mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 05:24:32 +00:00 
			
		
		
		
	Compare commits
	
		
			103 Commits
		
	
	
		
			249c7aee39
			...
			fix/HOST_N
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 2b4399f8b1 | |||
| f17b8de907 | |||
| 
						 | 
					7e5bd46dd3 | ||
| 
						 | 
					228bbb9d81 | ||
| b812a7b4c6 | |||
| 891a366f73 | |||
| 10116b3be8 | |||
| a46a0f0882 | |||
| a26a8a38f4 | |||
| 7435315d50 | |||
| 9b5f741e85 | |||
| 517822fdd2 | |||
| 1b93a9be88 | |||
| 783a66b348 | |||
| 976c3e9b59 | |||
| f8ca971dae | |||
| 21bc8c24df | |||
| 30228214f7 | |||
| 
						 | 
					2ae980ae43 | ||
| 
						 | 
					6153dec2e4 | ||
| 
						 | 
					c805f86343 | ||
| 
						 | 
					04ca065281 | ||
| 
						 | 
					88d8fa43d7 | ||
| 
						 | 
					3c49762875 | ||
| 
						 | 
					436bf1d9d3 | ||
| 
						 | 
					f70df6e195 | ||
| 
						 | 
					fce3852dff | ||
| 
						 | 
					ee1b8bbdbd | ||
| 
						 | 
					3f1636637d | ||
| 
						 | 
					3c9012676a | ||
| 
						 | 
					b507fe209c | ||
| 
						 | 
					6cd2d8fcd5 | ||
| 
						 | 
					b02d022993 | ||
| 
						 | 
					94581e3c7a | ||
| 
						 | 
					88b52cc045 | ||
| 
						 | 
					0a816b5509 | ||
| 
						 | 
					1c8b807c2e | ||
| 97f7a9ecb3 | |||
| 
						 | 
					15878f7613 | ||
| 
						 | 
					e0d5e3c6c7 | ||
| 
						 | 
					6f3455900e | ||
| 
						 | 
					56827d6ad6 | ||
| e4a641b64e | |||
| 8849f187f1 | |||
| 
						 | 
					db420525b3 | ||
| 
						 | 
					b5659d106e | ||
| 
						 | 
					4b43307402 | ||
| 
						 | 
					09af8c25a2 | ||
| 
						 | 
					9514035b87 | ||
| 
						 | 
					2da09ae99b | ||
| 
						 | 
					a38fb0e04a | ||
| 
						 | 
					1514b4f137 | ||
| 
						 | 
					0a6e2f42c5 | ||
| 
						 | 
					ab2de131bd | ||
| 
						 | 
					5af8da76d7 | ||
| 
						 | 
					b8b9dc952d | ||
| 
						 | 
					79a6ed32d8 | ||
| 
						 | 
					caa5f97723 | ||
| 
						 | 
					4924b3209e | ||
| 
						 | 
					00f24f8765 | ||
| 
						 | 
					f5b3d582b0 | ||
| 
						 | 
					981c93d67a | ||
| 
						 | 
					c020b78e02 | ||
| 
						 | 
					9cd4128833 | ||
| 
						 | 
					c8b17c9526 | ||
| 
						 | 
					2ae2a81e85 | ||
| 
						 | 
					69c869d345 | ||
| 
						 | 
					df9b958c40 | ||
| 
						 | 
					3d3376d1a3 | ||
| 
						 | 
					21ed6ac0f4 | ||
| 
						 | 
					7bb8ab7000 | ||
| 
						 | 
					2c824c2641 | ||
| 
						 | 
					391fd9cc6a | ||
| 
						 | 
					bf4369f72d | ||
| 
						 | 
					36600899e2 | ||
| 
						 | 
					b9c70d156b | ||
| 
						 | 
					eb89579fe7 | ||
| 
						 | 
					0cfd13d18b | ||
| 
						 | 
					63d9b8e8a3 | ||
| 
						 | 
					d247031c98 | ||
| 
						 | 
					affff3865f | ||
| 
						 | 
					9c22655b5a | ||
| 
						 | 
					99d879ea7f | ||
| 
						 | 
					9d263d9a7d | ||
| 
						 | 
					9015c229dc | ||
| 
						 | 
					a7eabaad56 | ||
| 
						 | 
					eeb4703b84 | ||
| 
						 | 
					a07421b3d3 | ||
| 
						 | 
					cda53b4068 | ||
| 
						 | 
					df99f227c1 | ||
| 
						 | 
					d536c67b9d | ||
| 
						 | 
					f44f005dad | ||
| 
						 | 
					26b2caf570 | ||
| 
						 | 
					8bb078db25 | ||
| 
						 | 
					b61ba40023 | ||
| 
						 | 
					14d352ea4f | ||
| 
						 | 
					1cf9ec1cce | ||
| 
						 | 
					4b994a1bc7 | ||
| 
						 | 
					e506d6d369 | ||
| 
						 | 
					ab56ad8d7a | ||
| 
						 | 
					3825329f8e | ||
| 
						 | 
					c7bdf2c0e4 | ||
| 
						 | 
					bf91778550 | 
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -1,3 +1,7 @@
 | 
			
		||||
# Doxygen stuff
 | 
			
		||||
html/*
 | 
			
		||||
latex/*
 | 
			
		||||
 | 
			
		||||
# Compiled Object files #
 | 
			
		||||
#########################
 | 
			
		||||
*.slo
 | 
			
		||||
 
 | 
			
		||||
@@ -34,7 +34,7 @@
 | 
			
		||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
			
		||||
#undef __SYCL_DEVICE_ONLY__
 | 
			
		||||
#define EIGEN_DONT_VECTORIZE
 | 
			
		||||
//#undef EIGEN_USE_SYCL
 | 
			
		||||
#undef EIGEN_USE_SYCL
 | 
			
		||||
#define __SYCL__REDEFINE__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
 | 
			
		||||
 * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
 | 
			
		||||
 * type = 1 for the approximation which is infinite at x = 0. */
 | 
			
		||||
 | 
			
		||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
 | 
			
		||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
			
		||||
  INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
 | 
			
		||||
    l, invlambda, xi, xisq, *tv, s, opl;
 | 
			
		||||
  int m, czero, ts;
 | 
			
		||||
@@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
 | 
			
		||||
  construct_partfrac(d);
 | 
			
		||||
  construct_contfrac(d);
 | 
			
		||||
 | 
			
		||||
  /* Converting everything to PRECISION for external use only */
 | 
			
		||||
  /* Converting everything to ZOLO_PRECISION for external use only */
 | 
			
		||||
 | 
			
		||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
			
		||||
  zd -> A = (PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> n = d -> n;
 | 
			
		||||
  zd -> type = d -> type;
 | 
			
		||||
  zd -> dn = d -> dn;
 | 
			
		||||
@@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
 | 
			
		||||
  zd -> deg_num = d -> deg_num;
 | 
			
		||||
  zd -> deg_denom = d -> deg_denom;
 | 
			
		||||
 | 
			
		||||
  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
			
		||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
			
		||||
  free(d -> a);
 | 
			
		||||
 | 
			
		||||
  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
			
		||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
			
		||||
  free(d -> ap);
 | 
			
		||||
 | 
			
		||||
  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
			
		||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
			
		||||
  free(d -> alpha);
 | 
			
		||||
 | 
			
		||||
  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
			
		||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
			
		||||
  free(d -> beta);
 | 
			
		||||
 | 
			
		||||
  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
			
		||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
			
		||||
  free(d -> gamma);
 | 
			
		||||
 | 
			
		||||
  free(d);
 | 
			
		||||
@@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
zolotarev_data* higham(PRECISION epsilon, int n) {
 | 
			
		||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
			
		||||
  INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
 | 
			
		||||
  int m, czero;
 | 
			
		||||
  zolotarev_data *zd;
 | 
			
		||||
@@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
 | 
			
		||||
  /* Converting everything to PRECISION for external use only */
 | 
			
		||||
 | 
			
		||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
			
		||||
  zd -> A = (PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> n = d -> n;
 | 
			
		||||
  zd -> type = d -> type;
 | 
			
		||||
  zd -> dn = d -> dn;
 | 
			
		||||
@@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
 | 
			
		||||
  zd -> deg_num = d -> deg_num;
 | 
			
		||||
  zd -> deg_denom = d -> deg_denom;
 | 
			
		||||
 | 
			
		||||
  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
			
		||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
			
		||||
  free(d -> a);
 | 
			
		||||
 | 
			
		||||
  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
			
		||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
			
		||||
  free(d -> ap);
 | 
			
		||||
 | 
			
		||||
  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
			
		||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
			
		||||
  free(d -> alpha);
 | 
			
		||||
 | 
			
		||||
  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
			
		||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
			
		||||
  free(d -> beta);
 | 
			
		||||
 | 
			
		||||
  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
			
		||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
			
		||||
  free(d -> gamma);
 | 
			
		||||
 | 
			
		||||
  free(d);
 | 
			
		||||
@@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
 | 
			
		||||
#ifdef TEST
 | 
			
		||||
 | 
			
		||||
#undef ZERO
 | 
			
		||||
#define ZERO ((PRECISION) 0)
 | 
			
		||||
#define ZERO ((ZOLO_PRECISION) 0)
 | 
			
		||||
#undef ONE
 | 
			
		||||
#define ONE ((PRECISION) 1)
 | 
			
		||||
#define ONE ((ZOLO_PRECISION) 1)
 | 
			
		||||
#undef TWO
 | 
			
		||||
#define TWO ((PRECISION) 2)
 | 
			
		||||
#define TWO ((ZOLO_PRECISION) 2)
 | 
			
		||||
 | 
			
		||||
/* Evaluate the rational approximation R(x) using the factored form */
 | 
			
		||||
 | 
			
		||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  PRECISION R;
 | 
			
		||||
  ZOLO_PRECISION R;
 | 
			
		||||
 | 
			
		||||
  if (rdata -> type == 0) {
 | 
			
		||||
    R = rdata -> A * x;
 | 
			
		||||
@@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
 | 
			
		||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
 | 
			
		||||
 | 
			
		||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
			
		||||
  ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
			
		||||
  for (m = 0; m < rdata -> dd; m++)
 | 
			
		||||
    R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
 | 
			
		||||
  if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
 | 
			
		||||
@@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
 * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
 | 
			
		||||
 * but with signalling overflow you will get an error message. */
 | 
			
		||||
 | 
			
		||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  PRECISION R = rdata -> beta[0] * x;
 | 
			
		||||
  ZOLO_PRECISION R = rdata -> beta[0] * x;
 | 
			
		||||
  for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
 | 
			
		||||
  return R;
 | 
			
		||||
}    
 | 
			
		||||
 | 
			
		||||
/* Evaluate the rational approximation R(x) using Cayley form */
 | 
			
		||||
 | 
			
		||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  PRECISION T;
 | 
			
		||||
  ZOLO_PRECISION T;
 | 
			
		||||
 | 
			
		||||
  T = rdata -> type == 0 ? ONE : -ONE;
 | 
			
		||||
  for (m = 0; m < rdata -> n; m++)
 | 
			
		||||
@@ -607,7 +607,7 @@ int main(int argc, char** argv) {
 | 
			
		||||
  int m, n, plotpts = 5000, type = 0;
 | 
			
		||||
  float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
 | 
			
		||||
  zolotarev_data *rdata;
 | 
			
		||||
  PRECISION y;
 | 
			
		||||
  ZOLO_PRECISION y;
 | 
			
		||||
  FILE *plot_function, *plot_error, 
 | 
			
		||||
    *plot_partfrac, *plot_contfrac, *plot_cayley;
 | 
			
		||||
 | 
			
		||||
@@ -626,13 +626,13 @@ int main(int argc, char** argv) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  rdata = type == 2 
 | 
			
		||||
    ? higham((PRECISION) eps, n) 
 | 
			
		||||
    : zolotarev((PRECISION) eps, n, type);
 | 
			
		||||
    ? higham((ZOLO_PRECISION) eps, n) 
 | 
			
		||||
    : zolotarev((ZOLO_PRECISION) eps, n, type);
 | 
			
		||||
 | 
			
		||||
  printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" 
 | 
			
		||||
	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
 | 
			
		||||
	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
 | 
			
		||||
	 "\tPRECISION = " STRINGIFY(PRECISION)
 | 
			
		||||
	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
 | 
			
		||||
	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
 | 
			
		||||
	 "\tDelta = %g (maximum error)\n\n"
 | 
			
		||||
	 "\tA = %g (overall factor)\n",
 | 
			
		||||
@@ -681,15 +681,15 @@ int main(int argc, char** argv) {
 | 
			
		||||
    x = 2.4 * (float) m / plotpts - 1.2;
 | 
			
		||||
    if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
 | 
			
		||||
      /* skip x = 0 for type 1, as R(0) is singular */
 | 
			
		||||
      y = zolotarev_eval((PRECISION) x, rdata);
 | 
			
		||||
      y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
 | 
			
		||||
      fprintf(plot_function, "%g %g\n", x, (float) y);
 | 
			
		||||
      fprintf(plot_error, "%g %g\n",
 | 
			
		||||
	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
 | 
			
		||||
      ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
 | 
			
		||||
      ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
			
		||||
		       / rdata -> Delta);
 | 
			
		||||
      ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
 | 
			
		||||
      ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
			
		||||
		       / rdata -> Delta);
 | 
			
		||||
      ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
 | 
			
		||||
      ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
			
		||||
		       / rdata -> Delta);
 | 
			
		||||
      if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
 | 
			
		||||
	maxypferr = MAX(maxypferr, fabs(ypferr));
 | 
			
		||||
 
 | 
			
		||||
@@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
 | 
			
		||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
			
		||||
 | 
			
		||||
#ifndef ZOLOTAREV_INTERNAL
 | 
			
		||||
#ifndef PRECISION
 | 
			
		||||
#define PRECISION double
 | 
			
		||||
#ifndef ZOLO_PRECISION
 | 
			
		||||
#define ZOLO_PRECISION double
 | 
			
		||||
#endif
 | 
			
		||||
#define ZPRECISION PRECISION
 | 
			
		||||
#define ZPRECISION ZOLO_PRECISION
 | 
			
		||||
#define ZOLOTAREV_DATA zolotarev_data
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -77,8 +77,8 @@ typedef struct {
 | 
			
		||||
 * zolotarev_data structure. The arguments must satisfy the constraints that
 | 
			
		||||
 * epsilon > 0, n > 0, and type = 0 or 1. */
 | 
			
		||||
 | 
			
		||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
 | 
			
		||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
 | 
			
		||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
 | 
			
		||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
 | 
			
		||||
void zolotarev_free(zolotarev_data *zdata);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata);
 | 
			
		||||
NAMESPACE_END(Approx);
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										34
									
								
								Grid/algorithms/blas/BatchedBlas.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/algorithms/blas/BatchedBlas.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,34 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
gridblasHandle_t GridBLAS::gridblasHandle;
 | 
			
		||||
int              GridBLAS::gridblasInit;
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										727
									
								
								Grid/algorithms/blas/BatchedBlas.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										727
									
								
								Grid/algorithms/blas/BatchedBlas.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,727 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#include <hipblas/hipblas.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
#include <cublas_v2.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
#if 0
 | 
			
		||||
#define GRID_ONE_MKL
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
///////////////////////////////////////////////////////////////////////	  
 | 
			
		||||
// Need to rearrange lattice data to be in the right format for a
 | 
			
		||||
// batched multiply. Might as well make these static, dense packed
 | 
			
		||||
///////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  typedef hipblasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  typedef cublasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
 | 
			
		||||
 | 
			
		||||
class GridBLAS {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  static gridblasHandle_t gridblasHandle;
 | 
			
		||||
  static int            gridblasInit;
 | 
			
		||||
  
 | 
			
		||||
  static void Init(void)
 | 
			
		||||
  {
 | 
			
		||||
    if ( ! gridblasInit ) {
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
      std::cout << "cublasCreate"<<std::endl;
 | 
			
		||||
      cublasCreate(&gridblasHandle);
 | 
			
		||||
      cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
      std::cout << "hipblasCreate"<<std::endl;
 | 
			
		||||
      hipblasCreate(&gridblasHandle);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      gridblasHandle = theGridAccelerator;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
      cl::sycl::cpu_selector selector;
 | 
			
		||||
      cl::sycl::device selectedDevice { selector };
 | 
			
		||||
      gridblasHandle =new sycl::queue (selectedDevice);
 | 
			
		||||
#endif
 | 
			
		||||
      gridblasInit=1;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // Force construct once
 | 
			
		||||
  GridBLAS() { Init(); };
 | 
			
		||||
  ~GridBLAS() { };
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // BLAS GEMM conventions:
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // - C = alpha A * B + beta C
 | 
			
		||||
  // Dimensions:
 | 
			
		||||
  // - C_m.n
 | 
			
		||||
  // - A_m.k
 | 
			
		||||
  // - B_k.n
 | 
			
		||||
  // - Flops = 8 M N K
 | 
			
		||||
  // - Bytes = 2*sizeof(word) * (MN+MK+KN)
 | 
			
		||||
  // M=60, N=12
 | 
			
		||||
  // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void synchronise(void)
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipDeviceSynchronize();
 | 
			
		||||
    assert(err==hipSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cudaDeviceSynchronize();
 | 
			
		||||
    assert(err==cudaSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
    gridblasHandle->wait();
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    
 | 
			
		||||
    static deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasZgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    //	 std::cout << " hipblas return code " <<(int)err<<std::endl;
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasZgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    //    synchronise();
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    static deviceVector<ComplexF> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasCgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasCgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuComplex *) &beta_p[0],
 | 
			
		||||
				  (cuComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    ComplexF alphaf(real(alpha),imag(alpha));
 | 
			
		||||
    ComplexF betaf(real(beta),imag(beta));
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexF c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Single precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    static deviceVector<RealF> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasSgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (float *) &alpha_p[0],
 | 
			
		||||
				   (float **)&Amk[0], lda,
 | 
			
		||||
				   (float **)&Bkn[0], ldb,
 | 
			
		||||
				   (float *) &beta_p[0],
 | 
			
		||||
				   (float **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasSgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (float *) &alpha_p[0],
 | 
			
		||||
				  (float **)&Amk[0], lda,
 | 
			
		||||
				  (float **)&Bkn[0], ldb,
 | 
			
		||||
				  (float *) &beta_p[0],
 | 
			
		||||
				  (float **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Double precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    
 | 
			
		||||
    static deviceVector<RealD> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasDgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (double *) &alpha_p[0],
 | 
			
		||||
				   (double **)&Amk[0], lda,
 | 
			
		||||
				   (double **)&Bkn[0], ldb,
 | 
			
		||||
				   (double *) &beta_p[0],
 | 
			
		||||
				   (double **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasDgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (double *) &alpha_p[0],
 | 
			
		||||
				  (double **)&Amk[0], lda,
 | 
			
		||||
				  (double **)&Bkn[0], ldb,
 | 
			
		||||
				  (double *) &beta_p[0],
 | 
			
		||||
				  (double **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    /*
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      &m64,&n64,&k64,
 | 
			
		||||
      (double *) &alpha_p[0],
 | 
			
		||||
      (double **)&Amk[0], lda,
 | 
			
		||||
      (double **)&Bkn[0], ldb,
 | 
			
		||||
      (double *) &beta_p[0],
 | 
			
		||||
      (double **)&Cmn[0], ldc,
 | 
			
		||||
      1,&batchCount64);
 | 
			
		||||
     */
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Strided case used by benchmark, but generally unused in Grid
 | 
			
		||||
  // Keep a code example in double complex, but don't generate the single and real variants for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  void gemmStridedBatched(int m,int n, int k,
 | 
			
