
		||||
    return action;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void deriv(const GaugeField &U,GaugeField & dSdU)
 | 
			
		||||
  {
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    GridBase *fgrid = NumOp.PeriodicFermOpD.FermionGrid();
 | 
			
		||||
    GridBase *ugrid = NumOp.PeriodicFermOpD.GaugeGrid();
 | 
			
		||||
 | 
			
		||||
    FermionField  X(fgrid);
 | 
			
		||||
    FermionField  Y(fgrid);
 | 
			
		||||
    FermionField  tmp(fgrid);
 | 
			
		||||
 | 
			
		||||
    GaugeField   force(ugrid);	
 | 
			
		||||
 | 
			
		||||
    FermionField DobiDdbPhi(fgrid);      // Vector A in my notes
 | 
			
		||||
    FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
 | 
			
		||||
    FermionField DiDdbP_Phi(fgrid);      // Vector C in my notes
 | 
			
		||||
    FermionField DidRinvP_Phi(fgrid);    // Vector D in my notes
 | 
			
		||||
    FermionField DdbdDidRinvP_Phi(fgrid);
 | 
			
		||||
    FermionField DoidRinvDagRinvP_Phi(fgrid);    // Vector E in my notes
 | 
			
		||||
    FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid);    // Vector F in my notes
 | 
			
		||||
    
 | 
			
		||||
    FermionField P_Phi(fgrid);
 | 
			
		||||
    FermionField RinvP_Phi(fgrid);
 | 
			
		||||
    FermionField RinvDagRinvP_Phi(fgrid);
 | 
			
		||||
    FermionField PdagRinvDagRinvP_Phi(fgrid);
 | 
			
		||||
 | 
			
		||||
    //    RealD action = S(U);
 | 
			
		||||
    NumOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tolinner=InnerStoppingCondition;
 | 
			
		||||
    DenOp.tol = DerivativeStoppingCondition;
 | 
			
		||||
    NumOp.tol = DerivativeStoppingCondition;
 | 
			
		||||
    
 | 
			
		||||
    // P term
 | 
			
		||||
    NumOp.dBoundaryBar(Phi,tmp);
 | 
			
		||||
    NumOp.dOmegaBarInv(tmp,DobiDdbPhi);        // Vector A
 | 
			
		||||
    NumOp.dBoundary(DobiDdbPhi,tmp);
 | 
			
		||||
    NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi);      // Vector B
 | 
			
		||||
    P_Phi  = Phi - DoiDdDobiDdbPhi;
 | 
			
		||||
    NumOp.ProjectBoundaryBar(P_Phi);
 | 
			
		||||
 | 
			
		||||
    // R^-1 P term
 | 
			
		||||
    DenOp.dBoundaryBar(P_Phi,tmp);
 | 
			
		||||
    DenOp.Dinverse(tmp,DiDdbP_Phi);            // Vector C
 | 
			
		||||
    RinvP_Phi = P_Phi - DiDdbP_Phi;
 | 
			
		||||
    DenOp.ProjectBoundaryBar(RinvP_Phi); // Correct to here
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
    // R^-dagger R^-1 P term
 | 
			
		||||
    DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
 | 
			
		||||
    DenOp.dBoundaryBarDag(DidRinvP_Phi,DdbdDidRinvP_Phi);
 | 
			
		||||
    RinvDagRinvP_Phi = RinvP_Phi - DdbdDidRinvP_Phi;
 | 
			
		||||
    DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    // P^dag R^-dagger R^-1 P term
 | 
			
		||||
    NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
 | 
			
		||||
    NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
 | 
			
		||||
    NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi);   // Vector F
 | 
			
		||||
    NumOp.dBoundaryBarDag(DobidDddDoidRinvDagRinvP_Phi,tmp);
 | 
			
		||||
    PdagRinvDagRinvP_Phi = RinvDagRinvP_Phi- tmp;
 | 
			
		||||
    NumOp.ProjectBoundaryBar(PdagRinvDagRinvP_Phi);
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    std::cout << "S eval  "<< action << std::endl;
 | 
			
		||||
    std::cout << "S - IP1 "<< innerProduct(Phi,PdagRinvDagRinvP_Phi) << std::endl;
 | 
			
		||||
    std::cout << "S - IP2 "<< norm2(RinvP_Phi) << std::endl;
 | 
			
		||||
 | 
			
		||||
    NumOp.R(Phi,tmp);
 | 
			
		||||
    tmp = tmp - P_Phi;
 | 
			
		||||
    std::cout << "diff1 "<<norm2(tmp) <<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
    DenOp.RInv(P_Phi,tmp);
 | 
			
		||||
    tmp = tmp - RinvP_Phi;
 | 
			
		||||
    std::cout << "diff2 "<<norm2(tmp) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    DenOp.RDagInv(RinvP_Phi,tmp);
 | 
			
		||||
    tmp  = tmp - RinvDagRinvP_Phi;
 | 
			
		||||
    std::cout << "diff3 "<<norm2(tmp) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    DenOp.RDag(RinvDagRinvP_Phi,tmp);
 | 
			
		||||
    tmp  = tmp - PdagRinvDagRinvP_Phi;
 | 
			
		||||
    std::cout << "diff4 "<<norm2(tmp) <<std::endl;
 | 
			
		||||
    */
 | 
			
		||||
    
 | 
			
		||||
    dSdU=Zero();
 | 
			
		||||
 | 
			
		||||
    X = DobiDdbPhi;
 | 
			
		||||
    Y = DobidDddDoidRinvDagRinvP_Phi;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo);    dSdU=dSdU+force;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes);   dSdU=dSdU+force;
 | 
			
		||||
 | 
			
		||||
    X = DoiDdDobiDdbPhi;
 | 
			
		||||
    Y = DoidRinvDagRinvP_Phi;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo);    dSdU=dSdU+force;
 | 
			
		||||
    NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes);   dSdU=dSdU+force;
 | 
			
		||||
 | 
			
		||||
    X = DiDdbP_Phi;
 | 
			
		||||
    Y = DidRinvP_Phi;
 | 
			
		||||
    DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo);    dSdU=dSdU+force;
 | 
			
		||||
    DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes);   dSdU=dSdU+force;
 | 
			
		||||
 | 
			
		||||
    dSdU *= -1.0;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  // Exact one flavour implementation of DWF determinant ratio //
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  //Note: using mixed prec CG for the heatbath solver in this action class will not work
 | 
			
		||||
  //      because the L, R operators must have their shift coefficients updated throughout the heatbath step
 | 
			
		||||
  //      You will find that the heatbath solver simply won't converge.
 | 
			
		||||
  //      To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
 | 
			
		||||
  {
 | 
			
		||||
@@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      bool use_heatbath_forecasting;
 | 
			
		||||
      AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
 | 
			
		||||
      AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
 | 
			
		||||
      FermionField Phi; // the pseudofermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
      RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
 | 
			
		||||
      bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      //Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
 | 
			
		||||
      virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
 | 
			
		||||
	AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
 | 
			
		||||
	op.RefreshShiftCoefficients(to);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      //Use the same solver for L,R in all cases
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, 
 | 
			
		||||
					      AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
					      OperatorFunction<FermionField>& CG, 
 | 
			
		||||
					      Params& p, 
 | 
			
		||||
					      bool use_fc=false) 
 | 
			
		||||
	: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
 | 
			
		||||
	
 | 
			
		||||
	: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
 | 
			
		||||
 | 
			
		||||
      //Use the same solver for L,R in the heatbath but different solvers elsewhere
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, 
 | 
			
		||||
					      AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
					      OperatorFunction<FermionField>& HeatbathCG, 
 | 
			
		||||
					      OperatorFunction<FermionField>& HeatbathCG,
 | 
			
		||||
					      OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, 
 | 
			
		||||
					      OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, 
 | 
			
		||||
					      Params& p, 
 | 
			
		||||
					      bool use_fc=false)
 | 
			
		||||
	: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
 | 
			
		||||
 | 
			
		||||
      //Use different solvers for L,R in all cases
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, 
 | 
			
		||||
					      AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
					      OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
 | 
			
		||||
					      OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, 
 | 
			
		||||
					      OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, 
 | 
			
		||||
					      Params& p, 
 | 
			
		||||
					      bool use_fc=false) : 
 | 
			
		||||
        Lop(_Lop), 
 | 
			
		||||
	Rop(_Rop), 
 | 
			
		||||
	SolverHB(HeatbathCG,false,true),
 | 
			
		||||
	SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
 | 
			
		||||
	SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true), 
 | 
			
		||||
	DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true), 
 | 
			
		||||
	Phi(_Lop.FermionGrid()), 
 | 
			
		||||
	param(p), 
 | 
			
		||||
        use_heatbath_forecasting(use_fc)
 | 
			
		||||
	use_heatbath_forecasting(use_fc),
 | 
			
		||||
	initial_action(false)
 | 
			
		||||
      {
 | 
			
		||||
        AlgRemez remez(param.lo, param.hi, param.precision);
 | 
			
		||||
 | 
			
		||||
@@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        PowerNegHalf.Init(remez, param.tolerance, true);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      const FermionField &getPhi() const{ return Phi; }
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters() {
 | 
			
		||||
@@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
        // P(eta_o) = e^{- eta_o^dag eta_o}
 | 
			
		||||
        //
 | 
			
		||||
        // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
        // 
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
        FermionField eta    (Lop.FermionGrid());
 | 
			
		||||
        gaussian(pRNG,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
	refresh(U,eta);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
 | 
			
		||||
      // We generate a Gaussian noise vector \eta, and then compute
 | 
			
		||||
      //  \Phi = M_{\rm EOFA}^{-1/2} * \eta
 | 
			
		||||
@@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      //
 | 
			
		||||
      // As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
 | 
			
		||||
      //
 | 
			
		||||
      virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
 | 
			
		||||
      {
 | 
			
		||||
     void refresh(const GaugeField &U, const FermionField &eta) {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField eta         (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_src      (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_soln     (Lop.FermionGrid());
 | 
			
		||||
        FermionField Forecast_src(Lop.FermionGrid());
 | 
			
		||||
@@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
 | 
			
		||||
        ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
 | 
			
		||||
 | 
			
		||||
        // Seed with Gaussian noise vector (var = 0.5)
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
        gaussian(pRNG,eta);
 | 
			
		||||
        eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
        // \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
 | 
			
		||||
        RealD N(PowerNegHalf.norm);
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
 | 
			
		||||
@@ -160,15 +195,15 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        tmp[1] = Zero();
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){
 | 
			
		||||
          gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
 | 
			
		||||
          Lop.RefreshShiftCoefficients(-gamma_l);
 | 
			
		||||
          heatbathRefreshShiftCoefficients(0, -gamma_l);
 | 
			
		||||
          if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
 | 
			
		||||
            Lop.Mdag(CG_src, Forecast_src);
 | 
			
		||||
            CG_soln = Forecast(Lop, Forecast_src, prev_solns);
 | 
			
		||||
            SolverHB(Lop, CG_src, CG_soln);
 | 
			
		||||
            SolverHBL(Lop, CG_src, CG_soln);
 | 
			
		||||
            prev_solns.push_back(CG_soln);
 | 
			
		||||
          } else {
 | 
			
		||||
            CG_soln = Zero(); // Just use zero as the initial guess
 | 
			
		||||
            SolverHB(Lop, CG_src, CG_soln);
 | 
			
		||||
	    SolverHBL(Lop, CG_src, CG_soln);
 | 
			
		||||
          }
 | 
			
		||||
          Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
 | 
			
		||||
@@ -187,15 +222,15 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){
 | 
			
		||||
          gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
 | 
			
		||||
          Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
 | 
			
		||||
	  heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
 | 
			
		||||
          if(use_heatbath_forecasting){
 | 
			
		||||
            Rop.Mdag(CG_src, Forecast_src);
 | 
			
		||||
            CG_soln = Forecast(Rop, Forecast_src, prev_solns);
 | 
			
		||||
            SolverHB(Rop, CG_src, CG_soln);
 | 
			
		||||
            SolverHBR(Rop, CG_src, CG_soln);
 | 
			
		||||
            prev_solns.push_back(CG_soln);
 | 
			
		||||
          } else {
 | 
			
		||||
            CG_soln = Zero();
 | 
			
		||||
            SolverHB(Rop, CG_src, CG_soln);
 | 
			
		||||
            SolverHBR(Rop, CG_src, CG_soln);
 | 
			
		||||
          }
 | 
			
		||||
          Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
 | 
			
		||||
@@ -205,49 +240,117 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        Phi = Phi + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // Reset shift coefficients for energy and force evals
 | 
			
		||||
        Lop.RefreshShiftCoefficients(0.0);
 | 
			
		||||
        Rop.RefreshShiftCoefficients(-1.0);
 | 
			
		||||
	heatbathRefreshShiftCoefficients(0, 0.0);
 | 
			
		||||
	heatbathRefreshShiftCoefficients(1, -1.0);
 | 
			
		||||
 | 
			
		||||
	//Mark that the next call to S is the first after refresh
 | 
			
		||||
	initial_action = true;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	// Bounds check
 | 
			
		||||
	RealD EtaDagEta = norm2(eta);
 | 
			
		||||
	norm2_eta = EtaDagEta;
 | 
			
		||||
 | 
			
		||||
	//	RealD PhiDagMPhi= norm2(eta);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi) 
 | 
			
		||||
      void Meofa(const GaugeField& U,const FermionField &in, FermionField & out) 
 | 
			
		||||
      {
 | 
			
		||||
#if 0
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField spProj_Phi(Lop.FermionGrid());
 | 
			
		||||
	FermionField mPhi(Lop.FermionGrid());
 | 
			
		||||
        FermionField spProj_in(Lop.FermionGrid());
 | 
			
		||||
        std::vector<FermionField> tmp(2, Lop.FermionGrid());
 | 
			
		||||
	mPhi = phi;
 | 
			
		||||
	out = in;
 | 
			
		||||
	
 | 
			
		||||
        // LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(spProj_Phi, tmp[0], -1, 0);
 | 
			
		||||
        spProj(in, spProj_in, -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(spProj_in, tmp[0], -1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
        tmp[0] = Zero();
 | 
			
		||||
        SolverL(Lop, tmp[1], tmp[0]);
 | 
			
		||||
        Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
        Lop.Omega(tmp[1], tmp[0], -1, 1);
 | 
			
		||||
	mPhi = mPhi -  Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
	spProj(tmp[0], tmp[1], -1, Lop.Ls);
 | 
			
		||||
 | 
			
		||||
	out = out -  Lop.k * tmp[1];
 | 
			
		||||
 | 
			
		||||
        // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_Phi, tmp[0], 1, 0);
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
 | 
			
		||||
        spProj(in, spProj_in, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_in, tmp[0], 1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
        tmp[0] = Zero();
 | 
			
		||||
        SolverR(Rop, tmp[1], tmp[0]);
 | 
			
		||||
        Rop.Dtilde(tmp[0], tmp[1]);
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
#endif
 | 
			
		||||
	spProj(tmp[0], tmp[1], 1, Rop.Ls);
 | 
			
		||||
 | 
			
		||||
        out = out + Rop.k * tmp[1];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
 | 
			
		||||
      //To ensure correctness we can simply reuse the heatbath code but use the rational approx
 | 
			
		||||
      //f(x) = 1/x   which corresponds to alpha_0=0,  alpha_1=1,  beta_1=0 => gamma_1=1
 | 
			
		||||
      void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField CG_src      (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_soln     (Lop.FermionGrid());
 | 
			
		||||
        std::vector<FermionField> tmp(2, Lop.FermionGrid());
 | 
			
		||||
 | 
			
		||||
        // \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
 | 
			
		||||
	// = 1 * \eta
 | 
			
		||||
        out = in;
 | 
			
		||||
 | 
			
		||||
        // LH terms:
 | 
			
		||||
        // \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
 | 
			
		||||
        //          - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
 | 
			
		||||
        spProj(in, tmp[0], -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(tmp[0], tmp[1], -1, 0);
 | 
			
		||||
        G5R5(CG_src, tmp[1]);
 | 
			
		||||
        {
 | 
			
		||||
          heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
 | 
			
		||||
 | 
			
		||||
	  CG_soln = Zero(); // Just use zero as the initial guess
 | 
			
		||||
	  SolverHBL(Lop, CG_src, CG_soln);
 | 
			
		||||
 | 
			
		||||
          Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = Lop.k * tmp[0];
 | 
			
		||||
        }
 | 
			
		||||
        Lop.Omega(tmp[1], tmp[0], -1, 1);
 | 
			
		||||
        spProj(tmp[0], tmp[1], -1, Lop.Ls);
 | 
			
		||||
        out = out + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // RH terms:
 | 
			
		||||
        // \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //          - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
 | 
			
		||||
        spProj(in, tmp[0], 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(tmp[0], tmp[1], 1, 0);
 | 
			
		||||
        G5R5(CG_src, tmp[1]);
 | 
			
		||||
        {
 | 
			
		||||
	  heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
 | 
			
		||||
 | 
			
		||||
	  CG_soln = Zero();
 | 
			
		||||
	  SolverHBR(Rop, CG_src, CG_soln);
 | 
			
		||||
 | 
			
		||||
          Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = - Rop.k * tmp[0];
 | 
			
		||||
        }
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        spProj(tmp[0], tmp[1], 1, Rop.Ls);
 | 
			
		||||
        out = out + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // Reset shift coefficients for energy and force evals
 | 
			
		||||
	heatbathRefreshShiftCoefficients(0, 0.0);
 | 
			
		||||
	heatbathRefreshShiftCoefficients(1, -1.0);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      // EOFA action: see Eqn. (10) of arXiv:1706.05843
 | 
			
		||||
      virtual RealD S(const GaugeField& U)
 | 
			
		||||
      {
 | 
			
		||||
@@ -271,7 +374,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
 | 
			
		||||
        // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_Phi, tmp[0], 1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
@@ -281,6 +384,26 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
 | 
			
