mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 20:57:06 +01:00
Compare commits
353 Commits
feature/bo
...
ccf147d6c1
Author | SHA1 | Date | |
---|---|---|---|
ccf147d6c1 | |||
7aa12b446f | |||
c293228102 | |||
5c4c9f721a | |||
057f86c1de | |||
cd52e3cbc2 | |||
24602e1259 | |||
8a098889fc | |||
ff2ea5de18 | |||
da59379612 | |||
3ef2a41518 | |||
aa96f420c6 | |||
49e9e4ed0e | |||
f7b8163016 | |||
93769eacd3 | |||
59b0cc11df | |||
f32c275376 | |||
5404fc66ab | |||
1f53458af8 | |||
434c3e7f1d | |||
500b119f3d | |||
4b87259c1b | |||
503dec34ef | |||
d1e9fe50d2 | |||
d01e5fa838 | |||
a477c25e8c | |||
1bd20cd9e8 | |||
e49e95b037 | |||
6f59fed563 | |||
60b7f6c99d | |||
b92dfcc8d3 | |||
f6fd6dd053 | |||
79ad567dd5 | |||
fab1efb48c | |||
660eb76d93 | |||
62e7bf024a | |||
95f3d69cf9 | |||
89c0519f83 | |||
2704b82084 | |||
cf8632bbac | |||
d224297972 | |||
a4d11a630f | |||
2b4399f8b1 | |||
f17b8de907 | |||
7e5bd46dd3 | |||
228bbb9d81 | |||
b812a7b4c6 | |||
891a366f73 | |||
10116b3be8 | |||
a46a0f0882 | |||
a26a8a38f4 | |||
7435315d50 | |||
9b5f741e85 | |||
517822fdd2 | |||
1b93a9be88 | |||
783a66b348 | |||
976c3e9b59 | |||
f8ca971dae | |||
21bc8c24df | |||
30228214f7 | |||
2ae980ae43 | |||
6153dec2e4 | |||
c805f86343 | |||
04ca065281 | |||
88d8fa43d7 | |||
3c49762875 | |||
436bf1d9d3 | |||
f70df6e195 | |||
fce3852dff | |||
ee1b8bbdbd | |||
3f1636637d | |||
2e570f5300 | |||
9f89486df5 | |||
22b43b86cb | |||
3c9012676a | |||
b507fe209c | |||
6cd2d8fcd5 | |||
b02d022993 | |||
94581e3c7a | |||
88b52cc045 | |||
0a816b5509 | |||
1c8b807c2e | |||
66391f84f2 | |||
97f7a9ecb3 | |||
15878f7613 | |||
e0d5e3c6c7 | |||
6f3455900e | |||
56827d6ad6 | |||
73c0b29535 | |||
303b83cdb8 | |||
5ef4da3f29 | |||
1502860004 | |||
585efc6f3f | |||
62055e04dd | |||
e4a641b64e | |||
8849f187f1 | |||
db420525b3 | |||
b5659d106e | |||
4b43307402 | |||
09af8c25a2 | |||
9514035b87 | |||
2da09ae99b | |||
a38fb0e04a | |||
7019916294 | |||
1514b4f137 | |||
91cf5ee312 | |||
0a6e2f42c5 | |||
ab2de131bd | |||
5bfa88be85 | |||
5af8da76d7 | |||
b8b9dc952d | |||
79a6ed32d8 | |||
caa5f97723 | |||
4924b3209e | |||
00f24f8765 | |||
f5b3d582b0 | |||
981c93d67a | |||
c020b78e02 | |||
2a0d75bac2 | |||
f48298ad4e | |||
645e47c1ba | |||
d1d9827263 | |||
14643c0aab | |||
b77a9b8947 | |||
7d077fe493 | |||
9cd4128833 | |||
c8b17c9526 | |||
2ae2a81e85 | |||
69c869d345 | |||
df9b958c40 | |||
3d3376d1a3 | |||
f2648e94b9 | |||
21ed6ac0f4 | |||
7bb8ab7000 | |||
2c824c2641 | |||
391fd9cc6a | |||
51051df62c | |||
33097681b9 | |||
07e4900218 | |||
36ab567d67 | |||
e19171523b | |||
9626a2c7c0 | |||
e936f5b80b | |||
ffc0639cb9 | |||
c5b43b322c | |||
c9c4576237 | |||
bf4369f72d | |||
36600899e2 | |||
b9c70d156b | |||
eb89579fe7 | |||
0cfd13d18b | |||
e6ed516052 | |||
e2a3dae1f2 | |||
6d0c2de399 | |||
7786ea9921 | |||
d93eac7b1c | |||
afc316f501 | |||
f14bfd5c1b | |||
c5f1420dea | |||
018e6da872 | |||
b77bccfac2 | |||
80359e0d49 | |||
3d437c5cc4 | |||
63d9b8e8a3 | |||
d247031c98 | |||
affff3865f | |||
9c22655b5a | |||
99d879ea7f | |||
bd56c95a6f | |||
dbd8bb49dc | |||
3a29af0ce4 | |||
f7b79cdd45 | |||
075b9d22d0 | |||
b92428f05f | |||
34b11864b6 | |||
1dfaa08afb | |||
9d263d9a7d | |||
9015c229dc | |||
f44dce390f | |||
bb71e9a96a | |||
a7eabaad56 | |||
eeb4703b84 | |||
a07421b3d3 | |||
cda53b4068 | |||
6f6844ccf1 | |||
4c6613d72c | |||
559257bbe9 | |||
cff1f8d3b8 | |||
f27d2083cd | |||
36cc9c524f | |||
2822487450 | |||
e07fafe46a | |||
063d290bd8 | |||
4e6194d92a | |||
de30c4e22a | |||
df99f227c1 | |||
4241c7d4a3 | |||
d536c67b9d | |||
f44f005dad | |||
26b2caf570 | |||
7b11075102 | |||
abc658dca5 | |||
8bb078db25 | |||
b61ba40023 | |||
452bf2e907 | |||
2372275b2c | |||
ef736e8aa4 | |||
5e539e2d54 | |||
96773f5254 | |||
d80df09f3b | |||
621e612c30 | |||
8c3792721b | |||
c95bbd3948 | |||
e28ab7a732 | |||
c797cbe737 | |||
e09dfbf1c2 | |||
116d90b0ee | |||
b0646ca187 | |||
14d352ea4f | |||
1cf9ec1cce | |||
4895ff260e | |||
4b994a1bc7 | |||
e506d6d369 | |||
ab56ad8d7a | |||
470d93006a | |||
2f3d03f188 | |||
8db7c23bee | |||
69dc5172dc | |||
fd72eb6546 | |||
e8c29e2fe5 | |||
b405767569 | |||
fe88a0c12f | |||
e61a9ed2b4 | |||
de8daa3824 | |||
3a50fb29cb | |||
6647d2656f | |||
a6f4dbeb6d | |||
92a282f2d8 | |||
ca2fd9fc7b | |||
3825329f8e | |||
be1a4f5860 | |||
5897b93dd4 | |||
af091e0881 | |||
3c1e5e9517 | |||
85b2cb7a8a | |||
c7bdf2c0e4 | |||
da9cbfc7cc | |||
6b9f07c1ed | |||
b8bdc2eefb | |||
0078826ff1 | |||
e855c41772 | |||
d169c275b6 | |||
a5125e23f4 | |||
7b83c80757 | |||
e41821e206 | |||
bf91778550 | |||
5a75ab15a2 | |||
932c783fbf | |||
55f9cce577 | |||
b3533ca847 | |||
fd2a637010 | |||
eee27b8b30 | |||
8522352aa3 | |||
3beb8f4091 | |||
12a706e9b1 | |||
170aa7df01 | |||
e8ad1fef53 | |||
aa9df63a05 | |||
3953312a93 | |||
6e62f4f616 | |||
6a7bdca53b | |||
c7fba9aace | |||
ac6c7cb8d6 | |||
c5924833a1 | |||
ac0a74be0d | |||
42b0e1125d | |||
339c4fda79 | |||
9b85bf9402 | |||
86b02c3cd8 | |||
7b3b7093fa | |||
881b08a465 | |||
3ee5444c69 | |||
5e28fe56d2 | |||
5aabe074fe | |||
dace904c10 | |||
be98d26610 | |||
5f75735dab | |||
178376f24b | |||
6a0eb466ee | |||
4ea29b8f0f | |||
778291230a | |||
026e736dfa | |||
4275b3f431 | |||
1b8176e2c0 | |||
cbc053c3db | |||
cdf3f6ef6e | |||
ba7f9d7b70 | |||
371fd123fb | |||
d6ff644aab | |||
29586f6b5e | |||
fd057c838f | |||
f51222086c | |||
f73691ec47 | |||
7ebda3e9ec | |||
b10e1b7bc8 | |||
d7dea44ce7 | |||
37b6b82869 | |||
92ad5b8f74 | |||
8c80f1c168 | |||
0af7d5a793 | |||
505fa49983 | |||
7bcf33def9 | |||
a13820656a | |||
fa71b46a41 | |||
b8b3ae6ac1 | |||
55c008da21 | |||
2507606bd0 | |||
7c2ad4f8c8 | |||
54c8025aad | |||
921e23e83c | |||
6e750ecb0e | |||
b8f1f5d2a3 | |||
9273f2937c | |||
1aa28b47ae | |||
629cb2987a | |||
03235d6368 | |||
22064c7e4c | |||
2de03e5172 | |||
3af4929dda | |||
1ba429345b | |||
88bdd4344b | |||
4044536eea | |||
4d8ae6221c | |||
4e31e4e094 | |||
0d6674e489 | |||
b145fd4f5b | |||
8a5b794f25 | |||
291e80f88a | |||
1ace5850ae | |||
283f14b7c1 | |||
1d6e708083 | |||
89457e25e3 | |||
7e3b298d3d | |||
7ff3e5eed4 | |||
19eb51cf41 | |||
470d4dcc6d | |||
ed03bfd555 | |||
8c0fbcccae | |||
d4866157fe | |||
b6496b6cb5 | |||
4f5fe57920 | |||
11fb943b1e | |||
046a23121e |
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,7 @@
|
||||
# Doxygen stuff
|
||||
html/*
|
||||
latex/*
|
||||
|
||||
# Compiled Object files #
|
||||
#########################
|
||||
*.slo
|
||||
|
@ -34,7 +34,7 @@
|
||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
||||
#undef __SYCL_DEVICE_ONLY__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
//#undef EIGEN_USE_SYCL
|
||||
#undef EIGEN_USE_SYCL
|
||||
#define __SYCL__REDEFINE__
|
||||
#endif
|
||||
|
||||
|
@ -66,6 +66,10 @@ if BUILD_FERMION_REPS
|
||||
extra_sources+=$(ADJ_FERMION_FILES)
|
||||
extra_sources+=$(TWOIND_FERMION_FILES)
|
||||
endif
|
||||
if BUILD_SP
|
||||
extra_sources+=$(SP_FERMION_FILES)
|
||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
||||
endif
|
||||
|
||||
lib_LIBRARIES = libGrid.a
|
||||
|
||||
|
@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#if defined(USE_MKL) || defined(GRID_SYCL)
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
|
@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
||||
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||||
* type = 1 for the approximation which is infinite at x = 0. */
|
||||
|
||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
||||
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||||
l, invlambda, xi, xisq, *tv, s, opl;
|
||||
int m, czero, ts;
|
||||
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
construct_partfrac(d);
|
||||
construct_contfrac(d);
|
||||
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
/* Converting everything to ZOLO_PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
|
||||
}
|
||||
|
||||
|
||||
zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
||||
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||||
int m, czero;
|
||||
zolotarev_data *zd;
|
||||
@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
|
||||
#ifdef TEST
|
||||
|
||||
#undef ZERO
|
||||
#define ZERO ((PRECISION) 0)
|
||||
#define ZERO ((ZOLO_PRECISION) 0)
|
||||
#undef ONE
|
||||
#define ONE ((PRECISION) 1)
|
||||
#define ONE ((ZOLO_PRECISION) 1)
|
||||
#undef TWO
|
||||
#define TWO ((PRECISION) 2)
|
||||
#define TWO ((ZOLO_PRECISION) 2)
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the factored form */
|
||||
|
||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R;
|
||||
ZOLO_PRECISION R;
|
||||
|
||||
if (rdata -> type == 0) {
|
||||
R = rdata -> A * x;
|
||||
@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||||
|
||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
for (m = 0; m < rdata -> dd; m++)
|
||||
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||||
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||||
@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||||
* but with signalling overflow you will get an error message. */
|
||||
|
||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> beta[0] * x;
|
||||
ZOLO_PRECISION R = rdata -> beta[0] * x;
|
||||
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||||
return R;
|
||||
}
|
||||
|
||||
/* Evaluate the rational approximation R(x) using Cayley form */
|
||||
|