		||||
			  ComplexD alpha,
 | 
			
		||||
			  ComplexD* Amk,  // pointer list to matrices
 | 
			
		||||
			  ComplexD* Bkn,
 | 
			
		||||
			  ComplexD beta,
 | 
			
		||||
			  ComplexD* Cmn,
 | 
			
		||||
			  int batchCount)
 | 
			
		||||
  {
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    int sda = m*k;
 | 
			
		||||
    int sdb = k*n;
 | 
			
		||||
    int sdc = m*n;
 | 
			
		||||
    deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  m,n,k,
 | 
			
		||||
					  (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
					  (hipblasDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
					  (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
					  batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      m,n,k,
 | 
			
		||||
			      (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
			      (cuDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
			      (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
			      batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
 | 
			
		||||
    oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						m,n,k,
 | 
			
		||||
						alpha,
 | 
			
		||||
						(const ComplexD *)Amk,lda,sda,
 | 
			
		||||
						(const ComplexD *)Bkn,ldb,sdb,
 | 
			
		||||
						beta,
 | 
			
		||||
						(ComplexD *)Cmn,ldc,sdc,
 | 
			
		||||
						batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
     // Need a default/reference implementation
 | 
			
		||||
     for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
       for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	 for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	   ComplexD c_mn(0.0);
 | 
			
		||||
	   for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  double benchmark(int M, int N, int K, int BATCH)
 | 
			
		||||
  {
 | 
			
		||||
    int32_t N_A = M*K*BATCH;
 | 
			
		||||
    int32_t N_B = K*N*BATCH;
 | 
			
		||||
    int32_t N_C = M*N*BATCH;
 | 
			
		||||
    deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
 | 
			
		||||
    ComplexD alpha(1.0);
 | 
			
		||||
    ComplexD beta (1.0);
 | 
			
		||||
    RealD flops = 8.0*M*N*K*BATCH;
 | 
			
		||||
    int ncall=10;
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    for(int i=0;i<ncall;i++){
 | 
			
		||||
      gemmStridedBatched(M,N,K,
 | 
			
		||||
			 alpha,
 | 
			
		||||
			 &A[0], // m x k 
 | 
			
		||||
			 &B[0], // k x n
 | 
			
		||||
			 beta, 
 | 
			
		||||
			 &C[0], // m x n
 | 
			
		||||
			 BATCH);
 | 
			
		||||
    }
 | 
			
		||||
    synchronise();
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    flops = 8.0*M*N*K*BATCH*ncall;
 | 
			
		||||
    flops = flops/(t1-t0)/1.e3;
 | 
			
		||||
    return flops; // Returns gigaflops
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -176,6 +176,7 @@ template<class T> using cshiftAllocator = std::allocator<T>;
 | 
			
		||||
template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
			
		||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_transpose.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_local.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_reduction.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_peekpoke.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_reality.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_real_imag.h>
 | 
			
		||||
@@ -46,5 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_unary.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_basis.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
 | 
			
		||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
 | 
			
		||||
{
 | 
			
		||||
  autoView( buf_v , buf, CpuRead);
 | 
			
		||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,6 +31,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
 | 
			
		||||
#endif
 | 
			
		||||
#include <Grid/lattice/Lattice_slicesum_core.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -284,6 +285,7 @@ template<class vobj>
 | 
			
		||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
			
		||||
  //  std::cerr<<"flight log " << std::hexfloat << nrm <<" "<<crc(left)<<std::endl;
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
@@ -448,19 +450,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
			
		||||
  int e2=    grid->_slice_block [orthogdim];
 | 
			
		||||
  int stride=grid->_slice_stride[orthogdim];
 | 
			
		||||
  int ostride=grid->_ostride[orthogdim];
 | 
			
		||||
  
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
  autoView( Data_v, Data, CpuRead);
 | 
			
		||||
  thread_for( r,rd, {
 | 
			
		||||
    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int ss= so+n*stride+b;
 | 
			
		||||
	lvSum[r]=lvSum[r]+Data_v[ss];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  //Reduce Data down to lvSum
 | 
			
		||||
  sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
 | 
			
		||||
 | 
			
		||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
			
		||||
  Coordinate icoor(Nd);
 | 
			
		||||
@@ -504,6 +497,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										213
									
								
								Grid/lattice/Lattice_slicesum_core.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										213
									
								
								Grid/lattice/Lattice_slicesum_core.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,213 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#if defined(GRID_CUDA)
 | 
			
		||||
 | 
			
		||||
#include <cub/cub.cuh>
 | 
			
		||||
#define gpucub cub
 | 
			
		||||
#define gpuError_t cudaError_t
 | 
			
		||||
#define gpuSuccess cudaSuccess
 | 
			
		||||
 | 
			
		||||
#elif defined(GRID_HIP)
 | 
			
		||||
 | 
			
		||||
#include <hipcub/hipcub.hpp>
 | 
			
		||||
#define gpucub hipcub
 | 
			
		||||
#define gpuError_t hipError_t
 | 
			
		||||
#define gpuSuccess hipSuccess
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
  vobj zero_init;
 | 
			
		||||
  zeroit(zero_init);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  void *temp_storage_array = NULL;
 | 
			
		||||
  size_t temp_storage_bytes = 0;
 | 
			
		||||
  vobj *d_out;
 | 
			
		||||
  int* d_offsets;
 | 
			
		||||
 | 
			
		||||
  std::vector<int> offsets(rd+1,0);
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < offsets.size(); i++) {
 | 
			
		||||
    offsets[i] = i*subvol_size;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Allocate memory for output and offset arrays on device
 | 
			
		||||
  d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
 | 
			
		||||
  
 | 
			
		||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
			
		||||
  
 | 
			
		||||
  //copy offsets to device
 | 
			
		||||
  acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
  if (gpuErr!=gpuSuccess) {
 | 
			
		||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //allocate memory for temp_storage_array  
 | 
			
		||||
  temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
 | 
			
		||||
  
 | 
			
		||||
  //prepare buffer for reduction
 | 
			
		||||
  //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
 | 
			
		||||
  //use 2d accelerator_for to avoid launch latencies found when serially looping over rd 
 | 
			
		||||
  accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{ 
 | 
			
		||||
  
 | 
			
		||||
    int n = s / e2;
 | 
			
		||||
    int b = s % e2;
 | 
			
		||||
    int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
    int ss= so+n*stride+b;
 | 
			
		||||
 | 
			
		||||
    coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
			
		||||
 | 
			
		||||
  });
 | 
			
		||||
  
 | 
			
		||||
  //issue segmented reductions in computeStream
 | 
			
		||||
  gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
  if (gpuErr!=gpuSuccess) {
 | 
			
		||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  //sync after copy
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
 
 | 
			
		||||
  acceleratorFreeDevice(temp_storage_array);
 | 
			
		||||
  acceleratorFreeDevice(d_out);
 | 
			
		||||
  acceleratorFreeDevice(d_offsets);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
  typedef typename vobj::vector_type vector;
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
  const int osites = rd*e1*e2;
 | 
			
		||||
  commVector<vector>buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)Data;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  Vector<vector> lvSum_small(rd);
 | 
			
		||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
			
		||||
 | 
			
		||||
  for (int w = 0; w < words; w++) {
 | 
			
		||||
    accelerator_for(ss,osites,1,{
 | 
			
		||||
	    buf[ss] = dat[ss*words+w];
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
			
		||||
      
 | 
			
		||||
    for (int r = 0; r < rd; r++) {
 | 
			
		||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
 | 
			
		||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
			
		||||
      sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
 | 
			
		||||
  vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
 | 
			
		||||
  vobj vobj_zero;
 | 
			
		||||
  zeroit(vobj_zero);
 | 
			
		||||
    
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  //prepare reduction buffer 
 | 
			
		||||
  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
			
		||||
  
 | 
			
		||||
      int n = s / e2;
 | 
			
		||||
      int b = s % e2;
 | 
			
		||||
      int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
      int ss= so+n*stride+b;
 | 
			
		||||
 | 
			
		||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
 | 
			
		||||
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
      mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
 | 
			
		||||
      theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
 | 
			
		||||
          cgh.parallel_for(cl::sycl::range<1>{subvol_size},
 | 
			
		||||
          Reduction,
 | 
			
		||||
          [=](cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
              auto s = item[0];
 | 
			
		||||
              sum += rb_p[r*subvol_size+s];
 | 
			
		||||
          });
 | 
			
		||||
      });
 | 
			
		||||
      theGridAccelerator->wait();
 | 
			
		||||
      lvSum[r] = mysum[0];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  free(mysum,*theGridAccelerator);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
  autoView( Data_v, Data, CpuRead);
 | 
			
		||||
  thread_for( r,rd, {
 | 
			
		||||
    int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int ss= so+n*stride+b;
 | 
			
		||||
        lvSum[r]=lvSum[r]+Data_v[ss];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) 
 | 
			
		||||
{
 | 
			
		||||
  #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
  
 | 
			
		||||
  sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #elif defined(GRID_SYCL)
 | 
			
		||||
  
 | 
			
		||||
  sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #else
 | 
			
		||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
 | 
			
		||||
extern GridLogger GridLogError;
 | 
			
		||||
extern GridLogger GridLogWarning;
 | 
			
		||||
extern GridLogger GridLogMessage;
 | 
			
		||||
extern GridLogger GridLogDebug  ;
 | 
			
		||||
extern GridLogger GridLogDebug;
 | 
			
		||||
extern GridLogger GridLogPerformance;
 | 
			
		||||
extern GridLogger GridLogDslash;
 | 
			
		||||
extern GridLogger GridLogIterative  ;
 | 
			
		||||
extern GridLogger GridLogIntegrator  ;
 | 
			
		||||
extern GridLogger GridLogIterative;
 | 
			
		||||
extern GridLogger GridLogIntegrator;
 | 
			
		||||
extern GridLogger GridLogHMC;
 | 
			
		||||
extern GridLogger GridLogMemory;
 | 
			
		||||
extern GridLogger GridLogTracing;
 | 
			
		||||
@@ -191,6 +191,41 @@ extern Colours    GridLogColours;
 | 
			
		||||
 | 
			
		||||
std::string demangle(const char* name) ;
 | 
			
		||||
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
inline std::string sjoin(Args&&... args) noexcept {
 | 
			
		||||
    std::ostringstream msg;
 | 
			
		||||
    (msg << ... << args);
 | 
			
		||||
    return msg.str();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make log messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_log(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << GridLogMessage << msg << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make warning messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_warn(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make error messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_error(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make pass messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_pass(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define _NBACKTRACE (256)
 | 
			
		||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -34,7 +34,7 @@ class GridTracer {
 | 
			
		||||
};
 | 
			
		||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
 | 
			
		||||
inline void tracePop(const char *name) { roctxRangePop(); }
 | 
			
		||||
inline int  traceStart(const char *name) { roctxRangeStart(name); }
 | 
			
		||||
inline int  traceStart(const char *name) { return roctxRangeStart(name); }
 | 
			
		||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -280,20 +280,16 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
 | 
			
		||||
  if( interior && exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptInlineAsm  ) {  ASM_CALL(DhopSiteAsm);     return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( interior ) {
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  assert(0 && " Kernel optimisation case not covered ");
 | 
			
		||||
}
 | 
			
		||||
@@ -322,19 +318,13 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
  
 | 
			
		||||
  if( interior && exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( interior ) {
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -237,7 +237,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      int multiplier = as.at(level).multiplier;
 | 
			
		||||
      ActionLevel<Field> * Level = new ActionLevel<Field>(multiplier);
 | 
			
		||||
      ActionLevel<Field, RepresentationPolicy> * Level = new ActionLevel<Field, RepresentationPolicy>(multiplier);
 | 
			
		||||
      Level->push_back(new EmptyAction<Field>); 
 | 
			
		||||
      LevelForces.push_back(*Level);
 | 
			
		||||
      // does it copy by value or reference??
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										389
									
								
								Grid/qcd/smearing/HISQSmearing.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										389
									
								
								Grid/qcd/smearing/HISQSmearing.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,389 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/smearing/HISQSmearing.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: D. A. Clarke <clarke.davida@gmail.com> 
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*
 | 
			
		||||
    @file HISQSmearing.h
 | 
			
		||||
    @brief Declares classes related to HISQ smearing 
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// TODO: find a way to fold this into the stencil header. need to access grid to get
 | 
			
		||||
// Nd, since you don't want to inherit from QCD.h
 | 
			
		||||
/*!  @brief append arbitrary shift path to shifts */
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
void appendShift(std::vector<Coordinate>& shifts, int dir, Args... args) {
 | 
			
		||||
    Coordinate shift(Nd,0);
 | 
			
		||||
    generalShift(shift, dir, args...); 
 | 
			
		||||
    // push_back creates an element at the end of shifts and
 | 
			
		||||
    // assigns the data in the argument to it.
 | 
			
		||||
    shifts.push_back(shift);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief figure out the stencil index from mu and nu */
 | 
			
		||||
accelerator_inline int stencilIndex(int mu, int nu) {
 | 
			
		||||
    // Nshifts depends on how you built the stencil
 | 
			
		||||
    int Nshifts = 6;
 | 
			
		||||
    return Nshifts*nu + Nd*Nshifts*mu;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief structure holding the link treatment */
 | 
			
		||||
struct SmearingParameters{
 | 
			
		||||
    SmearingParameters(){}
 | 
			
		||||
    Real c_1;               // 1 link
 | 
			
		||||
    Real c_naik;            // Naik term
 | 
			
		||||
    Real c_3;               // 3 link
 | 
			
		||||
    Real c_5;               // 5 link
 | 
			
		||||
    Real c_7;               // 7 link
 | 
			
		||||
    Real c_lp;              // 5 link Lepage
 | 
			
		||||
    SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) 
 | 
			
		||||
        : c_1(c1),
 | 
			
		||||
          c_naik(cnaik),
 | 
			
		||||
          c_3(c3),
 | 
			
		||||
          c_5(c5),
 | 
			
		||||
          c_7(c7),
 | 
			
		||||
          c_lp(clp){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief create fat links from link variables */
 | 
			
		||||
template<class Gimpl> 
 | 
			
		||||
class Smear_HISQ : public Gimpl {
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    GridCartesian* const _grid;
 | 
			
		||||
    SmearingParameters _linkTreatment;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
    INHERIT_GIMPL_TYPES(Gimpl);
 | 
			
		||||
    typedef typename Gimpl::GaugeField     GF;
 | 
			
		||||
    typedef typename Gimpl::GaugeLinkField LF;
 | 
			
		||||
    typedef typename Gimpl::ComplexField   CF;
 | 
			
		||||
 | 
			
		||||
    // Don't allow default values here.
 | 
			
		||||
    Smear_HISQ(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) 
 | 
			
		||||
        : _grid(grid), 
 | 
			
		||||
          _linkTreatment(c1,cnaik,c3,c5,c7,clp) {
 | 
			
		||||
        assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
 | 
			
		||||
        assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Allow to pass a pointer to a C-style, double array for MILC convenience
 | 
			
		||||
    Smear_HISQ(GridCartesian* grid, double* coeff) 
 | 
			
		||||
        : _grid(grid), 
 | 
			
		||||
          _linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) {
 | 
			
		||||
        assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
 | 
			
		||||
        assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ~Smear_HISQ() {}
 | 
			
		||||
 | 
			
		||||
    // Intent: OUT--u_smr, u_naik
 | 
			
		||||
    //          IN--u_thin
 | 
			
		||||
    void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
 | 
			
		||||
 | 
			
		||||
        SmearingParameters lt = this->_linkTreatment;
 | 
			
		||||
        auto grid = this->_grid;
 | 
			
		||||
 | 
			
		||||
        // Create a padded cell of extra padding depth=1 and fill the padding.
 | 
			
		||||
        int depth = 1;
 | 
			
		||||
        PaddedCell Ghost(depth,grid);
 | 
			
		||||
        GF Ughost = Ghost.Exchange(u_thin);
 | 
			
		||||
 | 
			
		||||
        // This is where auxiliary N-link fields and the final smear will be stored. 
 | 
			
		||||
        GF Ughost_fat(Ughost.Grid());
 | 
			
		||||
        GF Ughost_3link(Ughost.Grid());
 | 
			
		||||
        GF Ughost_5linkA(Ughost.Grid());
 | 
			
		||||
        GF Ughost_5linkB(Ughost.Grid());
 | 
			
		||||
 | 
			
		||||
        // mu-nu plane stencil. We allow mu==nu to make indexing the stencil easier,
 | 
			
		||||
        // but these entries will not be used. 
 | 
			
		||||
        std::vector<Coordinate> shifts;
 | 
			
		||||
        for(int mu=0;mu<Nd;mu++)
 | 
			
		||||
        for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
            appendShift(shifts,mu);
 | 
			
		||||
            appendShift(shifts,nu);
 | 
			
		||||
            appendShift(shifts,shiftSignal::NO_SHIFT);
 | 
			
		||||
            appendShift(shifts,mu,Back(nu));
 | 
			
		||||
            appendShift(shifts,Back(nu));
 | 
			
		||||
            appendShift(shifts,Back(mu));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // A GeneralLocalStencil has two indices: a site and stencil index 
 | 
			
		||||
        GeneralLocalStencil gStencil(Ughost.Grid(),shifts);
 | 
			
		||||
 | 
			
		||||
        // This is where contributions from the smearing get added together
 | 
			
		||||
        Ughost_fat=Zero();
 | 
			
		||||
 | 
			
		||||
        // This loop handles 3-, 5-, and 7-link constructs, minus Lepage and Naik.
 | 
			
		||||
        for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
 | 
			
		||||
            // TODO: This approach is slightly memory inefficient. It uses 25% extra memory 
 | 
			
		||||
            Ughost_3link =Zero();
 | 
			
		||||
            Ughost_5linkA=Zero();
 | 
			
		||||
            Ughost_5linkB=Zero();
 | 
			
		||||
 | 
			
		||||
            // Create the accessors
 | 
			
		||||
            autoView(U_v       , Ughost       , AcceleratorRead);
 | 
			
		||||
            autoView(U_fat_v   , Ughost_fat   , AcceleratorWrite);
 | 
			
		||||
            autoView(U_3link_v , Ughost_3link , AcceleratorWrite);
 | 
			
		||||
            autoView(U_5linkA_v, Ughost_5linkA, AcceleratorWrite);
 | 
			
		||||
            autoView(U_5linkB_v, Ughost_5linkB, AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
            // We infer some types that will be needed in the calculation.
 | 
			
		||||
            typedef decltype(gStencil.GetEntry(0,0)) stencilElement;
 | 
			
		||||
            typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix;
 | 
			
		||||
 | 
			
		||||
            int Nsites = U_v.size();
 | 
			
		||||
            auto gStencil_v = gStencil.View(); 
 | 
			
		||||
 | 
			
		||||
            accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
 | 
			
		||||
                stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
 | 
			
		||||
                U3matrix U0, U1, U2, U3, U4, U5, W;
 | 
			
		||||
                for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
                    if(nu==mu) continue;
 | 
			
		||||
                    int s = stencilIndex(mu,nu);
 | 
			
		||||
 | 
			
		||||
                    // The stencil gives us support points in the mu-nu plane that we will use to
 | 
			
		||||
                    // grab the links we need.
 | 
			
		||||
                    SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset;
 | 
			
		||||
                    SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset;
 | 
			
		||||
                    SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset;
 | 
			
		||||
                    SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
 | 
			
		||||
                    SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset;
 | 
			
		||||
                    SE5 = gStencil_v.GetEntry(s+5,site); int x_m_mu      = SE5->_offset;
 | 
			
		||||
 | 
			
		||||
                    // When you're deciding whether to take an adjoint, the question is: how is the
 | 
			
		||||
                    // stored link oriented compared to the one you want? If I imagine myself travelling
 | 
			
		||||
                    // with the to-be-updated link, I have two possible, alternative 3-link paths I can
 | 
			