		||||
	if(initial_action){
 | 
			
		||||
	  //For the first call to S after refresh,  S = |eta|^2. We can use this to ensure the rational approx is good
 | 
			
		||||
	  RealD diff = action - norm2_eta;
 | 
			
		||||
 | 
			
		||||
	  //S_init = eta^dag M^{-1/2} M M^{-1/2} eta
 | 
			
		||||
	  //S_init - eta^dag eta =  eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
 | 
			
		||||
 | 
			
		||||
	  //If approximate solution
 | 
			
		||||
	  //S_init - eta^dag eta =  eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
 | 
			
		||||
	  //               \approx  eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
 | 
			
		||||
	  // We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
 | 
			
		||||
	  RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
 | 
			
		||||
 | 
			
		||||
	  std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << "  expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
 | 
			
		||||
 | 
			
		||||
	  assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
 | 
			
		||||
	  initial_action = false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
        return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
@@ -329,6 +452,40 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      };
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class ImplD, class ImplF>
 | 
			
		||||
  class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
 | 
			
		||||
  public:
 | 
			
		||||
    INHERIT_IMPL_TYPES(ImplD);
 | 
			
		||||
    typedef OneFlavourRationalParams Params;
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
 | 
			
		||||
    AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    
 | 
			
		||||
    virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
 | 
			
		||||
    
 | 
			
		||||
    //Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
 | 
			
		||||
    virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
 | 
			
		||||
      AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
 | 
			
		||||
      op.RefreshShiftCoefficients(to);
 | 
			
		||||
      this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF, 
 | 
			
		||||
							     AbstractEOFAFermion<ImplF>& _RopF,
 | 
			
		||||
							     AbstractEOFAFermion<ImplD>& _LopD, 
 | 
			
		||||
							     AbstractEOFAFermion<ImplD>& _RopD,
 | 
			
		||||
							     OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
 | 
			
		||||
							     OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, 
 | 
			
		||||
							     OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, 
 | 
			
		||||
							     Params& p, 
 | 
			
		||||
							     bool use_fc=false) : 
 | 
			
		||||
    LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										434
									
								
								Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										434
									
								
								Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,434 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    // Generic rational approximation for ratios of operators
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    /* S_f = -log( det(  [M^dag M]/[V^dag V] )^{1/inv_pow}  )
 | 
			
		||||
           = chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
 | 
			
		||||
	   = chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
 | 
			
		||||
	   = chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
 | 
			
		||||
 | 
			
		||||
	   S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
    
 | 
			
		||||
       BIG WARNING:	   
 | 
			
		||||
       Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
 | 
			
		||||
       this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
 | 
			
		||||
       Thus for DWF the numerator operator is the Pauli-Villars operator
 | 
			
		||||
 | 
			
		||||
       Here P/Q \sim R_{1/(2*inv_pow)}  ~ (V^dagV)^{1/(2*inv_pow)}  
 | 
			
		||||
       Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}  
 | 
			
		||||
    */
 | 
			
		||||
      
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      typedef RationalActionParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
      RealD  RefreshAction;
 | 
			
		||||
      //For action evaluation
 | 
			
		||||
      MultiShiftFunction ApproxPowerAction   ;  //rational approx for X^{1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxNegPowerAction;  //rational approx for X^{-1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxHalfPowerAction;   //rational approx for X^{1/(2*inv_pow)}
 | 
			
		||||
      MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
 | 
			
		||||
 | 
			
		||||
      //For the MD integration
 | 
			
		||||
      MultiShiftFunction ApproxPowerMD   ;  //rational approx for X^{1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxNegPowerMD;  //rational approx for X^{-1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxHalfPowerMD;   //rational approx for X^{1/(2*inv_pow)}
 | 
			
		||||
      MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
      FermionOperator<Impl> & DenOp;// the basic operator
 | 
			
		||||
      FermionField PhiEven; // the pseudo fermion field for this trajectory
 | 
			
		||||
      FermionField PhiOdd; // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
      //Generate the approximation to x^{1/inv_pow} (->approx)   and x^{-1/inv_pow} (-> approx_inv)  by an approx_degree degree rational approximation
 | 
			
		||||
      //CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
 | 
			
		||||
      static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
 | 
			
		||||
	double error = remez.generateApprox(approx_degree,1,inv_pow);	
 | 
			
		||||
	if(error > CG_tolerance)
 | 
			
		||||
	  std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
 | 
			
		||||
	
 | 
			
		||||
	approx.Init(remez, CG_tolerance,false);
 | 
			
		||||
	approx_inv.Init(remez, CG_tolerance,true);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    protected:
 | 
			
		||||
      static constexpr bool Numerator = true;
 | 
			
		||||
      static constexpr bool Denominator = false;
 | 
			
		||||
 | 
			
		||||
      //Allow derived classes to override the multishift CG
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
 | 
			
		||||
	SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
 | 
			
		||||
	msCG(schurOp,in, out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
 | 
			
		||||
	SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
 | 
			
		||||
	msCG(schurOp,in, out_elems, out);
 | 
			
		||||
      }
 | 
			
		||||
      //Allow derived classes to override the gauge import
 | 
			
		||||
      virtual void ImportGauge(const GaugeField &U){
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      // allow non-uniform tolerances 
 | 
			
		||||
      void SetTolerances(std::vector<RealD> action_tolerance,std::vector<RealD> md_tolerance)
 | 
			
		||||
      {
 | 
			
		||||
	assert(action_tolerance.size()==ApproxPowerAction.tolerances.size());
 | 
			
		||||
	assert(    md_tolerance.size()==ApproxPowerMD.tolerances.size());
 | 
			
		||||
	
 | 
			
		||||
	// Fix up the tolerances
 | 
			
		||||
	for(int i=0;i<ApproxPowerAction.tolerances.size();i++){
 | 
			
		||||
	  ApproxPowerAction.tolerances[i]       = action_tolerance[i];
 | 
			
		||||
	  ApproxNegPowerAction.tolerances[i]    = action_tolerance[i];
 | 
			
		||||
	  ApproxHalfPowerAction.tolerances[i]   = action_tolerance[i];
 | 
			
		||||
	  ApproxNegHalfPowerAction.tolerances[i]= action_tolerance[i];
 | 
			
		||||
	}
 | 
			
		||||
	for(int i=0;i<ApproxPowerMD.tolerances.size();i++){
 | 
			
		||||
	  ApproxPowerMD.tolerances[i]       = md_tolerance[i];
 | 
			
		||||
	  ApproxNegPowerMD.tolerances[i]    = md_tolerance[i];
 | 
			
		||||
	  ApproxHalfPowerMD.tolerances[i]   = md_tolerance[i];
 | 
			
		||||
	  ApproxNegHalfPowerMD.tolerances[i]= md_tolerance[i];
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Print out - could deprecate
 | 
			
		||||
	for(int i=0;i<ApproxPowerMD.tolerances.size();i++) {
 | 
			
		||||
	  std::cout<<GridLogMessage << " ApproxPowerMD shift["<<i<<"] "
 | 
			
		||||
		   <<" pole    "<<ApproxPowerMD.poles[i]
 | 
			
		||||
		   <<" residue "<<ApproxPowerMD.residues[i]
 | 
			
		||||
		   <<" tol     "<<ApproxPowerMD.tolerances[i]<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
	  for(int i=0;i<ApproxNegPowerMD.tolerances.size();i++) {
 | 
			
		||||
	  std::cout<<GridLogMessage << " ApproxNegPowerMD shift["<<i<<"] "
 | 
			
		||||
		   <<" pole    "<<ApproxNegPowerMD.poles[i]
 | 
			
		||||
		   <<" residue "<<ApproxNegPowerMD.residues[i]
 | 
			
		||||
		   <<" tol     "<<ApproxNegPowerMD.tolerances[i]<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	for(int i=0;i<ApproxHalfPowerMD.tolerances.size();i++) {
 | 
			
		||||
	  std::cout<<GridLogMessage << " ApproxHalfPowerMD shift["<<i<<"] "
 | 
			
		||||
		   <<" pole    "<<ApproxHalfPowerMD.poles[i]
 | 
			
		||||
		   <<" residue "<<ApproxHalfPowerMD.residues[i]
 | 
			
		||||
		   <<" tol     "<<ApproxHalfPowerMD.tolerances[i]<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	for(int i=0;i<ApproxNegHalfPowerMD.tolerances.size();i++) {
 | 
			
		||||
	  std::cout<<GridLogMessage << " ApproxNegHalfPowerMD shift["<<i<<"] "
 | 
			
		||||
		   <<" pole    "<<ApproxNegHalfPowerMD.poles[i]
 | 
			
		||||
		   <<" residue "<<ApproxNegHalfPowerMD.residues[i]
 | 
			
		||||
		   <<" tol     "<<ApproxNegHalfPowerMD.tolerances[i]<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	*/
 | 
			
		||||
	
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
						     FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
						     const Params & p
 | 
			
		||||
						     ) : 
 | 
			
		||||
	NumOp(_NumOp), 
 | 
			
		||||
	DenOp(_DenOp), 
 | 
			
		||||
	PhiOdd (_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
	PhiEven(_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
	param(p) 
 | 
			
		||||
      {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
 | 
			
		||||
	AlgRemez remez(param.lo,param.hi,param.precision);
 | 
			
		||||
 | 
			
		||||
	//Generate approximations for action eval
 | 
			
		||||
	generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
 | 
			
		||||
	generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
 | 
			
		||||
 | 
			
		||||
	//Generate approximations for MD
 | 
			
		||||
	if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
 | 
			
		||||
	  generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
 | 
			
		||||
	  generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
 | 
			
		||||
	}else{
 | 
			
		||||
	  std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
 | 
			
		||||
	  ApproxPowerMD = ApproxPowerAction; 
 | 
			
		||||
	  ApproxNegPowerMD = ApproxNegPowerAction;
 | 
			
		||||
	  for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
 | 
			
		||||
	    ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
 | 
			
		||||
 | 
			
		||||
	  ApproxHalfPowerMD = ApproxHalfPowerAction;
 | 
			
		||||
	  ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
 | 
			
		||||
	  for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
 | 
			
		||||
	    ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::vector<RealD> action_tolerance(ApproxHalfPowerAction.tolerances.size(),param.action_tolerance);
 | 
			
		||||
	std::vector<RealD> md_tolerance    (ApproxHalfPowerMD.tolerances.size(),param.md_tolerance);
 | 
			
		||||
 | 
			
		||||
	SetTolerances(action_tolerance, md_tolerance);
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Power              : 1/" << param.inv_pow <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Low                :" << param.lo <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] High               :" << param.hi <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Max iterations     :" << param.MaxIter <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action)    :" << param.action_degree <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD)     :" << param.md_tolerance <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD)        :" << param.md_degree <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Precision          :" << param.precision <<  std::endl;
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Access the fermion field
 | 
			
		||||
      const FermionField &getPhiOdd() const{ return PhiOdd; }
 | 
			
		||||
      
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
 | 
			
		||||
	FermionField eta(NumOp.FermionGrid());	
 | 
			
		||||
 | 
			
		||||
	// P(eta) \propto e^{- eta^dag eta}
 | 
			
		||||
	//	
 | 
			
		||||
	// The gaussian function draws from  P(x) \propto e^{- x^2 / 2 }    [i.e. sigma=1]
 | 
			
		||||
	// Thus eta = x/sqrt{2} = x * sqrt(1/2)
 | 
			
		||||
	RealD scale = std::sqrt(0.5);
 | 
			
		||||
	gaussian(pRNG,eta);	eta=eta*scale;
 | 
			
		||||
 | 
			
		||||
	refresh(U,eta);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Allow for manual specification of random field for testing
 | 
			
		||||
      void refresh(const GaugeField &U, const FermionField &eta) {
 | 
			
		||||
 | 
			
		||||
	// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
	//
 | 
			
		||||
	// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
 | 
			
		||||
	//        = e^{- phi^dag  (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow)  (VdagV)^1/(2*inv_pow) phi}
 | 
			
		||||
	//
 | 
			
		||||
	// Phi =  (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta 
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
 | 
			
		||||
 | 
			
		||||
	FermionField etaOdd (NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField etaEven(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField     tmp(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
	pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
	ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	// MdagM^1/(2*inv_pow) eta
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
 | 
			
		||||
	multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
 | 
			
		||||
 | 
			
		||||
	// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
 | 
			
		||||
		
 | 
			
		||||
	assert(NumOp.ConstEE() == 1);
 | 
			
		||||
	assert(DenOp.ConstEE() == 1);
 | 
			
		||||
	PhiEven = Zero();
 | 
			
		||||
 | 
			
		||||
	RefreshAction = norm2( etaOdd );
 | 
			
		||||
        std::cout<<GridLogMessage << action_name() << " refresh: action is " << RefreshAction << std::endl;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD Sinitial(const GaugeField &U) {
 | 
			
		||||
	std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
 | 
			
		||||
	return RefreshAction;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
 | 
			
		||||
	ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	FermionField X(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	// VdagV^1/(2*inv_pow) Phi
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
 | 
			
		||||
 | 
			
		||||
	// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
 | 
			
		||||
 | 
			
		||||
	// Randomly apply rational bounds checks.
 | 
			
		||||
	int rcheck = rand();
 | 
			
		||||
	auto grid = NumOp.FermionGrid();
 | 
			
		||||
        auto r=rand();
 | 
			
		||||
        grid->Broadcast(0,r);
 | 
			
		||||
 | 
			
		||||
	if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) { 
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
 | 
			
		||||
	  FermionField gauss(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	  gauss = PhiOdd;
 | 
			
		||||
	  SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
 | 
			
		||||
	  HighBoundCheck(MdagM,gauss,param.hi);
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
 | 
			
		||||
	  InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//  Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow)  MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
 | 
			
		||||
	RealD action = norm2(Y);
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
 | 
			
		||||
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //
 | 
			
		||||
      // Here, M is some 5D operator and V is the Pauli-Villars field
 | 
			
		||||
      // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
 | 
			
		||||
      //
 | 
			
		||||
      // Need  
 | 
			
		||||
      // dS_f/dU =  chi^dag d[P/Q]  N/D   P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q d[N/D]  P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q   N/D d[P/Q] chi 
 | 
			
		||||
      //
 | 
			
		||||
      // P/Q is expressed as partial fraction expansion: 
 | 
			
		||||
      // 
 | 
			
		||||
      //           a0 + \sum_k ak/(V^dagV + bk) 
 | 
			
		||||
      //  
 | 
			
		||||
      // d[P/Q] is then  
 | 
			
		||||
      //
 | 
			
		||||
      //          \sum_k -ak [V^dagV+bk]^{-1}  [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1} 
 | 
			
		||||
      //  
 | 
			
		||||
      // and similar for N/D. 
 | 
			
		||||
      // 
 | 
			
		||||
      // Need   
 | 
			
		||||
      //       MpvPhi_k   = [Vdag V + bk]^{-1} chi  
 | 
			
		||||
      //       MpvPhi     = {a0 +  \sum_k ak [Vdag V + bk]^{-1} }chi   
 | 
			
		||||
      //   
 | 
			
		||||
      //       MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi  
 | 
			
		||||
      //       MfMpvPhi   = {a0 +  \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
 | 
			
		||||
      // 
 | 
			
		||||
      //       MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi   
 | 
			
		||||
      //  
 | 
			
		||||
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
 | 
			
		||||
	const int n_f  = ApproxNegPowerMD.poles.size();
 | 
			
		||||
	const int n_pv = ApproxHalfPowerMD.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MpvPhi_k     (n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MfMpvPhi_k   (n_f ,NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	FermionField      MpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField    MfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField           Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	GaugeField   tmp(NumOp.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
	ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
 | 
			
		||||
		
 | 
			
		||||
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	RealD ak;
 | 
			
		||||
 | 
			
		||||
	dSdU = Zero();
 | 
			
		||||
 | 
			
		||||
	// With these building blocks  
 | 
			
		||||
	//  
 | 
			
		||||
	//       dS/dU = 
 | 
			
		||||
	//                 \sum_k -ak MfMpvPhi_k^dag      [ dM^dag M + M^dag dM ] MfMpvPhi_k         (1)
 | 
			
		||||
	//             +   \sum_k -ak MpvMfMpvPhi_k^\dag  [ dV^dag V + V^dag dV ] MpvPhi_k           (2)
 | 
			
		||||
	//                        -ak MpvPhi_k^dag        [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k      (3)
 | 
			
		||||
 | 
			
		||||
	//(1)	
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
 | 
			
		||||
	for(int k=0;k<n_f;k++){
 | 
			
		||||
	  ak = ApproxNegPowerMD.residues[k];
 | 
			
		||||
	  MdagM.Mpc(MfMpvPhi_k[k],Y);
 | 
			
		||||
	  MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	//(2)
 | 
			
		||||
	//(3)
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
 | 
			
		||||
	for(int k=0;k<n_pv;k++){
 | 
			
		||||
 | 
			
		||||
          ak = ApproxHalfPowerMD.residues[k];
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvPhi_k[k],Y);
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y,MpvMfMpvPhi_k[k]);  dSdU=dSdU+ak*tmp;     
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvMfMpvPhi_k[k],Y);                // V as we take Ydag 
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//dSdU = Ta(dSdU);
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
 | 
			
		||||
      };
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -0,0 +1,118 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
 | 
			
		||||
    // cf. GeneralEvenOddRational.h for details
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      
 | 
			
		||||
    template<class ImplD, class ImplF>
 | 
			
		||||
    class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
 | 
			
		||||
    private:
 | 
			
		||||
      typedef typename ImplD::FermionField FermionFieldD;
 | 
			
		||||
      typedef typename ImplF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
      FermionOperator<ImplD> & NumOpD;
 | 
			