||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION T;
|
||||
ZOLO_PRECISION T;
|
||||
|
||||
T = rdata -> type == 0 ? ONE : -ONE;
|
||||
for (m = 0; m < rdata -> n; m++)
|
||||
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
|
||||
int m, n, plotpts = 5000, type = 0;
|
||||
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||||
zolotarev_data *rdata;
|
||||
PRECISION y;
|
||||
ZOLO_PRECISION y;
|
||||
FILE *plot_function, *plot_error,
|
||||
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||||
|
||||
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
rdata = type == 2
|
||||
? higham((PRECISION) eps, n)
|
||||
: zolotarev((PRECISION) eps, n, type);
|
||||
? higham((ZOLO_PRECISION) eps, n)
|
||||
: zolotarev((ZOLO_PRECISION) eps, n, type);
|
||||
|
||||
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||||
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||||
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||||
"\tPRECISION = " STRINGIFY(PRECISION)
|
||||
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
|
||||
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||||
"\tDelta = %g (maximum error)\n\n"
|
||||
"\tA = %g (overall factor)\n",
|
||||
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
|
||||
x = 2.4 * (float) m / plotpts - 1.2;
|
||||
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||||
/* skip x = 0 for type 1, as R(0) is singular */
|
||||
y = zolotarev_eval((PRECISION) x, rdata);
|
||||
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
|
||||
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||||
fprintf(plot_error, "%g %g\n",
|
||||
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||||
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||||
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||||
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||||
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||||
|
@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
|
||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
||||
|
||||
#ifndef ZOLOTAREV_INTERNAL
|
||||
#ifndef PRECISION
|
||||
#define PRECISION double
|
||||
#ifndef ZOLO_PRECISION
|
||||
#define ZOLO_PRECISION double
|
||||
#endif
|
||||
#define ZPRECISION PRECISION
|
||||
#define ZPRECISION ZOLO_PRECISION
|
||||
#define ZOLOTAREV_DATA zolotarev_data
|
||||
#endif
|
||||
|
||||
@ -77,8 +77,8 @@ typedef struct {
|
||||
* zolotarev_data structure. The arguments must satisfy the constraints that
|
||||
* epsilon > 0, n > 0, and type = 0 or 1. */
|
||||
|
||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
|
||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
|
||||
void zolotarev_free(zolotarev_data *zdata);
|
||||
#endif
|
||||
|
||||
@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata);
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
@ -0,0 +1,34 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
||||
int GridBLAS::gridblasInit;
|
||||
NAMESPACE_END(Grid);
|
||||
|
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
@ -0,0 +1,727 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
#include <cublas_v2.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
#if 0
|
||||
#define GRID_ONE_MKL
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#ifdef GRID_HIP
|
||||
typedef hipblasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
typedef cublasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
|
||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
|
||||
|
||||
class GridBLAS {
|
||||
public:
|
||||
|
||||
|
||||
static gridblasHandle_t gridblasHandle;
|
||||
static int gridblasInit;
|
||||
|
||||
static void Init(void)
|
||||
{
|
||||
if ( ! gridblasInit ) {
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << "cublasCreate"<<std::endl;
|
||||
cublasCreate(&gridblasHandle);
|
||||
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << "hipblasCreate"<<std::endl;
|
||||
hipblasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
gridblasHandle = theGridAccelerator;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
cl::sycl::cpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
gridblasHandle =new sycl::queue (selectedDevice);
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
}
|
||||
}
|
||||
|
||||
// Force construct once
|
||||
GridBLAS() { Init(); };
|
||||
~GridBLAS() { };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// BLAS GEMM conventions:
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// - C = alpha A * B + beta C
|
||||
// Dimensions:
|
||||
// - C_m.n
|
||||
// - A_m.k
|
||||
// - B_k.n
|
||||
// - Flops = 8 M N K
|
||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
||||
// M=60, N=12
|
||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
void synchronise(void)
|
||||
{
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipDeviceSynchronize();
|
||||
assert(err==hipSuccess);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cudaDeviceSynchronize();
|
||||
assert(err==cudaSuccess);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
accelerator_barrier();
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
gridblasHandle->wait();
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<ComplexD> alpha_p(1);
|
||||
static deviceVector<ComplexD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex **)&Amk[0], lda,
|
||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// synchronise();
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<ComplexF> alpha_p(1);
|
||||
static deviceVector<ComplexF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasComplex *) &alpha_p[0],
|
||||
(hipblasComplex **)&Amk[0], lda,
|
||||
(hipblasComplex **)&Bkn[0], ldb,
|
||||
(hipblasComplex *) &beta_p[0],
|
||||
(hipblasComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuComplex *) &alpha_p[0],
|
||||
(cuComplex **)&Amk[0], lda,
|
||||
(cuComplex **)&Bkn[0], ldb,
|
||||
(cuComplex *) &beta_p[0],
|
||||
(cuComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Single precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<RealF> alpha_p(1);
|
||||
static deviceVector<RealF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<RealD> alpha_p(1);
|
||||
static deviceVector<RealD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasDgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
|
||||
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
oneapi::mkl::transpose::N,
|
||||
oneapi::mkl::transpose::N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
(const ComplexD *)Amk,lda,sda,
|
||||
(const ComplexD *)Bkn,ldb,sdb,
|
||||
beta,
|
||||
(ComplexD *)Cmn,ldc,sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
int ncall=10;
|
||||
RealD t0 = usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = 8.0*M*N*K*BATCH*ncall;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
return flops; // Returns gigaflops
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -176,6 +176,7 @@ template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -348,6 +348,7 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
return offbytes;
|
||||
}
|
||||
|
||||
#undef NVLINK_GET // Define to use get instead of put DMA
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
@ -380,9 +381,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
#ifdef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (dox) {
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
@ -390,9 +397,12 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -402,6 +412,8 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
|
@ -40,6 +40,9 @@ int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void * GlobalSharedMemory::HostCommBuf;
|
||||
#endif
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
|
||||
void *ptr = (void *)host_heap_top;
|
||||
host_heap_top += bytes;
|
||||
host_heap_bytes+= bytes;
|
||||
if (host_heap_bytes >= host_heap_size) {
|
||||
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
assert(host_heap_bytes<host_heap_size);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::HostBufferFreeAll(void) {
|
||||
host_heap_top =(size_t)HostCommBuf;
|
||||
host_heap_bytes=0;
|
||||
}
|
||||
#endif
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
|
@ -75,7 +75,9 @@ public:
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static void *HostCommBuf;
|
||||
#endif
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
@ -120,6 +122,13 @@ private:
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
size_t host_heap_top; // set in free all
|
||||
size_t host_heap_bytes;// set in free all
|
||||
void *HostCommBuf; // set in SetCommunicator
|
||||
size_t host_heap_size; // set in SetCommunicator
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
@ -151,7 +160,10 @@ public:
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *HostBufferMalloc(size_t bytes);
|
||||
void HostBufferFreeAll(void);
|
||||
#endif
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
@ -39,9 +39,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#include <hip/hip_runtime_api.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
||||
#define SHM_SOCKETS
|
||||
#endif
|
||||
#include <syscall.h>
|
||||
#define SHM_SOCKETS
|
||||
#endif
|
||||
|
||||
#include <sys/socket.h>
|
||||
@ -512,46 +514,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
|
||||
//if defined(GRID_SYCL)
|
||||
#if 0
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the pointer array for shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
assert(WorldShmSize == 1);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
}
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
@ -574,6 +536,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
HostCommBuf= malloc(bytes);
|
||||
#endif
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
@ -604,8 +569,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
|
||||
ze_ipc_mem_handle_t ihandle;
|
||||
clone_mem_t handle;
|
||||
@ -738,7 +703,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
@ -962,6 +926,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
host_heap_size = heap_size;
|
||||
HostCommBuf= GlobalSharedMemory::HostCommBuf;
|
||||
HostBufferFreeAll();
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
@ -29,8 +29,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern Vector<std::pair<int,int> > Cshift_table;
|
||||
extern std::vector<std::pair<int,int> > Cshift_table;
|
||||
extern commVector<std::pair<int,int> > Cshift_table_device;
|
||||
|
||||
inline std::pair<int,int> *MapCshiftTable(void)
|
||||
{
|
||||
// GPU version
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
uint64_t sz=Cshift_table.size();
|
||||
if (Cshift_table_device.size()!=sz ) {
|
||||
Cshift_table_device.resize(sz);
|
||||
}
|
||||
acceleratorCopyToDevice((void *)&Cshift_table[0],
|
||||
(void *)&Cshift_table_device[0],
|
||||
sizeof(Cshift_table[0])*sz);
|
||||
|
||||
return &Cshift_table_device[0];
|
||||
#else
|
||||
return &Cshift_table[0];
|
||||
#endif
|
||||
// CPU version use identify map
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gather for when there is no need to SIMD split
|
||||
///////////////////////////////////////////////////////////////////
|
||||
@ -74,8 +93,8 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
|
||||
}
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
@ -225,7 +244,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
|
||||
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
@ -297,30 +316,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
}
|
||||
}
|
||||
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
|
||||
template <typename T>
|
||||
T iDivUp(T a, T b) // Round a / b to nearest higher integer value
|
||||
{ return (a % b != 0) ? (a / b + 1) : (a / b); }
|
||||
|
||||
template <typename T>
|
||||
__global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride)
|
||||
{
|
||||
int idx = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (idx >= e1*e2) return;
|
||||
|
||||
int n, b, o;
|
||||
|
||||
n = idx / e2;
|
||||
b = idx % e2;
|
||||
o = n*stride + b;
|
||||
|
||||
vector[2*idx + 0] = lo + o;
|
||||
vector[2*idx + 1] = ro + o;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// local to node block strided copies
|
||||
//////////////////////////////////////////////////////
|
||||
@ -345,20 +340,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
int ent=0;
|
||||
|
||||
if(cbmask == 0x3 ){
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
ent = e1*e2;
|
||||
dim3 blockSize(acceleratorThreads());
|
||||
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
|
||||
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
|
||||
accelerator_barrier();
|
||||
#else
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride+b;
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@ -372,7 +359,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
autoView(lhs_v , lhs, AcceleratorWrite);
|
||||
@ -409,19 +396,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
int ent=0;
|
||||
|
||||
if ( cbmask == 0x3 ) {
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
ent = e1*e2;
|
||||
dim3 blockSize(acceleratorThreads());
|
||||
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
|
||||
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
|
||||
accelerator_barrier();
|
||||
#else
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride;
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
}}
|
||||
#endif
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@ -432,7 +411,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
|
@ -52,7 +52,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
||||
|
||||
|
||||
RealD t1,t0;
|
||||
t0=usecond();
|
||||
if ( !comm_dim ) {
|
||||
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||
@ -63,6 +64,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift);
|
||||
}
|
||||
t1=usecond();
|
||||
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -127,16 +130,20 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
|
||||
tcopy+=usecond();
|
||||
} else {
|
||||
|
||||
int words = buffer_size;
|
||||
@ -144,26 +151,39 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -190,6 +210,12 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
@ -227,7 +253,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
int sx = (x+sshift)%rd;
|
||||
tgather-=usecond();
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -252,7 +280,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||
@ -262,7 +291,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
|
||||
grid->Barrier();
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
@ -270,9 +301,17 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
#else
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -292,6 +331,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
assert(comm_dim==1);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
|
||||
@ -315,7 +359,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
tcopy+=usecond();
|
||||
|
||||
} else {
|
||||
|
||||
@ -324,7 +370,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
@ -332,7 +380,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
@ -340,13 +389,24 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
|
||||
|
||||
grid->Barrier();
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -372,6 +432,11 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(simd_layout==2);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
@ -414,8 +479,10 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
tgather-=usecond();
|
||||
int sx = (x+sshift)%rd;
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -440,7 +507,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
@ -449,17 +517,28 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
|
||||
xbytes+=bytes;
|
||||
|
||||
grid->Barrier();
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
}
|
||||
tscatter+=usecond();
|
||||
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include <Grid/GridCore.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
Vector<std::pair<int,int> > Cshift_table;
|
||||
std::vector<std::pair<int,int> > Cshift_table;
|
||||
commVector<std::pair<int,int> > Cshift_table_device;
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_transpose.h>
|
||||
#include <Grid/lattice/Lattice_local.h>
|
||||
#include <Grid/lattice/Lattice_reduction.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/Lattice_peekpoke.h>
|
||||
#include <Grid/lattice/Lattice_reality.h>
|
||||
#include <Grid/lattice/Lattice_real_imag.h>
|
||||
@ -46,4 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
|
@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a));
|
||||
GridUnopClass(UnaryTrace, trace(a));
|
||||
GridUnopClass(UnaryTranspose, transpose(a));
|
||||
GridUnopClass(UnaryTa, Ta(a));
|
||||
GridUnopClass(UnarySpTa, SpTa(a));
|
||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
|
||||
GridUnopClass(UnaryTimesI, timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs, abs(a));
|
||||
@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot);
|
||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
|
||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||
|
@ -270,5 +270,42 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
}
|
||||
|
||||
/// Trace product
|
||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
|
||||
-> Lattice<decltype(trace(obj()))>
|
||||
{
|
||||
typedef decltype(trace(obj())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( rhs2 , rhs_2, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
typedef decltype(trace(obj1())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
return traceProduct(rhs_1,rhs_2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
basis_v.push_back(basis[k].View(AcceleratorWrite));
|
||||
}
|
||||
|
||||
#if ( (!defined(GRID_CUDA)) )
|
||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
|
||||
int max_threads = thread_max();
|
||||
Vector < vobj > Bt(Nm * max_threads);
|
||||
thread_region
|
||||
|
@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -31,6 +31,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#if defined(GRID_SYCL)
|
||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
|
||||
#endif
|
||||
#include <Grid/lattice/Lattice_slicesum_core.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -280,11 +281,29 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t csum=0;
|
||||
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
{
|
||||
// Hack
|
||||
// Fast integer xor checksum. Can also be used in comms now.
|
||||
autoView(l_v,left,AcceleratorRead);
|
||||
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&l_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
}
|
||||
FlightRecorder::CsumLog(csum);
|
||||
#endif
|
||||
ComplexD nrm = rankInnerProduct(left,right);
|
||||
RealD local = real(nrm);
|
||||
FlightRecorder::NormLog(real(nrm));
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
@ -448,19 +467,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
@ -504,6 +514,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||
{
|
||||
|
@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
|
||||
cudaGetDevice(&device);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
hipGetDevice(&device);
|
||||
auto r=hipGetDevice(&device);
|
||||
#endif
|
||||
|
||||
Iterator warpSize = gpu_props[device].warpSize;
|
||||
|
@ -69,29 +69,30 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
|
||||
return result;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
|
||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
{
|
||||
Double sumResult; zeroit(sumResult);
|
||||
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
|
||||
Double identity; zeroit(identity);
|
||||
Word xorResult; xorResult = 0;
|
||||
Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
|
||||
Word identity; identity=0;
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
sum +=vec[index];
|
||||
sum ^=vec[index];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
Double ret = d_sum[0];
|
||||
Word ret = d_sum[0];
|
||||
free(d_sum,*theGridAccelerator);
|
||||
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
|
||||
{
|
||||
|
@ -152,6 +152,7 @@ public:
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
#if 0
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
// This goes by 10^12.
|
||||
@ -162,9 +163,9 @@ public:
|
||||
// tens of seconds per trajectory so this is clean in all reasonable cases,
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
const int shift = 30;
|
||||
@ -179,6 +180,9 @@ public:
|
||||
assert((skip >> shift)==site); // check for overflow
|
||||
|
||||
eng.discard(skip);
|
||||
#else
|
||||
eng.discardhi(site);
|
||||
#endif
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
@ -407,7 +411,7 @@ public:
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
|
||||
|
||||
// Everyone generates the same seed_seq based on input seeds
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
@ -424,7 +428,6 @@ public:
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
#if 1
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int gidx;
|
||||
@ -445,29 +448,12 @@ public:
|
||||
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
});
|
||||
#else
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
|
||||
// Where is it?
|
||||
int rank;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
// If this is one of mine we take it
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
if ( britney ) {
|
||||
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
|
||||
} else {
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
#endif
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Machine and thread decomposition dependent seeding is efficient
|
||||
|
213
Grid/lattice/Lattice_slicesum_core.h
Normal file
213
Grid/lattice/Lattice_slicesum_core.h
Normal file
@ -0,0 +1,213 @@
|
||||
#pragma once
|
||||
#include <type_traits>
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
#define gpucub cub
|
||||
#define gpuError_t cudaError_t
|
||||
#define gpuSuccess cudaSuccess
|
||||
|
||||
#elif defined(GRID_HIP)
|
||||
|
||||
#include <hipcub/hipcub.hpp>
|
||||
#define gpucub hipcub
|
||||
#define gpuError_t hipError_t
|
||||
#define gpuSuccess hipSuccess
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
size_t subvol_size = e1*e2;
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
vobj zero_init;
|
||||
zeroit(zero_init);
|
||||
|
||||
|
||||
void *temp_storage_array = NULL;
|
||||
size_t temp_storage_bytes = 0;
|
||||
vobj *d_out;
|
||||
int* d_offsets;
|
||||
|
||||
std::vector<int> offsets(rd+1,0);
|
||||
|
||||
for (int i = 0; i < offsets.size(); i++) {
|
||||
offsets[i] = i*subvol_size;
|
||||
}
|
||||
|
||||
//Allocate memory for output and offset arrays on device
|
||||
d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
|
||||
|
||||
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
|
||||
|
||||
//copy offsets to device
|
||||
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
|
||||
|
||||
|
||||
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//allocate memory for temp_storage_array
|
||||
temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
|
||||
|
||||
//prepare buffer for reduction
|
||||
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
|
||||
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
|
||||
|
||||
});
|
||||
|
||||
//issue segmented reductions in computeStream
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
|
||||
acceleratorFreeDevice(temp_storage_array);
|
||||
acceleratorFreeDevice(d_out);
|
||||
acceleratorFreeDevice(d_offsets);
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
typedef typename vobj::vector_type vector;
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
const int osites = rd*e1*e2;
|
||||
commVector<vector>buffer(osites);
|
||||
vector *dat = (vector *)Data;
|
||||
vector *buf = &buffer[0];
|
||||
Vector<vector> lvSum_small(rd);
|
||||
vector *lvSum_ptr = (vector *)&lvSum[0];
|
||||
|
||||
for (int w = 0; w < words; w++) {
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum_ptr[w+words*r]=lvSum_small[r];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
{
|
||||
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
|
||||
if constexpr (sizeof(vobj) <= 256) {
|
||||
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
else {
|
||||
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
lvSum[r] = mysum[0];
|
||||
}
|
||||
|
||||
free(mysum,*theGridAccelerator);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
|
||||
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#elif defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#else
|
||||
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<int N, class Vec>
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
||||
typedef typename Vec::scalar_type scalar;
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
scalar tmp= Us()()(i,j);
|
||||
ComplexD ztmp(real(tmp),imag(tmp));
|
||||
EigenU(i,j)=ztmp;
|
||||
}}
|
||||
ComplexD detD = EigenU.determinant();
|
||||
typename Vec::scalar_type det(detD.real(),detD.imag());
|
||||
pokeLocalSite(det,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<int N>
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
||||
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
EigenU(i,j) = Us()()(i,j);
|
||||
}}
|
||||
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
Ui()()(i,j) = EigenUinv(i,j);
|
||||
}}
|
||||
pokeLocalSite(Ui,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
@ -469,15 +469,13 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
Coordinate fine_rdimensions = fine->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse->_rdimensions;
|
||||
|
||||
vobj zz = Zero();
|
||||
|
||||
accelerator_for(sc,coarse->oSites(),1,{
|
||||
|
||||
// One thread per sub block
|
||||
Coordinate coor_c(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
||||
|
||||
vobj cd = zz;
|
||||
vobj cd = Zero();
|
||||
|
||||
for(int sb=0;sb<blockVol;sb++){
|
||||
|
||||
@ -697,8 +695,68 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
for(int d=0;d<nd;d++){
|
||||
assert(Fg->_processors[d] == Tg->_processors[d]);
|
||||
}
|
||||
|
||||
// the above should guarantee that the operations are local
|
||||
|
||||
#if 1
|
||||
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
|
||||
|
||||
size_t tbytes = 4*nsite*sizeof(int);
|
||||
int *table = (int*)malloc(tbytes);
|
||||
|
||||
thread_for(idx, nsite, {
|
||||
Coordinate from_coor, to_coor;
|
||||
size_t rem = idx;
|
||||
for(int i=0;i<nd;i++){
|
||||
size_t base_i = rem % RegionSize[i]; rem /= RegionSize[i];
|
||||
from_coor[i] = base_i + FromLowerLeft[i];
|
||||
to_coor[i] = base_i + ToLowerLeft[i];
|
||||
}
|
||||
|
||||
int foidx = Fg->oIndex(from_coor);
|
||||
int fiidx = Fg->iIndex(from_coor);
|
||||
int toidx = Tg->oIndex(to_coor);
|
||||
int tiidx = Tg->iIndex(to_coor);
|
||||
int* tt = table + 4*idx;
|
||||
tt[0] = foidx;
|
||||
tt[1] = fiidx;
|
||||
tt[2] = toidx;
|
||||
tt[3] = tiidx;
|
||||
});
|
||||
|
||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int* tt = table_d + 4*idx;
|
||||
int from_oidx = *tt++;
|
||||
int from_lane = *tt++;
|
||||
int to_oidx = *tt++;
|
||||
int to_lane = *tt;
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
|
||||
acceleratorFreeDevice(table_d);
|
||||
free(table);
|
||||
|
||||
|
||||
#else
|
||||
Coordinate ldf = Fg->_ldimensions;
|
||||
Coordinate rdf = Fg->_rdimensions;
|
||||
Coordinate isf = Fg->_istride;
|
||||
@ -738,6 +796,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
#endif
|
||||
}
|
||||
});
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -830,6 +890,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
|
||||
}
|
||||
|
||||
|
||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
|
||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
|
||||
template<class vobj>
|
||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||
{
|
||||
@ -851,6 +913,65 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
||||
}
|
||||
}
|
||||
|
||||
#if 1
|
||||
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
|
||||
size_t tbytes = 4*nsite*sizeof(int);
|
||||
int *table = (int*)malloc(tbytes);
|
||||
|
||||
thread_for(idx,nsite,{
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lcoor[orthog] = slice_lo;
|
||||
hcoor[orthog] = slice_hi;
|
||||
size_t rem = idx;
|
||||
for(int mu=0;mu<nl;mu++){
|
||||
if(mu != orthog){
|
||||
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
|
||||
lcoor[mu] = hcoor[mu] = xmu;
|
||||
}
|
||||
}
|
||||
int loidx = lg->oIndex(lcoor);
|
||||
int liidx = lg->iIndex(lcoor);
|
||||
int hoidx = hg->oIndex(hcoor);
|
||||
int hiidx = hg->iIndex(hcoor);
|
||||
int* tt = table + 4*idx;
|
||||
tt[0] = loidx;
|
||||
tt[1] = liidx;
|
||||
tt[2] = hoidx;
|
||||
tt[3] = hiidx;
|
||||
});
|
||||
|
||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(lowDim_v,lowDim,AcceleratorRead);
|
||||
autoView(higherDim_v,higherDim,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int* tt = table_d + 4*idx;
|
||||
int from_oidx = *tt++;
|
||||
int from_lane = *tt++;
|
||||
int to_oidx = *tt++;
|
||||
int to_lane = *tt;
|
||||
|
||||
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
|
||||
acceleratorFreeDevice(table_d);
|
||||
free(table);
|
||||
|
||||
#else
|
||||
// the above should guarantee that the operations are local
|
||||
autoView(lowDimv,lowDim,CpuRead);
|
||||
autoView(higherDimv,higherDim,CpuWrite);
|
||||
@ -866,6 +987,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
||||
pokeLocalSite(s,higherDimv,hcoor);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
@ -45,6 +45,7 @@ public:
|
||||
};
|
||||
// Host only
|
||||
GridBase * getGrid(void) const { return _grid; };
|
||||
vobj* getHostPointer(void) const { return _odata; };
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -26,14 +26,32 @@ Author: Peter Boyle pboyle@bnl.gov
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include<Grid/cshift/Cshift.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
|
||||
template<typename vobj>
|
||||
struct CshiftImplBase{
|
||||
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
|
||||
virtual ~CshiftImplBase(){}
|
||||
};
|
||||
template<typename vobj>
|
||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
|
||||
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
|
||||
};
|
||||
template<typename Gimpl>
|
||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
|
||||
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
|
||||
};
|
||||
|
||||
class PaddedCell {
|
||||
public:
|
||||
GridCartesian * unpadded_grid;
|
||||
int dims;
|
||||
int depth;
|
||||
std::vector<GridCartesian *> grids;
|
||||
|
||||
~PaddedCell()
|
||||
{
|
||||
DeleteGrids();
|
||||
@ -77,7 +95,7 @@ public:
|
||||
}
|
||||
};
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Extract(Lattice<vobj> &in)
|
||||
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
|
||||
{
|
||||
Lattice<vobj> out(unpadded_grid);
|
||||
|
||||
@ -88,19 +106,19 @@ public:
|
||||
return out;
|
||||
}
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Exchange(Lattice<vobj> &in)
|
||||
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
int dims = old_grid->Nd();
|
||||
Lattice<vobj> tmp = in;
|
||||
for(int d=0;d<dims;d++){
|
||||
tmp = Expand(d,tmp); // rvalue && assignment
|
||||
tmp = Expand(d,tmp,cshift); // rvalue && assignment
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
// expand up one dim at a time
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
|
||||
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
@ -112,20 +130,40 @@ public:
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
|
||||
double tins=0, tshift=0;
|
||||
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
shifted = Cshift(in,dim,depth);
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
shifted = Cshift(in,dim,-depth);
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
||||
|
||||
return padded;
|
||||
}
|
||||
|
||||
|
@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
extern GridLogger GridLogWarning;
|
||||
extern GridLogger GridLogMessage;
|
||||
extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogDebug;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogDslash;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogIterative;
|
||||
extern GridLogger GridLogIntegrator;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern GridLogger GridLogMemory;
|
||||
extern GridLogger GridLogTracing;
|
||||
@ -191,6 +191,41 @@ extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
||||
template<typename... Args>
|
||||
inline std::string sjoin(Args&&... args) noexcept {
|
||||
std::ostringstream msg;
|
||||
(msg << ... << args);
|
||||
return msg.str();
|
||||
}
|
||||
|
||||
/*! @brief make log messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_log(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << GridLogMessage << msg << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make warning messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_warn(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make error messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_error(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make pass messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_pass(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
#define _NBACKTRACE (256)
|
||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
||||
|
||||
|
@ -34,7 +34,7 @@ class GridTracer {
|
||||
};
|
||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
|
||||
inline void tracePop(const char *name) { roctxRangePop(); }
|
||||
inline int traceStart(const char *name) { roctxRangeStart(name); }
|
||||
inline int traceStart(const char *name) { return roctxRangeStart(name); }
|
||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
|
||||
#endif
|
||||
|
||||
|
@ -129,6 +129,22 @@ public:
|
||||
virtual ~Action(){}
|
||||
};
|
||||
|
||||
template <class GaugeField >
|
||||
class EmptyAction : public Action <GaugeField>
|
||||
{
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
|
||||
|
||||
///////////////////////////////
|
||||
// Logging
|
||||
///////////////////////////////
|
||||
virtual std::string action_name() { return std::string("Level Force Log"); };
|
||||
virtual std::string LogParameters() { return std::string("No parameters");};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // ACTION_BASE_H
|
||||
|
@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Sp(2n)
|
||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
|
||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
|
||||
|
||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
|
||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
|
||||
|
||||
// Twisted mass fermion
|
||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
|
||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||
|
@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
|
||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
//sp 2n
|
||||
|
||||
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -63,7 +63,9 @@ public:
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
virtual void M(const FermionField &in, FermionField &out) ;
|
||||
virtual void Mdag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
private:
|
||||
RealD mu; // TwistedMass parameter
|
||||
|
||||
|
@ -280,20 +280,16 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
|
||||
|
||||
if( interior && exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptInlineAsm ) { ASM_CALL(DhopSiteAsm); return;}
|
||||
#endif
|
||||
} else if( interior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1); return;}
|
||||
#endif
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
@ -322,19 +318,13 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
|
||||
|
||||
if( interior && exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0); return;}
|
||||
#endif
|
||||
} else if( interior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0); return;}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -462,6 +462,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
autoView(st_v , st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
|
||||
#ifndef GRID_CUDA
|
||||
@ -495,6 +496,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
autoView(st_v ,st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDag); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag); return;}
|
||||
#ifndef GRID_CUDA
|
||||
|
@ -93,5 +93,25 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou
|
||||
RealD b = tm /sq;
|
||||
axpibg5x(out,in,a,b);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerNo);
|
||||
FermionField tmp(out.Grid());
|
||||
RealD a = 4.0+this->mass;
|
||||
RealD b = this->mu;
|
||||
axpibg5x(tmp,in,a,b);
|
||||
axpy(out, 1.0, tmp, out);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerYes);
|
||||
FermionField tmp(out.Grid());
|
||||
RealD a = 4.0+this->mass;
|
||||
RealD b = -this->mu;
|
||||
axpibg5x(tmp,in,a,b);
|
||||
axpy(out, 1.0, tmp, out);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonImplF
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF
|
@ -10,12 +10,18 @@ WILSON_IMPL_LIST=" \
|
||||
WilsonImplF \
|
||||
WilsonImplD \
|
||||
WilsonImplD2 \
|
||||
SpWilsonImplF \
|
||||
SpWilsonImplD \
|
||||
WilsonAdjImplF \
|
||||
WilsonAdjImplD \
|
||||
WilsonTwoIndexSymmetricImplF \
|
||||
WilsonTwoIndexSymmetricImplD \
|
||||
WilsonTwoIndexAntiSymmetricImplF \
|
||||
WilsonTwoIndexAntiSymmetricImplD \
|
||||
SpWilsonTwoIndexAntiSymmetricImplF \
|
||||
SpWilsonTwoIndexAntiSymmetricImplD \
|
||||
SpWilsonTwoIndexSymmetricImplF \
|
||||
SpWilsonTwoIndexSymmetricImplD \
|
||||
GparityWilsonImplF \
|
||||
GparityWilsonImplD "
|
||||
|
||||
|
@ -39,6 +39,9 @@ NAMESPACE_BEGIN(Grid);
|
||||
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
|
||||
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
|
||||
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
|
||||
typedef WilsonGaugeAction<SpPeriodicGimplR> SpWilsonGaugeActionR;
|
||||
typedef WilsonGaugeAction<SpPeriodicGimplF> SpWilsonGaugeActionF;
|
||||
typedef WilsonGaugeAction<SpPeriodicGimplD> SpWilsonGaugeActionD;
|
||||
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
|
||||
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
|
||||
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;
|
||||
|
@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
typedef typename Impl::Field Field;
|
||||
|
||||
// hardcodes the exponential approximation in the template
|
||||
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
|
||||
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
@ -78,8 +78,6 @@ public:
|
||||
typedef Lattice<SiteLink> LinkField;
|
||||
typedef Lattice<SiteField> Field;
|
||||
|
||||
typedef SU<Nrepresentation> Group;
|
||||
|
||||
// Guido: we can probably separate the types from the HMC functions
|
||||
// this will create 2 kind of implementations
|
||||
// probably confusing the users
|
||||
@ -119,6 +117,7 @@ public:
|
||||
//
|
||||
LinkField Pmu(P.Grid());
|
||||
Pmu = Zero();
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
|
||||
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
|
||||
@ -126,8 +125,12 @@ public:
|
||||
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
static inline Field projectForce(Field &P) { return Ta(P); }
|
||||
|
||||
static inline Field projectForce(Field &P) {
|
||||
Field ret(P.Grid());
|
||||
Group::taProj(P, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void update_field(Field& P, Field& U, double ep){
|
||||
//static std::chrono::duration<double> diff;
|
||||
@ -137,14 +140,15 @@ public:
|
||||
autoView(P_v,P,AcceleratorRead);
|
||||
accelerator_for(ss, P.Grid()->oSites(),1,{
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
|
||||
U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
|
||||
U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
|
||||
}
|
||||
});
|
||||
//auto end = std::chrono::high_resolution_clock::now();
|
||||
// diff += end - start;
|
||||
// std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
|
||||
}
|
||||
|
||||
|
||||
static inline RealD FieldSquareNorm(Field& U){
|
||||
LatticeComplex Hloc(U.Grid());
|
||||
Hloc = Zero();
|
||||
@ -157,7 +161,7 @@ public:
|
||||
}
|
||||
|
||||
static inline void Project(Field &U) {
|
||||
ProjectSUn(U);
|
||||
Group::ProjectOnSpecialGroup(U);
|
||||
}
|
||||
|
||||
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
@ -171,6 +175,7 @@ public:
|
||||
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
Group::ColdConfiguration(pRNG, U);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
@ -178,10 +183,17 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
|
||||
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
|
||||
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
|
||||
|
||||
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
|
||||
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
|
||||
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
|
||||
|
||||
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
|
||||
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
|
||||
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
|
||||
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // GRID_GAUGE_IMPL_TYPES_H
|
||||
|
@ -176,7 +176,7 @@ public:
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||
static inline void setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||
};
|
||||
@ -193,6 +193,11 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
|
||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
|
||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
|
||||
|
||||
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
|
||||
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
|
||||
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -43,7 +43,7 @@ public:
|
||||
private:
|
||||
RealD c_plaq;
|
||||
RealD c_rect;
|
||||
|
||||
typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
|
||||
public:
|
||||
PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
|
||||
|
||||
@ -79,27 +79,18 @@ public:
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
std::vector<GaugeLinkField> U (Nd,grid);
|
||||
std::vector<GaugeLinkField> U2(Nd,grid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
|
||||
}
|
||||
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
|
||||
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
|
||||
|
||||
GaugeLinkField dSdU_mu(grid);
|
||||
GaugeLinkField staple(grid);
|
||||
|
||||
for (int mu=0; mu < Nd; mu++){
|
||||
|
||||
// Staple in direction mu
|
||||
|
||||
WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
|
||||
|
||||
dSdU_mu = Ta(U[mu]*staple)*factor_p;
|
||||
|
||||
WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
|
||||
|
||||
dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
|
||||
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
|
||||
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
|
||||
|
||||
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
|
||||
}
|
||||
|
@ -225,6 +225,18 @@ template <class RepresentationsPolicy,
|
||||
using GenericHMCRunnerHirep =
|
||||
HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
|
||||
|
||||
// sp2n
|
||||
|
||||
template <template <typename, typename, typename> class Integrator>
|
||||
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
|
||||
|
||||
template <class RepresentationsPolicy,
|
||||
template <typename, typename, typename> class Integrator>
|
||||
using GenericSpHMCRunnerHirep =
|
||||
HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
|
||||
|
||||
|
||||
|
||||
template <class Implementation, class RepresentationsPolicy,
|
||||
template <typename, typename, typename> class Integrator>
|
||||
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;
|
||||
|
@ -87,6 +87,8 @@ public:
|
||||
|
||||
const ActionSet<Field, RepresentationPolicy> as;
|
||||
|
||||
ActionSet<Field,RepresentationPolicy> LevelForces;
|
||||
|
||||
//Get a pointer to a shared static instance of the "do-nothing" momentum filter to serve as a default
|
||||
static MomentumFilterBase<MomentaField> const* getDefaultMomFilter(){
|
||||
static MomentumFilterNone<MomentaField> filter;
|
||||
@ -124,6 +126,9 @@ public:
|
||||
// input U actually not used in the fundamental case
|
||||
// Fundamental updates, include smearing
|
||||
|
||||
assert(as.size()==LevelForces.size());
|
||||
|
||||
Field level_force(U.Grid()); level_force =Zero();
|
||||
for (int a = 0; a < as[level].actions.size(); ++a) {
|
||||
|
||||
double start_full = usecond();
|
||||
@ -144,7 +149,10 @@ public:
|
||||
MomFilter->applyFilter(force);
|
||||
|
||||
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<< std::endl;
|
||||
|
||||
|
||||
// track the total
|
||||
level_force = level_force+force;
|
||||
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
@ -167,6 +175,16 @@ public:
|
||||
|
||||
}
|
||||
|
||||
{
|
||||
// total force
|
||||
Real force_abs = std::sqrt(norm2(level_force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
Real force_max = std::sqrt(maxLocalNorm2(level_force));
|
||||
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
LevelForces[level].actions.at(0)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
|
||||
}
|
||||
|
||||
// Force from the other representations
|
||||
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
|
||||
|
||||
@ -216,6 +234,16 @@ public:
|
||||
|
||||
//Default the momentum filter to "do-nothing"
|
||||
MomFilter = getDefaultMomFilter();
|
||||
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
int multiplier = as.at(level).multiplier;
|
||||
ActionLevel<Field, RepresentationPolicy> * Level = new ActionLevel<Field, RepresentationPolicy>(multiplier);
|
||||
Level->push_back(new EmptyAction<Field>);
|
||||
LevelForces.push_back(*Level);
|
||||
// does it copy by value or reference??
|
||||
// - answer it copies by value, BUT the action level contains a reference that is NOT updated.
|
||||
// Unsafe code in Guido's area
|
||||
}
|
||||
};
|
||||
|
||||
virtual ~Integrator() {}
|
||||
@ -233,10 +261,14 @@ public:
|
||||
|
||||
void reset_timer(void)
|
||||
{
|
||||
assert(as.size()==LevelForces.size());
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
as[level].actions.at(actionID)->reset_timer();
|
||||
}
|
||||
int actionID=0;
|
||||
assert(LevelForces.at(level).actions.size()==1);
|
||||
LevelForces.at(level).actions.at(actionID)->reset_timer();
|
||||
}
|
||||
}
|
||||
void print_timer(void)
|
||||
@ -298,6 +330,16 @@ public:
|
||||
<<" calls " << as[level].actions.at(actionID)->deriv_num
|
||||
<< std::endl;
|
||||
}
|
||||
int actionID=0;
|
||||
std::cout << GridLogMessage
|
||||
<< LevelForces[level].actions.at(actionID)->action_name()
|
||||
<<"["<<level<<"]["<< actionID<<"] :\n\t\t "
|
||||
<<" force max " << LevelForces[level].actions.at(actionID)->deriv_max_average()
|
||||
<<" norm " << LevelForces[level].actions.at(actionID)->deriv_norm_average()
|
||||
<<" Fdt max " << LevelForces[level].actions.at(actionID)->Fdt_max_average()
|
||||
<<" Fdt norm " << LevelForces[level].actions.at(actionID)->Fdt_norm_average()
|
||||
<<" calls " << LevelForces[level].actions.at(actionID)->deriv_num
|
||||
<< std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
||||
}
|
||||
@ -319,6 +361,13 @@ public:
|
||||
std::cout << as[level].actions.at(actionID)->LogParameters();
|
||||
}
|
||||
}
|
||||
std::cout << " [Integrator] Total Force loggers: "<< LevelForces.size() <<std::endl;
|
||||
for (int level = 0; level < LevelForces.size(); ++level) {
|
||||
std::cout << GridLogMessage << "[Integrator] ---- Level: "<< level << std::endl;
|
||||
for (int actionID = 0; actionID < LevelForces[level].actions.size(); ++actionID) {
|
||||
std::cout << GridLogMessage << "["<< LevelForces[level].actions.at(actionID)->action_name() << "] ID: " << actionID << std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
||||
}
|
||||
|
||||
@ -400,6 +449,7 @@ public:
|
||||
RealD S(Field& U)
|
||||
{ // here also U not used
|
||||
|
||||
assert(as.size()==LevelForces.size());
|
||||
std::cout << GridLogIntegrator << "Integrator action\n";
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
|
||||
|
@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
* Empty since HMC updates already the fundamental representation
|
||||
*/
|
||||
|
||||
template <int ncolour>
|
||||
template <int ncolour, class group_name>
|
||||
class FundamentalRep {
|
||||
public:
|
||||
static const int Dimension = ncolour;
|
||||
@ -21,7 +21,7 @@ public:
|
||||
|
||||
// typdef to be used by the Representations class in HMC to get the
|
||||
// types for the higher representation fields
|
||||
typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
|
||||
typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
|
||||
typedef LatticeGaugeField LatticeField;
|
||||
|
||||
explicit FundamentalRep(GridBase* grid) {} //do nothing
|
||||
@ -45,7 +45,8 @@ public:
|
||||
|
||||
|
||||
|
||||
typedef FundamentalRep<Nc> FundamentalRepresentation;
|
||||
typedef FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
|
||||
typedef FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
|
||||
* in the SUnTwoIndex.h file
|
||||
*/
|
||||
|
||||
template <int ncolour, TwoIndexSymmetry S>
|
||||
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
|
||||
class TwoIndexRep {
|
||||
public:
|
||||
// typdef to be used by the Representations class in HMC to get the
|
||||
// types for the higher representation fields
|
||||
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
|
||||
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
|
||||
static const int Dimension = ncolour * (ncolour + S) / 2;
|
||||
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
|
||||
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
|
||||
static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
|
||||
static const bool isFundamental = false;
|
||||
|
||||
LatticeField U;
|
||||
@ -43,10 +43,10 @@ public:
|
||||
U = Zero();
|
||||
LatticeColourMatrix tmp(Uin.Grid());
|
||||
|
||||
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
|
||||
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
|
||||
|
||||
for (int a = 0; a < Dimension; a++)
|
||||
SU_TwoIndex<ncolour, S>::base(a, eij[a]);
|
||||
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
auto Uin_mu = peekLorentz(Uin, mu);
|
||||
@ -71,7 +71,7 @@ public:
|
||||
|
||||
out_mu = Zero();
|
||||
|
||||
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
|
||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
|
||||
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
|
||||
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
|
||||
pokeLorentz(out, out_mu, mu);
|
||||
@ -80,20 +80,23 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||
void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
|
||||
const LatticeMatrix &in, Real scale = 1.0) const {
|
||||
SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
|
||||
GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
|
||||
}
|
||||
|
||||
void FundamentalLieAlgebraMatrix(
|
||||
typename SU<ncolour>::LatticeAlgebraVector &h,
|
||||
typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
|
||||
SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
|
||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
|
||||
typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
|
||||
GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
|
||||
}
|
||||
};
|
||||
|
||||
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
|
||||
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
|
||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
|
||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
|
||||
|
||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
|
||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
|
||||
/*!
|
||||
@file GaugeConfiguration.h
|
||||
@brief Declares the GaugeConfiguration class
|
||||
@ -6,6 +7,15 @@
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template<class T> void Dump(const Lattice<T> & lat,
|
||||
std::string s,
|
||||
Coordinate site = Coordinate({0,0,0,0}))
|
||||
{
|
||||
typename T::scalar_object tmp;
|
||||
peekSite(tmp,lat,site);
|
||||
std::cout << " Dump "<<s<<" "<<tmp<<std::endl;
|
||||
}
|
||||
/*!
|
||||
@brief Smeared configuration masked container
|
||||
Modified for a multi-subset smearing (aka Luscher Flowed HMC)
|
||||
@ -28,6 +38,101 @@ private:
|
||||
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
|
||||
typedef typename SU3Adjoint::LatticeAdjVector AdjVectorField;
|
||||
|
||||
void BaseSmearDerivative(GaugeField& SigmaTerm,
|
||||
const GaugeField& iLambda,
|
||||
const GaugeField& U,
|
||||
int mmu, RealD rho)
|
||||
{
|
||||
// Reference
|
||||
// Morningstar, Peardon, Phys.Rev.D69,054501(2004)
|
||||
// Equation 75
|
||||
// Computing Sigma_mu, derivative of S[fat links] with respect to the thin links
|
||||
// Output SigmaTerm
|
||||
|
||||
GridBase *grid = U.Grid();
|
||||
|
||||
WilsonLoops<Gimpl> WL;
|
||||
GaugeLinkField staple(grid), u_tmp(grid);
|
||||
GaugeLinkField iLambda_mu(grid), iLambda_nu(grid);
|
||||
GaugeLinkField U_mu(grid), U_nu(grid);
|
||||
GaugeLinkField sh_field(grid), temp_Sigma(grid);
|
||||
Real rho_munu, rho_numu;
|
||||
|
||||
rho_munu = rho;
|
||||
rho_numu = rho;
|
||||
for(int mu = 0; mu < Nd; ++mu){
|
||||
U_mu = peekLorentz( U, mu);
|
||||
iLambda_mu = peekLorentz(iLambda, mu);
|
||||
|
||||
for(int nu = 0; nu < Nd; ++nu){
|
||||
if(nu==mu) continue;
|
||||
|
||||
U_nu = peekLorentz( U, nu);
|
||||
|
||||
// Nd(nd-1) = 12 staples normally.
|
||||
// We must compute 6 of these
|
||||
// in FTHMC case
|
||||
if ( (mu==mmu)||(nu==mmu) )
|
||||
WL.StapleUpper(staple, U, mu, nu);
|
||||
|
||||
if(nu==mmu) {
|
||||
iLambda_nu = peekLorentz(iLambda, nu);
|
||||
|
||||
temp_Sigma = -rho_numu*staple*iLambda_nu; //ok
|
||||
//-r_numu*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)*Lambda_nu(x)
|
||||
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
|
||||
|
||||
sh_field = Cshift(iLambda_nu, mu, 1);// general also for Gparity?
|
||||
|
||||
temp_Sigma = rho_numu*sh_field*staple; //ok
|
||||
//r_numu*Lambda_nu(mu)*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)
|
||||
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
|
||||
}
|
||||
|
||||
if ( mu == mmu ) {
|
||||
sh_field = Cshift(iLambda_mu, nu, 1);
|
||||
|
||||
temp_Sigma = -rho_munu*staple*U_nu*sh_field*adj(U_nu); //ok
|
||||
//-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x)
|
||||
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
|
||||
}
|
||||
|
||||
// staple = Zero();
|
||||
sh_field = Cshift(U_nu, mu, 1);
|
||||
|
||||
temp_Sigma = Zero();
|
||||
|
||||
if ( mu == mmu )
|
||||
temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu;
|
||||
|
||||
if ( nu == mmu ) {
|
||||
temp_Sigma += rho_numu*adj(sh_field)*adj(U_mu)*iLambda_nu*U_nu;
|
||||
|
||||
u_tmp = adj(U_nu)*iLambda_nu;
|
||||
sh_field = Cshift(u_tmp, mu, 1);
|
||||
temp_Sigma += -rho_numu*sh_field*adj(U_mu)*U_nu;
|
||||
}
|
||||
|
||||
sh_field = Cshift(temp_Sigma, nu, -1);
|
||||
Gimpl::AddLink(SigmaTerm, sh_field, mu);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BaseSmear(GaugeLinkField& Cup, const GaugeField& U,int mu,RealD rho) {
|
||||
GridBase *grid = U.Grid();
|
||||
GaugeLinkField tmp_stpl(grid);
|
||||
WilsonLoops<Gimpl> WL;
|
||||
Cup = Zero();
|
||||
for(int nu=0; nu<Nd; ++nu){
|
||||
if (nu != mu) {
|
||||
// get the staple in direction mu, nu
|
||||
WL.Staple(tmp_stpl, U, mu, nu); //nb staple conventions of IroIro and Grid differ by a dagger
|
||||
Cup += adj(tmp_stpl*rho);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Adjoint vector to GaugeField force
|
||||
void InsertForce(GaugeField &Fdet,AdjVectorField &Fdet_nu,int nu)
|
||||
{
|
||||
@ -47,27 +152,54 @@ private:
|
||||
GaugeLinkField UtaU(PlaqL.Grid());
|
||||
GaugeLinkField D(PlaqL.Grid());
|
||||
AdjMatrixField Dbc(PlaqL.Grid());
|
||||
AdjMatrixField Dbc_opt(PlaqL.Grid());
|
||||
LatticeComplex tmp(PlaqL.Grid());
|
||||
const int Ngen = SU3Adjoint::Dimension;
|
||||
Complex ci(0,1);
|
||||
ColourMatrix ta,tb,tc;
|
||||
|
||||
RealD t=0;
|
||||
RealD tp=0;
|
||||
RealD tta=0;
|
||||
RealD tpk=0;
|
||||
t-=usecond();
|
||||
for(int a=0;a<Ngen;a++) {
|
||||
tta-=usecond();
|
||||
SU3::generator(a, ta);
|
||||
ta = 2.0 * ci * ta;
|
||||
// Qlat Tb = 2i Tb^Grid
|
||||
UtaU= 2.0*ci*adj(PlaqL)*ta*PlaqR;
|
||||
UtaU= adj(PlaqL)*ta*PlaqR; // 6ms
|
||||
tta+=usecond();
|
||||
////////////////////////////////////////////
|
||||
// Could add this entire C-loop to a projection routine
|
||||
// for performance. Could also pick checkerboard on UtaU
|
||||
// and set checkerboard on result for 2x perf
|
||||
////////////////////////////////////////////
|
||||
for(int c=0;c<Ngen;c++) {
|
||||
SU3::generator(c, tc);
|
||||
D = Ta( (2.0)*ci*tc *UtaU);
|
||||
tc = 2.0*ci*tc;
|
||||
tp-=usecond();
|
||||
D = Ta( tc *UtaU); // 2ms
|
||||
#if 1
|
||||
SU3::LieAlgebraProject(Dbc_opt,D,c); // 5.5ms
|
||||
#else
|
||||
for(int b=0;b<Ngen;b++){
|
||||
SU3::generator(b, tb);
|
||||
tmp =-trace(ci*tb*D);
|
||||
PokeIndex<ColourIndex>(Dbc,tmp,b,c); // Adjoint rep
|
||||
}
|
||||
#endif
|
||||
tp+=usecond();
|
||||
}
|
||||
tmp = trace(MpInvJx * Dbc);
|
||||
// Dump(Dbc_opt,"Dbc_opt");
|
||||
// Dump(Dbc,"Dbc");
|
||||
tpk-=usecond();
|
||||
tmp = trace(MpInvJx * Dbc_opt);
|
||||
PokeIndex<ColourIndex>(Fdet2,tmp,a);
|
||||
tpk+=usecond();
|
||||
}
|
||||
t+=usecond();
|
||||
std::cout << GridLogPerformance << " Compute_MpInvJx_dNxxdSy " << t/1e3 << " ms proj "<<tp/1e3<< " ms"
|
||||
<< " ta "<<tta/1e3<<" ms" << " poke "<<tpk/1e3<< " ms"<<std::endl;
|
||||
}
|
||||
|
||||
void ComputeNxy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR,AdjMatrixField &NxAd)
|
||||
@ -79,12 +211,17 @@ private:
|
||||
ColourMatrix tc;
|
||||
for(int b=0;b<Ngen;b++) {
|
||||
SU3::generator(b, tb);
|
||||
Nx = (2.0)*Ta( adj(PlaqL)*ci*tb * PlaqR );
|
||||
tb = 2.0 * ci * tb;
|
||||
Nx = Ta( adj(PlaqL)*tb * PlaqR );
|
||||
#if 1
|
||||
SU3::LieAlgebraProject(NxAd,Nx,b);
|
||||
#else
|
||||
for(int c=0;c<Ngen;c++) {
|
||||
SU3::generator(c, tc);
|
||||
auto tmp =closure( -trace(ci*tc*Nx));
|
||||
PokeIndex<ColourIndex>(NxAd,tmp,c,b);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
void ApplyMask(GaugeField &U,int smr)
|
||||
@ -164,8 +301,7 @@ public:
|
||||
// Computes ALL the staples -- could compute one only and do it here
|
||||
RealD time;
|
||||
time=-usecond();
|
||||
this->StoutSmearing->BaseSmear(C, U);
|
||||
Cmu = peekLorentz(C, mu);
|
||||
BaseSmear(Cmu, U,mu,rho);
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Assemble Luscher exp diff map J matrix
|
||||
@ -209,6 +345,36 @@ public:
|
||||
// dJ(x)/dxe
|
||||
//////////////////////////////////////
|
||||
time=-usecond();
|
||||
#if 1
|
||||
std::vector<AdjMatrixField> dJdX; dJdX.resize(8,grid);
|
||||
std::vector<AdjMatrix> TRb_s; TRb_s.resize(8);
|
||||
AdjMatrixField tbXn(grid);
|
||||
AdjMatrixField sumXtbX(grid);
|
||||
AdjMatrixField t2(grid);
|
||||
AdjMatrixField dt2(grid);
|
||||
AdjMatrixField t3(grid);
|
||||
AdjMatrixField dt3(grid);
|
||||
AdjMatrixField aunit(grid);
|
||||
|
||||
for(int b=0;b<8;b++){
|
||||
SU3Adjoint::generator(b, TRb_s[b]);
|
||||
dJdX[b] = TRb_s[b];
|
||||
}
|
||||
aunit = ComplexD(1.0);
|
||||
// Could put into an accelerator_for
|
||||
X = (-1.0)*ZxAd;
|
||||
t2 = X;
|
||||
for (int j = 12; j > 1; --j) {
|
||||
t3 = t2*(1.0 / (j + 1)) + aunit;
|
||||
t2 = X * t3;
|
||||
for(int b=0;b<8;b++){
|
||||
dJdX[b]= TRb_s[b] * t3 + X * dJdX[b]*(1.0 / (j + 1));
|
||||
}
|
||||
}
|
||||
for(int b=0;b<8;b++){
|
||||
dJdX[b] = -dJdX[b];
|
||||
}
|
||||
#else
|
||||
std::vector<AdjMatrixField> dJdX; dJdX.resize(8,grid);
|
||||
AdjMatrixField tbXn(grid);
|
||||
AdjMatrixField sumXtbX(grid);
|
||||
@ -224,14 +390,15 @@ public:
|
||||
X = (-1.0)*ZxAd;
|
||||
t2 = X;
|
||||
dt2 = TRb;
|
||||
for (int j = 20; j > 1; --j) {
|
||||
t3 = t2*(1.0 / (j + 1)) + aunit;
|
||||
for (int j = 12; j > 1; --j) {
|
||||
t3 = t2*(1.0 / (j + 1)) + aunit;
|
||||
dt3 = dt2*(1.0 / (j + 1));
|
||||
t2 = X * t3;
|
||||
dt2 = TRb * t3 + X * dt3;
|
||||
}
|
||||
dJdX[b] = -dt2;
|
||||
}
|
||||
#endif
|
||||
time+=usecond();
|
||||
std::cout << GridLogMessage << "dJx took "<<time<< " us"<<std::endl;
|
||||
/////////////////////////////////////////////////////////////////
|
||||
@ -281,8 +448,8 @@ public:
|
||||
|
||||
for(int e =0 ; e<8 ; e++){
|
||||
LatticeComplexD tr(grid);
|
||||
ColourMatrix te;
|
||||
SU3::generator(e, te);
|
||||
// ColourMatrix te;
|
||||
// SU3::generator(e, te);
|
||||
tr = trace(dJdX[e] * nMpInv);
|
||||
pokeColour(dJdXe_nMpInv,tr,e);
|
||||
}
|
||||
@ -493,20 +660,25 @@ public:
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Assemble the N matrix
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Computes ALL the staples -- could compute one only here
|
||||
this->StoutSmearing->BaseSmear(C, U);
|
||||
Cmu = peekLorentz(C, mu);
|
||||
double rho=this->StoutSmearing->SmearRho[1];
|
||||
BaseSmear(Cmu, U,mu,rho);
|
||||
|
||||
Umu = peekLorentz(U, mu);
|
||||
Complex ci(0,1);
|
||||
for(int b=0;b<Ngen;b++) {
|
||||
SU3::generator(b, