mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-14 05:07:05 +01:00
Compare commits
343 Commits
feature/re
...
0.8.2
Author | SHA1 | Date | |
---|---|---|---|
55c095f620 | |||
e3966aa49b | |||
c2c4252a07 | |||
bca36d9bc3 | |||
263dcbabab | |||
8c6016f717 | |||
76c704b84b | |||
671bcbcccb | |||
ff325376cb | |||
9e926e3fc5 | |||
c3d0c176ab | |||
0a71f8bb10 | |||
3a31ba2ea2 | |||
eac6337466 | |||
ab7537e002 | |||
1059189abf | |||
c81d3d422d | |||
620965781e | |||
9c18638b24 | |||
4bfe678218 | |||
fc6e584f2c | |||
7c3f400fc5 | |||
4bca2c17ce | |||
8d540a4e85 | |||
b120ef1fe4 | |||
166feb6483 | |||
f569813b60 | |||
0190ada714 | |||
de1a1dccb3 | |||
0b3f40ce16 | |||
e35e8da111 | |||
6fdf93d695 | |||
6064f96fde | |||
4e52e46a2c | |||
6b27369ade | |||
ab2e5f88cd | |||
f244fed6ab | |||
9b3701ae27 | |||
4ac27340b9 | |||
c7c0a1065f | |||
80947130f9 | |||
0aee73ea6b | |||
e43d59045e | |||
e553678599 | |||
0290ee1f6d | |||
9a34edcf9f | |||
246f10001e | |||
e675c6a48c | |||
a66d110b88 | |||
918e673078 | |||
44b53c3ba2 | |||
2095c12eac | |||
ae5ad986e2 | |||
77ca45ff49 | |||
dbd7f3f0fc | |||
d14512ee03 | |||
48b1c806ed | |||
0a8b6724ef | |||
ce102ac550 | |||
94accec311 | |||
d8512b03f8 | |||
d90cf9d022 | |||
79e930ba12 | |||
2acd8ece65 | |||
b638509c61 | |||
edeb590818 | |||
4f0631615f | |||
c2cd0e15d7 | |||
df41de4cb6 | |||
6d0b985697 | |||
94ebcf551c | |||
6fd4b0be91 | |||
7894ea6263 | |||
73d4676997 | |||
262a73c964 | |||
5921b1d2b9 | |||
6505efcb57 | |||
b595f58e4c | |||
b0de7ab7db | |||
e1124d9572 | |||
d416156c16 | |||
cd8d939a1a | |||
760cfe294c | |||
13eaf21b5c | |||
1403ab231b | |||
0368fbcde8 | |||
2dd0ec7862 | |||
f4241e59ba | |||
26b1d2df2d | |||
bc14e86812 | |||
780a67844e | |||
8b7805200f | |||
2871dec6c0 | |||
abde12433e | |||
1f88ba4e39 | |||
ea5b3ed8a2 | |||
a104115c7d | |||
b899042d81 | |||
3e712fe643 | |||
f4723e07c5 | |||
9ed2d02bb2 | |||
50d016340c | |||
f7b4fd0f69 | |||
1f1aa92f14 | |||
00963a7499 | |||
82a77f9960 | |||
00b4139c16 | |||
3e9c757b3b | |||
ecf736e6bf | |||
f22ab5e1bc | |||
72f959c0b8 | |||
63001d3fa6 | |||
b1d3d1f1a9 | |||
c2250fa124 | |||
84940fbdf0 | |||
0a270b3e93 | |||
6536bed8a4 | |||
79160011a1 | |||
47f5b1e2b5 | |||
a381d34f37 | |||
f0c2108acf | |||
93a5fc083f | |||
6d1de8ed2e | |||
116dde31eb | |||
12d8bf1ced | |||
d921a99b1a | |||
9790926cc5 | |||
a6adb85a1b | |||
98b5b61fea | |||
6896c57d7c | |||
b3d480a978 | |||
bb731c97d6 | |||
974003ae96 | |||
93348775af | |||
91cffef883 | |||
d3935ae7fc | |||
0b426bf9f6 | |||
acd25d0d01 | |||
b7db99967a | |||
b930eda69d | |||
7852181c2c | |||
bdf87bc994 | |||
136e7b2314 | |||
1ea64b24fe | |||
8f661f6c05 | |||
ae9e248c95 | |||
351ffe73cd | |||
6160795a43 | |||
ded2d5c3ab | |||
04255128ef | |||
a9a3248cb5 | |||
7c461dc664 | |||
15fddde9bf | |||
048397d880 | |||
196c9e4a4a | |||
6a0823718e | |||
22476cc5a3 | |||
cb16c96dc7 | |||
e37614bde4 | |||
042bad2ced | |||
5bc0857412 | |||
b540dc1cee | |||
7672bb6434 | |||
f80c548365 | |||
c8bcee6e97 | |||
6e0d43aef5 | |||
c1257208e2 | |||
74c38822ed | |||
318c64adc2 | |||
d5b053f86f | |||
c60e50e3cb | |||
08d8b1d5fb | |||
90d6d28547 | |||
9c31305b8d | |||
2eb584fdf0 | |||
6b46834af8 | |||
3692c7f1ef | |||
0cf94587cd | |||
68868c83ff | |||
9b6ddb6e54 | |||
447b772136 | |||
91a7fe247b | |||
8a1be021d3 | |||
fd66325321 | |||
c637c0c48c | |||
c4b472176c | |||
943fa48ce4 | |||
fa97a56fdd | |||
856476a890 | |||
c509bd3fe2 | |||
b74940b3d4 | |||
17b3f47b1e | |||
dac9f8622e | |||
d9de8fd5c9 | |||
7e3647246c | |||
2881b3e8e5 | |||
cc5d025ea4 | |||
ddcb53bce2 | |||
d1c80e1d46 | |||
c73cc7d354 | |||
49fdc324a0 | |||
f32714a2d1 | |||
73a955be20 | |||
66b7a0f871 | |||
2ab9d4bc56 | |||
4f41cd114d | |||
11c4f5e32c | |||
e9b9550298 | |||
7564fedf68 | |||
251b904a28 | |||
5a112feac3 | |||
6c27c72585 | |||
9c003d2d72 | |||
4b8710970c | |||
68d686ec38 | |||
c48b69ca81 | |||
df8c208f5c | |||
61812ab7f1 | |||
73ced656eb | |||
f69008edf1 | |||
57a49ed22f | |||
ff6413a764 | |||
2530bfed01 | |||
74f79c5ac7 | |||
58c30c0cb1 | |||
917a92118a | |||
04f9cf088d | |||
99107038f9 | |||
b78456bdf4 | |||
08543b6b11 | |||
63ba33371f | |||
683a7d2ddd | |||
afdcbf79d1 | |||
3c3ec4e267 | |||
bbe1d5b49e | |||
0f6009a29f | |||
1cfed3de7c | |||
edbc0d49d7 | |||
ee5cf6c8c5 | |||
a66cecc509 | |||
0f6cdf3d4b | |||
1e63b73a14 | |||
6ab60c5b70 | |||
8c692b7ffd | |||
2976132bdd | |||
48177f2f2d | |||
c4ce70a821 | |||
a3e009ba54 | |||
eb7cf239d9 | |||
13ae371ef8 | |||
9f79a87102 | |||
4ded1ceeb0 | |||
8bc12e0ce1 | |||
cc2f00f827 | |||
cd61e2e6d6 | |||
323ed1a588 | |||
68c66d2e4b | |||
1671adfd49 | |||
871649238c | |||
7c86d2085b | |||
9292be0b69 | |||
10141f90c9 | |||
a414430817 | |||
f20728baa9 | |||
d2e68c4355 | |||
1cb745c8dc | |||
faf4278019 | |||
194e4b94bb | |||
bfc1411c1f | |||
161637e573 | |||
04f92ccddf | |||
3b2d805398 | |||
9dc885d297 | |||
a70c1feecc | |||
38328100c9 | |||
9732519c41 | |||
fa4eeb28c4 | |||
10f7a17ae4 | |||
26f14d7dd7 | |||
73434db636 | |||
c6411f8514 | |||
6cf635d61c | |||
39558cce52 | |||
df152648d6 | |||
7a0c9e84f8 | |||
caf1a3c85d | |||
21ca730a49 | |||
c6cd27e9b2 | |||
6068411d61 | |||
4e965c168e | |||
f260af546e | |||
649b8c9aca | |||
0afa22747d | |||
fa43206c79 | |||
a367835bf2 | |||
d7743591ea | |||
c6cbe533ea | |||
8402ab6cf9 | |||
c63095345e | |||
a7ae46b61e | |||
cd63052205 | |||
699d537cd6 | |||
9031f0ed95 | |||
26b3d441bb | |||
99bc4cde56 | |||
e843d83d9d | |||
0f75ea52b7 | |||
8107b785cc | |||
37b777d801 | |||
7382787856 | |||
781c611ca0 | |||
b069090b52 | |||
0c1c1d9900 | |||
7f4ed6c2e5 | |||
56d32a4afb | |||
b8ee496ed6 | |||
b87416dac4 | |||
176bf37372 | |||
b3d342ca22 | |||
e1f928398d | |||
8c579d2d4a | |||
fc7d07ade0 | |||
b3be9195b4 | |||
9e3c187a4d | |||
8363edfcdb | |||
74af31564f | |||
e0819d395f | |||
6f81906b00 | |||
a2d83d4f3d | |||
89bacb0470 | |||
19010ff66a | |||
5a477ed29e | |||
54128d579a | |||
e7b1933e88 | |||
1bad64ac6a | |||
15dfa9f663 | |||
2185b0d651 | |||
f61c0b5d03 | |||
074db32e54 | |||
d5f661ba70 | |||
1ab8d5cc13 | |||
789e892865 | |||
53cfa44d7a |
1
.gitignore
vendored
1
.gitignore
vendored
@ -114,3 +114,4 @@ gh-pages/
|
||||
#####################
|
||||
Grid/qcd/spin/gamma-gen/*.h
|
||||
Grid/qcd/spin/gamma-gen/*.cc
|
||||
Grid/util/Version.h
|
||||
|
@ -0,0 +1,5 @@
|
||||
Version : 0.8.0
|
||||
|
||||
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
|
||||
- MPI and MPI3 comms optimisations for KNL and OPA finished
|
||||
- Half precision comms
|
||||
|
@ -42,6 +42,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridQCDcore.h>
|
||||
#include <Grid/qcd/action/Action.h>
|
||||
#include <Grid/qcd/utils/GaugeFix.h>
|
||||
#include <Grid/qcd/utils/CovariantSmearing.h>
|
||||
#include <Grid/qcd/smearing/Smearing.h>
|
||||
#include <Grid/parallelIO/MetaData.h>
|
||||
#include <Grid/qcd/hmc/HMC_aggregate.h>
|
||||
|
@ -48,14 +48,16 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/MinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
// EigCg
|
||||
// Pcg
|
||||
// Hdcg
|
||||
// GCR
|
||||
// etc..
|
||||
|
||||
#endif
|
||||
|
@ -211,6 +211,7 @@ namespace Grid {
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = zero;
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
@ -295,13 +296,58 @@ namespace Grid {
|
||||
return norm2(out);
|
||||
};
|
||||
|
||||
RealD Mdag (const CoarseVector &in, CoarseVector &out){
|
||||
return M(in,out);
|
||||
RealD Mdag (const CoarseVector &in, CoarseVector &out){
|
||||
// // corresponds to Petrov-Galerkin coarsening
|
||||
// return M(in,out);
|
||||
|
||||
// corresponds to Galerkin coarsening
|
||||
CoarseVector tmp(Grid());
|
||||
G5C(tmp, in);
|
||||
M(tmp, out);
|
||||
G5C(out, out);
|
||||
return norm2(out);
|
||||
};
|
||||
|
||||
// Defer support for further coarsening for now
|
||||
void Mdiag (const CoarseVector &in, CoarseVector &out){};
|
||||
void Mdir (const CoarseVector &in, CoarseVector &out,int dir, int disp){};
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
conformable(_grid,in._grid);
|
||||
conformable(in._grid,out._grid);
|
||||
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
|
||||
auto point = [dir, disp](){
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else
|
||||
return (4 * dir + 1 - disp) / 2;
|
||||
}();
|
||||
|
||||
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
|
||||
siteVector res = zero;
|
||||
siteVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local&&SE->_permute) {
|
||||
permute(nbr,in._odata[SE->_offset],ptype);
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in._odata[SE->_offset];
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
|
||||
res = res + A[point]._odata[ss]*nbr;
|
||||
|
||||
vstream(out._odata[ss],res);
|
||||
}
|
||||
};
|
||||
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out){
|
||||
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
|
||||
};
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid) :
|
||||
|
||||
@ -417,7 +463,7 @@ namespace Grid {
|
||||
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
|
||||
#endif
|
||||
// ForceHermitian();
|
||||
AssertHermitian();
|
||||
// AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
}
|
||||
void ForceDiagonal(void) {
|
||||
|
@ -178,7 +178,7 @@ namespace Grid {
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
public:
|
||||
virtual RealD Mpc (const Field &in, Field &out) =0;
|
||||
virtual RealD MpcDag (const Field &in, Field &out) =0;
|
||||
@ -211,10 +211,9 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
Matrix &_Mat;
|
||||
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
|
@ -60,7 +60,7 @@ namespace Grid {
|
||||
// Query the even even properties to make algorithmic decisions
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
virtual RealD Mass(void) { return 0.0; };
|
||||
virtual int ConstEE(void) { return 0; }; // Disable assumptions unless overridden
|
||||
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
|
||||
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
|
||||
|
||||
// half checkerboard operaions
|
||||
|
@ -0,0 +1,244 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src._grid);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src._grid);
|
||||
Field r(src._grid);
|
||||
|
||||
// this should probably be made a class member so that it is only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(v, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(v[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + v[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -89,6 +89,8 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
|
||||
IterationsToComplete = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -104,7 +106,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations*1000; k++) {
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
@ -165,8 +167,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
return;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge"
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
|
@ -30,8 +30,11 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
|
||||
//Mixed precision restarted defect correction CG
|
||||
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
||||
public:
|
||||
RealD Tolerance;
|
||||
@ -50,7 +53,12 @@ namespace Grid {
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
|
||||
MixedPrecisionConjugateGradient(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d) :
|
||||
MixedPrecisionConjugateGradient(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF> &_Linop_f,
|
||||
LinearOperatorBase<FieldD> &_Linop_d) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d),
|
||||
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
|
||||
OuterLoopNormMult(100.), guesser(NULL){ };
|
||||
@ -149,6 +157,8 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -35,7 +35,11 @@ class ZeroGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = zero; };
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class DoNothingGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { };
|
||||
};
|
||||
template<class Field>
|
||||
class SourceGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
|
@ -0,0 +1,256 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
LinearFunction<Field> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src._grid);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src._grid);
|
||||
Field r(src._grid);
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
|
||||
std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v[iter], z[iter]);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
254
Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Normal file
254
Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Normal file
@ -0,0 +1,254 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the FGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
FlexibleGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
LinearFunction<Field> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src._grid);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src._grid);
|
||||
Field r(src._grid);
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
|
||||
std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v[iter], z[iter]);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
242
Grid/algorithms/iterative/GeneralisedMinimalResidual.h
Normal file
242
Grid/algorithms/iterative/GeneralisedMinimalResidual.h
Normal file
@ -0,0 +1,242 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the GMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
GeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src._grid);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src._grid);
|
||||
Field r(src._grid);
|
||||
|
||||
// this should probably be made a class member so that it is only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(v, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(v[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + v[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
156
Grid/algorithms/iterative/MinimalResidual.h
Normal file
156
Grid/algorithms/iterative/MinimalResidual.h
Normal file
@ -0,0 +1,156 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MINIMAL_RESIDUAL_H
|
||||
#define GRID_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
RealD overRelaxParam;
|
||||
Integer IterationsToComplete; // Number of iterations the MR took to finish.
|
||||
// Filled in upon completion
|
||||
|
||||
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
|
||||
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
Complex a, c;
|
||||
Real d;
|
||||
|
||||
Field Mr(src);
|
||||
Field r(src);
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Linop.Op(psi, Mr);
|
||||
|
||||
r = src - Mr;
|
||||
|
||||
RealD cp = norm2(r);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
|
||||
|
||||
if (cp <= rsq) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(r, Mr);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
c = innerProduct(Mr, r);
|
||||
|
||||
d = norm2(Mr);
|
||||
|
||||
a = c / d;
|
||||
|
||||
a = a * overRelaxParam;
|
||||
|
||||
psi = psi + r * a;
|
||||
|
||||
r = r - Mr * a;
|
||||
|
||||
cp = norm2(r);
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
SolverTimer.Stop();
|
||||
|
||||
Linop.Op(psi, Mr);
|
||||
r = src - Mr;
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
};
|
||||
} // namespace Grid
|
||||
#endif
|
@ -0,0 +1,273 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
GridStopWatch ChangePrecTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
GridBase* SinglePrecGrid;
|
||||
|
||||
LinearFunction<FieldF> &Preconditioner;
|
||||
|
||||
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
GridBase * sp_grid,
|
||||
LinearFunction<FieldF> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, SinglePrecGrid(sp_grid)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
FieldD r(src._grid);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
ChangePrecTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
FieldD w(src._grid);
|
||||
FieldD r(src._grid);
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<FieldD> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
|
||||
std::vector<FieldD> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
|
||||
|
||||
FieldF v_f(SinglePrecGrid);
|
||||
FieldF z_f(SinglePrecGrid);
|
||||
|
||||
ChangePrecTimer.Start();
|
||||
precisionChange(v_f, v[iter]);
|
||||
precisionChange(z_f, z[iter]);
|
||||
ChangePrecTimer.Stop();
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v_f, z_f);
|
||||
PrecTimer.Stop();
|
||||
|
||||
ChangePrecTimer.Start();
|
||||
precisionChange(z[iter], z_f);
|
||||
ChangePrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
45
Grid/algorithms/iterative/PowerMethod.h
Normal file
45
Grid/algorithms/iterative/PowerMethod.h
Normal file
@ -0,0 +1,45 @@
|
||||
#pragma once
|
||||
namespace Grid {
|
||||
template<class Field> class PowerMethod
|
||||
{
|
||||
public:
|
||||
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
|
||||
{
|
||||
GridBase *grid = src._grid;
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 50;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
normalise(src_n);
|
||||
HermOp.HermOp(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.01) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
return evalMaxApprox;
|
||||
}
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
assert(0);
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
}
|
@ -139,8 +139,11 @@ namespace Grid {
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r=src-Az;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
/////////////////////
|
||||
// p = Prec(r)
|
||||
/////////////////////
|
||||
@ -152,8 +155,10 @@ namespace Grid {
|
||||
Linop.HermOp(z,tmp);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
ttmp=tmp;
|
||||
tmp=tmp-r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
/*
|
||||
std::cout<<GridLogMessage<<r<<std::endl;
|
||||
@ -166,12 +171,14 @@ namespace Grid {
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
//p[0],q[0],qq[0]
|
||||
p[0]= z;
|
||||
q[0]= Az;
|
||||
qq[0]= zAAz;
|
||||
|
||||
cp =norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for(int k=0;k<nstep;k++){
|
||||
|
||||
@ -181,12 +188,14 @@ namespace Grid {
|
||||
int peri_k = k %mmax;
|
||||
int peri_kp= kp%mmax;
|
||||
|
||||
LinalgTimer.Start();
|
||||
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
|
||||
a = rq/qq[peri_k];
|
||||
|
||||
axpy(psi,a,p[peri_k],psi);
|
||||
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
if((k==nstep-1)||(cp<rsq)){
|
||||
return cp;
|
||||
@ -202,6 +211,8 @@ namespace Grid {
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
Linop.HermOp(z,tmp);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
tmp=tmp-r;
|
||||
std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;
|
||||
|
||||
@ -219,9 +230,9 @@ namespace Grid {
|
||||
|
||||
}
|
||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||
|
||||
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
assert(0); // never reached
|
||||
return cp;
|
||||
}
|
||||
|
@ -99,10 +99,13 @@ namespace Grid {
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
bool subGuess;
|
||||
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
|
||||
public:
|
||||
|
||||
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false) :
|
||||
_HermitianRBSolver(HermitianRBSolver),
|
||||
useSolnAsInitGuess(_solnAsInitGuess)
|
||||
{
|
||||
CBfactorise = 0;
|
||||
subtractGuess(initSubGuess);
|
||||
@ -156,7 +159,11 @@ namespace Grid {
|
||||
if ( subGuess ) guess_save.resize(nblock,grid);
|
||||
|
||||
for(int b=0;b<nblock;b++){
|
||||
guess(src_o[b],sol_o[b]);
|
||||
if(useSolnAsInitGuess) {
|
||||
pickCheckerboard(Odd, sol_o[b], out[b]);
|
||||
} else {
|
||||
guess(src_o[b],sol_o[b]);
|
||||
}
|
||||
|
||||
if ( subGuess ) {
|
||||
guess_save[b] = sol_o[b];
|
||||
@ -216,8 +223,11 @@ namespace Grid {
|
||||
////////////////////////////////
|
||||
// Construct the guess
|
||||
////////////////////////////////
|
||||
Field tmp(grid);
|
||||
guess(src_o,sol_o);
|
||||
if(useSolnAsInitGuess) {
|
||||
pickCheckerboard(Odd, sol_o, out);
|
||||
} else {
|
||||
guess(src_o,sol_o);
|
||||
}
|
||||
|
||||
Field guess_save(grid);
|
||||
guess_save = sol_o;
|
||||
@ -251,7 +261,7 @@ namespace Grid {
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Override in derived. Not virtual as template methods
|
||||
// Override in derived.
|
||||
/////////////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
|
||||
@ -264,8 +274,9 @@ namespace Grid {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess)
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)
|
||||
{
|
||||
}
|
||||
|
||||
@ -333,8 +344,9 @@ namespace Grid {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess) {};
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
@ -405,8 +417,9 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
|
||||
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess) {};
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
|
@ -53,10 +53,12 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
// Never clean up as done once.