		||||
      FermionOperator<ImplD> & DenOpD;
 | 
			
		||||
 | 
			
		||||
      FermionOperator<ImplF> & NumOpF;
 | 
			
		||||
      FermionOperator<ImplF> & DenOpF;
 | 
			
		||||
 | 
			
		||||
      Integer ReliableUpdateFreq;
 | 
			
		||||
    protected:
 | 
			
		||||
 | 
			
		||||
      //Allow derived classes to override the multishift CG
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
 | 
			
		||||
#if 0
 | 
			
		||||
	SchurDifferentiableOperator<ImplD> schurOp(numerator ? NumOpD : DenOpD);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionFieldD> msCG(MaxIter, approx);
 | 
			
		||||
	msCG(schurOp,in, out);
 | 
			
		||||
#else
 | 
			
		||||
	SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
 | 
			
		||||
	SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
 | 
			
		||||
	FermionFieldD inD(NumOpD.FermionRedBlackGrid());
 | 
			
		||||
	FermionFieldD outD(NumOpD.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	// Action better with higher precision?
 | 
			
		||||
	ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
 | 
			
		||||
	msCG(schurOpD, in, out);
 | 
			
		||||
#endif
 | 
			
		||||
      }
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
 | 
			
		||||
	SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
 | 
			
		||||
	SchurDifferentiableOperator<ImplF>  schurOpF (numerator ? NumOpF  : DenOpF);
 | 
			
		||||
 | 
			
		||||
	FermionFieldD inD(NumOpD.FermionRedBlackGrid());
 | 
			
		||||
	FermionFieldD outD(NumOpD.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionFieldD> out_elemsD(out_elems.size(),NumOpD.FermionRedBlackGrid());
 | 
			
		||||
	ConjugateGradientMultiShiftMixedPrecCleanup<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
 | 
			
		||||
	msCG(schurOpD, in, out_elems, out);
 | 
			
		||||
      }
 | 
			
		||||
      //Allow derived classes to override the gauge import
 | 
			
		||||
      virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
 | 
			
		||||
 | 
			
		||||
	typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
 | 
			
		||||
	typename ImplD::GaugeField Ud2(NumOpD.GaugeGrid());
 | 
			
		||||
	precisionChange(Uf, Ud);
 | 
			
		||||
	precisionChange(Ud2, Ud);
 | 
			
		||||
 | 
			
		||||
	std::cout << "Importing "<<norm2(Ud)<<" "<< norm2(Uf)<<" " << norm2(Ud2)<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	NumOpD.ImportGauge(Ud);
 | 
			
		||||
	DenOpD.ImportGauge(Ud);
 | 
			
		||||
 | 
			
		||||
	NumOpF.ImportGauge(Uf);
 | 
			
		||||
	DenOpF.ImportGauge(Uf);
 | 
			
		||||
 | 
			
		||||
	NumOpD.ImportGauge(Ud2);
 | 
			
		||||
	DenOpD.ImportGauge(Ud2);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    public:
 | 
			
		||||
      GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD>  &_NumOpD, FermionOperator<ImplD>  &_DenOpD, 
 | 
			
		||||
							      FermionOperator<ImplF>  &_NumOpF, FermionOperator<ImplF>  &_DenOpF, 
 | 
			
		||||
							      const RationalActionParams & p, Integer _ReliableUpdateFreq
 | 
			
		||||
							      ) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
 | 
			
		||||
								  ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
								  NumOpD(_NumOpD), DenOpD(_DenOpD),
 | 
			
		||||
								  NumOpF(_NumOpF), DenOpF(_DenOpF)
 | 
			
		||||
      {}
 | 
			
		||||
      
 | 
			
		||||
      virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -40,249 +40,62 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    // Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}  
 | 
			
		||||
  
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      typedef OneFlavourRationalParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
 | 
			
		||||
      MultiShiftFunction PowerHalf   ;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
      MultiShiftFunction PowerQuarter;
 | 
			
		||||
      MultiShiftFunction PowerNegQuarter;
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
      FermionOperator<Impl> & DenOp;// the basic operator
 | 
			
		||||
      FermionField PhiEven; // the pseudo fermion field for this trajectory
 | 
			
		||||
      FermionField PhiOdd; // the pseudo fermion field for this trajectory
 | 
			
		||||
      static RationalActionParams transcribe(const Params &in){
 | 
			
		||||
	RationalActionParams out;
 | 
			
		||||
	out.inv_pow = 2;
 | 
			
		||||
	out.lo = in.lo;
 | 
			
		||||
	out.hi = in.hi;
 | 
			
		||||
	out.MaxIter = in.MaxIter;
 | 
			
		||||
	out.action_tolerance = out.md_tolerance = in.tolerance;
 | 
			
		||||
	out.action_degree = out.md_degree = in.degree;
 | 
			
		||||
	out.precision = in.precision;
 | 
			
		||||
	out.BoundsCheckFreq = in.BoundsCheckFreq;
 | 
			
		||||
	return out;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
					    FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
					    Params & p
 | 
			
		||||
					    ) : 
 | 
			
		||||
      NumOp(_NumOp), 
 | 
			
		||||
      DenOp(_DenOp), 
 | 
			
		||||
      PhiOdd (_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
      PhiEven(_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
      param(p) 
 | 
			
		||||
      {
 | 
			
		||||
	AlgRemez remez(param.lo,param.hi,param.precision);
 | 
			
		||||
							FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
							const Params & p
 | 
			
		||||
							) : 
 | 
			
		||||
	GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/2)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,2);
 | 
			
		||||
	PowerHalf.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegHalf.Init(remez,param.tolerance,true);
 | 
			
		||||
      virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}      
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/4)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,4);
 | 
			
		||||
   	PowerQuarter.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegQuarter.Init(remez,param.tolerance,true);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Low            :" << param.lo <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] High           :" << param.hi <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Tolerance      :" << param.tolerance <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Degree         :" << param.degree <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Precision      :" << param.precision <<  std::endl;
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
    template<class Impl,class ImplF>
 | 
			
		||||
    class OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction
 | 
			
		||||
      : public GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF> {
 | 
			
		||||
    public:
 | 
			
		||||
      typedef OneFlavourRationalParams Params;
 | 
			
		||||
    private:
 | 
			
		||||
      static RationalActionParams transcribe(const Params &in){
 | 
			
		||||
	RationalActionParams out;
 | 
			
		||||
	out.inv_pow = 2;
 | 
			
		||||
	out.lo = in.lo;
 | 
			
		||||
	out.hi = in.hi;
 | 
			
		||||
	out.MaxIter = in.MaxIter;
 | 
			
		||||
	out.action_tolerance = out.md_tolerance = in.tolerance;
 | 
			
		||||
	out.action_degree = out.md_degree = in.degree;
 | 
			
		||||
	out.precision = in.precision;
 | 
			
		||||
	out.BoundsCheckFreq = in.BoundsCheckFreq;
 | 
			
		||||
	return out;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
 | 
			
		||||
	// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
	//
 | 
			
		||||
	// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
 | 
			
		||||
	//        = e^{- phi^dag  (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4  (VdagV)^1/4 phi}
 | 
			
		||||
	//
 | 
			
		||||
	// Phi =  (VdagV)^-1/4 Mdag^{1/4} eta 
 | 
			
		||||
	//
 | 
			
		||||
	// P(eta) = e^{- eta^dag eta}
 | 
			
		||||
	//
 | 
			
		||||
	// e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
	// 
 | 
			
		||||
	// So eta should be of width sig = 1/sqrt(2).
 | 
			
		||||
    public:
 | 
			
		||||
      OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
								 FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
								 FermionOperator<ImplF>  &_NumOpF, 
 | 
			
		||||
								 FermionOperator<ImplF>  &_DenOpF, 
 | 
			
		||||
								 const Params & p, Integer ReliableUpdateFreq
 | 
			
		||||
							) : 
 | 
			
		||||
	GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF>(_NumOp, _DenOp,_NumOpF, _DenOpF, transcribe(p),ReliableUpdateFreq){}
 | 
			
		||||
 | 
			
		||||
	RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
	FermionField eta(NumOp.FermionGrid());
 | 
			
		||||
	FermionField etaOdd (NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField etaEven(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField     tmp(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	gaussian(pRNG,eta);	eta=eta*scale;
 | 
			
		||||
 | 
			
		||||
	pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
	pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	// MdagM^1/4 eta
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
 | 
			
		||||
	msCG_M(MdagM,etaOdd,tmp);
 | 
			
		||||
 | 
			
		||||
	// VdagV^-1/4 MdagM^1/4 eta
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
 | 
			
		||||
	msCG_V(VdagV,tmp,PhiOdd);
 | 
			
		||||
 | 
			
		||||
	assert(NumOp.ConstEE() == 1);
 | 
			
		||||
	assert(DenOp.ConstEE() == 1);
 | 
			
		||||
	PhiEven = Zero();
 | 
			
		||||
	
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	FermionField X(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	// VdagV^1/4 Phi
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
 | 
			
		||||
	msCG_V(VdagV,PhiOdd,X);
 | 
			
		||||
 | 
			
		||||
	// MdagM^-1/4 VdagV^1/4 Phi
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
 | 
			
		||||
	msCG_M(MdagM,X,Y);
 | 
			
		||||
 | 
			
		||||
	// Randomly apply rational bounds checks.
 | 
			
		||||
	auto grid = NumOp.FermionGrid();
 | 
			
		||||
        auto r=rand();
 | 
			
		||||
        grid->Broadcast(0,r);
 | 
			
		||||
        if ( (r%param.BoundsCheckFreq)==0 ) { 
 | 
			
		||||
	  FermionField gauss(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	  gauss = PhiOdd;
 | 
			
		||||
	  HighBoundCheck(MdagM,gauss,param.hi);
 | 
			
		||||
	  InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//  Phidag VdagV^1/4 MdagM^-1/4  MdagM^-1/4 VdagV^1/4 Phi
 | 
			
		||||
	RealD action = norm2(Y);
 | 
			
		||||
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //
 | 
			
		||||
      // Here, M is some 5D operator and V is the Pauli-Villars field
 | 
			
		||||
      // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
 | 
			
		||||
      //
 | 
			
		||||
      // Need  
 | 
			
		||||
      // dS_f/dU =  chi^dag d[P/Q]  N/D   P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q d[N/D]  P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q   N/D d[P/Q] chi 
 | 
			
		||||
      //
 | 
			
		||||
      // P/Q is expressed as partial fraction expansion: 
 | 
			
		||||
      // 
 | 
			
		||||
      //           a0 + \sum_k ak/(V^dagV + bk) 
 | 
			
		||||
      //  
 | 
			
		||||
      // d[P/Q] is then  
 | 
			
		||||
      //
 | 
			
		||||
      //          \sum_k -ak [V^dagV+bk]^{-1}  [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1} 
 | 
			
		||||
      //  
 | 
			
		||||
      // and similar for N/D. 
 | 
			
		||||
      // 
 | 
			
		||||
      // Need   
 | 
			
		||||
      //       MpvPhi_k   = [Vdag V + bk]^{-1} chi  
 | 
			
		||||
      //       MpvPhi     = {a0 +  \sum_k ak [Vdag V + bk]^{-1} }chi   
 | 
			
		||||
      //   
 | 
			
		||||
      //       MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi  
 | 
			
		||||
      //       MfMpvPhi   = {a0 +  \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
 | 
			
		||||
      // 
 | 
			
		||||
      //       MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi   
 | 
			
		||||
      //  
 | 
			
		||||
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
 | 
			
		||||
	const int n_f  = PowerNegHalf.poles.size();
 | 
			
		||||
	const int n_pv = PowerQuarter.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MpvPhi_k     (n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MfMpvPhi_k   (n_f ,NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	FermionField      MpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField    MfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField           Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	GaugeField   tmp(NumOp.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
 | 
			
		||||
 | 
			
		||||
	msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
 | 
			
		||||
	msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
 | 
			
		||||
	msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
 | 
			
		||||
 | 
			
		||||
	RealD ak;
 | 
			
		||||
 | 
			
		||||
	dSdU = Zero();
 | 
			
		||||
 | 
			
		||||
	// With these building blocks  
 | 
			
		||||
	//  
 | 
			
		||||
	//       dS/dU = 
 | 
			
		||||
	//                 \sum_k -ak MfMpvPhi_k^dag      [ dM^dag M + M^dag dM ] MfMpvPhi_k         (1)
 | 
			
		||||
	//             +   \sum_k -ak MpvMfMpvPhi_k^\dag  [ dV^dag V + V^dag dV ] MpvPhi_k           (2)
 | 
			
		||||
	//                        -ak MpvPhi_k^dag        [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k      (3)
 | 
			
		||||
 | 
			
		||||
	//(1)
 | 
			
		||||
	for(int k=0;k<n_f;k++){
 | 
			
		||||
	  ak = PowerNegHalf.residues[k];
 | 
			
		||||
	  MdagM.Mpc(MfMpvPhi_k[k],Y);
 | 
			
		||||
	  MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	//(2)
 | 
			
		||||
	//(3)
 | 
			
		||||
	for(int k=0;k<n_pv;k++){
 | 
			
		||||
 | 
			
		||||
          ak = PowerQuarter.residues[k];
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvPhi_k[k],Y);
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y,MpvMfMpvPhi_k[k]);  dSdU=dSdU+ak*tmp;     
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvMfMpvPhi_k[k],Y);                // V as we take Ydag 
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//dSdU = Ta(dSdU);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
      virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}      
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -49,10 +49,12 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      Params param;
 | 
			
		||||
 | 
			
		||||
      MultiShiftFunction PowerHalf   ;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
      MultiShiftFunction PowerQuarter;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
      MultiShiftFunction PowerNegQuarter;
 | 
			
		||||
 | 
			
		||||
      MultiShiftFunction MDPowerQuarter;
 | 
			
		||||
      MultiShiftFunction MDPowerNegHalf;
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
@@ -73,15 +75,22 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	remez.generateApprox(param.degree,1,2);
 | 
			
		||||
	PowerHalf.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegHalf.Init(remez,param.tolerance,true);
 | 
			
		||||
	MDPowerNegHalf.Init(remez,param.mdtolerance,true);
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/4)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,4);
 | 
			
		||||
   	PowerQuarter.Init(remez,param.tolerance,false);
 | 
			
		||||
   	MDPowerQuarter.Init(remez,param.mdtolerance,false);
 | 
			
		||||
	PowerNegQuarter.Init(remez,param.tolerance,true);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
 | 
			
		||||
      virtual std::string action_name(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream<<"OneFlavourRatioRationalPseudoFermionAction("
 | 
			
		||||
	       <<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      virtual std::string LogParameters(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
@@ -204,8 +213,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
 | 
			
		||||
	const int n_f  = PowerNegHalf.poles.size();
 | 
			
		||||
	const int n_pv = PowerQuarter.poles.size();
 | 
			
		||||
	const int n_f  = MDPowerNegHalf.poles.size();
 | 
			
		||||
	const int n_pv = MDPowerQuarter.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MpvPhi_k     (n_pv,NumOp.FermionGrid());
 | 
			
		||||
	std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
 | 
			
		||||
@@ -224,8 +233,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
 | 
			
		||||
	MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,MDPowerQuarter);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,MDPowerNegHalf);
 | 
			
		||||
 | 
			
		||||
	msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
 | 
			
		||||
	msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
 | 
			
		||||
@@ -244,7 +253,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
	//(1)
 | 
			
		||||
	for(int k=0;k<n_f;k++){
 | 
			
		||||
	  ak = PowerNegHalf.residues[k];
 | 
			
		||||
	  ak = MDPowerNegHalf.residues[k];
 | 
			
		||||
	  DenOp.M(MfMpvPhi_k[k],Y);
 | 
			
		||||
	  DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
@@ -254,7 +263,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	//(3)
 | 
			
		||||
	for(int k=0;k<n_pv;k++){
 | 
			
		||||
 | 
			
		||||
          ak = PowerQuarter.residues[k];
 | 
			
		||||
          ak = MDPowerQuarter.residues[k];
 | 
			
		||||
	  
 | 
			
		||||
	  NumOp.M(MpvPhi_k[k],Y);
 | 
			
		||||
	  NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
 | 
			
		||||
 
 | 
			
		||||
@@ -40,6 +40,8 @@ directory
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
    private:
 | 
			
		||||
      FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
      FermionOperator<Impl> & DenOp;// the basic operator
 | 
			
		||||
@@ -50,6 +50,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      FermionField PhiOdd;   // the pseudo fermion field for this trajectory
 | 
			
		||||
      FermionField PhiEven;  // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
      RealD RefreshAction;
 | 
			
		||||
      
 | 
			
		||||
    public:
 | 
			
		||||
      TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
                                                FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
@@ -75,24 +77,22 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
          conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
 | 
			
		||||
        };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
 | 
			
		||||
      virtual std::string action_name(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream<<"TwoFlavourEvenOddRatioPseudoFermionAction det("<<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
 | 
			
		||||
	sstream<< GridLogMessage << "["<<action_name()<<"] -- No further parameters "<<std::endl;
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      } 
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
      const FermionField &getPhiOdd() const{ return PhiOdd; }
 | 
			
		||||
 | 
			
		||||
        // P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
 | 
			
		||||
        //
 | 
			
		||||
        // NumOp == V
 | 
			
		||||
        // DenOp == M
 | 
			
		||||
        //
 | 
			
		||||
        // Take phi_o = Vpcdag^{-1} Mpcdag eta_o  ; eta_o = Mpcdag^{-1} Vpcdag Phi
 | 
			
		||||
        //
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
        // P(eta_o) = e^{- eta_o^dag eta_o}
 | 
			
		||||
        //
 | 
			
		||||
        // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
@@ -100,39 +100,59 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
        FermionField eta    (NumOp.FermionGrid());
 | 
			
		||||
        gaussian(pRNG,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
	refresh(U,eta);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      void refresh(const GaugeField &U, const FermionField &eta) {
 | 
			
