mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-22 01:32:03 +01:00
Compare commits
540 Commits
a997d24743
...
feature/gp
Author | SHA1 | Date | |
---|---|---|---|
da59379612 | |||
3ef2a41518 | |||
aa96f420c6 | |||
49e9e4ed0e | |||
f7b8163016 | |||
93769eacd3 | |||
59b0cc11df | |||
f32c275376 | |||
5404fc66ab | |||
1f53458af8 | |||
434c3e7f1d | |||
500b119f3d | |||
4b87259c1b | |||
503dec34ef | |||
d1e9fe50d2 | |||
d01e5fa838 | |||
a477c25e8c | |||
1bd20cd9e8 | |||
e49e95b037 | |||
6f59fed563 | |||
60b7f6c99d | |||
b92dfcc8d3 | |||
f6fd6dd053 | |||
79ad567dd5 | |||
fab1efb48c | |||
660eb76d93 | |||
62e7bf024a | |||
95f3d69cf9 | |||
89c0519f83 | |||
2704b82084 | |||
cf8632bbac | |||
d224297972 | |||
a4d11a630f | |||
2b4399f8b1 | |||
f17b8de907 | |||
7e5bd46dd3 | |||
228bbb9d81 | |||
b812a7b4c6 | |||
891a366f73 | |||
10116b3be8 | |||
a46a0f0882 | |||
a26a8a38f4 | |||
7435315d50 | |||
9b5f741e85 | |||
517822fdd2 | |||
1b93a9be88 | |||
783a66b348 | |||
976c3e9b59 | |||
f8ca971dae | |||
21bc8c24df | |||
30228214f7 | |||
2ae980ae43 | |||
6153dec2e4 | |||
c805f86343 | |||
04ca065281 | |||
88d8fa43d7 | |||
3c49762875 | |||
436bf1d9d3 | |||
f70df6e195 | |||
fce3852dff | |||
ee1b8bbdbd | |||
3f1636637d | |||
2e570f5300 | |||
9f89486df5 | |||
22b43b86cb | |||
3c9012676a | |||
b507fe209c | |||
6cd2d8fcd5 | |||
b02d022993 | |||
94581e3c7a | |||
88b52cc045 | |||
0a816b5509 | |||
1c8b807c2e | |||
66391f84f2 | |||
97f7a9ecb3 | |||
15878f7613 | |||
e0d5e3c6c7 | |||
6f3455900e | |||
56827d6ad6 | |||
73c0b29535 | |||
303b83cdb8 | |||
5ef4da3f29 | |||
1502860004 | |||
585efc6f3f | |||
62055e04dd | |||
e4a641b64e | |||
8849f187f1 | |||
db420525b3 | |||
b5659d106e | |||
4b43307402 | |||
09af8c25a2 | |||
9514035b87 | |||
2da09ae99b | |||
a38fb0e04a | |||
7019916294 | |||
1514b4f137 | |||
91cf5ee312 | |||
0a6e2f42c5 | |||
ab2de131bd | |||
5bfa88be85 | |||
5af8da76d7 | |||
b8b9dc952d | |||
79a6ed32d8 | |||
caa5f97723 | |||
4924b3209e | |||
00f24f8765 | |||
f5b3d582b0 | |||
981c93d67a | |||
c020b78e02 | |||
2a0d75bac2 | |||
f48298ad4e | |||
645e47c1ba | |||
d1d9827263 | |||
14643c0aab | |||
b77a9b8947 | |||
7d077fe493 | |||
9cd4128833 | |||
c8b17c9526 | |||
2ae2a81e85 | |||
69c869d345 | |||
df9b958c40 | |||
3d3376d1a3 | |||
f2648e94b9 | |||
21ed6ac0f4 | |||
7bb8ab7000 | |||
2c824c2641 | |||
391fd9cc6a | |||
51051df62c | |||
33097681b9 | |||
07e4900218 | |||
36ab567d67 | |||
e19171523b | |||
9626a2c7c0 | |||
e936f5b80b | |||
ffc0639cb9 | |||
c5b43b322c | |||
c9c4576237 | |||
bf4369f72d | |||
36600899e2 | |||
b9c70d156b | |||
eb89579fe7 | |||
0cfd13d18b | |||
e6ed516052 | |||
e2a3dae1f2 | |||
6d0c2de399 | |||
7786ea9921 | |||
d93eac7b1c | |||
afc316f501 | |||
f14bfd5c1b | |||
c5f1420dea | |||
018e6da872 | |||
b77bccfac2 | |||
80359e0d49 | |||
3d437c5cc4 | |||
63d9b8e8a3 | |||
d247031c98 | |||
b8a7004365 | |||
affff3865f | |||
9c22655b5a | |||
99d879ea7f | |||
bd56c95a6f | |||
994512048e | |||
dbd8bb49dc | |||
3a29af0ce4 | |||
f7b79cdd45 | |||
075b9d22d0 | |||
b92428f05f | |||
34b11864b6 | |||
1dfaa08afb | |||
9d263d9a7d | |||
9015c229dc | |||
f44dce390f | |||
bb71e9a96a | |||
78bae9417c | |||
dd170ead01 | |||
014704856f | |||
a7eabaad56 | |||
eeb4703b84 | |||
a07421b3d3 | |||
cda53b4068 | |||
6f6844ccf1 | |||
4c6613d72c | |||
ee92e08edb | |||
c1dcee9328 | |||
559257bbe9 | |||
6b150961fe | |||
cff1f8d3b8 | |||
f27d2083cd | |||
36cc9c524f | |||
2822487450 | |||
e07fafe46a | |||
063d290bd8 | |||
4e6194d92a | |||
de30c4e22a | |||
df99f227c1 | |||
5bafcaedfa | |||
bfeceae708 | |||
eacb66591f | |||
fadaa85626 | |||
02a5b0d786 | |||
0e2141442a | |||
769eb0eecb | |||
4241c7d4a3 | |||
d536c67b9d | |||
f44f005dad | |||
26b2caf570 | |||
7b11075102 | |||
abc658dca5 | |||
8bb078db25 | |||
b61ba40023 | |||
452bf2e907 | |||
2372275b2c | |||
ef736e8aa4 | |||
5e539e2d54 | |||
96773f5254 | |||
d80df09f3b | |||
621e612c30 | |||
8c3792721b | |||
c95bbd3948 | |||
e28ab7a732 | |||
c797cbe737 | |||
e09dfbf1c2 | |||
85e35c4da1 | |||
d72e914cf0 | |||
3b5254e2d5 | |||
f1c358b596 | |||
c0ef210265 | |||
e3e1cc1962 | |||
723eadbb5c | |||
e24637ec1e | |||
8b01ff4ce7 | |||
588197c487 | |||
116d90b0ee | |||
b0646ca187 | |||
1352bad2e4 | |||
14d352ea4f | |||
1cf9ec1cce | |||
4895ff260e | |||
4b994a1bc7 | |||
e506d6d369 | |||
ab56ad8d7a | |||
470d93006a | |||
2f3d03f188 | |||
8db7c23bee | |||
69dc5172dc | |||
fd72eb6546 | |||
ffd7301649 | |||
d2a8494044 | |||
0982e0d19b | |||
3badbfc3c1 | |||
5465961e30 | |||
477b794bc5 | |||
e8c29e2fe5 | |||
4835fd1a87 | |||
6533c25814 | |||
b405767569 | |||
fe88a0c12f | |||
e61a9ed2b4 | |||
de8daa3824 | |||
3a50fb29cb | |||
6647d2656f | |||
a6f4dbeb6d | |||
92a282f2d8 | |||
ca2fd9fc7b | |||
3825329f8e | |||
be1a4f5860 | |||
1b2914ec09 | |||
519f795066 | |||
5897b93dd4 | |||
af091e0881 | |||
3c1e5e9517 | |||
85b2cb7a8a | |||
c7bdf2c0e4 | |||
4240ad5ca8 | |||
d418347d86 | |||
29a4bfe5e5 | |||
9955bf9daf | |||
da9cbfc7cc | |||
6b9f07c1ed | |||
b8bdc2eefb | |||
0078826ff1 | |||
e855c41772 | |||
d169c275b6 | |||
a5125e23f4 | |||
7b83c80757 | |||
e41821e206 | |||
bf91778550 | |||
5a75ab15a2 | |||
932c783fbf | |||
55f9cce577 | |||
b3533ca847 | |||
fd2a637010 | |||
eee27b8b30 | |||
8522352aa3 | |||
3beb8f4091 | |||
12a706e9b1 | |||
170aa7df01 | |||
e8ad1fef53 | |||
876c8f4478 | |||
9c8750f261 | |||
91efd08179 | |||
9953511b65 | |||
025fa9991a | |||
e8c60c355b | |||
6c9c7f9d85 | |||
f534523ede | |||
1b8a834beb | |||
aa9df63a05 | |||
3953312a93 | |||
6e62f4f616 | |||
6a7bdca53b | |||
c7fba9aace | |||
ac6c7cb8d6 | |||
c5924833a1 | |||
ac0a74be0d | |||
42b0e1125d | |||
339c4fda79 | |||
9b85bf9402 | |||
86b02c3cd8 | |||
7b3b7093fa | |||
881b08a465 | |||
3ee5444c69 | |||
5e28fe56d2 | |||
3aa43e6065 | |||
78ac4044ff | |||
119c3db47f | |||
21bbdb8fc2 | |||
5aabe074fe | |||
739bd7572c | |||
074627a5bd | |||
6a23b2c599 | |||
dace904c10 | |||
be98d26610 | |||
bd891fb3f5 | |||
3984265851 | |||
45361d188f | |||
80c9d77e02 | |||
3aff64dddb | |||
b4f2ca81ff | |||
d1dea5f840 | |||
54f8b84d16 | |||
da503fef0e | |||
4a6802098a | |||
f9b41a84d2 | |||
5d7e0d18b9 | |||
9e64387933 | |||
983b681d46 | |||
4072408b6f | |||
bd76b47fbf | |||
5f75735dab | |||
178376f24b | |||
18ce23aa75 | |||
6a0eb466ee | |||
ffa7fe0cc2 | |||
6b979f0a69 | |||
4ea29b8f0f | |||
778291230a | |||
86dac5ff4f | |||
4a382fad3f | |||
cc753670d9 | |||
cc9d88ea1c | |||
b281b0166e | |||
6a21f694ff | |||
fc4db5e963 | |||
6252ffaf76 | |||
026e736dfa | |||
4275b3f431 | |||
af64c1c6b6 | |||
866f48391a | |||
a4df527d74 | |||
5764d21161 | |||
496d04cd85 | |||
10e6d7c6ce | |||
c42e25e5b8 | |||
a00ae981e0 | |||
58e020b62a | |||
a7e1aceeca | |||
7212432f43 | |||
4a261fab30 | |||
6af97069b9 | |||
5068413cdb | |||
71c6960eea | |||
ddf6d5c9e3 | |||
39214702f6 | |||
3e4614c63a | |||
900e01f49b | |||
2376156fbc | |||
3f2fd49db4 | |||
0efa107cb6 | |||
8feedb4f6f | |||
05e562e3d7 | |||
dd3bbb8fa2 | |||
2fbcf13c46 | |||
4ea48ef0c4 | |||
5c85774ee3 | |||
d8a9a745d8 | |||
dcf172da3b | |||
d57ed25071 | |||
546be724e7 | |||
8a1b9073f9 | |||
1a7114d4b9 | |||
3f385f717c | |||
481bbaf1fc | |||
281488611a | |||
c180a52518 | |||
90130e25e9 | |||
23298acb81 | |||
52384e34cf | |||
d0bb033ea2 | |||
c6621806ca | |||
0b6f0f6d2f | |||
b5b759df73 | |||
7db8dd7a95 | |||
8b43be39c0 | |||
f17f879206 | |||
68428fceab | |||
4135f2dcd1 | |||
c5bdf61215 | |||
88e218e8ee | |||
0f2b786436 | |||
e1c326558a | |||
bae0f8ea99 | |||
bbbcd36ae5 | |||
39c0815d9e | |||
1b8176e2c0 | |||
cbc053c3db | |||
cdf3f6ef6e | |||
ba7f9d7b70 | |||
371fd123fb | |||
d6ff644aab | |||
29586f6b5e | |||
fd057c838f | |||
f51222086c | |||
a3e935c902 | |||
7731c7db8e | |||
ff97340324 | |||
83d86943db | |||
e82cf1d311 | |||
1db58a8acc | |||
920a51438d | |||
be528b6d27 | |||
f73691ec47 | |||
ccd21f96ff | |||
4b90cb8888 | |||
7ebda3e9ec | |||
b10e1b7bc8 | |||
796abfad80 | |||
ad0270ac8c | |||
7d62f1d6d2 | |||
458c943987 | |||
88015b0858 | |||
4ca1bf7cca | |||
2ff868f7a5 | |||
ede02b6883 | |||
1822ced302 | |||
37ba32776f | |||
99b3697b03 | |||
43a45ec97b | |||
b00a4142e5 | |||
3791bc527b | |||
d7dea44ce7 | |||
d8c29f5fcf | |||
37b6b82869 | |||
92ad5b8f74 | |||
281f8101fe | |||
dc747c54be | |||
07acfe89f2 | |||
40234f531f | |||
d49694f38f | |||
8c80f1c168 | |||
dc6a38f177 | |||
82c1ecf60f | |||
97a098636d | |||
e13930c8b2 | |||
0af7d5a793 | |||
505fa49983 | |||
7bcf33def9 | |||
a13820656a | |||
fa71b46a41 | |||
b8b3ae6ac1 | |||
55c008da21 | |||
2507606bd0 | |||
7c2ad4f8c8 | |||
54c8025aad | |||
921e23e83c | |||
6e750ecb0e | |||
b8f1f5d2a3 | |||
9273f2937c | |||
1aa28b47ae | |||
629cb2987a | |||
03235d6368 | |||
22064c7e4c | |||
2de03e5172 | |||
3af4929dda | |||
1ba429345b | |||
0655dab466 | |||
7f097bcc28 | |||
5c75aa5008 | |||
1873101362 | |||
63fd1dfa62 | |||
bd68861b28 | |||
82e959f66c | |||
62e52de06d | |||
184adeedb8 | |||
5fa6a8b96d | |||
a2a879b668 | |||
9317d893b2 | |||
86075fdd45 | |||
b36442e263 | |||
513d797ea6 | |||
9e4835a3e3 | |||
477ebf24f4 | |||
0d5639f707 | |||
413312f9a9 | |||
03508448f8 | |||
e1e5c75023 | |||
9296299b61 | |||
88bdd4344b | |||
4044536eea | |||
4d8ae6221c | |||
4e31e4e094 | |||
0d6674e489 | |||
b145fd4f5b | |||
8a5b794f25 | |||
291e80f88a | |||
1ace5850ae | |||
283f14b7c1 | |||
1d6e708083 | |||
89457e25e3 | |||
7e3b298d3d | |||
7ff3e5eed4 | |||
19eb51cf41 | |||
470d4dcc6d | |||
ed03bfd555 | |||
8c0fbcccae | |||
d4866157fe | |||
b6496b6cb5 | |||
4f5fe57920 | |||
11fb943b1e | |||
046a23121e |
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
name: Bug report
|
||||
description: Report a bug.
|
||||
title: "<insert title>"
|
||||
labels: [bug]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to file a bug report.