		||||
                    // take, one starting by going to the left, the other starting by going to the right.
 | 
			
		||||
                    U0 = coalescedReadGeneralPermute(U_v[x_p_mu     ](nu),SE0->_permute,Nd);
 | 
			
		||||
                    U1 = coalescedReadGeneralPermute(U_v[x_p_nu     ](mu),SE1->_permute,Nd);
 | 
			
		||||
                    U2 = coalescedReadGeneralPermute(U_v[x          ](nu),SE2->_permute,Nd);
 | 
			
		||||
                    U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
 | 
			
		||||
                    U4 = coalescedReadGeneralPermute(U_v[x_m_nu     ](mu),SE4->_permute,Nd);
 | 
			
		||||
                    U5 = coalescedReadGeneralPermute(U_v[x_m_nu     ](nu),SE4->_permute,Nd);
 | 
			
		||||
 | 
			
		||||
                    //  "left"          "right"
 | 
			
		||||
                    W = U2*U1*adj(U0) + adj(U5)*U4*U3;
 | 
			
		||||
 | 
			
		||||
                    // Save 3-link construct for later and add to smeared field.
 | 
			
		||||
                    coalescedWrite(U_3link_v[x](nu), W);
 | 
			
		||||
 | 
			
		||||
                    // The index operator (x) returns the coalesced read on GPU. The view [] index returns 
 | 
			
		||||
                    // a reference to the vector object. The [x](mu) returns a reference to the densely 
 | 
			
		||||
                    // packed (contiguous in memory) mu-th element of the vector object. On CPU, 
 | 
			
		||||
                    // coalescedRead/Write is the identity mapping assigning vector object to vector object.
 | 
			
		||||
                    // But on GPU it's non-trivial and maps scalar object to vector object and vice versa.
 | 
			
		||||
                    coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_3*W);
 | 
			
		||||
                }
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
            accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link 
 | 
			
		||||
                stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
 | 
			
		||||
                U3matrix U0, U1, U2, U3, U4, U5, W;
 | 
			
		||||
                int sigmaIndex = 0;
 | 
			
		||||
                for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
                    if(nu==mu) continue;
 | 
			
		||||
                    int s = stencilIndex(mu,nu);
 | 
			
		||||
                    for(int rho=0;rho<Nd;rho++) {
 | 
			
		||||
                        if (rho == mu || rho == nu) continue;
 | 
			
		||||
 | 
			
		||||
                        SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset;
 | 
			
		||||
                        SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset;
 | 
			
		||||
                        SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset;
 | 
			
		||||
                        SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
 | 
			
		||||
                        SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset;
 | 
			
		||||
 | 
			
		||||
                        U0 = coalescedReadGeneralPermute(      U_v[x_p_mu     ](nu ),SE0->_permute,Nd);
 | 
			
		||||
                        U1 = coalescedReadGeneralPermute(U_3link_v[x_p_nu     ](rho),SE1->_permute,Nd);
 | 
			
		||||
                        U2 = coalescedReadGeneralPermute(      U_v[x          ](nu ),SE2->_permute,Nd);
 | 
			
		||||
                        U3 = coalescedReadGeneralPermute(      U_v[x_p_mu_m_nu](nu ),SE3->_permute,Nd);
 | 
			
		||||
                        U4 = coalescedReadGeneralPermute(U_3link_v[x_m_nu     ](rho),SE4->_permute,Nd);
 | 
			
		||||
                        U5 = coalescedReadGeneralPermute(      U_v[x_m_nu     ](nu ),SE4->_permute,Nd);
 | 
			
		||||
 | 
			
		||||
                        W  = U2*U1*adj(U0) + adj(U5)*U4*U3;
 | 
			
		||||
 | 
			
		||||
                        if(sigmaIndex<3) {
 | 
			
		||||
                            coalescedWrite(U_5linkA_v[x](rho), W);
 | 
			
		||||
                        } else {
 | 
			
		||||
                            coalescedWrite(U_5linkB_v[x](rho), W);
 | 
			
		||||
                        }    
 | 
			
		||||
 | 
			
		||||
                        coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_5*W);
 | 
			
		||||
                        sigmaIndex++;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
            accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link
 | 
			
		||||
                stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
 | 
			
		||||
                U3matrix U0, U1, U2, U3, U4, U5, W;
 | 
			
		||||
                int sigmaIndex = 0;
 | 
			
		||||
                for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
                    if(nu==mu) continue;
 | 
			
		||||
                    int s = stencilIndex(mu,nu);
 | 
			
		||||
                    for(int rho=0;rho<Nd;rho++) {
 | 
			
		||||
                        if (rho == mu || rho == nu) continue;
 | 
			
		||||
 | 
			
		||||
                        SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset;
 | 
			
		||||
                        SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset;
 | 
			
		||||
                        SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset;
 | 
			
		||||
                        SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
 | 
			
		||||
                        SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset;
 | 
			
		||||
 | 
			
		||||
                        U0 = coalescedReadGeneralPermute(U_v[x_p_mu](nu),SE0->_permute,Nd);
 | 
			
		||||
                        if(sigmaIndex<3) {
 | 
			
		||||
                            U1 = coalescedReadGeneralPermute(U_5linkB_v[x_p_nu](rho),SE1->_permute,Nd);
 | 
			
		||||
                        } else {
 | 
			
		||||
                            U1 = coalescedReadGeneralPermute(U_5linkA_v[x_p_nu](rho),SE1->_permute,Nd);
 | 
			
		||||
                        }  
 | 
			
		||||
                        U2 = coalescedReadGeneralPermute(U_v[x](nu),SE2->_permute,Nd);
 | 
			
		||||
                        U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
 | 
			
		||||
                        if(sigmaIndex<3) {
 | 
			
		||||
                            U4 = coalescedReadGeneralPermute(U_5linkB_v[x_m_nu](rho),SE4->_permute,Nd);
 | 
			
		||||
                        } else {
 | 
			
		||||
                            U4 = coalescedReadGeneralPermute(U_5linkA_v[x_m_nu](rho),SE4->_permute,Nd);
 | 
			
		||||
                        }  
 | 
			
		||||
                        U5 = coalescedReadGeneralPermute(U_v[x_m_nu](nu),SE4->_permute,Nd);
 | 
			
		||||
 | 
			
		||||
                        W  = U2*U1*adj(U0) + adj(U5)*U4*U3;
 | 
			
		||||
 | 
			
		||||
                        coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_7*W);
 | 
			
		||||
                        sigmaIndex++;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
        } // end mu loop
 | 
			
		||||
 | 
			
		||||
        // c1, c3, c5, c7 construct contributions
 | 
			
		||||
        u_smr = Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
 | 
			
		||||
 | 
			
		||||
        // Load up U and V std::vectors to access thin and smeared links.
 | 
			
		||||
        std::vector<LF> U(Nd, grid);
 | 
			
		||||
        std::vector<LF> V(Nd, grid);
 | 
			
		||||
        std::vector<LF> Vnaik(Nd, grid);
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            U[mu] = PeekIndex<LorentzIndex>(u_thin, mu);
 | 
			
		||||
            V[mu] = PeekIndex<LorentzIndex>(u_smr, mu);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
 | 
			
		||||
            // Naik
 | 
			
		||||
            Vnaik[mu] = lt.c_naik*Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                    Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                      Gimpl::CovShiftIdentityForward(U[mu],mu)));
 | 
			
		||||
 | 
			
		||||
            // LePage
 | 
			
		||||
            for (int nu_h=1;nu_h<Nd;nu_h++) {
 | 
			
		||||
                int nu=(mu+nu_h)%Nd;
 | 
			
		||||
                                // nu, nu, mu, Back(nu), Back(nu)
 | 
			
		||||
                V[mu] = V[mu] + lt.c_lp*Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                                          Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                                            Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                              Gimpl::CovShiftBackward(U[nu],nu,
 | 
			
		||||
                                                Gimpl::CovShiftIdentityBackward(U[nu],nu)))))
 | 
			
		||||
                                // Back(nu), Back(nu), mu, nu, nu
 | 
			
		||||
                              + lt.c_lp*Gimpl::CovShiftBackward(U[nu],nu,
 | 
			
		||||
                                          Gimpl::CovShiftBackward(U[nu],nu,
 | 
			
		||||
                                            Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                              Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                                                Gimpl::CovShiftIdentityForward(U[nu],nu)))));
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Put V back into u_smr.
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            PokeIndex<LorentzIndex>(u_smr , V[mu]    , mu);
 | 
			
		||||
            PokeIndex<LorentzIndex>(u_naik, Vnaik[mu], mu);
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    // Intent: OUT--u_proj
 | 
			
		||||
    //          IN--u_mu
 | 
			
		||||
    void projectU3(GF& u_proj, GF& u_mu) const {
 | 
			
		||||
 | 
			
		||||
        auto grid = this->_grid;
 | 
			
		||||
 | 
			
		||||
        LF V(grid), Q(grid), sqrtQinv(grid), id_3(grid), diff(grid);
 | 
			
		||||
        CF c0(grid), c1(grid), c2(grid), g0(grid), g1(grid), g2(grid), S(grid), R(grid), theta(grid), 
 | 
			
		||||
           u(grid), v(grid), w(grid), den(grid), f0(grid), f1(grid), f2(grid);
 | 
			
		||||
 | 
			
		||||
        // Follow MILC 10.1103/PhysRevD.82.074501, eqs (B2-B3) and (C1-C8)
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            V  = PeekIndex<LorentzIndex>(u_mu, mu);
 | 
			
		||||
            Q  = adj(V)*V;
 | 
			
		||||
            c0 =        real(trace(Q));
 | 
			
		||||
            c1 = (1/2.)*real(trace(Q*Q));
 | 
			
		||||
            c2 = (1/3.)*real(trace(Q*Q*Q));
 | 
			
		||||
            S  = (1/3.)*c1-(1/18.)*c0*c0;
 | 
			
		||||
            if (norm2(S)<1e-28) {
 | 
			
		||||
                g0 = (1/3.)*c0; g1 = g0; g2 = g1;
 | 
			
		||||
            } else {
 | 
			
		||||
                R     = (1/2.)*c2-(1/3. )*c0*c1+(1/27.)*c0*c0*c0;
 | 
			
		||||
                theta = acos(R*pow(S,-1.5));
 | 
			
		||||
                g0    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta-2*M_PI/3.);
 | 
			
		||||
                g1    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta          );
 | 
			
		||||
                g2    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta+2*M_PI/3.);
 | 
			
		||||
            }
 | 
			
		||||
//            if (fabs(Q.determinant()/(g0*g1*g2)-1.0) > 1e-5) { SVD }
 | 
			
		||||
            u     = sqrt(g0) + sqrt(g1) + sqrt(g2);
 | 
			
		||||
            v     = sqrt(g0*g1) + sqrt(g0*g2) + sqrt(g1*g2);
 | 
			
		||||
            w     = sqrt(g0*g1*g2);
 | 
			
		||||
            den   = w*(u*v-w);
 | 
			
		||||
            f0    = (-w*(u*u+v)+u*v*v)/den;
 | 
			
		||||
            f1    = (-w-u*u*u+2.*u*v)/den;
 | 
			
		||||
            f2    = u/den;
 | 
			
		||||
            id_3  = 1.;
 | 
			
		||||
 | 
			
		||||
            sqrtQinv = f0*id_3 + f1*Q + f2*Q*Q;
 | 
			
		||||
 | 
			
		||||
            PokeIndex<LorentzIndex>(u_proj, V*sqrtQinv, mu);
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//    void derivative(const GaugeField& Gauge) const {
 | 
			
		||||
//    };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -5,4 +5,5 @@
 | 
			
		||||
#include <Grid/qcd/smearing/StoutSmearing.h>
 | 
			
		||||
#include <Grid/qcd/smearing/GaugeConfiguration.h>
 | 
			
		||||
#include <Grid/qcd/smearing/WilsonFlow.h>
 | 
			
		||||
#include <Grid/qcd/smearing/HISQSmearing.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1133,4 +1133,13 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vComplexF> : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vComplexD> : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vRealF   > : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vRealD   > : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vInteger > : public std::true_type {};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -137,5 +137,55 @@ public:
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////
 | 
			
		||||
// Some machinery to streamline making a stencil 
 | 
			
		||||
////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class shiftSignal {
 | 
			
		||||
public:
 | 
			
		||||
    enum {
 | 
			
		||||
        BACKWARD_CONST = 16,
 | 
			
		||||
        NO_SHIFT       = -1
 | 
			
		||||
    };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// TODO: put a check somewhere that BACKWARD_CONST > Nd!
 | 
			
		||||
 | 
			
		||||
/*!  @brief signals that you want to go backwards in direction dir */
 | 
			
		||||
inline int Back(const int dir) {
 | 
			
		||||
    // generalShift will use BACKWARD_CONST to determine whether we step forward or 
 | 
			
		||||
    // backward. Trick inspired by SIMULATeQCD. 
 | 
			
		||||
    return dir + shiftSignal::BACKWARD_CONST;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief shift one unit in direction dir */
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
void generalShift(Coordinate& shift, int dir) {
 | 
			
		||||
    if (dir >= shiftSignal::BACKWARD_CONST) {
 | 
			
		||||
        dir -= shiftSignal::BACKWARD_CONST;
 | 
			
		||||
        shift[dir]+=-1;
 | 
			
		||||
    } else if (dir == shiftSignal::NO_SHIFT) {
 | 
			
		||||
        ; // do nothing
 | 
			
		||||
    } else {
 | 
			
		||||
        shift[dir]+=1;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief follow a path of directions, shifting one unit in each direction */
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
void generalShift(Coordinate& shift, int dir, Args... args) {
 | 
			
		||||
    if (dir >= shiftSignal::BACKWARD_CONST) {
 | 
			
		||||
        dir -= shiftSignal::BACKWARD_CONST;
 | 
			
		||||
        shift[dir]+=-1;
 | 
			
		||||
    } else if (dir == shiftSignal::NO_SHIFT) {
 | 
			
		||||
        ; // do nothing
 | 
			
		||||
    } else {
 | 
			
		||||
        shift[dir]+=1;
 | 
			
		||||
    }
 | 
			
		||||
    generalShift(shift, args...);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -404,3 +404,12 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  };
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
template<typename T> struct
 | 
			
		||||
sycl::is_device_copyable<T, typename std::enable_if<
 | 
			
		||||
			      Grid::isGridTensor<T>::value  && (!std::is_trivially_copyable<T>::value),
 | 
			
		||||
			      void>::type>
 | 
			
		||||
  : public std::true_type {};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -225,6 +225,8 @@ inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
 | 
			
		||||
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
 | 
			
		||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
 | 
			
		||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
 | 
			
		||||
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyHostToDevice, stream);}
 | 
			
		||||
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToHost, stream);}
 | 
			
		||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
 | 
			
		||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
 | 
			
		||||
{
 | 
			
		||||
@@ -253,17 +255,13 @@ inline int  acceleratorIsCommunicable(void *ptr)
 | 
			
		||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#if 0
 | 
			
		||||
#include <CL/sycl.hpp>
 | 
			
		||||
#include <CL/sycl/usm.hpp>
 | 
			
		||||
#include <level_zero/ze_api.h>
 | 
			
		||||
#include <CL/sycl/backend/level_zero.hpp>
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
// Force deterministic reductions
 | 
			
		||||
#define SYCL_REDUCTION_DETERMINISTIC
 | 
			
		||||
#include <sycl/CL/sycl.hpp>
 | 
			
		||||
#include <sycl/usm.hpp>
 | 
			
		||||
#include <level_zero/ze_api.h>
 | 
			
		||||
#include <sycl/ext/oneapi/backend/level_zero.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -443,6 +441,8 @@ inline void acceleratorFreeShared(void *ptr){ auto r=hipFree(ptr);};
 | 
			
		||||
inline void acceleratorFreeDevice(void *ptr){ auto r=hipFree(ptr);};
 | 
			
		||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { auto r=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
 | 
			
		||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto r=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
 | 
			
		||||
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) { auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyHostToDevice, stream);}
 | 
			
		||||
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) { auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToHost, stream);}
 | 
			
		||||
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes)  { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
 | 
			
		||||
//inline void acceleratorCopySynchronise(void) {  }
 | 
			
		||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto r=hipMemset(base,value,bytes);}
 | 
			
		||||
 
 | 
			
		||||
@@ -77,6 +77,10 @@ feenableexcept (unsigned int excepts)
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef HOST_NAME_MAX
 | 
			
		||||
#define HOST_NAME_MAX _POSIX_HOST_NAME_MAX
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
@@ -393,6 +397,9 @@ void Grid_init(int *argc,char ***argv)
 | 
			
		||||
  std::cout << GridLogMessage << "MPI is initialised and logging filters activated "<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "================================================ "<<std::endl;
 | 
			
		||||
 | 
			
		||||
  char hostname[HOST_NAME_MAX+1];
 | 
			
		||||
  gethostname(hostname, HOST_NAME_MAX+1);
 | 
			
		||||
  std::cout << GridLogMessage << "This rank is running on host "<< hostname<<std::endl;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // Reporting
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										968
									
								
								benchmarks/Benchmark_usqcd.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										968
									
								
								benchmarks/Benchmark_usqcd.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,968 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./benchmarks/Benchmark_usqcd.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
std::vector<int> L_list;
 | 
			
		||||
std::vector<int> Ls_list;
 | 
			
		||||
std::vector<double> mflop_list;
 | 
			
		||||
 | 
			
		||||
double mflop_ref;
 | 
			
		||||
double mflop_ref_err;
 | 
			
		||||
 | 
			
		||||
int NN_global;
 | 
			
		||||
 | 
			
		||||
FILE * FP;
 | 
			
		||||
 | 
			
		||||
struct time_statistics{
 | 
			
		||||
  double mean;
 | 
			
		||||
  double err;
 | 
			
		||||
  double min;
 | 
			
		||||
  double max;
 | 
			
		||||
 | 
			
		||||
  void statistics(std::vector<double> v){
 | 
			
		||||
      double sum = std::accumulate(v.begin(), v.end(), 0.0);
 | 
			
		||||
      mean = sum / v.size();
 | 
			
		||||
 | 
			
		||||
      std::vector<double> diff(v.size());
 | 
			
		||||
      std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
 | 
			
		||||
      double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
 | 
			
		||||
      err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
 | 
			
		||||
 | 
			
		||||
      auto result = std::minmax_element(v.begin(), v.end());
 | 
			
		||||
      min = *result.first;
 | 
			
		||||
      max = *result.second;
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
void comms_header(){
 | 
			
		||||
  std::cout <<GridLogMessage << " L  "<<"\t"<<" Ls  "<<"\t"
 | 
			
		||||
            <<"bytes\t MB/s uni  \t\t MB/s bidi "<<std::endl;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct controls {
 | 
			
		||||
  int Opt;
 | 
			
		||||
  int CommsOverlap;
 | 
			
		||||
  Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class Benchmark {
 | 
			
		||||
public:
 | 
			
		||||
  static void Decomposition (void ) {
 | 
			
		||||
 | 
			
		||||
    int threads = GridThread::GetThreads();
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "= Grid is setup to use "<<threads<<" threads"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tMPI tasks      : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tvReal          : "<<sizeof(vReal )*8    <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vReal::Nsimd()))<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tvRealF         : "<<sizeof(vRealF)*8    <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tvRealD         : "<<sizeof(vRealD)*8    <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealD::Nsimd()))<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tvComplex       : "<<sizeof(vComplex )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplex::Nsimd()))<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tvComplexF      : "<<sizeof(vComplexF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexF::Nsimd()))<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"\tvComplexD      : "<<sizeof(vComplexD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexD::Nsimd()))<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void Comms(void)
 | 
			