		||||
 | 
			
		||||
        // P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
 | 
			
		||||
        //
 | 
			
		||||
        // NumOp == V
 | 
			
		||||
        // DenOp == M
 | 
			
		||||
        //
 | 
			
		||||
        FermionField etaOdd (NumOp.FermionRedBlackGrid());
 | 
			
		||||
        FermionField etaEven(NumOp.FermionRedBlackGrid());
 | 
			
		||||
        FermionField tmp    (NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
        gaussian(pRNG,eta);
 | 
			
		||||
 | 
			
		||||
        pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
        pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
        NumOp.ImportGauge(U);
 | 
			
		||||
        DenOp.ImportGauge(U);
 | 
			
		||||
	std::cout << " TwoFlavourRefresh:  Imported gauge "<<std::endl;
 | 
			
		||||
 | 
			
		||||
        SchurDifferentiableOperator<Impl> Mpc(DenOp);
 | 
			
		||||
        SchurDifferentiableOperator<Impl> Vpc(NumOp);
 | 
			
		||||
 | 
			
		||||
	std::cout << " TwoFlavourRefresh: Diff ops "<<std::endl;
 | 
			
		||||
        // Odd det factors
 | 
			
		||||
        Mpc.MpcDag(etaOdd,PhiOdd);
 | 
			
		||||
	std::cout << " TwoFlavourRefresh: MpcDag "<<std::endl;
 | 
			
		||||
        tmp=Zero();
 | 
			
		||||
	std::cout << " TwoFlavourRefresh: Zero() guess "<<std::endl;
 | 
			
		||||
        HeatbathSolver(Vpc,PhiOdd,tmp);
 | 
			
		||||
	std::cout << " TwoFlavourRefresh: Heatbath solver "<<std::endl;
 | 
			
		||||
        Vpc.Mpc(tmp,PhiOdd);            
 | 
			
		||||
	std::cout << " TwoFlavourRefresh: Mpc "<<std::endl;
 | 
			
		||||
 | 
			
		||||
        // Even det factors
 | 
			
		||||
        DenOp.MooeeDag(etaEven,tmp);
 | 
			
		||||
        NumOp.MooeeInvDag(tmp,PhiEven);
 | 
			
		||||
	std::cout << " TwoFlavourRefresh: Mee "<<std::endl;
 | 
			
		||||
 | 
			
		||||
        PhiOdd =PhiOdd*scale;
 | 
			
		||||
        PhiEven=PhiEven*scale;
 | 
			
		||||
        
 | 
			
		||||
	RefreshAction = norm2(etaEven)+norm2(etaOdd);
 | 
			
		||||
	std::cout << " refresh " <<action_name()<< " action "<<RefreshAction<<std::endl;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S = phi^dag V (Mdag M)^-1 Vdag phi
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD Sinitial(const GaugeField &U) {
 | 
			
		||||
	std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
 | 
			
		||||
	return RefreshAction;
 | 
			
		||||
      }
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
        NumOp.ImportGauge(U);
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										203
									
								
								Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										203
									
								
								Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,203 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
// Two flavour ratio
 | 
			
		||||
///////////////////////////////////////
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  typedef FermionOperator<Impl> FermOp;
 | 
			
		||||
  FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
  FermionOperator<Impl> & DenOp;// the basic operator
 | 
			
		||||
 | 
			
		||||
  OperatorFunction<FermionField> &DerivativeSolver;
 | 
			
		||||
  OperatorFunction<FermionField> &DerivativeDagSolver;
 | 
			
		||||
  OperatorFunction<FermionField> &ActionSolver;
 | 
			
		||||
  OperatorFunction<FermionField> &HeatbathSolver;
 | 
			
		||||
 | 
			
		||||
  FermionField phi4; // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
					 FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
					 OperatorFunction<FermionField> & DS,
 | 
			
		||||
					 OperatorFunction<FermionField> & AS ) : 
 | 
			
		||||
    TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
 | 
			
		||||
  TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
					 FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
					 OperatorFunction<FermionField> & DS,
 | 
			
		||||
					 OperatorFunction<FermionField> & DDS,
 | 
			
		||||
					 OperatorFunction<FermionField> & AS,
 | 
			
		||||
					 OperatorFunction<FermionField> & HS
 | 
			
		||||
				       ) : NumOp(_NumOp),
 | 
			
		||||
					   DenOp(_DenOp),
 | 
			
		||||
					   DerivativeSolver(DS),
 | 
			
		||||
					   DerivativeDagSolver(DDS),
 | 
			
		||||
					   ActionSolver(AS),
 | 
			
		||||
					   HeatbathSolver(HS),
 | 
			
		||||
					   phi4(_NumOp.GaugeGrid())
 | 
			
		||||
  {};
 | 
			
		||||
      
 | 
			
		||||
  virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
 | 
			
		||||
 | 
			
		||||
  virtual std::string LogParameters(){
 | 
			
		||||
    std::stringstream sstream;
 | 
			
		||||
    sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
 | 
			
		||||
    return sstream.str();
 | 
			
		||||
  }  
 | 
			
		||||
      
 | 
			
		||||
  virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
 | 
			
		||||
    // P(phi) = e^{- phi^dag (V^dag M^-dag)_11  (M^-1 V)_11 phi}
 | 
			
		||||
    //
 | 
			
		||||
    // NumOp == V
 | 
			
		||||
    // DenOp == M
 | 
			
		||||
    //
 | 
			
		||||
    // Take phi = (V^{-1} M)_11 eta  ; eta = (M^{-1} V)_11 Phi
 | 
			
		||||
    //
 | 
			
		||||
    // P(eta) = e^{- eta^dag eta}
 | 
			
		||||
    //
 | 
			
		||||
    // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
    // 
 | 
			
		||||
    // So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
 | 
			
		||||
    //
 | 
			
		||||
    RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
    FermionField eta4(NumOp.GaugeGrid());
 | 
			
		||||
    FermionField eta5(NumOp.FermionGrid());
 | 
			
		||||
    FermionField tmp(NumOp.FermionGrid());
 | 
			
		||||
    FermionField phi5(NumOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    gaussian(pRNG,eta4);
 | 
			
		||||
    NumOp.ImportFourDimPseudoFermion(eta4,eta5);
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
 | 
			
		||||
 | 
			
		||||
    DenOp.M(eta5,tmp);               // M eta
 | 
			
		||||
    PrecSolve(NumOp,tmp,phi5);  // phi = V^-1 M eta
 | 
			
		||||
    phi5=phi5*scale;
 | 
			
		||||
    std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
 | 
			
		||||
    // Project to 4d
 | 
			
		||||
    NumOp.ExportFourDimPseudoFermion(phi5,phi4);
 | 
			
		||||
      
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // S = phi^dag (V^dag M^-dag)_11  (M^-1 V)_11 phi
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField Y4(NumOp.GaugeGrid());
 | 
			
		||||
    FermionField X(NumOp.FermionGrid());
 | 
			
		||||
    FermionField Y(NumOp.FermionGrid());
 | 
			
		||||
    FermionField phi5(NumOp.FermionGrid());
 | 
			
		||||
	
 | 
			
		||||
    MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
 | 
			
		||||
    SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
 | 
			
		||||
 | 
			
		||||
    NumOp.ImportFourDimPseudoFermion(phi4,phi5);
 | 
			
		||||
    NumOp.M(phi5,X);              // X= V phi
 | 
			
		||||
    PrecSolve(DenOp,X,Y);    // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
 | 
			
		||||
    NumOp.ExportFourDimPseudoFermion(Y,Y4);
 | 
			
		||||
 | 
			
		||||
    RealD action = norm2(Y4);
 | 
			
		||||
 | 
			
		||||
    return action;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // dS/du = 2 Re phi^dag (V^dag M^-dag)_11  (M^-1 d V)_11  phi
 | 
			
		||||
  //       - 2 Re phi^dag (dV^dag M^-dag)_11  (M^-1 dM M^-1 V)_11  phi
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
 | 
			
		||||
    NumOp.ImportGauge(U);
 | 
			
		||||
    DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
    FermionField  X(NumOp.FermionGrid());
 | 
			
		||||
    FermionField  Y(NumOp.FermionGrid());
 | 
			
		||||
    FermionField       phi(NumOp.FermionGrid());
 | 
			
		||||
    FermionField      Vphi(NumOp.FermionGrid());
 | 
			
		||||
    FermionField  MinvVphi(NumOp.FermionGrid());
 | 
			
		||||
    FermionField      tmp4(NumOp.GaugeGrid());
 | 
			
		||||
    FermionField  MdagInvMinvVphi(NumOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
    GaugeField   force(NumOp.GaugeGrid());	
 | 
			
		||||
 | 
			
		||||
    //Y=V phi
 | 
			
		||||
    //X = (Mdag V phi
 | 
			
		||||
    //Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
 | 
			
		||||
    NumOp.ImportFourDimPseudoFermion(phi4,phi);
 | 
			
		||||
    NumOp.M(phi,Vphi);               //  V phi
 | 
			
		||||
    SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
 | 
			
		||||
    PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
 | 
			
		||||
    std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
 | 
			
		||||
 | 
			
		||||
    // Projects onto the physical space and back
 | 
			
		||||
    NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
 | 
			
		||||
    NumOp.ImportFourDimPseudoFermion(tmp4,Y);
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
 | 
			
		||||
    // X = proj M^-dag V phi
 | 
			
		||||
    // Need an adjoint solve
 | 
			
		||||
    PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
 | 
			
		||||
    std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
 | 
			
		||||
    
 | 
			
		||||
    // phi^dag (Vdag Mdag^-1) (M^-1 dV)  phi
 | 
			
		||||
    NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo );  dSdU=force;
 | 
			
		||||
  
 | 
			
		||||
    // phi^dag (dVdag Mdag^-1) (M^-1 V)  phi
 | 
			
		||||
    NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes  );  dSdU=dSdU+force;
 | 
			
		||||
 | 
			
		||||
    //    - 2 Re phi^dag (dV^dag M^-dag)_11  (M^-1 dM M^-1 V)_11  phi
 | 
			
		||||
    DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo);   dSdU=dSdU-force;
 | 
			
		||||
    DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes);  dSdU=dSdU-force;
 | 
			
		||||
 | 
			
		||||
    dSdU *= -1.0; 
 | 
			
		||||
    //dSdU = - Ta(dSdU);
 | 
			
		||||
    
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -47,7 +47,7 @@ private:
 | 
			
		||||
  const unsigned int N = Impl::Group::Dimension;
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::vector_object vobj;
 | 
			
		||||
  typedef CartesianStencil<vobj, vobj,int> Stencil;
 | 
			
		||||
  typedef CartesianStencil<vobj, vobj,DefaultImplParams> Stencil;
 | 
			
		||||
 | 
			
		||||
  SimpleCompressor<vobj> compressor;
 | 
			
		||||
  int npoint = 2 * Ndim;
 | 
			
		||||
@@ -82,7 +82,7 @@ public:
 | 
			
		||||
  virtual RealD S(const Field &p)
 | 
			
		||||
  {
 | 
			
		||||
    assert(p.Grid()->Nd() == Ndim);
 | 
			
		||||
    static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements,0);
 | 
			
		||||
    static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements);
 | 
			
		||||
    phiStencil.HaloExchange(p, compressor);
 | 
			
		||||
    Field action(p.Grid()), pshift(p.Grid()), phisquared(p.Grid());
 | 
			
		||||
    phisquared = p * p;
 | 
			
		||||
@@ -133,7 +133,7 @@ public:
 | 
			
		||||
    double interm_t = usecond();
 | 
			
		||||
 | 
			
		||||
    // move this outside
 | 
			
		||||
    static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements,0);
 | 
			
		||||
    static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements);
 | 
			
		||||
 | 
			
		||||
    phiStencil.HaloExchange(p, compressor);
 | 
			
		||||
    double halo_t = usecond();
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										6
									
								
								Grid/qcd/gparity/Gparity.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								Grid/qcd/gparity/Gparity.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,6 @@
 | 
			
		||||
#ifndef GRID_GPARITY_H_
 | 
			
		||||
#define GRID_GPARITY_H_
 | 
			
		||||
 | 
			
		||||
#include<Grid/qcd/gparity/GparityFlavour.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										34
									
								
								Grid/qcd/gparity/GparityFlavour.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/qcd/gparity/GparityFlavour.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,34 @@
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaX),
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaY),
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaZ)
 | 
			
		||||
    }};
 | 
			
		||||
 | 
			
		||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::Identity),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaX),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaY),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaZ),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::ProjPlus),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::ProjMinus)
 | 
			
		||||
}};
 | 
			
		||||
 | 
			
		||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
 | 
			
		||||
    "SigmaX",
 | 
			
		||||
    "MinusSigmaX",
 | 
			
		||||
    "SigmaY",
 | 
			
		||||
    "MinusSigmaY",
 | 
			
		||||
    "SigmaZ",
 | 
			
		||||
    "MinusSigmaZ",
 | 
			
		||||
    "Identity",
 | 
			
		||||
    "MinusIdentity",
 | 
			
		||||
    "ProjPlus",
 | 
			
		||||
    "MinusProjPlus",
 | 
			
		||||
    "ProjMinus",
 | 
			
		||||
    "MinusProjMinus"}};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										475
									
								
								Grid/qcd/gparity/GparityFlavour.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										475
									
								
								Grid/qcd/gparity/GparityFlavour.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,475 @@
 | 
			
		||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
 | 
			
		||||
#define GRID_QCD_GPARITY_FLAVOUR_H
 | 
			
		||||
 | 
			
		||||
//Support for flavour-matrix operations acting on the G-parity flavour index
 | 
			
		||||
 | 
			
		||||
#include <array>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
class GparityFlavour {
 | 
			
		||||
  public:
 | 
			
		||||
    GRID_SERIALIZABLE_ENUM(Algebra, undef,
 | 
			
		||||
                           SigmaX, 0,
 | 
			
		||||
			   MinusSigmaX, 1,
 | 
			
		||||
                           SigmaY, 2,
 | 
			
		||||
			   MinusSigmaY, 3,
 | 
			
		||||
                           SigmaZ, 4,
 | 
			
		||||
			   MinusSigmaZ, 5,
 | 
			
		||||
			   Identity, 6,
 | 
			
		||||
			   MinusIdentity, 7,
 | 
			
		||||
			   ProjPlus, 8,
 | 
			
		||||
			   MinusProjPlus, 9,
 | 
			
		||||
			   ProjMinus, 10,
 | 
			
		||||
			   MinusProjMinus, 11
 | 
			
		||||
			   );
 | 
			
		||||
    static constexpr unsigned int nSigma = 12;
 | 
			
		||||
    static const std::array<const char *, nSigma>                name;
 | 
			
		||||
    static const std::array<const GparityFlavour, 3>             sigma_mu;
 | 
			
		||||
    static const std::array<const GparityFlavour, 6>            sigma_all;
 | 
			
		||||
    Algebra                                                      g;
 | 
			
		||||
  public:
 | 
			
		||||
  accelerator GparityFlavour(Algebra initg): g(initg) {}  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 0 1  x   vector
 | 
			
		||||
// 1 0
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(1);
 | 
			
		||||
  ret(1) = rhs(0);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(1,0);
 | 
			
		||||
  ret(0,1) = rhs(1,1);
 | 
			
		||||
  ret(1,0) = rhs(0,0);
 | 
			
		||||
  ret(1,1) = rhs(0,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,1);
 | 
			
		||||
  ret(0,1) = rhs(0,0);
 | 
			
		||||
  ret(1,0) = rhs(1,1);
 | 
			
		||||
  ret(1,1) = rhs(1,0);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(1);
 | 
			
		||||
  ret(1) = -rhs(0);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(1,0);
 | 
			
		||||
  ret(0,1) = -rhs(1,1);
 | 
			
		||||
  ret(1,0) = -rhs(0,0);
 | 
			
		||||
  ret(1,1) = -rhs(0,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,1);
 | 
			
		||||
  ret(0,1) = -rhs(0,0);
 | 
			
		||||
  ret(1,0) = -rhs(1,1);
 | 
			
		||||
  ret(1,1) = -rhs(1,0);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 0 -i  x   vector
 | 
			
		||||
// i 0
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = timesI(rhs(0));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = timesI(rhs(0,0));
 | 
			
		||||
  ret(1,1) = timesI(rhs(0,1));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = timesMinusI(rhs(0,0));
 | 
			
		||||
  ret(1,0) = timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = timesMinusI(rhs(1,0));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = timesI(rhs(1));
 | 
			
		||||
  ret(1) = timesMinusI(rhs(0));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = timesMinusI(rhs(0,0));
 | 
			
		||||
  ret(1,1) = timesMinusI(rhs(0,1));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = timesI(rhs(0,0));
 | 
			
		||||
  ret(1,0) = timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = timesI(rhs(1,0));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 1 0  x   vector
 | 
			
		||||
// 0 -1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(0);
 | 
			
		||||
  ret(1) = -rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(0);
 | 
			
		||||
  ret(1) = rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(0);
 | 
			
		||||
  ret(1) = rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(0);
 | 
			
		||||
  ret(1) = -rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity flavour projection 1/2(1+\sigma_2)
 | 
			
		||||
//1 -i
 | 
			
		||||
//i  1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity flavour projection 1/2(1-\sigma_2)
 | 
			
		||||
//1 i
 | 
			
		||||
//-i  1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    multFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    multFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    multFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    multFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    multFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    multFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    multFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    multFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    multFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    multFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    multFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    multFlavourMinusProjMinus(ret, arg); break;
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iMatrix<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    lmultFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    lmultFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    lmultFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    lmultFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    lmultFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    lmultFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    lmultFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    lmultFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    lmultFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    lmultFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    lmultFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    lmultFlavourMinusProjMinus(ret, arg); break;  
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iMatrix<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    rmultFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    rmultFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    rmultFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    rmultFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    rmultFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    rmultFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    rmultFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    rmultFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    rmultFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    rmultFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    rmultFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    rmultFlavourMinusProjMinus(ret, arg); break;
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // include guard
 | 
			