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
|
||||
|
||||
Grid_quiesce_nodes();
|
||||
GlobalSharedMemory::Init(communicator_world);
|
||||
GlobalSharedMemory::SharedMemoryAllocate(
|
||||
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
|
||||
GlobalSharedMemory::Hugepages);
|
||||
Grid_unquiesce_nodes();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
@ -105,8 +107,7 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
//////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||
std::vector<int> parent_processor_coor(_ndimension,0);
|
||||
std::vector<int> parent_processors (_ndimension,1);
|
||||
|
@ -52,7 +52,7 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
_processors = processors;
|
||||
_ndimension = processors.size();
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
// Require 1^N processor grid for fake
|
||||
|
@ -103,6 +103,8 @@ class GlobalSharedMemory {
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||
static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorHypercube(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorSharedMemory(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
///////////////////////////////////////////////////
|
||||
// Provide shared memory facilities off comm world
|
||||
///////////////////////////////////////////////////
|
||||
|
@ -132,7 +132,22 @@ int Log2Size(int TwoToPower,int MAXLOG2)
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
#ifdef HYPERCUBE
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
const int namelen = _POSIX_HOST_NAME_MAX;
|
||||
char name[namelen];
|
||||
int R;
|
||||
int I;
|
||||
int N;
|
||||
gethostname(name,namelen);
|
||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||
|
||||
if(nscan==3) OptimalCommunicatorHypercube(processors,optimal_comm);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -253,7 +268,9 @@ void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
#else
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -306,7 +323,6 @@ void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
#endif
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SHMGET
|
||||
@ -337,7 +353,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
int errsv = errno;
|
||||
printf("Errno %d\n",errsv);
|
||||
printf("key %d\n",key);
|
||||
printf("size %lld\n",size);
|
||||
printf("size %ld\n",size);
|
||||
printf("flags %d\n",flags);
|
||||
perror("shmget");
|
||||
exit(1);
|
||||
|
@ -85,7 +85,7 @@ class LatticeTrinaryExpression :public std::pair<Op,std::tuple<T1,T2,T3> >, publ
|
||||
|
||||
void inline conformable(GridBase *lhs,GridBase *rhs)
|
||||
{
|
||||
assert(lhs == rhs);
|
||||
assert((lhs == rhs) && " conformable check pointers mismatch ");
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
|
@ -59,6 +59,7 @@ void GridLogTimestamp(int on){
|
||||
}
|
||||
|
||||
Colours GridLogColours(0);
|
||||
GridLogger GridLogMG (1, "MG" , GridLogColours, "NORMAL");
|
||||
GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL");
|
||||
GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
|
||||
@ -76,19 +77,18 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogIterative.Active(0);
|
||||
GridLogDebug.Active(0);
|
||||
GridLogPerformance.Active(0);
|
||||
GridLogIntegrator.Active(0);
|
||||
GridLogIntegrator.Active(1);
|
||||
GridLogColours.Active(0);
|
||||
|
||||
for (int i = 0; i < logstreams.size(); i++) {
|
||||
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
|
||||
if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1);
|
||||
if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0);
|
||||
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
|
||||
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
|
||||
if (logstreams[i] == std::string("Performance"))
|
||||
GridLogPerformance.Active(1);
|
||||
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
|
||||
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
|
||||
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
|
||||
if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1);
|
||||
if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0);
|
||||
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
|
||||
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
|
||||
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
|
||||
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
|
||||
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -169,6 +169,7 @@ public:
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams);
|
||||
|
||||
extern GridLogger GridLogMG;
|
||||
extern GridLogger GridLogIRL;
|
||||
extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
|
@ -210,10 +210,10 @@ PARALLEL_CRITICAL
|
||||
static inline void le32toh_v(void *file_object,uint64_t bytes)
|
||||
{
|
||||
uint32_t *fp = (uint32_t *)file_object;
|
||||
uint32_t f;
|
||||
|
||||
uint64_t count = bytes/sizeof(uint32_t);
|
||||
parallel_for(uint64_t i=0;i<count;i++){
|
||||
uint32_t f;
|
||||
f = fp[i];
|
||||
// got network order and the network to host
|
||||
f = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
|
||||
@ -235,10 +235,9 @@ PARALLEL_CRITICAL
|
||||
static inline void le64toh_v(void *file_object,uint64_t bytes)
|
||||
{
|
||||
uint64_t *fp = (uint64_t *)file_object;
|
||||
uint64_t f,g;
|
||||
|
||||
uint64_t count = bytes/sizeof(uint64_t);
|
||||
parallel_for(uint64_t i=0;i<count;i++){
|
||||
uint64_t f,g;
|
||||
f = fp[i];
|
||||
// got network order and the network to host
|
||||
g = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
|
||||
@ -349,7 +348,8 @@ PARALLEL_CRITICAL
|
||||
int ieee32 = (format == std::string("IEEE32"));
|
||||
int ieee64big = (format == std::string("IEEE64BIG"));
|
||||
int ieee64 = (format == std::string("IEEE64"));
|
||||
|
||||
assert(ieee64||ieee32|ieee64big||ieee32big);
|
||||
assert((ieee64+ieee32+ieee64big+ieee32big)==1);
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Do the I/O
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@ -619,6 +619,7 @@ PARALLEL_CRITICAL
|
||||
{
|
||||
std::cout << GridLogMessage << "writeLatticeObject: read test checksum failure, re-writing (" << attemptsLeft << " attempt(s) remaining)" << std::endl;
|
||||
offset = offsetCopy;
|
||||
parallel_for(uint64_t x=0;x<lsites;x++) munge(scalardata[x],iodata[x]);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -46,6 +46,12 @@ extern "C" {
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
#define GRID_FIELD_NORM "FieldNormMetaData"
|
||||
#define GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) \
|
||||
0.5*fabs(FieldNormMetaData_.norm2 - n2ck)/(FieldNormMetaData_.norm2 + n2ck)
|
||||
#define GRID_FIELD_NORM_CHECK(FieldNormMetaData_, n2ck) \
|
||||
assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
|
||||
|
||||
/////////////////////////////////
|
||||
// Encode word types as strings
|
||||
/////////////////////////////////
|
||||
@ -205,6 +211,7 @@ class GridLimeReader : public BinaryIO {
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
scidacChecksum scidacChecksum_;
|
||||
FieldNormMetaData FieldNormMetaData_;
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
|
||||
std::string format = getFormatString<vobj>();
|
||||
@ -233,21 +240,52 @@ class GridLimeReader : public BinaryIO {
|
||||
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
|
||||
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
|
||||
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
|
||||
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
|
||||
/////////////////////////////////////////////
|
||||
// Insist checksum is next record
|
||||
/////////////////////////////////////////////
|
||||
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
|
||||
|
||||
readScidacChecksum(scidacChecksum_,FieldNormMetaData_);
|
||||
/////////////////////////////////////////////
|
||||
// Verify checksums
|
||||
/////////////////////////////////////////////
|
||||
if(FieldNormMetaData_.norm2 != 0.0){
|
||||
RealD n2ck = norm2(field);
|
||||
std::cout << GridLogMessage << "Field norm: metadata= " << FieldNormMetaData_.norm2
|
||||
<< " / field= " << n2ck << " / rdiff= " << GRID_FIELD_NORM_CALC(FieldNormMetaData_,n2ck) << std::endl;
|
||||
GRID_FIELD_NORM_CHECK(FieldNormMetaData_,n2ck);
|
||||
}
|
||||
assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1);
|
||||
|
||||
// find out if next field is a GridFieldNorm
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
void readScidacChecksum(scidacChecksum &scidacChecksum_,
|
||||
FieldNormMetaData &FieldNormMetaData_)
|
||||
{
|
||||
FieldNormMetaData_.norm2 =0.0;
|
||||
std::string scidac_str(SCIDAC_CHECKSUM);
|
||||
std::string field_norm_str(GRID_FIELD_NORM);
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
|
||||
std::vector<char> xmlc(nbytes+1,'\0');
|
||||
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
|
||||
std::string xmlstring = std::string(&xmlc[0]);
|
||||
XmlReader RD(xmlstring, true, "");
|
||||
if ( !strncmp(limeReaderType(LimeR), field_norm_str.c_str(),strlen(field_norm_str.c_str()) ) ) {
|
||||
// std::cout << "FieldNormMetaData "<<xmlstring<<std::endl;
|
||||
read(RD,field_norm_str,FieldNormMetaData_);
|
||||
}
|
||||
if ( !strncmp(limeReaderType(LimeR), scidac_str.c_str(),strlen(scidac_str.c_str()) ) ) {
|
||||
// std::cout << SCIDAC_CHECKSUM << " " <<xmlstring<<std::endl;
|
||||
read(RD,std::string("scidacChecksum"),scidacChecksum_);
|
||||
return;
|
||||
}
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
////////////////////////////////////////////
|
||||
// Read a generic serialisable object
|
||||
////////////////////////////////////////////
|
||||
@ -266,7 +304,7 @@ class GridLimeReader : public BinaryIO {
|
||||
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
|
||||
// std::cout << GridLogMessage<< " readLimeObject matches XML " << &xmlc[0] <<std::endl;
|
||||
|
||||
xmlstring = std::string(&xmlc[0]);
|
||||
xmlstring = std::string(&xmlc[0]);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -280,8 +318,8 @@ class GridLimeReader : public BinaryIO {
|
||||
std::string xmlstring;
|
||||
|
||||
readLimeObject(xmlstring, record_name);
|
||||
XmlReader RD(xmlstring, true, "");
|
||||
read(RD,object_name,object);
|
||||
XmlReader RD(xmlstring, true, "");
|
||||
read(RD,object_name,object);
|
||||
}
|
||||
};
|
||||
|
||||
@ -390,6 +428,8 @@ class GridLimeWriter : public BinaryIO
|
||||
GridBase *grid = field._grid;
|
||||
assert(boss_node == field._grid->IsBoss() );
|
||||
|
||||
FieldNormMetaData FNMD; FNMD.norm2 = norm2(field);
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Create record header
|
||||
////////////////////////////////////////////
|
||||
@ -448,6 +488,7 @@ class GridLimeWriter : public BinaryIO
|
||||
checksum.suma= streama.str();
|
||||
checksum.sumb= streamb.str();
|
||||
if ( boss_node ) {
|
||||
writeLimeObject(0,0,FNMD,std::string(GRID_FIELD_NORM),std::string(GRID_FIELD_NORM));
|
||||
writeLimeObject(0,1,checksum,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
|
||||
}
|
||||
}
|
||||
@ -625,6 +666,12 @@ class IldgWriter : public ScidacWriter {
|
||||
assert(header.nd==4);
|
||||
assert(header.nd==header.dimension.size());
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Field norm tests
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
FieldNormMetaData FieldNormMetaData_;
|
||||
FieldNormMetaData_.norm2 = norm2(Umu);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Fill the USQCD info field
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@ -633,11 +680,12 @@ class IldgWriter : public ScidacWriter {
|
||||
info.plaq = header.plaquette;
|
||||
info.linktr = header.link_trace;
|
||||
|
||||
std::cout << GridLogMessage << " Writing config; IldgIO "<<std::endl;
|
||||
// std::cout << GridLogMessage << " Writing config; IldgIO n2 "<< FieldNormMetaData_.norm2<<std::endl;
|
||||
//////////////////////////////////////////////
|
||||
// Fill the Lime file record by record
|
||||
//////////////////////////////////////////////
|
||||
writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
|
||||
writeLimeObject(0,0,FieldNormMetaData_,FieldNormMetaData_.SerialisableClassName(),std::string(GRID_FIELD_NORM));
|
||||
writeLimeObject(0,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
|
||||
writeLimeObject(0,1,info,info.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
|
||||
writeLimeObject(1,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
@ -680,6 +728,7 @@ class IldgReader : public GridLimeReader {
|
||||
std::string ildgLFN_ ;
|
||||
scidacChecksum scidacChecksum_;
|
||||
usqcdInfo usqcdInfo_ ;
|
||||
FieldNormMetaData FieldNormMetaData_;
|
||||
|
||||
// track what we read from file
|
||||
int found_ildgFormat =0;
|
||||
@ -688,7 +737,7 @@ class IldgReader : public GridLimeReader {
|
||||
int found_usqcdInfo =0;
|
||||
int found_ildgBinary =0;
|
||||
int found_FieldMetaData =0;
|
||||
|
||||
int found_FieldNormMetaData =0;
|
||||
uint32_t nersc_csum;
|
||||
uint32_t scidac_csuma;
|
||||
uint32_t scidac_csumb;
|
||||
@ -722,7 +771,7 @@ class IldgReader : public GridLimeReader {
|
||||
//////////////////////////////////
|
||||
// ILDG format record
|
||||
|
||||
std::string xmlstring(&xmlc[0]);
|
||||
std::string xmlstring(&xmlc[0]);
|
||||
if ( !strncmp(limeReaderType(LimeR), ILDG_FORMAT,strlen(ILDG_FORMAT)) ) {
|
||||
|
||||
XmlReader RD(xmlstring, true, "");
|
||||
@ -775,11 +824,17 @@ class IldgReader : public GridLimeReader {
|
||||
found_scidacChecksum = 1;
|
||||
}
|
||||
|
||||
if ( !strncmp(limeReaderType(LimeR), GRID_FIELD_NORM,strlen(GRID_FIELD_NORM)) ) {
|
||||
XmlReader RD(xmlstring, true, "");
|
||||
read(RD,GRID_FIELD_NORM,FieldNormMetaData_);
|
||||
found_FieldNormMetaData = 1;
|
||||
}
|
||||
|
||||
} else {
|
||||
/////////////////////////////////
|
||||
// Binary data
|
||||
/////////////////////////////////
|
||||
std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
|
||||
// std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
|
||||
uint64_t offset= ftello(File);
|
||||
if ( format == std::string("IEEE64BIG") ) {
|
||||
GaugeSimpleMunger<dobj, sobj> munge;
|
||||
@ -846,6 +901,13 @@ class IldgReader : public GridLimeReader {
|
||||
////////////////////////////////////////////////////////////
|
||||
// Really really want to mandate a scidac checksum
|
||||
////////////////////////////////////////////////////////////
|
||||
if ( found_FieldNormMetaData ) {
|
||||
RealD nn = norm2(Umu);
|
||||
GRID_FIELD_NORM_CHECK(FieldNormMetaData_,nn);
|
||||
std::cout << GridLogMessage<<"FieldNormMetaData matches " << std::endl;
|
||||
} else {
|
||||
std::cout << GridLogWarning<<"FieldNormMetaData not found. " << std::endl;
|
||||
}
|
||||
if ( found_scidacChecksum ) {
|
||||
FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
|
||||
FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
|
||||
|
@ -56,6 +56,10 @@ namespace Grid {
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// header specification/interpretation
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
class FieldNormMetaData : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(FieldNormMetaData, double, norm2);
|
||||
};
|
||||
class FieldMetaData : Serializable {
|
||||
public:
|
||||
|
||||
|
@ -66,7 +66,8 @@ namespace QCD {
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision);
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
|
||||
// MaxIter and tolerance, vectors??
|
||||
|
||||
@ -76,13 +77,15 @@ namespace QCD {
|
||||
int _maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int _degree = 10,
|
||||
int _precision = 64)
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
degree(_degree),
|
||||
precision(_precision){};
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
|
@ -43,7 +43,7 @@ namespace Grid {
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass, std::vector<double> twist, bool fiveD) {
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist, bool fiveD) {
|
||||
FermionField in_k(in._grid);
|
||||
FermionField prop_k(in._grid);
|
||||
|
||||
@ -53,17 +53,22 @@ namespace Grid {
|
||||
ComplexField coor(in._grid);
|
||||
ComplexField ph(in._grid); ph = zero;
|
||||
FermionField in_buf(in._grid); in_buf = zero;
|
||||
Complex ci(0.0,1.0);
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
int shift = 0;
|
||||
if(fiveD) shift = 1;
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||
LatticeCoordinate(coor, nu + shift);
|
||||
ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu+shift])));
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in._grid->_fdimensions[nu+shift])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp((Real)(2.0*M_PI)*ci*ph*(-1.0))*in;
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
|
||||
if(fiveD){//FFT only on temporal and spatial dimensions
|
||||
std::vector<int> mask(Nd+1,1); mask[0] = 0;
|
||||
@ -76,25 +81,28 @@ namespace Grid {
|
||||
this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
}
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp((Real)(2.0*M_PI)*ci*ph);
|
||||
out = out * exp(ci*ph);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
|
||||
bool fiveD = true; //5d propagator by default
|
||||
FreePropagator(in,out,mass,twist,fiveD);
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,twist,fiveD);
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
bool fiveD = true; //5d propagator by default
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,twist,fiveD);
|
||||
std::vector<double> twist(Nd,0.0); //default: twist angle 0
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1); //default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
|
@ -96,7 +96,7 @@ namespace Grid {
|
||||
|
||||
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
|
||||
FFT theFFT((GridCartesian *) in._grid);
|
||||
|
||||
FermionField in_k(in._grid);
|
||||
@ -106,26 +106,33 @@ namespace Grid {
|
||||
ComplexField coor(in._grid);
|
||||
ComplexField ph(in._grid); ph = zero;
|
||||
FermionField in_buf(in._grid); in_buf = zero;
|
||||
Complex ci(0.0,1.0);
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
LatticeCoordinate(coor, nu);
|
||||
ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu])));
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in._grid->_fdimensions[nu])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp((Real)(2.0*M_PI)*ci*ph*(-1.0))*in;
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
|
||||
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp((Real)(2.0*M_PI)*ci*ph);
|
||||
out = out * exp(ci*ph);
|
||||
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,twist);
|
||||
FreePropagator(in,out,mass,boundary,twist);
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////
|
||||
@ -136,6 +143,7 @@ namespace Grid {
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Conserved currents, either contract at sink or insert sequentially.
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
@ -148,6 +156,12 @@ namespace Grid {
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx)=0;
|
||||
|
||||
// Only reimplemented in Wilson5D
|
||||
// Default to just a zero correlation function
|
||||
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=zero; };
|
||||
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=zero; };
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Physical field import/export
|
||||
///////////////////////////////////////////////
|
||||
|
@ -26,7 +26,7 @@ See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid.h>
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
@ -26,11 +26,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid.h>
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
#ifdef AVX512
|
||||
#include <simd/Intel512common.h>
|
||||
#include <simd/Intel512avx.h>
|
||||
#include <Grid/simd/Intel512common.h>
|
||||
#include <Grid/simd/Intel512avx.h>
|
||||
#endif
|
||||
|
||||
// Interleave operations from two directions
|
||||
@ -679,7 +679,7 @@ void StaggeredKernels<Impl>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
|
||||
gauge3 =(uint64_t)&UU._odata[sU]( T );
|
||||
|
||||
// This is the single precision 5th direction vectorised kernel
|
||||
#include <simd/Intel512single.h>
|
||||
#include <Grid/simd/Intel512single.h>
|
||||
template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeField &U, DoubledGaugeField &UUU,
|
||||
SiteSpinor *buf, int LLs, int sU,
|
||||
@ -732,7 +732,7 @@ template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl
|
||||
|
||||
}
|
||||
|
||||
#include <simd/Intel512double.h>
|
||||
#include <Grid/simd/Intel512double.h>
|
||||
template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeField &U, DoubledGaugeField &UUU,
|
||||
SiteSpinor *buf, int LLs, int sU,
|
||||
@ -816,7 +816,7 @@ template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl
|
||||
|
||||
// This is the single precision 5th direction vectorised kernel
|
||||
|
||||
#include <simd/Intel512single.h>
|
||||
#include <Grid/simd/Intel512single.h>
|
||||
template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeField &U, DoubledGaugeField &UUU,
|
||||
SiteSpinor *buf, int LLs, int sU,
|
||||
@ -884,7 +884,7 @@ template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st,
|
||||
#endif
|
||||
}
|
||||
|
||||
#include <simd/Intel512double.h>
|
||||
#include <Grid/simd/Intel512double.h>
|
||||
template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeField &U, DoubledGaugeField &UUU,
|
||||
SiteSpinor *buf, int LLs, int sU,
|
||||
|
@ -26,7 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid.h>
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
|
||||
#define LOAD_CHI(b) \
|
||||
|
@ -67,6 +67,7 @@ public:
|
||||
public:
|
||||
typedef WilsonFermion<Impl> WilsonBase;
|
||||
|
||||
virtual int ConstEE(void) { return 0; };
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
|
@ -939,6 +939,75 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
|
||||
merge(qSiteRev, qSiteVec); \
|
||||
}
|
||||
|
||||
// psi = chiralProjectPlus(Result_s[Ls/2-1]);
|
||||
// psi+= chiralProjectMinus(Result_s[Ls/2]);
|
||||
// PJ5q+=localInnerProduct(psi,psi);
|
||||
|
||||
template<class vobj>
|
||||
Lattice<vobj> spProj5p(const Lattice<vobj> & in)
|
||||
{
|
||||
GridBase *grid=in._grid;
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
Lattice<vobj> ret(grid);
|
||||
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
||||
ret._odata[ss] = in._odata[ss] + G5*in._odata[ss];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class vobj>
|
||||
Lattice<vobj> spProj5m(const Lattice<vobj> & in)
|
||||
{
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
GridBase *grid=in._grid;
|
||||
Lattice<vobj> ret(grid);
|
||||
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
||||
ret._odata[ss] = in._odata[ss] - G5*in._odata[ss];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractJ5q(FermionField &q_in,ComplexField &J5q)
|
||||
{
|
||||
conformable(GaugeGrid(), J5q._grid);
|
||||
conformable(q_in._grid, FermionGrid());
|
||||
|
||||
// 4d field
|
||||
int Ls = this->Ls;
|
||||
FermionField psi(GaugeGrid());
|
||||
FermionField p_plus (GaugeGrid());
|
||||
FermionField p_minus(GaugeGrid());
|
||||
FermionField p(GaugeGrid());
|
||||
|
||||
ExtractSlice(p_plus , q_in, Ls/2 , 0);
|
||||
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
|
||||
p_plus = spProj5p(p_plus );
|
||||
p_minus= spProj5m(p_minus);
|
||||
p=p_plus+p_minus;
|
||||
J5q = localInnerProduct(p,p);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractJ5q(PropagatorField &q_in,ComplexField &J5q)
|
||||
{
|
||||
conformable(GaugeGrid(), J5q._grid);
|
||||
conformable(q_in._grid, FermionGrid());
|
||||
|
||||
// 4d field
|
||||
int Ls = this->Ls;
|
||||
PropagatorField psi(GaugeGrid());
|
||||
PropagatorField p_plus (GaugeGrid());
|
||||
PropagatorField p_minus(GaugeGrid());
|
||||
PropagatorField p(GaugeGrid());
|
||||
|
||||
ExtractSlice(p_plus , q_in, Ls/2 , 0);
|
||||
ExtractSlice(p_minus, q_in, Ls/2-1 , 0);
|
||||
p_plus = spProj5p(p_plus );
|
||||
p_minus= spProj5m(p_minus);
|
||||
p=p_plus+p_minus;
|
||||
J5q = localInnerProduct(p,p);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
@ -949,6 +1018,7 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
conformable(q_in_1._grid, FermionGrid());
|
||||
conformable(q_in_1._grid, q_in_2._grid);
|
||||
conformable(_FourDimGrid, q_out._grid);
|
||||
|
||||
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
|
||||
unsigned int LLs = q_in_1._grid->_rdimensions[0];
|
||||
q_out = zero;
|
||||
@ -995,7 +1065,6 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
|
@ -230,6 +230,10 @@ namespace QCD {
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx);
|
||||
|
||||
void ContractJ5q(PropagatorField &q_in,ComplexField &J5q);
|
||||
void ContractJ5q(FermionField &q_in,ComplexField &J5q);
|
||||
|
||||
};
|
||||
|
||||
}}
|
||||
|
@ -81,8 +81,8 @@ WilsonKernels<Impl >::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,Doubl
|
||||
assert(0);
|
||||
}
|
||||
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmAvx512.h>
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmQPX.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonKernelsAsmAvx512.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonKernelsAsmQPX.h>
|
||||
|
||||
#define INSTANTIATE_ASM(A)\
|
||||
template void WilsonKernels<A>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,\
|
||||
|
@ -29,6 +29,14 @@ directory
|
||||
#ifndef GRID_GAUGE_IMPL_TYPES_H
|
||||
#define GRID_GAUGE_IMPL_TYPES_H
|
||||
|
||||
#define CPS_MD_TIME
|
||||
|
||||
#ifdef CPS_MD_TIME
|
||||
#define HMC_MOMENTUM_DENOMINATOR (2.0)
|
||||
#else
|
||||
#define HMC_MOMENTUM_DENOMINATOR (1.0)
|
||||
#endif
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
@ -38,6 +46,7 @@ namespace QCD {
|
||||
|
||||
#define INHERIT_GIMPL_TYPES(GImpl) \
|
||||
typedef typename GImpl::Simd Simd; \
|
||||
typedef typename GImpl::Scalar Scalar; \
|
||||
typedef typename GImpl::LinkField GaugeLinkField; \
|
||||
typedef typename GImpl::Field GaugeField; \
|
||||
typedef typename GImpl::ComplexField ComplexField;\
|
||||
@ -55,7 +64,8 @@ namespace QCD {
|
||||
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
typedef scalar_type Scalar;
|
||||
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
|
||||
@ -87,12 +97,32 @@ public:
|
||||
///////////////////////////////////////////////////////////
|
||||
// Move these to another class
|
||||
// HMC auxiliary functions
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG) {
|
||||
// specific for SU gauge fields
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
|
||||
{
|
||||
// Zbigniew Srocinsky thesis:
|
||||
//
|
||||
// P(p) = N \Prod_{x\mu}e^-{1/2 Tr (p^2_mux)}
|
||||
//
|
||||
// p_x,mu = c_x,mu,a T_a
|
||||
//
|
||||
// Tr p^2 = sum_a,x,mu 1/2 (c_x,mu,a)^2
|
||||
//
|
||||
// Which implies P(p) = N \Prod_{x,\mu,a} e^-{1/4 c_xmua^2 }
|
||||
//
|
||||
// = N \Prod_{x,\mu,a} e^-{1/2 (c_xmua/sqrt{2})^2 }
|
||||
//
|
||||
// Expect c' = cxmua/sqrt(2) to be a unit variance gaussian.
|
||||
//
|
||||
// Expect cxmua variance sqrt(2).