		||||
  {
 | 
			
		||||
    int Nloop=200;
 | 
			
		||||
    int nmu=0;
 | 
			
		||||
    int maxlat=32;
 | 
			
		||||
 | 
			
		||||
    Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
 | 
			
		||||
    Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
 | 
			
		||||
 | 
			
		||||
    std::vector<double> t_time(Nloop);
 | 
			
		||||
    time_statistics timestat;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
 | 
			
		||||
    comms_header();
 | 
			
		||||
 | 
			
		||||
    fprintf(FP,"Communications\n\n");
 | 
			
		||||
    fprintf(FP,"Packet bytes, direction, GB/s per node\n");
 | 
			
		||||
    for(int lat=16;lat<=maxlat;lat+=8){
 | 
			
		||||
      //      for(int Ls=8;Ls<=8;Ls*=2){
 | 
			
		||||
      { int Ls=12;
 | 
			
		||||
 | 
			
		||||
	Coordinate latt_size  ({lat*mpi_layout[0],
 | 
			
		||||
	      lat*mpi_layout[1],
 | 
			
		||||
	      lat*mpi_layout[2],
 | 
			
		||||
	      lat*mpi_layout[3]});
 | 
			
		||||
 | 
			
		||||
	GridCartesian     Grid(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
	RealD Nrank = Grid._Nprocessors;
 | 
			
		||||
	RealD Nnode = Grid.NodeCount();
 | 
			
		||||
	RealD ppn = Nrank/Nnode;
 | 
			
		||||
 | 
			
		||||
	std::vector<HalfSpinColourVectorD *> xbuf(8);
 | 
			
		||||
	std::vector<HalfSpinColourVectorD *> rbuf(8);
 | 
			
		||||
	//Grid.ShmBufferFreeAll();
 | 
			
		||||
	uint64_t bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
 | 
			
		||||
	for(int d=0;d<8;d++){
 | 
			
		||||
	  xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
 | 
			
		||||
	  rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
 | 
			
		||||
	  //	  bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
 | 
			
		||||
	  //	  bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//	int ncomm;
 | 
			
		||||
	double dbytes;
 | 
			
		||||
 | 
			
		||||
        for(int dir=0;dir<8;dir++) {
 | 
			
		||||
	  int mu =dir % 4;
 | 
			
		||||
	  if (mpi_layout[mu]>1 ) {
 | 
			
		||||
 | 
			
		||||
	    std::vector<double> times(Nloop);
 | 
			
		||||
	    for(int i=0;i<Nloop;i++){
 | 
			
		||||
 | 
			
		||||
	      dbytes=0;	        
 | 
			
		||||
	      double start=usecond();
 | 
			
		||||
	      int xmit_to_rank;
 | 
			
		||||
	      int recv_from_rank;
 | 
			
		||||
 | 
			
		||||
	      if ( dir == mu ) { 
 | 
			
		||||
		int comm_proc=1;
 | 
			
		||||
		Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
	      } else { 
 | 
			
		||||
		int comm_proc = mpi_layout[mu]-1;
 | 
			
		||||
		Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
	      }
 | 
			
		||||
	      Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
 | 
			
		||||
				  (void *)&rbuf[dir][0], recv_from_rank,
 | 
			
		||||
				  bytes);
 | 
			
		||||
	      dbytes+=bytes;
 | 
			
		||||
	     
 | 
			
		||||
	      double stop=usecond();
 | 
			
		||||
	      t_time[i] = stop-start; // microseconds
 | 
			
		||||
 | 
			
		||||
	    }
 | 
			
		||||
	    timestat.statistics(t_time);
 | 
			
		||||
	  
 | 
			
		||||
	    dbytes=dbytes*ppn;
 | 
			
		||||
	    double xbytes    = dbytes*0.5;
 | 
			
		||||
	    double bidibytes = dbytes;
 | 
			
		||||
	  
 | 
			
		||||
	    std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
 | 
			
		||||
		     << bytes << " \t "
 | 
			
		||||
		     <<xbytes/timestat.mean
 | 
			
		||||
		     << "\t\t"
 | 
			
		||||
		     << bidibytes/timestat.mean<< std::endl;
 | 
			
		||||
	    fprintf(FP,"%ld, %d, %f\n",(long)bytes,dir,bidibytes/timestat.mean/1000.);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	for(int d=0;d<8;d++){
 | 
			
		||||
	  acceleratorFreeDevice(xbuf[d]);
 | 
			
		||||
	  acceleratorFreeDevice(rbuf[d]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    fprintf(FP,"\n\n");
 | 
			
		||||
    
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  static void Memory(void)
 | 
			
		||||
  {
 | 
			
		||||
    const int Nvec=8;
 | 
			
		||||
    typedef Lattice< iVector< vReal,Nvec> > LatticeVec;
 | 
			
		||||
    typedef iVector<vReal,Nvec> Vec;
 | 
			
		||||
 | 
			
		||||
    Coordinate simd_layout = GridDefaultSimd(Nd,vReal::Nsimd());
 | 
			
		||||
    Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
    fprintf(FP,"Memory Bandwidth\n\n");
 | 
			
		||||
    fprintf(FP,"Bytes, GB/s per node\n");
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "  L  "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
    //    uint64_t NP;
 | 
			
		||||
    uint64_t NN;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  uint64_t lmax=40;
 | 
			
		||||
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
 | 
			
		||||
 | 
			
		||||
    GridSerialRNG          sRNG;      sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
 | 
			
		||||
    for(int lat=8;lat<=lmax;lat+=8){
 | 
			
		||||
 | 
			
		||||
      Coordinate latt_size  ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
 | 
			
		||||
      int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
 | 
			
		||||
 | 
			
		||||
      GridCartesian     Grid(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
 | 
			
		||||
      //      NP= Grid.RankCount();
 | 
			
		||||
      NN =Grid.NodeCount();
 | 
			
		||||
 | 
			
		||||
      Vec rn ; random(sRNG,rn);
 | 
			
		||||
 | 
			
		||||
      LatticeVec z(&Grid); z=Zero();
 | 
			
		||||
      LatticeVec x(&Grid); x=Zero();
 | 
			
		||||
      LatticeVec y(&Grid); y=Zero();
 | 
			
		||||
      double a=2.0;
 | 
			
		||||
 | 
			
		||||
      uint64_t Nloop=NLOOP;
 | 
			
		||||
 | 
			
		||||
      double start=usecond();
 | 
			
		||||
      for(int i=0;i<Nloop;i++){
 | 
			
		||||
	z=a*x-y;
 | 
			
		||||
      }
 | 
			
		||||
      double stop=usecond();
 | 
			
		||||
      double time = (stop-start)/Nloop*1000;
 | 
			
		||||
     
 | 
			
		||||
      double flops=vol*Nvec*2;// mul,add
 | 
			
		||||
      double bytes=3.0*vol*Nvec*sizeof(Real);
 | 
			
		||||
      std::cout<<GridLogMessage<<std::setprecision(3) 
 | 
			
		||||
	       << lat<<"\t\t"<<bytes<<"   \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
 | 
			
		||||
	       << "\t\t"<< bytes/time/NN <<std::endl;
 | 
			
		||||
 | 
			
		||||
      fprintf(FP,"%ld, %f\n",(long)bytes,bytes/time/NN);
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    fprintf(FP,"\n\n");
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  static void BLAS(void)
 | 
			
		||||
  {
 | 
			
		||||
    //int nbasis, int nrhs, int coarseVol
 | 
			
		||||
    int  basis[] = { 16,32,64 };
 | 
			
		||||
    int  rhs[]   = { 8,16,32 };
 | 
			
		||||
    int  vol  = 4*4*4*4;
 | 
			
		||||
 | 
			
		||||
    GridBLAS blas;
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "  M  "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
    fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<3;b++){
 | 
			
		||||
    for(int r=0;r<3;r++){
 | 
			
		||||
      int M=basis[b];
 | 
			
		||||
      int N=rhs[r];
 | 
			
		||||
      int K=basis[b];
 | 
			
		||||
      int BATCH=vol;
 | 
			
		||||
      double p=blas.benchmark(M,N,K,BATCH);
 | 
			
		||||
 | 
			
		||||
      fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
 | 
			
		||||
      
 | 
			
		||||
      std::cout<<GridLogMessage<<std::setprecision(3) 
 | 
			
		||||
	       << M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
 | 
			
		||||
    }}
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "  M  "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block project)"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
    for(int b=0;b<3;b++){
 | 
			
		||||
    for(int r=0;r<3;r++){
 | 
			
		||||
      int M=basis[b];
 | 
			
		||||
      int N=rhs[r];
 | 
			
		||||
      int K=vol;
 | 
			
		||||
      int BATCH=vol;
 | 
			
		||||
      double p=blas.benchmark(M,N,K,BATCH);
 | 
			
		||||
 | 
			
		||||
      fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
 | 
			
		||||
      std::cout<<GridLogMessage<<std::setprecision(3) 
 | 
			
		||||
	       << M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
 | 
			
		||||
    }}
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "  M  "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block promote)"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
    for(int b=0;b<3;b++){
 | 
			
		||||
    for(int r=0;r<3;r++){
 | 
			
		||||
      int M=rhs[r];
 | 
			
		||||
      int N=vol;
 | 
			
		||||
      int K=basis[b];
 | 
			
		||||
      int BATCH=vol;
 | 
			
		||||
      double p=blas.benchmark(M,N,K,BATCH);
 | 
			
		||||
 | 
			
		||||
      fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
 | 
			
		||||
      std::cout<<GridLogMessage<<std::setprecision(3) 
 | 
			
		||||
	       << M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
 | 
			
		||||
    }}
 | 
			
		||||
    fprintf(FP,"\n\n\n");
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  static void SU4(void)
 | 
			
		||||
  {
 | 
			
		||||
    const int Nc4=4;
 | 
			
		||||
    typedef Lattice< iMatrix< vComplexF,Nc4> > LatticeSU4;
 | 
			
		||||
 | 
			
		||||
    Coordinate simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
 | 
			
		||||
    Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "= Benchmarking z = y*x SU(4) bandwidth"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "  L  "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
    uint64_t NN;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    uint64_t lmax=32;
 | 
			
		||||
 | 
			
		||||
    GridSerialRNG          sRNG;      sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
 | 
			
		||||
    for(int lat=8;lat<=lmax;lat+=8){
 | 
			
		||||
 | 
			
		||||
      Coordinate latt_size  ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
 | 
			
		||||
      int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
 | 
			
		||||
 | 
			
		||||
      GridCartesian     Grid(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
 | 
			
		||||
      NN =Grid.NodeCount();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      LatticeSU4 z(&Grid); z=Zero();
 | 
			
		||||
      LatticeSU4 x(&Grid); x=Zero();
 | 
			
		||||
      LatticeSU4 y(&Grid); y=Zero();
 | 
			
		||||
      //      double a=2.0;
 | 
			
		||||
 | 
			
		||||
      uint64_t Nloop=NLOOP;
 | 
			
		||||
 | 
			
		||||
      double start=usecond();
 | 
			
		||||
      for(int i=0;i<Nloop;i++){
 | 
			
		||||
	z=x*y;
 | 
			
		||||
      }
 | 
			
		||||
      double stop=usecond();
 | 
			
		||||
      double time = (stop-start)/Nloop*1000;
 | 
			
		||||
     
 | 
			
		||||
      double flops=vol*Nc4*Nc4*(6+(Nc4-1)*8);// mul,add
 | 
			
		||||
      double bytes=3.0*vol*Nc4*Nc4*2*sizeof(RealF);
 | 
			
		||||
      std::cout<<GridLogMessage<<std::setprecision(3) 
 | 
			
		||||
	       << lat<<"\t\t"<<bytes<<"   \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
 | 
			
		||||
	       << "\t\t"<< bytes/time/NN <<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  static double DWF(int Ls,int L)
 | 
			
		||||
  {
 | 
			
		||||
    RealD mass=0.1;
 | 
			
		||||
    RealD M5  =1.8;
 | 
			
		||||
 | 
			
		||||
    double mflops;
 | 
			
		||||
    double mflops_best = 0;
 | 
			
		||||
    double mflops_worst= 0;
 | 
			
		||||
    std::vector<double> mflops_all;
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////
 | 
			
		||||
    // Set/Get the layout & grid size
 | 
			
		||||
    ///////////////////////////////////////////////////////
 | 
			
		||||
    int threads = GridThread::GetThreads();
 | 
			
		||||
    Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
 | 
			
		||||
    Coordinate local({L,L,L,L});
 | 
			
		||||
    Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
 | 
			
		||||
 | 
			
		||||
    GridCartesian         * TmpGrid   = SpaceTimeGrid::makeFourDimGrid(latt4, 
 | 
			
		||||
								       GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
								       GridDefaultMpi());
 | 
			
		||||
    uint64_t NP = TmpGrid->RankCount();
 | 
			
		||||
    uint64_t NN = TmpGrid->NodeCount();
 | 
			
		||||
    NN_global=NN;
 | 
			
		||||
    uint64_t SHM=NP/NN;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////// Welcome message ////////////
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Nc             : "<<Nc<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Global volume  : "<<GridCmdVectorIntToString(latt4)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Ls             : "<<Ls<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks          : "<<NP  <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* nodes          : "<<NN  <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks/node     : "<<SHM <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks geom     : "<<GridCmdVectorIntToString(mpi)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
    ///////// Lattice Init ////////////
 | 
			
		||||
    GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
 | 
			
		||||
    GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
    GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
    GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    ///////// RNG Init ////////////
 | 
			
		||||
    std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
    std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
    GridParallelRNG          RNG4(UGrid);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
    GridParallelRNG          RNG5(FGrid);  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
    std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
 | 
			
		||||
 | 
			
		||||
    typedef DomainWallFermionF Action;
 | 
			
		||||
    typedef typename Action::FermionField Fermion;
 | 
			
		||||
    typedef LatticeGaugeFieldF Gauge;
 | 
			
		||||
    
 | 
			
		||||
    ///////// Source preparation ////////////
 | 
			
		||||
    Gauge Umu(UGrid);  SU<Nc>::HotConfiguration(RNG4,Umu); 
 | 
			
		||||
    Fermion src   (FGrid); random(RNG5,src);
 | 
			
		||||
    Fermion src_e (FrbGrid);
 | 
			
		||||
    Fermion src_o (FrbGrid);
 | 
			
		||||
    Fermion r_e   (FrbGrid);
 | 
			
		||||
    Fermion r_o   (FrbGrid);
 | 
			
		||||
    Fermion r_eo  (FGrid);
 | 
			
		||||
    Action Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd,src_o,src);
 | 
			
		||||
 | 
			
		||||
#ifdef AVX512
 | 
			
		||||
      const int num_cases = 3;
 | 
			
		||||
#else 
 | 
			
		||||
      const int num_cases = 2;
 | 
			
		||||
#endif      
 | 
			
		||||
      std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
 | 
			
		||||
 | 
			
		||||
      controls Cases [] = {
 | 
			
		||||
	{  WilsonKernelsStatic::OptGeneric   ,  WilsonKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent },
 | 
			
		||||
	{  WilsonKernelsStatic::OptHandUnroll,  WilsonKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent },
 | 
			
		||||
	{  WilsonKernelsStatic::OptInlineAsm ,  WilsonKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent }
 | 
			
		||||
      }; 
 | 
			
		||||
 | 
			
		||||
      for(int c=0;c<num_cases;c++) {
 | 
			
		||||
	
 | 
			
		||||
	WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
 | 
			
		||||
	WilsonKernelsStatic::Opt   = Cases[c].Opt;
 | 
			
		||||
	CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
	if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric   ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
 | 
			
		||||
	if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using ASM      WilsonKernels" <<std::endl;
 | 
			
		||||
	if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED WilsonKernels" <<std::endl;
 | 
			
		||||
	if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
 | 
			
		||||
	if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
	int nwarm = 10;
 | 
			
		||||
	double t0=usecond();
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	for(int i=0;i<nwarm;i++){
 | 
			
		||||
	  Dw.DhopEO(src_o,r_e,DaggerNo);
 | 
			
		||||
	}
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	double t1=usecond();
 | 
			
		||||
	uint64_t ncall = 500;
 | 
			
		||||
 | 
			
		||||
	FGrid->Broadcast(0,&ncall,sizeof(ncall));
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
 | 
			
		||||
 | 
			
		||||
	time_statistics timestat;
 | 
			
		||||
	std::vector<double> t_time(ncall);
 | 
			
		||||
	for(uint64_t i=0;i<ncall;i++){
 | 
			
		||||
	  t0=usecond();
 | 
			
		||||
	  Dw.DhopEO(src_o,r_e,DaggerNo);
 | 
			
		||||
	  t1=usecond();
 | 
			
		||||
	  t_time[i] = t1-t0;
 | 
			
		||||
	}
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	
 | 
			
		||||
	double volume=Ls;  for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
 | 
			
		||||
 | 
			
		||||
	// Nc=3 gives
 | 
			
		||||
	// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
 | 
			
		||||
	// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2  + Nd*Nc*Ns*2
 | 
			
		||||
	//	double flops=(1344.0*volume)/2;
 | 
			
		||||
	double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + 2*Nd*Nc*Ns  + 2*Nd*Nc*Ns*2;
 | 
			
		||||
 | 
			
		||||
	double flops=(fps*volume)/2;
 | 
			
		||||
	double mf_hi, mf_lo, mf_err;
 | 
			
		||||
 | 
			
		||||
	timestat.statistics(t_time);
 | 
			
		||||
	mf_hi = flops/timestat.min;
 | 
			
		||||
	mf_lo = flops/timestat.max;
 | 
			
		||||
	mf_err= flops/timestat.min * timestat.err/timestat.mean;
 | 
			
		||||
 | 
			
		||||
	mflops = flops/timestat.mean;
 | 
			
		||||
	mflops_all.push_back(mflops);
 | 
			
		||||
	if ( mflops_best == 0   ) mflops_best = mflops;
 | 
			
		||||
	if ( mflops_worst== 0   ) mflops_worst= mflops;
 | 
			
		||||
	if ( mflops>mflops_best ) mflops_best = mflops;
 | 
			
		||||
	if ( mflops<mflops_worst) mflops_worst= mflops;
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<< "Deo FlopsPerSite is "<<fps<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s =   "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank   "<< mflops/NP<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node   "<< mflops/NN<<std::endl;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best  mflop/s        =   "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s        =   "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage <<fmt << std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage ;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<mflops_all.size();i++){
 | 
			
		||||
	std::cout<<mflops_all[i]/NN<<" ; " ;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    return mflops_best;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  static double Staggered(int L)
 | 
			
		||||
  {
 | 
			
		||||
    double mflops;
 | 
			
		||||
    double mflops_best = 0;
 | 
			
		||||
    double mflops_worst= 0;
 | 
			
		||||
    std::vector<double> mflops_all;
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////
 | 
			
		||||
    // Set/Get the layout & grid size
 | 
			
		||||
    ///////////////////////////////////////////////////////
 | 
			
		||||
    int threads = GridThread::GetThreads();
 | 
			
		||||
    Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
 | 
			
		||||
    Coordinate local({L,L,L,L});
 | 
			
		||||
    Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
 | 
			
		||||
    
 | 
			
		||||
    GridCartesian         * TmpGrid   = SpaceTimeGrid::makeFourDimGrid(latt4,
 | 
			
		||||
								       GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
								       GridDefaultMpi());
 | 
			
		||||
    uint64_t NP = TmpGrid->RankCount();
 | 
			
		||||
    uint64_t NN = TmpGrid->NodeCount();
 | 
			
		||||
    NN_global=NN;
 | 
			
		||||
    uint64_t SHM=NP/NN;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////// Welcome message ////////////
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "Benchmark ImprovedStaggered on "<<L<<"^4 local volume "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Global volume  : "<<GridCmdVectorIntToString(latt4)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks          : "<<NP  <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* nodes          : "<<NN  <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks/node     : "<<SHM <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks geom     : "<<GridCmdVectorIntToString(mpi)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
    ///////// Lattice Init ////////////
 | 
			