		||||
@@ -129,18 +129,10 @@ public:
 | 
			
		||||
    Runner(S);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  template <class SmearingPolicy>
 | 
			
		||||
  void Runner(SmearingPolicy &Smearing) {
 | 
			
		||||
    auto UGrid = Resources.GetCartesian();
 | 
			
		||||
    Resources.AddRNGs();
 | 
			
		||||
    Field U(UGrid);
 | 
			
		||||
 | 
			
		||||
    // Can move this outside?
 | 
			
		||||
    typedef IntegratorType<SmearingPolicy> TheIntegrator;
 | 
			
		||||
    TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
 | 
			
		||||
  //Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
 | 
			
		||||
  //This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
 | 
			
		||||
  void initializeGaugeFieldAndRNGs(Field &U){
 | 
			
		||||
    if(!Resources.haveRNGs()) Resources.AddRNGs();
 | 
			
		||||
 | 
			
		||||
    if (Parameters.StartingType == "HotStart") {
 | 
			
		||||
      // Hot start
 | 
			
		||||
@@ -159,14 +151,43 @@ private:
 | 
			
		||||
      Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
 | 
			
		||||
						     Resources.GetSerialRNG(),
 | 
			
		||||
						     Resources.GetParallelRNG());
 | 
			
		||||
    } else if (Parameters.StartingType == "CheckpointStartReseed") {
 | 
			
		||||
      // Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
 | 
			
		||||
      // Useful for creating new evolution streams from an existing stream
 | 
			
		||||
      
 | 
			
		||||
      // WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
 | 
			
		||||
      // an existing RNG checkpoint first; make sure one is available and named correctly
 | 
			
		||||
      Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
 | 
			
		||||
						     Resources.GetSerialRNG(),
 | 
			
		||||
						     Resources.GetParallelRNG());
 | 
			
		||||
      Resources.SeedFixedIntegers();      
 | 
			
		||||
    } else {
 | 
			
		||||
      // others
 | 
			
		||||
      std::cout << GridLogError << "Unrecognized StartingType\n";
 | 
			
		||||
      std::cout
 | 
			
		||||
	<< GridLogError
 | 
			
		||||
	<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
 | 
			
		||||
	<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  template <class SmearingPolicy>
 | 
			
		||||
  void Runner(SmearingPolicy &Smearing) {
 | 
			
		||||
    auto UGrid = Resources.GetCartesian();
 | 
			
		||||
    Field U(UGrid);
 | 
			
		||||
 | 
			
		||||
    initializeGaugeFieldAndRNGs(U);
 | 
			
		||||
 | 
			
		||||
    typedef IntegratorType<SmearingPolicy> TheIntegrator;
 | 
			
		||||
    TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
 | 
			
		||||
 | 
			
		||||
    // Sets the momentum filter
 | 
			
		||||
    MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
 | 
			
		||||
 | 
			
		||||
    Smearing.set_Field(U);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -34,6 +34,7 @@ directory
 | 
			
		||||
			    * @brief Classes for Hybrid Monte Carlo update
 | 
			
		||||
			    *
 | 
			
		||||
			    * @author Guido Cossu
 | 
			
		||||
			    * @author Peter Boyle
 | 
			
		||||
			    */
 | 
			
		||||
			   //--------------------------------------------------------------------
 | 
			
		||||
#pragma once
 | 
			
		||||
@@ -52,6 +53,7 @@ struct HMCparameters: Serializable {
 | 
			
		||||
                                  Integer, Trajectories, /* @brief Number of sweeps in this run */
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
                                  Integer, NoMetropolisUntil,
 | 
			
		||||
				  bool, PerformRandomShift, /* @brief Randomly shift the gauge configuration at the start of a trajectory */
 | 
			
		||||
                                  std::string, StartingType,
 | 
			
		||||
                                  IntegratorParameters, MD)
 | 
			
		||||
 | 
			
		||||
@@ -62,6 +64,7 @@ struct HMCparameters: Serializable {
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 10;
 | 
			
		||||
    StartingType      = "HotStart";
 | 
			
		||||
    PerformRandomShift = true;
 | 
			
		||||
    /////////////////////////////////
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -82,6 +85,7 @@ struct HMCparameters: Serializable {
 | 
			
		||||
    std::cout << GridLogMessage << "[HMC parameters] Start trajectory        : " << StartTrajectory << "\n";
 | 
			
		||||
    std::cout << GridLogMessage << "[HMC parameters] Metropolis test (on/off): " << std::boolalpha << MetropolisTest << "\n";
 | 
			
		||||
    std::cout << GridLogMessage << "[HMC parameters] Thermalization trajs    : " << NoMetropolisUntil << "\n";
 | 
			
		||||
    std::cout << GridLogMessage << "[HMC parameters] Doing random shift      : " << std::boolalpha << PerformRandomShift << "\n";
 | 
			
		||||
    std::cout << GridLogMessage << "[HMC parameters] Starting type           : " << StartingType << "\n";
 | 
			
		||||
    MD.print_parameters();
 | 
			
		||||
  }
 | 
			
		||||
@@ -94,6 +98,7 @@ private:
 | 
			
		||||
  const HMCparameters Params;
 | 
			
		||||
 | 
			
		||||
  typedef typename IntegratorType::Field Field;
 | 
			
		||||
  typedef typename IntegratorType::FieldImplementation FieldImplementation;
 | 
			
		||||
  typedef std::vector< HmcObservable<Field> * > ObsListType;
 | 
			
		||||
 | 
			
		||||
  //pass these from the resource manager
 | 
			
		||||
@@ -115,22 +120,17 @@ private:
 | 
			
		||||
 | 
			
		||||
    random(sRNG, rn_test);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogMessage << "exp(-dH) = " << prob
 | 
			
		||||
              << "  Random = " << rn_test << "\n";
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
 | 
			
		||||
    std::cout << GridLogHMC << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogHMC << "exp(-dH) = " << prob << "  Random = " << rn_test << "\n";
 | 
			
		||||
    std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
 | 
			
		||||
 | 
			
		||||
    if ((prob > 1.0) || (rn_test <= prob)) {  // accepted
 | 
			
		||||
      std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
 | 
			
		||||
      std::cout << GridLogMessage
 | 
			
		||||
                << "--------------------------------------------------\n";
 | 
			
		||||
      std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
 | 
			
		||||
      std::cout << GridLogHMC << "--------------------------------------------------\n";
 | 
			
		||||
      return true;
 | 
			
		||||
    } else {  // rejected
 | 
			
		||||
      std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
 | 
			
		||||
      std::cout << GridLogMessage
 | 
			
		||||
                << "--------------------------------------------------\n";
 | 
			
		||||
      std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
 | 
			
		||||
      std::cout << GridLogHMC << "--------------------------------------------------\n";
 | 
			
		||||
      return false;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -139,19 +139,80 @@ private:
 | 
			
		||||
  // Evolution
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  RealD evolve_hmc_step(Field &U) {
 | 
			
		||||
    TheIntegrator.refresh(U, sRNG, pRNG);  // set U and initialize P and phi's
 | 
			
		||||
 | 
			
		||||
    RealD H0 = TheIntegrator.S(U);  // initial state action
 | 
			
		||||
    GridBase *Grid = U.Grid();
 | 
			
		||||
 | 
			
		||||
    if(Params.PerformRandomShift){
 | 
			
		||||
#if 0
 | 
			
		||||
      //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Mainly for DDHMC perform a random translation of U modulo volume
 | 
			
		||||
      //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
      std::cout << GridLogMessage << "Random shifting gauge field by [";
 | 
			
		||||
 | 
			
		||||
      std::vector<typename FieldImplementation::GaugeLinkField> Umu(Grid->Nd(), U.Grid());
 | 
			
		||||
      for(int mu=0;mu<Grid->Nd();mu++) Umu[mu] = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
 | 
			
		||||
      for(int d=0;d<Grid->Nd();d++) {
 | 
			
		||||
 | 
			
		||||
	int L = Grid->GlobalDimensions()[d];
 | 
			
		||||
 | 
			
		||||
	RealD rn_uniform;  random(sRNG, rn_uniform);
 | 
			
		||||
 | 
			
		||||
	int shift = (int) (rn_uniform*L);
 | 
			
		||||
 | 
			
		||||
	std::cout << shift;
 | 
			
		||||
	if(d<Grid->Nd()-1) std::cout <<",";
 | 
			
		||||
	else               std::cout <<"]\n";
 | 
			
		||||
      
 | 
			
		||||
	//shift all fields together in a way that respects the gauge BCs
 | 
			
		||||
	for(int mu=0; mu < Grid->Nd(); mu++)
 | 
			
		||||
	  Umu[mu] = FieldImplementation::CshiftLink(Umu[mu],d,shift);
 | 
			
		||||
 | 
			
		||||
	for(int mu=0;mu<Grid->Nd();mu++) PokeIndex<LorentzIndex>(U,Umu[mu],mu);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
#endif	
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    TheIntegrator.reset_timer();
 | 
			
		||||
    
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // set U and initialize P and phi's
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
 | 
			
		||||
    TheIntegrator.refresh(U, sRNG, pRNG);  
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // initial state action
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogMessage << "Compute initial action";
 | 
			
		||||
    RealD H0 = TheIntegrator.Sinitial(U);  
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
 | 
			
		||||
    std::streamsize current_precision = std::cout.precision();
 | 
			
		||||
    std::cout.precision(15);
 | 
			
		||||
    std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
 | 
			
		||||
    std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
 | 
			
		||||
    std::cout.precision(current_precision);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Molecular Dynamics evolution ";
 | 
			
		||||
    TheIntegrator.integrate(U);
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
 | 
			
		||||
    RealD H1 = TheIntegrator.S(U);  // updated state action
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // updated state action
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogMessage << "Compute final action";
 | 
			
		||||
    RealD H1 = TheIntegrator.S(U);  
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------------------------------\n";
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    ///////////////////////////////////////////////////////////
 | 
			
		||||
    if(0){
 | 
			
		||||
      std::cout << "------------------------- Reversibility test" << std::endl;
 | 
			
		||||
@@ -163,17 +224,16 @@ private:
 | 
			
		||||
    }
 | 
			
		||||
    ///////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(15);
 | 
			
		||||
    std::cout << GridLogMessage << "Total H after trajectory  = " << H1
 | 
			
		||||
	      << "  dH = " << H1 - H0 << "\n";
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogHMC << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogHMC << "Total H after trajectory  = " << H1 << "  dH = " << H1 - H0 << "\n";
 | 
			
		||||
    std::cout << GridLogHMC << "--------------------------------------------------\n";
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(current_precision);
 | 
			
		||||
    
 | 
			
		||||
    return (H1 - H0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /////////////////////////////////////////
 | 
			
		||||
@@ -195,10 +255,13 @@ public:
 | 
			
		||||
 | 
			
		||||
    // Actual updates (evolve a copy Ucopy then copy back eventually)
 | 
			
		||||
    unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
 | 
			
		||||
 | 
			
		||||
    for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
 | 
			
		||||
      std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
 | 
			
		||||
 | 
			
		||||
      if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
 | 
			
		||||
      	std::cout << GridLogMessage << "-- Thermalization" << std::endl;
 | 
			
		||||
      	std::cout << GridLogHMC << "-- Thermalization" << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      double t0=usecond();
 | 
			
		||||
@@ -207,20 +270,19 @@ public:
 | 
			
		||||
      DeltaH = evolve_hmc_step(Ucopy);
 | 
			
		||||
      // Metropolis-Hastings test
 | 
			
		||||
      bool accept = true;
 | 
			
		||||
      if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
 | 
			
		||||
      if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
 | 
			
		||||
        accept = metropolis_test(DeltaH);
 | 
			
		||||
      } else {
 | 
			
		||||
      	std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
 | 
			
		||||
      	std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if (accept)
 | 
			
		||||
        Ucur = Ucopy; 
 | 
			
		||||
      
 | 
			
		||||
     
 | 
			
		||||
      
 | 
			
		||||
      double t1=usecond();
 | 
			
		||||
      std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
 | 
			
		||||
      std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
 | 
			
		||||
 | 
			
		||||
      TheIntegrator.print_timer();
 | 
			
		||||
 | 
			
		||||
      for (int obs = 0; obs < Observables.size(); obs++) {
 | 
			
		||||
      	std::cout << GridLogDebug << "Observables # " << obs << std::endl;
 | 
			
		||||
@@ -228,7 +290,7 @@ public:
 | 
			
		||||
      	std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
 | 
			
		||||
        Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
 | 
			
		||||
      std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -80,7 +80,9 @@ public:
 | 
			
		||||
      std::cout << GridLogError << "Seeds not initialized" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
 | 
			
		||||
    sRNG_.SeedFixedIntegers(SerialSeeds);
 | 
			
		||||
    std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
 | 
			
		||||
    pRNG_->SeedFixedIntegers(ParallelSeeds);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -72,6 +72,8 @@ class HMCResourceManager {
 | 
			
		||||
  typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
 | 
			
		||||
  typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
 | 
			
		||||
  typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
 | 
			
		||||
  typedef typename ImplementationPolicy::Field MomentaField;
 | 
			
		||||
  typedef typename ImplementationPolicy::Field Field;  
 | 
			
		||||
 | 
			
		||||
  // Named storage for grid pairs (std + red-black)
 | 
			
		||||
  std::unordered_map<std::string, GridModule> Grids;
 | 
			
		||||
@@ -80,6 +82,9 @@ class HMCResourceManager {
 | 
			
		||||
  // SmearingModule<ImplementationPolicy> Smearing;
 | 
			
		||||
  std::unique_ptr<CheckpointerBaseModule> CP;
 | 
			
		||||
 | 
			
		||||
  // Momentum filter
 | 
			
		||||
  std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
 | 
			
		||||
  
 | 
			
		||||
  // A vector of HmcObservable modules
 | 
			
		||||
  std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
 | 
			
		||||
 | 
			
		||||
@@ -90,6 +95,7 @@ class HMCResourceManager {
 | 
			
		||||
 | 
			
		||||
  bool have_RNG;
 | 
			
		||||
  bool have_CheckPointer;
 | 
			
		||||
  bool have_Filter;
 | 
			
		||||
 | 
			
		||||
  // NOTE: operator << is not overloaded for std::vector<string> 
 | 
			
		||||
  // so this function is necessary
 | 
			
		||||
@@ -101,7 +107,7 @@ class HMCResourceManager {
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
 | 
			
		||||
  HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
 | 
			
		||||
 | 
			
		||||
  template <class ReaderClass, class vector_type = vComplex >
 | 
			
		||||
  void initialize(ReaderClass &Read){
 | 
			
		||||
@@ -129,6 +135,7 @@ public:
 | 
			
		||||
    RNGModuleParameters RNGpar(Read);
 | 
			
		||||
    SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
    // Observables
 | 
			
		||||
    auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance(); 
 | 
			
		||||
    Read.push(observable_string);// here must check if existing...
 | 
			
		||||
@@ -208,6 +215,16 @@ public:
 | 
			
		||||
    AddGrid(s, Mod);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
 | 
			
		||||
    assert(have_Filter==false);
 | 
			
		||||
    Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
 | 
			
		||||
    have_Filter = true;
 | 
			
		||||
  }
 | 
			
		||||
  MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
 | 
			
		||||
    if ( !have_Filter)
 | 
			
		||||
      SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
 | 
			
		||||
    return Filter.get();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  GridCartesian* GetCartesian(std::string s = "") {
 | 
			
		||||
    if (s.empty()) s = Grids.begin()->first;
 | 
			
		||||
@@ -226,6 +243,9 @@ public:
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Random number generators
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  //Return true if the RNG objects have been instantiated
 | 
			
		||||
  bool haveRNGs() const{ return have_RNG; }
 | 
			
		||||
 | 
			
		||||
  void AddRNGs(std::string s = "") {
 | 
			
		||||
    // Couple the RNGs to the GridModule tagged by s
 | 
			
		||||
 
 | 
			
		||||
@@ -33,7 +33,6 @@ directory
 | 
			
		||||
#define INTEGRATOR_INCLUDED
 | 
			
		||||
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include "MomentumFilter.h"
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -64,9 +63,10 @@ public:
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*! @brief Class for Molecular Dynamics management */
 | 
			
		||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
 | 
			
		||||
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy>
 | 
			
		||||
class Integrator {
 | 
			
		||||
protected:
 | 
			
		||||
  typedef FieldImplementation_ FieldImplementation;
 | 
			
		||||
  typedef typename FieldImplementation::Field MomentaField;  //for readability
 | 
			
		||||
  typedef typename FieldImplementation::Field Field;
 | 
			
		||||
 | 
			
		||||
@@ -119,36 +119,65 @@ protected:
 | 
			
		||||
    }
 | 
			
		||||
  } update_P_hireps{};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
  void update_P(MomentaField& Mom, Field& U, int level, double ep) {
 | 
			
		||||
    // input U actually not used in the fundamental case
 | 
			
		||||
    // Fundamental updates, include smearing
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < as[level].actions.size(); ++a) {
 | 
			
		||||
 | 
			
		||||
      double start_full = usecond();
 | 
			
		||||
      Field force(U.Grid());
 | 
			
		||||
      conformable(U.Grid(), Mom.Grid());
 | 
			
		||||
 | 
			
		||||
      Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
 | 
			
		||||
      double start_force = usecond();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] before"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      as[level].actions.at(a)->deriv_timer_start();
 | 
			
		||||
      as[level].actions.at(a)->deriv(Us, force);  // deriv should NOT include Ta
 | 
			
		||||
      as[level].actions.at(a)->deriv_timer_stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] after"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
 | 
			