|
||||
Please check that the code is pointing to the HEAD of develop
|
||||
or any commit in master which is tagged with a version number.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Describe the issue:"
|
||||
description: >
|
||||
Describe the issue and any previous attempt to solve it.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Code example:"
|
||||
description: >
|
||||
If relevant, show how to reproduce the issue using a minimal working
|
||||
example.
|
||||
placeholder: |
|
||||
<< your code here >>
|
||||
render: shell
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Target platform:"
|
||||
description: >
|
||||
Give a description of the target platform (CPU, network, compiler).
|
||||
Please give the full CPU part description, using for example
|
||||
`cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
|
||||
or `sysctl machdep.cpu.brand_string` (macOS) and the full output
|
||||
the `--version` option of your compiler.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Configure options:"
|
||||
description: >
|
||||
Please give the exact configure command used and attach
|
||||
`config.log`, `grid.config.summary` and the output of `make V=1`.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,7 @@
|
||||
# Doxygen stuff
|
||||
html/*
|
||||
latex/*
|
||||
|
||||
# Compiled Object files #
|
||||
#########################
|
||||
*.slo
|
||||
|
@ -45,7 +45,7 @@ directory
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
|
||||
|
||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
|
||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma nv_diag_suppress unsigned_compare_with_zero
|
||||
#pragma nv_diag_suppress cast_to_qualified_type
|
||||
|
@ -14,7 +14,7 @@
|
||||
/* NVCC save and restore compile environment*/
|
||||
#ifdef __NVCC__
|
||||
#pragma push
|
||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
|
||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
||||
#pragma nv_diag_suppress code_is_unreachable
|
||||
#else
|
||||
#pragma diag_suppress code_is_unreachable
|
||||
@ -34,7 +34,7 @@
|
||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
||||
#undef __SYCL_DEVICE_ONLY__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
//#undef EIGEN_USE_SYCL
|
||||
#undef EIGEN_USE_SYCL
|
||||
#define __SYCL__REDEFINE__
|
||||
#endif
|
||||
|
||||
|
@ -66,6 +66,10 @@ if BUILD_FERMION_REPS
|
||||
extra_sources+=$(ADJ_FERMION_FILES)
|
||||
extra_sources+=$(TWOIND_FERMION_FILES)
|
||||
endif
|
||||
if BUILD_SP
|
||||
extra_sources+=$(SP_FERMION_FILES)
|
||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
||||
endif
|
||||
|
||||
lib_LIBRARIES = libGrid.a
|
||||
|
||||
|
@ -55,6 +55,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
|
@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#if defined(USE_MKL) || defined(GRID_SYCL)
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
|
@ -542,6 +542,7 @@ public:
|
||||
(*this)(in[i], out[i]);
|
||||
}
|
||||
}
|
||||
virtual ~LinearFunction(){};
|
||||
};
|
||||
|
||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||
|
@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
||||
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||||
* type = 1 for the approximation which is infinite at x = 0. */
|
||||
|
||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
||||
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||||
l, invlambda, xi, xisq, *tv, s, opl;
|
||||
int m, czero, ts;
|
||||
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
construct_partfrac(d);
|
||||
construct_contfrac(d);
|
||||
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
/* Converting everything to ZOLO_PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
|
||||
}
|
||||
|
||||
|
||||
zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
||||
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||||
int m, czero;
|
||||
zolotarev_data *zd;
|
||||
@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
|
||||
#ifdef TEST
|
||||
|
||||
#undef ZERO
|
||||
#define ZERO ((PRECISION) 0)
|
||||
#define ZERO ((ZOLO_PRECISION) 0)
|
||||
#undef ONE
|
||||
#define ONE ((PRECISION) 1)
|
||||
#define ONE ((ZOLO_PRECISION) 1)
|
||||
#undef TWO
|
||||
#define TWO ((PRECISION) 2)
|
||||
#define TWO ((ZOLO_PRECISION) 2)
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the factored form */
|
||||
|
||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R;
|
||||
ZOLO_PRECISION R;
|
||||
|
||||
if (rdata -> type == 0) {
|
||||
R = rdata -> A * x;
|
||||
@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||||
|
||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
for (m = 0; m < rdata -> dd; m++)
|
||||
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||||
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||||
@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||||
* but with signalling overflow you will get an error message. */
|
||||
|
||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> beta[0] * x;
|
||||
ZOLO_PRECISION R = rdata -> beta[0] * x;
|
||||
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||||
return R;
|
||||
}
|
||||
|
||||
/* Evaluate the rational approximation R(x) using Cayley form */
|
||||
|
||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION T;
|
||||
ZOLO_PRECISION T;
|
||||
|
||||
T = rdata -> type == 0 ? ONE : -ONE;
|
||||
for (m = 0; m < rdata -> n; m++)
|
||||
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
|
||||
int m, n, plotpts = 5000, type = 0;
|
||||
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||||
zolotarev_data *rdata;
|
||||
PRECISION y;
|
||||
ZOLO_PRECISION y;
|
||||
FILE *plot_function, *plot_error,
|
||||
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||||
|
||||
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
rdata = type == 2
|
||||
? higham((PRECISION) eps, n)
|
||||
: zolotarev((PRECISION) eps, n, type);
|
||||
? higham((ZOLO_PRECISION) eps, n)
|
||||
: zolotarev((ZOLO_PRECISION) eps, n, type);
|
||||
|
||||
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||||
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||||
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||||
"\tPRECISION = " STRINGIFY(PRECISION)
|
||||
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
|
||||
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||||
"\tDelta = %g (maximum error)\n\n"
|
||||
"\tA = %g (overall factor)\n",
|
||||
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
|
||||
x = 2.4 * (float) m / plotpts - 1.2;
|
||||
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||||
/* skip x = 0 for type 1, as R(0) is singular */
|
||||
y = zolotarev_eval((PRECISION) x, rdata);
|
||||
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
|
||||
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||||
fprintf(plot_error, "%g %g\n",
|
||||
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||||
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||||
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||||
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||||
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||||
|
@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
|
||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
||||
|
||||
#ifndef ZOLOTAREV_INTERNAL
|
||||
#ifndef PRECISION
|
||||
#define PRECISION double
|
||||
#ifndef ZOLO_PRECISION
|
||||
#define ZOLO_PRECISION double
|
||||
#endif
|
||||
#define ZPRECISION PRECISION
|
||||
#define ZPRECISION ZOLO_PRECISION
|
||||
#define ZOLOTAREV_DATA zolotarev_data
|
||||
#endif
|
||||
|
||||
@ -77,8 +77,8 @@ typedef struct {
|
||||
* zolotarev_data structure. The arguments must satisfy the constraints that
|
||||
* epsilon > 0, n > 0, and type = 0 or 1. */
|
||||
|
||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
|
||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
|
||||
void zolotarev_free(zolotarev_data *zdata);
|
||||
#endif
|
||||
|
||||
@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata);
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
@ -0,0 +1,34 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
||||
int GridBLAS::gridblasInit;
|
||||
NAMESPACE_END(Grid);
|
||||
|
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
@ -0,0 +1,727 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
#include <cublas_v2.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
#if 0
|
||||
#define GRID_ONE_MKL
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#ifdef GRID_HIP
|
||||
typedef hipblasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
typedef cublasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
|
||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
|
||||
|
||||
class GridBLAS {
|
||||
public:
|
||||
|
||||
|
||||
static gridblasHandle_t gridblasHandle;
|
||||
static int gridblasInit;
|
||||
|
||||
static void Init(void)
|
||||
{
|
||||
if ( ! gridblasInit ) {
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << "cublasCreate"<<std::endl;
|
||||
cublasCreate(&gridblasHandle);
|
||||
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << "hipblasCreate"<<std::endl;
|
||||
hipblasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
gridblasHandle = theGridAccelerator;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
cl::sycl::cpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
gridblasHandle =new sycl::queue (selectedDevice);
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
}
|
||||
}
|
||||
|
||||
// Force construct once
|
||||
GridBLAS() { Init(); };
|
||||
~GridBLAS() { };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// BLAS GEMM conventions:
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// - C = alpha A * B + beta C
|
||||
// Dimensions:
|
||||
// - C_m.n
|
||||
// - A_m.k
|
||||
// - B_k.n
|
||||
// - Flops = 8 M N K
|
||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
||||
// M=60, N=12
|
||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
void synchronise(void)
|
||||
{
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipDeviceSynchronize();
|
||||
assert(err==hipSuccess);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cudaDeviceSynchronize();
|
||||
assert(err==cudaSuccess);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
accelerator_barrier();
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
gridblasHandle->wait();
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<ComplexD> alpha_p(1);
|
||||
static deviceVector<ComplexD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex **)&Amk[0], lda,
|
||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// synchronise();
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<ComplexF> alpha_p(1);
|
||||
static deviceVector<ComplexF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasComplex *) &alpha_p[0],
|
||||
(hipblasComplex **)&Amk[0], lda,
|
||||
(hipblasComplex **)&Bkn[0], ldb,
|
||||
(hipblasComplex *) &beta_p[0],
|
||||
(hipblasComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuComplex *) &alpha_p[0],
|
||||
(cuComplex **)&Amk[0], lda,
|
||||
(cuComplex **)&Bkn[0], ldb,
|
||||
(cuComplex *) &beta_p[0],
|
||||
(cuComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Single precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<RealF> alpha_p(1);
|
||||
static deviceVector<RealF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<RealD> alpha_p(1);
|
||||
static deviceVector<RealD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasDgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
|
||||
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
oneapi::mkl::transpose::N,
|
||||
oneapi::mkl::transpose::N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
(const ComplexD *)Amk,lda,sda,
|
||||
(const ComplexD *)Bkn,ldb,sdb,
|
||||
beta,
|
||||
(ComplexD *)Cmn,ldc,sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
int ncall=10;
|
||||
RealD t0 = usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = 8.0*M*N*K*BATCH*ncall;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
return flops; // Returns gigaflops
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -191,7 +191,7 @@ public:
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
|
@ -108,7 +108,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
|
||||
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
|
||||
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d, tmp_d);
|
||||
@ -123,7 +126,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
@ -142,7 +145,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
|
213
Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
Normal file
213
Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
Normal file
@ -0,0 +1,213 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Mixed precision restarted defect correction CG
|
||||
template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
|
||||
public:
|
||||
using LinearFunction<FieldD>::operator();
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
Integer MaxPatchupIterations;
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
bool updateResidual;
|
||||
|
||||
MixedPrecisionConjugateGradientBatched(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
Integer maxpatchit,
|
||||
GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF> &_Linop_f,
|
||||
LinearOperatorBase<FieldD> &_Linop_d,
|
||||
bool _updateResidual=true) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d),
|
||||
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
|
||||
OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
|
||||
|
||||
void useGuesser(LinearFunction<FieldF> &g){
|
||||
guesser = &g;
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
std::vector<FieldD> srcs_d_in{src_d_in};
|
||||
std::vector<FieldD> sols_d{sol_d};
|
||||
|
||||
(*this)(srcs_d_in,sols_d);
|
||||
|
||||
sol_d = sols_d[0];
|
||||
}
|
||||
|
||||
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
|
||||
assert(src_d_in.size() == sol_d.size());
|
||||
int NBatch = src_d_in.size();
|
||||
|
||||
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
|
||||
|
||||
Integer TotalOuterIterations = 0; //Number of restarts
|
||||
std::vector<Integer> TotalInnerIterations(NBatch,0); //Number of inner CG iterations
|
||||
std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
TotalTimer.Start();
|
||||
|
||||
GridStopWatch InnerCGtimer;
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
int cb = src_d_in[0].Checkerboard();
|
||||
|
||||
std::vector<RealD> src_norm;
|
||||
std::vector<RealD> norm;
|
||||
std::vector<RealD> stop;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in[0].Grid();
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
FieldD tmp2_d(DoublePrecGrid);
|
||||
tmp2_d.Checkerboard() = cb;
|
||||
|
||||
std::vector<FieldD> src_d;
|
||||
std::vector<FieldF> src_f;
|
||||
std::vector<FieldF> sol_f;
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
sol_d[i].Checkerboard() = cb;
|
||||
|
||||
src_norm.push_back(norm2(src_d_in[i]));
|
||||
norm.push_back(0.);
|
||||
stop.push_back(src_norm[i] * Tolerance*Tolerance);
|
||||
|
||||
src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
|
||||
|
||||
src_f.push_back(SinglePrecGrid);
|
||||
src_f[i].Checkerboard() = cb;
|
||||
|
||||
sol_f.push_back(SinglePrecGrid);
|
||||
sol_f[i].Checkerboard() = cb;
|
||||
}
|
||||
|
||||
RealD inner_tol = InnerTolerance;
|
||||
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
|
||||
|
||||
bool allConverged = true;
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d[i], tmp_d);
|
||||
norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f[i], src_d[i]);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f[i] = Zero();
|
||||
|
||||
if(norm[i] > OuterLoopNormMult * stop[i]) {
|
||||
allConverged = false;
|
||||
}
|
||||
}
|
||||
if (allConverged) break;
|
||||
|
||||
if (updateResidual) {
|
||||
RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
|
||||
RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
|
||||
while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
CG_f.Tolerance = inner_tol;
|
||||
}
|
||||
|
||||
//Optionally improve inner solver guess (eg using known eigenvectors)
|
||||
if(guesser != NULL) {
|
||||
(*guesser)(src_f, sol_f);
|
||||
}
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
//Inner CG
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f[i], sol_f[i]);
|
||||
InnerCGtimer.Stop();
|
||||
TotalInnerIterations[i] += CG_f.IterationsToComplete;
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f[i]);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Final trial CG
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
|
||||
CG_d(Linop_d, src_d_in[i], sol_d[i]);
|
||||
TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
|
||||
}
|
||||
|
||||
TotalTimer.Stop();
|
||||
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
373
Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
Normal file
373
Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
Normal file
@ -0,0 +1,373 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||
//Every update_freq iterations the residual is corrected in double precision.