		||||
    GridCartesian         * FGrid   = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
 | 
			
		||||
    GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
 | 
			
		||||
    
 | 
			
		||||
    ///////// RNG Init ////////////
 | 
			
		||||
    std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
    GridParallelRNG          RNG4(FGrid);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
    std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD mass=0.1;
 | 
			
		||||
    RealD c1=9.0/8.0;
 | 
			
		||||
    RealD c2=-1.0/24.0;
 | 
			
		||||
    RealD u0=1.0;
 | 
			
		||||
 | 
			
		||||
    typedef ImprovedStaggeredFermionF Action;
 | 
			
		||||
    typedef typename Action::FermionField Fermion; 
 | 
			
		||||
    typedef LatticeGaugeFieldF Gauge;
 | 
			
		||||
    
 | 
			
		||||
    Gauge Umu(FGrid);  SU<Nc>::HotConfiguration(RNG4,Umu); 
 | 
			
		||||
 | 
			
		||||
    typename Action::ImplParams params;
 | 
			
		||||
    Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
 | 
			
		||||
 | 
			
		||||
    ///////// Source preparation ////////////
 | 
			
		||||
    Fermion src   (FGrid); random(RNG4,src);
 | 
			
		||||
    Fermion src_e (FrbGrid);
 | 
			
		||||
    Fermion src_o (FrbGrid);
 | 
			
		||||
    Fermion r_e   (FrbGrid);
 | 
			
		||||
    Fermion r_o   (FrbGrid);
 | 
			
		||||
    Fermion r_eo  (FGrid);
 | 
			
		||||
  
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd,src_o,src);
 | 
			
		||||
    
 | 
			
		||||
      const int num_cases = 2;
 | 
			
		||||
      std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
 | 
			
		||||
      
 | 
			
		||||
      controls Cases [] = {
 | 
			
		||||
	{  StaggeredKernelsStatic::OptGeneric   ,  StaggeredKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent  },
 | 
			
		||||
	{  StaggeredKernelsStatic::OptHandUnroll,  StaggeredKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent  },
 | 
			
		||||
	{  StaggeredKernelsStatic::OptInlineAsm ,  StaggeredKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent  }
 | 
			
		||||
      }; 
 | 
			
		||||
 | 
			
		||||
      for(int c=0;c<num_cases;c++) {
 | 
			
		||||
	
 | 
			
		||||
	StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
 | 
			
		||||
	StaggeredKernelsStatic::Opt   = Cases[c].Opt;
 | 
			
		||||
	CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
 | 
			
		||||
      
 | 
			
		||||
	std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
	if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric   ) std::cout << GridLogMessage<< "* Using GENERIC Nc StaggeredKernels" <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	int nwarm = 10;
 | 
			
		||||
	double t0=usecond();
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	for(int i=0;i<nwarm;i++){
 | 
			
		||||
	  Ds.DhopEO(src_o,r_e,DaggerNo);
 | 
			
		||||
	}
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	double t1=usecond();
 | 
			
		||||
	uint64_t ncall = 500;
 | 
			
		||||
 | 
			
		||||
	FGrid->Broadcast(0,&ncall,sizeof(ncall));
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
 | 
			
		||||
 | 
			
		||||
	time_statistics timestat;
 | 
			
		||||
	std::vector<double> t_time(ncall);
 | 
			
		||||
	for(uint64_t i=0;i<ncall;i++){
 | 
			
		||||
	  t0=usecond();
 | 
			
		||||
	  Ds.DhopEO(src_o,r_e,DaggerNo);
 | 
			
		||||
	  t1=usecond();
 | 
			
		||||
	  t_time[i] = t1-t0;
 | 
			
		||||
	}
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	
 | 
			
		||||
	double volume=1;  for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
 | 
			
		||||
	double flops=(1146.0*volume)/2;
 | 
			
		||||
	double mf_hi, mf_lo, mf_err;
 | 
			
		||||
	
 | 
			
		||||
	timestat.statistics(t_time);
 | 
			
		||||
	mf_hi = flops/timestat.min;
 | 
			
		||||
	mf_lo = flops/timestat.max;
 | 
			
		||||
	mf_err= flops/timestat.min * timestat.err/timestat.mean;
 | 
			
		||||
 | 
			
		||||
	mflops = flops/timestat.mean;
 | 
			
		||||
	mflops_all.push_back(mflops);
 | 
			
		||||
	if ( mflops_best == 0   ) mflops_best = mflops;
 | 
			
		||||
	if ( mflops_worst== 0   ) mflops_worst= mflops;
 | 
			
		||||
	if ( mflops>mflops_best ) mflops_best = mflops;
 | 
			
		||||
	if ( mflops<mflops_worst) mflops_worst= mflops;
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s =   "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank   "<< mflops/NP<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node   "<< mflops/NN<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << L<<"^4  Deo Best  mflop/s        =   "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << L<<"^4  Deo Worst mflop/s        =   "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage <<fmt << std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage ;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<mflops_all.size();i++){
 | 
			
		||||
	std::cout<<mflops_all[i]/NN<<" ; " ;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    return mflops_best;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static double Clover(int L)
 | 
			
		||||
  {
 | 
			
		||||
    double mflops;
 | 
			
		||||
    double mflops_best = 0;
 | 
			
		||||
    double mflops_worst= 0;
 | 
			
		||||
    std::vector<double> mflops_all;
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////
 | 
			
		||||
    // Set/Get the layout & grid size
 | 
			
		||||
    ///////////////////////////////////////////////////////
 | 
			
		||||
    int threads = GridThread::GetThreads();
 | 
			
		||||
    Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
 | 
			
		||||
    Coordinate local({L,L,L,L});
 | 
			
		||||
    Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
 | 
			
		||||
    
 | 
			
		||||
    GridCartesian         * TmpGrid   = SpaceTimeGrid::makeFourDimGrid(latt4,
 | 
			
		||||
								       GridDefaultSimd(Nd,vComplex::Nsimd()),
 | 
			
		||||
								       GridDefaultMpi());
 | 
			
		||||
    uint64_t NP = TmpGrid->RankCount();
 | 
			
		||||
    uint64_t NN = TmpGrid->NodeCount();
 | 
			
		||||
    NN_global=NN;
 | 
			
		||||
    uint64_t SHM=NP/NN;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////// Welcome message ////////////
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "Benchmark Clover on "<<L<<"^4 local volume "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Global volume  : "<<GridCmdVectorIntToString(latt4)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks          : "<<NP  <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* nodes          : "<<NN  <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks/node     : "<<SHM <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* ranks geom     : "<<GridCmdVectorIntToString(mpi)<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
    ///////// Lattice Init ////////////
 | 
			
		||||
    GridCartesian         * FGrid   = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
 | 
			
		||||
    GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
 | 
			
		||||
    
 | 
			
		||||
    ///////// RNG Init ////////////
 | 
			
		||||
    std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
    GridParallelRNG          RNG4(FGrid);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
    std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD mass=0.1;
 | 
			
		||||
    RealD csw=1.0;
 | 
			
		||||
 | 
			
		||||
    typedef WilsonCloverFermionF Action;
 | 
			
		||||
    typedef typename Action::FermionField Fermion; 
 | 
			
		||||
    typedef LatticeGaugeFieldF Gauge;
 | 
			
		||||
    
 | 
			
		||||
    Gauge Umu(FGrid);  SU<Nc>::HotConfiguration(RNG4,Umu); 
 | 
			
		||||
 | 
			
		||||
    Action Dc(Umu,*FGrid,*FrbGrid,mass,csw,csw);
 | 
			
		||||
 | 
			
		||||
    ///////// Source preparation ////////////
 | 
			
		||||
    Fermion src   (FGrid); random(RNG4,src);
 | 
			
		||||
    Fermion r     (FGrid);
 | 
			
		||||
  
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
      const int num_cases = 1;
 | 
			
		||||
      std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
 | 
			
		||||
      
 | 
			
		||||
      controls Cases [] = {
 | 
			
		||||
	{  WilsonKernelsStatic::OptGeneric   ,  WilsonKernelsStatic::CommsAndCompute  ,CartesianCommunicator::CommunicatorPolicyConcurrent  },
 | 
			
		||||
      }; 
 | 
			
		||||
 | 
			
		||||
      for(int c=0;c<num_cases;c++) {
 | 
			
		||||
	
 | 
			
		||||
	WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
 | 
			
		||||
	WilsonKernelsStatic::Opt   = Cases[c].Opt;
 | 
			
		||||
	CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
 | 
			
		||||
      
 | 
			
		||||
	std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	int nwarm = 10;
 | 
			
		||||
	double t0=usecond();
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	for(int i=0;i<nwarm;i++){
 | 
			
		||||
	  Dc.M(src,r);
 | 
			
		||||
	}
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	double t1=usecond();
 | 
			
		||||
	uint64_t ncall = 500;
 | 
			
		||||
 | 
			
		||||
	FGrid->Broadcast(0,&ncall,sizeof(ncall));
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
 | 
			
		||||
 | 
			
		||||
	time_statistics timestat;
 | 
			
		||||
	std::vector<double> t_time(ncall);
 | 
			
		||||
	for(uint64_t i=0;i<ncall;i++){
 | 
			
		||||
	  t0=usecond();
 | 
			
		||||
	  Dc.M(src,r);
 | 
			
		||||
	  t1=usecond();
 | 
			
		||||
	  t_time[i] = t1-t0;
 | 
			
		||||
	}
 | 
			
		||||
	FGrid->Barrier();
 | 
			
		||||
	
 | 
			
		||||
	double volume=1;  for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
 | 
			
		||||
	double flops=(1344+ 24+6*6*8*2)*volume;
 | 
			
		||||
	double mf_hi, mf_lo, mf_err;
 | 
			
		||||
	
 | 
			
		||||
	timestat.statistics(t_time);
 | 
			
		||||
	mf_hi = flops/timestat.min;
 | 
			
		||||
	mf_lo = flops/timestat.max;
 | 
			
		||||
	mf_err= flops/timestat.min * timestat.err/timestat.mean;
 | 
			
		||||
 | 
			
		||||
	mflops = flops/timestat.mean;
 | 
			
		||||
	mflops_all.push_back(mflops);
 | 
			
		||||
	if ( mflops_best == 0   ) mflops_best = mflops;
 | 
			
		||||
	if ( mflops_worst== 0   ) mflops_worst= mflops;
 | 
			
		||||
	if ( mflops>mflops_best ) mflops_best = mflops;
 | 
			
		||||
	if ( mflops<mflops_worst) mflops_worst= mflops;
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s =   "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per rank   "<< mflops/NP<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per node   "<< mflops/NN<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << L<<"^4  Deo Best  mflop/s        =   "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << L<<"^4  Deo Worst mflop/s        =   "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage <<fmt << std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage ;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<mflops_all.size();i++){
 | 
			
		||||
	std::cout<<mflops_all[i]/NN<<" ; " ;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    return mflops_best;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  if (GlobalSharedMemory::WorldRank==0) { 
 | 
			
		||||
    FP = fopen("Benchmark_usqcd.csv","w");
 | 
			
		||||
  } else {
 | 
			
		||||
    FP = fopen("/dev/null","w");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
 | 
			
		||||
  LebesgueOrder::Block = std::vector<int>({2,2,2,2});
 | 
			
		||||
 | 
			
		||||
  Benchmark::Decomposition();
 | 
			
		||||
 | 
			
		||||
  int do_su4=0;
 | 
			
		||||
  int do_memory=1;
 | 
			
		||||
  int do_comms =1;
 | 
			
		||||
  int do_blas  =1;
 | 
			
		||||
 | 
			
		||||
  int sel=4;
 | 
			
		||||
  std::vector<int> L_list({8,12,16,24,32});
 | 
			
		||||
  int selm1=sel-1;
 | 
			
		||||
 | 
			
		||||
  std::vector<double> clover;
 | 
			
		||||
  std::vector<double> dwf4;
 | 
			
		||||
  std::vector<double> staggered;
 | 
			
		||||
 | 
			
		||||
  int Ls=1;
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << " Clover dslash 4D vectorised (temporarily Wilson)" <<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  for(int l=0;l<L_list.size();l++){
 | 
			
		||||
    clover.push_back(Benchmark::DWF(1,L_list[l]));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Ls=12;
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  for(int l=0;l<L_list.size();l++){
 | 
			
		||||
    double result = Benchmark::DWF(Ls,L_list[l]) ;
 | 
			
		||||
    dwf4.push_back(result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << " Improved Staggered dslash 4D vectorised" <<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  for(int l=0;l<L_list.size();l++){
 | 
			
		||||
    double result = Benchmark::Staggered(L_list[l]) ;
 | 
			
		||||
    staggered.push_back(result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "L \t\t Clover \t\t DWF4 \t\t Staggered" <<std::endl;
 | 
			
		||||
  for(int l=0;l<L_list.size();l++){
 | 
			
		||||
    std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
  int NN=NN_global;
 | 
			
		||||
  if ( do_memory ) {
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    Benchmark::Memory();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( do_blas ) {
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP)     || defined(GRID_SYCL)   
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    Benchmark::BLAS();
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( do_su4 ) {
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    Benchmark::SU4();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if ( do_comms ) {
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    Benchmark::Comms();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
 | 
			
		||||
    fprintf(FP,"Per node summary table\n");
 | 
			
		||||
    fprintf(FP,"\n");
 | 
			
		||||
    fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
 | 
			
		||||
    fprintf(FP,"\n");
 | 
			
		||||
    for(int l=0;l<L_list.size();l++){
 | 
			
		||||
      std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
 | 
			
		||||
      fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
 | 
			
		||||
    }
 | 
			
		||||
    fprintf(FP,"\n");
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " Comparison point     result: "  << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
 | 
			
		||||
    std::cout<<std::setprecision(3);
 | 
			
		||||
    std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  fclose(FP);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										15
									
								
								bootstrap.sh
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								bootstrap.sh
									
									
									
									
									
								
							@@ -1,12 +1,12 @@
 | 
			
		||||
#!/usr/bin/env bash
 | 
			
		||||
set -e
 | 
			
		||||
 | 
			
		||||
EIGEN_URL='https://gitlab.com/libeigen/eigen/-/archive/3.3.7/eigen-3.3.7.tar.bz2'
 | 
			
		||||
EIGEN_SHA256SUM='685adf14bd8e9c015b78097c1dc22f2f01343756f196acdc76a678e1ae352e11'
 | 
			
		||||
EIGEN_URL='https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.bz2'
 | 
			
		||||
EIGEN_SHA256SUM='b4c198460eba6f28d34894e3a5710998818515104d6e74e5cc331ce31e46e626'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
echo "-- deploying Eigen source..."
 | 
			
		||||
ARC=`basename ${EIGEN_URL}`
 | 
			
		||||
ARC=$(basename ${EIGEN_URL})
 | 
			
		||||
wget ${EIGEN_URL} --no-check-certificate
 | 
			
		||||
if command -v sha256sum; then
 | 
			
		||||
   echo "$EIGEN_SHA256SUM  $(basename "$EIGEN_URL")" \
 | 
			
		||||
@@ -14,13 +14,8 @@ if command -v sha256sum; then
 | 
			
		||||
else
 | 
			
		||||
   echo "WARNING: could not verify checksum, please install sha256sum" >&2
 | 
			
		||||
fi
 | 
			
		||||
./scripts/update_eigen.sh ${ARC}
 | 
			
		||||
rm ${ARC}
 | 
			
		||||
# patch for non-portable includes in Eigen 3.3.5
 | 
			
		||||
# apparently already fixed in Eigen HEAD so it should not be 
 | 
			
		||||
# a problem in the future (A.P.)
 | 
			
		||||
patch Eigen/unsupported/Eigen/CXX11/Tensor scripts/eigen-3.3.5.Tensor.patch
 | 
			
		||||
 | 
			
		||||
./scripts/update_eigen.sh "${ARC}"
 | 
			
		||||
rm "${ARC}"
 | 
			
		||||
echo '-- generating Make.inc files...'
 | 
			
		||||
./scripts/filelist
 | 
			
		||||
echo '-- generating configure script...'
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										183
									
								
								examples/Example_plaquette.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										183
									
								
								examples/Example_plaquette.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,183 @@
 | 
			
		||||
/* 
 | 
			
		||||
 * Example_plaquette.cc                                                               
 | 
			
		||||
 * 
 | 
			
		||||
 * D. Clarke 
 | 
			
		||||
 * 
 | 
			
		||||
 * Here I just want to create an incredibly simple main to get started with GRID and get used
 | 
			
		||||
 * to its syntax. If the reader is like me, they vaguely understand something about lattice coding,
 | 
			
		||||
 * they don't know a ton of C++, don't know much of the fine details, and certainly know nothing about GRID.
 | 
			
		||||
 *
 | 
			
		||||
 * Once you've made a new executable, like this one, you can bootstrap.sh again. At this point,
 | 
			
		||||
 * the code should be able to find your new executable. You can tell that bootstrap.sh worked by
 | 
			
		||||
 * having a look at Make.inc. You should see your executable inside there.
 | 
			
		||||
 *
 | 
			
		||||
 * Warning: This code illustrative only, not well tested, and not meant for production use. The best
 | 
			
		||||
 * way to read this code is to start at the main.
 | 
			
		||||
 * 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// All your mains should have this
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// This copies what already exists in WilsonLoops.h. The point here is to be pedagogical and explain in
 | 
			
		||||
// detail what everything does so we can see how GRID works.
 | 
			
		||||
template <class Gimpl> class WLoops : public Gimpl {
 | 
			
		||||
public:
 | 
			
		||||
    // Gimpl seems to be an arbitrary class. Within this class, it is expected that certain types are
 | 
			
		||||
    // already defined, things like Scalar and Field. This macro includes a bunch of #typedefs that
 | 
			
		||||
    // implement this equivalence at compile time.
 | 
			
		||||
    INHERIT_GIMPL_TYPES(Gimpl);
 | 
			
		||||
 | 
			
		||||
    // Some example Gimpls can be found in GaugeImplementations.h, at the bottom. These are in turn built
 | 
			
		||||
    // out of GaugeImplTypes, which can be found in GaugeImplTypes.h. The GaugeImplTypes contain the base
 | 
			
		||||
    // field/vector/link/whatever types. These inherit from iScalar, iVector, and iMatrix objects, which
 | 
			
		||||
    // are sort of the building blocks for gerenal math objects. The "i" at the beginning of these names
 | 
			
		||||
    // indicates that they should be for internal use only. It seems like these base types have the
 | 
			
		||||
    // acceleration, e.g. SIMD or GPU or what-have-you, abstracted away. How you accelerate these things
 | 
			
		||||
    // appears to be controlled through a template parameter called vtype.
 | 
			
		||||
 | 
			
		||||
    // The general math/physics objects, such as a color matrix, are built up by nesting these objects.
 | 
			
		||||
    // For instance a general color matrix has two color indices, so it's built up like
 | 
			
		||||
    //     iScalar<iScalar<iMatrix<vtype ...
 | 
			
		||||
    // where the levels going from the inside out are color, spin, then Lorentz indices. Scalars have
 | 
			
		||||
    // no indices, so it's what we use when such an index isn't needed. Lattice objects are made by one
 | 
			
		||||
    // higher level of indexing using iVector.
 | 
			
		||||
 | 
			
		||||
    // These types will be used for U and U_mu objects, respectively.
 | 
			
		||||
    typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
    typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
    // U_mu_nu(x)
 | 
			
		||||
    static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu) {
 | 
			
		||||
        // Calls like CovShiftForward and CovShiftBackward have 3 arguments, and they multiply together
 | 
			
		||||
        // the first and last argument. (Second arg gives the shift direction.) The CovShiftIdentityBackward
 | 
			