|
||||
//
|
||||
// Must scale the momentum by sqrt(2) to invoke CPS and UKQCD conventions
|
||||
//
|
||||
LinkField Pmu(P._grid);
|
||||
Pmu = zero;
|
||||
Pmu = Zero();
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
|
||||
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
|
||||
Pmu = Pmu*scale;
|
||||
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
||||
}
|
||||
}
|
||||
|
@ -4,9 +4,11 @@
|
||||
|
||||
Source file: ./lib/qcd/action/gauge/Photon.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015-2018
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <J.Harrison@soton.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -30,11 +32,13 @@
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
template <class S>
|
||||
class QedGimpl
|
||||
class QedGImpl
|
||||
{
|
||||
public:
|
||||
typedef S Simd;
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
|
||||
template <typename vtype>
|
||||
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
|
||||
@ -43,27 +47,27 @@ namespace QCD{
|
||||
|
||||
typedef iImplGaugeLink<Simd> SiteLink;
|
||||
typedef iImplGaugeField<Simd> SiteField;
|
||||
typedef SiteField SiteComplex;
|
||||
typedef SiteLink SiteComplex;
|
||||
|
||||
typedef Lattice<SiteLink> LinkField;
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Field ComplexField;
|
||||
};
|
||||
|
||||
typedef QedGimpl<vComplex> QedGimplR;
|
||||
typedef QedGImpl<vComplex> QedGImplR;
|
||||
|
||||
template<class Gimpl>
|
||||
template <class GImpl>
|
||||
class Photon
|
||||
{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
INHERIT_GIMPL_TYPES(GImpl);
|
||||
typedef typename SiteGaugeLink::scalar_object ScalarSite;
|
||||
typedef typename ScalarSite::scalar_type ScalarComplex;
|
||||
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
|
||||
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2, qedInf, 3);
|
||||
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2);
|
||||
public:
|
||||
Photon(Gauge gauge, ZmScheme zmScheme);
|
||||
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements);
|
||||
Photon(Gauge gauge, ZmScheme zmScheme, Real G0);
|
||||
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements, Real G0);
|
||||
Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvement);
|
||||
Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme);
|
||||
virtual ~Photon(void) = default;
|
||||
void FreePropagator(const GaugeField &in, GaugeField &out);
|
||||
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
|
||||
@ -73,345 +77,255 @@ namespace QCD{
|
||||
const GaugeLinkField &weight);
|
||||
void UnitField(GaugeField &out);
|
||||
private:
|
||||
void infVolPropagator(GaugeLinkField &out);
|
||||
void invKHatSquared(GaugeLinkField &out);
|
||||
void makeSpatialNorm(LatticeInteger &spNrm);
|
||||
void makeKHat(std::vector<GaugeLinkField> &khat);
|
||||
void makeInvKHatSquared(GaugeLinkField &out);
|
||||
void zmSub(GaugeLinkField &out);
|
||||
void transverseProjectSpatial(GaugeField &out);
|
||||
void gaugeTransform(GaugeField &out);
|
||||
private:
|
||||
Gauge gauge_;
|
||||
ZmScheme zmScheme_;
|
||||
std::vector<Real> improvement_;
|
||||
Real G0_;
|
||||
GridBase *grid_;
|
||||
Gauge gauge_;
|
||||
ZmScheme zmScheme_;
|
||||
std::vector<Real> improvement_;
|
||||
};
|
||||
|
||||
typedef Photon<QedGimplR> PhotonR;
|
||||
typedef Photon<QedGImplR> PhotonR;
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()),
|
||||
G0_(0.15493339023106021408483720810737508876916113364521)
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
|
||||
template<class GImpl>
|
||||
Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme,
|
||||
std::vector<Real> improvements)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements),
|
||||
G0_(0.15493339023106021408483720810737508876916113364521)
|
||||
: grid_(grid), gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements)
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme, Real G0)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()), G0_(G0)
|
||||
template<class GImpl>
|
||||
Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme)
|
||||
: Photon(grid, gauge, zmScheme, std::vector<Real>())
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
|
||||
std::vector<Real> improvements, Real G0)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements), G0_(G0)
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::FreePropagator (const GaugeField &in,GaugeField &out)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::FreePropagator(const GaugeField &in, GaugeField &out)
|
||||
{
|
||||
FFT theFFT(in._grid);
|
||||
FFT theFFT(dynamic_cast<GridCartesian *>(grid_));
|
||||
GaugeField in_k(grid_);
|
||||
GaugeField prop_k(grid_);
|
||||
|
||||
GaugeField in_k(in._grid);
|
||||
GaugeField prop_k(in._grid);
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||
MomentumSpacePropagator(prop_k,in_k);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
theFFT.FFT_all_dim(in_k, in, FFT::forward);
|
||||
MomentumSpacePropagator(prop_k, in_k);
|
||||
theFFT.FFT_all_dim(out, prop_k, FFT::backward);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::infVolPropagator(GaugeLinkField &out)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::makeSpatialNorm(LatticeInteger &spNrm)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out._grid);
|
||||
LatticeReal xmu(grid);
|
||||
GaugeLinkField one(grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
std::vector<int> &l = grid->_fdimensions;
|
||||
std::vector<int> x0(nd,0);
|
||||
TComplex Tone = Complex(1.0,0.0);
|
||||
TComplex Tzero = Complex(G0_,0.0);
|
||||
FFT fft(grid);
|
||||
LatticeInteger coor(grid_);
|
||||
std::vector<int> l = grid_->FullDimensions();
|
||||
|
||||
spNrm = zero;
|
||||
for(int mu = 0; mu < grid_->Nd() - 1; mu++)
|
||||
{
|
||||
LatticeCoordinate(coor, mu);
|
||||
coor = where(coor < Integer(l[mu]/2), coor, coor - Integer(l[mu]));
|
||||
spNrm = spNrm + coor*coor;
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::makeKHat(std::vector<GaugeLinkField> &khat)
|
||||
{
|
||||
const unsigned int nd = grid_->Nd();
|
||||
std::vector<int> l = grid_->FullDimensions();
|
||||
Complex ci(0., 1.);
|
||||
|
||||
khat.resize(nd, grid_);
|
||||
for (unsigned int mu = 0; mu < nd; ++mu)
|
||||
{
|
||||
Real piL = M_PI/l[mu];
|
||||
|
||||
LatticeCoordinate(khat[mu], mu);
|
||||
khat[mu] = exp(piL*ci*khat[mu])*2.*sin(piL*khat[mu]);
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::makeInvKHatSquared(GaugeLinkField &out)
|
||||
{
|
||||
std::vector<GaugeLinkField> khat;
|
||||
GaugeLinkField lone(grid_);
|
||||
const unsigned int nd = grid_->Nd();
|
||||
std::vector<int> zm(nd, 0);
|
||||
ScalarSite one = ScalarComplex(1., 0.), z = ScalarComplex(0., 0.);
|
||||
|
||||
one = Complex(1.0,0.0);
|
||||
out = zero;
|
||||
makeKHat(khat);
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
LatticeCoordinate(xmu,mu);
|
||||
Real lo2 = l[mu]/2.0;
|
||||
xmu = where(xmu < lo2, xmu, xmu-double(l[mu]));
|
||||
out = out + toComplex(4*M_PI*M_PI*xmu*xmu);
|
||||
out = out + khat[mu]*conjugate(khat[mu]);
|
||||
}
|
||||
pokeSite(Tone, out, x0);
|
||||
out = one/out;
|
||||
pokeSite(Tzero, out, x0);
|
||||
fft.FFT_all_dim(out, out, FFT::forward);
|
||||
lone = ScalarComplex(1., 0.);
|
||||
pokeSite(one, out, zm);
|
||||
out = lone/out;
|
||||
pokeSite(z, out, zm);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::zmSub(GaugeLinkField &out)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
GaugeLinkField kmu(grid), one(grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
std::vector<int> &l = grid->_fdimensions;
|
||||
std::vector<int> zm(nd,0);
|
||||
TComplex Tone = Complex(1.0,0.0);
|
||||
TComplex Tzero= Complex(0.0,0.0);
|
||||
|
||||
one = Complex(1.0,0.0);
|
||||
out = zero;
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
Real twoPiL = M_PI*2./l[mu];
|
||||
|
||||
LatticeCoordinate(kmu,mu);
|
||||
kmu = 2.*sin(.5*twoPiL*kmu);
|
||||
out = out + kmu*kmu;
|
||||
}
|
||||
pokeSite(Tone, out, zm);
|
||||
out = one/out;
|
||||
pokeSite(Tzero, out, zm);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::zmSub(GaugeLinkField &out)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
std::vector<int> &l = grid->_fdimensions;
|
||||
|
||||
switch (zmScheme_)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
{
|
||||
std::vector<int> zm(nd,0);
|
||||
TComplex Tzero = Complex(0.0,0.0);
|
||||
|
||||
pokeSite(Tzero, out, zm);
|
||||
std::vector<int> zm(grid_->Nd(), 0);
|
||||
ScalarSite z = ScalarComplex(0., 0.);
|
||||
|
||||
pokeSite(z, out, zm);
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
LatticeInteger spNrm(grid), coor(grid);
|
||||
GaugeLinkField z(grid);
|
||||
|
||||
spNrm = zero;
|
||||
for(int d = 0; d < grid->_ndimension - 1; d++)
|
||||
{
|
||||
LatticeCoordinate(coor,d);
|
||||
coor = where(coor < Integer(l[d]/2), coor, coor-Integer(l[d]));
|
||||
spNrm = spNrm + coor*coor;
|
||||
}
|
||||
out = where(spNrm == Integer(0), 0.*out, out);
|
||||
LatticeInteger spNrm(grid_);
|
||||
|
||||
// IR improvement
|
||||
makeSpatialNorm(spNrm);
|
||||
out = where(spNrm == Integer(0), 0.*out, out);
|
||||
for(int i = 0; i < improvement_.size(); i++)
|
||||
{
|
||||
Real f = sqrt(improvement_[i]+1);
|
||||
out = where(spNrm == Integer(i+1), f*out, out);
|
||||
Real f = sqrt(improvement_[i] + 1);
|
||||
out = where(spNrm == Integer(i + 1), f*out, out);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::MomentumSpacePropagator(const GaugeField &in,
|
||||
GaugeField &out)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::transverseProjectSpatial(GaugeField &out)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
LatticeComplex momProp(grid);
|
||||
|
||||
switch (zmScheme_)
|
||||
const unsigned int nd = grid_->Nd();
|
||||
GaugeLinkField invKHat(grid_), cst(grid_), spdiv(grid_);
|
||||
LatticeInteger spNrm(grid_);
|
||||
std::vector<GaugeLinkField> khat, a(nd, grid_), aProj(nd, grid_);
|
||||
|
||||
invKHat = zero;
|
||||
makeSpatialNorm(spNrm);
|
||||
makeKHat(khat);
|
||||
for (unsigned int mu = 0; mu < nd; ++mu)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
case ZmScheme::qedL:
|
||||
a[mu] = peekLorentz(out, mu);
|
||||
if (mu < nd - 1)
|
||||
{
|
||||
invKHatSquared(momProp);
|
||||
zmSub(momProp);
|
||||
break;
|
||||
invKHat += khat[mu]*conjugate(khat[mu]);
|
||||
}
|
||||
case ZmScheme::qedInf:
|
||||
{
|
||||
infVolPropagator(momProp);
|
||||
}
|
||||
cst = ScalarComplex(1., 0.);
|
||||
invKHat = where(spNrm == Integer(0), cst, invKHat);
|
||||
invKHat = cst/invKHat;
|
||||
cst = zero;
|
||||
invKHat = where(spNrm == Integer(0), cst, invKHat);
|
||||
spdiv = zero;
|
||||
for (unsigned int nu = 0; nu < nd - 1; ++nu)
|
||||
{
|
||||
spdiv += conjugate(khat[nu])*a[nu];
|
||||
}
|
||||
spdiv *= invKHat;
|
||||
for (unsigned int mu = 0; mu < nd; ++mu)
|
||||
{
|
||||
aProj[mu] = a[mu] - khat[mu]*spdiv;
|
||||
pokeLorentz(out, aProj[mu], mu);
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::gaugeTransform(GaugeField &out)
|
||||
{
|
||||
switch (gauge_)
|
||||
{
|
||||
case Gauge::feynman:
|
||||
break;
|
||||
case Gauge::coulomb:
|
||||
transverseProjectSpatial(out);
|
||||
break;
|
||||
case Gauge::landau:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::MomentumSpacePropagator(const GaugeField &in,
|
||||
GaugeField &out)
|
||||
{
|
||||
LatticeComplex momProp(grid_);
|
||||
|
||||
makeInvKHatSquared(momProp);
|
||||
zmSub(momProp);
|
||||
|
||||
out = in*momProp;
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::StochasticWeight(GaugeLinkField &weight)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::StochasticWeight(GaugeLinkField &weight)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(weight._grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
std::vector<int> latt_size = grid->_fdimensions;
|
||||
|
||||
switch (zmScheme_)
|
||||
const unsigned int nd = grid_->Nd();
|
||||
std::vector<int> l = grid_->FullDimensions();
|
||||
Integer vol = 1;
|
||||
|
||||
for(unsigned int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
Integer vol = 1;
|
||||
for(int d = 0; d < nd; d++)
|
||||
{
|
||||
vol = vol * latt_size[d];
|
||||
}
|
||||
invKHatSquared(weight);
|
||||
weight = sqrt(vol)*sqrt(weight);
|
||||
zmSub(weight);
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedInf:
|
||||
{
|
||||
infVolPropagator(weight);
|
||||
weight = sqrt(real(weight));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
vol = vol*l[mu];
|
||||
}
|
||||
makeInvKHatSquared(weight);
|
||||
weight = sqrt(vol)*sqrt(weight);
|
||||
zmSub(weight);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out._grid);
|
||||
GaugeLinkField weight(grid);
|
||||
GaugeLinkField weight(grid_);
|
||||
|
||||
StochasticWeight(weight);
|
||||
StochasticField(out, rng, weight);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
|
||||
const GaugeLinkField &weight)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out._grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
GaugeLinkField r(grid);
|
||||
GaugeField aTilde(grid);
|
||||
FFT fft(grid);
|
||||
const unsigned int nd = grid_->Nd();
|
||||
GaugeLinkField r(grid_);
|
||||
GaugeField aTilde(grid_);
|
||||
FFT fft(dynamic_cast<GridCartesian *>(grid_));
|
||||
|
||||
switch (zmScheme_)
|
||||
for(unsigned int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
gaussian(rng, r);
|
||||
r = weight*r;
|
||||
pokeLorentz(aTilde, r, mu);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedInf:
|
||||
{
|
||||
Complex shift(1., 1.); // This needs to be a GaugeLink element?
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
bernoulli(rng, r);
|
||||
r = weight*(2.*r - shift);
|
||||
pokeLorentz(aTilde, r, mu);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
gaussian(rng, r);
|
||||
r = weight*r;
|
||||
pokeLorentz(aTilde, r, mu);
|
||||
}
|
||||
|
||||
gaugeTransform(aTilde);
|
||||
fft.FFT_all_dim(out, aTilde, FFT::backward);
|
||||
|
||||
out = real(out);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::UnitField(GaugeField &out)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::UnitField(GaugeField &out)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out._grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
GaugeLinkField r(grid);
|
||||
const unsigned int nd = grid_->Nd();
|
||||
GaugeLinkField r(grid_);
|
||||
|
||||
r = Complex(1.0,0.0);
|
||||
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
r = ScalarComplex(1., 0.);
|
||||
for(unsigned int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
pokeLorentz(out, r, mu);
|
||||
}
|
||||
|
||||
out = real(out);
|
||||
}
|
||||
// template<class Gimpl>
|
||||
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out,
|
||||
// const GaugeField &in)
|
||||
// {
|
||||
//
|
||||
// FeynmanGaugeMomentumSpacePropagator_TL(out,in);
|
||||
//
|
||||
// GridBase *grid = out._grid;
|
||||
// LatticeInteger coor(grid);
|
||||
// GaugeField zz(grid); zz=zero;
|
||||
//
|
||||
// // xyzt
|
||||
// for(int d = 0; d < grid->_ndimension-1;d++){
|
||||
// LatticeCoordinate(coor,d);
|
||||
// out = where(coor==Integer(0),zz,out);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// template<class Gimpl>
|
||||
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out,
|
||||
// const GaugeField &in)
|
||||
// {
|
||||
//
|
||||
// // what type LatticeComplex
|
||||
// GridBase *grid = out._grid;
|
||||
// int nd = grid->_ndimension;
|
||||
//
|
||||
// typedef typename GaugeField::vector_type vector_type;
|
||||
// typedef typename GaugeField::scalar_type ScalComplex;
|
||||
// typedef Lattice<iSinglet<vector_type> > LatComplex;
|
||||
//
|
||||
// std::vector<int> latt_size = grid->_fdimensions;
|
||||
//
|
||||
// LatComplex denom(grid); denom= zero;
|
||||
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
|
||||
// LatComplex kmu(grid);
|
||||
//
|
||||
// ScalComplex ci(0.0,1.0);
|
||||
// // momphase = n * 2pi / L
|
||||
// for(int mu=0;mu<Nd;mu++) {
|
||||
//
|
||||
// LatticeCoordinate(kmu,mu);
|
||||
//
|
||||
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
//
|
||||
// kmu = TwoPiL * kmu ;
|
||||
//
|
||||
// denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
|
||||
// }
|
||||
// std::vector<int> zero_mode(nd,0);
|
||||
// TComplexD Tone = ComplexD(1.0,0.0);
|
||||
// TComplexD Tzero= ComplexD(0.0,0.0);
|
||||
//
|
||||
// pokeSite(Tone,denom,zero_mode);
|
||||
//
|
||||
// denom= one/denom;
|
||||
//
|
||||
// pokeSite(Tzero,denom,zero_mode);
|
||||
//
|
||||
// out = zero;
|
||||
// out = in*denom;
|
||||
// };
|
||||
|
||||
}}
|
||||
#endif
|
||||
|
@ -75,7 +75,7 @@ namespace Grid{
|
||||
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
|
||||
//extend Ta to include Lorentz indexes
|
||||
RealD factor_p = c_plaq/RealD(Nc)*0.5;
|
||||
RealD factor_r = c_rect/RealD(Nc)*0.5;
|
||||
RealD factor_r = c_rect/RealD(Nc)*0.5;
|
||||
|
||||
GridBase *grid = Umu._grid;
|
||||
|
||||
|
53
Grid/qcd/action/pseudofermion/Bounds.h
Normal file
53
Grid/qcd/action/pseudofermion/Bounds.h
Normal file
@ -0,0 +1,53 @@
|
||||
#pragma once
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
template<class Field>
|
||||
void HighBoundCheck(LinearOperatorBase<Field> &HermOp,
|
||||
Field &Phi,
|
||||
RealD hi)
|
||||
{
|
||||
// Eigenvalue bound check at high end
|
||||
PowerMethod<Field> power_method;
|
||||
auto lambda_max = power_method(HermOp,Phi);
|
||||
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
|
||||
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
|
||||
}
|
||||
|
||||
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &PowerNegHalf)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise._grid;
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,PowerNegHalf);
|
||||
msCG(HermOp,X,Y);
|
||||
msCG(HermOp,Y,Z);
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -58,13 +58,30 @@ namespace QCD{
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
public:
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
|
||||
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
|
||||
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
@ -98,6 +115,9 @@ namespace QCD{
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
// using a rational approximation to the inverse square root
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
|
||||
{
|
||||
Lop.ImportGauge(U);
|
||||
@ -118,7 +138,6 @@ namespace QCD{
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
@ -139,11 +158,11 @@ namespace QCD{
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero; // Just use zero as the initial guess
|
||||
Solver(Lop, CG_src, CG_soln);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
@ -166,11 +185,11 @@ namespace QCD{
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = zero;
|
||||
Solver(Rop, CG_src, CG_soln);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
@ -182,8 +201,47 @@ namespace QCD{
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
}
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
@ -201,7 +259,7 @@ namespace QCD{
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
Solver(Lop, tmp[1], tmp[0]);
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
@ -212,7 +270,7 @@ namespace QCD{
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = zero;
|
||||
Solver(Rop, tmp[1], tmp[0]);
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
@ -234,17 +292,22 @@ namespace QCD{
|
||||
|
||||
GaugeField force(Lop.GaugeGrid());
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// PAB:
|
||||
// Optional single precision derivative ?
|
||||
/////////////////////////////////////////////
|
||||
|
||||
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
|
||||
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
Solver(Lop, CG_src, spProj_Phi);
|
||||
DerivativeSolverL(Lop, CG_src, spProj_Phi);
|
||||
Lop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = Lop.k * force;
|
||||
dSdU = -Lop.k * force;
|
||||
|
||||
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
|
||||
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
|
||||
@ -252,11 +315,11 @@ namespace QCD{
|
||||
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
|
||||
G5R5(CG_src, Omega_spProj_Phi);
|
||||
spProj_Phi = zero;
|
||||
Solver(Rop, CG_src, spProj_Phi);
|
||||
DerivativeSolverR(Rop, CG_src, spProj_Phi);
|
||||
Rop.Dtilde(spProj_Phi, Chi);
|
||||
G5R5(g5_R5_Chi, Chi);
|
||||
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
||||
dSdU = dSdU - Rop.k * force;
|
||||
dSdU = dSdU + Rop.k * force;
|
||||
};
|
||||
};
|
||||
}}
|
||||
|
@ -157,6 +157,13 @@ class OneFlavourEvenOddRationalPseudoFermionAction
|
||||
|
||||
msCG(Mpc, PhiOdd, Y);
|
||||
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(FermOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(Mpc,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,Mpc,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
|
||||
"solve or -1/2 solve faster??? "
|
||||
|
@ -170,6 +170,14 @@ namespace Grid{
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
|
@ -143,6 +143,14 @@ namespace Grid{
|
||||
|
||||
msCG(MdagMOp,Phi,Y);
|
||||
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(FermOp.FermionGrid());
|
||||
gauss = Phi;
|
||||
HighBoundCheck(MdagMOp,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagMOp,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
||||
return action;
|
||||
|
@ -156,6 +156,14 @@ namespace Grid{
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionGrid());
|
||||
gauss = Phi;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
|
@ -29,6 +29,9 @@ directory
|
||||
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
|
||||
#define QCD_PSEUDOFERMION_AGGREGATE_H
|
||||
|
||||
// Rational functions
|
||||
#include <Grid/qcd/action/pseudofermion/Bounds.h>
|
||||
|
||||
#include <Grid/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h>
|
||||
#include <Grid/qcd/action/pseudofermion/TwoFlavour.h>
|
||||
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio.h>
|
||||
|
@ -85,21 +85,20 @@ class TwoFlavourPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
// and must multiply by 0.707....
|
||||
//
|
||||
// Chroma has this scale factor: two_flavor_monomial_w.h
|
||||
// CPS uses this factor
|
||||
// IroIro: does not use this scale. It is absorbed by a change of vars
|
||||
// in the Phi integral, and thus is only an irrelevant prefactor for
|
||||
// the partition function.
|
||||
//
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
const RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG, eta);
|
||||
gaussian(pRNG, eta); eta = scale *eta;
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.Mdag(eta, Phi);
|
||||
|
||||
Phi = Phi * scale;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
@ -46,6 +46,7 @@ namespace Grid{
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
OperatorFunction<FermionField> &HeatbathSolver;
|
||||
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
@ -54,11 +55,18 @@ namespace Grid{
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS) :
|
||||
OperatorFunction<FermionField> & AS ) :
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(_NumOp,_DenOp, DS,AS,AS) {};
|
||||
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
HeatbathSolver(HS),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
PhiOdd(_NumOp.FermionRedBlackGrid())
|
||||
{
|
||||
@ -111,7 +119,7 @@ namespace Grid{
|
||||
// Odd det factors
|
||||
Mpc.MpcDag(etaOdd,PhiOdd);
|
||||
tmp=zero;
|
||||
ActionSolver(Vpc,PhiOdd,tmp);
|
||||
HeatbathSolver(Vpc,PhiOdd,tmp);
|
||||
Vpc.Mpc(tmp,PhiOdd);
|
||||
|
||||
// Even det factors
|
||||
|
@ -54,8 +54,8 @@ public:
|
||||
|
||||
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
|
||||
IntegratorParameters(ReaderClass & Reader){
|
||||
std::cout << "Reading integrator\n";
|
||||
read(Reader, "Integrator", *this);
|
||||
std::cout << GridLogMessage << "Reading integrator\n";
|
||||
read(Reader, "Integrator", *this);
|
||||
}
|
||||
|
||||
void print_parameters() const {
|
||||
@ -88,8 +88,7 @@ class Integrator {
|
||||
t_P[level] += ep;
|
||||
update_P(P, U, level, ep);
|
||||
|
||||
std::cout << GridLogIntegrator << "[" << level << "] P "
|
||||
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
|
||||
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
|
||||
}
|
||||
|
||||
// to be used by the actionlevel class to iterate
|
||||
@ -105,7 +104,7 @@ class Integrator {
|
||||
GF force = Rep.RtoFundamentalProject(forceR); // Ta for the fundamental rep
|
||||
Real force_abs = std::sqrt(norm2(force)/(U._grid->gSites()));
|
||||
std::cout << GridLogIntegrator << "Hirep Force average: " << force_abs << std::endl;
|
||||
Mom -= force * ep ;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
}
|
||||
}
|
||||
} update_P_hireps{};
|
||||
@ -129,11 +128,11 @@ class Integrator {
|
||||
double end_force = usecond();
|
||||
Real force_abs = std::sqrt(norm2(force)/U._grid->gSites());
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
|
||||
Mom -= force * ep;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
double time_force = (end_force - start_force) / 1e3;
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||
}
|
||||
|
||||
// Force from the other representations
|
||||
@ -238,8 +237,7 @@ class Integrator {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us =
|
||||
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh(Us, pRNG);
|
||||
}
|
||||
|
||||
@ -252,13 +250,11 @@ class Integrator {
|
||||
// over the representations
|
||||
struct _S {
|
||||
template <class FieldType, class Repr>
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
|
||||
int level, RealD& H) {
|
||||
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
|
||||
|
||||
for (int a = 0; a < repr_set.size(); ++a) {
|
||||
RealD Hterm = repr_set.at(a)->S(Rep.U);
|
||||
std::cout << GridLogMessage << "S Level " << level << " term " << a
|
||||
<< " H Hirep = " << Hterm << std::endl;
|
||||
std::cout << GridLogMessage << "S Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
|
||||
}
|
||||
@ -268,20 +264,21 @@ class Integrator {
|
||||
// Calculate action
|
||||
RealD S(Field& U) { // here also U not used
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P); // - trace (P*P)
|
||||
std::cout << GridLogIntegrator << "Integrator action\n";
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
|
||||
|
||||
RealD Hterm;
|
||||
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
|
||||
|
||||
// Actions
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
Field& Us =
|
||||
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||
Hterm = as[level].actions.at(actionID)->S(Us);
|
||||
std::cout << GridLogMessage << "S Level " << level << " term "
|
||||
<< actionID << " H = " << Hterm << std::endl;
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
}
|
||||
as[level].apply(S_hireps, Representations, level, H);
|
||||
@ -306,8 +303,7 @@ class Integrator {
|
||||
// Check the clocks all match on all levels
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same
|
||||
std::cout << GridLogIntegrator << " times[" << level
|
||||
<< "]= " << t_P[level] << " " << t_U << std::endl;
|
||||
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
|
||||
}
|
||||
|
||||
// and that we indeed got to the end of the trajectory
|
||||
|
@ -231,8 +231,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
Field Pfg(U._grid);
|
||||
Ufg = U;
|
||||
Pfg = zero;
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
|
||||
<< std::endl;
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep << std::endl;
|
||||
// prepare_fg; no prediction/result cache for now
|
||||
// could relax CG stopping conditions for the
|
||||
// derivatives in the small step since the force gets multiplied by
|
||||
@ -271,8 +270,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
this->step(U, level + 1, first_step, 0);
|
||||
}
|
||||
|
||||
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps),
|
||||
(1.0 - 2.0 * lambda) * eps);
|
||||
this->FG_update_P(U, level, 2 * Chi / ((1.0 - 2.0 * lambda) * eps), (1.0 - 2.0 * lambda) * eps);
|
||||
|
||||
if (level == fl) { // lowest level
|
||||
this->update_U(U, 0.5 * eps);
|
||||
|
@ -11,6 +11,24 @@ const std::array<const Gamma, 4> Gamma::gmu = {{
|
||||
Gamma(Gamma::Algebra::GammaZ),
|
||||
Gamma(Gamma::Algebra::GammaT)}};
|
||||
|
||||
const std::array<const Gamma, 16> Gamma::gall = {{
|
||||
Gamma(Gamma::Algebra::Identity),
|
||||
Gamma(Gamma::Algebra::Gamma5),
|
||||
Gamma(Gamma::Algebra::GammaX),
|
||||
Gamma(Gamma::Algebra::GammaY),
|
||||
Gamma(Gamma::Algebra::GammaZ),
|
||||
Gamma(Gamma::Algebra::GammaT),
|
||||
Gamma(Gamma::Algebra::GammaXGamma5),
|
||||
Gamma(Gamma::Algebra::GammaYGamma5),
|
||||
Gamma(Gamma::Algebra::GammaZGamma5),
|
||||
Gamma(Gamma::Algebra::GammaTGamma5),
|
||||
Gamma(Gamma::Algebra::SigmaXT),
|
||||
Gamma(Gamma::Algebra::SigmaXY),
|
||||
Gamma(Gamma::Algebra::SigmaXZ),
|
||||
Gamma(Gamma::Algebra::SigmaYT),
|
||||
Gamma(Gamma::Algebra::SigmaYZ),
|
||||
Gamma(Gamma::Algebra::SigmaZT)}};
|
||||
|
||||
const std::array<const char *, Gamma::nGamma> Gamma::name = {{
|
||||
"-Gamma5 ",
|
||||
"Gamma5 ",
|
||||
|
@ -48,6 +48,7 @@ class Gamma {
|
||||
static const std::array<std::array<Algebra, nGamma>, nGamma> mul;
|
||||
static const std::array<Algebra, nGamma> adj;
|
||||
static const std::array<const Gamma, 4> gmu;
|
||||
static const std::array<const Gamma, 16> gall;
|
||||
Algebra g;
|
||||
public:
|
||||
Gamma(Algebra initg): g(initg) {}
|
||||
|
@ -10,10 +10,10 @@
|
||||
NotebookFileLineBreakTest
|
||||
NotebookFileLineBreakTest
|
||||
NotebookDataPosition[ 158, 7]
|
||||
NotebookDataLength[ 75090, 1956]
|
||||
NotebookOptionsPosition[ 69536, 1867]
|
||||
NotebookOutlinePosition[ 69898, 1883]
|
||||
CellTagsIndexPosition[ 69855, 1880]
|
||||
NotebookDataLength[ 67118, 1714]
|
||||
NotebookOptionsPosition[ 63485, 1652]
|
||||
NotebookOutlinePosition[ 63842, 1668]
|
||||
CellTagsIndexPosition[ 63799, 1665]
|
||||
WindowFrame->Normal*)
|
||||
|
||||
(* Beginning of Notebook Content *)
|
||||
@ -76,234 +76,6 @@ Cell[BoxData["\<\"/Users/antonin/Development/Grid/lib/qcd/spin/gamma-gen\"\>"]\
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"FactorInteger", "[", "3152", "]"}]], "Input",
|
||||
CellChangeTimes->{{3.7432347536316767`*^9, 3.7432347764739027`*^9}, {
|
||||
3.743234833567358*^9,
|
||||
3.743234862146022*^9}},ExpressionUUID->"d1a0fd03-85e1-43af-ba80-\
|
||||
3ca4235675d8"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{"2", ",", "4"}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"197", ",", "1"}], "}"}]}], "}"}]], "Output",
|
||||
CellChangeTimes->{{3.743234836792224*^9,
|
||||
3.743234862493619*^9}},ExpressionUUID->"16d3f953-4b24-4ed2-ae62-\
|
||||
306dcab66ca7"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"sol", "=",
|
||||
RowBox[{"Solve", "[",
|
||||
RowBox[{
|
||||
RowBox[{
|
||||
RowBox[{
|
||||
SuperscriptBox["x", "2"], "+",
|
||||
SuperscriptBox["y", "2"], "+",
|
||||
SuperscriptBox["z", "2"]}], "\[Equal]", "2"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "Integers"}],
|
||||
"]"}]}]], "Input",
|
||||
CellChangeTimes->{{3.743235304127721*^9,
|
||||
3.7432353087929983`*^9}},ExpressionUUID->"f0fa2a5c-3d81-4d75-a447-\
|
||||
50c7ca3459ff"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]",
|
||||
RowBox[{"-", "1"}]}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "0"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "1"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"x", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"y", "\[Rule]", "1"}], ",",
|
||||
RowBox[{"z", "\[Rule]", "0"}]}], "}"}]}], "}"}]], "Output",
|
||||
CellChangeTimes->{{3.743235305220907*^9,
|
||||
3.743235309139554*^9}},ExpressionUUID->"d9825c95-24bb-442a-8734-\
|
||||
4c0f47e99dfc"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
RowBox[{"xmlElem", "[", "x_", "]"}], ":=",
|
||||
RowBox[{"Print", "[",
|
||||
RowBox[{"\"\<<elem>\>\"", "<>",
|
||||
RowBox[{"ToString", "[",
|
||||
RowBox[{"x", "[",
|
||||
RowBox[{"[", "1", "]"}], "]"}], "]"}], "<>", "\"\< \>\"", "<>",
|
||||
RowBox[{"ToString", "[",
|
||||
RowBox[{"x", "[",
|
||||
RowBox[{"[", "2", "]"}], "]"}], "]"}], "<>", "\"\< \>\"", "<>",
|
||||
RowBox[{"ToString", "[",
|
||||
RowBox[{"x", "[",
|
||||
RowBox[{"[", "3", "]"}], "]"}], "]"}], "<>", "\"\<</elem>\>\""}],
|
||||
"]"}]}]], "Input",
|
||||
CellChangeTimes->{{3.74323534002862*^9, 3.743235351000985*^9}, {
|
||||
3.743235403233039*^9, 3.743235413488028*^9}, {3.743235473169856*^9,
|
||||
3.7432354747126904`*^9}},ExpressionUUID->"aea76313-c89e-45e8-b429-\
|
||||
3f454091666d"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
RowBox[{
|
||||
RowBox[{"xmlElem", "[",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.", "#"}], "]"}], "&"}], "/@",
|
||||
"sol"}]], "Input",
|
||||
CellChangeTimes->{{3.743235415820318*^9,
|
||||
3.743235467025091*^9}},ExpressionUUID->"07da3998-8eab-40ba-8c0b-\
|
||||
ac6b130cb4fb"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 -1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476581676*^9},ExpressionUUID->"c577ba06-b67a-405a-9ff5-\
|
||||
2bf7dc898d03"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 0 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476588011*^9},ExpressionUUID->"d041aa36-0cea-457c-9d4b-\
|
||||
1fe9be66e2ab"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 0 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476596887*^9},ExpressionUUID->"bf141b55-86b2-4430-a994-\
|
||||
5c03d5a19441"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>-1 1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476605785*^9},ExpressionUUID->"4968a660-4ecf-4b66-9071-\
|
||||
8bd798c18d21"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 -1 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476613523*^9},ExpressionUUID->"4e22d943-2680-416b-a1d7-\
|
||||
a16ca20b781f"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 -1 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.7432354766218576`*^9},ExpressionUUID->"6dd38385-08b3-4dd9-932f-\
|
||||
98a00c6db1b2"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 1 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476629427*^9},ExpressionUUID->"ef3baad3-91d1-4735-9a22-\
|
||||
53495a624c15"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>0 1 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476638257*^9},ExpressionUUID->"413fbb68-5017-4272-a62a-\
|
||||
fa234e6daaea"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 -1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476646203*^9},ExpressionUUID->"3a832a60-ae00-414b-a9ac-\
|
||||
f5e86e67e917"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 0 -1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476653907*^9},ExpressionUUID->"bfc79ef6-f6c7-4f1e-88e8-\
|
||||
005ac314be9c"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 0 1</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.743235476662575*^9},ExpressionUUID->"0f892891-f885-489c-9925-\
|
||||
ddef4d698410"],
|
||||
|
||||
Cell[BoxData["\<\"<elem>1 1 0</elem>\"\>"], "Print",
|
||||
CellChangeTimes->{
|
||||
3.7432354766702337`*^9},ExpressionUUID->"2906f190-e673-4f33-9c34-\
|
||||
e8e56efe7a27"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
"Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null",
|
||||
",", "Null", ",", "Null", ",", "Null", ",", "Null", ",", "Null", ",",
|
||||
"Null"}], "}"}]], "Output",
|
||||
CellChangeTimes->{
|
||||
3.7432354246225967`*^9, {3.7432354674878073`*^9,
|
||||
3.743235476678007*^9}},ExpressionUUID->"500ca3c1-88d8-46e5-a1a1-\
|
||||
86a7878e5638"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell["Clifford algebra generation", "Section",
|
||||
CellChangeTimes->{{3.6942089434583883`*^9,
|
||||
3.694208978559093*^9}},ExpressionUUID->"a5b064b3-3011-4922-8559-\
|
||||
@ -1048,9 +820,10 @@ generated by the Mathematica notebook gamma-gen/gamma-gen.nb\n\n#include \
|
||||
"\"\< static const std::array<const char *, nGamma> \
|
||||
name;\n static const std::array<std::array<Algebra, nGamma>, nGamma> mul;\n\
|
||||
static const std::array<Algebra, nGamma> adj;\n \
|
||||
static const std::array<const Gamma, 4> gmu;\n \
|
||||
Algebra g;\n public:\n \
|
||||
Gamma(Algebra initg): g(initg) {} \n};\n\n\>\""}]}], ";",
|
||||
static const std::array<const Gamma, 4> gmu;\n static \
|
||||
const std::array<const Gamma, 16> gall;\n Algebra \
|
||||
g;\n public:\n \
|
||||
Gamma(Algebra initg): g(initg) {} \n};\n\n\>\""}]}], ";",
|
||||
"\[IndentingNewLine]",
|
||||
RowBox[{"out", " ", "=",
|
||||
RowBox[{"out", "<>", "funcCode"}]}], ";", "\[IndentingNewLine]",
|
||||
@ -1076,7 +849,8 @@ Algebra g;\n public:\n \
|
||||
3.694963343265525*^9}, {3.694964367519239*^9, 3.69496439461199*^9}, {
|
||||
3.694964462130747*^9, 3.6949644669959793`*^9}, 3.694964509762739*^9, {
|
||||
3.694964705045744*^9, 3.694964723148797*^9}, {3.694964992988984*^9,
|
||||
3.6949649968504257`*^9}},ExpressionUUID->"c7103bd6-b539-4495-b98c-\
|
||||
3.6949649968504257`*^9}, {3.758291687176977*^9,
|
||||
3.758291694181189*^9}},ExpressionUUID->"c7103bd6-b539-4495-b98c-\
|
||||
d4d12ac6cad8"],
|
||||
|
||||
Cell["Gamma enum generation:", "Text",
|
||||
@ -1745,8 +1519,17 @@ namespace QCD {\>\""}]}], ";", "\[IndentingNewLine]",
|
||||
"\"\<\n\nconst std::array<const Gamma, 4> Gamma::gmu = {{\n \
|
||||
Gamma(Gamma::Algebra::GammaX),\n Gamma(Gamma::Algebra::GammaY),\n \
|
||||
Gamma(Gamma::Algebra::GammaZ),\n Gamma(Gamma::Algebra::GammaT)}};\n\nconst \
|
||||
std::array<const char *, Gamma::nGamma> Gamma::name = {{\n\>\""}]}], ";",
|
||||
"\[IndentingNewLine]",
|
||||
std::array<const Gamma, 16> Gamma::gall = {{\n \
|
||||
Gamma(Gamma::Algebra::Identity),\n Gamma(Gamma::Algebra::Gamma5),\n \
|
||||
Gamma(Gamma::Algebra::GammaX),\n Gamma(Gamma::Algebra::GammaY),\n \
|
||||
Gamma(Gamma::Algebra::GammaZ),\n Gamma(Gamma::Algebra::GammaT),\n \
|
||||
Gamma(Gamma::Algebra::GammaXGamma5),\n Gamma(Gamma::Algebra::GammaYGamma5),\n\
|
||||
Gamma(Gamma::Algebra::GammaZGamma5),\n \
|
||||
Gamma(Gamma::Algebra::GammaTGamma5),\n Gamma(Gamma::Algebra::SigmaXT), \
|
||||
\n Gamma(Gamma::Algebra::SigmaXY), \n Gamma(Gamma::Algebra::SigmaXZ), \
|
||||
\n Gamma(Gamma::Algebra::SigmaYT),\n Gamma(Gamma::Algebra::SigmaYZ),\n \
|
||||
Gamma(Gamma::Algebra::SigmaZT)}};\n\nconst std::array<const char *, \
|
||||
Gamma::nGamma> Gamma::name = {{\n\>\""}]}], ";", "\[IndentingNewLine]",
|
||||
RowBox[{"Do", "[", "\[IndentingNewLine]",
|
||||
RowBox[{
|
||||
RowBox[{"out", " ", "=", " ",
|
||||
@ -1847,7 +1630,9 @@ Gamma::nGamma> Gamma::mul = {{\\n\>\""}]}], ";", "\[IndentingNewLine]",
|
||||
3.694963031525289*^9}, {3.694963065828494*^9, 3.694963098327538*^9}, {
|
||||
3.6949632020836153`*^9, 3.6949632715940027`*^9}, {3.694963440035037*^9,
|
||||
3.6949634418966017`*^9}, {3.6949651447067547`*^9, 3.694965161228381*^9}, {
|
||||
3.694967957845581*^9, 3.694967958364184*^9}}],
|
||||
3.694967957845581*^9, 3.694967958364184*^9}, {3.758291673792514*^9,
|
||||
3.758291676983432*^9}},ExpressionUUID->"b1b309f8-a3a7-4081-a781-\
|
||||
c3845e3cd372"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
@ -1867,8 +1652,8 @@ Cell[BoxData[""], "Input",
|
||||
},
|
||||
WindowSize->{1246, 1005},
|
||||
WindowMargins->{{282, Automatic}, {Automatic, 14}},
|
||||
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
|
||||
10, 2017)",
|
||||
FrontEndVersion->"11.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 5, \
|
||||
2018)",
|
||||
StyleDefinitions->"Default.nb"
|
||||
]
|
||||
(* End of Notebook Content *)
|
||||
@ -1888,75 +1673,48 @@ Cell[1948, 43, 570, 11, 73, "Input",ExpressionUUID->"5c937a3e-adfd-4d7e-8fde-afb
|
||||
Cell[2521, 56, 1172, 17, 34, "Output",ExpressionUUID->"72817ba6-2f6a-4a4d-8212-6f0970f49e7c"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[3730, 78, 248, 5, 30, "Input",ExpressionUUID->"d1a0fd03-85e1-43af-ba80-3ca4235675d8"],
|
||||
Cell[3981, 85, 299, 9, 34, "Output",ExpressionUUID->"16d3f953-4b24-4ed2-ae62-306dcab66ca7"]
|
||||
Cell[3730, 78, 174, 3, 67, "Section",ExpressionUUID->"a5b064b3-3011-4922-8559-ead857cad102"],
|
||||
Cell[3907, 83, 535, 16, 52, "Input",ExpressionUUID->"aa28f02b-31e1-4df2-9b5d-482177464b59"],
|
||||
Cell[4445, 101, 250, 4, 35, "Text",ExpressionUUID->"c8896b88-f1db-4ce4-b7a6-0c9838bdb8f1"],
|
||||
Cell[4698, 107, 5511, 169, 425, "Input",ExpressionUUID->"52a96ff6-047e-4043-86d0-e303866e5f8e"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[10234, 280, 2183, 58, 135, "Input",ExpressionUUID->"8b0f4955-2c3f-418c-9226-9be8f87621e8"],
|
||||
Cell[12420, 340, 1027, 27, 56, "Output",ExpressionUUID->"edd0619f-6f12-4070-a1d2-6b547877fadc"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[4317, 99, 469, 14, 33, "Input",ExpressionUUID->"f0fa2a5c-3d81-4d75-a447-50c7ca3459ff"],
|
||||
Cell[4789, 115, 2423, 77, 56, "Output",ExpressionUUID->"d9825c95-24bb-442a-8734-4c0f47e99dfc"]
|
||||
Cell[13484, 372, 1543, 46, 114, "Input",ExpressionUUID->"fb45123c-c610-4075-99b0-7cd71c728ae7"],
|
||||
Cell[15030, 420, 1311, 32, 87, "Output",ExpressionUUID->"2ae14565-b412-4dc0-9dce-bd6c1ba5ef27"]
|
||||
}, Open ]],
|
||||
Cell[7227, 195, 751, 18, 30, "Input",ExpressionUUID->"aea76313-c89e-45e8-b429-3f454091666d"],
|
||||
Cell[16356, 455, 179, 3, 35, "Text",ExpressionUUID->"af247231-a58d-417b-987a-26908dafffdb"],
|
||||
Cell[16538, 460, 2175, 65, 94, "Input",ExpressionUUID->"7c44cadd-e488-4f51-87d8-c64eef11f40c"],
|
||||
Cell[18716, 527, 193, 3, 35, "Text",ExpressionUUID->"856f1746-1107-4509-a5ce-ac9c7f56cdb1"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[8003, 217, 323, 10, 30, "Input",ExpressionUUID->"07da3998-8eab-40ba-8c0b-ac6b130cb4fb"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[8351, 231, 156, 3, 24, "Print",ExpressionUUID->"c577ba06-b67a-405a-9ff5-2bf7dc898d03"],
|
||||
Cell[8510, 236, 156, 3, 24, "Print",ExpressionUUID->"d041aa36-0cea-457c-9d4b-1fe9be66e2ab"],
|
||||
Cell[8669, 241, 155, 3, 24, "Print",ExpressionUUID->"bf141b55-86b2-4430-a994-5c03d5a19441"],
|
||||
Cell[8827, 246, 155, 3, 24, "Print",ExpressionUUID->"4968a660-4ecf-4b66-9071-8bd798c18d21"],
|
||||
Cell[8985, 251, 156, 3, 24, "Print",ExpressionUUID->"4e22d943-2680-416b-a1d7-a16ca20b781f"],
|
||||
Cell[9144, 256, 157, 3, 24, "Print",ExpressionUUID->"6dd38385-08b3-4dd9-932f-98a00c6db1b2"],
|
||||
Cell[9304, 261, 155, 3, 24, "Print",ExpressionUUID->"ef3baad3-91d1-4735-9a22-53495a624c15"],
|
||||
Cell[9462, 266, 154, 3, 24, "Print",ExpressionUUID->"413fbb68-5017-4272-a62a-fa234e6daaea"],
|
||||
Cell[9619, 271, 155, 3, 24, "Print",ExpressionUUID->"3a832a60-ae00-414b-a9ac-f5e86e67e917"],
|
||||
Cell[9777, 276, 155, 3, 24, "Print",ExpressionUUID->"bfc79ef6-f6c7-4f1e-88e8-005ac314be9c"],
|
||||
Cell[9935, 281, 154, 3, 24, "Print",ExpressionUUID->"0f892891-f885-489c-9925-ddef4d698410"],
|
||||
Cell[10092, 286, 156, 3, 24, "Print",ExpressionUUID->"2906f190-e673-4f33-9c34-e8e56efe7a27"]
|
||||
}, Open ]],
|
||||
Cell[10263, 292, 376, 9, 34, "Output",ExpressionUUID->"500ca3c1-88d8-46e5-a1a1-86a7878e5638"]
|
||||
Cell[18934, 534, 536, 16, 30, "Input",ExpressionUUID->"8674484a-8543-434f-b177-3b27f9353212"],
|
||||
Cell[19473, 552, 1705, 35, 87, "Output",ExpressionUUID->"c3b3f84d-91f6-41af-af6b-a394ca020511"]
|
||||
}, Open ]],
|
||||
Cell[21193, 590, 170, 3, 35, "Text",ExpressionUUID->"518a3040-54b1-4d43-8947-5c7d12efa94d"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[10676, 306, 174, 3, 67, "Section",ExpressionUUID->"a5b064b3-3011-4922-8559-ead857cad102"],
|
||||
Cell[10853, 311, 535, 16, 52, "Input",ExpressionUUID->"aa28f02b-31e1-4df2-9b5d-482177464b59"],
|
||||
Cell[11391, 329, 250, 4, 35, "Text",ExpressionUUID->"c8896b88-f1db-4ce4-b7a6-0c9838bdb8f1"],
|
||||
Cell[11644, 335, 5511, 169, 425, "Input",ExpressionUUID->"52a96ff6-047e-4043-86d0-e303866e5f8e"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[17180, 508, 2183, 58, 135, "Input",ExpressionUUID->"8b0f4955-2c3f-418c-9226-9be8f87621e8"],
|
||||
Cell[19366, 568, 1027, 27, 67, "Output",ExpressionUUID->"edd0619f-6f12-4070-a1d2-6b547877fadc"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[20430, 600, 1543, 46, 114, "Input",ExpressionUUID->"fb45123c-c610-4075-99b0-7cd71c728ae7"],
|
||||
Cell[21976, 648, 1311, 32, 98, "Output",ExpressionUUID->"2ae14565-b412-4dc0-9dce-bd6c1ba5ef27"]
|
||||
}, Open ]],
|
||||
Cell[23302, 683, 179, 3, 35, "Text",ExpressionUUID->"af247231-a58d-417b-987a-26908dafffdb"],
|
||||
Cell[23484, 688, 2175, 65, 94, "Input",ExpressionUUID->"7c44cadd-e488-4f51-87d8-c64eef11f40c"],
|
||||
Cell[25662, 755, 193, 3, 35, "Text",ExpressionUUID->"856f1746-1107-4509-a5ce-ac9c7f56cdb1"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[25880, 762, 536, 16, 30, "Input",ExpressionUUID->"8674484a-8543-434f-b177-3b27f9353212"],
|
||||
Cell[26419, 780, 1705, 35, 87, "Output",ExpressionUUID->"c3b3f84d-91f6-41af-af6b-a394ca020511"]
|
||||
}, Open ]],
|
||||
Cell[28139, 818, 170, 3, 35, "Text",ExpressionUUID->"518a3040-54b1-4d43-8947-5c7d12efa94d"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[28334, 825, 536, 14, 30, "Input",ExpressionUUID->"61a2e974-2b39-4a07-8043-2dfd39a70569"],
|
||||
Cell[28873, 841, 6754, 167, 303, "Output",ExpressionUUID->"73480ac0-3043-4077-80cc-b952a94c822a"]
|
||||
Cell[21388, 597, 536, 14, 30, "Input",ExpressionUUID->"61a2e974-2b39-4a07-8043-2dfd39a70569"],
|
||||
Cell[21927, 613, 6754, 167, 303, "Output",ExpressionUUID->"73480ac0-3043-4077-80cc-b952a94c822a"]
|
||||
}, Open ]]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[35676, 1014, 226, 4, 67, "Section",ExpressionUUID->"4e833cd6-9f0e-4aa3-a873-3d579e874720"],
|
||||
Cell[35905, 1020, 188, 4, 44, "Text",ExpressionUUID->"6d27fc04-3a60-4e03-8df7-3dd3aeee35b4"],
|
||||
Cell[36096, 1026, 2980, 53, 703, "Input",ExpressionUUID->"c7103bd6-b539-4495-b98c-d4d12ac6cad8"],
|
||||
Cell[39079, 1081, 221, 4, 44, "Text",ExpressionUUID->"0625593d-290f-4a39-9d80-8e2c6fdbc94e"],
|
||||
Cell[39303, 1087, 4936, 150, 682, "Input",ExpressionUUID->"1ad4904c-352f-4b1d-a7c7-91e1b0549409"],
|
||||
Cell[44242, 1239, 2645, 56, 199, "Input",ExpressionUUID->"0221674f-9b63-4662-91bc-ccc8c6ae9589"],
|
||||
Cell[46890, 1297, 209, 4, 44, "Text",ExpressionUUID->"d2d2257a-487b-416f-bc40-abd4482225f7"],
|
||||
Cell[47102, 1303, 15306, 397, 2131, "Input",ExpressionUUID->"daea68a9-c9e8-46ab-9bc8-5186e2cf477c"],
|
||||
Cell[62411, 1702, 137, 2, 44, "Text",ExpressionUUID->"76ba9d5a-7ee3-4888-be7e-6377003275e8"],
|
||||
Cell[62551, 1706, 521, 12, 30, "Input",ExpressionUUID->"4ec61f4c-3fd3-49ea-b5ef-6f7f04a16b34"]
|
||||
Cell[28730, 786, 226, 4, 67, "Section",ExpressionUUID->"4e833cd6-9f0e-4aa3-a873-3d579e874720"],
|
||||
Cell[28959, 792, 188, 4, 44, "Text",ExpressionUUID->"6d27fc04-3a60-4e03-8df7-3dd3aeee35b4"],
|
||||
Cell[29150, 798, 3104, 55, 724, "Input",ExpressionUUID->"c7103bd6-b539-4495-b98c-d4d12ac6cad8"],
|
||||
Cell[32257, 855, 221, 4, 44, "Text",ExpressionUUID->"0625593d-290f-4a39-9d80-8e2c6fdbc94e"],
|
||||
Cell[32481, 861, 4936, 150, 682, "Input",ExpressionUUID->"1ad4904c-352f-4b1d-a7c7-91e1b0549409"],
|
||||
Cell[37420, 1013, 2645, 56, 199, "Input",ExpressionUUID->"0221674f-9b63-4662-91bc-ccc8c6ae9589"],
|
||||
Cell[40068, 1071, 209, 4, 44, "Text",ExpressionUUID->"d2d2257a-487b-416f-bc40-abd4482225f7"],
|
||||
Cell[40280, 1077, 15306, 397, 2131, "Input",ExpressionUUID->"daea68a9-c9e8-46ab-9bc8-5186e2cf477c"],
|
||||
Cell[55589, 1476, 137, 2, 44, "Text",ExpressionUUID->"76ba9d5a-7ee3-4888-be7e-6377003275e8"],
|
||||
Cell[55729, 1480, 521, 12, 30, "Input",ExpressionUUID->"4ec61f4c-3fd3-49ea-b5ef-6f7f04a16b34"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[63109, 1723, 167, 2, 67, "Section",ExpressionUUID->"a4458b3a-09b5-4e36-a1fc-781d6702b2dc"],
|
||||
Cell[63279, 1727, 5693, 122, 829, "Input",ExpressionUUID->"b1b309f8-a3a7-4081-a781-c3845e3cd372"],
|
||||
Cell[68975, 1851, 448, 10, 30, "Input",ExpressionUUID->"cba42949-b0f2-42ce-aebd-ffadfd83ef88"],
|
||||
Cell[69426, 1863, 94, 1, 30, "Input",ExpressionUUID->"6175b72c-af9f-43c2-b4ca-bd84c48a456d"]
|
||||
Cell[56287, 1497, 167, 2, 67, "Section",ExpressionUUID->"a4458b3a-09b5-4e36-a1fc-781d6702b2dc"],
|
||||
Cell[56457, 1501, 6464, 133, 1207, "Input",ExpressionUUID->"b1b309f8-a3a7-4081-a781-c3845e3cd372"],
|
||||
Cell[62924, 1636, 448, 10, 30, "Input",ExpressionUUID->"cba42949-b0f2-42ce-aebd-ffadfd83ef88"],
|
||||
Cell[63375, 1648, 94, 1, 30, "Input",ExpressionUUID->"6175b72c-af9f-43c2-b4ca-bd84c48a456d"]
|
||||
}, Open ]]
|
||||
}
|
||||
]
|
||||
|
@ -986,17 +986,18 @@ void A2Autils<FImpl>::ContractWWVV(std::vector<PropagatorField> &WWVV,
|
||||
for(int t=0;t<N_t;t++){
|
||||
for(int s=0;s<N_s;s++){
|
||||
auto tmp1 = vs[s]._odata[ss];
|
||||
vobj tmp2 = zero;
|
||||
vobj tmp2 = zero;
|
||||
vobj tmp3 = zero;
|
||||
|
||||
for(int d=d_o;d<MIN(d_o+d_unroll,N_d);d++){
|
||||
Scalar_v coeff = WW_sd(t,s,d);
|
||||
mac(&tmp2 ,& coeff, & vd[d]._odata[ss]);
|
||||
}
|
||||
tmp3 = conjugate(vd[d]._odata[ss]);
|
||||
mac(&tmp2, &coeff, &tmp3);
|
||||
}
|
||||
|
||||
//////////////////////////
|
||||
// Fast outer product of tmp1 with a sum of terms suppressed by d_unroll
|
||||
//////////////////////////
|
||||
tmp2 = conjugate(tmp2);
|
||||
for(int s1=0;s1<Ns;s1++){
|
||||
for(int s2=0;s2<Ns;s2++){
|
||||
WWVV[t]._odata[ss]()(s1,s2)(0,0) += tmp1()(s1)(0)*tmp2()(s2)(0);
|
||||
|
87
Grid/qcd/utils/CovariantSmearing.h
Normal file
87
Grid/qcd/utils/CovariantSmearing.h
Normal file
@ -0,0 +1,87 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
|
||||
|
||||
Copyright (C) 2016
|
||||
|
||||
Author: Azusa Yamaguchi
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template <class Gimpl> class CovariantSmearing : public Gimpl
|
||||
{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
template<typename T>
|
||||
static void GaussianSmear(const std::vector<LatticeColourMatrix>& U,
|
||||
T& chi,
|
||||
const Real& width, int Iterations, int orthog)
|
||||
{
|
||||
GridBase *grid = chi._grid;
|
||||
T psi(grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Follow Chroma conventions for width to keep compatibility with previous data
|
||||
// Free field iterates
|
||||
// chi = (1 - w^2/4N p^2)^N chi
|
||||
//
|
||||
// ~ (e^(-w^2/4N p^2)^N chi
|
||||
// ~ (e^(-w^2/4 p^2) chi
|
||||
// ~ (e^(-w'^2/2 p^2) chi [ w' = w/sqrt(2) ]
|
||||
//
|
||||
// Which in coordinate space is proportional to
|
||||
//
|
||||
// e^(-x^2/w^2) = e^(-x^2/2w'^2)
|
||||
//
|
||||
// The 4 is a bit unconventional from Gaussian width perspective, but... it's Chroma convention.