|
||||
//For safety the a final regular CG is applied to clean up if necessary
|
||||
|
||||
//PB Pure single, then double fixup
|
||||
|
||||
template<class FieldD, class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
|
||||
public OperatorFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterationsMshift;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq) :
|
||||
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||
MaxIterations(20000)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<FieldD> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||
{
|
||||
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
|
||||
//Double precision search directions
|
||||
FieldD p_d(DoublePrecGrid);
|
||||
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
|
||||
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD rsqf[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
FieldF p_f(SinglePrecGrid);
|
||||
FieldF mmp_f(SinglePrecGrid);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src_d);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi_d[s] = Zero();
|
||||
psi_f[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
rsqf[s] =rsq[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
// ps_d[s] = src_d;
|
||||
precisionChange(ps_f[s],src_d);
|
||||
}
|
||||
// r and p for primary
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
r_d = p_d;
|
||||
|
||||
//MdagM+m[0]
|
||||
precisionChange(p_f,p_d);
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
precisionChange(tmp_d,mmp_f);
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
// assert(norm2(tmp_d)< 1.0e-4);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
d += rn*mass[0];
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r_d,b,mmp_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
precisionChange(psi_f[s],psi_d[s]);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterationsMshift;k++){
|
||||
|
||||
a = c /cp;
|
||||
AXPYTimer.Start();
|
||||
axpy(p_d,a,p_d,r_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r_d);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps_f[s],a,ps_f[s],r_f);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(p_f, p_d); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
MatrixTimer.Stop();
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp_d, mmp_f); // From Float to Double
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
d=real(innerProduct(p_d,mmp_d));
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
//Update single precision solutions
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
|
||||
}
|
||||
}
|
||||
c = axpy_norm(r_d,b,mmp_d,r_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsqf[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged || k == MaxIterationsMshift-1){
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
precisionChange(psi_d[s],psi_f[s]);
|
||||
}
|
||||
|
||||
|
||||
if ( all_converged ){
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
|
||||
} else {
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
|
||||
}
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||
RealD rn = norm2(r_d);
|
||||
RealD cn = norm2(src_d);
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||
|
||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||
if(rn >= rsq[s]){
|
||||
CleanupTimer.Start();
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
|
||||
|
||||
//Setup linear operators for final cleanup
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||
cg(src_d, psi_d[s]);
|
||||
|
||||
TrueResidualShift[s] = cg.TrueResidual;
|
||||
CleanupTimer.Stop();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -81,6 +81,7 @@ public:
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterationsMshift;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
@ -95,9 +96,9 @@ public:
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq
|
||||
) :
|
||||
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
|
||||
int _ReliableUpdateFreq) :
|
||||
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||
MaxIterations(20000)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
@ -130,6 +131,9 @@ public:
|
||||
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
|
||||
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
|
||||
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
@ -200,14 +204,14 @@ public:
|
||||
r_d = p_d;
|
||||
|
||||
//MdagM+m[0]
|
||||
precisionChangeFast(p_f,p_d);
|
||||
precisionChange(p_f, p_d, pc_wk_d_to_s);
|
||||
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
precisionChangeFast(tmp_d,mmp_f);
|
||||
precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
// assert(norm2(tmp_d)< 1.0e-4);
|
||||
assert(norm2(tmp_d)< 1.0);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
@ -244,7 +248,7 @@ public:
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
for (k=1;k<=MaxIterationsMshift;k++){
|
||||
|
||||
a = c /cp;
|
||||
AXPYTimer.Start();
|
||||
@ -263,7 +267,7 @@ public:
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChangeFast(p_f, p_d); //get back single prec search direction for linop
|
||||
precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
@ -272,7 +276,7 @@ public:
|
||||
MatrixTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChangeFast(mmp_d, mmp_f); // From Float to Double
|
||||
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
@ -350,12 +354,17 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged ){
|
||||
if ( all_converged || k == MaxIterationsMshift-1){
|
||||
|
||||
SolverTimer.Stop();
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||
|
||||
|
||||
if ( all_converged ){
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||
} else {
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
|
||||
}
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
@ -396,12 +405,10 @@ public:
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
// ugly hack
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -48,7 +48,7 @@ public:
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
GridBase* SinglePrecGrid;
|
||||
RealD Delta; //reliable update parameter
|
||||
RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
|
||||
|
||||
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
||||
LinearOperatorBase<FieldF> *Linop_fallback;
|
||||
@ -65,7 +65,9 @@ public:
|
||||
ErrorOnNoConverge(err_on_no_conv),
|
||||
DoFinalCleanup(true),
|
||||
Linop_fallback(NULL)
|
||||
{};
|
||||
{
|
||||
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
|
||||
};
|
||||
|
||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||
Linop_fallback = &_Linop_fallback;
|
||||
@ -116,9 +118,12 @@ public:
|
||||
}
|
||||
|
||||
//Single prec initialization
|
||||
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
|
||||
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
|
||||
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
r_f.Checkerboard() = r.Checkerboard();
|
||||
precisionChange(r_f, r);
|
||||
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
||||
|
||||
FieldF psi_f(r_f);
|
||||
psi_f = Zero();
|
||||
@ -134,7 +139,8 @@ public:
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k = 0;
|
||||
int l = 0;
|
||||
@ -173,7 +179,9 @@ public:
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
//Although not written in the paper, I assume that I have to add on the final solution
|
||||
precisionChange(mmp, psi_f);
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
psi = psi + mmp;
|
||||
|
||||
|
||||
@ -194,7 +202,10 @@ public:
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
|
||||
|
||||
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
|
||||
@ -214,14 +225,21 @@ public:
|
||||
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
||||
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
||||
precisionChange(mmp, psi_f);
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
psi = psi + mmp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
r = src - mmp;
|
||||
|
||||
psi_f = Zero();
|
||||
precisionChange(r_f, r);
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
||||
PrecChangeTimer.Stop();
|
||||
cp = norm2(r);
|
||||
MaxResidSinceLastRelUp = cp;
|
||||
|
||||
|
1412
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
1412
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -419,14 +419,15 @@ until convergence
|
||||
}
|
||||
}
|
||||
|
||||
if ( Nconv < Nstop )
|
||||
if ( Nconv < Nstop ) {
|
||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||
|
||||
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
|
||||
}
|
||||
eval=eval2;
|
||||
|
||||
//Keep only converged
|
||||
eval.resize(Nconv);// Nstop?
|
||||
evec.resize(Nconv,grid);// Nstop?
|
||||
eval.resize(Nstop);// was Nconv
|
||||
evec.resize(Nstop,grid);// was Nconv
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
}
|
||||
|
@ -176,6 +176,7 @@ template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -4,11 +4,14 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*Allocation types, saying which pointer cache should be used*/
|
||||
#define Cpu (0)
|
||||
#define CpuSmall (1)
|
||||
#define Acc (2)
|
||||
#define AccSmall (3)
|
||||
#define Shared (4)
|
||||
#define SharedSmall (5)
|
||||
#define CpuHuge (1)
|
||||
#define CpuSmall (2)
|
||||
#define Acc (3)
|
||||
#define AccHuge (4)
|
||||
#define AccSmall (5)
|
||||
#define Shared (6)
|
||||
#define SharedHuge (7)
|
||||
#define SharedSmall (8)
|
||||
#undef GRID_MM_VERBOSE
|
||||
uint64_t total_shared;
|
||||
uint64_t total_device;
|
||||
@ -35,12 +38,15 @@ void MemoryManager::PrintBytes(void)
|
||||
|
||||
}
|
||||
|
||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
|
||||
uint64_t MemoryManager::HostCacheBytes() { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Data tables for recently freed pooiniter caches
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
|
||||
int MemoryManager::Victim[MemoryManager::NallocType];
|
||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 8, 8, 16, 8, 16 };
|
||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
|
||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Actual allocation and deallocation utils
|
||||
@ -170,6 +176,16 @@ void MemoryManager::Init(void)
|
||||
}
|
||||
}
|
||||
|
||||
str= getenv("GRID_ALLOC_NCACHE_HUGE");
|
||||
if ( str ) {
|
||||
Nc = atoi(str);
|
||||
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
|
||||
Ncache[CpuHuge]=Nc;
|
||||
Ncache[AccHuge]=Nc;
|
||||
Ncache[SharedHuge]=Nc;
|
||||
}
|
||||
}
|
||||
|
||||
str= getenv("GRID_ALLOC_NCACHE_SMALL");
|
||||
if ( str ) {
|
||||
Nc = atoi(str);
|
||||
@ -190,7 +206,9 @@ void MemoryManager::InitMessage(void) {
|
||||
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
|
||||
#ifdef ALLOCATION_CACHE
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
|
||||
#endif
|
||||
|
||||
#ifdef GRID_UVM
|
||||
@ -222,8 +240,11 @@ void MemoryManager::InitMessage(void) {
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
||||
{
|
||||
#ifdef ALLOCATION_CACHE
|
||||
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
|
||||
int cache = type + small;
|
||||
int cache;
|
||||
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
|
||||
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
|
||||
else cache = type;
|
||||
|
||||
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
|
||||
#else
|
||||
return ptr;
|
||||
@ -232,11 +253,12 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
||||
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
|
||||
{
|
||||
assert(ncache>0);
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
#endif
|
||||
|
||||
if (ncache == 0) return ptr;
|
||||
|
||||
void * ret = NULL;
|
||||
int v = -1;
|
||||
|
||||
@ -271,8 +293,11 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
|
||||
void *MemoryManager::Lookup(size_t bytes,int type)
|
||||
{
|
||||
#ifdef ALLOCATION_CACHE
|
||||
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
|
||||
int cache = type+small;
|
||||
int cache;
|
||||
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
|
||||
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
|
||||
else cache = type;
|
||||
|
||||
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
|
||||
#else
|
||||
return NULL;
|
||||
@ -281,7 +306,6 @@ void *MemoryManager::Lookup(size_t bytes,int type)
|
||||
|
||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
|
||||
{
|
||||
assert(ncache>0);
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
#endif
|
||||
|
@ -35,6 +35,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Move control to configure.ac and Config.h?
|
||||
|
||||
#define GRID_ALLOC_SMALL_LIMIT (4096)
|
||||
#define GRID_ALLOC_HUGE_LIMIT (2147483648)
|
||||
|
||||
#define STRINGIFY(x) #x
|
||||
#define TOSTRING(x) STRINGIFY(x)
|
||||
@ -70,6 +71,21 @@ enum ViewMode {
|
||||
CpuWriteDiscard = 0x10 // same for now
|
||||
};
|
||||
|
||||
struct MemoryStatus {
|
||||
uint64_t DeviceBytes;
|
||||
uint64_t DeviceLRUBytes;
|
||||
uint64_t DeviceMaxBytes;
|
||||
uint64_t HostToDeviceBytes;
|
||||
uint64_t DeviceToHostBytes;
|
||||
uint64_t HostToDeviceXfer;
|
||||
uint64_t DeviceToHostXfer;
|
||||
uint64_t DeviceEvictions;
|
||||
uint64_t DeviceDestroy;
|
||||
uint64_t DeviceAllocCacheBytes;
|
||||
uint64_t HostAllocCacheBytes;
|
||||
};
|
||||
|
||||
|
||||
class MemoryManager {
|
||||
private:
|
||||
|
||||
@ -83,7 +99,7 @@ private:
|
||||
} AllocationCacheEntry;
|
||||
|
||||
static const int NallocCacheMax=128;
|
||||
static const int NallocType=6;
|
||||
static const int NallocType=9;
|
||||
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
|
||||
static int Victim[NallocType];
|
||||
static int Ncache[NallocType];
|
||||
@ -97,8 +113,8 @@ private:
|
||||
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
|
||||
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
|
||||
|
||||
static void PrintBytes(void);
|
||||
public:
|
||||
static void PrintBytes(void);
|
||||
static void Audit(std::string s);
|
||||
static void Init(void);
|
||||
static void InitMessage(void);
|
||||
@ -119,7 +135,28 @@ private:
|
||||
static uint64_t DeviceToHostBytes;
|
||||
static uint64_t HostToDeviceXfer;
|
||||
static uint64_t DeviceToHostXfer;
|
||||
|
||||
static uint64_t DeviceEvictions;
|
||||
static uint64_t DeviceDestroy;
|
||||
|
||||
static uint64_t DeviceCacheBytes();
|
||||
static uint64_t HostCacheBytes();
|
||||
|
||||
static MemoryStatus GetFootprint(void) {
|
||||
MemoryStatus stat;
|
||||
stat.DeviceBytes = DeviceBytes;
|
||||
stat.DeviceLRUBytes = DeviceLRUBytes;
|
||||
stat.DeviceMaxBytes = DeviceMaxBytes;
|
||||
stat.HostToDeviceBytes = HostToDeviceBytes;
|
||||
stat.DeviceToHostBytes = DeviceToHostBytes;
|
||||
stat.HostToDeviceXfer = HostToDeviceXfer;
|
||||
stat.DeviceToHostXfer = DeviceToHostXfer;
|
||||
stat.DeviceEvictions = DeviceEvictions;
|
||||
stat.DeviceDestroy = DeviceDestroy;
|
||||
stat.DeviceAllocCacheBytes = DeviceCacheBytes();
|
||||
stat.HostAllocCacheBytes = HostCacheBytes();
|
||||
return stat;
|
||||
};
|
||||
|
||||
private:
|
||||
#ifndef GRID_UVM
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
@ -176,6 +213,7 @@ private:
|
||||
|
||||
public:
|
||||
static void Print(void);
|
||||
static void PrintAll(void);
|
||||
static void PrintState( void* CpuPtr);
|
||||
static int isOpen (void* CpuPtr);
|
||||
static void ViewClose(void* CpuPtr,ViewMode mode);
|
||||
|
@ -28,6 +28,8 @@ uint64_t MemoryManager::HostToDeviceBytes;
|
||||
uint64_t MemoryManager::DeviceToHostBytes;
|
||||
uint64_t MemoryManager::HostToDeviceXfer;
|
||||
uint64_t MemoryManager::DeviceToHostXfer;
|
||||
uint64_t MemoryManager::DeviceEvictions;
|
||||
uint64_t MemoryManager::DeviceDestroy;
|
||||
|
||||
////////////////////////////////////
|
||||
// Priority ordering for unlocked entries
|
||||
@ -115,8 +117,10 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr) {
|
||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||
DeviceDestroy++;
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
LRUremove(AccCache);
|
||||
AccCache.AccPtr=(uint64_t) NULL;
|
||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||
}
|
||||
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
@ -126,8 +130,14 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Make CPU consistent, remove from Accelerator, remove entry
|
||||
// Cannot be locked. If allocated must be in LRU pool.
|
||||
// Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
|
||||
// Cannot be acclocked. If allocated must be in LRU pool.
|
||||
//
|
||||
// Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
|
||||
// and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
|
||||
// but there is a weakness where CpuLock entries are attempted for erase
|
||||
// Take these OUT LRU queue when CPU locked?
|
||||
// Cannot take out the table as cpuLock data is important.