		||||
        // has meanwhile only two arguments; it just returns the shifted (adjoint since backward) link. 
 | 
			
		||||
        plaq = Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                   // Means Link*Cshift(field,mu,1), arguments are Link, mu, field in that order.
 | 
			
		||||
                   Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                       Gimpl::CovShiftBackward(U[mu],mu,
 | 
			
		||||
                           // This means Cshift(adj(Link), mu, -1)
 | 
			
		||||
                           Gimpl::CovShiftIdentityBackward(U[nu], nu))));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // tr U_mu_nu(x)
 | 
			
		||||
    static void traceDirPlaquette(ComplexField &plaq, const std::vector<GaugeMat> &U, const int mu, const int nu) {
 | 
			
		||||
        // This .Grid() syntax seems to get the pointer to the GridBase. Apparently this is needed as argument
 | 
			
		||||
        // to instantiate a Lattice object.
 | 
			
		||||
        GaugeMat sp(U[0].Grid());
 | 
			
		||||
        dirPlaquette(sp, U, mu, nu);
 | 
			
		||||
        plaq = trace(sp);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // sum_mu_nu tr U_mu_nu(x)
 | 
			
		||||
    static void sitePlaquette(ComplexField &Plaq, const std::vector<GaugeMat> &U) {
 | 
			
		||||
        ComplexField sitePlaq(U[0].Grid());
 | 
			
		||||
        Plaq = Zero();
 | 
			
		||||
        // Nd=4 and Nc=3 are set as global constants in QCD.h
 | 
			
		||||
        for (int mu = 1; mu < Nd; mu++) {
 | 
			
		||||
            for (int nu = 0; nu < mu; nu++) {
 | 
			
		||||
                traceDirPlaquette(sitePlaq, U, mu, nu);
 | 
			
		||||
                Plaq = Plaq + sitePlaq;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // sum_mu_nu_x Re tr U_mu_nu(x)
 | 
			
		||||
    static RealD sumPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
        std::vector<GaugeMat> U(Nd, Umu.Grid());
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            // Umu is a GaugeLorentz object, and as such has a non-trivial Lorentz index. We can
 | 
			
		||||
            // access the element in the mu Lorentz index with this PeekIndex syntax.
 | 
			
		||||
            U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
        }
 | 
			
		||||
        ComplexField Plaq(Umu.Grid());
 | 
			
		||||
        sitePlaquette(Plaq, U);
 | 
			
		||||
        // I guess this should be the line that sums over all space-time sites.
 | 
			
		||||
        auto Tp = sum(Plaq);
 | 
			
		||||
        // Until now, we have been working with objects inside the tensor nest. This TensorRemove gets
 | 
			
		||||
        // rid of the tensor nest to return whatever is inside.
 | 
			
		||||
        auto p  = TensorRemove(Tp);
 | 
			
		||||
        return p.real();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // < Re tr U_mu_nu(x) >
 | 
			
		||||
    static RealD avgPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
        // Real double type
 | 
			
		||||
        RealD sumplaq = sumPlaquette(Umu);
 | 
			
		||||
        // gSites() is the number of global sites. there is also lSites() for local sites.
 | 
			
		||||
        double vol = Umu.Grid()->gSites();
 | 
			
		||||
        // The number of orientations. 4*3/2=6 for Nd=4, as known.
 | 
			
		||||
        double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
 | 
			
		||||
        return sumplaq / vol / faces / Nc;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Next we show an example of how to construct an input parameter class. We first inherit
 | 
			
		||||
// from Serializable. Then all class data members have to be defined using the
 | 
			
		||||
// GRID_SERIALIZABLE_CLASS_MEMBERS macro. This variadic macro allows for arbitrarily many
 | 
			
		||||
// class data members. In the below case, we make a parameter file holding the configuration
 | 
			
		||||
// name. Here, it expects the name to be labeled with "conf_name" in the configuration file. 
 | 
			
		||||
struct ConfParameters: Serializable {
 | 
			
		||||
    GRID_SERIALIZABLE_CLASS_MEMBERS(
 | 
			
		||||
        ConfParameters,
 | 
			
		||||
        std::string, conf_name);
 | 
			
		||||
 | 
			
		||||
    template <class ReaderClass>
 | 
			
		||||
    ConfParameters(Reader<ReaderClass>& Reader){
 | 
			
		||||
        // If we are reading an XML file, it should be structured like:
 | 
			
		||||
        // <grid>
 | 
			
		||||
        //   <parameters>
 | 
			
		||||
        //     <conf_name>l20t20b06498a_nersc.302500</conf_name>
 | 
			
		||||
        //   </parameters>
 | 
			
		||||
        // </grid>
 | 
			
		||||
        read(Reader, "parameters", *this);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// This syntax lets you pass command line arguments to main. An asterisk means that what follows is
 | 
			
		||||
// a pointer. Two asterisks means what follows is a pointer to an array. 
 | 
			
		||||
int main (int argc, char **argv)
 | 
			
		||||
{
 | 
			
		||||
    // This initializes Grid. Some command line options include
 | 
			
		||||
    //   --mpi n.n.n.n
 | 
			
		||||
    //   --threads n
 | 
			
		||||
    //   --grid n.n.n.n
 | 
			
		||||
    Grid_init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
    // This is where you would specify a custom lattice size, if not from the command line. Here
 | 
			
		||||
    // Nd is a global quantity that is currently set to 4.
 | 
			
		||||
    Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
 | 
			
		||||
    Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
    Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
 | 
			
		||||
    // Instantiate the spacetime Grid on which everything will be built.
 | 
			
		||||
    GridCartesian GRID(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
 | 
			
		||||
    // The PeriodicGimplD type is what you want for gauge matrices. There is also a LatticeGaugeFieldD
 | 
			
		||||
    // type that you can use, which will work perfectly with what follows. 
 | 
			
		||||
    PeriodicGimplD::Field U(&GRID);
 | 
			
		||||
 | 
			
		||||
    // Here we read in the parameter file params.json to get conf_name. The last argument is what the
 | 
			
		||||
    // top organizational level is called in the param file. 
 | 
			
		||||
    XmlReader Reader("Example_plaquette.xml",false, "grid");
 | 
			
		||||
    ConfParameters param(Reader);  
 | 
			
		||||
 | 
			
		||||
    // Load a lattice from SIMULATeQCD into U. SIMULATeQCD finds plaquette = 0.6381995717
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    NerscIO::readConfiguration(U, header, param.conf_name);
 | 
			
		||||
 | 
			
		||||
    // Let's see what we find.
 | 
			
		||||
    RealD plaq = WLoops<PeriodicGimplD>::avgPlaquette(U);
 | 
			
		||||
 | 
			
		||||
    // This is how you make log messages.
 | 
			
		||||
    std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1) << "Plaquette = " << plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
    // To wrap things up.
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
@@ -1,19 +0,0 @@
 | 
			
		||||
--- ./Eigen/unsupported/Eigen/CXX11/Tensor	2018-07-23 10:33:42.000000000 +0100
 | 
			
		||||
+++ Tensor	2018-08-28 16:15:56.000000000 +0100
 | 
			
		||||
@@ -25,7 +25,7 @@
 | 
			
		||||
 #include <utility>
 | 
			
		||||
 #endif
 | 
			
		||||
 
 | 
			
		||||
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
 | 
			
		||||
+#include "../../../Eigen/src/Core/util/DisableStupidWarnings.h"
 | 
			
		||||
 
 | 
			
		||||
 #include "../SpecialFunctions"
 | 
			
		||||
 #include "src/util/CXX11Meta.h"
 | 
			
		||||
@@ -147,6 +147,6 @@
 | 
			
		||||
 
 | 
			
		||||
 #include "src/Tensor/TensorIO.h"
 | 
			
		||||
 
 | 
			
		||||
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
 | 
			
		||||
+#include "../../../Eigen/src/Core/util/ReenableStupidWarnings.h"
 | 
			
		||||
 
 | 
			
		||||
 //#endif // EIGEN_CXX11_TENSOR_MODULE
 | 
			
		||||
@@ -25,12 +25,16 @@ export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
 | 
			
		||||
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
 | 
			
		||||
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
 | 
			
		||||
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
 | 
			
		||||
export MPICH_OFI_NIC_POLICY=GPU
 | 
			
		||||
export FI_CXI_CQ_FILL_PERCENT=10
 | 
			
		||||
export FI_CXI_DEFAULT_CQ_SIZE=262144
 | 
			
		||||
#export FI_CXI_DEFAULT_CQ_SIZE=131072
 | 
			
		||||
#export FI_CXI_CQ_FILL_PERCENT=20
 | 
			
		||||
 | 
			
		||||
# 12 ppn, 32 nodes, 384 ranks
 | 
			
		||||
#
 | 
			
		||||
@@ -45,12 +49,12 @@ CMD="mpiexec -np 12288 -ppn 12  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Benchmark_dwf_fp32 --mpi 8.8.8.24 --grid 128.128.128.384 \
 | 
			
		||||
		--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
 | 
			
		||||
$CMD | tee 1024node.dwf.small
 | 
			
		||||
$CMD | tee 1024node.dwf.small.cq
 | 
			
		||||
 | 
			
		||||
CMD="mpiexec -np 12288 -ppn 12  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Benchmark_dwf_fp32 --mpi 16.8.8.12 --grid 256.256.256.384 \
 | 
			
		||||
		--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
 | 
			
		||||
$CMD | tee 1024node.dwf
 | 
			
		||||
$CMD | tee 1024node.dwf.cq
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -17,6 +17,7 @@ source ../sourceme.sh
 | 
			
		||||
export OMP_NUM_THREADS=3
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
 | 
			
		||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
 | 
			
		||||
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
 | 
			
		||||
@@ -35,11 +36,25 @@ CMD="mpiexec -np 24 -ppn 12  -envall \
 | 
			
		||||
	     ./Benchmark_comms_host_device --mpi 2.3.2.2 --grid 32.24.32.192 \
 | 
			
		||||
		--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
 | 
			
		||||
 | 
			
		||||
$CMD 
 | 
			
		||||
#$CMD 
 | 
			
		||||
 | 
			
		||||
CMD="mpiexec -np 24 -ppn 12  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Benchmark_dwf_fp32 --mpi 2.3.2.2 --grid 64.96.64.64 --comms-overlap \
 | 
			
		||||
		--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
 | 
			
		||||
 | 
			
		||||
#$CMD 
 | 
			
		||||
 | 
			
		||||
CMD="mpiexec -np 1 -ppn 1  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Benchmark_dwf --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
 | 
			
		||||
		--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
 | 
			
		||||
 | 
			
		||||
$CMD 
 | 
			
		||||
 | 
			
		||||
CMD="mpiexec -np 1 -ppn 1  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
 | 
			
		||||
		--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
 | 
			
		||||
 | 
			
		||||
$CMD 
 | 
			
		||||
 
 | 
			
		||||
@@ -11,6 +11,6 @@ TOOLS=$HOME/tools
 | 
			
		||||
	--enable-unified=no \
 | 
			
		||||
	MPICXX=mpicxx \
 | 
			
		||||
	CXX=icpx \
 | 
			
		||||
	LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$TOOLS/lib64/" \
 | 
			
		||||
	CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -I$TOOLS/include"
 | 
			
		||||
	LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$TOOLS/lib64/ -L${MKLROOT}/lib -qmkl=parallel " \
 | 
			
		||||
	CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -I$TOOLS/include -qmkl=parallel"
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -3,6 +3,19 @@
 | 
			
		||||
module use /soft/modulefiles
 | 
			
		||||
module load intel_compute_runtime/release/agama-devel-682.22
 | 
			
		||||
 | 
			
		||||
export FI_CXI_DEFAULT_CQ_SIZE=131072
 | 
			
		||||
export FI_CXI_CQ_FILL_PERCENT=20
 | 
			
		||||
 | 
			
		||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
 | 
			
		||||
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
 | 
			
		||||
 | 
			
		||||
#
 | 
			
		||||
# -ftarget-register-alloc-mode=pvc:default 
 | 
			
		||||
# -ftarget-register-alloc-mode=pvc:small
 | 
			
		||||
# -ftarget-register-alloc-mode=pvc:large
 | 
			
		||||
# -ftarget-register-alloc-mode=pvc:auto
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
 | 
			
		||||
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
 | 
			
		||||
export http_proxy=http://proxy.alcf.anl.gov:3128
 | 
			
		||||
@@ -10,3 +23,4 @@ export https_proxy=http://proxy.alcf.anl.gov:3128
 | 
			
		||||
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
 | 
			
		||||
git config --global http.proxy http://proxy.alcf.anl.gov:3128
 | 
			
		||||
 | 
			
		||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										40
									
								
								systems/Aurora/tests/repro16.pbs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								systems/Aurora/tests/repro16.pbs
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
 | 
			
		||||
 | 
			
		||||
#PBS -q EarlyAppAccess
 | 
			
		||||
#PBS -l select=16
 | 
			
		||||
#PBS -l walltime=01:00:00
 | 
			
		||||
#PBS -A LatticeQCD_aesp_CNDA
 | 
			
		||||
 | 
			
		||||
#export OMP_PROC_BIND=spread
 | 
			
		||||
#unset OMP_PLACES
 | 
			
		||||
 | 
			
		||||
cd $PBS_O_WORKDIR
 | 
			
		||||
 | 
			
		||||
source ../sourceme.sh
 | 
			
		||||
 | 
			
		||||
cat $PBS_NODEFILE
 | 
			
		||||
 | 
			
		||||
export OMP_NUM_THREADS=3
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
 | 
			
		||||
 | 
			
		||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
 | 
			
		||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
 | 
			
		||||
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
 | 
			
		||||
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
 | 
			
		||||
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
 | 
			
		||||
export MPICH_OFI_NIC_POLICY=GPU
 | 
			
		||||
 | 
			
		||||
# 12 ppn, 16 nodes, 192 ranks
 | 
			
		||||
CMD="mpiexec -np 192 -ppn 12  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Test_dwf_mixedcg_prec --mpi 2.4.4.6 --grid 64.128.128.192 \
 | 
			
		||||
		--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 3000"
 | 
			
		||||
$CMD 
 | 
			
		||||
							
								
								
									
										40
									
								
								systems/Aurora/tests/solver/stag16.pbs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								systems/Aurora/tests/solver/stag16.pbs
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
 | 
			
		||||
 | 
			
		||||
#PBS -q EarlyAppAccess
 | 
			
		||||
#PBS -l select=16
 | 
			
		||||
#PBS -l walltime=01:00:00
 | 
			
		||||
#PBS -A LatticeQCD_aesp_CNDA
 | 
			
		||||
 | 
			
		||||
#export OMP_PROC_BIND=spread
 | 
			
		||||
#unset OMP_PLACES
 | 
			
		||||
 | 
			
		||||
cd $PBS_O_WORKDIR
 | 
			
		||||
 | 
			
		||||
source ../../sourceme.sh
 | 
			
		||||
 | 
			
		||||
cat $PBS_NODEFILE
 | 
			
		||||
 | 
			
		||||
export OMP_NUM_THREADS=3
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
 | 
			
		||||
 | 
			
		||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
 | 
			
		||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
 | 
			
		||||
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
 | 
			
		||||
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
 | 
			
		||||
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
 | 
			
		||||
export MPICH_OFI_NIC_POLICY=GPU
 | 
			
		||||
 | 
			
		||||
# 12 ppn, 16 nodes, 192 ranks
 | 
			
		||||
CMD="mpiexec -np 192 -ppn 12  -envall \
 | 
			
		||||
	     ./gpu_tile_compact.sh \
 | 
			
		||||
	     ./Test_staggered_cg_prec --mpi 2.4.4.6 --grid 128.128.128.192 \
 | 
			
		||||
	     --shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 3000"
 | 
			
		||||
$CMD 
 | 
			
		||||
							
								
								
									
										70
									
								
								systems/Booster/benchmarks/Benchmark_usqcd.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										70
									
								
								systems/Booster/benchmarks/Benchmark_usqcd.csv
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,70 @@
 | 
			
		||||
Memory Bandwidth
 | 
			
		||||
 | 
			
		||||
Bytes, GB/s per node
 | 
			
		||||
3145728, 225.900365
 | 
			
		||||
50331648, 2858.859504
 | 
			
		||||
254803968, 4145.556367
 | 
			
		||||
805306368, 4905.772480
 | 
			
		||||
1966080000, 4978.312557
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
GEMM
 | 
			
		||||
 | 
			
		||||
 M, N, K, BATCH, GF/s per rank
 | 
			
		||||
16, 8, 16, 256, 1.713639
 | 
			
		||||
16, 16, 16, 256, 288.268316
 | 
			
		||||
16, 32, 16, 256, 597.053950
 | 
			
		||||
32, 8, 32, 256, 557.382591
 | 
			
		||||
32, 16, 32, 256, 1100.145311
 | 
			
		||||
32, 32, 32, 256, 1885.080449
 | 
			
		||||
64, 8, 64, 256, 1725.163599
 | 
			
		||||
64, 16, 64, 256, 3389.336566
 | 
			
		||||
64, 32, 64, 256, 4168.252422
 | 
			
		||||
16, 8, 256, 256, 1326.262134
 | 
			
		||||
16, 16, 256, 256, 2318.095475
 | 
			
		||||
16, 32, 256, 256, 3555.436503
 | 
			
		||||
32, 8, 256, 256, 1920.139170
 | 
			
		||||
32, 16, 256, 256, 3486.174753
 | 
			
		||||
32, 32, 256, 256, 5320.821724
 | 
			
		||||
64, 8, 256, 256, 2539.597502
 | 
			
		||||
64, 16, 256, 256, 5003.456775
 | 
			
		||||
64, 32, 256, 256, 7837.531562
 | 
			
		||||
8, 256, 16, 256, 1427.848170
 | 
			
		||||
16, 256, 16, 256, 2222.147815
 | 
			
		||||
32, 256, 16, 256, 2877.121715
 | 
			
		||||
8, 256, 32, 256, 1922.890086
 | 
			
		||||
16, 256, 32, 256, 3199.469082
 | 
			
		||||
32, 256, 32, 256, 4845.405343
 | 
			
		||||
8, 256, 64, 256, 2639.483343
 | 
			
		||||
16, 256, 64, 256, 5012.800299
 | 
			
		||||
32, 256, 64, 256, 7216.006882
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Communications
 | 
			
		||||
 | 
			
		||||
Packet bytes, direction, GB/s per node
 | 
			
		||||
4718592, 2, 206.570734
 | 
			
		||||
4718592, 3, 207.501847
 | 
			
		||||
4718592, 6, 189.730277
 | 
			
		||||
4718592, 7, 204.301218
 | 
			
		||||
15925248, 2, 307.882997
 | 
			
		||||
15925248, 3, 287.901076
 | 
			
		||||
15925248, 6, 295.603109
 | 
			
		||||
15925248, 7, 300.682033
 | 
			
		||||
37748736, 2, 331.740364
 | 
			
		||||
37748736, 3, 338.610627
 | 
			
		||||
37748736, 6, 332.580657
 | 
			
		||||
37748736, 7, 336.336579
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Per node summary table
 | 
			
		||||
 | 
			
		||||
L , Wilson, DWF4, Staggered, GF/s per node
 | 
			
		||||
 | 
			
		||||
8 , 16, 1165, 10
 | 
			
		||||
12 , 473, 4901, 163
 | 
			
		||||
16 , 1436, 8464, 442
 | 
			
		||||
24 , 4133, 10139, 1530
 | 
			
		||||
32 , 5726, 11487, 2518
 | 
			
		||||
 | 
			
		||||
		
		
			