		||||
      auto name = as[level].actions.at(a)->action_name();
 | 
			
		||||
      if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
 | 
			
		||||
 | 
			
		||||
      force = FieldImplementation::projectForce(force); // Ta for gauge fields
 | 
			
		||||
      double end_force = usecond();
 | 
			
		||||
      Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
 | 
			
		||||
      std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
 | 
			
		||||
 | 
			
		||||
      //      DumpSliceNorm("force ",force,Nd-1);
 | 
			
		||||
      MomFilter->applyFilter(force);
 | 
			
		||||
      std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<<  std::endl;
 | 
			
		||||
      DumpSliceNorm("force filtered ",force,Nd-1);
 | 
			
		||||
      
 | 
			
		||||
      Real force_abs   = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm.  nb. norm2(latt) = \sum_x norm2(latt[x]) 
 | 
			
		||||
      Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
 | 
			
		||||
      Real force_max   = std::sqrt(maxLocalNorm2(force));
 | 
			
		||||
      Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
 | 
			
		||||
      as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
 | 
			
		||||
      
 | 
			
		||||
      std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] dt           : " << ep <<" "<<name<<std::endl;
 | 
			
		||||
      std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
 | 
			
		||||
      std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max    : " << force_max <<" "<<name<<std::endl;
 | 
			
		||||
      std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average  : " << impulse_abs <<" "<<name<<std::endl;
 | 
			
		||||
      std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max      : " << impulse_max <<" "<<name<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;; 
 | 
			
		||||
      double end_full = usecond();
 | 
			
		||||
      double time_full  = (end_full - start_full) / 1e3;
 | 
			
		||||
      double time_force = (end_force - start_force) / 1e3;
 | 
			
		||||
      std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)"  << std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Force from the other representations
 | 
			
		||||
    as[level].apply(update_P_hireps, Representations, Mom, U, ep);
 | 
			
		||||
 | 
			
		||||
    MomFilter->applyFilter(Mom);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void update_U(Field& U, double ep) 
 | 
			
		||||
@@ -162,8 +191,12 @@ protected:
 | 
			
		||||
  
 | 
			
		||||
  void update_U(MomentaField& Mom, Field& U, double ep) 
 | 
			
		||||
  {
 | 
			
		||||
    MomentaField MomFiltered(Mom.Grid());
 | 
			
		||||
    MomFiltered = Mom;
 | 
			
		||||
    MomFilter->applyFilter(MomFiltered);
 | 
			
		||||
 | 
			
		||||
    // exponential of Mom*U in the gauge fields case
 | 
			
		||||
    FieldImplementation::update_field(Mom, U, ep);
 | 
			
		||||
    FieldImplementation::update_field(MomFiltered, U, ep);
 | 
			
		||||
 | 
			
		||||
    // Update the smeared fields, can be implemented as observer
 | 
			
		||||
    Smearer.set_Field(U);
 | 
			
		||||
@@ -206,6 +239,77 @@ public:
 | 
			
		||||
  const MomentaField & getMomentum() const{ return P; }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  void reset_timer(void)
 | 
			
		||||
  {
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
        as[level].actions.at(actionID)->reset_timer();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void print_timer(void)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------- "<<std::endl;
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
	std::cout << GridLogMessage 
 | 
			
		||||
		  << as[level].actions.at(actionID)->action_name()
 | 
			
		||||
		  <<"["<<level<<"]["<< actionID<<"] "
 | 
			
		||||
		  << as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------- "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------- "<<std::endl;
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
	std::cout << GridLogMessage 
 | 
			
		||||
		  << as[level].actions.at(actionID)->action_name()
 | 
			
		||||
		  <<"["<<level<<"]["<< actionID<<"] "
 | 
			
		||||
		  << as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------- "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "------------------------- "<<std::endl;
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
	std::cout << GridLogMessage 
 | 
			
		||||
		  << as[level].actions.at(actionID)->action_name()
 | 
			
		||||
		  <<"["<<level<<"]["<< actionID<<"] "
 | 
			
		||||
		  << as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------- "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Dslash counts "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "------------------------- "<<std::endl;
 | 
			
		||||
    uint64_t full, partial, dirichlet;
 | 
			
		||||
    DslashGetCounts(dirichlet,partial,full);
 | 
			
		||||
    std::cout << GridLogMessage << " Full BCs               : "<<full<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Partial dirichlet BCs  : "<<partial<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Dirichlet BCs          : "<<dirichlet<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "--------------------------- "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Force average size "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "------------------------- "<<std::endl;
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
	std::cout << GridLogMessage 
 | 
			
		||||
		  << as[level].actions.at(actionID)->action_name()
 | 
			
		||||
		  <<"["<<level<<"]["<< actionID<<"] :\n\t\t "
 | 
			
		||||
		  <<" force max " << as[level].actions.at(actionID)->deriv_max_average()
 | 
			
		||||
		  <<" norm "      << as[level].actions.at(actionID)->deriv_norm_average()
 | 
			
		||||
		  <<" Fdt max  "  << as[level].actions.at(actionID)->Fdt_max_average()
 | 
			
		||||
		  <<" Fdt norm "  << as[level].actions.at(actionID)->Fdt_norm_average()
 | 
			
		||||
		  <<" calls "     << as[level].actions.at(actionID)->deriv_num
 | 
			
		||||
		  << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void print_parameters()
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
 | 
			
		||||
@@ -224,7 +328,6 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void reverse_momenta()
 | 
			
		||||
@@ -249,15 +352,19 @@ public:
 | 
			
		||||
  void refresh(Field& U,  GridSerialRNG & sRNG, GridParallelRNG& pRNG) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(P.Grid() == U.Grid());
 | 
			
		||||
    std::cout << GridLogIntegrator << "Integrator refresh\n";
 | 
			
		||||
    std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
 | 
			
		||||
    FieldImplementation::generate_momenta(P, sRNG, pRNG);
 | 
			
		||||
 | 
			
		||||
    // Update the smeared fields, can be implemented as observer
 | 
			
		||||
    // necessary to keep the fields updated even after a reject
 | 
			
		||||
    // of the Metropolis
 | 
			
		||||
    std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
 | 
			
		||||
    Smearer.set_Field(U);
 | 
			
		||||
    // Set the (eventual) representations gauge fields
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIntegrator << "Updating representations" << std::endl;
 | 
			
		||||
    Representations.update(U);
 | 
			
		||||
 | 
			
		||||
    // The Smearer is attached to a pointer of the gauge field
 | 
			
		||||
@@ -267,15 +374,24 @@ public:
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
        // get gauge field from the SmearingPolicy and
 | 
			
		||||
        // based on the boolean is_smeared in actionID
 | 
			
		||||
	auto name = as[level].actions.at(actionID)->action_name();
 | 
			
		||||
        std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
 | 
			
		||||
 | 
			
		||||
        Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] before"<<std::endl;
 | 
			
		||||
 | 
			
		||||
	as[level].actions.at(actionID)->refresh_timer_start();
 | 
			
		||||
        as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
 | 
			
		||||
	as[level].actions.at(actionID)->refresh_timer_stop();
 | 
			
		||||
	std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] after"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Refresh the higher representation actions
 | 
			
		||||
      as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    MomFilter->applyFilter(P);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // to be used by the actionlevel class to iterate
 | 
			
		||||
@@ -306,13 +422,17 @@ public:
 | 
			
		||||
    // Actions
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
 | 
			
		||||
        // get gauge field from the SmearingPolicy and
 | 
			
		||||
        // based on the boolean is_smeared in actionID
 | 
			
		||||
        Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
 | 
			
		||||
        std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
 | 
			
		||||
	        as[level].actions.at(actionID)->S_timer_start();
 | 
			
		||||
        Hterm = as[level].actions.at(actionID)->S(Us);
 | 
			
		||||
   	        as[level].actions.at(actionID)->S_timer_stop();
 | 
			
		||||
        std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
 | 
			
		||||
        H += Hterm;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      as[level].apply(S_hireps, Representations, level, H);
 | 
			
		||||
    }
 | 
			
		||||
@@ -320,6 +440,52 @@ public:
 | 
			
		||||
    return H;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  struct _Sinitial {
 | 
			
		||||
    template <class FieldType, class Repr>
 | 
			
		||||
    void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
 | 
			
		||||
      
 | 
			
		||||
      for (int a = 0; a < repr_set.size(); ++a) {
 | 
			
		||||
 | 
			
		||||
        RealD Hterm = repr_set.at(a)->Sinitial(Rep.U);
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "Sinitial Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
 | 
			
		||||
        H += Hterm;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } Sinitial_hireps{};
 | 
			
		||||
 | 
			
		||||
  RealD Sinitial(Field& U) 
 | 
			
		||||
  {  // here also U not used
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIntegrator << "Integrator initial action\n";
 | 
			
		||||
 | 
			
		||||
    RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
 | 
			
		||||
 | 
			
		||||
    RealD Hterm;
 | 
			
		||||
 | 
			
		||||
    // Actions
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
        // get gauge field from the SmearingPolicy and
 | 
			
		||||
        // based on the boolean is_smeared in actionID
 | 
			
		||||
        Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
 | 
			
		||||
        std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
 | 
			
		||||
	        as[level].actions.at(actionID)->S_timer_start();
 | 
			
		||||
 | 
			
		||||
        Hterm = as[level].actions.at(actionID)->Sinitial(Us);
 | 
			
		||||
   	        as[level].actions.at(actionID)->S_timer_stop();
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
 | 
			
		||||
        H += Hterm;
 | 
			
		||||
      }
 | 
			
		||||
      as[level].apply(Sinitial_hireps, Representations, level, H);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return H;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  void integrate(Field& U) 
 | 
			
		||||
  {
 | 
			
		||||
    // reset the clocks
 | 
			
		||||
 
 | 
			
		||||
@@ -92,10 +92,11 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 *  P 1/2                            P 1/2
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
 | 
			
		||||
class LeapFrog : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy> 
 | 
			
		||||
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
 | 
			
		||||
class LeapFrog : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy> 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef FieldImplementation_ FieldImplementation;
 | 
			
		||||
  typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy> Algorithm;
 | 
			
		||||
  INHERIT_FIELD_TYPES(FieldImplementation);
 | 
			
		||||
 | 
			
		||||
@@ -135,13 +136,14 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
 | 
			
		||||
class MinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy> 
 | 
			
		||||
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
 | 
			
		||||
class MinimumNorm2 : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy> 
 | 
			
		||||
{
 | 
			
		||||
private:
 | 
			
		||||
  const RealD lambda = 0.1931833275037836;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  typedef FieldImplementation_ FieldImplementation;
 | 
			
		||||
  INHERIT_FIELD_TYPES(FieldImplementation);
 | 
			
		||||
 | 
			
		||||
  MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
 | 
			
		||||
@@ -192,8 +194,8 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
 | 
			
		||||
class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy> 
 | 
			
		||||
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
 | 
			
		||||
class ForceGradient : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy> 
 | 
			
		||||
{
 | 
			
		||||
private:
 | 
			
		||||
  const RealD lambda = 1.0 / 6.0;
 | 
			
		||||
@@ -202,6 +204,7 @@ private:
 | 
			
		||||
  const RealD theta = 0.0;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  typedef FieldImplementation_ FieldImplementation;
 | 
			
		||||
  INHERIT_FIELD_TYPES(FieldImplementation);
 | 
			
		||||
 | 
			
		||||
  // Looks like dH scales as dt^4. tested wilson/wilson 2 level.
 | 
			
		||||
@@ -227,7 +230,8 @@ public:
 | 
			
		||||
    // Presently 4 force evals, and should have 3, so 1.33x too expensive.
 | 
			
		||||
    // could reduce this with sloppy CG to perhaps 1.15x too expensive
 | 
			
		||||
    // even without prediction.
 | 
			
		||||
    this->update_P(Pfg, Ufg, level, 1.0);
 | 
			
		||||
    this->update_P(Pfg, Ufg, level, fg_dt);
 | 
			
		||||
    Pfg = Pfg*(1.0/fg_dt);
 | 
			
		||||
    this->update_U(Pfg, Ufg, fg_dt);
 | 
			
		||||
    this->update_P(Ufg, level, ep);
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -78,13 +78,13 @@ static Registrar<OneFlavourRatioEOFModule<FermionImplementationPolicy>,
 | 
			
		||||
// Now a specific registration with a fermion field
 | 
			
		||||
// here must instantiate CG and CR for every new fermion field type (macro!!)
 | 
			
		||||
 | 
			
		||||
static Registrar< ConjugateGradientModule<WilsonFermionR::FermionField>,   
 | 
			
		||||
                  HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient"); 
 | 
			
		||||
static Registrar< ConjugateGradientModule<WilsonFermionD::FermionField>,   
 | 
			
		||||
                  HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient"); 
 | 
			
		||||
 | 
			
		||||
static Registrar< BiCGSTABModule<WilsonFermionR::FermionField>,   
 | 
			
		||||
                  HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __BiCGWFmodXMLInit("BiCGSTAB"); 
 | 
			
		||||
static Registrar< ConjugateResidualModule<WilsonFermionR::FermionField>,   
 | 
			
		||||
                  HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual"); 
 | 
			
		||||
static Registrar< BiCGSTABModule<WilsonFermionD::FermionField>,   
 | 
			
		||||
                  HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __BiCGWFmodXMLInit("BiCGSTAB"); 
 | 
			
		||||
static Registrar< ConjugateResidualModule<WilsonFermionD::FermionField>,   
 | 
			
		||||
                  HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual"); 
 | 
			
		||||
 | 
			
		||||
// add the staggered, scalar versions here
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,15 +31,16 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct TopologySmearingParameters : Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
 | 
			
		||||
				  int, steps,
 | 
			
		||||
				  float, step_size,
 | 
			
		||||
				  int, meas_interval,
 | 
			
		||||
				  float, maxTau);
 | 
			
		||||
				  float, init_step_size,
 | 
			
		||||
				  float, maxTau,
 | 
			
		||||
				  float, tolerance);
 | 
			
		||||
 | 
			
		||||
  TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
 | 
			
		||||
    steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
 | 
			
		||||
 TopologySmearingParameters(float ss = 0.0f, int mi = 0, float mT = 0.0f, float tol = 1e-4):
 | 
			
		||||
  init_step_size(ss), meas_interval(mi), maxTau(mT), tolerance(tol){}
 | 
			
		||||
 | 
			
		||||
  template < class ReaderClass >
 | 
			
		||||
  TopologySmearingParameters(Reader<ReaderClass>& Reader){
 | 
			
		||||
@@ -97,9 +98,9 @@ public:
 | 
			
		||||
        
 | 
			
		||||
      if (Pars.do_smearing){
 | 
			
		||||
	// using wilson flow by default here
 | 
			
		||||
	WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
 | 
			
		||||
	WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
 | 
			
		||||
	Real T0   = WF.energyDensityPlaquette(Usmear);
 | 
			
		||||
	WilsonFlowAdaptive<PeriodicGimplR> WF(Pars.Smearing.init_step_size, Pars.Smearing.maxTau, Pars.Smearing.tolerance, Pars.Smearing.meas_interval);
 | 
			
		||||
	WF.smear(Usmear, U);
 | 
			
		||||
	Real T0   = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
 | 
			
		||||
	std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
 | 
			
		||||
		  << "T0                : [ " << traj << " ] "<< T0 << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
@@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
@@ -32,177 +33,318 @@ directory
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
class WilsonFlow: public Smear<Gimpl>{
 | 
			
		||||
  unsigned int Nstep;
 | 
			
		||||
  unsigned int measure_interval;
 | 
			
		||||
  mutable RealD epsilon, taus;
 | 
			
		||||
class WilsonFlowBase: public Smear<Gimpl>{
 | 
			
		||||
public:
 | 
			
		||||
  //Store generic measurements to take during smearing process using std::function
 | 
			
		||||
  typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType;  //int: step,  RealD: flow time,  GaugeField : the gauge field
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
 | 
			
		||||
 | 
			
		||||
  mutable WilsonGaugeAction<Gimpl> SG;
 | 
			
		||||
 | 
			
		||||
  void evolve_step(typename Gimpl::GaugeField&) const;
 | 
			
		||||
  void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
 | 
			
		||||
  RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl)
 | 
			
		||||
 | 
			
		||||
  explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
 | 
			
		||||
  Nstep(Nstep),
 | 
			
		||||
    epsilon(epsilon),
 | 
			
		||||
    measure_interval(interval),
 | 
			
		||||
  explicit WilsonFlowBase(unsigned int meas_interval =1):
 | 
			
		||||
    SG(WilsonGaugeAction<Gimpl>(3.0)) {
 | 
			
		||||
    // WilsonGaugeAction with beta 3.0
 | 
			
		||||
    assert(epsilon > 0.0);
 | 
			
		||||
    LogMessage();
 | 
			
		||||
    setDefaultMeasurements(meas_interval);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  void resetActions(){ functions.clear(); }
 | 
			
		||||
 | 
			
		||||
  void LogMessage() {
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
	      << "[WilsonFlow] Nstep   : " << Nstep << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
	      << "[WilsonFlow] epsilon : " << epsilon << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
	      << "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
 | 
			
		||||
 | 
			
		||||
  virtual void smear(GaugeField&, const GaugeField&) const;
 | 
			
		||||
  //Set the class to perform the default measurements: 
 | 
			
		||||
  //the plaquette energy density every step
 | 
			
		||||
  //the plaquette topological charge every 'topq_meas_interval' steps
 | 
			
		||||
  //and output to stdout
 | 
			
		||||
  void setDefaultMeasurements(int topq_meas_interval = 1);
 | 
			
		||||
 | 
			
		||||
  virtual void derivative(GaugeField&, const GaugeField&, const GaugeField&) const {
 | 
			
		||||
  void derivative(GaugeField&, const GaugeField&, const GaugeField&) const override{
 | 
			
		||||
    assert(0);
 | 
			
		||||
    // undefined for WilsonFlow
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
 | 
			