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
@ -139,15 +149,17 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
if(AccCache.state==AccDirty) {
|
||||
Flush(AccCache);
|
||||
}
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr) {
|
||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
LRUremove(AccCache);
|
||||
AccCache.AccPtr=(uint64_t)NULL;
|
||||
AccCache.state=CpuDirty; // CPU primary now
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
}
|
||||
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
EntryErase(CpuPtr);
|
||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
DeviceEvictions++;
|
||||
// EntryErase(CpuPtr);
|
||||
}
|
||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
@ -221,13 +233,16 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
|
||||
}
|
||||
void MemoryManager::EvictVictims(uint64_t bytes)
|
||||
{
|
||||
assert(bytes<DeviceMaxBytes);
|
||||
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
|
||||
if ( DeviceLRUBytes > 0){
|
||||
assert(LRU.size()>0);
|
||||
uint64_t victim = LRU.back();
|
||||
uint64_t victim = LRU.back(); // From the LRU
|
||||
auto AccCacheIterator = EntryLookup(victim);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
Evict(AccCache);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -322,7 +337,8 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// If view is opened on device remove from LRU
|
||||
assert(AccCache.accLock>0);
|
||||
// If view is opened on device must remove from LRU
|
||||
if(AccCache.LRU_valid==1){
|
||||
// must possibly remove from LRU as now locked on GPU
|
||||
dprintf("AccCache entry removed from LRU \n");
|
||||
@ -388,9 +404,10 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
|
||||
if (!AccCache.AccPtr) {
|
||||
EvictVictims(bytes);
|
||||
}
|
||||
// CPU doesn't need to free space
|
||||
// if (!AccCache.AccPtr) {
|
||||
// EvictVictims(bytes);
|
||||
// }
|
||||
|
||||
assert((mode==CpuRead)||(mode==CpuWrite));
|
||||
assert(AccCache.accLock==0); // Programming error
|
||||
@ -444,20 +461,28 @@ void MemoryManager::NotifyDeletion(void *_ptr)
|
||||
void MemoryManager::Print(void)
|
||||
{
|
||||
PrintBytes();
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogDebug << "Memory Manager " << std::endl;
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
|
||||
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
|
||||
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
|
||||
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
|
||||
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
|
||||
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
|
||||
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
|
||||
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << "Memory Manager " << std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << DeviceBytes << " bytes allocated on device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device " << std::endl;
|
||||
std::cout << GridLogMessage << HostToDeviceXfer << " transfers to device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceToHostXfer << " transfers from device " << std::endl;
|
||||
std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
|
||||
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
}
|
||||
void MemoryManager::PrintAll(void)
|
||||
{
|
||||
Print();
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
||||
auto &AccCache = it->second;
|
||||
|
||||
@ -467,13 +492,13 @@ void MemoryManager::Print(void)
|
||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||
|
||||
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t" << AccCache.cpuLock
|
||||
<< "\t" << AccCache.accLock
|
||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
||||
}
|
||||
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
|
||||
};
|
||||
int MemoryManager::isOpen (void* _CpuPtr)
|
||||
@ -489,6 +514,24 @@ int MemoryManager::isOpen (void* _CpuPtr)
|
||||
}
|
||||
void MemoryManager::Audit(std::string s)
|
||||
{
|
||||
uint64_t CpuBytes=0;
|
||||
uint64_t AccBytes=0;
|
||||
uint64_t LruBytes1=0;
|
||||
uint64_t LruBytes2=0;
|
||||
uint64_t LruCnt=0;
|
||||
|
||||
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
|
||||
for(auto it=LRU.begin();it!=LRU.end();it++){
|
||||
uint64_t cpuPtr = *it;
|
||||
assert(EntryPresent(cpuPtr));
|
||||
auto AccCacheIterator = EntryLookup(cpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
LruBytes2+=AccCache.bytes;
|
||||
assert(AccCache.LRU_valid==1);
|
||||
assert(AccCache.LRU_entry==it);
|
||||
}
|
||||
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
|
||||
|
||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
||||
auto &AccCache = it->second;
|
||||
|
||||
@ -498,7 +541,14 @@ void MemoryManager::Audit(std::string s)
|
||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||
|
||||
if ( AccCache.cpuLock || AccCache.accLock ) {
|
||||
CpuBytes+=AccCache.bytes;
|
||||
if( AccCache.AccPtr ) AccBytes+=AccCache.bytes;
|
||||
if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
|
||||
if( AccCache.LRU_valid ) LruCnt++;
|
||||
|
||||
if ( AccCache.cpuLock || AccCache.accLock ) {
|
||||
assert(AccCache.LRU_valid==0);
|
||||
|
||||
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t cpuLock " << AccCache.cpuLock
|
||||
@ -509,6 +559,15 @@ void MemoryManager::Audit(std::string s)
|
||||
assert( AccCache.cpuLock== 0 ) ;
|
||||
assert( AccCache.accLock== 0 ) ;
|
||||
}
|
||||
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
|
||||
assert(LruBytes1==LruBytes2);
|
||||
assert(LruBytes1==DeviceLRUBytes);
|
||||
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
|
||||
assert(AccBytes==DeviceBytes);
|
||||
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
|
||||
assert(LruCnt == LRU.size());
|
||||
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
void MemoryManager::PrintState(void* _CpuPtr)
|
||||
@ -526,8 +585,8 @@ void MemoryManager::PrintState(void* _CpuPtr)
|
||||
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
|
||||
|
||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t" << AccCache.cpuLock
|
||||
<< "\t" << AccCache.accLock
|
||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
||||
|
@ -12,6 +12,8 @@ uint64_t MemoryManager::HostToDeviceBytes;
|
||||
uint64_t MemoryManager::DeviceToHostBytes;
|
||||
uint64_t MemoryManager::HostToDeviceXfer;
|
||||
uint64_t MemoryManager::DeviceToHostXfer;
|
||||
uint64_t MemoryManager::DeviceEvictions;
|
||||
uint64_t MemoryManager::DeviceDestroy;
|
||||
|
||||
void MemoryManager::Audit(std::string s){};
|
||||
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
|
||||
@ -22,6 +24,7 @@ void MemoryManager::PrintState(void* CpuPtr)
|
||||
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
|
||||
};
|
||||
void MemoryManager::Print(void){};
|
||||
void MemoryManager::PrintAll(void){};
|
||||
void MemoryManager::NotifyDeletion(void *ptr){};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -348,6 +348,7 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
return offbytes;
|
||||
}
|
||||
|
||||
#undef NVLINK_GET // Define to use get instead of put DMA
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
@ -380,9 +381,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
#ifdef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (dox) {
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
@ -390,9 +397,12 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -400,11 +410,10 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
acceleratorCopySynchronise();
|
||||
StencilBarrier();// Synch shared memory on a single nodes
|
||||
|
||||
int nreq=list.size();
|
||||
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
|
@ -128,7 +128,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
int recv_from_rank,int dor,
|
||||
int xbytes,int rbytes, int dir)
|
||||
{
|
||||
return 2.0*bytes;
|
||||
return xbytes+rbytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
|
@ -40,6 +40,9 @@ int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void * GlobalSharedMemory::HostCommBuf;
|
||||
#endif
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
|
||||
void *ptr = (void *)host_heap_top;
|
||||
host_heap_top += bytes;
|
||||
host_heap_bytes+= bytes;
|
||||
if (host_heap_bytes >= host_heap_size) {
|
||||
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
assert(host_heap_bytes<host_heap_size);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::HostBufferFreeAll(void) {
|
||||
host_heap_top =(size_t)HostCommBuf;
|
||||
host_heap_bytes=0;
|
||||
}
|
||||
#endif
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
@ -91,6 +114,59 @@ void *SharedMemory::ShmBufferSelf(void)
|
||||
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
|
||||
return ShmCommBufs[ShmRank];
|
||||
}
|
||||
static inline int divides(int a,int b)
|
||||
{
|
||||
return ( b == ( (b/a)*a ) );
|
||||
}
|
||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Allow user to configure through environment variable
|
||||
////////////////////////////////////////////////////////////////
|
||||
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
||||
if ( str ) {
|
||||
std::vector<int> IntShmDims;
|
||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||
assert(IntShmDims.size() == WorldDims.size());
|
||||
long ShmSize = 1;
|
||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||
}
|
||||
assert(ShmSize == WorldShmSize);
|
||||
return;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Powers of 2,3,5 only in prime decomposition for now
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = WorldDims.size();
|
||||
ShmDims=Coordinate(ndimension,1);
|
||||
|
||||
std::vector<int> primes({2,3,5});
|
||||
|
||||
int dim = 0;
|
||||
int last_dim = ndimension - 1;
|
||||
int AutoShmSize = 1;
|
||||
while(AutoShmSize != WorldShmSize) {
|
||||
int p;
|
||||
for(p=0;p<primes.size();p++) {
|
||||
int prime=primes[p];
|
||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||
AutoShmSize*=prime;
|
||||
ShmDims[dim]*=prime;
|
||||
last_dim = dim;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (p == primes.size() && last_dim == dim) {
|
||||
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
dim=(dim+1) %ndimension;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -75,7 +75,9 @@ public:
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static void *HostCommBuf;
|
||||
#endif
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
@ -120,6 +122,13 @@ private:
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
size_t host_heap_top; // set in free all
|
||||
size_t host_heap_bytes;// set in free all
|
||||
void *HostCommBuf; // set in SetCommunicator
|
||||
size_t host_heap_size; // set in SetCommunicator
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
@ -151,7 +160,10 @@ public:
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *HostBufferMalloc(size_t bytes);
|
||||
void HostBufferFreeAll(void);
|
||||
#endif
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
@ -27,9 +27,10 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#define Mheader "SharedMemoryMpi: "
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
#include <pwd.h>
|
||||
#include <syscall.h>
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
#include <cuda_runtime_api.h>
|
||||
@ -37,12 +38,122 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#ifdef GRID_HIP
|
||||
#include <hip/hip_runtime_api.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCl
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
||||
#define SHM_SOCKETS
|
||||
#endif
|
||||
#include <syscall.h>
|
||||
#endif
|
||||
|
||||
#include <sys/socket.h>
|
||||
#include <sys/un.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#define header "SharedMemoryMpi: "
|
||||
|
||||
#ifdef SHM_SOCKETS
|
||||
|
||||
/*
|
||||
* Barbaric extra intranode communication route in case we need sockets to pass FDs
|
||||
* Forced by level_zero not being nicely designed
|
||||
*/
|
||||
static int sock;
|
||||
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
|
||||
static char sock_path[256];
|
||||
class UnixSockets {
|
||||
public:
|
||||
static void Open(int rank)
|
||||
{
|
||||
int errnum;
|
||||
|
||||
sock = socket(AF_UNIX, SOCK_DGRAM, 0); assert(sock>0);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
|
||||
unlink(sa_un.sun_path);
|
||||
if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
|
||||
perror("bind failure");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
static int RecvFileDescriptor(void)
|
||||
{
|
||||
int n;
|
||||
int fd;
|
||||
char buf[1];
|
||||
struct iovec iov;
|
||||
struct msghdr msg;
|
||||
struct cmsghdr *cmsg;
|
||||
char cms[CMSG_SPACE(sizeof(int))];
|
||||
|
||||
iov.iov_base = buf;
|
||||
iov.iov_len = 1;
|
||||
|
||||
memset(&msg, 0, sizeof msg);
|
||||
msg.msg_name = 0;
|
||||
msg.msg_namelen = 0;
|
||||
msg.msg_iov = &iov;
|
||||
msg.msg_iovlen = 1;
|
||||
|
||||
msg.msg_control = (caddr_t)cms;
|
||||
msg.msg_controllen = sizeof cms;
|
||||
|
||||
if((n=recvmsg(sock, &msg, 0)) < 0) {
|
||||
perror("recvmsg failed");
|
||||
return -1;
|
||||
}
|
||||
if(n == 0){
|
||||
perror("recvmsg returned 0");
|
||||
return -1;
|
||||
}
|
||||
cmsg = CMSG_FIRSTHDR(&msg);
|
||||
|
||||
memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
|
||||
|
||||
return fd;
|
||||
}
|
||||
|
||||
static void SendFileDescriptor(int fildes,int xmit_to_rank)
|
||||
{
|
||||
struct msghdr msg;
|
||||
struct iovec iov;
|
||||
struct cmsghdr *cmsg = NULL;
|
||||
char ctrl[CMSG_SPACE(sizeof(int))];
|
||||
char data = ' ';
|
||||
|
||||
memset(&msg, 0, sizeof(struct msghdr));
|
||||
memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
|
||||
iov.iov_base = &data;
|
||||
iov.iov_len = sizeof(data);
|
||||
|
||||
sprintf(sock_path,sock_path_fmt,xmit_to_rank);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
|
||||
|
||||
msg.msg_name = (void *)&sa_un;
|
||||
msg.msg_namelen = sizeof(sa_un);
|
||||
msg.msg_iov = &iov;
|
||||
msg.msg_iovlen = 1;
|
||||
msg.msg_controllen = CMSG_SPACE(sizeof(int));
|
||||
msg.msg_control = ctrl;
|
||||
|
||||
cmsg = CMSG_FIRSTHDR(&msg);
|
||||
cmsg->cmsg_level = SOL_SOCKET;
|
||||
cmsg->cmsg_type = SCM_RIGHTS;
|
||||
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
|
||||
|
||||
*((int *) CMSG_DATA(cmsg)) = fildes;
|
||||
|
||||
sendmsg(sock, &msg, 0);
|
||||
};
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
@ -65,8 +176,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
||||
|
||||
if ( WorldRank == 0) {
|
||||
std::cout << header " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
}
|
||||
// WorldShmComm, WorldShmSize, WorldShmRank
|
||||
|
||||
@ -169,59 +280,7 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
|
||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
|
||||
}
|
||||
static inline int divides(int a,int b)
|
||||
{
|
||||
return ( b == ( (b/a)*a ) );
|
||||
}
|
||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Allow user to configure through environment variable
|
||||
////////////////////////////////////////////////////////////////
|
||||
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
||||
if ( str ) {
|
||||
std::vector<int> IntShmDims;
|
||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||
assert(IntShmDims.size() == WorldDims.size());
|
||||
long ShmSize = 1;
|
||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||
}
|
||||
assert(ShmSize == WorldShmSize);
|
||||
return;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Powers of 2,3,5 only in prime decomposition for now
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = WorldDims.size();
|
||||
ShmDims=Coordinate(ndimension,1);
|
||||
|
||||
std::vector<int> primes({2,3,5});
|
||||
|
||||
int dim = 0;
|
||||
int last_dim = ndimension - 1;
|
||||
int AutoShmSize = 1;
|
||||
while(AutoShmSize != WorldShmSize) {
|
||||
int p;
|
||||
for(p=0;p<primes.size();p++) {
|
||||
int prime=primes[p];
|
||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||
AutoShmSize*=prime;
|
||||
ShmDims[dim]*=prime;
|
||||
last_dim = dim;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (p == primes.size() && last_dim == dim) {
|
||||
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
dim=(dim+1) %ndimension;
|
||||
}
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -395,7 +454,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
#ifdef GRID_MPI3_SHMGET
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
@ -455,46 +514,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
|
||||
//if defined(GRID_SYCL)
|
||||
#if 0
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the pointer array for shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
assert(WorldShmSize == 1);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
}
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
@ -517,13 +536,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
HostCommBuf= malloc(bytes);
|
||||
#endif
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
|
||||
}
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
@ -531,8 +553,13 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Loop over ranks/gpu's on our node
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef SHM_SOCKETS
|
||||
UnixSockets::Open(WorldShmRank);
|
||||
#endif
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
#ifndef GRID_MPI3_SHM_NONE
|
||||
//////////////////////////////////////////////////
|
||||
// If it is me, pass around the IPC access key
|
||||