|
||||
// 2nd derivative approx d^2/dx^2 = x+mu + x-mu - 2x
|
||||
//
|
||||
// d^2/dx^2 = - p^2
|
||||
//
|
||||
// chi = ( 1 + w^2/4N d^2/dx^2 )^N chi
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
Real coeff = (width*width) / Real(4*Iterations);
|
||||
|
||||
int dims = Nd;
|
||||
if( orthog < Nd ) dims=Nd-1;
|
||||
|
||||
for(int n = 0; n < Iterations; ++n) {
|
||||
psi = (-2.0*dims)*chi;
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
if ( mu != orthog ) {
|
||||
psi = psi + Gimpl::CovShiftForward(U[mu],mu,chi);
|
||||
psi = psi + Gimpl::CovShiftBackward(U[mu],mu,chi);
|
||||
}
|
||||
}
|
||||
chi = chi + coeff*psi;
|
||||
}
|
||||
}
|
||||
};
|
||||
}}
|
@ -31,6 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
public:
|
||||
@ -45,30 +46,58 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
A[mu] = Ta(U[mu]) * cmi;
|
||||
}
|
||||
}
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
||||
dmuAmu=zero;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
if ( mu != orthog ) {
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false) {
|
||||
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
GridBase *grid = Umu._grid;
|
||||
GaugeMat xform(grid);
|
||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
|
||||
GridBase *grid = Umu._grid;
|
||||
|
||||
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
|
||||
Real old_trace = org_link_trace;
|
||||
Real trG;
|
||||
|
||||
xform=1.0;
|
||||
|
||||
std::vector<GaugeMat> U(Nd,grid);
|
||||
GaugeMat dmuAmu(grid);
|
||||
|
||||
for(int i=0;i<maxiter;i++){
|
||||
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
if ( Fourier==false ) {
|
||||
trG = SteepestDescentStep(U,alpha,dmuAmu);
|
||||
GaugeMat dmuAmu(grid);
|
||||
|
||||
{
|
||||
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
|
||||
if( (orthog>=0) && (orthog<Nd) ){
|
||||
std::cout << GridLogMessage << " Gauge fixing to Coulomb gauge time="<<orthog<< " plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
|
||||
} else {
|
||||
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
|
||||
std::cout << GridLogMessage << " Gauge fixing to Landau gauge plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
|
||||
}
|
||||
}
|
||||
for(int i=0;i<maxiter;i++){
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
|
||||
if ( Fourier==false ) {
|
||||
trG = SteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
|
||||
} else {
|
||||
trG = FourierAccelSteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
|
||||
}
|
||||
|
||||
// std::cout << GridLogMessage << "trG "<< trG<< std::endl;
|
||||
// std::cout << GridLogMessage << "xform "<< norm2(xform)<< std::endl;
|
||||
// std::cout << GridLogMessage << "dmuAmu "<< norm2(dmuAmu)<< std::endl;
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
|
||||
// Monitor progress and convergence test
|
||||
// infrequently to minimise cost overhead
|
||||
@ -84,7 +113,6 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
Real Phi = 1.0 - old_trace / link_trace ;
|
||||
Real Omega= 1.0 - trG;
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
|
||||
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
|
||||
std::cout << GridLogMessage << "Converged ! "<<std::endl;
|
||||
@ -96,25 +124,26 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
}
|
||||
}
|
||||
};
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
GridBase *grid = U[0]._grid;
|
||||
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
GaugeMat g(grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
||||
|
||||
|
||||
Real vol = grid->gSites();
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
|
||||
GridBase *grid = U[0]._grid;
|
||||
|
||||
@ -133,38 +162,41 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
|
||||
DmuAmu(A,dmuAmu);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
|
||||
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
|
||||
std::vector<int> mask(Nd,1);
|
||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||
theFFT.FFT_dim_mask(dmuAmu_p,dmuAmu,mask,FFT::forward);
|
||||
|
||||
//////////////////////////////////
|
||||
// Work out Fp = psq_max/ psq...
|
||||
// Avoid singularities in Fp
|
||||
//////////////////////////////////
|
||||
std::vector<int> latt_size = grid->GlobalDimensions();
|
||||
std::vector<int> coor(grid->_ndimension,0);
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
LatticeCoordinate(pmu,mu);
|
||||
pmu = TwoPiL * pmu ;
|
||||
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
|
||||
if ( mu != orthog ) {
|
||||
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
LatticeCoordinate(pmu,mu);
|
||||
pmu = TwoPiL * pmu ;
|
||||
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
|
||||
}
|
||||
}
|
||||
|
||||
Complex psqMax(16.0);
|
||||
Fp = psqMax*one/psq;
|
||||
|
||||
/*
|
||||
static int once;
|
||||
if ( once == 0 ) {
|
||||
std::cout << " Fp " << Fp <<std::endl;
|
||||
once ++;
|
||||
}*/
|
||||
|
||||
pokeSite(TComplex(1.0),Fp,coor);
|
||||
|
||||
pokeSite(TComplex(16.0),Fp,coor);
|
||||
if( (orthog>=0) && (orthog<Nd) ){
|
||||
for(int t=0;t<grid->GlobalDimensions()[orthog];t++){
|
||||
coor[orthog]=t;
|
||||
pokeSite(TComplex(16.0),Fp,coor);
|
||||
}
|
||||
}
|
||||
|
||||
dmuAmu_p = dmuAmu_p * Fp;
|
||||
|
||||
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
|
||||
theFFT.FFT_dim_mask(dmuAmu,dmuAmu_p,mask,FFT::backward);
|
||||
|
||||
GaugeMat ciadmam(grid);
|
||||
Complex cialpha(0.0,-alpha);
|
||||
@ -173,16 +205,17 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase *grid = g._grid;
|
||||
Complex cialpha(0.0,-alpha);
|
||||
GaugeMat ciadmam(grid);
|
||||
DmuAmu(A,dmuAmu);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
}
|
||||
|
@ -173,6 +173,39 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}}
|
||||
// I explicitly need these outside the QCD namespace
|
||||
template<typename vobj>
|
||||
void G5C(Lattice<vobj> &z, const Lattice<vobj> &x)
|
||||
{
|
||||
GridBase *grid = x._grid;
|
||||
z.checkerboard = x.checkerboard;
|
||||
conformable(x, z);
|
||||
|
||||
QCD::Gamma G5(QCD::Gamma::Algebra::Gamma5);
|
||||
z = G5 * x;
|
||||
}
|
||||
|
||||
template<class CComplex, int nbasis>
|
||||
void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex, nbasis>> &x)
|
||||
{
|
||||
GridBase *grid = x._grid;
|
||||
z.checkerboard = x.checkerboard;
|
||||
conformable(x, z);
|
||||
|
||||
static_assert(nbasis % 2 == 0, "");
|
||||
int nb = nbasis / 2;
|
||||
|
||||
parallel_for(int ss = 0; ss < grid->oSites(); ss++) {
|
||||
for(int n = 0; n < nb; ++n) {
|
||||
z._odata[ss](n) = x._odata[ss](n);
|
||||
}
|
||||
for(int n = nb; n < nbasis; ++n) {
|
||||
z._odata[ss](n) = -x._odata[ss](n);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -676,10 +676,18 @@ class SU {
|
||||
}
|
||||
}
|
||||
/*
|
||||
add GaugeTrans
|
||||
*/
|
||||
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
* Fundamental rep gauge xform
|
||||
*/
|
||||
template<typename Fundamental,typename GaugeMat>
|
||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
|
||||
GridBase *grid = ferm._grid;
|
||||
conformable(grid,g._grid);
|
||||
ferm = g*ferm;
|
||||
}
|
||||
/*
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
||||
GridBase *grid = Umu._grid;
|
||||
conformable(grid,g._grid);
|
||||
|
@ -6,10 +6,12 @@
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: James Harrison <J.Harrison@soton.ac.uk>
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -645,6 +647,184 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// Wilson loop of size (R1, R2), oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void wilsonLoop(GaugeMat &wl, const std::vector<GaugeMat> &U,
|
||||
const int Rmu, const int Rnu,
|
||||
const int mu, const int nu) {
|
||||
wl = U[nu];
|
||||
|
||||
for(int i = 0; i < Rnu-1; i++){
|
||||
wl = Gimpl::CovShiftForward(U[nu], nu, wl);
|
||||
}
|
||||
|
||||
for(int i = 0; i < Rmu; i++){
|
||||
wl = Gimpl::CovShiftForward(U[mu], mu, wl);
|
||||
}
|
||||
|
||||
for(int i = 0; i < Rnu; i++){
|
||||
wl = Gimpl::CovShiftBackward(U[nu], nu, wl);
|
||||
}
|
||||
|
||||
for(int i = 0; i < Rmu; i++){
|
||||
wl = Gimpl::CovShiftBackward(U[mu], mu, wl);
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// trace of Wilson Loop oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void traceWilsonLoop(LatticeComplex &wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int Rmu, const int Rnu,
|
||||
const int mu, const int nu) {
|
||||
GaugeMat sp(U[0]._grid);
|
||||
wilsonLoop(sp, U, Rmu, Rnu, mu, nu);
|
||||
wl = trace(sp);
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all planes of Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static void siteWilsonLoop(LatticeComplex &Wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int R1, const int R2) {
|
||||
LatticeComplex siteWl(U[0]._grid);
|
||||
Wl = zero;
|
||||
for (int mu = 1; mu < U[0]._grid->_ndimension; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
}
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over planes of Wilson loop with length R1
|
||||
// in the time direction
|
||||
//////////////////////////////////////////////////
|
||||
static void siteTimelikeWilsonLoop(LatticeComplex &Wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int R1, const int R2) {
|
||||
LatticeComplex siteWl(U[0]._grid);
|
||||
|
||||
int ndim = U[0]._grid->_ndimension;
|
||||
|
||||
Wl = zero;
|
||||
for (int nu = 0; nu < ndim - 1; nu++) {
|
||||
traceWilsonLoop(siteWl, U, R1, R2, ndim-1, nu);
|
||||
Wl = Wl + siteWl;
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum Wilson loop over all planes orthogonal to the time direction
|
||||
//////////////////////////////////////////////////
|
||||
static void siteSpatialWilsonLoop(LatticeComplex &Wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int R1, const int R2) {
|
||||
LatticeComplex siteWl(U[0]._grid);
|
||||
|
||||
Wl = zero;
|
||||
for (int mu = 1; mu < U[0]._grid->_ndimension - 1; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
}
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real sumWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
std::vector<GaugeMat> U(4, Umu._grid);
|
||||
|
||||
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Wl(Umu._grid);
|
||||
|
||||
siteWilsonLoop(Wl, U, R1, R2);
|
||||
|
||||
TComplex Tp = sum(Wl);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of timelike Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
std::vector<GaugeMat> U(4, Umu._grid);
|
||||
|
||||
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Wl(Umu._grid);
|
||||
|
||||
siteTimelikeWilsonLoop(Wl, U, R1, R2);
|
||||
|
||||
TComplex Tp = sum(Wl);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of spatial Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
std::vector<GaugeMat> U(4, Umu._grid);
|
||||
|
||||
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Wl(Umu._grid);
|
||||
|
||||
siteSpatialWilsonLoop(Wl, U, R1, R2);
|
||||
|
||||
TComplex Tp = sum(Wl);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real avgWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
int ndim = Umu._grid->_ndimension;
|
||||
Real sumWl = sumWilsonLoop(Umu, R1, R2);
|
||||
Real vol = Umu._grid->gSites();
|
||||
Real faces = 1.0 * ndim * (ndim - 1);
|
||||
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of timelike Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real avgTimelikeWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
int ndim = Umu._grid->_ndimension;
|
||||
Real sumWl = sumTimelikeWilsonLoop(Umu, R1, R2);
|
||||
Real vol = Umu._grid->gSites();
|
||||
Real faces = 1.0 * (ndim - 1);
|
||||
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of spatial Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real avgSpatialWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
int ndim = Umu._grid->_ndimension;
|
||||
Real sumWl = sumSpatialWilsonLoop(Umu, R1, R2);
|
||||
Real vol = Umu._grid->gSites();
|
||||
Real faces = 1.0 * (ndim - 1) * (ndim - 2);
|
||||
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
|
||||
}
|
||||
};
|
||||
|
||||
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
|
||||
|
@ -33,12 +33,76 @@ Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
#include <type_traits>
|
||||
#include <Grid/tensors/Tensors.h>
|
||||
#include <Grid/serialisation/VectorUtils.h>
|
||||
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
||||
|
||||
namespace Grid {
|
||||
namespace EigenIO {
|
||||
// EigenIO works for scalars that are not just Grid supported scalars
|
||||
template<typename T, typename V = void> struct is_complex : public std::false_type {};
|
||||
// Support all complex types (not just Grid complex types) - even if the definitions overlap (!)
|
||||
template<typename T> struct is_complex< T , typename
|
||||
std::enable_if< ::Grid::is_complex< T >::value>::type> : public std::true_type {};
|
||||
template<typename T> struct is_complex<std::complex<T>, typename
|
||||
std::enable_if<!::Grid::is_complex<std::complex<T>>::value>::type> : public std::true_type {};
|
||||
|
||||
// Helpers to support I/O for Eigen tensors of arithmetic scalars, complex types, or Grid tensors
|
||||
template<typename T, typename V = void> struct is_scalar : public std::false_type {};
|
||||
template<typename T> struct is_scalar<T, typename std::enable_if<std::is_arithmetic<T>::value || is_complex<T>::value>::type> : public std::true_type {};
|
||||
|
||||
// Is this an Eigen tensor
|
||||
template<typename T> struct is_tensor : std::integral_constant<bool,
|
||||
std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value> {};
|
||||
|
||||
// Is this an Eigen tensor of a supported scalar
|
||||
template<typename T, typename V = void> struct is_tensor_of_scalar : public std::false_type {};
|
||||
template<typename T> struct is_tensor_of_scalar<T, typename std::enable_if<is_tensor<T>::value && is_scalar<typename T::Scalar>::value>::type> : public std::true_type {};
|
||||
|
||||
// Is this an Eigen tensor of a supported container
|
||||
template<typename T, typename V = void> struct is_tensor_of_container : public std::false_type {};
|
||||
template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && isGridTensor<typename T::Scalar>::value>::type> : public std::true_type {};
|
||||
|
||||
// These traits describe the scalars inside Eigen tensors
|
||||
// I wish I could define these in reference to the scalar type (so there would be fewer traits defined)
|
||||
// but I'm unable to find a syntax to make this work
|
||||
template<typename T, typename V = void> struct Traits {};
|
||||
// Traits are the default for scalars, or come from GridTypeMapper for GridTensors
|
||||
template<typename T> struct Traits<T, typename std::enable_if<is_tensor_of_scalar<T>::value>::type>
|
||||
: public GridTypeMapper_Base {
|
||||
using scalar_type = typename T::Scalar; // ultimate base scalar
|
||||
static constexpr bool is_complex = ::Grid::EigenIO::is_complex<scalar_type>::value;
|
||||
};
|
||||
// Traits are the default for scalars, or come from GridTypeMapper for GridTensors
|
||||
template<typename T> struct Traits<T, typename std::enable_if<is_tensor_of_container<T>::value>::type> {
|
||||
using BaseTraits = GridTypeMapper<typename T::Scalar>;
|
||||
using scalar_type = typename BaseTraits::scalar_type; // ultimate base scalar
|
||||
static constexpr bool is_complex = ::Grid::EigenIO::is_complex<scalar_type>::value;
|
||||
static constexpr int TensorLevel = BaseTraits::TensorLevel;
|
||||
static constexpr int Rank = BaseTraits::Rank;
|
||||
static constexpr std::size_t count = BaseTraits::count;
|
||||
static constexpr int Dimension(int dim) { return BaseTraits::Dimension(dim); }
|
||||
};
|
||||
|
||||
// Is this a fixed-size Eigen tensor
|
||||
template<typename T> struct is_tensor_fixed : public std::false_type {};
|
||||
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
|
||||
struct is_tensor_fixed<Eigen::TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType>>
|
||||
: public std::true_type {};
|
||||
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType,
|
||||
int MapOptions_, template <class> class MapPointer_>
|
||||
struct is_tensor_fixed<Eigen::TensorMap<Eigen::TensorFixedSize<Scalar_, Dimensions_,
|
||||
Options_, IndexType>, MapOptions_, MapPointer_>>
|
||||
: public std::true_type {};
|
||||
|
||||
// Is this a variable-size Eigen tensor
|
||||
template<typename T, typename V = void> struct is_tensor_variable : public std::false_type {};
|
||||
template<typename T> struct is_tensor_variable<T, typename std::enable_if<is_tensor<T>::value
|
||||
&& !is_tensor_fixed<T>::value>::type> : public std::true_type {};
|
||||
}
|
||||
|
||||
// Abstract writer/reader classes ////////////////////////////////////////////
|
||||
// static polymorphism implemented using CRTP idiom
|
||||
class Serializable;
|
||||
|
||||
|
||||
// Static abstract writer
|
||||
template <typename T>
|
||||
class Writer
|
||||
@ -49,10 +113,10 @@ namespace Grid {
|
||||
void push(const std::string &s);
|
||||
void pop(void);
|
||||
template <typename U>
|
||||
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
||||
typename std::enable_if<std::is_base_of<Serializable, U>::value>::type
|
||||
write(const std::string& s, const U &output);
|
||||
template <typename U>
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value && !EigenIO::is_tensor<U>::value>::type
|
||||
write(const std::string& s, const U &output);
|
||||
template <typename U>
|
||||
void write(const std::string &s, const iScalar<U> &output);
|
||||
@ -60,6 +124,42 @@ namespace Grid {
|
||||
void write(const std::string &s, const iVector<U, N> &output);
|
||||
template <typename U, int N>
|
||||
void write(const std::string &s, const iMatrix<U, N> &output);
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor<ETensor>::value>::type
|
||||
write(const std::string &s, const ETensor &output);
|
||||
|
||||
// Helper functions for Scalar vs Container specialisations
|
||||
template <typename ETensor>
|
||||
inline typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value,
|
||||
const typename ETensor::Scalar *>::type
|
||||
getFirstScalar(const ETensor &output)
|
||||
{
|
||||
return output.data();
|
||||
}
|
||||
|
||||
template <typename ETensor>
|
||||
inline typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value,
|
||||
const typename EigenIO::Traits<ETensor>::scalar_type *>::type
|
||||
getFirstScalar(const ETensor &output)
|
||||
{
|
||||
return output.data()->begin();
|
||||
}
|
||||
|
||||
template <typename S>
|
||||
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
|
||||
copyScalars(S * &pCopy, const S &Source)
|
||||
{
|
||||
* pCopy ++ = Source;
|
||||
}
|
||||
|
||||
template <typename S>
|
||||
inline typename std::enable_if<isGridTensor<S>::value, void>::type
|
||||
copyScalars(typename GridTypeMapper<S>::scalar_type * &pCopy, const S &Source)
|
||||
{
|
||||
for( const typename GridTypeMapper<S>::scalar_type &item : Source )
|
||||
* pCopy ++ = item;
|
||||
}
|
||||
|
||||
void scientificFormat(const bool set);
|
||||
bool isScientific(void);
|
||||
void setPrecision(const unsigned int prec);
|
||||
@ -83,7 +183,8 @@ namespace Grid {
|
||||
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
||||
read(const std::string& s, U &output);
|
||||
template <typename U>
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
||||
&& !EigenIO::is_tensor<U>::value, void>::type
|
||||
read(const std::string& s, U &output);
|
||||
template <typename U>
|
||||
void read(const std::string &s, iScalar<U> &output);
|
||||
@ -91,6 +192,32 @@ namespace Grid {
|
||||
void read(const std::string &s, iVector<U, N> &output);
|
||||
template <typename U, int N>
|
||||
void read(const std::string &s, iMatrix<U, N> &output);
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
||||
read(const std::string &s, ETensor &output);
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, void>::type
|
||||
Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims );
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
|
||||
Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims );
|
||||
|
||||
// Helper functions for Scalar vs Container specialisations
|
||||
template <typename S>
|
||||
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
|
||||
copyScalars(S &Dest, const S * &pSource)
|
||||
{
|
||||
Dest = * pSource ++;
|
||||
}
|
||||
|
||||
template <typename S>
|
||||
inline typename std::enable_if<isGridTensor<S>::value, void>::type
|
||||
copyScalars(S &Dest, const typename GridTypeMapper<S>::scalar_type * &pSource)
|
||||
{
|
||||
for( typename GridTypeMapper<S>::scalar_type &item : Dest )
|
||||
item = * pSource ++;
|
||||
}
|
||||
|
||||
protected:
|
||||
template <typename U>
|
||||
void fromString(U &output, const std::string &s);
|
||||
@ -135,12 +262,14 @@ namespace Grid {
|
||||
|
||||
template <typename T>
|
||||
template <typename U>
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
||||
&& !EigenIO::is_tensor<U>::value, void>::type
|
||||
Writer<T>::write(const std::string &s, const U &output)
|
||||
{
|
||||
upcast->writeDefault(s, output);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
template <typename U>
|
||||
void Writer<T>::write(const std::string &s, const iScalar<U> &output)
|
||||
@ -161,6 +290,57 @@ namespace Grid {
|
||||
{
|
||||
upcast->writeDefault(s, tensorToVec(output));
|
||||
}
|
||||
|
||||
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
|
||||
template <typename T>
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
||||
Writer<T>::write(const std::string &s, const ETensor &output)
|
||||
{
|
||||
using Index = typename ETensor::Index;
|
||||
using Container = typename ETensor::Scalar; // NB: could be same as scalar
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
|
||||
constexpr unsigned int TensorRank{ETensor::NumIndices};
|
||||
constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
|
||||
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
|
||||
const Index NumElements{output.size()};
|
||||
assert( NumElements > 0 );
|
||||
|
||||
// Get the dimensionality of the tensor
|
||||
std::vector<std::size_t> TotalDims(TotalRank);
|
||||
for(auto i = 0; i < TensorRank; i++ ) {
|
||||
auto dim = output.dimension(i);
|
||||
TotalDims[i] = static_cast<size_t>(dim);
|
||||
assert( TotalDims[i] == dim ); // check we didn't lose anything in the conversion
|
||||
}
|
||||
for(auto i = 0; i < ContainerRank; i++ )
|
||||
TotalDims[TensorRank + i] = Traits::Dimension(i);
|
||||
|
||||
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
|
||||
const bool CopyData{NumElements > 1 && ETensor::Layout != Eigen::StorageOptions::RowMajor};
|
||||
const Scalar * pWriteBuffer;
|
||||
std::vector<Scalar> CopyBuffer;
|
||||
const Index TotalNumElements = NumElements * Traits::count;
|
||||
if( !CopyData ) {
|
||||
pWriteBuffer = getFirstScalar( output );
|
||||
} else {
|
||||
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
||||
CopyBuffer.resize( TotalNumElements );
|
||||
Scalar * pCopy = &CopyBuffer[0];
|
||||
pWriteBuffer = pCopy;
|
||||
std::array<Index, TensorRank> MyIndex;
|
||||
for( auto &idx : MyIndex ) idx = 0;
|
||||
for( auto n = 0; n < NumElements; n++ ) {
|
||||
const Container & c = output( MyIndex );
|
||||
copyScalars( pCopy, c );
|
||||
// Now increment the index
|
||||
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
||||
MyIndex[i] = 0;
|
||||
}
|
||||
}
|
||||
upcast->template writeMultiDim<Scalar>(s, TotalDims, pWriteBuffer, TotalNumElements);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Writer<T>::scientificFormat(const bool set)
|
||||
@ -215,7 +395,8 @@ namespace Grid {
|
||||
|
||||
template <typename T>
|
||||
template <typename U>
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
||||
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
||||
&& !EigenIO::is_tensor<U>::value, void>::type
|
||||
Reader<T>::read(const std::string &s, U &output)
|
||||
{
|
||||
upcast->readDefault(s, output);
|
||||
@ -251,6 +432,79 @@ namespace Grid {
|
||||
vecToTensor(output, v);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
||||
Reader<T>::read(const std::string &s, ETensor &output)
|
||||
{
|
||||
using Index = typename ETensor::Index;
|
||||
using Container = typename ETensor::Scalar; // NB: could be same as scalar
|
||||
using Traits = EigenIO::Traits<ETensor>;
|
||||
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
|
||||
constexpr unsigned int TensorRank{ETensor::NumIndices};
|
||||
constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
|
||||