  | 
@@ -5,10 +5,12 @@ LIME=/p/home/jusers/boyle2/juwels/gm2dwf/boyle/
 | 
			
		||||
    --enable-gen-simd-width=64 \
 | 
			
		||||
    --enable-shm=nvlink \
 | 
			
		||||
    --enable-accelerator=cuda \
 | 
			
		||||
    --disable-gparity \
 | 
			
		||||
    --disable-fermion-reps \
 | 
			
		||||
    --with-lime=$LIME \
 | 
			
		||||
    --disable-accelerator-cshift \
 | 
			
		||||
    --enable-accelerator-cshift \
 | 
			
		||||
    --disable-unified \
 | 
			
		||||
    CXX=nvcc \
 | 
			
		||||
    LDFLAGS="-cudart shared " \
 | 
			
		||||
    CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++14 -cudart shared"
 | 
			
		||||
    CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++17 -cudart shared -lcublas"
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
module load GCC/9.3.0       
 | 
			
		||||
module load  GMP/6.2.0   
 | 
			
		||||
module load MPFR/4.1.0     
 | 
			
		||||
module load OpenMPI/4.1.0rc1  
 | 
			
		||||
module load CUDA/11.3
 | 
			
		||||
module load GCC
 | 
			
		||||
module load GMP
 | 
			
		||||
module load MPFR
 | 
			
		||||
module load OpenMPI
 | 
			
		||||
module load CUDA
 | 
			
		||||
 
 | 
			
		||||
@@ -16,7 +16,7 @@ CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
 | 
			
		||||
--disable-fermion-reps \
 | 
			
		||||
CXX=hipcc MPICXX=mpicxx \
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -fgpu-sanitize" \
 | 
			
		||||
 LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 "
 | 
			
		||||
 LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64  -lhipblas -lrocblas"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,3 +1,5 @@
 | 
			
		||||
export https_proxy=http://proxy-chain.intel.com:911
 | 
			
		||||
module load intel-release
 | 
			
		||||
module load intel/mpich
 | 
			
		||||
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
 | 
			
		||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
 | 
			
		||||
 
 | 
			
		||||
@@ -1,4 +1,3 @@
 | 
			
		||||
BREW=/opt/local/
 | 
			
		||||
MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
 | 
			
		||||
CXXFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib/ CXX=c++-13 MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -30,27 +30,20 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
template<class d>
 | 
			
		||||
struct scal {
 | 
			
		||||
  d internal;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  Gamma::Algebra Gmu [] = {
 | 
			
		||||
    Gamma::Algebra::GammaX,
 | 
			
		||||
    Gamma::Algebra::GammaY,
 | 
			
		||||
    Gamma::Algebra::GammaZ,
 | 
			
		||||
    Gamma::Algebra::GammaT
 | 
			
		||||
  };
 | 
			
		||||
#ifndef HOST_NAME_MAX
 | 
			
		||||
#define HOST_NAME_MAX _POSIX_HOST_NAME_MAX
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  char hostname[HOST_NAME_MAX+1];
 | 
			
		||||
  gethostname(hostname, HOST_NAME_MAX+1);
 | 
			
		||||
  std::string host(hostname);
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  const int Ls=12;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "::::: NB: to enable a quick bit reproducibility check use the --checksums flag. " << std::endl;
 | 
			
		||||
 | 
			
		||||
  { 
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
@@ -92,7 +85,14 @@ int main (int argc, char ** argv)
 | 
			
		||||
  SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
 | 
			
		||||
  SchurDiagMooeeOperator<DomainWallFermionF,LatticeFermionF> HermOpEO_f(Ddwf_f);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "::::::::::::: Starting mixed CG" << std::endl;
 | 
			
		||||
  int nsecs=600;
 | 
			
		||||
  if( GridCmdOptionExists(argv,argv+argc,"--seconds") ){
 | 
			
		||||
    std::string arg = GridCmdOptionPayload(argv,argv+argc,"--seconds");
 | 
			
		||||
    GridCmdOptionInt(arg,nsecs);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "::::::::::::: Starting mixed CG for "<<nsecs <<" seconds" << std::endl;
 | 
			
		||||
 | 
			
		||||
  MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(1.0e-8, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
 | 
			
		||||
  double t1,t2,flops;
 | 
			
		||||
  double MdagMsiteflops = 1452; // Mobius (real coeffs)
 | 
			
		||||
@@ -101,7 +101,14 @@ int main (int argc, char ** argv)
 | 
			
		||||
  std:: cout << " MdagM site flops = "<< 4*MdagMsiteflops<<std::endl;
 | 
			
		||||
  std:: cout << " CG    site flops = "<< CGsiteflops <<std::endl;
 | 
			
		||||
  int iters;
 | 
			
		||||
  for(int i=0;i<10;i++){
 | 
			
		||||
 | 
			
		||||
  time_t start = time(NULL);
 | 
			
		||||
 | 
			
		||||
  uint32_t csum, csumref;
 | 
			
		||||
  csumref=0;
 | 
			
		||||
  int iter=0;
 | 
			
		||||
  do {
 | 
			
		||||
    std::cerr << "******************* SINGLE PRECISION SOLVE "<<iter<<std::endl;
 | 
			
		||||
    result_o = Zero();
 | 
			
		||||
    t1=usecond();
 | 
			
		||||
    mCG(src_o,result_o);
 | 
			
		||||
@@ -111,10 +118,28 @@ int main (int argc, char ** argv)
 | 
			
		||||
    flops+= CGsiteflops*FrbGrid->gSites()*iters;
 | 
			
		||||
    std::cout << " SinglePrecision iterations/sec "<< iters/(t2-t1)*1000.*1000.<<std::endl;
 | 
			
		||||
    std::cout << " SinglePrecision GF/s "<< flops/(t2-t1)/1000.<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "::::::::::::: Starting regular CG" << std::endl;
 | 
			
		||||
 | 
			
		||||
    csum = crc(result_o);
 | 
			
		||||
 | 
			
		||||
    if ( csumref == 0 ) {
 | 
			
		||||
      csumref = csum;
 | 
			
		||||
    } else {
 | 
			
		||||
      if ( csum != csumref ) { 
 | 
			
		||||
	std::cerr << host<<" FAILURE " <<iter <<" csum "<<std::hex<<csum<< " != "<<csumref <<std::dec<<std::endl;
 | 
			
		||||
	assert(0);
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << host <<" OK " <<iter <<" csum "<<std::hex<<csum<<std::dec<<" -- OK! "<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    iter ++;
 | 
			
		||||
  } while (time(NULL) < (start + nsecs/2) );
 | 
			
		||||
    
 | 
			
		||||
  std::cout << GridLogMessage << "::::::::::::: Starting double precision CG" << std::endl;
 | 
			
		||||
  ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
 | 
			
		||||
  for(int i=0;i<1;i++){
 | 
			
		||||
  csumref=0;
 | 
			
		||||
  int i=0;
 | 
			
		||||
  do { 
 | 
			
		||||
    std::cerr << "******************* DOUBLE PRECISION SOLVE "<<i<<std::endl;
 | 
			
		||||
    result_o_2 = Zero();
 | 
			
		||||
    t1=usecond();
 | 
			
		||||
    CG(HermOpEO,src_o,result_o_2);
 | 
			
		||||
@@ -125,43 +150,27 @@ int main (int argc, char ** argv)
 | 
			
		||||
 | 
			
		||||
    std::cout << " DoublePrecision iterations/sec "<< iters/(t2-t1)*1000.*1000.<<std::endl;
 | 
			
		||||
    std::cout << " DoublePrecision GF/s "<< flops/(t2-t1)/1000.<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //  MemoryManager::Print();
 | 
			
		||||
    csum = crc(result_o);
 | 
			
		||||
 | 
			
		||||
    if ( csumref == 0 ) {
 | 
			
		||||
      csumref = csum;
 | 
			
		||||
    } else {
 | 
			
		||||
      if ( csum != csumref ) { 
 | 
			
		||||
	std::cerr << i <<" csum "<<std::hex<<csum<< " != "<<csumref <<std::dec<<std::endl;
 | 
			
		||||
	assert(0);
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << i <<" csum "<<std::hex<<csum<<std::dec<<" -- OK! "<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    i++;
 | 
			
		||||
  } while (time(NULL) < (start + nsecs) );
 | 
			
		||||
 | 
			
		||||
  LatticeFermionD diff_o(FrbGrid);
 | 
			
		||||
  RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "::::::::::::: Diff between mixed and regular CG: " << diff << std::endl;
 | 
			
		||||
 | 
			
		||||
  #ifdef HAVE_LIME
 | 
			
		||||
  if( GridCmdOptionExists(argv,argv+argc,"--checksums") ){
 | 
			
		||||
  
 | 
			
		||||
  std::string file1("./Propagator1");
 | 
			
		||||
  emptyUserRecord record;
 | 
			
		||||
  uint32_t nersc_csum;
 | 
			
		||||
  uint32_t scidac_csuma;
 | 
			
		||||
  uint32_t scidac_csumb;
 | 
			
		||||
  typedef SpinColourVectorD   FermionD;
 | 
			
		||||
  typedef vSpinColourVectorD vFermionD;
 | 
			
		||||
 | 
			
		||||
  BinarySimpleMunger<FermionD,FermionD> munge;
 | 
			
		||||
  std::string format = getFormatString<vFermionD>();
 | 
			
		||||
  
 | 
			
		||||
  BinaryIO::writeLatticeObject<vFermionD,FermionD>(result_o,file1,munge, 0, format,
 | 
			
		||||
						   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Mixed checksums "<<std::hex << scidac_csuma << " "<<scidac_csumb<<std::endl;
 | 
			
		||||
 | 
			
		||||
  BinaryIO::writeLatticeObject<vFermionD,FermionD>(result_o_2,file1,munge, 0, format,
 | 
			
		||||
						   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " CG checksums "<<std::hex << scidac_csuma << " "<<scidac_csumb<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  #endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  MemoryManager::Print();
 | 
			
		||||
  assert(diff < 1e-4);
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										321
									
								
								tests/core/Test_sliceSum.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										321
									
								
								tests/core/Test_sliceSum.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,321 @@
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumCPU(const Grid::Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  using namespace Grid;
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // FIXME precision promoted summation
 | 
			
		||||
  // may be important for correlation functions
 | 
			
		||||
  // But easily avoided by using double precision fields
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_object::scalar_type scalar_type;
 | 
			
		||||
  GridBase  *grid = Data.Grid();
 | 
			
		||||
  assert(grid!=NULL);
 | 
			
		||||
 | 
			
		||||
  const int    Nd = grid->_ndimension;
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert(orthogdim >= 0);
 | 
			
		||||
  assert(orthogdim < Nd);
 | 
			
		||||
 | 
			
		||||
  int fd=grid->_fdimensions[orthogdim];
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
			
		||||
  for(int r=0;r<rd;r++){
 | 
			
		||||
    lvSum[r]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
			
		||||
  int e2=    grid->_slice_block [orthogdim];
 | 
			
		||||
  int stride=grid->_slice_stride[orthogdim];
 | 
			
		||||
  int ostride=grid->_ostride[orthogdim];
 | 
			
		||||
  
 | 
			
		||||
  //Reduce Data down to lvSum
 | 
			
		||||
  sliceSumReduction_cpu(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
 | 
			
		||||
 | 
			
		||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
			
		||||
  Coordinate icoor(Nd);
 | 
			
		||||
 | 
			
		||||
  for(int rt=0;rt<rd;rt++){
 | 
			
		||||
 | 
			
		||||
    extract(lvSum[rt],extracted);
 | 
			
		||||
 | 
			
		||||
    for(int idx=0;idx<Nsimd;idx++){
 | 
			
		||||
 | 
			
		||||
      grid->iCoorFromIindex(icoor,idx);
 | 
			
		||||
 | 
			
		||||
      int ldx =rt+icoor[orthogdim]*rd;
 | 
			
		||||
 | 
			
		||||
      lsSum[ldx]=lsSum[ldx]+extracted[idx];
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // sum over nodes.
 | 
			
		||||
  for(int t=0;t<fd;t++){
 | 
			
		||||
    int pt = t/ld; // processor plane
 | 
			
		||||
    int lt = t%ld;
 | 
			
		||||
    if ( pt == grid->_processor_coor[orthogdim] ) {
 | 
			
		||||
      result[t]=lsSum[lt];
 | 
			
		||||
    } else {
 | 
			
		||||
      result[t]=Zero();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
			
		||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
  grid->GlobalSumVector(ptr, words);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv) {
 | 
			
		||||
    
 | 
			
		||||
    using namespace Grid;
 | 
			
		||||
 | 
			
		||||
    Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Coordinate latt_size({64,64,64,16});
 | 
			
		||||
    auto simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
 | 
			
		||||
    auto mpi_layout = GridDefaultMpi();
 | 
			
		||||
    GridCartesian Grid(latt_size, simd_layout, mpi_layout);
 | 
			
		||||
 | 
			
		||||
    std::vector<int> seeds({1, 2, 3, 4});
 | 
			
		||||
 | 
			
		||||
    GridParallelRNG pRNG(&Grid);
 | 
			
		||||
    pRNG.SeedFixedIntegers(seeds);
 | 
			
		||||
 | 
			
		||||
    LatticeComplexD test_data(&Grid);
 | 
			
		||||
    gaussian(pRNG,test_data);
 | 
			
		||||
 | 
			
		||||
    std::vector<TComplexD> reduction_reference;
 | 
			
		||||
    std::vector<TComplexD> reduction_result;
 | 
			
		||||
 | 
			
		||||
    //warmup
 | 
			
		||||
    for (int sweeps = 0; sweeps < 5; sweeps++) {
 | 
			
		||||
      reduction_result = sliceSum(test_data,0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int trace_id = traceStart("sliceSum benchmark - ComplexD");
 | 
			
		||||
    std::cout << GridLogMessage << "Testing ComplexD" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(ComplexD) = " << sizeof(ComplexD) << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(vComplexD) = " << sizeof(vComplexD) << std::endl;
 | 
			
		||||
    for (int i = 0; i < Nd; i++) {
 | 
			
		||||
 | 
			
		||||
      RealD t=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSum");
 | 
			
		||||
      sliceSumCPU(test_data,reduction_reference,i);
 | 
			
		||||
      tracePop("sliceSum");
 | 
			
		||||
 | 
			
		||||
      t+=usecond();
 | 
			
		||||
      std::cout << GridLogMessage << "Orthog. dir. = " << i << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "CPU sliceSum took "<<t<<" usecs"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      
 | 
			
		||||
      RealD tgpu=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSumGpu");
 | 
			
		||||
      reduction_result = sliceSum(test_data,i);
 | 
			
		||||
      tracePop("sliceSumGpu");
 | 
			
		||||
 | 
			
		||||
      tgpu+=usecond();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage <<"GPU sliceSum took "<<tgpu<<" usecs"<<std::endl<<std::endl;;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      for(int t=0;t<reduction_reference.size();t++) {
 | 
			
		||||
 | 
			
		||||
        auto diff = reduction_reference[t]-reduction_result[t];
 | 
			
		||||
        assert(abs(TensorRemove(diff)) < 1e-8 );
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    }
 | 
			
		||||
    traceStop(trace_id);
 | 
			
		||||
 | 
			
		||||
    LatticeSpinVectorD test_data_cv(&Grid);
 | 
			
		||||
    gaussian(pRNG,test_data_cv);
 | 
			
		||||
 | 
			
		||||
    std::vector<SpinVectorD> reduction_reference_cv;
 | 
			
		||||
    std::vector<SpinVectorD> reduction_result_cv;
 | 
			
		||||
 | 
			
		||||
    //warmup
 | 
			
		||||
    for (int sweeps = 0; sweeps < 5; sweeps++) {
 | 
			
		||||
      reduction_result_cv = sliceSum(test_data_cv,0);
 | 
			
		||||
    }
 | 
			
		||||
    trace_id = traceStart("sliceSum benchmark - SpinVectorD");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Testing SpinVectorD" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(SpinVectorD) = " << sizeof(SpinVectorD) << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(vSpinVectorD) = " << sizeof(vSpinVectorD) << std::endl;
 | 
			
		||||
    for (int i = 0; i < Nd; i++) {
 | 
			
		||||
 | 
			
		||||
      RealD t=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSum");
 | 
			
		||||
      sliceSumCPU(test_data_cv,reduction_reference_cv,i);
 | 
			
		||||
      tracePop("sliceSum");
 | 
			
		||||
 | 
			
		||||
      t+=usecond();
 | 
			
		||||
      std::cout << GridLogMessage << "Orthog. dir. = " << i << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "CPU sliceSum took "<<t<<" usecs"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      
 | 
			
		||||
      RealD tgpu=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSumGpu");
 | 
			
		||||
      reduction_result_cv = sliceSum(test_data_cv,i);
 | 
			
		||||
      tracePop("sliceSumGpu");
 | 
			
		||||
 | 
			
		||||
      tgpu+=usecond();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage <<"GPU sliceSum took "<<tgpu<<" usecs"<<std::endl<<std::endl;;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      for(int t=0;t<reduction_reference_cv.size();t++) {
 | 
			
		||||
 | 
			
		||||
        auto diff = reduction_reference_cv[t]-reduction_result_cv[t];
 | 
			
		||||
        assert(abs(diff()(0)()) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(1)()) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(2)()) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(3)()) < 1e-8 );
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    }
 | 
			
		||||
    traceStop(trace_id);
 | 
			
		||||
 | 
			
		||||
    LatticeSpinColourVectorD test_data_scv(&Grid);
 | 
			
		||||
    gaussian(pRNG,test_data_scv);
 | 
			
		||||
 | 
			
		||||
    std::vector<SpinColourVectorD> reduction_reference_scv;
 | 
			
		||||
    std::vector<SpinColourVectorD> reduction_result_scv;
 | 
			
		||||
 | 
			
		||||
    //warmup
 | 
			
		||||
    for (int sweeps = 0; sweeps < 5; sweeps++) {
 | 
			
		||||
      reduction_result_scv = sliceSum(test_data_scv,0);
 | 
			
		||||
    }
 | 
			
		||||
    trace_id = traceStart("sliceSum benchmark - SpinColourVectorD");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Testing SpinColourVectorD" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(SpinColourVectorD) = " << sizeof(SpinColourVectorD) << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(vSpinColourVectorD) = " << sizeof(vSpinColourVectorD) << std::endl;
 | 
			
		||||
    for (int i = 0; i < Nd; i++) {
 | 
			
		||||
 | 
			
		||||
      RealD t=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSum");
 | 
			
		||||
      sliceSumCPU(test_data_scv,reduction_reference_scv,i);
 | 
			
		||||
      tracePop("sliceSum");
 | 
			
		||||
 | 
			
		||||
      t+=usecond();
 | 
			
		||||
      std::cout << GridLogMessage << "Orthog. dir. = " << i << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "CPU sliceSum took "<<t<<" usecs"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      
 | 
			
		||||
      RealD tgpu=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSumGpu");
 | 
			
		||||
      reduction_result_scv = sliceSum(test_data_scv,i);
 | 
			
		||||
      tracePop("sliceSumGpu");
 | 
			
		||||
 | 
			
		||||
      tgpu+=usecond();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage <<"GPU sliceSum took "<<tgpu<<" usecs"<<std::endl<<std::endl;;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      for(int t=0;t<reduction_reference_scv.size();t++) {
 | 
			
		||||
 | 
			
		||||
        auto diff = reduction_reference_scv[t]-reduction_result_scv[t];
 | 
			
		||||
        // std::cout << diff <<std::endl;
 | 
			
		||||
        assert(abs(diff()(0)(0)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(0)(1)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(0)(2)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(1)(0)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(1)(1)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(1)(2)) < 1e-8 );    
 | 
			
		||||
        assert(abs(diff()(2)(0)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(2)(1)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(2)(2)) < 1e-8 );    
 | 
			
		||||
        assert(abs(diff()(3)(0)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(3)(1)) < 1e-8 );
 | 
			
		||||
        assert(abs(diff()(3)(2)) < 1e-8 );
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    }
 | 
			