		||||
  RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
 | 
			
		||||
  RealD energyDensityPlaquette(const GaugeField& U) const;
 | 
			
		||||
  //Compute t^2 <E(t)> for time t from the plaquette
 | 
			
		||||
  static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
 | 
			
		||||
 | 
			
		||||
  //Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
 | 
			
		||||
  //t is the Wilson flow time
 | 
			
		||||
  static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
 | 
			
		||||
  
 | 
			
		||||
  //Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
 | 
			
		||||
  //The smeared field is output as V
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
  //Version that does not return the smeared field
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
 | 
			
		||||
  //The smeared field is output as V
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
  //Version that does not return the smeared field
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//Basic iterative Wilson flow
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
class WilsonFlow: public WilsonFlowBase<Gimpl>{
 | 
			
		||||
private:
 | 
			
		||||
  int Nstep; //number of steps
 | 
			
		||||
  RealD epsilon;  //step size
 | 
			
		||||
 | 
			
		||||
  //Evolve the gauge field by 1 step of size eps and update tau
 | 
			
		||||
  void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl)
 | 
			
		||||
 | 
			
		||||
  //Integrate the Wilson flow for Nstep steps of size epsilon
 | 
			
		||||
  WilsonFlow(const RealD epsilon, const int Nstep, unsigned int meas_interval = 1): WilsonFlowBase<Gimpl>(meas_interval), Nstep(Nstep), epsilon(epsilon){}
 | 
			
		||||
 | 
			
		||||
  void smear(GaugeField& out, const GaugeField& in) const override;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//Wilson flow with adaptive step size
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
class WilsonFlowAdaptive: public WilsonFlowBase<Gimpl>{
 | 
			
		||||
private:
 | 
			
		||||
  RealD init_epsilon; //initial step size
 | 
			
		||||
  RealD maxTau; //integrate to t=maxTau
 | 
			
		||||
  RealD tolerance; //integration error tolerance
 | 
			
		||||
 | 
			
		||||
  //Evolve the gauge field by 1 step and update tau and the current time step eps
 | 
			
		||||
  //
 | 
			
		||||
  //If the step size eps is too large that a significant integration error results,
 | 
			
		||||
  //the gauge field (U) and tau will not be updated and the function will return 0; eps will be adjusted to a smaller
 | 
			
		||||
  //value for the next iteration.
 | 
			
		||||
  //
 | 
			
		||||
  //For a successful integration step the function will return 1
 | 
			
		||||
  int evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps) const;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl)
 | 
			
		||||
 | 
			
		||||
  WilsonFlowAdaptive(const RealD init_epsilon, const RealD maxTau, const RealD tolerance, unsigned int meas_interval = 1): 
 | 
			
		||||
  WilsonFlowBase<Gimpl>(meas_interval), init_epsilon(init_epsilon), maxTau(maxTau), tolerance(tolerance){}
 | 
			
		||||
 | 
			
		||||
  void smear(GaugeField& out, const GaugeField& in) const override;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Implementations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 | 
			
		||||
RealD WilsonFlowBase<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
 | 
			
		||||
  static WilsonGaugeAction<Gimpl> SG(3.0);
 | 
			
		||||
  return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
 | 
			
		||||
  typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
  typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  //E = 1/2 tr( F_munu F_munu )
 | 
			
		||||
  //However as  F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
 | 
			
		||||
  //F_01 F_02 F_03   F_12 F_13  F_23
 | 
			
		||||
  GaugeMat F(U.Grid());
 | 
			
		||||
  LatticeComplexD R(U.Grid());
 | 
			
		||||
  R = Zero();
 | 
			
		||||
  
 | 
			
		||||
  for(int mu=0;mu<3;mu++){
 | 
			
		||||
    for(int nu=mu+1;nu<4;nu++){
 | 
			
		||||
      WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
 | 
			
		||||
      R = R + trace(F*F);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ComplexD out = sum(R);
 | 
			
		||||
  out = t*t*out / RealD(U.Grid()->gSites());
 | 
			
		||||
  return -real(out); //minus sign necessary for +ve energy
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
 | 
			
		||||
  std::vector<RealD> out;
 | 
			
		||||
  resetActions();
 | 
			
		||||
  addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){ 
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
 | 
			
		||||
      out.push_back( energyDensityPlaquette(t,U) );
 | 
			
		||||
    });      
 | 
			
		||||
  smear(V,U);
 | 
			
		||||
  return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
 | 
			
		||||
  GaugeField V(U);
 | 
			
		||||
  return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
 | 
			
		||||
  std::vector<RealD> out;
 | 
			
		||||
  resetActions();
 | 
			
		||||
  addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){ 
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
 | 
			
		||||
      out.push_back( energyDensityCloverleaf(t,U) );
 | 
			
		||||
    });      
 | 
			
		||||
  smear(V,U);
 | 
			
		||||
  return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
 | 
			
		||||
  GaugeField V(U);
 | 
			
		||||
  return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
 | 
			
		||||
  addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "  << step << "  " << t << "  " << energyDensityPlaquette(t,U) << std::endl;
 | 
			
		||||
    });
 | 
			
		||||
  addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "  << step << "  " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
  GaugeField tmp(U.Grid());
 | 
			
		||||
  SG.deriv(U, Z);
 | 
			
		||||
  this->SG.deriv(U, Z);
 | 
			
		||||
  Z *= 0.25;                                  // Z0 = 1/4 * F(U)
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
 | 
			
		||||
  Z *= -17.0/8.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // -17/32*Z0 +Z1
 | 
			
		||||
  this->SG.deriv(U, tmp); Z += tmp;                 // -17/32*Z0 +Z1
 | 
			
		||||
  Z *= 8.0/9.0;                               // Z = -17/36*Z0 +8/9*Z1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
 | 
			
		||||
  Z *= -4.0/3.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  this->SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
  tau += epsilon;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
 | 
			
		||||
  if (maxTau - taus < epsilon){
 | 
			
		||||
    epsilon = maxTau-taus;
 | 
			
		||||
  }
 | 
			
		||||
  //std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
  GaugeField Zprime(U.Grid());
 | 
			
		||||
  GaugeField tmp(U.Grid()), Uprime(U.Grid());
 | 
			
		||||
  Uprime = U;
 | 
			
		||||
  SG.deriv(U, Z);
 | 
			
		||||
  Zprime = -Z;
 | 
			
		||||
  Z *= 0.25;                                  // Z0 = 1/4 * F(U)
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "[WilsonFlow] Nstep   : " << Nstep << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "[WilsonFlow] epsilon : " << epsilon << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
 | 
			
		||||
 | 
			
		||||
  Z *= -17.0/8.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // -17/32*Z0 +Z1
 | 
			
		||||
  Zprime += 2.0*tmp;
 | 
			
		||||
  Z *= 8.0/9.0;                               // Z = -17/36*Z0 +8/9*Z1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  Z *= -4.0/3.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
 | 
			
		||||
  // Ramos 
 | 
			
		||||
  Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
 | 
			
		||||
  // Compute distance as norm^2 of the difference
 | 
			
		||||
  GaugeField diffU = U - Uprime;
 | 
			
		||||
  RealD diff = norm2(diffU);
 | 
			
		||||
  // adjust integration step
 | 
			
		||||
    
 | 
			
		||||
  taus += epsilon;
 | 
			
		||||
  //std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
 | 
			
		||||
  //std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
 | 
			
		||||
  RealD td = tau(step);
 | 
			
		||||
  return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
 | 
			
		||||
  return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#define WF_TIMING 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
 | 
			
		||||
  out = in;
 | 
			
		||||
  for (unsigned int step = 1; step <= Nstep; step++) {
 | 
			
		||||
  RealD taus = 0.;
 | 
			
		||||
  for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
 | 
			
		||||
    auto start = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    evolve_step(out);
 | 
			
		||||
    evolve_step(out, taus);
 | 
			
		||||
    auto end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    std::chrono::duration<double> diff = end - start;
 | 
			
		||||
#ifdef WF_TIMING
 | 
			
		||||
    std::cout << "Time to evolve " << diff.count() << " s\n";
 | 
			
		||||
#endif
 | 
			
		||||
    std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
 | 
			
		||||
		  << step << "  " << tau(step) << "  " 
 | 
			
		||||
	      << energyDensityPlaquette(step,out) << std::endl;
 | 
			
		||||
    if( step % measure_interval == 0){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "
 | 
			
		||||
		<< step << "  " 
 | 
			
		||||
		<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    //Perform measurements
 | 
			
		||||
    for(auto const &meas : this->functions)
 | 
			
		||||
      if( step % meas.first == 0 ) meas.second(step,taus,out);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
 | 
			
		||||
int WilsonFlowAdaptive<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps) const{
 | 
			
		||||
  if (maxTau - tau < eps){
 | 
			
		||||
    eps = maxTau-tau;
 | 
			
		||||
  }
 | 
			
		||||
  //std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
  GaugeField Zprime(U.Grid());
 | 
			
		||||
  GaugeField tmp(U.Grid()), Uprime(U.Grid()), Usave(U.Grid());
 | 
			
		||||
  Uprime = U;
 | 
			
		||||
  Usave = U;
 | 
			
		||||
 | 
			
		||||
  this->SG.deriv(U, Z);
 | 
			
		||||
  Zprime = -Z;
 | 
			
		||||
  Z *= 0.25;                                  // Z0 = 1/4 * F(U)
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
 | 
			
		||||
  Z *= -17.0/8.0;
 | 
			
		||||
  this->SG.deriv(U, tmp); Z += tmp;                 // -17/32*Z0 +Z1
 | 
			
		||||
  Zprime += 2.0*tmp;
 | 
			
		||||
  Z *= 8.0/9.0;                               // Z = -17/36*Z0 +8/9*Z1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  Z *= -4.0/3.0;
 | 
			
		||||
  this->SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
 | 
			
		||||
  // Ramos arXiv:1301.4388
 | 
			
		||||
  Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
 | 
			
		||||
 | 
			
		||||
  // Compute distance using Ramos' definition
 | 
			
		||||
  GaugeField diffU = U - Uprime;
 | 
			
		||||
  RealD max_dist = 0;
 | 
			
		||||
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    typename Gimpl::GaugeLinkField diffU_mu = PeekIndex<LorentzIndex>(diffU, mu);
 | 
			
		||||
    RealD dist_mu = sqrt( maxLocalNorm2(diffU_mu) ) /Nc/Nc; //maximize over sites
 | 
			
		||||
    max_dist = std::max(max_dist, dist_mu); //maximize over mu
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  int ret;
 | 
			
		||||
  if(max_dist < tolerance) {
 | 
			
		||||
    tau += eps;
 | 
			
		||||
    ret = 1;
 | 
			
		||||
  } else {
 | 
			
		||||
    U = Usave;
 | 
			
		||||
    ret = 0;
 | 
			
		||||
  }
 | 
			
		||||
  eps = eps*0.95*std::pow(tolerance/max_dist,1./3.);
 | 
			
		||||
  std::cout << GridLogMessage << "Adaptive smearing : Distance: "<< max_dist <<" Step successful: " << ret << " New epsilon: " << eps << std::endl; 
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "[WilsonFlow] initial epsilon : " << init_epsilon << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "[WilsonFlow] full trajectory : " << maxTau << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "[WilsonFlow] tolerance   : " << tolerance << std::endl;
 | 
			
		||||
  out = in;
 | 
			
		||||
  taus = epsilon;
 | 
			
		||||
  RealD taus = 0.;
 | 
			
		||||
  RealD eps = init_epsilon;
 | 
			
		||||
  unsigned int step = 0;
 | 
			
		||||
  do{
 | 
			
		||||
    step++;
 | 
			
		||||
    //std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
 | 
			
		||||
    evolve_step_adaptive(out, maxTau);
 | 
			
		||||
    std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
 | 
			
		||||
		  << step << "  " << taus << "  "
 | 
			
		||||
	      << energyDensityPlaquette(out) << std::endl;
 | 
			
		||||
    if( step % measure_interval == 0){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "
 | 
			
		||||
		<< step << "  " 
 | 
			
		||||
		<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    int step_success = evolve_step_adaptive(out, taus, eps); 
 | 
			
		||||
    step += step_success; //step will not be incremented if the integration step fails
 | 
			
		||||
 | 
			
		||||
    //Perform measurements
 | 
			
		||||
    if(step_success)
 | 
			
		||||
      for(auto const &meas : this->functions)
 | 
			
		||||
	if( step % meas.first == 0 ) meas.second(step,taus,out);
 | 
			
		||||
  } while (taus < maxTau);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -88,6 +88,12 @@ namespace PeriodicBC {
 | 
			
		||||
    return CovShiftBackward(Link,mu,arg);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
 | 
			
		||||
  {
 | 
			
		||||
    return Cshift(Link, mu, shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -158,6 +164,9 @@ namespace ConjugateBC {
 | 
			
		||||
    //    std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
 | 
			
		||||
    return Cshift(tmp,mu,-1);// moves towards positive mu
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U^T_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
 | 
			
		||||
    GridBase *grid = Link.Grid();
 | 
			
		||||
@@ -176,6 +185,9 @@ namespace ConjugateBC {
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = S_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = S*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  ShiftStaple(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -208,6 +220,47 @@ namespace ConjugateBC {
 | 
			
		||||
    return CovShiftBackward(Link,mu,arg);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //shift = 2
 | 
			
		||||
  //Out(x) = U_\mu(x+2\hat\mu)  | x_\mu < L-2
 | 
			
		||||
  //       = U*_\mu(1)  | x_\mu == L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-2
 | 
			
		||||
  //shift = -2
 | 
			
		||||
  //Out(x) = U_\mu(x-2mu)  | x_\mu > 1
 | 
			
		||||
  //       = U*_\mu(L-2)  | x_\mu == 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 1
 | 
			
		||||
  //etc
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = Link.Grid();
 | 
			
		||||
    int Lmu = grid->GlobalDimensions()[mu];
 | 
			
		||||
    assert(abs(shift) < Lmu && "Invalid shift value");
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger>> coor(grid);
 | 
			
		||||
    LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
    Lattice<gauge> tmp(grid);
 | 
			
		||||
    if(shift > 0){
 | 
			
		||||
      tmp = Cshift(Link, mu, shift);
 | 
			
		||||
      tmp = where(coor >= Lmu-shift, conjugate(tmp), tmp);
 | 
			
		||||
      return tmp;
 | 
			
		||||
    }else if(shift < 0){
 | 
			
		||||
      tmp = Link;
 | 
			
		||||
      tmp = where(coor >= Lmu+shift, conjugate(tmp), tmp);
 | 
			
		||||
      return Cshift(tmp, mu, shift);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //shift == 0
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -40,27 +40,45 @@ public:
 | 
			
		||||
  typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
  typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
  static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      Complex cmi(0.0,-1.0);
 | 
			
		||||
      A[mu] = Ta(U[mu]) * cmi;
 | 
			
		||||
    }
 | 
			
		||||
  //A_\mu(x) = -i Ta(U_\mu(x) )   where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag)  is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
 | 
			
		||||
  static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
 | 
			
		||||
    Complex cmi(0.0,-1.0);
 | 
			
		||||
    A = Ta(U) * cmi;
 | 
			
		||||
  }
 | 
			
		||||
  static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
  
 | 
			
		||||
  //The derivative of the Lie algebra field
 | 
			
		||||
  static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
    GridBase* grid = U[0].Grid();
 | 
			
		||||
    GaugeMat Ax(grid);
 | 
			
		||||
    GaugeMat Axm1(grid);
 | 
			
		||||
    GaugeMat Utmp(grid);
 | 
			
		||||
 | 
			
		||||
    dmuAmu=Zero();
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      if ( mu != orthog ) {
 | 
			
		||||
	dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
 | 
			
		||||
	//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
 | 
			
		||||
	//Ax = A_\mu(x)
 | 
			
		||||
	GaugeLinkToLieAlgebraField(U[mu], Ax);
 | 
			
		||||
	
 | 
			
		||||
	//Axm1 = A_\mu(x_\mu-1)
 | 
			
		||||
	Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
 | 
			
		||||
	GaugeLinkToLieAlgebraField(Utmp, Axm1);
 | 
			
		||||
	
 | 
			
		||||
	//Derivative
 | 
			
		||||
	dmuAmu = dmuAmu + Ax - Axm1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
 | 
			
		||||
  //Fix the gauge field Umu
 | 
			
		||||
  //0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    GaugeMat xform(grid);
 | 
			
		||||
    SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
 | 
			
		||||
  }
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
 | 
			
		||||
  //Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -123,28 +141,25 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
 | 
			
		||||
    if (err_on_no_converge) assert(0);
 | 
			
		||||
    if (err_on_no_converge)
 | 
			
		||||
      assert(0 && "Gauge fixing did not converge within the specified number of iterations");
 | 
			
		||||
  };
 | 
			
		||||
  static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
  static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
    GridBase *grid = U[0].Grid();
 | 
			
		||||
 | 
			
		||||
    std::vector<GaugeMat> A(Nd,grid);
 | 
			
		||||
    GaugeMat g(grid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkToLieAlgebraField(U,A);
 | 
			
		||||
    ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    Real vol = grid->gSites();
 | 
			
		||||
    Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
 | 
			
		||||
 | 
			
		||||
    xform = g*xform ;
 | 
			
		||||
    SU<Nc>::GaugeTransform(U,g);
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(U,g);
 | 
			
		||||
 | 
			
		||||
    return trG;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
  static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = U[0].Grid();
 | 
			
		||||
 | 
			
		||||
@@ -159,11 +174,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    GaugeMat g(grid);
 | 
			
		||||
    GaugeMat dmuAmu_p(grid);
 | 
			
		||||
    std::vector<GaugeMat> A(Nd,grid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkToLieAlgebraField(U,A);
 | 
			
		||||
 | 
			
		||||
    DmuAmu(A,dmuAmu,orthog);
 | 
			
		||||
    DmuAmu(U,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    std::vector<int> mask(Nd,1);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
 | 
			
		||||
@@ -207,16 +218,16 @@ public:
 | 
			
		||||
    Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
 | 
			
		||||
 | 
			
		||||
    xform = g*xform ;
 | 
			
		||||
    SU<Nc>::GaugeTransform(U,g);
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(U,g);
 | 
			
		||||
 | 
			
		||||
    return trG;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
  static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    Complex cialpha(0.0,-alpha);
 | 
			
		||||
    GaugeMat ciadmam(grid);
 | 
			
		||||
    DmuAmu(A,dmuAmu,orthog);
 | 
			
		||||
    DmuAmu(U,dmuAmu,orthog);
 | 
			
		||||
    ciadmam = dmuAmu*cialpha;
 | 
			
		||||
    SU<Nc>::taExp(ciadmam,g);
 | 
			
		||||
  }  
 | 
			
		||||
 
 | 
			
		||||
@@ -615,7 +615,6 @@ public:
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
@@ -694,32 +693,32 @@ public:
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  template<typename GaugeField,typename GaugeMat>
 | 
			
		||||
  static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
    GaugeMat U(grid);
 | 
			
		||||
    GaugeMat ag(grid); ag = adj(g);
 | 
			
		||||
    typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      U = g*U*Cshift(ag, mu, 1);
 | 
			
		||||
      U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
      PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeMat>
 | 
			
		||||
  static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    GaugeMat ag(grid); ag = adj(g);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = g*U[mu]*Cshift(ag, mu, 1);
 | 
			
		||||
      U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField,typename GaugeMat>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    LieRandomize(pRNG,g,1.0);
 | 
			
		||||
    GaugeTransform(Umu,g);
 | 
			
		||||
    GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
 | 
			
		||||
 
 | 
			
		||||
@@ -125,6 +125,57 @@ public:
 | 
			
		||||
    return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // sum over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void siteSpatialPlaquette(ComplexField &Plaq,
 | 
			
		||||
                            const std::vector<GaugeMat> &U) {
 | 
			
		||||
    ComplexField sitePlaq(U[0].Grid());
 | 
			
		||||
    Plaq = Zero();
 | 
			
		||||
    for (int mu = 1; mu < Nd-1; mu++) {
 | 
			
		||||
      for (int nu = 0; nu < mu; nu++) {
 | 
			
		||||
        traceDirPlaquette(sitePlaq, U, mu, nu);
 | 
			
		||||
        Plaq = Plaq + sitePlaq;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // sum over all x,y,z and over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
    std::vector<GaugeMat> U(Nd, Umu.Grid());
 | 
			
		||||
    // inefficient here
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ComplexField Plaq(Umu.Grid());
 | 
			
		||||
 | 
			
		||||
    siteSpatialPlaquette(Plaq, U);
 | 
			
		||||
    typedef typename ComplexField::scalar_object sobj;
 | 
			
		||||
    std::vector<sobj> Tq;
 | 
			
		||||
    sliceSum(Plaq, Tq, Nd-1);
 | 
			
		||||
 | 
			
		||||
    std::vector<Real> out(Tq.size());
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // average over all x,y,z and over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
    std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
 | 
			
		||||
    int Lt = Umu.Grid()->FullDimensions()[Nd-1];
 | 
			
		||||
    assert(sumplaq.size() == Lt);
 | 
			
		||||
    double vol = Umu.Grid()->gSites() / Lt;
 | 
			
		||||
    double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
 | 
			
		||||
    for(int t=0;t<Lt;t++)
 | 
			
		||||
      sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
 | 
			
		||||
    return sumplaq;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // average over all x,y,z the temporal loop
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
@@ -362,11 +413,11 @@ public:
 | 
			
		||||
    GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu);  // some redundant copies
 | 
			
		||||
    GaugeMat vu = v*u;
 | 
			
		||||
      //FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
 | 
			
		||||
      FS = (u*v + Cshift(vu, mu, -1));
 | 
			
		||||
      FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
 | 
			
		||||
      FS = 0.125*(FS - adj(FS));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real TopologicalCharge(GaugeLorentz &U){
 | 
			
		||||
  static Real TopologicalCharge(const GaugeLorentz &U){
 | 
			
		||||
    // 4d topological charge
 | 
			
		||||
    assert(Nd==4);
 | 
			
		||||
    // Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
 | 
			
		||||
@@ -389,6 +440,203 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N,  mu >= nu
 | 
			
		||||
  //cf  https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7  for 1x2 Wilson loop    
 | 
			
		||||
  //Clockwise ordering
 | 
			
		||||
  static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){  
 | 
			
		||||
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
 | 
			
		||||
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
 | 
			
		||||
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
 | 
			
		||||
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
 | 
			
		||||
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
 | 
			
		||||
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
 | 
			
		||||
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
 | 
			
		||||
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
 | 
			
		||||
 | 
			
		||||
    //Upper right loop
 | 
			
		||||
    GaugeMat tmp = BmuI;
 | 
			
		||||
    for(int i=1;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = tmp;
 | 
			
		||||
 | 
			
		||||
    //Upper left loop
 | 
			
		||||
    tmp = BnuI;
 | 
			
		||||
    for(int j=1;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
    //Lower right loop
 | 
			
		||||
    tmp = FnuI;
 | 
			
		||||
    for(int j=1;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
    //Lower left loop
 | 
			
		||||
    tmp = FmuI;
 | 
			
		||||
    for(int i=1;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
#undef Fmu
 | 
			
		||||
#undef Bmu
 | 
			
		||||
#undef Fnu
 | 
			
		||||
#undef Bnu
 | 
			
		||||
#undef FmuI
 | 
			
		||||
#undef BmuI
 | 
			
		||||
#undef FnuI
 | 
			
		||||
#undef BnuI
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Field strength from MxN Wilson loop
 | 
			
		||||
  //Note F_numu = - F_munu
 | 
			
		||||
  static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){  
 | 
			
		||||
    GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
    GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
 | 
			
		||||
    if(M == N){
 | 
			
		||||
      GaugeMat F(Umu.Grid());
 | 
			
		||||
      CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
 | 
			
		||||
      FS = 0.125 * ( F - adj(F) );
 | 
			
		||||
    }else{
 | 
			
		||||
      //Average over both orientations
 | 
			
		||||
      GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
 | 
			
		||||
      CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
 | 
			
		||||
      CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
 | 
			
		||||
      FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Topological charge contribution from MxN Wilson loops
 | 
			
		||||
  //cf  https://arxiv.org/pdf/hep-lat/9701012.pdf  Eq 6
 | 
			
		||||
  //output is the charge by timeslice: sum over timeslices to obtain the total
 | 
			
		||||
  static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
 | 
			
		||||
    assert(Nd == 4);
 | 
			
		||||
    std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
 | 
			
		||||
    //Note F_numu = - F_munu
 | 
			
		||||
    //hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu  or rho,sigma
 | 
			
		||||
    //Use nu > mu
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
      for(int nu=mu+1; nu<Nd; nu++){
 | 
			
		||||
	F[mu][nu] = new GaugeMat(U.Grid());
 | 
			
		||||
	FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
 | 
			
		||||
 | 
			
		||||
    static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
 | 
			
		||||
    static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
 | 
			
		||||
 | 
			
		||||
    ComplexField fsum(U.Grid());
 | 
			
		||||
    fsum = Zero();
 | 
			
		||||
    for(int c=0;c<3;c++){
 | 
			
		||||
      int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
 | 
			
		||||
      int eps = signs[c];
 | 
			
		||||
      fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) ); 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++)
 | 
			
		||||
      for(int nu=mu+1; nu<Nd; nu++)
 | 
			
		||||
	delete F[mu][nu];
 | 
			
		||||
    
 | 
			
		||||
    typedef typename ComplexField::scalar_object sobj;
 | 
			
		||||
    std::vector<sobj> Tq;
 | 
			
		||||
    sliceSum(fsum, Tq, Nd-1);
 | 
			
		||||
 | 
			
		||||
    std::vector<Real> out(Tq.size());
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
 | 
			
		||||
    std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
 | 
			
		||||
    Real out(0);
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out += Tq[t];
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
 | 
			
		||||
  //Use coefficients from hep-lat/9701012
 | 
			
		||||
  //1x1 : c1=(19.-55.*c5)/9.
 | 
			
		||||
  //2x2 : c2=(1-64.*c5)/9.
 | 
			
		||||
  //1x2 : c3=(-64.+640.*c5)/45.
 | 
			
		||||
  //1x3 : c4=1./5.-2.*c5
 | 
			
		||||
  //3x3 : c5=1./20.
 | 
			
		||||
  //Output array outer index contains the loops in the above order
 | 
			
		||||
  //Inner index is the time coordinate
 | 
			
		||||
  static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
 | 
			
		||||
    static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };       
 | 
			
		||||
    std::vector<std::vector<Real> > out(5);
 | 
			
		||||
    for(int i=0;i<5;i++){	
 | 
			
		||||
      out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
  }   
 | 
			
		||||
 | 
			
		||||
  static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){   
 | 
			
		||||
    static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
 | 
			
		||||
    std::vector<Real> out(5);
 | 
			
		||||
    std::cout << GridLogMessage << "Computing topological charge" << std::endl;
 | 
			
		||||
    for(int i=0;i<5;i++){
 | 
			
		||||
      out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
 | 
			
		||||
      std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Compute the 5Li topological charge
 | 
			
		||||
  static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
 | 
			
		||||
    std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
 | 
			
		||||
 | 
			
		||||
    double c5=1./20.;
 | 
			
		||||
    double c4=1./5.-2.*c5;
 | 
			
		||||
    double c3=(-64.+640.*c5)/45.;
 | 
			
		||||
    double c2=(1-64.*c5)/9.;
 | 
			
		||||
    double c1=(19.-55.*c5)/9.;
 | 
			
		||||
 | 
			
		||||
    int Lt = loops[0].size();
 | 
			
		||||
    std::vector<Real> out(Lt,0.);
 | 
			
		||||
    for(int t=0;t<Lt;t++)
 | 
			
		||||
      out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real TopologicalCharge5Li(const GaugeLorentz &U){
 | 
			
		||||
    std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
 | 
			
		||||
    Real Q = 0.;
 | 
			
		||||
    for(int t=0;t<Qt.size();t++) Q += Qt[t];
 | 
			
		||||
    std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
 | 
			
		||||
    return Q;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Similar to above for rectangle is required
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -501,7 +501,7 @@ struct Conj{
 | 
			
		||||
struct TimesMinusI{
 | 
			
		||||
  // Complex
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  inline vec<T> operator()(vec<T> a, vec<T> b){
 | 
			
		||||
  inline vec<T> operator()(vec<T> a){
 | 
			
		||||
    vec<T> out;
 | 
			
		||||
    const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
 | 
			
		||||
    svbool_t pg1 = acle<T>::pg1();
 | 
			
		||||
@@ -520,7 +520,7 @@ struct TimesMinusI{
 | 
			
		||||
struct TimesI{
 | 
			
		||||
  // Complex
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  inline vec<T> operator()(vec<T> a, vec<T> b){
 | 
			
		||||
  inline vec<T> operator()(vec<T> a){
 | 
			
		||||
    vec<T> out;
 | 
			
		||||
    const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
 | 
			
		||||
    svbool_t pg1 = acle<T>::pg1();
 | 
			
		||||
 
 | 
			
		||||
@@ -418,7 +418,7 @@ struct Conj{
 | 
			
		||||
 | 
			
		||||
struct TimesMinusI{
 | 
			
		||||
  // Complex float
 | 
			
		||||
  inline vecf operator()(vecf a, vecf b){
 | 
			
		||||
  inline vecf operator()(vecf a){
 | 
			
		||||
    lutf tbl_swap = acle<float>::tbl_swap();
 | 
			
		||||
    pred pg1 = acle<float>::pg1();
 | 
			
		||||
    pred pg_odd = acle<float>::pg_odd();
 | 
			
		||||
@@ -428,7 +428,7 @@ struct TimesMinusI{
 | 
			
		||||
    return svneg_m(a_v, pg_odd, a_v);
 | 
			
		||||
  }
 | 
			
		||||
  // Complex double
 | 
			
		||||
  inline vecd operator()(vecd a, vecd b){
 | 
			
		||||
  inline vecd operator()(vecd a){
 | 
			
		||||
    lutd tbl_swap = acle<double>::tbl_swap();
 | 
			
		||||
    pred pg1 = acle<double>::pg1();
 | 
			
		||||
    pred pg_odd = acle<double>::pg_odd();
 | 
			
		||||
@@ -441,7 +441,7 @@ struct TimesMinusI{
 | 
			
		||||
 | 
			
		||||
struct TimesI{
 | 
			
		||||
  // Complex float
 | 
			
		||||
  inline vecf operator()(vecf a, vecf b){
 | 
			
		||||
  inline vecf operator()(vecf a){
 | 
			
		||||
    lutf tbl_swap = acle<float>::tbl_swap();
 | 
			
		||||
    pred pg1 = acle<float>::pg1();
 | 
			
		||||
    pred pg_even = acle<float>::pg_even();
 | 
			
		||||
@@ -451,7 +451,7 @@ struct TimesI{
 | 
			
		||||
    return svneg_m(a_v, pg_even, a_v);
 | 
			
		||||
  }
 | 
			
		||||
  // Complex double
 | 
			
		||||
  inline vecd operator()(vecd a, vecd b){
 | 
			
		||||
  inline vecd operator()(vecd a){
 | 
			
		||||
    lutd tbl_swap = acle<double>::tbl_swap();
 | 
			
		||||
    pred pg1 = acle<double>::pg1();
 | 
			
		||||
    pred pg_even = acle<double>::pg_even();
 | 
			
		||||
 
 | 
			
		||||
@@ -405,12 +405,12 @@ struct Conj{
 | 
			
		||||
 | 
			
		||||
struct TimesMinusI{
 | 
			
		||||
  //Complex single
 | 
			
		||||
  inline __m256 operator()(__m256 in, __m256 ret){
 | 
			
		||||
  inline __m256 operator()(__m256 in){
 | 
			
		||||
    __m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in);   // r,-i
 | 
			
		||||
    return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r
 | 
			
		||||
  }
 | 
			
		||||
  //Complex double
 | 
			
		||||
  inline __m256d operator()(__m256d in, __m256d ret){
 | 
			
		||||
  inline __m256d operator()(__m256d in){
 | 
			
		||||
    __m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i
 | 
			
		||||
    return _mm256_shuffle_pd(tmp,tmp,0x5);
 | 
			
		||||
  }
 | 
			
		||||
@@ -418,12 +418,12 @@ struct TimesMinusI{
 | 
			
		||||
 | 
			
		||||
struct TimesI{
 | 
			
		||||
  //Complex single
 | 
			
		||||
  inline __m256 operator()(__m256 in, __m256 ret){
 | 
			
		||||
  inline __m256 operator()(__m256 in){
 | 
			
		||||
    __m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r
 | 
			
		||||
    return _mm256_addsub_ps(_mm256_setzero_ps(),tmp);          // i,-r
 | 
			
		||||
  }
 | 
			
		||||
  //Complex double
 | 
			
		||||
  inline __m256d operator()(__m256d in, __m256d ret){
 | 
			
		||||
  inline __m256d operator()(__m256d in){
 | 
			
		||||
    __m256d tmp = _mm256_shuffle_pd(in,in,0x5);
 | 
			
		||||
    return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -271,14 +271,14 @@ struct Conj{
 | 
			
		||||
 | 
			
		||||
struct TimesMinusI{
 | 
			
		||||
  //Complex single
 | 
			
		||||
  inline __m512 operator()(__m512 in, __m512 ret){
 | 
			
		||||
  inline __m512 operator()(__m512 in){
 | 
			
		||||
    //__m512 tmp = _mm512_mask_sub_ps(in,0xaaaa,_mm512_setzero_ps(),in); // real -imag 
 | 
			
		||||
    //return _mm512_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,1,0));   // 0x4E??
 | 
			
		||||
    __m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
 | 
			
		||||
    return _mm512_mask_sub_ps(tmp,0xaaaa,_mm512_setzero_ps(),tmp);
 | 
			
		||||
  }
 | 
			
		||||
  //Complex double
 | 
			
		||||
  inline __m512d operator()(__m512d in, __m512d ret){
 | 
			
		||||
  inline __m512d operator()(__m512d in){
 | 
			
		||||
    //__m512d tmp = _mm512_mask_sub_pd(in,0xaa,_mm512_setzero_pd(),in); // real -imag 
 | 
			
		||||
    //return _mm512_shuffle_pd(tmp,tmp,0x55);
 | 
			
		||||
    __m512d tmp = _mm512_shuffle_pd(in,in,0x55);
 | 
			
		||||
@@ -288,17 +288,16 @@ struct TimesMinusI{
 | 
			
		||||
 | 
			
		||||
struct TimesI{
 | 
			
		||||
  //Complex single
 | 
			
		||||
  inline __m512 operator()(__m512 in, __m512 ret){
 | 
			
		||||
  inline __m512 operator()(__m512 in){
 | 
			
		||||
    __m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
 | 
			
		||||
    return _mm512_mask_sub_ps(tmp,0x5555,_mm512_setzero_ps(),tmp); 
 | 
			
		||||
  }
 | 
			
		||||
  //Complex double
 | 
			
		||||
  inline __m512d operator()(__m512d in, __m512d ret){
 | 
			
		||||
  inline __m512d operator()(__m512d in){
 | 
			
		||||
    __m512d tmp = _mm512_shuffle_pd(in,in,0x55);
 | 
			
		||||
    return _mm512_mask_sub_pd(tmp,0x55,_mm512_setzero_pd(),tmp); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
// Gpermute utilities consider coalescing into 1 Gpermute
 | 
			
		||||
 
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user