@ -540,24 +567,32 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void * thisBuf = ShmCommBuf;
|
||||
if(!Stencil_force_mpi) {
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
typedef struct { int fd; pid_t pid ; } clone_mem_t;
|
||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
|
||||
ze_ipc_mem_handle_t ihandle;
|
||||
clone_mem_t handle;
|
||||
|
||||
|
||||
if ( r==WorldShmRank ) {
|
||||
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
}
|
||||
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
|
||||
handle.pid = getpid();
|
||||
memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
|
||||
#ifdef SHM_SOCKETS
|
||||
for(int rr=0;rr<WorldShmSize;rr++){
|
||||
if(rr!=r){
|
||||
UnixSockets::SendFileDescriptor(handle.fd,rr);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
@ -585,6 +620,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Share this IPC handle across the Shm Comm
|
||||
//////////////////////////////////////////////////
|
||||
{
|
||||
MPI_Barrier(WorldShmComm);
|
||||
int ierr=MPI_Bcast(&handle,
|
||||
sizeof(handle),
|
||||
MPI_BYTE,
|
||||
@ -600,6 +636,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
if ( r!=WorldShmRank ) {
|
||||
thisBuf = nullptr;
|
||||
int myfd;
|
||||
#ifdef SHM_SOCKETS
|
||||
myfd=UnixSockets::RecvFileDescriptor();
|
||||
#else
|
||||
std::cout<<"mapping seeking remote pid/fd "
|
||||
<<handle.pid<<"/"
|
||||
<<handle.fd<<std::endl;
|
||||
@ -607,16 +647,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
|
||||
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
|
||||
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
|
||||
int myfd = syscall(438,pidfd,handle.fd,0);
|
||||
|
||||
std::cout<<"Using IpcHandle myfd "<<myfd<<"\n";
|
||||
|
||||
myfd = syscall(438,pidfd,handle.fd,0);
|
||||
int err_t = errno;
|
||||
if (myfd < 0) {
|
||||
fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
|
||||
perror("pidfd_getfd failed ");
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
|
||||
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
|
||||
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
|
||||
|
||||
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cout << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
|
||||
@ -651,18 +697,18 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#else
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
#endif
|
||||
MPI_Barrier(WorldShmComm);
|
||||
}
|
||||
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -699,7 +745,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
@ -709,7 +755,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_MPI3_SHM_NONE
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -756,7 +802,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
@ -880,6 +926,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
host_heap_size = heap_size;
|
||||
HostCommBuf= GlobalSharedMemory::HostCommBuf;
|
||||
HostBufferFreeAll();
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
@ -29,8 +29,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern Vector<std::pair<int,int> > Cshift_table;
|
||||
extern std::vector<std::pair<int,int> > Cshift_table;
|
||||
extern commVector<std::pair<int,int> > Cshift_table_device;
|
||||
|
||||
inline std::pair<int,int> *MapCshiftTable(void)
|
||||
{
|
||||
// GPU version
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
uint64_t sz=Cshift_table.size();
|
||||
if (Cshift_table_device.size()!=sz ) {
|
||||
Cshift_table_device.resize(sz);
|
||||
}
|
||||
acceleratorCopyToDevice((void *)&Cshift_table[0],
|
||||
(void *)&Cshift_table_device[0],
|
||||
sizeof(Cshift_table[0])*sz);
|
||||
|
||||
return &Cshift_table_device[0];
|
||||
#else
|
||||
return &Cshift_table[0];
|
||||
#endif
|
||||
// CPU version use identify map
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gather for when there is no need to SIMD split
|
||||
///////////////////////////////////////////////////////////////////
|
||||
@ -74,8 +93,8 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
|
||||
}
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
@ -225,7 +244,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
|
||||
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
@ -340,7 +359,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
autoView(lhs_v , lhs, AcceleratorWrite);
|
||||
@ -392,7 +411,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
|
@ -52,7 +52,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
||||
|
||||
|
||||
RealD t1,t0;
|
||||
t0=usecond();
|
||||
if ( !comm_dim ) {
|
||||
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||
@ -63,6 +64,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift);
|
||||
}
|
||||
t1=usecond();
|
||||
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -127,16 +130,20 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
|
||||
tcopy+=usecond();
|
||||
} else {
|
||||
|
||||
int words = buffer_size;
|
||||
@ -144,26 +151,39 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -190,6 +210,12 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
@ -227,7 +253,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
int sx = (x+sshift)%rd;
|
||||
tgather-=usecond();
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -252,7 +280,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||
@ -262,7 +291,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
|
||||
grid->Barrier();
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
@ -270,9 +301,17 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
#else
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -292,6 +331,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
assert(comm_dim==1);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
|
||||
@ -315,7 +359,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
tcopy+=usecond();
|
||||
|
||||
} else {
|
||||
|
||||
@ -324,7 +370,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
@ -332,7 +380,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
@ -340,13 +389,24 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
|
||||
|
||||
grid->Barrier();
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -372,6 +432,11 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(simd_layout==2);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
@ -414,8 +479,10 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
tgather-=usecond();
|
||||
int sx = (x+sshift)%rd;
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -440,7 +507,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
@ -449,17 +517,28 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
|
||||
xbytes+=bytes;
|
||||
|
||||
grid->Barrier();
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
}
|
||||
tscatter+=usecond();
|
||||
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include <Grid/GridCore.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
Vector<std::pair<int,int> > Cshift_table;
|
||||
std::vector<std::pair<int,int> > Cshift_table;
|
||||
commVector<std::pair<int,int> > Cshift_table_device;
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_transpose.h>
|
||||
#include <Grid/lattice/Lattice_local.h>
|
||||
#include <Grid/lattice/Lattice_reduction.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/Lattice_peekpoke.h>
|
||||
#include <Grid/lattice/Lattice_reality.h>
|
||||
#include <Grid/lattice/Lattice_real_imag.h>
|
||||
@ -46,4 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
|
@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a));
|
||||
GridUnopClass(UnaryTrace, trace(a));
|
||||
GridUnopClass(UnaryTranspose, transpose(a));
|
||||
GridUnopClass(UnaryTa, Ta(a));
|
||||
GridUnopClass(UnarySpTa, SpTa(a));
|
||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
|
||||
GridUnopClass(UnaryTimesI, timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs, abs(a));
|
||||
@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot);
|
||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
|
||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||
|
@ -270,5 +270,42 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
}
|
||||
|
||||
/// Trace product
|
||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
|
||||
-> Lattice<decltype(trace(obj()))>
|
||||
{
|
||||
typedef decltype(trace(obj())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( rhs2 , rhs_2, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
typedef decltype(trace(obj1())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
return traceProduct(rhs_1,rhs_2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -291,8 +291,8 @@ public:
|
||||
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
|
||||
conformable(*this,r);
|
||||
this->checkerboard = r.Checkerboard();
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
auto him= r.View(AcceleratorRead);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(me[ss],him(ss));
|
||||
});
|
||||
@ -306,8 +306,8 @@ public:
|
||||
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
|
||||
this->checkerboard = r.Checkerboard();
|
||||
conformable(*this,r);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
auto him= r.View(AcceleratorRead);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(me[ss],him(ss));
|
||||
});
|
||||
|
@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
basis_v.push_back(basis[k].View(AcceleratorWrite));
|
||||
}
|
||||
|
||||
#if ( (!defined(GRID_CUDA)) )
|
||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
|
||||
int max_threads = thread_max();
|
||||
Vector < vobj > Bt(Nm * max_threads);
|
||||
thread_region
|
||||
|
@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -28,6 +28,10 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#include <Grid/lattice/Lattice_reduction_gpu.h>
|
||||
#endif
|
||||
#if defined(GRID_SYCL)
|
||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
|
||||
#endif
|
||||
#include <Grid/lattice/Lattice_slicesum_core.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -124,7 +128,7 @@ inline Double max(const Double *arg, Integer osites)
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
return sum_gpu(arg,osites);
|
||||
#else
|
||||
return sum_cpu(arg,osites);
|
||||
@ -133,7 +137,7 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
return sumD_gpu(arg,osites);
|
||||
#else
|
||||
return sumD_cpu(arg,osites);
|
||||
@ -142,7 +146,7 @@ inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
return sumD_gpu_large(arg,osites);
|
||||
#else
|
||||
return sumD_cpu(arg,osites);
|
||||
@ -150,33 +154,44 @@ inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
|
||||
inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
autoView( arg_v, arg, AcceleratorRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum_gpu(&arg_v[0],osites);
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
autoView( arg_v, arg, AcceleratorRead);
|
||||
return sum_gpu(&arg_v[0],osites);
|
||||
#else
|
||||
autoView(arg_v, arg, CpuRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum_cpu(&arg_v[0],osites);
|
||||
return sum_cpu(&arg_v[0],osites);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
|
||||
{
|
||||
auto ssum = rankSum(arg);
|
||||
arg.Grid()->GlobalSum(ssum);
|
||||
return ssum;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
|
||||
inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
autoView( arg_v, arg, AcceleratorRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum_gpu_large(&arg_v[0],osites);
|
||||
return sum_gpu_large(&arg_v[0],osites);
|
||||
#else
|
||||
autoView(arg_v, arg, CpuRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum_cpu(&arg_v[0],osites);
|
||||
return sum_cpu(&arg_v[0],osites);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
|
||||
{
|
||||
auto ssum = rankSumLarge(arg);
|
||||
arg.Grid()->GlobalSum(ssum);
|
||||
return ssum;
|
||||
}
|
||||
@ -232,11 +247,10 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
|
||||
// This code could read coalesce
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
@ -267,11 +281,29 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t csum=0;
|
||||
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
{
|
||||
// Hack
|
||||
// Fast integer xor checksum. Can also be used in comms now.
|
||||
autoView(l_v,left,AcceleratorRead);
|
||||
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&l_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
}
|
||||
FlightRecorder::CsumLog(csum);
|
||||
#endif
|
||||
ComplexD nrm = rankInnerProduct(left,right);
|
||||
RealD local = real(nrm);
|
||||
FlightRecorder::NormLog(real(nrm));
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
@ -435,19 +467,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
@ -491,6 +514,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||
{
|
||||
|
@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
|
||||
cudaGetDevice(&device);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
hipGetDevice(&device);
|
||||
auto r=hipGetDevice(&device);
|
||||
#endif
|
||||
|
||||
Iterator warpSize = gpu_props[device].warpSize;
|
||||
@ -211,13 +211,25 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
|
||||
assert(ok);
|
||||
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
|
||||
// Move out of UVM
|
||||
// Turns out I had messed up the synchronise after move to compute stream
|
||||
// as running this on the default stream fools the synchronise
|
||||
#undef UVM_BLOCK_BUFFER
|
||||
#ifndef UVM_BLOCK_BUFFER
|
||||
commVector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
sobj result;
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||
accelerator_barrier();
|
||||
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
|
||||
#else
|
||||
Vector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
|
||||
sobj result;
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||
accelerator_barrier();
|
||||
auto result = buffer_v[0];
|
||||
result = *buffer_v;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
|
126
Grid/lattice/Lattice_reduction_sycl.h
Normal file
126
Grid/lattice/Lattice_reduction_sycl.h
Normal file
@ -0,0 +1,126 @@
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
|
||||
sobj identity; zeroit(identity);
|
||||
sobj ret ;
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{osites},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> item, auto &sum) {
|
||||
auto osite = item[0];
|
||||
sum +=Reduce(lat[osite]);
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
ret = mysum[0];
|
||||
free(mysum,*theGridAccelerator);
|
||||
sobjD dret; convertType(dret,ret);
|
||||
return dret;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
return sumD_gpu_tensor(lat,osites);
|
||||
}
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
|
||||
{
|
||||
return sumD_gpu_large(lat,osites);
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
return sumD_gpu_large(lat,osites);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Return as same precision as input performing reduction in double precision though
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu_large(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
{
|
||||
Word xorResult; xorResult = 0;
|
||||
Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
|
||||
Word identity; identity=0;
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
sum ^=vec[index];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
Word ret = d_sum[0];
|
||||
free(d_sum,*theGridAccelerator);
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_type scalar;
|
||||
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
|
||||
sobjD ret;
|
||||
scalarD *ret_p = (scalarD *)&ret;
|
||||
|
||||
const int nsimd = vobj::Nsimd();
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Vector<scalar> buffer(osites*nsimd);
|
||||
scalar *buf = &buffer[0];
|
||||
vector *dat = (vector *)lat;
|
||||
|
||||
for(int w=0;w<words;w++) {
|
||||
|
||||
accelerator_for(ss,osites,nsimd,{
|
||||
int lane = acceleratorSIMTlane(nsimd);
|
||||
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
|
||||
});
|
||||
//Precision change at this point is to late to gain precision
|
||||
ret_p[w] = svm_reduce(buf,nsimd*osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
*/
|
@ -152,6 +152,7 @@ public:
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
#if 0
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
// This goes by 10^12.
|
||||
@ -162,9 +163,9 @@ public:
|
||||
// tens of seconds per trajectory so this is clean in all reasonable cases,
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
const int shift = 30;
|
||||
@ -179,6 +180,9 @@ public:
|
||||
assert((skip >> shift)==site); // check for overflow
|
||||
|
||||
eng.discard(skip);
|
||||
#else
|
||||
eng.discardhi(site);
|
||||
#endif
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
@ -407,7 +411,7 @@ public:
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
|
||||
|
||||
// Everyone generates the same seed_seq based on input seeds
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
@ -424,7 +428,6 @@ public:
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
#if 1
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int gidx;
|
||||
@ -440,33 +443,17 @@ public:
|
||||
_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
|
||||
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
assert(rank == _grid->ThisRank() );
|
||||
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
});
|
||||
#else
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
|
||||
// Where is it?
|
||||
int rank;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
// If this is one of mine we take it
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
if ( britney ) {
|
||||
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
|
||||
} else {
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
#endif
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Machine and thread decomposition dependent seeding is efficient
|
||||
|
213
Grid/lattice/Lattice_slicesum_core.h
Normal file
213
Grid/lattice/Lattice_slicesum_core.h
Normal file
@ -0,0 +1,213 @@
|
||||
#pragma once
|
||||
#include <type_traits>
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
#define gpucub cub
|
||||
#define gpuError_t cudaError_t
|
||||
#define gpuSuccess cudaSuccess
|
||||
|
||||
#elif defined(GRID_HIP)
|
||||
|
||||
#include <hipcub/hipcub.hpp>
|
||||
#define gpucub hipcub
|
||||
#define gpuError_t hipError_t
|
||||
#define gpuSuccess hipSuccess
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
size_t subvol_size = e1*e2;
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
vobj zero_init;
|
||||
zeroit(zero_init);
|
||||
|
||||
|
||||
void *temp_storage_array = NULL;
|
||||
size_t temp_storage_bytes = 0;
|
||||
vobj *d_out;
|
||||
int* d_offsets;
|
||||
|
||||
std::vector<int> offsets(rd+1,0);
|
||||
|
||||
for (int i = 0; i < offsets.size(); i++) {
|
||||
offsets[i] = i*subvol_size;
|
||||
}
|
||||
|
||||
//Allocate memory for output and offset arrays on device
|
||||
d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
|
||||
|
||||
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
|
||||
|
||||
//copy offsets to device
|
||||
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
|
||||
|
||||
|
||||
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//allocate memory for temp_storage_array
|
||||
temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
|
||||
|
||||
//prepare buffer for reduction
|
||||
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
|
||||
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
|
||||
|
||||
});
|
||||
|
||||
//issue segmented reductions in computeStream
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
|
||||
acceleratorFreeDevice(temp_storage_array);
|
||||
acceleratorFreeDevice(d_out);
|
||||
acceleratorFreeDevice(d_offsets);
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
typedef typename vobj::vector_type vector;
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
const int osites = rd*e1*e2;
|
||||
commVector<vector>buffer(osites);
|
||||
vector *dat = (vector *)Data;
|
||||
vector *buf = &buffer[0];
|
||||
Vector<vector> lvSum_small(rd);
|
||||
vector *lvSum_ptr = (vector *)&lvSum[0];
|
||||
|
||||
for (int w = 0; w < words; w++) {
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum_ptr[w+words*r]=lvSum_small[r];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
{
|
||||
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
|
||||
if constexpr (sizeof(vobj) <= 256) {
|
||||
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
else {
|
||||
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
lvSum[r] = mysum[0];
|
||||
}
|
||||
|
||||
free(mysum,*theGridAccelerator);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
|
||||
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#elif defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#else
|
||||
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<int N, class Vec>
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
||||
typedef typename Vec::scalar_type scalar;
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
scalar tmp= Us()()(i,j);
|
||||
ComplexD ztmp(real(tmp),imag(tmp));
|
||||
EigenU(i,j)=ztmp;
|
||||
}}
|
||||
ComplexD detD = EigenU.determinant();
|
||||
typename Vec::scalar_type det(detD.real(),detD.imag());
|
||||
pokeLocalSite(det,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<int N>
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
||||
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
EigenU(i,j) = Us()()(i,j);
|
||||
}}
|
||||
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
Ui()()(i,j) = EigenUinv(i,j);
|
||||
}}
|
||||
pokeLocalSite(Ui,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
@ -288,7 +288,36 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
|
||||
}
|
||||
}
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
|
||||
const std::vector<Lattice<vobj>> &fineData,
|
||||
const VLattice &Basis)
|
||||
{
|
||||
int NBatch = fineData.size();
|
||||
assert(coarseData.size() == NBatch);
|
||||
|
||||
GridBase * fine = fineData[0].Grid();
|
||||
GridBase * coarse= coarseData[0].Grid();
|
||||
|
||||
Lattice<iScalar<CComplex>> ip(coarse);
|
||||
std::vector<Lattice<vobj>> fineDataCopy = fineData;
|
||||
|
||||
autoView(ip_, ip, AcceleratorWrite);
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
for (int k=0; k<NBatch; k++) {
|
||||
autoView( coarseData_ , coarseData[k], AcceleratorWrite);
|
||||
blockInnerProductD(ip,Basis[v],fineDataCopy[k]); // ip = <basis|fine>
|
||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
||||
convertType(coarseData_[sc](v),ip_[sc]);
|
||||
});
|
||||
|
||||
// improve numerical stability of projection
|
||||
// |fine> = |fine> - <basis|fine> |basis>
|
||||
ip=-ip;
|
||||
blockZAXPY(fineDataCopy[k],ip,Basis[v],fineDataCopy[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj,class vobj2,class CComplex>
|
||||
inline void blockZAXPY(Lattice<vobj> &fineZ,
|
||||
@ -440,15 +469,13 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
Coordinate fine_rdimensions = fine->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse->_rdimensions;
|
||||
|
||||
vobj zz = Zero();
|
||||
|
||||
accelerator_for(sc,coarse->oSites(),1,{
|
||||
|
||||
// One thread per sub block
|
||||
Coordinate coor_c(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
||||
|
||||
vobj cd = zz;
|
||||
vobj cd = Zero();
|
||||
|
||||
for(int sb=0;sb<blockVol;sb++){
|
||||
|
||||
@ -590,6 +617,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
|
||||
std::vector<Lattice<vobj>> &fineData,
|
||||
const VLattice &Basis)
|
||||
{
|
||||
int NBatch = coarseData.size();
|
||||
assert(fineData.size() == NBatch);
|
||||
|
||||
GridBase * fine = fineData[0].Grid();
|
||||
GridBase * coarse = coarseData[0].Grid();
|
||||
for (int k=0; k<NBatch; k++)
|
||||
fineData[k]=Zero();
|
||||
for (int i=0;i<nbasis;i++) {
|
||||
for (int k=0; k<NBatch; k++) {
|
||||
Lattice<iScalar<CComplex>> ip = PeekIndex<0>(coarseData[k],i);
|
||||
blockZAXPY(fineData[k],ip,Basis[i],fineData[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
|
||||
// Simd layouts need not match since we use peek/poke Local
|
||||
template<class vobj,class vvobj>
|
||||
@ -648,8 +695,68 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
for(int d=0;d<nd;d++){
|
||||
assert(Fg->_processors[d] == Tg->_processors[d]);
|
||||
}
|
||||
|
||||
// the above should guarantee that the operations are local
|
||||
|
||||
#if 1
|
||||
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
|
||||
|
||||
size_t tbytes = 4*nsite*sizeof(int);
|
||||
int *table = (int*)malloc(tbytes);
|
||||
|
||||
thread_for(idx, nsite, {
|
||||
Coordinate from_coor, to_coor;
|
||||
size_t rem = idx;
|
||||
for(int i=0;i<nd;i++){
|
||||
size_t base_i = rem % RegionSize[i]; rem /= RegionSize[i];
|
||||
from_coor[i] = base_i + FromLowerLeft[i];
|
||||
to_coor[i] = base_i + ToLowerLeft[i];
|
||||
}
|
||||
|
||||
int foidx = Fg->oIndex(from_coor);
|
||||
int fiidx = Fg->iIndex(from_coor);
|
||||
int toidx = Tg->oIndex(to_coor);
|
||||
int tiidx = Tg->iIndex(to_coor);
|
||||
int* tt = table + 4*idx;
|
||||
tt[0] = foidx;
|
||||
tt[1] = fiidx;
|
||||
tt[2] = toidx;
|
||||
tt[3] = tiidx;
|
||||
});
|
||||
|
||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int* tt = table_d + 4*idx;
|
||||
int from_oidx = *tt++;
|
||||
int from_lane = *tt++;
|
||||
int to_oidx = *tt++;
|
||||
int to_lane = *tt;
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
|
||||
acceleratorFreeDevice(table_d);
|
||||
free(table);
|
||||
|
||||
|
||||
#else
|
||||
Coordinate ldf = Fg->_ldimensions;
|
||||
Coordinate rdf = Fg->_rdimensions;
|
||||
Coordinate isf = Fg->_istride;
|
||||
@ -658,9 +765,9 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
Coordinate ist = Tg->_istride;
|
||||
Coordinate ost = Tg->_ostride;
|
||||
|
||||
autoView( t_v , To, AcceleratorWrite);
|
||||
autoView( f_v , From, AcceleratorRead);
|
||||
accelerator_for(idx,Fg->lSites(),1,{
|
||||
autoView( t_v , To, CpuWrite);
|
||||
autoView( f_v , From, CpuRead);
|
||||
thread_for(idx,Fg->lSites(),{
|
||||
sobj s;
|
||||
Coordinate Fcoor(nd);
|
||||
Coordinate Tcoor(nd);
|
||||
@ -673,17 +780,24 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
|
||||
}
|
||||
if (in_region) {
|
||||
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
|
||||
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
|
||||
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
|
||||
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
|
||||
vector_type * fp = (vector_type *)&f_v[odx_f];
|
||||
vector_type * tp = (vector_type *)&t_v[odx_t];
|
||||
#if 0
|
||||
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
|
||||
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
|
||||
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
|
||||
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
|
||||
scalar_type * fp = (scalar_type *)&f_v[odx_f];
|
||||
scalar_type * tp = (scalar_type *)&t_v[odx_t];
|
||||
for(int w=0;w<words;w++){
|
||||
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
|
||||
}
|
||||
#else
|
||||
peekLocalSite(s,f_v,Fcoor);
|
||||
pokeLocalSite(s,t_v,Tcoor);
|
||||
#endif
|
||||
}
|
||||
});
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -776,6 +890,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
|
||||
}
|
||||
|
||||
|
||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
|
||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
|
||||
template<class vobj>
|
||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||
{
|
||||
@ -792,11 +908,70 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
||||
|
||||
for(int d=0;d<nh;d++){
|
||||
if ( d!=orthog ) {
|
||||
assert(lg->_processors[d] == hg->_processors[d]);
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
assert(lg->_processors[d] == hg->_processors[d]);
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
#if 1
|
||||
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
|
||||
size_t tbytes = 4*nsite*sizeof(int);
|
||||
int *table = (int*)malloc(tbytes);
|
||||
|
||||
thread_for(idx,nsite,{
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lcoor[orthog] = slice_lo;
|
||||
hcoor[orthog] = slice_hi;
|
||||
size_t rem = idx;
|
||||
for(int mu=0;mu<nl;mu++){
|
||||
if(mu != orthog){
|
||||
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
|
||||
lcoor[mu] = hcoor[mu] = xmu;
|
||||
}
|
||||
}
|
||||
int loidx = lg->oIndex(lcoor);
|
||||
int liidx = lg->iIndex(lcoor);
|
||||
int hoidx = hg->oIndex(hcoor);
|
||||
int hiidx = hg->iIndex(hcoor);
|
||||
int* tt = table + 4*idx;
|
||||
tt[0] = loidx;
|
||||
tt[1] = liidx;
|
||||
tt[2] = hoidx;
|
||||
tt[3] = hiidx;
|
||||
});
|
||||
|
||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(lowDim_v,lowDim,AcceleratorRead);
|
||||
autoView(higherDim_v,higherDim,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int* tt = table_d + 4*idx;
|
||||
int from_oidx = *tt++;
|
||||
int from_lane = *tt++;
|
||||
int to_oidx = *tt++;
|
||||
int to_lane = *tt;
|
||||
|
||||
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
|
||||
acceleratorFreeDevice(table_d);
|
||||
free(table);
|
||||
|
||||
#else
|
||||
// the above should guarantee that the operations are local
|
||||
autoView(lowDimv,lowDim,CpuRead);
|
||||
autoView(higherDimv,higherDim,CpuWrite);
|
||||
@ -812,6 +987,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
||||
pokeLocalSite(s,higherDimv,hcoor);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -1080,6 +1256,7 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
|
||||
});
|
||||
}
|
||||
|
||||
//Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field)
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
{
|
||||
@ -1097,9 +1274,9 @@ void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
precisionChange(vout,vin,N);
|
||||
});
|
||||
}
|
||||
//Convert a Lattice from one precision to another
|
||||
//Convert a Lattice from one precision to another (original, slow implementation)
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
{
|
||||
assert(out.Grid()->Nd() == in.Grid()->Nd());
|
||||
for(int d=0;d<out.Grid()->Nd();d++){
|
||||
@ -1145,6 +1322,128 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
});
|
||||
}
|
||||
|
||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
|
||||
class precisionChangeWorkspace{
|
||||
std::pair<Integer,Integer>* fmap_device; //device pointer
|
||||
//maintain grids for checking
|
||||
GridBase* _out_grid;
|
||||
GridBase* _in_grid;
|
||||
public:
|
||||
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
|
||||
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
|
||||
assert(out_grid->Nd() == in_grid->Nd());
|
||||
for(int d=0;d<out_grid->Nd();d++){
|
||||
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
|
||||
}
|
||||
int Nsimd_out = out_grid->Nsimd();
|
||||
|
||||
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
|
||||
for(int lane=0; lane < out_grid->Nsimd(); lane++)
|
||||
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
|
||||
|
||||
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
|
||||
thread_for(out_oidx,out_grid->oSites(),{
|
||||
Coordinate out_ocorr;
|
||||
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
|
||||
|
||||
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
|
||||
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
|
||||
|
||||
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
|
||||
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
|
||||
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
|
||||
int in_oidx = 0, in_lane = 0;
|
||||
for(int d=0;d<in_grid->_ndimension;d++){
|
||||
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
|
||||
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
|
||||
}
|
||||
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
|
||||
}
|
||||
});
|
||||
|
||||
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
|
||||
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
|
||||
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
|
||||
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
|
||||
}
|
||||
|
||||
//Prevent moving or copying
|
||||
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
|
||||
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
|
||||
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
|
||||
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
|
||||
|
||||
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
|
||||
|
||||
void checkGrids(GridBase* out, GridBase* in) const{
|
||||
conformable(out, _out_grid);
|
||||
conformable(in, _in_grid);
|
||||
}
|
||||
|
||||
~precisionChangeWorkspace(){
|
||||
acceleratorFreeDevice(fmap_device);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
|
||||
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
|
||||
template<class VobjOut, class VobjIn>
|
||||
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
|
||||
if(out.Grid() == in.Grid()){
|
||||
precisionChangeFast(out,in);
|
||||
return 1;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
template<class VobjOut, class VobjIn>
|
||||
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
|
||||
//which contains the mapping data.