		||||
    traceStop(trace_id);
 | 
			
		||||
 | 
			
		||||
    LatticeSpinColourMatrixD test_data_scm(&Grid);
 | 
			
		||||
    gaussian(pRNG,test_data_scm);
 | 
			
		||||
 | 
			
		||||
    std::vector<SpinColourMatrixD> reduction_reference_scm;
 | 
			
		||||
    std::vector<SpinColourMatrixD> reduction_result_scm;
 | 
			
		||||
 | 
			
		||||
    //warmup
 | 
			
		||||
    for (int sweeps = 0; sweeps < 5; sweeps++) {
 | 
			
		||||
      reduction_result_scm = sliceSum(test_data_scm,0);
 | 
			
		||||
    }
 | 
			
		||||
    trace_id = traceStart("sliceSum benchmark - SpinColourMatrixD");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Testing SpinColourMatrixD" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(SpinColourMatrixD) = " << sizeof(SpinColourMatrixD) << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "sizeof(vSpinColourMatrixD) = " << sizeof(vSpinColourMatrixD) << std::endl;
 | 
			
		||||
    for (int i = 0; i < Nd; i++) {
 | 
			
		||||
 | 
			
		||||
      RealD t=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSum");
 | 
			
		||||
      sliceSumCPU(test_data_scm,reduction_reference_scm,i);
 | 
			
		||||
      tracePop("sliceSum");
 | 
			
		||||
 | 
			
		||||
      t+=usecond();
 | 
			
		||||
      std::cout << GridLogMessage << "Orthog. dir. = " << i << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "CPU sliceSum took "<<t<<" usecs"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      
 | 
			
		||||
      RealD tgpu=-usecond();
 | 
			
		||||
 | 
			
		||||
      tracePush("sliceSumGpu");
 | 
			
		||||
      reduction_result_scm = sliceSum(test_data_scm,i);
 | 
			
		||||
      tracePop("sliceSumGpu");
 | 
			
		||||
 | 
			
		||||
      tgpu+=usecond();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage <<"GPU sliceSum took "<<tgpu<<" usecs"<<std::endl<<std::endl;;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      for(int t=0;t<reduction_reference_scm.size();t++) {
 | 
			
		||||
 | 
			
		||||
        auto diff = reduction_reference_scm[t]-reduction_result_scm[t];
 | 
			
		||||
        // std::cout << diff <<std::endl;
 | 
			
		||||
        for (int is = 0; is < Ns; is++) {
 | 
			
		||||
          for (int js = 0; js < Ns; js++) {
 | 
			
		||||
            for (int ic = 0; ic < Nc; ic++) {
 | 
			
		||||
              for (int jc = 0; jc < Nc; jc++) {
 | 
			
		||||
                assert(abs(diff()(is,js)(ic,jc)) < 1e-8);
 | 
			
		||||
              }
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    }
 | 
			
		||||
    traceStop(trace_id);
 | 
			
		||||
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
@@ -32,6 +32,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
// This is to optimize the SIMD
 | 
			
		||||
template<class vobj> void gpermute(vobj & inout,int perm){
 | 
			
		||||
  vobj tmp=inout;
 | 
			
		||||
  if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
 | 
			
		||||
@@ -40,6 +41,7 @@ template<class vobj> void gpermute(vobj & inout,int perm){
 | 
			
		||||
  if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
@@ -47,20 +49,21 @@ int main (int argc, char ** argv)
 | 
			
		||||
  Coordinate latt_size  = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout= GridDefaultSimd(Nd,vComplexD::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout = GridDefaultMpi();
 | 
			
		||||
  std::cout << " mpi "<<mpi_layout<<std::endl;
 | 
			
		||||
  std::cout << " simd "<<simd_layout<<std::endl;
 | 
			
		||||
  std::cout << " latt "<<latt_size<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " mpi "<<mpi_layout<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " simd "<<simd_layout<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " latt "<<latt_size<<std::endl;
 | 
			
		||||
  GridCartesian GRID(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
 | 
			
		||||
  // Initialize configuration as hot start.
 | 
			
		||||
  GridParallelRNG   pRNG(&GRID);
 | 
			
		||||
  pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
 | 
			
		||||
  LatticeGaugeField Umu(&GRID);
 | 
			
		||||
 | 
			
		||||
  pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  LatticeComplex trplaq(&GRID);
 | 
			
		||||
 | 
			
		||||
  // Store Umu in U. Peek/Poke mean respectively getElement/setElement.
 | 
			
		||||
  std::vector<LatticeColourMatrix> U(Nd, Umu.Grid());
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
@@ -70,9 +73,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
 | 
			
		||||
  LatticeComplex cplaq(&GRID); cplaq=Zero();
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  // Create a padded cell of extra padding depth=1
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  int depth = 1;
 | 
			
		||||
  PaddedCell Ghost(depth,&GRID);
 | 
			
		||||
  LatticeGaugeField Ughost = Ghost.Exchange(Umu);
 | 
			
		||||
@@ -114,18 +115,25 @@ int main (int argc, char ** argv)
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  ///// Array for the site plaquette
 | 
			
		||||
  // Array for the site plaquette
 | 
			
		||||
  GridBase *GhostGrid = Ughost.Grid();
 | 
			
		||||
  LatticeComplex gplaq(GhostGrid); 
 | 
			
		||||
 | 
			
		||||
  // Now we're going to put together the "stencil" that will be useful to us when
 | 
			
		||||
  // calculating the plaquette. Our eventual goal is to make the product
 | 
			
		||||
  //    Umu(x) Unu(x+mu) Umu^dag(x+nu) Unu^dag(x),
 | 
			
		||||
  // which requires, in order, the sites x, x+mu, x+nu, and x. We arrive at these
 | 
			
		||||
  // sites relative to x through "shifts", which is represented here by a 4-d
 | 
			
		||||
  // vector of 0s (no movement) and 1s (shift one unit) at each site. The
 | 
			
		||||
  // "stencil" is the set of all these shifts.
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    for(int nu=mu+1;nu<Nd;nu++){
 | 
			
		||||
  
 | 
			
		||||
      //    Umu(x) Unu(x+mu) Umu^dag(x+nu) Unu^dag(x)
 | 
			
		||||
      Coordinate shift_0(Nd,0);
 | 
			
		||||
      Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
 | 
			
		||||
      Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
 | 
			
		||||
      // push_back creates an element at the end of shifts and
 | 
			
		||||
      // assigns the data in the argument to it.
 | 
			
		||||
      shifts.push_back(shift_0);
 | 
			
		||||
      shifts.push_back(shift_mu);
 | 
			
		||||
      shifts.push_back(shift_nu);
 | 
			
		||||
@@ -135,41 +143,51 @@ int main (int argc, char ** argv)
 | 
			
		||||
  GeneralLocalStencil gStencil(GhostGrid,shifts);
 | 
			
		||||
 | 
			
		||||
  gplaq=Zero();
 | 
			
		||||
  {
 | 
			
		||||
    autoView( gp_v , gplaq, CpuWrite);
 | 
			
		||||
    autoView( t_v , trplaq, CpuRead);
 | 
			
		||||
    autoView( U_v , Ughost, CpuRead);
 | 
			
		||||
    for(int ss=0;ss<gp_v.size();ss++){
 | 
			
		||||
      int s=0;
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	for(int nu=mu+1;nu<Nd;nu++){
 | 
			
		||||
 | 
			
		||||
	  auto SE0 = gStencil.GetEntry(s+0,ss);
 | 
			
		||||
	  auto SE1 = gStencil.GetEntry(s+1,ss);
 | 
			
		||||
	  auto SE2 = gStencil.GetEntry(s+2,ss);
 | 
			
		||||
	  auto SE3 = gStencil.GetEntry(s+3,ss);
 | 
			
		||||
  // Before doing accelerator stuff, there is an opening and closing of "Views". I guess the
 | 
			
		||||
  // "Views" are stored in *_v variables listed below.
 | 
			
		||||
  autoView( gp_v , gplaq, CpuWrite);
 | 
			
		||||
  autoView( t_v , trplaq, CpuRead);
 | 
			
		||||
  autoView( U_v , Ughost, CpuRead);
 | 
			
		||||
 | 
			
		||||
	  int o0 = SE0->_offset;
 | 
			
		||||
	  int o1 = SE1->_offset;
 | 
			
		||||
	  int o2 = SE2->_offset;
 | 
			
		||||
	  int o3 = SE3->_offset;
 | 
			
		||||
  // This is now a loop over stencil shift elements. That is, s increases as we make our
 | 
			
		||||
  // way through the spacetimes sites, but also as we make our way around the plaquette.
 | 
			
		||||
  for(int ss=0;ss<gp_v.size();ss++){
 | 
			
		||||
    int s=0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    	for(int nu=mu+1;nu<Nd;nu++){
 | 
			
		||||
    
 | 
			
		||||
	  auto U0 = U_v[o0](mu);
 | 
			
		||||
	  auto U1 = U_v[o1](nu);
 | 
			
		||||
	  auto U2 = adj(U_v[o2](mu));
 | 
			
		||||
	  auto U3 = adj(U_v[o3](nu));
 | 
			
		||||
    	  auto SE0 = gStencil.GetEntry(s+0,ss);
 | 
			
		||||
    	  auto SE1 = gStencil.GetEntry(s+1,ss);
 | 
			
		||||
    	  auto SE2 = gStencil.GetEntry(s+2,ss);
 | 
			
		||||
    	  auto SE3 = gStencil.GetEntry(s+3,ss);
 | 
			
		||||
 | 
			
		||||
	  gpermute(U0,SE0->_permute);
 | 
			
		||||
	  gpermute(U1,SE1->_permute);
 | 
			
		||||
	  gpermute(U2,SE2->_permute);
 | 
			
		||||
	  gpermute(U3,SE3->_permute);
 | 
			
		||||
        // Due to our strategy, each offset corresponds to a site.
 | 
			
		||||
    	  int o0 = SE0->_offset;
 | 
			
		||||
    	  int o1 = SE1->_offset;
 | 
			
		||||
    	  int o2 = SE2->_offset;
 | 
			
		||||
    	  int o3 = SE3->_offset;
 | 
			
		||||
    	  
 | 
			
		||||
	  gp_v[ss]() =gp_v[ss]() + trace( U0*U1*U2*U3 );
 | 
			
		||||
	  s=s+4;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    	  auto U0 = U_v[o0](mu);
 | 
			
		||||
    	  auto U1 = U_v[o1](nu);
 | 
			
		||||
    	  auto U2 = adj(U_v[o2](mu));
 | 
			
		||||
    	  auto U3 = adj(U_v[o3](nu));
 | 
			
		||||
    
 | 
			
		||||
    	  gpermute(U0,SE0->_permute);
 | 
			
		||||
    	  gpermute(U1,SE1->_permute);
 | 
			
		||||
    	  gpermute(U2,SE2->_permute);
 | 
			
		||||
    	  gpermute(U3,SE3->_permute);
 | 
			
		||||
    	  
 | 
			
		||||
    	  gp_v[ss]() =gp_v[ss]() + trace( U0*U1*U2*U3 );
 | 
			
		||||
    	  s=s+4;
 | 
			
		||||
    	}
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Here is my understanding of this part: The padded cell has its own periodic BCs, so
 | 
			
		||||
  // if I take a step to the right at the right-most side of the cell, I end up on the
 | 
			
		||||
  // left-most side. This means that the plaquettes in the padding are wrong. Luckily
 | 
			
		||||
  // all we care about are the plaquettes in the cell, which we obtain from Extract.
 | 
			
		||||
  cplaq = Ghost.Extract(gplaq);
 | 
			
		||||
  RealD vol = cplaq.Grid()->gSites();
 | 
			
		||||
  RealD faces = (Nd * (Nd-1))/2;
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										181
									
								
								tests/smearing/Test_fatLinks.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										181
									
								
								tests/smearing/Test_fatLinks.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,181 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./tests/smearing/Test_fatLinks.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: D. A. Clarke <clarke.davida@gmail.com> 
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*
 | 
			
		||||
    @file Test_fatLinks.cc
 | 
			
		||||
    @brief test of the HISQ smearing 
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
#include <Grid/qcd/smearing/HISQSmearing.h>
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief parameter file to easily adjust Nloop */
 | 
			
		||||
struct ConfParameters: Serializable {
 | 
			
		||||
    GRID_SERIALIZABLE_CLASS_MEMBERS(
 | 
			
		||||
        ConfParameters,
 | 
			
		||||
        int, benchmark, 
 | 
			
		||||
        int, Nloop);
 | 
			
		||||
 | 
			
		||||
    template <class ReaderClass>
 | 
			
		||||
    ConfParameters(Reader<ReaderClass>& Reader){
 | 
			
		||||
        read(Reader, "parameters", *this);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
bool testSmear(GridCartesian& GRID, LatticeGaugeFieldD Umu, LatticeGaugeFieldD Usmr, LatticeGaugeFieldD Unaik, 
 | 
			
		||||
               LatticeGaugeFieldD Ucontrol, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) {
 | 
			
		||||
    Smear_HISQ<PeriodicGimplD> hisq_fat(&GRID,c1,cnaik,c3,c5,c7,clp);
 | 
			
		||||
    LatticeGaugeFieldD diff(&GRID), Uproj(&GRID);
 | 
			
		||||
    hisq_fat.smear(Usmr, Unaik, Umu);
 | 
			
		||||
    bool result;
 | 
			
		||||
    if (cnaik < 1e-30) { // Testing anything but Naik term
 | 
			
		||||
        diff = Ucontrol-Usmr;
 | 
			
		||||
        auto absDiff = norm2(diff)/norm2(Ucontrol);
 | 
			
		||||
        if (absDiff < 1e-30) {
 | 
			
		||||
            Grid_pass(" |Umu-Usmr|/|Umu| = ",absDiff);
 | 
			
		||||
            result = true;
 | 
			
		||||
        } else {
 | 
			
		||||
            Grid_error(" |Umu-Usmr|/|Umu| = ",absDiff);
 | 
			
		||||
            result = false;
 | 
			
		||||
        }
 | 
			
		||||
    } else { // Testing Naik specifically
 | 
			
		||||
        diff = Ucontrol-Unaik;
 | 
			
		||||
        auto absDiff = norm2(diff)/norm2(Ucontrol);
 | 
			
		||||
        if (absDiff < 1e-30) {
 | 
			
		||||
            Grid_pass(" |Umu-Unaik|/|Umu| = ",absDiff);
 | 
			
		||||
            result = true;
 | 
			
		||||
        } else {
 | 
			
		||||
            Grid_error(" |Umu-Unaik|/|Umu| = ",absDiff);
 | 
			
		||||
            result = false;
 | 
			
		||||
        }
 | 
			
		||||
        hisq_fat.projectU3(Uproj,Ucontrol);
 | 
			
		||||
//        NerscIO::writeConfiguration(Unaik,"nersc.l8t4b3360.naik");
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char** argv) {
 | 
			
		||||
 | 
			
		||||
    // Params for the test.
 | 
			
		||||
    int Ns = 8;
 | 
			
		||||
    int Nt = 4;
 | 
			
		||||
    Coordinate latt_size(Nd,0); latt_size[0]=Ns; latt_size[1]=Ns; latt_size[2]=Ns; latt_size[3]=Nt;
 | 
			
		||||
    std::string conf_in  = "nersc.l8t4b3360";
 | 
			
		||||
    int threads          = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
    typedef LatticeGaugeFieldD LGF;
 | 
			
		||||
 | 
			
		||||
    // Initialize the Grid
 | 
			
		||||
    Grid_init(&argc,&argv);
 | 
			
		||||
    Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
 | 
			
		||||
    Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
    Grid_log("mpi     = ",mpi_layout);
 | 
			
		||||
    Grid_log("simd    = ",simd_layout);
 | 
			
		||||
    Grid_log("latt    = ",latt_size);
 | 
			
		||||
    Grid_log("threads = ",threads);
 | 
			
		||||
    GridCartesian GRID(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
 | 
			
		||||
    XmlReader Reader("fatParams.xml",false,"grid");
 | 
			
		||||
    ConfParameters param(Reader);
 | 
			
		||||
    if(param.benchmark) Grid_log("  Nloop = ",param.Nloop);
 | 
			
		||||
 | 
			
		||||
    LGF Umu(&GRID), Usmr(&GRID), Unaik(&GRID), Ucontrol(&GRID);
 | 
			
		||||
 | 
			
		||||
    // Read the configuration into Umu
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    NerscIO::readConfiguration(Umu, header, conf_in);
 | 
			
		||||
 | 
			
		||||
    bool pass=true;
 | 
			
		||||
 | 
			
		||||
    // Carry out various tests    
 | 
			
		||||
    NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.357lplink.control");
 | 
			
		||||
    pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,1/64.,1/384.,-1/8.);
 | 
			
		||||
    NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.357link.control");
 | 
			
		||||
    pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,1/64.,1/384.,0.);
 | 
			
		||||
    NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.35link.control");
 | 
			
		||||
    pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,1/64.,0.,0.);
 | 
			
		||||
    NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.3link.control");
 | 
			
		||||
    pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,1/8.,0.,1/16.,0.,0.,0.);
 | 
			
		||||
    NerscIO::readConfiguration(Ucontrol, header, "nersc.l8t4b3360.naik.control");
 | 
			
		||||
    pass *= testSmear(GRID,Umu,Usmr,Unaik,Ucontrol,0.,0.8675309,0.,0.,0.,0.);
 | 
			
		||||
 | 
			
		||||
    if(pass){
 | 
			
		||||
        Grid_pass("All tests passed.");
 | 
			
		||||
    } else {
 | 
			
		||||
        Grid_error("At least one test failed.");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Test a C-style instantiation 
 | 
			
		||||
    double path_coeff[6] = {1, 2, 3, 4, 5, 6};
 | 
			
		||||
    Smear_HISQ<PeriodicGimplD> hisq_fat_Cstyle(&GRID,path_coeff);
 | 
			
		||||
 | 
			
		||||
    if (param.benchmark) {
 | 
			
		||||
 | 
			
		||||
        autoView(U_v, Umu, CpuRead); // Gauge accessor
 | 
			
		||||
 | 
			
		||||
        // Read in lattice sequentially, Nloop times 
 | 
			
		||||
        double lookupTime = 0.; 
 | 
			
		||||
        for(int i=0;i<param.Nloop;i++) {
 | 
			
		||||
            double start = usecond();
 | 
			
		||||
            for(int ss=0;ss<U_v.size();ss++)
 | 
			
		||||
                for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
                    auto U1 = U_v[ss](mu);
 | 
			
		||||
            }
 | 
			
		||||
            double stop  = usecond();
 | 
			
		||||
        	lookupTime += stop-start; // microseconds
 | 
			
		||||
        }
 | 
			
		||||
        Grid_log("Time to lookup: ",lookupTime,"[ms]");
 | 
			
		||||
 | 
			
		||||
        // Raise a matrix to the power nmat, for each link. 
 | 
			
		||||
        auto U1 = U_v[0](0);
 | 
			
		||||
        for(int nmat=1;nmat<8;nmat++) {
 | 
			
		||||
            double multTime = 0.; 
 | 
			
		||||
            for(int i=0;i<param.Nloop;i++) {
 | 
			
		||||
                double start=usecond();
 | 
			
		||||
                for(int ss=0;ss<U_v.size();ss++)
 | 
			
		||||
                    for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
                        auto U2 = U1;
 | 
			
		||||
                        for(int j=1;j<nmat;j++) {
 | 
			
		||||
                            U2 *= U1;
 | 
			
		||||
                        }
 | 
			
		||||
                }
 | 
			
		||||
                double stop=usecond();
 | 
			
		||||
                multTime += stop-start;
 | 
			
		||||
            }
 | 
			
		||||
            Grid_log("Time to multiply ",nmat," matrices: ",multTime," [ms]");
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user