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
|
||||
using ETDims = std::array<Index, TensorRank>; // Dimensions of the tensor
|
||||
|
||||
// read the (flat) data and dimensionality
|
||||
std::vector<std::size_t> dimData;
|
||||
std::vector<Scalar> buf;
|
||||
upcast->readMultiDim( s, buf, dimData );
|
||||
assert(dimData.size() == TotalRank && "EigenIO: Tensor rank mismatch" );
|
||||
// Make sure that the number of elements read matches dimensions read
|
||||
std::size_t NumContainers = 1;
|
||||
for( auto i = 0 ; i < TensorRank ; i++ )
|
||||
NumContainers *= dimData[i];
|
||||
// If our scalar object is a Container, make sure it's dimensions match what we read back
|
||||
std::size_t ElementsPerContainer = 1;
|
||||
for( auto i = 0 ; i < ContainerRank ; i++ ) {
|
||||
assert( dimData[TensorRank+i] == Traits::Dimension(i) && "Tensor Container dimensions don't match data" );
|
||||
ElementsPerContainer *= dimData[TensorRank+i];
|
||||
}
|
||||
assert( NumContainers * ElementsPerContainer == buf.size() && "EigenIO: Number of elements != product of dimensions" );
|
||||
// Now see whether the tensor is the right shape, or can be made to be
|
||||
const auto & dims = output.dimensions();
|
||||
bool bShapeOK = (output.data() != nullptr);
|
||||
for( auto i = 0; bShapeOK && i < TensorRank ; i++ )
|
||||
if( dims[i] != dimData[i] )
|
||||
bShapeOK = false;
|
||||
// Make the tensor the same size as the data read
|
||||
ETDims MyIndex;
|
||||
if( !bShapeOK ) {
|
||||
for( auto i = 0 ; i < TensorRank ; i++ )
|
||||
MyIndex[i] = dimData[i];
|
||||
Reshape(output, MyIndex);
|
||||
}
|
||||
// Copy the data into the tensor
|
||||
for( auto &d : MyIndex ) d = 0;
|
||||
const Scalar * pSource = &buf[0];
|
||||
for( std::size_t n = 0 ; n < NumContainers ; n++ ) {
|
||||
Container & c = output( MyIndex );
|
||||
copyScalars( c, pSource );
|
||||
// Now increment the index
|
||||
for( int i = TensorRank - 1; i != -1 && ++MyIndex[i] == dims[i]; i-- )
|
||||
MyIndex[i] = 0;
|
||||
}
|
||||
assert( pSource == &buf[NumContainers * ElementsPerContainer] );
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, void>::type
|
||||
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
|
||||
{
|
||||
assert( 0 && "EigenIO: Fixed tensor dimensions can't be changed" );
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
|
||||
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
|
||||
{
|
||||
//t.reshape( dims );
|
||||
t.resize( dims );
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename U>
|
||||
void Reader<T>::fromString(U &output, const std::string &s)
|
||||
@ -289,8 +543,70 @@ namespace Grid {
|
||||
{
|
||||
return os;
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
static inline typename std::enable_if<!EigenIO::is_tensor<T1>::value || !EigenIO::is_tensor<T2>::value, bool>::type
|
||||
CompareMember(const T1 &lhs, const T2 &rhs) {
|
||||
return lhs == rhs;
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
static inline typename std::enable_if<EigenIO::is_tensor<T1>::value && EigenIO::is_tensor<T2>::value, bool>::type
|
||||
CompareMember(const T1 &lhs, const T2 &rhs) {
|
||||
// First check whether dimensions match (Eigen tensor library will assert if they don't match)
|
||||
bool bReturnValue = (T1::NumIndices == T2::NumIndices);
|
||||
for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ )
|
||||
bReturnValue = ( lhs.dimension(i) == rhs.dimension(i) );
|
||||
if( bReturnValue ) {
|
||||
Eigen::Tensor<bool, 0, T1::Options> bResult = (lhs == rhs).all();
|
||||
bReturnValue = bResult(0);
|
||||
}
|
||||
return bReturnValue;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline typename std::enable_if<EigenIO::is_tensor<T>::value, bool>::type
|
||||
CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) {
|
||||
const auto NumElements = lhs.size();
|
||||
bool bResult = ( NumElements == rhs.size() );
|
||||
for( auto i = 0 ; i < NumElements && bResult ; i++ )
|
||||
bResult = CompareMember(lhs[i], rhs[i]);
|
||||
return bResult;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
|
||||
WriteMember(std::ostream &os, const T &object) {
|
||||
os << object;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
|
||||
WriteMember(std::ostream &os, const T &object) {
|
||||
using Index = typename T::Index;
|
||||
const Index NumElements{object.size()};
|
||||
assert( NumElements > 0 );
|
||||
Index count = 1;
|
||||
os << "T<";
|
||||
for( int i = 0; i < T::NumIndices; i++ ) {
|
||||
Index dim = object.dimension(i);
|
||||
count *= dim;
|
||||
if( i )
|
||||
os << ",";
|
||||
os << dim;
|
||||
}
|
||||
assert( count == NumElements && "Number of elements doesn't match tensor dimensions" );
|
||||
os << ">{";
|
||||
const typename T::Scalar * p = object.data();
|
||||
for( Index i = 0; i < count; i++ ) {
|
||||
if( i )
|
||||
os << ",";
|
||||
os << *p++;
|
||||
}
|
||||
os << "}";
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Generic writer interface //////////////////////////////////////////////////
|
||||
template <typename T>
|
||||
inline void push(Writer<T> &w, const std::string &s) {
|
||||
|
@ -51,6 +51,8 @@ namespace Grid {
|
||||
template <typename U>
|
||||
void writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
void writeDefault(const std::string &s, const char *x);
|
||||
template <typename U>
|
||||
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
|
||||
private:
|
||||
std::ofstream file_;
|
||||
};
|
||||
@ -66,6 +68,8 @@ namespace Grid {
|
||||
void readDefault(const std::string &s, U &output);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, std::vector<U> &output);
|
||||
template <typename U>
|
||||
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
|
||||
private:
|
||||
std::ifstream file_;
|
||||
};
|
||||
@ -92,6 +96,27 @@ namespace Grid {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void BinaryWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
|
||||
{
|
||||
uint64_t rank = static_cast<uint64_t>( Dimensions.size() );
|
||||
uint64_t tmp = 1;
|
||||
for( auto i = 0 ; i < rank ; i++ )
|
||||
tmp *= Dimensions[i];
|
||||
assert( tmp == NumElements && "Dimensions don't match size of data being written" );
|
||||
// Total number of elements
|
||||
write("", tmp);
|
||||
// Number of dimensions
|
||||
write("", rank);
|
||||
// Followed by each dimension
|
||||
for( auto i = 0 ; i < rank ; i++ ) {
|
||||
tmp = Dimensions[i];
|
||||
write("", tmp);
|
||||
}
|
||||
for( auto i = 0; i < NumElements; ++i)
|
||||
write("", pDataRowMajor[i]);
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
template <typename U>
|
||||
void BinaryReader::readDefault(const std::string &s, U &output)
|
||||
@ -114,6 +139,30 @@ namespace Grid {
|
||||
read("", output[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void BinaryReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
|
||||
{
|
||||
// Number of elements
|
||||
uint64_t NumElements;
|
||||
read("", NumElements);
|
||||
// Number of dimensions
|
||||
uint64_t rank;
|
||||
read("", rank);
|
||||
// Followed by each dimension
|
||||
uint64_t count = 1;
|
||||
dim.resize(rank);
|
||||
uint64_t tmp;
|
||||
for( auto i = 0 ; i < rank ; i++ ) {
|
||||
read("", tmp);
|
||||
dim[i] = tmp;
|
||||
count *= tmp;
|
||||
}
|
||||
assert( count == NumElements && "Dimensions don't match size of data being read" );
|
||||
buf.resize(count);
|
||||
for( auto i = 0; i < count; ++i)
|
||||
read("", buf[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -3,6 +3,7 @@
|
||||
|
||||
#include <stack>
|
||||
#include <string>
|
||||
#include <list>
|
||||
#include <vector>
|
||||
#include <H5Cpp.h>
|
||||
#include <Grid/tensors/Tensors.h>
|
||||
@ -38,6 +39,8 @@ namespace Grid
|
||||
template <typename U>
|
||||
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
|
||||
writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
template <typename U>
|
||||
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
|
||||
H5NS::Group & getGroup(void);
|
||||
private:
|
||||
template <typename U>
|
||||
@ -48,7 +51,7 @@ namespace Grid
|
||||
std::vector<std::string> path_;
|
||||
H5NS::H5File file_;
|
||||
H5NS::Group group_;
|
||||
unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES};
|
||||
const unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES};
|
||||
};
|
||||
|
||||
class Hdf5Reader: public Reader<Hdf5Reader>
|
||||
@ -66,6 +69,8 @@ namespace Grid
|
||||
template <typename U>
|
||||
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
|
||||
readDefault(const std::string &s, std::vector<U> &x);
|
||||
template <typename U>
|
||||
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
|
||||
H5NS::Group & getGroup(void);
|
||||
private:
|
||||
template <typename U>
|
||||
@ -101,6 +106,75 @@ namespace Grid
|
||||
template <>
|
||||
void Hdf5Writer::writeDefault(const std::string &s, const std::string &x);
|
||||
|
||||
template <typename U>
|
||||
void Hdf5Writer::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
|
||||
{
|
||||
// Hdf5 needs the dimensions as hsize_t
|
||||
const int rank = static_cast<int>(Dimensions.size());
|
||||
std::vector<hsize_t> dim(rank);
|
||||
for(int i = 0; i < rank; i++)
|
||||
dim[i] = Dimensions[i];
|
||||
// write the entire dataset to file
|
||||
H5NS::DataSpace dataSpace(rank, dim.data());
|
||||
|
||||
if (NumElements > dataSetThres_)
|
||||
{
|
||||
// Make sure 1) each dimension; and 2) chunk size is < 4GB
|
||||
const hsize_t MaxElements = ( sizeof( U ) == 1 ) ? 0xffffffff : 0x100000000 / sizeof( U );
|
||||
hsize_t ElementsPerChunk = 1;
|
||||
bool bTooBig = false;
|
||||
for( int i = rank - 1 ; i != -1 ; i-- ) {
|
||||
auto &d = dim[i];
|
||||
if( bTooBig )
|
||||
d = 1; // Chunk size is already as big as can be - remaining dimensions = 1
|
||||
else {
|
||||
// If individual dimension too big, reduce by prime factors if possible
|
||||
while( d > MaxElements && ( d & 1 ) == 0 )
|
||||
d >>= 1;
|
||||
const char ErrorMsg[] = " dimension > 4GB and not divisible by 2^n. "
|
||||
"Hdf5IO chunk size will be inefficient. NB Serialisation is not intended for large datasets - please consider alternatives.";
|
||||
if( d > MaxElements ) {
|
||||
std::cout << GridLogWarning << "Individual" << ErrorMsg << std::endl;
|
||||
hsize_t quotient = d / MaxElements;
|
||||
if( d % MaxElements )
|
||||
quotient++;
|
||||
d /= quotient;
|
||||
}
|
||||
// Now make sure overall size is not too big
|
||||
hsize_t OverflowCheck = ElementsPerChunk;
|
||||
ElementsPerChunk *= d;
|
||||
assert( OverflowCheck == ElementsPerChunk / d && "Product of dimensions overflowed hsize_t" );
|
||||
// If product of dimensions too big, reduce by prime factors
|
||||
while( ElementsPerChunk > MaxElements && ( ElementsPerChunk & 1 ) == 0 ) {
|
||||
bTooBig = true;
|
||||
d >>= 1;
|
||||
ElementsPerChunk >>= 1;
|
||||
}
|
||||
if( ElementsPerChunk > MaxElements ) {
|
||||
std::cout << GridLogWarning << "Product of" << ErrorMsg << std::endl;
|
||||
hsize_t quotient = ElementsPerChunk / MaxElements;
|
||||
if( ElementsPerChunk % MaxElements )
|
||||
quotient++;
|
||||
d /= quotient;
|
||||
ElementsPerChunk /= quotient;
|
||||
}
|
||||
}
|
||||
}
|
||||
H5NS::DataSet dataSet;
|
||||
H5NS::DSetCreatPropList plist;
|
||||
plist.setChunk(rank, dim.data());
|
||||
plist.setFletcher32();
|
||||
dataSet = group_.createDataSet(s, Hdf5Type<U>::type(), dataSpace, plist);
|
||||
dataSet.write(pDataRowMajor, Hdf5Type<U>::type());
|
||||
}
|
||||
else
|
||||
{
|
||||
H5NS::Attribute attribute;
|
||||
attribute = group_.createAttribute(s, Hdf5Type<U>::type(), dataSpace);
|
||||
attribute.write(Hdf5Type<U>::type(), pDataRowMajor);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
|
||||
Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x)
|
||||
@ -110,34 +184,11 @@ namespace Grid
|
||||
|
||||
// flatten the vector and getting dimensions
|
||||
Flatten<std::vector<U>> flat(x);
|
||||
std::vector<hsize_t> dim;
|
||||
std::vector<size_t> dim;
|
||||
const auto &flatx = flat.getFlatVector();
|
||||
|
||||
for (auto &d: flat.getDim())
|
||||
{
|
||||
dim.push_back(d);
|
||||
}
|
||||
|
||||
// write to file
|
||||
H5NS::DataSpace dataSpace(dim.size(), dim.data());
|
||||
|
||||
if (flatx.size() > dataSetThres_)
|
||||
{
|
||||
H5NS::DataSet dataSet;
|
||||
H5NS::DSetCreatPropList plist;
|
||||
|
||||
plist.setChunk(dim.size(), dim.data());
|
||||
plist.setFletcher32();
|
||||
dataSet = group_.createDataSet(s, Hdf5Type<Element>::type(), dataSpace, plist);
|
||||
dataSet.write(flatx.data(), Hdf5Type<Element>::type());
|
||||
}
|
||||
else
|
||||
{
|
||||
H5NS::Attribute attribute;
|
||||
|
||||
attribute = group_.createAttribute(s, Hdf5Type<Element>::type(), dataSpace);
|
||||
attribute.write(Hdf5Type<Element>::type(), flatx.data());
|
||||
}
|
||||
writeMultiDim<Element>(s, dim, &flatx[0], flatx.size());
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
@ -173,10 +224,9 @@ namespace Grid
|
||||
|
||||
template <>
|
||||
void Hdf5Reader::readDefault(const std::string &s, std::string &x);
|
||||
|
||||
|
||||
template <typename U>
|
||||
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
|
||||
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
|
||||
void Hdf5Reader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
|
||||
{
|
||||
// alias to element type
|
||||
typedef typename element<std::vector<U>>::type Element;
|
||||
@ -184,7 +234,6 @@ namespace Grid
|
||||
// read the dimensions
|
||||
H5NS::DataSpace dataSpace;
|
||||
std::vector<hsize_t> hdim;
|
||||
std::vector<size_t> dim;
|
||||
hsize_t size = 1;
|
||||
|
||||
if (group_.attrExists(s))
|
||||
@ -204,8 +253,8 @@ namespace Grid
|
||||
}
|
||||
|
||||
// read the flat vector
|
||||
std::vector<Element> buf(size);
|
||||
|
||||
buf.resize(size);
|
||||
|
||||
if (size > dataSetThres_)
|
||||
{
|
||||
H5NS::DataSet dataSet;
|
||||
@ -220,7 +269,19 @@ namespace Grid
|
||||
attribute = group_.openAttribute(s);
|
||||
attribute.read(Hdf5Type<Element>::type(), buf.data());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
|
||||
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
|
||||
{
|
||||
// alias to element type
|
||||
typedef typename element<std::vector<U>>::type Element;
|
||||
|
||||
std::vector<size_t> dim;
|
||||
std::vector<Element> buf;
|
||||
readMultiDim( s, buf, dim );
|
||||
|
||||
// reconstruct the multidimensional vector
|
||||
Reconstruct<std::vector<U>> r(buf, dim);
|
||||
|
||||
|
@ -109,8 +109,8 @@ THE SOFTWARE.
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define GRID_MACRO_MEMBER(A,B) A B;
|
||||
#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and (lhs. B == rhs. B));
|
||||
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = " << obj. B << " ; " <<std::endl;
|
||||
#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and CompareMember(lhs. B, rhs. B));
|
||||
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = "; WriteMember( os, obj. B ); os << " ; " <<std::endl;
|
||||
#define GRID_MACRO_READ_MEMBER(A,B) Grid::read(RD,#B,obj. B);
|
||||
#define GRID_MACRO_WRITE_MEMBER(A,B) Grid::write(WR,#B,obj. B);
|
||||
|
||||
|
@ -51,6 +51,8 @@ namespace Grid
|
||||
void writeDefault(const std::string &s, const U &x);
|
||||
template <typename U>
|
||||
void writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
template <typename U>
|
||||
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
|
||||
private:
|
||||
void indent(void);
|
||||
private:
|
||||
@ -69,6 +71,8 @@ namespace Grid
|
||||
void readDefault(const std::string &s, U &output);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, std::vector<U> &output);
|
||||
template <typename U>
|
||||
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
|
||||
private:
|
||||
void checkIndent(void);
|
||||
private:
|
||||
@ -95,7 +99,18 @@ namespace Grid
|
||||
write(s, x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename U>
|
||||
void TextWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
|
||||
{
|
||||
uint64_t Rank = Dimensions.size();
|
||||
write(s, Rank);
|
||||
for( uint64_t d : Dimensions )
|
||||
write(s, d);
|
||||
while( NumElements-- )
|
||||
write(s, *pDataRowMajor++);
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
template <typename U>
|
||||
void TextReader::readDefault(const std::string &s, U &output)
|
||||
@ -121,6 +136,23 @@ namespace Grid
|
||||
read("", output[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void TextReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
|
||||
{
|
||||
const char sz[] = "";
|
||||
uint64_t Rank;
|
||||
read(sz, Rank);
|
||||
dim.resize( Rank );
|
||||
size_t NumElements = 1;
|
||||
for( auto &d : dim ) {
|
||||
read(sz, d);
|
||||
NumElements *= d;
|
||||
}
|
||||
buf.resize( NumElements );
|
||||
for( auto &x : buf )
|
||||
read(s, x);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -1,3 +1,32 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./Grid/serialisation/VectorUtils.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_SERIALISATION_VECTORUTILS_H
|
||||
#define GRID_SERIALISATION_VECTORUTILS_H
|
||||
|
||||
@ -53,6 +82,17 @@ namespace Grid {
|
||||
return os;
|
||||
}
|
||||
|
||||
// std::vector<std:vector<...>> nested to specified Rank //////////////////////////////////
|
||||
template<typename T, unsigned int Rank>
|
||||
struct NestedStdVector {
|
||||
typedef typename std::vector<typename NestedStdVector<T, Rank - 1>::type> type;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct NestedStdVector<T,0> {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
// Grid scalar tensors to nested std::vectors //////////////////////////////////
|
||||
template <typename T>
|
||||
struct TensorToVec
|
||||
@ -436,4 +476,4 @@ std::string vecToStr(const std::vector<T> &v)
|
||||
return sstr.str();
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -57,6 +57,8 @@ namespace Grid
|
||||
void writeDefault(const std::string &s, const U &x);
|
||||
template <typename U>
|
||||
void writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
template <typename U>
|
||||
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
|
||||
std::string docString(void);
|
||||
std::string string(void);
|
||||
private:
|
||||
@ -79,6 +81,8 @@ namespace Grid
|
||||
void readDefault(const std::string &s, U &output);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, std::vector<U> &output);
|
||||
template <typename U>
|
||||
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
|
||||
void readCurrentSubtree(std::string &s);
|
||||
private:
|
||||
void checkParse(const pugi::xml_parse_result &result, const std::string name);
|
||||
@ -122,13 +126,45 @@ namespace Grid
|
||||
void XmlWriter::writeDefault(const std::string &s, const std::vector<U> &x)
|
||||
{
|
||||
push(s);
|
||||
for (auto &x_i: x)
|
||||
for( auto &u : x )
|
||||
{
|
||||
write("elem", x_i);
|
||||
write("elem", u);
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
||||
|
||||
template <typename U>
|
||||
void XmlWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
|
||||
{
|
||||
push(s);
|
||||
size_t count = 1;
|
||||
const int Rank = static_cast<int>( Dimensions.size() );
|
||||
write("rank", Rank );
|
||||
std::vector<size_t> MyIndex( Rank );
|
||||
for( auto d : Dimensions ) {
|
||||
write("dim", d);
|
||||
count *= d;
|
||||
}
|
||||
assert( count == NumElements && "XmlIO : element count doesn't match dimensions" );
|
||||
static const char sName[] = "tensor";
|
||||
for( int i = 0 ; i < Rank ; i++ ) {
|
||||
MyIndex[i] = 0;
|
||||
push(sName);
|
||||
}
|
||||
while (NumElements--) {
|
||||
write("elem", *pDataRowMajor++);
|
||||
int i;
|
||||
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == Dimensions[i] ; i-- )
|
||||
MyIndex[i] = 0;
|
||||
int Rollover = Rank - 1 - i;
|
||||
for( i = 0 ; i < Rollover ; i++ )
|
||||
pop();
|
||||
for( i = 0 ; NumElements && i < Rollover ; i++ )
|
||||
push(sName);
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
template <typename U>
|
||||
void XmlReader::readDefault(const std::string &s, U &output)
|
||||
@ -145,25 +181,66 @@ namespace Grid
|
||||
template <typename U>
|
||||
void XmlReader::readDefault(const std::string &s, std::vector<U> &output)
|
||||
{
|
||||
std::string buf;
|
||||
unsigned int i = 0;
|
||||
|
||||
if (!push(s))
|
||||
{
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
|
||||
return;
|
||||
} else {
|
||||
for(unsigned int i = 0; node_.child("elem"); )
|
||||
{
|
||||
output.resize(i + 1);
|
||||
read("elem", output[i++]);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
}
|
||||
pop();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void XmlReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
|
||||
{
|
||||
if (!push(s))
|
||||
{
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
} else {
|
||||
static const char sName[] = "tensor";
|
||||
static const char sNameDone[] = "tensor-done";
|
||||
int Rank;
|
||||
read("rank", Rank);
|
||||
dim.resize( Rank );
|
||||
size_t NumElements = 1;
|
||||
for( auto &d : dim )
|
||||
{
|
||||
read("dim", d);
|
||||
node_.child("dim").set_name("dim-done");
|
||||
NumElements *= d;
|
||||
}
|
||||
buf.resize( NumElements );
|
||||
std::vector<size_t> MyIndex( Rank );
|
||||
for( int i = 0 ; i < Rank ; i++ ) {
|
||||
MyIndex[i] = 0;
|
||||
push(sName);
|
||||
}
|
||||
|
||||
for( auto &x : buf )
|
||||
{
|
||||
NumElements--;
|
||||
read("elem", x);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
int i;
|
||||
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == dim[i] ; i-- )
|
||||
MyIndex[i] = 0;
|
||||
int Rollover = Rank - 1 - i;
|
||||
for( i = 0 ; i < Rollover ; i++ ) {
|
||||
node_.set_name(sNameDone);
|
||||
pop();
|
||||
}
|
||||
for( i = 0 ; NumElements && i < Rollover ; i++ )
|
||||
push(sName);
|
||||
}
|
||||
pop();
|
||||
}
|
||||
while (node_.child("elem"))
|
||||
{
|
||||
output.resize(i + 1);
|
||||
read("elem", output[i]);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
i++;
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -485,83 +485,6 @@ namespace Optimization {
|
||||
// Some Template specialization
|
||||
|
||||
// Hack for CLANG until mm512_reduce_add_ps etc... are implemented in GCC and Clang releases
|
||||
#ifndef __INTEL_COMPILER
|
||||
#warning "Slow reduction due to incomplete reduce intrinsics"
|
||||
//Complex float Reduce
|
||||
template<>
|
||||
inline Grid::ComplexF Reduce<Grid::ComplexF, __m512>::operator()(__m512 in){
|
||||
__m512 v1,v2;
|
||||
v1=Optimization::Permute::Permute0(in); // avx 512; quad complex single
|
||||
v1= _mm512_add_ps(v1,in);
|
||||
v2=Optimization::Permute::Permute1(v1);
|
||||
v1 = _mm512_add_ps(v1,v2);
|
||||
v2=Optimization::Permute::Permute2(v1);
|
||||
v1 = _mm512_add_ps(v1,v2);
|
||||
u512f conv; conv.v = v1;
|
||||
return Grid::ComplexF(conv.f[0],conv.f[1]);
|
||||
}
|
||||
|
||||
//Real float Reduce
|
||||
template<>
|
||||
inline Grid::RealF Reduce<Grid::RealF, __m512>::operator()(__m512 in){
|
||||
__m512 v1,v2;
|
||||
v1 = Optimization::Permute::Permute0(in); // avx 512; octo-double
|
||||
v1 = _mm512_add_ps(v1,in);
|
||||
v2 = Optimization::Permute::Permute1(v1);
|
||||
v1 = _mm512_add_ps(v1,v2);
|
||||
v2 = Optimization::Permute::Permute2(v1);
|
||||
v1 = _mm512_add_ps(v1,v2);
|
||||
v2 = Optimization::Permute::Permute3(v1);
|
||||
v1 = _mm512_add_ps(v1,v2);
|
||||
u512f conv; conv.v=v1;
|
||||
return conv.f[0];
|
||||
}
|
||||
|
||||
|
||||
//Complex double Reduce
|
||||
template<>
|
||||
inline Grid::ComplexD Reduce<Grid::ComplexD, __m512d>::operator()(__m512d in){
|
||||
__m512d v1;
|
||||
v1 = Optimization::Permute::Permute0(in); // sse 128; paired complex single
|
||||
v1 = _mm512_add_pd(v1,in);
|
||||
v1 = Optimization::Permute::Permute1(in); // sse 128; paired complex single
|
||||
v1 = _mm512_add_pd(v1,in);
|
||||
u512d conv; conv.v = v1;
|
||||
return Grid::ComplexD(conv.f[0],conv.f[1]);
|
||||
}
|
||||
|
||||
//Real double Reduce
|
||||
template<>
|
||||
inline Grid::RealD Reduce<Grid::RealD, __m512d>::operator()(__m512d in){
|
||||
__m512d v1,v2;
|
||||
v1 = Optimization::Permute::Permute0(in); // avx 512; quad double
|
||||
v1 = _mm512_add_pd(v1,in);
|
||||
v2 = Optimization::Permute::Permute1(v1);
|
||||
v1 = _mm512_add_pd(v1,v2);
|
||||
v2 = Optimization::Permute::Permute2(v1);
|
||||
v1 = _mm512_add_pd(v1,v2);
|
||||
u512d conv; conv.v = v1;
|
||||
return conv.f[0];
|
||||
}
|
||||
|
||||
//Integer Reduce
|
||||
template<>
|
||||
inline Integer Reduce<Integer, __m512i>::operator()(__m512i in){
|
||||
// No full vector reduce, use AVX to add upper and lower halves of register
|
||||
// and perform AVX reduction.