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
|
||||
if(_precisionChangeFastWrap(out,in,0)) return;
|
||||
|
||||
static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
constexpr int Nsimd_out = VobjOut::Nsimd();
|
||||
|
||||
workspace.checkGrids(out.Grid(),in.Grid());
|
||||
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
|
||||
|
||||
//Do the copy/precision change
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
|
||||
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
|
||||
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
|
||||
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||
int in_oidx = fmap_osite[out_lane].first;
|
||||
int in_lane = fmap_osite[out_lane].second;
|
||||
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
|
||||
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
if(_precisionChangeFastWrap(out,in,0)) return;
|
||||
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
|
||||
precisionChange(out, in, workspace);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -45,6 +45,7 @@ public:
|
||||
};
|
||||
// Host only
|
||||
GridBase * getGrid(void) const { return _grid; };
|
||||
vobj* getHostPointer(void) const { return _odata; };
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
174
Grid/lattice/PaddedCell.h
Normal file
174
Grid/lattice/PaddedCell.h
Normal file
@ -0,0 +1,174 @@
|
||||
/*************************************************************************************
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/PaddedCell.h
|
||||
|
||||
Copyright (C) 2019
|
||||
|
||||
Author: Peter Boyle pboyle@bnl.gov
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include<Grid/cshift/Cshift.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
|
||||
template<typename vobj>
|
||||
struct CshiftImplBase{
|
||||
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
|
||||
virtual ~CshiftImplBase(){}
|
||||
};
|
||||
template<typename vobj>
|
||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
|
||||
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
|
||||
};
|
||||
template<typename Gimpl>
|
||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
|
||||
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
|
||||
};
|
||||
|
||||
class PaddedCell {
|
||||
public:
|
||||
GridCartesian * unpadded_grid;
|
||||
int dims;
|
||||
int depth;
|
||||
std::vector<GridCartesian *> grids;
|
||||
|
||||
~PaddedCell()
|
||||
{
|
||||
DeleteGrids();
|
||||
}
|
||||
PaddedCell(int _depth,GridCartesian *_grid)
|
||||
{
|
||||
unpadded_grid = _grid;
|
||||
depth=_depth;
|
||||
dims=_grid->Nd();
|
||||
AllocateGrids();
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
for(int d=0;d<dims;d++){
|
||||
assert(local[d]>=depth);
|
||||
}
|
||||
}
|
||||
void DeleteGrids(void)
|
||||
{
|
||||
for(int d=0;d<grids.size();d++){
|
||||
delete grids[d];
|
||||
}
|
||||
grids.resize(0);
|
||||
};
|
||||
void AllocateGrids(void)
|
||||
{
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate simd =unpadded_grid->_simd_layout;
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
Coordinate plocal =unpadded_grid->LocalDimensions();
|
||||
Coordinate global(dims);
|
||||
|
||||
// expand up one dim at a time
|
||||
for(int d=0;d<dims;d++){
|
||||
|
||||
plocal[d] += 2*depth;
|
||||
|
||||
for(int d=0;d<dims;d++){
|
||||
global[d] = plocal[d]*processors[d];
|
||||
}
|
||||
|
||||
grids.push_back(new GridCartesian(global,simd,processors));
|
||||
}
|
||||
};
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
|
||||
{
|
||||
Lattice<vobj> out(unpadded_grid);
|
||||
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate fll(dims,depth); // depends on the MPI spread
|
||||
Coordinate tll(dims,0); // depends on the MPI spread
|
||||
localCopyRegion(in,out,fll,tll,local);
|
||||
return out;
|
||||
}
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
int dims = old_grid->Nd();
|
||||
Lattice<vobj> tmp = in;
|
||||
for(int d=0;d<dims;d++){
|
||||
tmp = Expand(d,tmp,cshift); // rvalue && assignment
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
// expand up one dim at a time
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
Lattice<vobj> padded(new_grid);
|
||||
Lattice<vobj> shifted(old_grid);
|
||||
Coordinate local =old_grid->LocalDimensions();
|
||||
Coordinate plocal =new_grid->LocalDimensions();
|
||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
|
||||
double tins=0, tshift=0;
|
||||
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
||||
|
||||
return padded;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
extern GridLogger GridLogWarning;
|
||||
extern GridLogger GridLogMessage;
|
||||
extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogDebug;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogDslash;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogIterative;
|
||||
extern GridLogger GridLogIntegrator;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern GridLogger GridLogMemory;
|
||||
extern GridLogger GridLogTracing;
|
||||
@ -191,6 +191,41 @@ extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
||||
template<typename... Args>
|
||||
inline std::string sjoin(Args&&... args) noexcept {
|
||||
std::ostringstream msg;
|
||||
(msg << ... << args);
|
||||
return msg.str();
|
||||
}
|
||||
|
||||
/*! @brief make log messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_log(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << GridLogMessage << msg << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make warning messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_warn(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make error messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_error(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make pass messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_pass(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
#define _NBACKTRACE (256)
|
||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
||||
|
||||
|
@ -30,6 +30,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef GRID_PERFCOUNT_H
|
||||
#define GRID_PERFCOUNT_H
|
||||
|
||||
|
||||
#ifndef __SSC_START
|
||||
#define __SSC_START
|
||||
#define __SSC_STOP
|
||||
#endif
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <ctime>
|
||||
#include <chrono>
|
||||
|
@ -34,7 +34,7 @@ class GridTracer {
|
||||
};
|
||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
|
||||
inline void tracePop(const char *name) { roctxRangePop(); }
|
||||
inline int traceStart(const char *name) { roctxRangeStart(name); }
|
||||
inline int traceStart(const char *name) { return roctxRangeStart(name); }
|
||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
|
||||
#endif
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
#ifdef __NVCC__
|
||||
#pragma push
|
||||
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
|
||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
||||
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
|
||||
#else
|
||||
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
|
||||
|
@ -104,6 +104,7 @@ template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iSca
|
||||
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
|
||||
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
|
||||
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
|
||||
template<typename vtype> using iLorentzComplex = iVector<iScalar<iScalar<vtype> >, Nd > ;
|
||||
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
|
||||
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
|
||||
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
|
||||
@ -178,6 +179,15 @@ typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
|
||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
|
||||
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
|
||||
|
||||
// LorentzComplex
|
||||
typedef iLorentzComplex<Complex > LorentzComplex;
|
||||
typedef iLorentzComplex<ComplexF > LorentzComplexF;
|
||||
typedef iLorentzComplex<ComplexD > LorentzComplexD;
|
||||
|
||||
typedef iLorentzComplex<vComplex > vLorentzComplex;
|
||||
typedef iLorentzComplex<vComplexF> vLorentzComplexF;
|
||||
typedef iLorentzComplex<vComplexD> vLorentzComplexD;
|
||||
|
||||
// DoubleStored gauge field
|
||||
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
|
||||
@ -307,6 +317,10 @@ typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
|
||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
|
||||
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
|
||||
|
||||
typedef Lattice<vLorentzComplex> LatticeLorentzComplex;
|
||||
typedef Lattice<vLorentzComplexF> LatticeLorentzComplexF;
|
||||
typedef Lattice<vLorentzComplexD> LatticeLorentzComplexD;
|
||||
|
||||
// DoubleStored gauge field
|
||||
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
|
||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
|
||||
@ -507,9 +521,20 @@ template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<Lorentz
|
||||
// Fermion <-> propagator assignements
|
||||
//////////////////////////////////////////////
|
||||
//template <class Prop, class Ferm>
|
||||
#define FAST_FERM_TO_PROP
|
||||
template <class Fimpl>
|
||||
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
|
||||
{
|
||||
#ifdef FAST_FERM_TO_PROP
|
||||
autoView(p_v,p,CpuWrite);
|
||||
autoView(f_v,f,CpuRead);
|
||||
thread_for(idx,p_v.oSites(),{
|
||||
for(int ss = 0; ss < Ns; ++ss) {
|
||||
for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
|
||||
p_v[idx]()(ss,s)(cc,c) = f_v[idx]()(ss)(cc); // Propagator sink index is LEFT, suitable for left mult by gauge link (e.g.)
|
||||
}}
|
||||
});
|
||||
#else
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
{
|
||||
auto pjs = peekSpin(p, j, s);
|
||||
@ -521,12 +546,23 @@ void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::Fermio
|
||||
}
|
||||
pokeSpin(p, pjs, j, s);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//template <class Prop, class Ferm>
|
||||
template <class Fimpl>
|
||||
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
|
||||
{
|
||||
#ifdef FAST_FERM_TO_PROP
|
||||
autoView(p_v,p,CpuRead);
|
||||
autoView(f_v,f,CpuWrite);
|
||||
thread_for(idx,p_v.oSites(),{
|
||||
for(int ss = 0; ss < Ns; ++ss) {
|
||||
for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
|
||||
f_v[idx]()(ss)(cc) = p_v[idx]()(ss,s)(cc,c); // LEFT index is copied across for s,c right index
|
||||
}}
|
||||
});
|
||||
#else
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
{
|
||||
auto pjs = peekSpin(p, j, s);
|
||||
@ -538,6 +574,7 @@ void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::Propagato
|
||||
}
|
||||
pokeSpin(f, fj, j);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////
|
||||
|
@ -34,10 +34,24 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////
|
||||
// Smart configuration base class
|
||||
///////////////////////////////////
|
||||
template< class Field >
|
||||
class ConfigurationBase
|
||||
{
|
||||
public:
|
||||
ConfigurationBase() {}
|
||||
virtual ~ConfigurationBase() {}
|
||||
virtual void set_Field(Field& U) =0;
|
||||
virtual void smeared_force(Field&) = 0;
|
||||
virtual Field& get_SmearedU() =0;
|
||||
virtual Field &get_U(bool smeared = false) = 0;
|
||||
};
|
||||
|
||||
template <class GaugeField >
|
||||
class Action
|
||||
{
|
||||
|
||||
public:
|
||||
bool is_smeared = false;
|
||||
RealD deriv_norm_sum;
|
||||
@ -77,16 +91,60 @@ public:
|
||||
void refresh_timer_stop(void) { refresh_us+=usecond(); }
|
||||
void S_timer_start(void) { S_us-=usecond(); }
|
||||
void S_timer_stop(void) { S_us+=usecond(); }
|
||||
/////////////////////////////
|
||||
// Heatbath?
|
||||
/////////////////////////////
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
|
||||
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// virtual smeared interface through configuration container
|
||||
/////////////////////////////////////////////////////////////
|
||||
virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
refresh(U.get_U(is_smeared),sRNG,pRNG);
|
||||
}
|
||||
virtual RealD S(ConfigurationBase<GaugeField>& U)
|
||||
{
|
||||
return S(U.get_U(is_smeared));
|
||||
}
|
||||
virtual RealD Sinitial(ConfigurationBase<GaugeField>& U)
|
||||
{
|
||||
return Sinitial(U.get_U(is_smeared));
|
||||
}
|
||||
virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU)
|
||||
{
|
||||
deriv(U.get_U(is_smeared),dSdU);
|
||||
if ( is_smeared ) {
|
||||
U.smeared_force(dSdU);
|
||||
}
|
||||
}
|
||||
///////////////////////////////
|
||||
// Logging
|
||||
///////////////////////////////
|
||||
virtual std::string action_name() = 0; // return the action name
|
||||
virtual std::string LogParameters() = 0; // prints action parameters
|
||||
virtual ~Action(){}
|
||||
};
|
||||
|
||||
template <class GaugeField >
|
||||
class EmptyAction : public Action <GaugeField>
|
||||
{
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
|
||||
|
||||
///////////////////////////////
|
||||
// Logging
|
||||
///////////////////////////////
|
||||
virtual std::string action_name() { return std::string("Level Force Log"); };
|
||||
virtual std::string LogParameters() { return std::string("No parameters");};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // ACTION_BASE_H
|
||||
|
@ -30,6 +30,8 @@ directory
|
||||
#ifndef QCD_ACTION_CORE
|
||||
#define QCD_ACTION_CORE
|
||||
|
||||
#include <Grid/qcd/action/gauge/GaugeImplementations.h>
|
||||
|
||||
#include <Grid/qcd/action/ActionBase.h>
|
||||
NAMESPACE_CHECK(ActionBase);
|
||||
#include <Grid/qcd/action/ActionSet.h>
|
||||
|
@ -205,15 +205,18 @@ public:
|
||||
typedef WilsonCloverHelpers<Impl> Helpers;
|
||||
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
|
||||
|
||||
static void MassTerm(CloverField& Clover, RealD diag_mass) {
|
||||
static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
|
||||
Clover += diag_mass;
|
||||
}
|
||||
|
||||
static void Exponentiate_Clover(CloverDiagonalField& Diagonal,
|
||||
CloverTriangleField& Triangle,
|
||||
RealD csw_t, RealD diag_mass) {
|
||||
static void InvertClover(CloverField& InvClover,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle,
|
||||
CloverDiagonalField& diagonalInv,
|
||||
CloverTriangleField& triangleInv,
|
||||
bool fixedBoundaries) {
|
||||
|
||||
// Do nothing
|
||||
CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
|
||||
}
|
||||
|
||||
// TODO: implement Cmunu for better performances with compact layout, but don't do it
|
||||
@ -238,9 +241,17 @@ public:
|
||||
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
|
||||
|
||||
static void MassTerm(CloverField& Clover, RealD diag_mass) {
|
||||
// do nothing!
|
||||
// mass term is multiplied to exp(Clover) below
|
||||
// Can this be avoided?
|
||||
static void IdentityTimesC(const CloverField& in, RealD c) {
|
||||
int DimRep = Impl::Dimension;
|
||||
|
||||
autoView(in_v, in, AcceleratorWrite);
|
||||
|
||||
accelerator_for(ss, in.Grid()->oSites(), 1, {
|
||||
for (int sa=0; sa<Ns; sa++)
|
||||
for (int ca=0; ca<DimRep; ca++)
|
||||
in_v[ss]()(sa,sa)(ca,ca) = c;
|
||||
});
|
||||
}
|
||||
|
||||
static int getNMAX(RealD prec, RealD R) {
|
||||
@ -255,175 +266,62 @@ public:
|
||||
return NMAX;
|
||||
}
|
||||
|
||||
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
|
||||
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
|
||||
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
|
||||
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
|
||||
|
||||
static void ExponentiateHermitean6by6(const iMatrix<ComplexD,6> &arg, const RealD& alpha, const std::vector<RealD>& cN, const int Niter, iMatrix<ComplexD,6>& dest){
|
||||
static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
|
||||
|
||||
typedef iMatrix<ComplexD,6> mat;
|
||||
GridBase* grid = Clover.Grid();
|
||||
CloverField ExpClover(grid);
|
||||
|
||||
RealD qn[6];
|
||||
RealD qnold[6];
|
||||
RealD p[5];
|
||||
RealD trA2, trA3, trA4;
|
||||
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
|
||||
|
||||
mat A2, A3, A4, A5;
|
||||
A2 = alpha * alpha * arg * arg;
|
||||
A3 = alpha * arg * A2;
|
||||
A4 = A2 * A2;
|
||||
A5 = A2 * A3;
|
||||
Clover *= (1.0/diag_mass);
|
||||
|
||||
trA2 = toReal( trace(A2) );
|
||||
trA3 = toReal( trace(A3) );
|
||||
trA4 = toReal( trace(A4));
|
||||
|
||||
p[0] = toReal( trace(A3 * A3)) / 6.0 - 0.125 * trA4 * trA2 - trA3 * trA3 / 18.0 + trA2 * trA2 * trA2/ 48.0;
|
||||
p[1] = toReal( trace(A5)) / 5.0 - trA3 * trA2 / 6.0;
|
||||
p[2] = toReal( trace(A4)) / 4.0 - 0.125 * trA2 * trA2;
|
||||
p[3] = trA3 / 3.0;
|
||||
p[4] = 0.5 * trA2;
|
||||
|
||||
qnold[0] = cN[Niter];
|
||||
qnold[1] = 0.0;
|
||||
qnold[2] = 0.0;
|
||||
qnold[3] = 0.0;
|
||||
qnold[4] = 0.0;
|
||||
qnold[5] = 0.0;
|
||||
|
||||
for(int i = Niter-1; i >= 0; i--)
|
||||
{
|
||||
qn[0] = p[0] * qnold[5] + cN[i];
|
||||
qn[1] = p[1] * qnold[5] + qnold[0];
|
||||
qn[2] = p[2] * qnold[5] + qnold[1];
|
||||
qn[3] = p[3] * qnold[5] + qnold[2];
|
||||
qn[4] = p[4] * qnold[5] + qnold[3];
|
||||
qn[5] = qnold[4];
|
||||
|
||||
qnold[0] = qn[0];
|
||||
qnold[1] = qn[1];
|
||||
qnold[2] = qn[2];
|
||||
qnold[3] = qn[3];
|
||||
qnold[4] = qn[4];
|
||||
qnold[5] = qn[5];
|
||||
}
|
||||
|
||||
mat unit(1.0);
|
||||
|
||||
dest = (qn[0] * unit + qn[1] * alpha * arg + qn[2] * A2 + qn[3] * A3 + qn[4] * A4 + qn[5] * A5);
|
||||
|
||||
}
|
||||
|
||||
static void Exponentiate_Clover(CloverDiagonalField& Diagonal, CloverTriangleField& Triangle, RealD csw_t, RealD diag_mass) {
|
||||
|
||||
GridBase* grid = Diagonal.Grid();
|
||||
int NMAX = getNMAX(Diagonal, 3.*csw_t/diag_mass);
|
||||
|
||||
//
|
||||
// Implementation completely in Daniel's layout
|
||||
//
|
||||
|
||||
// Taylor expansion with Cayley-Hamilton recursion
|
||||
// underlying Horner scheme as above
|
||||
// Taylor expansion, slow but generic
|
||||
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
|
||||
// qN = cN
|
||||
// qn = cn + qn+1 X
|
||||
std::vector<RealD> cn(NMAX+1);
|
||||
cn[0] = 1.0;
|
||||
for (int i=1; i<=NMAX; i++){
|
||||
for (int i=1; i<=NMAX; i++)
|
||||
cn[i] = cn[i-1] / RealD(i);
|
||||
}
|
||||
|
||||
// Taken over from Daniel's implementation
|
||||
conformable(Diagonal, Triangle);
|
||||
ExpClover = Zero();
|
||||
IdentityTimesC(ExpClover, cn[NMAX]);
|
||||
for (int i=NMAX-1; i>=0; i--)
|
||||
ExpClover = ExpClover * Clover + cn[i];
|
||||
|
||||
long lsites = grid->lSites();
|
||||
{
|
||||
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
|
||||
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
|
||||
typedef iMatrix<ComplexD,6> mat;
|
||||
// prepare inverse
|
||||
CloverInv = (-1.0)*Clover;
|
||||
|
||||
autoView(diagonal_v, Diagonal, CpuRead);
|
||||
autoView(triangle_v, Triangle, CpuRead);
|
||||
autoView(diagonalExp_v, Diagonal, CpuWrite);
|
||||
autoView(triangleExp_v, Triangle, CpuWrite);
|
||||
Clover = ExpClover * diag_mass;
|
||||
|
||||
thread_for(site, lsites, { // NOTE: Not on GPU because of (peek/poke)LocalSite
|
||||
ExpClover = Zero();
|
||||
IdentityTimesC(ExpClover, cn[NMAX]);
|
||||
for (int i=NMAX-1; i>=0; i--)
|
||||
ExpClover = ExpClover * CloverInv + cn[i];
|
||||
|
||||
mat srcCloverOpUL(0.0); // upper left block
|
||||
mat srcCloverOpLR(0.0); // lower right block
|
||||
mat ExpCloverOp;
|
||||
CloverInv = ExpClover * (1.0/diag_mass);
|
||||
|
||||
scalar_object_diagonal diagonal_tmp = Zero();
|
||||
scalar_object_diagonal diagonal_exp_tmp = Zero();
|
||||
scalar_object_triangle triangle_tmp = Zero();
|
||||
scalar_object_triangle triangle_exp_tmp = Zero();
|
||||
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
|
||||
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
|
||||
peekLocalSite(triangle_tmp, triangle_v, lcoor);
|
||||
|
||||
int block;
|
||||
block = 0;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
|
||||
}
|
||||
else{
|
||||
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
|
||||
}
|
||||
}
|
||||
}
|
||||
block = 1;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
|
||||
}
|
||||
else{
|
||||
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// exp(Clover)
|
||||
|
||||
ExponentiateHermitean6by6(srcCloverOpUL,1.0/diag_mass,cn,NMAX,ExpCloverOp);
|
||||
|
||||
block = 0;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
|
||||
}
|
||||
else if(i < j){
|
||||
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ExponentiateHermitean6by6(srcCloverOpLR,1.0/diag_mass,cn,NMAX,ExpCloverOp);
|
||||
|
||||
block = 1;
|
||||
for(int i = 0; i < 6; i++){
|
||||
for(int j = 0; j < 6; j++){
|
||||
if (i == j){
|
||||
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
|
||||
}
|
||||
else if(i < j){
|
||||
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pokeLocalSite(diagonal_exp_tmp, diagonalExp_v, lcoor);
|
||||
pokeLocalSite(triangle_exp_tmp, triangleExp_v, lcoor);
|
||||
});
|
||||
}
|
||||
|
||||
Diagonal *= diag_mass;
|
||||
Triangle *= diag_mass;
|
||||
}
|
||||
|
||||
static void InvertClover(CloverField& InvClover,
|
||||
const CloverDiagonalField& diagonal,
|
||||
const CloverTriangleField& triangle,
|
||||
CloverDiagonalField& diagonalInv,
|
||||
CloverTriangleField& triangleInv,
|
||||
bool fixedBoundaries) {
|
||||
|
||||
if (fixedBoundaries)
|
||||
{
|
||||
CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
|
||||
}
|
||||
else
|
||||
{
|
||||
CompactHelpers::ConvertLayout(InvClover, diagonalInv, triangleInv);
|
||||
}
|
||||
}
|
||||
|
||||
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
|
||||
assert(0);
|
||||
|
@ -225,7 +225,7 @@ public:
|
||||
RealD csw_t;
|
||||
RealD cF;
|
||||
|
||||
bool open_boundaries;
|
||||
bool fixedBoundaries;
|
||||
|
||||
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
|
||||
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
|
||||
|
@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Sp(2n)
|
||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
|
||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
|
||||
|
||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
|
||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
|
||||
|
||||
// Twisted mass fermion
|
||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
|
||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||
|
@ -36,7 +36,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Wilson compressor will need FaceGather policies for:
|
||||
// Periodic, Dirichlet, and partial Dirichlet for DWF
|
||||
///////////////////////////////////////////////////////////////
|
||||
const int dwf_compressor_depth=1;
|
||||
const int dwf_compressor_depth=2;
|
||||
#define DWF_COMPRESS
|
||||
class FaceGatherPartialDWF
|
||||
{
|
||||
@ -110,7 +110,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj,class cobj,class compressor>
|
||||
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
|
||||
Vector<cobj *> pointers,int dimension,int plane,int cbmask,
|
||||
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
|
||||
compressor &compress,int type,int partial)
|
||||
{
|
||||
GridBase *Grid = rhs.Grid();
|
||||
@ -209,7 +209,7 @@ public:
|
||||
}
|
||||
template<class vobj,class cobj,class compressor>
|
||||
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
|
||||
Vector<cobj *> pointers,int dimension,int plane,int cbmask,
|
||||
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
|
||||
compressor &compress,int type,int partial)
|
||||
{
|
||||
// std::cout << " face gather exch DWF partial "<<partial <<std::endl;
|
||||
@ -320,7 +320,7 @@ public:
|
||||
typedef decltype(coalescedRead(in0)) sobj;
|
||||
typedef decltype(coalescedRead(out0)) hsobj;
|
||||
|
||||
unsigned int Nsimd = vobj::Nsimd();
|
||||
constexpr unsigned int Nsimd = vobj::Nsimd();
|
||||
unsigned int mask = Nsimd >> (type + 1);
|
||||
int lane = acceleratorSIMTlane(Nsimd);
|
||||
int j0 = lane &(~mask); // inner coor zero
|
||||
@ -484,27 +484,30 @@ public:
|
||||
|
||||
int dag = compress.dag;
|
||||
int face_idx=0;
|
||||
#define vet_same_node(a,b) \
|
||||
{ auto tmp = b; }
|
||||
if ( dag ) {
|
||||
assert(this->same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
|
||||
assert(this->same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
|
||||
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
|
||||
assert(this->same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
|
||||
assert(this->same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
|
||||
assert(this->same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
|
||||
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
|
||||
assert(this->same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
|
||||
vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XpCompress,Xp,face_idx));
|
||||
vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YpCompress,Yp,face_idx));
|
||||
vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
|
||||
vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TpCompress,Tp,face_idx));
|
||||
vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XmCompress,Xm,face_idx));
|
||||
vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YmCompress,Ym,face_idx));
|
||||
vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
|
||||
vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TmCompress,Tm,face_idx));
|
||||
} else {
|
||||
assert(this->same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
|
||||
assert(this->same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
|
||||
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
|
||||
assert(this->same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
|
||||
assert(this->same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
|
||||
assert(this->same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
|
||||
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
|
||||
assert(this->same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
|
||||
vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XmCompress,Xp,face_idx));
|
||||
vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YmCompress,Yp,face_idx));
|
||||
vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
|
||||
vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TmCompress,Tp,face_idx));
|
||||
vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XpCompress,Xm,face_idx));
|
||||
vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YpCompress,Ym,face_idx));
|
||||
vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
|
||||
vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TpCompress,Tm,face_idx));
|
||||
}
|
||||
this->face_table_computed=1;
|
||||
assert(this->u_comm_offset==this->_unified_buffer_size);
|
||||
accelerator_barrier();
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
|
||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
//sp 2n
|
||||
|
||||
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -63,7 +63,9 @@ public:
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
virtual void M(const FermionField &in, FermionField &out) ;
|
||||
virtual void Mdag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
private:
|
||||
RealD mu; // TwistedMass parameter
|
||||
|
||||
|
@ -48,7 +48,7 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
|
||||
, csw_r(_csw_r)
|
||||
, csw_t(_csw_t)
|
||||
, cF(_cF)
|
||||
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
|
||||
, fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
|
||||
, Diagonal(&Fgrid), Triangle(&Fgrid)
|
||||
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
|
||||
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
|
||||
@ -67,7 +67,7 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
|
||||
csw_r /= clover_anisotropy.xi_0;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
if (open_boundaries) {
|
||||
if (fixedBoundaries) {
|
||||
this->BoundaryMaskEven.Checkerboard() = Even;
|
||||
this->BoundaryMaskOdd.Checkerboard() = Odd;
|
||||
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
|
||||
@ -77,31 +77,31 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::Dhop(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopOE(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
|
||||
WilsonBase::DhopEO(in, out, dag);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
|
||||
WilsonBase::DhopDir(in, out, dir, disp);
|
||||
if(this->open_boundaries) ApplyBoundaryMask(out);
|
||||
if(this->fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
|
||||
WilsonBase::DhopDirAll(in, out);
|
||||
if(this->open_boundaries) {
|
||||
if(this->fixedBoundaries) {
|
||||
for(auto& o : out) ApplyBoundaryMask(o);
|
||||
}
|
||||
}
|
||||
@ -112,7 +112,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in,
|
||||
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
|
||||
Mooee(in, Tmp);
|
||||
axpy(out, 1.0, out, Tmp);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
@ -121,19 +121,19 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& i
|
||||
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
|
||||
MooeeDag(in, Tmp);
|
||||
axpy(out, 1.0, out, Tmp);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::Meooe(in, out);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
|
||||
WilsonBase::MeooeDag(in, out);
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
@ -147,7 +147,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField&
|
||||
} else {
|
||||
MooeeInternal(in, out, Diagonal, Triangle);
|
||||
}
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
@ -166,7 +166,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionFiel
|
||||
} else {
|
||||
MooeeInternal(in, out, DiagonalInv, TriangleInv);
|
||||
}
|
||||
if(open_boundaries) ApplyBoundaryMask(out);
|
||||
if(fixedBoundaries) ApplyBoundaryMask(out);
|
||||
}
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
@ -186,7 +186,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MdirAll(const FermionField
|
||||
|
||||
template<class Impl, class CloverHelpers>
|
||||
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
|
||||
assert(!open_boundaries); // TODO check for changes required for open bc
|
||||
assert(!fixedBoundaries); // TODO check for changes required for open bc
|
||||
|
||||
// NOTE: code copied from original clover term
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
@ -305,6 +305,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
|
||||
GridBase* grid = _Umu.Grid();
|
||||
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
||||
CloverField TmpOriginal(grid);
|
||||
CloverField TmpInverse(grid);
|
||||
|
||||
// Compute the field strength terms mu>nu
|
||||
double t2 = usecond();
|
||||
@ -324,24 +325,27 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
|
||||
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
|
||||
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
|
||||
// Handle mass term based on clover policy
|
||||
CloverHelpers::MassTerm(TmpOriginal, this->diag_mass);
|
||||
|
||||
// Convert the data layout of the clover term
|
||||
|
||||
// Instantiate the clover term
|
||||
// - In case of the standard clover the mass term is added
|
||||
// - In case of the exponential clover the clover term is exponentiated
|
||||
double t4 = usecond();
|
||||
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, this->diag_mass);
|
||||
|
||||
// Convert the data layout of the clover term
|
||||
double t5 = usecond();
|
||||
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
|
||||
|
||||
// Exponentiate the clover (nothing happens in case of the standard clover)
|
||||
double t5 = usecond();
|
||||
CloverHelpers::Exponentiate_Clover(Diagonal, Triangle, csw_t, this->diag_mass);
|
||||
|
||||
// Possible modify the boundary values
|
||||
// Modify the clover term at the temporal boundaries in case of open boundary conditions
|
||||
double t6 = usecond();
|
||||
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
|
||||
if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
|
||||
|
||||
// Invert the Clover term (explicit inversion needed for the improvement in case of open boundary conditions)
|
||||
// Invert the Clover term
|
||||
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
|
||||
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
|
||||
// TODO: For now this inversion is explictly done on the CPU
|
||||
double t7 = usecond();
|
||||
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
|
||||
CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
|
||||
|
||||
// Fill the remaining clover fields
|
||||
double t8 = usecond();
|
||||
@ -362,10 +366,10 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
|
||||
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "convert = " << (t5 - t4) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "exponentiation = " << (t6 - t5) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "boundaries = " << (t7 - t6) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "inversions = " << (t8 - t7) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
|
||||
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
|
||||
}
|
||||
|
@ -280,20 +280,16 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
|
||||
|
||||
if( interior && exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptInlineAsm ) { ASM_CALL(DhopSiteAsm); return;}
|
||||
#endif
|
||||
} else if( interior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1); return;}
|
||||
#endif
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
@ -322,19 +318,13 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
|
||||
|
||||
if( interior && exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0); return;}
|
||||
#endif
|
||||
} else if( interior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0); return;}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -332,8 +332,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
|
||||
/////////////////////////////
|
||||
{
|
||||
GRID_TRACE("Gather");
|
||||
st.HaloExchangeOptGather(in,compressor);
|
||||
accelerator_barrier();
|
||||
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
|
||||
}
|
||||
|
||||
std::vector<std::vector<CommsRequest_t> > requests;
|
||||
|
@ -423,14 +423,14 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
||||
|
||||
#define KERNEL_CALL_EXT(A) \
|
||||
const uint64_t NN = Nsite*Ls; \
|
||||
const uint64_t sz = st.surface_list.size(); \
|
||||
auto ptr = &st.surface_list[0]; \
|
||||
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
|
||||
int sF = ptr[ss]; \
|
||||
int sU = ss/Ls; \
|
||||
int sU = sF/Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
});
|
||||
}); \
|
||||
accelerator_barrier();
|
||||
|
||||
#define ASM_CALL(A) \
|
||||
thread_for( sss, Nsite, { \
|
||||
@ -439,6 +439,17 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
int sF = ss*Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
|
||||
});
|
||||
#define ASM_CALL_SLICE(A) \
|
||||
auto grid = in.Grid() ; \
|
||||
int nt = grid->LocalDimensions()[4]; \
|
||||
int nxyz = Nsite/nt ; \
|
||||
for(int t=0;t<nt;t++){ \
|
||||
thread_for( sss, nxyz, { \
|
||||
int ss = t*nxyz+sss; \
|
||||
int sU = ss; \
|
||||
int sF = ss*Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
|
||||
});}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
@ -451,12 +462,9 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
autoView(st_v , st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
|
||||
#ifdef SYCL_HACK
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteSycl); return; }
|
||||
#else
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
|
||||
#endif
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSite); return;}
|
||||
#endif
|
||||
@ -467,8 +475,10 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteExt); return;}
|
||||
// dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteExt); return;}
|
||||
#endif
|
||||
@ -486,26 +496,26 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
autoView(st_v ,st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDag); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;}
|
||||
#endif
|
||||
acceleratorFenceComputeStream();
|
||||
} else if( interior ) {
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALLNB(GenericDhopSiteDagInt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALLNB(HandDhopSiteDagInt); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
// Dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteDagExt); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
|
||||
#endif
|
||||
acceleratorFenceComputeStream();
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
|
@ -93,5 +93,25 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou
|
||||
RealD b = tm /sq;
|
||||
axpibg5x(out,in,a,b);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerNo);
|
||||
FermionField tmp(out.Grid());
|
||||
RealD a = 4.0+this->mass;
|
||||
RealD b = this->mu;
|
||||
axpibg5x(tmp,in,a,b);
|
||||
axpy(out, 1.0, tmp, out);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerYes);
|
||||
FermionField tmp(out.Grid());
|
||||
RealD a = 4.0+this->mass;
|
||||
RealD b = -this->mu;
|
||||
axpibg5x(tmp,in,a,b);
|
||||
axpy(out, 1.0, tmp, out);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonImplF
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF
|
@ -1 +0,0 @@
|
||||
../CayleyFermion5DInstantiation.cc.master
|
@ -1 +0,0 @@
|
||||
../ContinuedFractionFermion5DInstantiation.cc.master
|
@ -1 +0,0 @@
|
||||
../DomainWallEOFAFermionInstantiation.cc.master
|
@ -1 +0,0 @@
|
||||
../MobiusEOFAFermionInstantiation.cc.master
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user