|
||||
__m256i v1, v2, v3;
|
||||
__m128i u1, u2, ret;
|
||||
v1 = _mm512_castsi512_si256(in); // upper half
|
||||
v2 = _mm512_extracti32x8_epi32(in, 1); // lower half
|
||||
v3 = _mm256_add_epi32(v1, v2);
|
||||
v1 = _mm256_hadd_epi32(v3, v3);
|
||||
v2 = _mm256_hadd_epi32(v1, v1);
|
||||
u1 = _mm256_castsi256_si128(v2); // upper half
|
||||
u2 = _mm256_extracti128_si256(v2, 1); // lower half
|
||||
ret = _mm_add_epi32(u1, u2);
|
||||
return _mm_cvtsi128_si32(ret);
|
||||
}
|
||||
#else
|
||||
//Complex float Reduce
|
||||
template<>
|
||||
inline Grid::ComplexF Reduce<Grid::ComplexF, __m512>::operator()(__m512 in){
|
||||
@ -590,8 +513,6 @@ namespace Optimization {
|
||||
inline Integer Reduce<Integer, __m512i>::operator()(__m512i in){
|
||||
return _mm512_reduce_add_epi32(in);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Guido Cossu <cossu@iroiro-pc.kek.jp>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: Michael Marshall <michael.marshall@ed.ac.au>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -89,17 +90,25 @@ template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<st
|
||||
////////////////////////////////////////////////////////
|
||||
// Check for complexity with type traits
|
||||
template <typename T> struct is_complex : public std::false_type {};
|
||||
template <> struct is_complex<std::complex<double> > : public std::true_type {};
|
||||
template <> struct is_complex<std::complex<float> > : public std::true_type {};
|
||||
template <> struct is_complex<ComplexD> : public std::true_type {};
|
||||
template <> struct is_complex<ComplexF> : public std::true_type {};
|
||||
|
||||
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
|
||||
template<typename T, typename V=void> struct is_real : public std::false_type {};
|
||||
template<typename T> struct is_real<T, typename std::enable_if<std::is_floating_point<T>::value,
|
||||
void>::type> : public std::true_type {};
|
||||
|
||||
template<typename T, typename V=void> struct is_integer : public std::false_type {};
|
||||
template<typename T> struct is_integer<T, typename std::enable_if<std::is_integral<T>::value,
|
||||
void>::type> : public std::true_type {};
|
||||
|
||||
template <typename T> using IfReal = Invoke<std::enable_if<is_real<T>::value, int> >;
|
||||
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
|
||||
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
|
||||
template <typename T> using IfInteger = Invoke<std::enable_if<is_integer<T>::value, int> >;
|
||||
template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >;
|
||||
|
||||
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
|
||||
template <typename T> using IfNotReal = Invoke<std::enable_if<!is_real<T>::value, int> >;
|
||||
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
|
||||
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
|
||||
template <typename T> using IfNotInteger = Invoke<std::enable_if<!is_integer<T>::value, int> >;
|
||||
template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
@ -857,8 +866,10 @@ template <typename T>
|
||||
struct is_simd : public std::false_type {};
|
||||
template <> struct is_simd<vRealF> : public std::true_type {};
|
||||
template <> struct is_simd<vRealD> : public std::true_type {};
|
||||
template <> struct is_simd<vRealH> : public std::true_type {};
|
||||
template <> struct is_simd<vComplexF> : public std::true_type {};
|
||||
template <> struct is_simd<vComplexD> : public std::true_type {};
|
||||
template <> struct is_simd<vComplexH> : public std::true_type {};
|
||||
template <> struct is_simd<vInteger> : public std::true_type {};
|
||||
|
||||
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
|
||||
|
@ -5,6 +5,7 @@ Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Michael Marshall <michael.marshall@ed.ac.au>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -42,27 +43,26 @@ namespace Grid {
|
||||
//
|
||||
class GridTensorBase {};
|
||||
|
||||
// Too late to remove these traits from Grid Tensors, so inherit from GridTypeMapper
|
||||
#define GridVector_CopyTraits \
|
||||
using element = vtype; \
|
||||
using scalar_type = typename Traits::scalar_type; \
|
||||
using vector_type = typename Traits::vector_type; \
|
||||
using vector_typeD = typename Traits::vector_typeD; \
|
||||
using tensor_reduced = typename Traits::tensor_reduced; \
|
||||
using scalar_object = typename Traits::scalar_object; \
|
||||
using Complexified = typename Traits::Complexified; \
|
||||
using Realified = typename Traits::Realified; \
|
||||
using DoublePrecision = typename Traits::DoublePrecision; \
|
||||
static constexpr int TensorLevel = Traits::TensorLevel
|
||||
|
||||
template <class vtype>
|
||||
class iScalar {
|
||||
public:
|
||||
vtype _internal;
|
||||
|
||||
typedef vtype element;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
|
||||
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iScalar<recurse_scalar_object> scalar_object;
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
|
||||
|
||||
// get double precision version
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::DoublePrecision> DoublePrecision;
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
|
||||
using Traits = GridTypeMapper<iScalar<vtype> >;
|
||||
GridVector_CopyTraits;
|
||||
|
||||
// Scalar no action
|
||||
// template<int Level> using tensor_reduce_level = typename
|
||||
@ -173,7 +173,10 @@ class iScalar {
|
||||
return stream;
|
||||
};
|
||||
|
||||
|
||||
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(&_internal); }
|
||||
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(&_internal); }
|
||||
strong_inline const scalar_type * end() const { return begin() + Traits::count; }
|
||||
strong_inline scalar_type * end() { return begin() + Traits::count; }
|
||||
};
|
||||
///////////////////////////////////////////////////////////
|
||||
// Allows to turn scalar<scalar<scalar<double>>>> back to double.
|
||||
@ -194,22 +197,9 @@ class iVector {
|
||||
public:
|
||||
vtype _internal[N];
|
||||
|
||||
typedef vtype element;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
|
||||
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iVector<recurse_scalar_object, N> scalar_object;
|
||||
using Traits = GridTypeMapper<iVector<vtype, N> >;
|
||||
GridVector_CopyTraits;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Realified, N> Realified;
|
||||
|
||||
// get double precision version
|
||||
typedef iVector<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
|
||||
|
||||
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
|
||||
* = nullptr>
|
||||
strong_inline auto operator=(T arg) -> iVector<vtype, N> {
|
||||
@ -218,7 +208,6 @@ class iVector {
|
||||
return *this;
|
||||
}
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
|
||||
iVector(const Zero &z) { *this = zero; };
|
||||
iVector() = default;
|
||||
/*
|
||||
@ -303,6 +292,11 @@ class iVector {
|
||||
// strong_inline vtype && operator ()(int i) {
|
||||
// return _internal[i];
|
||||
// }
|
||||
|
||||
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal); }
|
||||
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal); }
|
||||
strong_inline const scalar_type * end() const { return begin() + Traits::count; }
|
||||
strong_inline scalar_type * end() { return begin() + Traits::count; }
|
||||
};
|
||||
|
||||
template <class vtype, int N>
|
||||
@ -310,25 +304,8 @@ class iMatrix {
|
||||
public:
|
||||
vtype _internal[N][N];
|
||||
|
||||
typedef vtype element;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
|
||||
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Realified, N> Realified;
|
||||
|
||||
// get double precision version
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
|
||||
|
||||
// Tensor removal
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iMatrix<recurse_scalar_object, N> scalar_object;
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
|
||||
using Traits = GridTypeMapper<iMatrix<vtype, N> >;
|
||||
GridVector_CopyTraits;
|
||||
|
||||
iMatrix(const Zero &z) { *this = zero; };
|
||||
iMatrix() = default;
|
||||
@ -458,6 +435,11 @@ class iMatrix {
|
||||
// strong_inline vtype && operator ()(int i,int j) {
|
||||
// return _internal[i][j];
|
||||
// }
|
||||
|
||||
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal[0]); }
|
||||
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal[0]); }
|
||||
strong_inline const scalar_type * end() const { return begin() + Traits::count; }
|
||||
strong_inline scalar_type * end() { return begin() + Traits::count; }
|
||||
};
|
||||
|
||||
template <class v>
|
||||
@ -480,6 +462,3 @@ void vprefetch(const iMatrix<v, N> &vv) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
@ -5,6 +5,7 @@
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
Author: Michael Marshall <michael.marshall@ed.ac.au>
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
@ -26,6 +27,17 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
// Forward declarations
|
||||
template<class T> class iScalar;
|
||||
template<class T, int N> class iVector;
|
||||
template<class T, int N> class iMatrix;
|
||||
|
||||
// These are the Grid tensors
|
||||
template<typename T> struct isGridTensor : public std::false_type { static constexpr bool notvalue = true; };
|
||||
template<class T> struct isGridTensor<iScalar<T>> : public std::true_type { static constexpr bool notvalue = false; };
|
||||
template<class T, int N> struct isGridTensor<iVector<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
|
||||
template<class T, int N> struct isGridTensor<iMatrix<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
// Want to recurse: GridTypeMapper<Matrix<vComplexD> >::scalar_type == ComplexD.
|
||||
// Use of a helper class like this allows us to template specialise and "dress"
|
||||
@ -40,25 +52,26 @@ namespace Grid {
|
||||
// to study C++11's type_traits.h file. (std::enable_if<isGridTensorType<vtype> >)
|
||||
//
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class T> class GridTypeMapper {
|
||||
public:
|
||||
typedef typename T::scalar_type scalar_type;
|
||||
typedef typename T::vector_type vector_type;
|
||||
typedef typename T::vector_typeD vector_typeD;
|
||||
typedef typename T::tensor_reduced tensor_reduced;
|
||||
typedef typename T::scalar_object scalar_object;
|
||||
typedef typename T::Complexified Complexified;
|
||||
typedef typename T::Realified Realified;
|
||||
typedef typename T::DoublePrecision DoublePrecision;
|
||||
enum { TensorLevel = T::TensorLevel };
|
||||
|
||||
// This saves repeating common properties for supported Grid Scalar types
|
||||
// TensorLevel How many nested grid tensors
|
||||
// Rank Rank of the grid tensor
|
||||
// count Total number of elements, i.e. product of dimensions
|
||||
// Dimension(dim) Size of dimension dim
|
||||
struct GridTypeMapper_Base {
|
||||
static constexpr int TensorLevel = 0;
|
||||
static constexpr int Rank = 0;
|
||||
static constexpr std::size_t count = 1;
|
||||
static constexpr int Dimension(int dim) { return 0; }
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
// Recursion stops with these template specialisations
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
template<> class GridTypeMapper<RealF> {
|
||||
public:
|
||||
|
||||
template<typename T> struct GridTypeMapper {};
|
||||
|
||||
template<> struct GridTypeMapper<RealF> : public GridTypeMapper_Base {
|
||||
typedef RealF scalar_type;
|
||||
typedef RealF vector_type;
|
||||
typedef RealD vector_typeD;
|
||||
@ -67,10 +80,8 @@ namespace Grid {
|
||||
typedef ComplexF Complexified;
|
||||
typedef RealF Realified;
|
||||
typedef RealD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<RealD> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<RealD> : public GridTypeMapper_Base {
|
||||
typedef RealD scalar_type;
|
||||
typedef RealD vector_type;
|
||||
typedef RealD vector_typeD;
|
||||
@ -79,10 +90,8 @@ namespace Grid {
|
||||
typedef ComplexD Complexified;
|
||||
typedef RealD Realified;
|
||||
typedef RealD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<ComplexF> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<ComplexF> : public GridTypeMapper_Base {
|
||||
typedef ComplexF scalar_type;
|
||||
typedef ComplexF vector_type;
|
||||
typedef ComplexD vector_typeD;
|
||||
@ -91,10 +100,8 @@ namespace Grid {
|
||||
typedef ComplexF Complexified;
|
||||
typedef RealF Realified;
|
||||
typedef ComplexD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<ComplexD> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<ComplexD> : public GridTypeMapper_Base {
|
||||
typedef ComplexD scalar_type;
|
||||
typedef ComplexD vector_type;
|
||||
typedef ComplexD vector_typeD;
|
||||
@ -103,10 +110,8 @@ namespace Grid {
|
||||
typedef ComplexD Complexified;
|
||||
typedef RealD Realified;
|
||||
typedef ComplexD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<Integer> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<Integer> : public GridTypeMapper_Base {
|
||||
typedef Integer scalar_type;
|
||||
typedef Integer vector_type;
|
||||
typedef Integer vector_typeD;
|
||||
@ -115,11 +120,9 @@ namespace Grid {
|
||||
typedef void Complexified;
|
||||
typedef void Realified;
|
||||
typedef void DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
|
||||
template<> class GridTypeMapper<vRealF> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<vRealF> : public GridTypeMapper_Base {
|
||||
typedef RealF scalar_type;
|
||||
typedef vRealF vector_type;
|
||||
typedef vRealD vector_typeD;
|
||||
@ -128,10 +131,8 @@ namespace Grid {
|
||||
typedef vComplexF Complexified;
|
||||
typedef vRealF Realified;
|
||||
typedef vRealD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vRealD> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<vRealD> : public GridTypeMapper_Base {
|
||||
typedef RealD scalar_type;
|
||||
typedef vRealD vector_type;
|
||||
typedef vRealD vector_typeD;
|
||||
@ -140,10 +141,20 @@ namespace Grid {
|
||||
typedef vComplexD Complexified;
|
||||
typedef vRealD Realified;
|
||||
typedef vRealD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vComplexH> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<vRealH> : public GridTypeMapper_Base {
|
||||
// Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types
|
||||
typedef RealF scalar_type;
|
||||
typedef vRealH vector_type;
|
||||
typedef vRealD vector_typeD;
|
||||
typedef vRealH tensor_reduced;
|
||||
typedef RealF scalar_object;
|
||||
typedef vComplexH Complexified;
|
||||
typedef vRealH Realified;
|
||||
typedef vRealD DoublePrecision;
|
||||
};
|
||||
template<> struct GridTypeMapper<vComplexH> : public GridTypeMapper_Base {
|
||||
// Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types
|
||||
typedef ComplexF scalar_type;
|
||||
typedef vComplexH vector_type;
|
||||
typedef vComplexD vector_typeD;
|
||||
@ -152,10 +163,8 @@ namespace Grid {
|
||||
typedef vComplexH Complexified;
|
||||
typedef vRealH Realified;
|
||||
typedef vComplexD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vComplexF> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<vComplexF> : public GridTypeMapper_Base {
|
||||
typedef ComplexF scalar_type;
|
||||
typedef vComplexF vector_type;
|
||||
typedef vComplexD vector_typeD;
|
||||
@ -164,10 +173,8 @@ namespace Grid {
|
||||
typedef vComplexF Complexified;
|
||||
typedef vRealF Realified;
|
||||
typedef vComplexD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vComplexD> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<vComplexD> : public GridTypeMapper_Base {
|
||||
typedef ComplexD scalar_type;
|
||||
typedef vComplexD vector_type;
|
||||
typedef vComplexD vector_typeD;
|
||||
@ -176,10 +183,8 @@ namespace Grid {
|
||||
typedef vComplexD Complexified;
|
||||
typedef vRealD Realified;
|
||||
typedef vComplexD DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vInteger> {
|
||||
public:
|
||||
template<> struct GridTypeMapper<vInteger> : public GridTypeMapper_Base {
|
||||
typedef Integer scalar_type;
|
||||
typedef vInteger vector_type;
|
||||
typedef vInteger vector_typeD;
|
||||
@ -188,57 +193,52 @@ namespace Grid {
|
||||
typedef void Complexified;
|
||||
typedef void Realified;
|
||||
typedef void DoublePrecision;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
|
||||
// First some of my own traits
|
||||
template<typename T> struct isGridTensor {
|
||||
static const bool value = true;
|
||||
static const bool notvalue = false;
|
||||
#define GridTypeMapper_RepeatedTypes \
|
||||
using BaseTraits = GridTypeMapper<T>; \
|
||||
using scalar_type = typename BaseTraits::scalar_type; \
|
||||
using vector_type = typename BaseTraits::vector_type; \
|
||||
using vector_typeD = typename BaseTraits::vector_typeD; \
|
||||
static constexpr int TensorLevel = BaseTraits::TensorLevel + 1
|
||||
|
||||
template<typename T> struct GridTypeMapper<iScalar<T>> {
|
||||
GridTypeMapper_RepeatedTypes;
|
||||
using tensor_reduced = iScalar<typename BaseTraits::tensor_reduced>;
|
||||
using scalar_object = iScalar<typename BaseTraits::scalar_object>;
|
||||
using Complexified = iScalar<typename BaseTraits::Complexified>;
|
||||
using Realified = iScalar<typename BaseTraits::Realified>;
|
||||
using DoublePrecision = iScalar<typename BaseTraits::DoublePrecision>;
|
||||
static constexpr int Rank = BaseTraits::Rank + 1;
|
||||
static constexpr std::size_t count = BaseTraits::count;
|
||||
static constexpr int Dimension(int dim) {
|
||||
return ( dim == 0 ) ? 1 : BaseTraits::Dimension(dim - 1); }
|
||||
};
|
||||
template<> struct isGridTensor<int > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
|
||||
template<typename T, int N> struct GridTypeMapper<iVector<T, N>> {
|
||||
GridTypeMapper_RepeatedTypes;
|
||||
using tensor_reduced = iScalar<typename BaseTraits::tensor_reduced>;
|
||||
using scalar_object = iVector<typename BaseTraits::scalar_object, N>;
|
||||
using Complexified = iVector<typename BaseTraits::Complexified, N>;
|
||||
using Realified = iVector<typename BaseTraits::Realified, N>;
|
||||
using DoublePrecision = iVector<typename BaseTraits::DoublePrecision, N>;
|
||||
static constexpr int Rank = BaseTraits::Rank + 1;
|
||||
static constexpr std::size_t count = BaseTraits::count * N;
|
||||
static constexpr int Dimension(int dim) {
|
||||
return ( dim == 0 ) ? N : BaseTraits::Dimension(dim - 1); }
|
||||
};
|
||||
template<> struct isGridTensor<RealD > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<RealF > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<ComplexD > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<ComplexF > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<Integer > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<vRealD > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<vRealF > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<vComplexD > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<vComplexF > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
};
|
||||
template<> struct isGridTensor<vInteger > {
|
||||
static const bool value = false;
|
||||
static const bool notvalue = true;
|
||||
|
||||
template<typename T, int N> struct GridTypeMapper<iMatrix<T, N>> {
|
||||
GridTypeMapper_RepeatedTypes;
|
||||
using tensor_reduced = iScalar<typename BaseTraits::tensor_reduced>;
|
||||
using scalar_object = iMatrix<typename BaseTraits::scalar_object, N>;
|
||||
using Complexified = iMatrix<typename BaseTraits::Complexified, N>;
|
||||
using Realified = iMatrix<typename BaseTraits::Realified, N>;
|
||||
using DoublePrecision = iMatrix<typename BaseTraits::DoublePrecision, N>;
|
||||
static constexpr int Rank = BaseTraits::Rank + 2;
|
||||
static constexpr std::size_t count = BaseTraits::count * N * N;
|
||||
static constexpr int Dimension(int dim) {
|
||||
return ( dim == 0 || dim == 1 ) ? N : BaseTraits::Dimension(dim - 2); }
|
||||
};
|
||||
|
||||
// Match the index
|
||||
@ -263,20 +263,13 @@ namespace Grid {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
//Query if a tensor or Lattice<Tensor> is SIMD vector or scalar
|
||||
template<typename T>
|
||||
class isSIMDvectorized{
|
||||
template<typename U>
|
||||
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type,
|
||||
typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *);
|
||||
//Query whether a tensor or Lattice<Tensor> is SIMD vector or scalar
|
||||
template<typename T, typename V=void> struct isSIMDvectorized : public std::false_type {};
|
||||
template<typename U> struct isSIMDvectorized<U, typename std::enable_if< !std::is_same<
|
||||
typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type,
|
||||
typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, void>::type>
|
||||
: public std::true_type {};
|
||||
|
||||
template<typename U>
|
||||
static double test(...);
|
||||
|
||||
public:
|
||||
enum {value = sizeof(test<T>(0)) == sizeof(char) };
|
||||
};
|
||||
|
||||
//Get the precision of a Lattice, tensor or scalar type in units of sizeof(float)
|
||||
template<typename T>
|
||||
class getPrecision{
|
||||
|
@ -289,6 +289,11 @@ void Grid_init(int *argc,char ***argv)
|
||||
std::cout << "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the"<<std::endl;
|
||||
std::cout << "GNU General Public License for more details."<<std::endl;
|
||||
printHash();
|
||||
#ifdef GRID_BUILD_REF
|
||||
#define _GRID_BUILD_STR(x) #x
|
||||
#define GRID_BUILD_STR(x) _GRID_BUILD_STR(x)
|
||||
std::cout << "Build " << GRID_BUILD_STR(GRID_BUILD_REF) << std::endl;
|
||||
#endif
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
6
HMC/Makefile.am
Normal file
6
HMC/Makefile.am
Normal file
@ -0,0 +1,6 @@
|
||||
SUBDIRS = .
|
||||
|
||||
include Make.inc
|
||||
|
||||
|
||||
|
198
HMC/Mobius2p1f.cc
Normal file
198
HMC/Mobius2p1f.cc
Normal file
@ -0,0 +1,198 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_hmc_EODWFRatio.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef MobiusFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
typedef Grid::XmlReader Serialiser;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
|
||||
// MD.name = std::string("Leap Frog");
|
||||
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
|
||||
// MD.name = std::string("Force Gradient");
|
||||
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = 20;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = 0;
|
||||
HMCparams.Trajectories = 200;
|
||||
HMCparams.NoMetropolisUntil= 20;
|
||||
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
HMCparams.StartingType =std::string("ColdStart");
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_EODWF_lat";
|
||||
CPparams.rng_prefix = "ckpoint_EODWF_rng";
|
||||
CPparams.saveInterval = 10;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
// Construct observables
|
||||
// here there is too much indirection
|
||||
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.04;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD b = 1.0; // Scale factor two
|
||||
RealD c = 0.0;
|
||||
|
||||
OneFlavourRationalParams OFRp;
|
||||
OFRp.lo = 1.0e-2;
|
||||
OFRp.hi = 64;
|
||||
OFRp.MaxIter = 10000;
|
||||
OFRp.tolerance= 1.0e-10;
|
||||
OFRp.degree = 14;
|
||||
OFRp.precision= 40;
|
||||
|
||||
std::vector<Real> hasenbusch({ 0.1 });
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
|
||||
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
|
||||
|
||||
IwasakiGaugeActionR GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
|
||||
// These lines are unecessary if BC are all periodic
|
||||
std::vector<Complex> boundary = {1,1,1,-1};
|
||||
FermionAction::ImplParams Params(boundary);
|
||||
|
||||
double StoppingCondition = 1e-10;
|
||||
double MaxCGIterations = 30000;
|
||||
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1);
|
||||
ActionLevel<HMCWrapper::Field> Level2(4);
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
|
||||
// FermionAction StrangeOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_mass,M5,b,c, Params);
|
||||
// DomainWallEOFAFermionR Strange_Op_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5);
|
||||
// DomainWallEOFAFermionR Strange_Op_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5);
|
||||
// ExactOneFlavourRatioPseudoFermionAction EOFA(Strange_Op_L,Strange_Op_R,CG,ofp, false);
|
||||
|
||||
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
|
||||
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
|
||||
|
||||
// OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion(StrangePauliVillarsOp,StrangeOp,OFRp);
|
||||
OneFlavourRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion(StrangePauliVillarsOp,StrangeOp,OFRp);
|
||||
// TwoFlavourRationalTesterPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion1F(StrangeOp,OFRp);
|
||||
// TwoFlavourPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion2F(StrangeOp,CG,CG);
|
||||
// Level1.push_back(&StrangePseudoFermion2F);
|
||||
// Level1.push_back(&StrangePseudoFermion);
|
||||
|
||||
////////////////////////////////////
|
||||
// up down action
|
||||
////////////////////////////////////
|
||||
std::vector<Real> light_den;
|
||||
std::vector<Real> light_num;
|
||||
|
||||
int n_hasenbusch = hasenbusch.size();
|
||||
light_den.push_back(light_mass);
|
||||
for(int h=0;h<n_hasenbusch;h++){
|
||||
light_den.push_back(hasenbusch[h]);
|
||||
light_num.push_back(hasenbusch[h]);
|
||||
}
|
||||
light_num.push_back(pv_mass);
|
||||
|
||||
std::vector<FermionAction *> Numerators;
|
||||
std::vector<FermionAction *> Denominators;
|
||||
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
|
||||
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
|
||||
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
|
||||
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
|
||||
}
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
Level1.push_back(Quotients[h]);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// HMC parameters are serialisable
|
||||
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run(); // no smearing
|
||||
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
||||
|
452
HMC/Mobius2p1fEOFA.cc
Normal file
452
HMC/Mobius2p1fEOFA.cc
Normal file
@ -0,0 +1,452 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file:
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu
|
||||
Author: David Murphy
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
|
||||
#define MIXED_PRECISION
|
||||
#endif
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
/*
|
||||
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
|
||||
* -- Store the single prec action operator.
|
||||
* -- Clone the gauge field from the operator function argument.
|
||||
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
|
||||
*/
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
/* Debugging instances of objects; references are stored
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
|
||||
*/
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
|
||||
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
|
||||
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
|
||||
// Assumption made in code to extract gauge field
|
||||
// We could avoid storing LinopD reference alltogether ?
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Must snarf a single precision copy of the gauge field in Linop_d argument
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
|
||||
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
|
||||
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
|
||||
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
|
||||
|
||||
GridBase * GridPtrF = SinglePrecGrid4;
|
||||
GridBase * GridPtrD = FermOpD.Umu._grid;
|
||||
GaugeFieldF U_f (GridPtrF);
|
||||
GaugeLinkFieldF Umu_f(GridPtrF);
|
||||
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
|
||||
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Moving this to a Clone method of fermion operator would allow to duplicate the
|
||||
// physics parameters and decrease gauge field copies
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
GaugeLinkFieldD Umu_d(GridPtrD);
|
||||
for(int mu=0;mu<Nd*2;mu++){
|
||||
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
|
||||
precisionChange(Umu_f,Umu_d);
|
||||
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
|
||||
}
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Could test to make sure that LinOpF and LinOpD agree to single prec?
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
GridBase *Fgrid = psi._grid;
|
||||
FieldD tmp2(Fgrid);
|
||||
FieldD tmp1(Fgrid);
|
||||
LinOpU.Op(src,tmp1);
|
||||
LinOpD.Op(src,tmp2);
|
||||
std::cout << " Double gauge field "<< norm2(FermOpD.Umu)<<std::endl;
|
||||
std::cout << " Single gauge field "<< norm2(FermOpF.Umu)<<std::endl;
|
||||
std::cout << " Test of operators "<<norm2(tmp1)<<std::endl;
|
||||
std::cout << " Test of operators "<<norm2(tmp2)<<std::endl;
|
||||
tmp1=tmp1-tmp2;
|
||||
std::cout << " Test of operators diff "<<norm2(tmp1)<<std::endl;
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
}};
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef MobiusFermionR FermionAction;
|
||||
typedef MobiusFermionF FermionActionF;
|
||||
typedef MobiusEOFAFermionR FermionEOFAAction;
|
||||
typedef MobiusEOFAFermionF FermionEOFAActionF;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef Grid::XmlReader Serialiser;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
|
||||
// MD.name = std::string("Leap Frog");
|
||||
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
|
||||
MD.name = std::string("Force Gradient");
|
||||
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
|
||||
// MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = 6;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = 590;
|
||||
HMCparams.Trajectories = 1000;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
// HMCparams.StartingType =std::string("ColdStart");
|
||||
HMCparams.StartingType =std::string("CheckpointStart");
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_EODWF_lat";
|
||||
CPparams.rng_prefix = "ckpoint_EODWF_rng";
|
||||
CPparams.saveInterval = 10;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
// Construct observables
|
||||
// here there is too much indirection
|
||||
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.04;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD b = 1.0;
|
||||
RealD c = 0.0;
|
||||
|
||||
std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 });
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
|
||||
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
|
||||
|
||||
std::vector<int> latt = GridDefaultLatt();
|
||||
std::vector<int> mpi = GridDefaultMpi();
|
||||
std::vector<int> simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
|
||||
std::vector<int> simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
|
||||
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
|
||||
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
|
||||
|
||||
IwasakiGaugeActionR GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
LatticeGaugeFieldF UF(GridPtrF);
|
||||
|
||||
// These lines are unecessary if BC are all periodic
|
||||
std::vector<Complex> boundary = {1,1,1,-1};
|
||||
FermionAction::ImplParams Params(boundary);
|
||||
FermionActionF::ImplParams ParamsF(boundary);
|
||||
|
||||
double ActionStoppingCondition = 1e-10;
|
||||
double DerivativeStoppingCondition = 1e-6;
|
||||
double MaxCGIterations = 30000;
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1);
|
||||
ActionLevel<HMCWrapper::Field> Level2(8);
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
|
||||
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
|
||||
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
|
||||
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
|
||||
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
|
||||
|
||||
// DJM: setup for EOFA ratio (Mobius)
|
||||
OneFlavourRationalParams OFRp;
|
||||
OFRp.lo = 0.1;
|
||||
OFRp.hi = 25.0;
|
||||
OFRp.MaxIter = 10000;
|
||||
OFRp.tolerance= 1.0e-9;
|
||||
OFRp.degree = 14;
|
||||
OFRp.precision= 50;
|
||||
|
||||
|
||||
MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
|
||||
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
|
||||
|
||||
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
|
||||
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
|
||||
#ifdef MIXED_PRECISION
|
||||
const int MX_inner = 1000;
|
||||
// Mixed precision EOFA
|
||||
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
|
||||
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
|
||||
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
|
||||
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
|
||||
|
||||
MxPCG_EOFA ActionCGL(ActionStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_LF,Strange_Op_L,
|
||||
Strange_LinOp_LF,Strange_LinOp_L);
|
||||
|
||||
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_LF,Strange_Op_L,
|
||||
Strange_LinOp_LF,Strange_LinOp_L);
|
||||
|
||||
MxPCG_EOFA ActionCGR(ActionStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_RF,Strange_Op_R,
|
||||
Strange_LinOp_RF,Strange_LinOp_R);
|
||||
|
||||
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
Strange_Op_RF,Strange_Op_R,
|
||||
Strange_LinOp_RF,Strange_LinOp_R);
|
||||
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
|
||||
EOFA(Strange_Op_L, Strange_Op_R,
|
||||
ActionCG,
|
||||
ActionCGL, ActionCGR,
|
||||
DerivativeCGL, DerivativeCGR,
|
||||
OFRp, true);
|
||||
#else
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
|
||||
EOFA(Strange_Op_L, Strange_Op_R,
|
||||
ActionCG,
|
||||
ActionCG, ActionCG,
|
||||
DerivativeCG, DerivativeCG,
|
||||
OFRp, true);
|
||||
#endif
|
||||
Level1.push_back(&EOFA);
|
||||
|
||||
////////////////////////////////////
|
||||
// up down action
|
||||
////////////////////////////////////
|
||||
std::vector<Real> light_den;
|
||||
std::vector<Real> light_num;
|
||||
|
||||
int n_hasenbusch = hasenbusch.size();
|
||||
light_den.push_back(light_mass);
|
||||
for(int h=0;h<n_hasenbusch;h++){
|
||||
light_den.push_back(hasenbusch[h]);
|
||||
light_num.push_back(hasenbusch[h]);
|
||||
}
|
||||
light_num.push_back(pv_mass);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Forced to replicate the MxPCG and DenominatorsF etc.. because
|
||||
// there is no convenient way to "Clone" physics params from double op
|
||||
// into single op for any operator pair.
|
||||
// Same issue prevents using MxPCG in the Heatbath step
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::vector<FermionAction *> Numerators;
|
||||
std::vector<FermionAction *> Denominators;
|
||||
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
|
||||
std::vector<MxPCG *> ActionMPCG;
|
||||
std::vector<MxPCG *> MPCG;
|
||||
std::vector<FermionActionF *> DenominatorsF;
|
||||
std::vector<LinearOperatorD *> LinOpD;
|
||||
std::vector<LinearOperatorF *> LinOpF;
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
|
||||
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
|
||||
|
||||
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
|
||||
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
|
||||
|
||||
#ifdef MIXED_PRECISION
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Mixed precision CG for 2f force
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
|
||||
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
|
||||
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
|
||||
|
||||
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
*DenominatorsF[h],*Denominators[h],
|
||||
*LinOpF[h], *LinOpD[h]) );
|
||||
|
||||
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,
|
||||
MX_inner,
|
||||
MaxCGIterations,
|
||||
GridPtrF,
|
||||
FrbGridF,
|
||||
*DenominatorsF[h],*Denominators[h],
|
||||
*LinOpF[h], *LinOpD[h]) );
|
||||
|
||||
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
|
||||
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Standard CG for 2f force
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
Level1.push_back(Quotients[h]);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// HMC parameters are serialisable
|
||||
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run(); // no smearing
|
||||
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
||||
|
198
HMC/Mobius2p1fRHMC.cc
Normal file
198
HMC/Mobius2p1fRHMC.cc
Normal file
@ -0,0 +1,198 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_hmc_EODWFRatio.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef MobiusFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
typedef Grid::XmlReader Serialiser;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
|
||||
// MD.name = std::string("Leap Frog");
|
||||
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
|
||||
// MD.name = std::string("Force Gradient");
|
||||
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = 20;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = 30;
|
||||
HMCparams.Trajectories = 200;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
// HMCparams.StartingType =std::string("ColdStart");
|
||||
HMCparams.StartingType =std::string("CheckpointStart");
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_EODWF_lat";
|
||||
CPparams.rng_prefix = "ckpoint_EODWF_rng";
|
||||
CPparams.saveInterval = 10;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
// Construct observables
|
||||
// here there is too much indirection
|
||||
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.04;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD b = 1.0;
|
||||
RealD c = 0.0;
|
||||
|
||||
// FIXME:
|
||||
// Same in MC and MD
|
||||
// Need to mix precision too
|
||||
OneFlavourRationalParams OFRp;
|
||||
OFRp.lo = 4.0e-3;
|
||||
OFRp.hi = 30.0;
|
||||
OFRp.MaxIter = 10000;
|
||||
OFRp.tolerance= 1.0e-10;
|
||||
OFRp.degree = 16;
|
||||
OFRp.precision= 50;
|
||||
|
||||
std::vector<Real> hasenbusch({ 0.1 });
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
|
||||
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
|
||||
|
||||
IwasakiGaugeActionR GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
|
||||
// These lines are unecessary if BC are all periodic
|
||||
std::vector<Complex> boundary = {1,1,1,-1};
|
||||
FermionAction::ImplParams Params(boundary);
|
||||
|
||||
double StoppingCondition = 1e-10;
|
||||
double MaxCGIterations = 30000;
|
||||
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1);
|
||||
ActionLevel<HMCWrapper::Field> Level2(4);
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
|
||||
// FermionAction StrangeOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_mass,M5,b,c, Params);
|
||||
// DomainWallEOFAFermionR Strange_Op_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5);
|
||||
// DomainWallEOFAFermionR Strange_Op_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5);
|
||||
// ExactOneFlavourRatioPseudoFermionAction EOFA(Strange_Op_L,Strange_Op_R,CG,ofp, false);
|
||||
|
||||
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
|
||||
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermion(StrangePauliVillarsOp,StrangeOp,OFRp);
|
||||
Level1.push_back(&StrangePseudoFermion);
|
||||
|
||||
////////////////////////////////////
|
||||
// up down action
|
||||
////////////////////////////////////
|
||||
std::vector<Real> light_den;
|
||||
std::vector<Real> light_num;
|
||||
|
||||
int n_hasenbusch = hasenbusch.size();
|
||||
light_den.push_back(light_mass);
|
||||
for(int h=0;h<n_hasenbusch;h++){
|
||||
light_den.push_back(hasenbusch[h]);
|
||||
light_num.push_back(hasenbusch[h]);
|
||||
}
|
||||
light_num.push_back(pv_mass);
|
||||
|
||||
std::vector<FermionAction *> Numerators;
|
||||
std::vector<FermionAction *> Denominators;
|
||||
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
|
||||
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
|
||||
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
|
||||
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
|
||||
}
|
||||
|
||||
for(int h=0;h<n_hasenbusch+1;h++){
|
||||
Level1.push_back(Quotients[h]);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// HMC parameters are serialisable
|
||||
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run(); // no smearing
|
||||
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
||||
|
109
HMC/README
Normal file
109
HMC/README
Normal file
@ -0,0 +1,109 @@
|
||||
********************************************************************
|
||||
TODO:
|
||||
********************************************************************
|
||||
|
||||
i) Got mixed precision in 2f and EOFA force and action solves.
|
||||
But need mixed precision in the heatbath solve. Best for Fermop to have a "clone" method, to
|
||||
reduce the number of solver and action objects. Needed ideally for the EOFA heatbath.
|
||||
15% perhaps
|
||||
Combine with 2x trajectory length?
|
||||
|
||||
ii) Rational on EOFA HB -- relax order
|
||||
-- Test the approx as per David email
|
||||
|
||||
Resume / roll.sh
|
||||
|
||||
----------------------------------------------------------------
|
||||
|
||||
- 16^3 Currently 10 traj per hour
|
||||
|
||||
- EOFA use a different derivative solver from action solver
|
||||
- EOFA fix Davids hack to the SchurRedBlack guessing
|
||||
|
||||
*** Reduce precision/tolerance in EOFA with second CG param. (10% speed up)
|
||||
*** Force gradient - reduced precision solve for the gradient (4/3x speedup)
|
||||
|
||||
|
||||
*** Need a plan for gauge field update for mixed precision in HMC (2x speed up)
|
||||
-- Store the single prec action operator.
|
||||
-- Clone the gauge field from the operator function argument.
|
||||
-- Build the mixed precision operator dynamically from the passed operator and single prec clone.
|
||||
|
||||
*** Mixed precision CG into EOFA portion
|
||||
*** Further reduce precision in forces to 10^-6 ?
|
||||
|
||||
*** Overall: a 3x or so is still possible => 500s -> 160s and 20 traj per hour on 16^3.
|
||||
|
||||
- Use mixed precision CG in HMC
|
||||
- SchurRedBlack.h: stop use of operator function; use LinearOperator or similar instead.
|
||||
- Or make an OperatorFunction for mixed precision as a wrapper
|
||||
|
||||
********************************************************************
|
||||
* Signed off 2+1f HMC with Hasenbush and strange RHMC 16^3 x 32 DWF Ls=16 Plaquette 0.5883 ish
|
||||
* Signed off 2+1f HMC with Hasenbush and strange EOFA 16^3 x 32 DWF Ls=16 Plaquette 0.5883 ish
|
||||
* Wilson plaquette cross checked against CPS and literature GwilsonFnone
|
||||
********************************************************************
|
||||
|
||||
********************************************************************
|
||||
* RHMC: Timesteps & eigenranges matched from previous CPS 16^3 x 32 runs:
|
||||
********************************************************************
|
||||
|
||||
****
|
||||
Strange (m=0.04) has eigenspan
|
||||
****
|
||||
16^3 done as 1+1+1 with separate PV's.
|
||||
/dirac1/archive/QCDOC/host/QCDDWF/DWF/2+1f/16nt32/IWASAKI/b2.13/ls16/M1_8/ms0.04/mu0.01/rhmc_multitimescale/evol5/work
|
||||
****
|
||||
2+1f 16^3 - [ 4e^-4, 2.42 ] for strange
|
||||
|
||||
****
|
||||
24^3 done as 1+1+1 at strange, and single quotient https://arxiv.org/pdf/0804.0473.pdf Eq 83,
|
||||
****
|
||||
double lambda_low = 4.0000000000000002e-04 <- strange
|
||||
double lambda_low = 1.0000000000000000e-02 <- pauli villars
|
||||
And high = 2.5
|
||||
|
||||
Array bsn_mass[3] = {
|
||||
double bsn_mass[0] = 1.0000000000000000e+00
|
||||
double bsn_mass[1] = 1.0000000000000000e+00
|
||||
double bsn_mass[2] = 1.0000000000000000e+00
|
||||
}
|
||||
Array frm_mass[3] = {
|
||||
double frm_mass[0] = 4.0000000000000001e-02
|
||||
double frm_mass[1] = 4.0000000000000001e-02
|
||||
double frm_mass[2] = 4.0000000000000001e-02
|
||||
}
|
||||
|
||||
***
|
||||
32^3
|
||||
/dirac1/archive/QCDOC/host/QCDDWF/DWF/2+1f/32nt64/IWASAKI/b2.25/ls16/M1_8/ms0.03/mu0.004/evol6/work
|
||||
***
|
||||
Similar det scheme
|
||||
double lambda_low = 4.0000000000000002e-04
|
||||
double lambda_low = 1.0000000000000000e-02
|
||||
|
||||
Array bsn_mass[3] = {
|
||||
double bsn_mass[0] = 1.0000000000000000e+00
|
||||
double bsn_mass[1] = 1.0000000000000000e+00
|
||||
double bsn_mass[2] = 1.0000000000000000e+00
|
||||
}
|
||||
Array frm_mass[3] = {
|
||||
double frm_mass[0] = 3.0000000000000002e-02
|
||||
double frm_mass[1] = 3.0000000000000002e-02
|
||||
double frm_mass[2] = 3.0000000000000002e-02
|
||||
}
|
||||
|
||||
********************************************************************
|
||||
* Grid: Power method bounds check
|
||||
********************************************************************
|
||||
- Finding largest eigenvalue approx 25 not 2.5
|
||||
- Conventions:
|
||||
|
||||
Grid MpcDagMpc based on:
|
||||
|
||||
(Moo-Moe Mee^-1 Meo)^dag(Moo-Moe Mee^-1 Meo)
|
||||
|
||||
- with Moo = 5-M5 = 3.2
|
||||
- CPS use(d) Moo = 1
|
||||
- Eigenrange in Grid is 3.2^2 rescaled so factor of 10 accounted for
|
||||
|
@ -4,7 +4,7 @@ Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/A2AMatrix.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
@ -4,7 +4,7 @@ Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/A2AVectors.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: fionnoh <fionnoh@gmail.com>
|
||||
|
@ -4,7 +4,7 @@ Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Application.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
||||
@ -48,28 +48,32 @@ Application::Application(void)
|
||||
{
|
||||
initLogger();
|
||||
auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim);
|
||||
locVol_ = 1;
|
||||
for (unsigned int d = 0; d < dim.size(); ++d)
|
||||
|
||||
if (dim.size())
|
||||
{
|
||||
loc[d] /= mpi[d];
|
||||
locVol_ *= loc[d];
|
||||
locVol_ = 1;
|
||||
for (unsigned int d = 0; d < dim.size(); ++d)
|
||||
{
|
||||
loc[d] /= mpi[d];
|
||||
locVol_ *= loc[d];
|
||||
}
|
||||
LOG(Message) << "====== HADRONS APPLICATION INITIALISATION ======" << std::endl;
|
||||
LOG(Message) << "** Dimensions" << std::endl;
|
||||
LOG(Message) << "Global lattice: " << dim << std::endl;
|
||||
LOG(Message) << "MPI partition : " << mpi << std::endl;
|
||||
LOG(Message) << "Local lattice : " << loc << std::endl;
|
||||
LOG(Message) << std::endl;
|
||||
LOG(Message) << "** Default parameters (and associated C macros)" << std::endl;
|
||||
LOG(Message) << "ASCII output precision : " << MACOUT(DEFAULT_ASCII_PREC) << std::endl;
|
||||
LOG(Message) << "Fermion implementation : " << MACOUTS(FIMPLBASE) << std::endl;
|
||||
LOG(Message) << "z-Fermion implementation: " << MACOUTS(ZFIMPLBASE) << std::endl;
|
||||
LOG(Message) << "Scalar implementation : " << MACOUTS(SIMPLBASE) << std::endl;
|
||||
LOG(Message) << "Gauge implementation : " << MACOUTS(GIMPLBASE) << std::endl;
|
||||
LOG(Message) << "Eigenvector base size : "
|
||||
<< MACOUT(HADRONS_DEFAULT_LANCZOS_NBASIS) << std::endl;
|
||||
LOG(Message) << "Schur decomposition : " << MACOUTS(HADRONS_DEFAULT_SCHUR) << std::endl;
|
||||
LOG(Message) << std::endl;
|
||||
}
|
||||
LOG(Message) << "====== HADRONS APPLICATION INITIALISATION ======" << std::endl;
|
||||
LOG(Message) << "** Dimensions" << std::endl;
|
||||
LOG(Message) << "Global lattice: " << dim << std::endl;
|
||||
LOG(Message) << "MPI partition : " << mpi << std::endl;
|
||||
LOG(Message) << "Local lattice : " << loc << std::endl;
|
||||
LOG(Message) << std::endl;
|
||||
LOG(Message) << "** Default parameters (and associated C macros)" << std::endl;
|
||||
LOG(Message) << "ASCII output precision : " << MACOUT(DEFAULT_ASCII_PREC) << std::endl;
|
||||
LOG(Message) << "Fermion implementation : " << MACOUTS(FIMPLBASE) << std::endl;
|
||||
LOG(Message) << "z-Fermion implementation: " << MACOUTS(ZFIMPLBASE) << std::endl;
|
||||
LOG(Message) << "Scalar implementation : " << MACOUTS(SIMPLBASE) << std::endl;
|
||||
LOG(Message) << "Gauge implementation : " << MACOUTS(GIMPLBASE) << std::endl;
|
||||
LOG(Message) << "Eigenvector base size : "
|
||||
<< MACOUT(HADRONS_DEFAULT_LANCZOS_NBASIS) << std::endl;
|
||||
LOG(Message) << "Schur decomposition : " << MACOUTS(HADRONS_DEFAULT_SCHUR) << std::endl;
|
||||
LOG(Message) << std::endl;
|
||||
}
|
||||
|
||||
Application::Application(const Application::GlobalPar &par)
|
||||
@ -114,7 +118,22 @@ void Application::run(void)
|
||||
vm().setRunId(getPar().runId);
|
||||
vm().printContent();
|
||||
env().printContent();
|
||||
schedule();
|
||||
if (getPar().saveSchedule or getPar().scheduleFile.empty())
|
||||
{
|
||||
schedule();
|
||||
if (getPar().saveSchedule)
|
||||
{
|
||||
std::string filename;
|
||||
|
||||
filename = (getPar().scheduleFile.empty()) ?
|
||||
"hadrons.sched" : getPar().scheduleFile;
|
||||
saveSchedule(filename);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
loadSchedule(getPar().scheduleFile);
|
||||
}
|
||||
printSchedule();
|
||||
if (!getPar().graphFile.empty())
|
||||
{
|
||||
@ -161,12 +180,13 @@ void Application::parseParameterFile(const std::string parameterFileName)
|
||||
pop(reader);
|
||||
}
|
||||
|
||||
void Application::saveParameterFile(const std::string parameterFileName)
|
||||
void Application::saveParameterFile(const std::string parameterFileName, unsigned int prec)
|
||||
{
|
||||
LOG(Message) << "Saving application to '" << parameterFileName << "'..." << std::endl;
|
||||
if (env().getGrid()->IsBoss())
|
||||
{
|
||||
XmlWriter writer(parameterFileName);
|
||||
writer.setPrecision(prec);
|
||||
ObjectId id;
|
||||
const unsigned int nMod = vm().getNModule();
|
||||
|
||||
|
@ -4,7 +4,7 @@ Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Application.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
||||
@ -57,6 +57,8 @@ public:
|
||||
VirtualMachine::GeneticPar, genetic,
|
||||
std::string, runId,
|
||||
std::string, graphFile,
|
||||
std::string, scheduleFile,
|
||||
bool, saveSchedule,
|
||||
int, parallelWriteMaxRetry);
|
||||
GlobalPar(void): parallelWriteMaxRetry{-1} {}
|
||||
};
|
||||
@ -79,7 +81,7 @@ public:
|
||||
void run(void);
|
||||
// XML parameter file I/O
|
||||
void parseParameterFile(const std::string parameterFileName);
|
||||
void saveParameterFile(const std::string parameterFileName);
|
||||
void saveParameterFile(const std::string parameterFileName, unsigned int prec=15);
|
||||
// schedule computation
|
||||
void schedule(void);
|
||||
void saveSchedule(const std::string filename);
|
||||
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MScalar/ScalarVP.cc
|
||||
Source file: Hadrons/Archive/Modules/ScalarVP.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <jch1g10@soton.ac.uk>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MScalar/ScalarVP.hpp
|
||||
Source file: Hadrons/Archive/Modules/ScalarVP.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <jch1g10@soton.ac.uk>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MUtilities/TestSeqConserved.cc
|
||||
Source file: Hadrons/Archive/Modules/TestSeqConserved.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MUtilities/TestSeqConserved.hpp
|
||||
Source file: Hadrons/Archive/Modules/TestSeqConserved.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MUtilities/TestSeqGamma.cc
|
||||
Source file: Hadrons/Archive/Modules/TestSeqGamma.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MUtilities/TestSeqGamma.hpp
|
||||
Source file: Hadrons/Archive/Modules/TestSeqGamma.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MScalar/VPCounterTerms.cc
|
||||
Source file: Hadrons/Archive/Modules/VPCounterTerms.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <jch1g10@soton.ac.uk>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MScalar/VPCounterTerms.hpp
|
||||
Source file: Hadrons/Archive/Modules/VPCounterTerms.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <jch1g10@soton.ac.uk>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WardIdentity.cc
|
||||
Source file: Hadrons/Archive/Modules/WardIdentity.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WardIdentity.hpp
|
||||
Source file: Hadrons/Archive/Modules/WardIdentity.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakHamiltonian.hpp
|
||||
Source file: Hadrons/Archive/Modules/WeakHamiltonian.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakHamiltonianEye.cc
|
||||
Source file: Hadrons/Archive/Modules/WeakHamiltonianEye.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp
|
||||
Source file: Hadrons/Archive/Modules/WeakHamiltonianEye.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakHamiltonianNonEye.cc
|
||||
Source file: Hadrons/Archive/Modules/WeakHamiltonianNonEye.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp
|
||||
Source file: Hadrons/Archive/Modules/WeakHamiltonianNonEye.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakNeutral4ptDisc.cc
|
||||
Source file: Hadrons/Archive/Modules/WeakNeutral4ptDisc.cc
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
@ -2,9 +2,9 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp
|
||||
Source file: Hadrons/Archive/Modules/WeakNeutral4ptDisc.hpp
|
||||
|
||||
Copyright (C) 2015-2018
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: Lanny91 <andrew.lawson@gmail.com>
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user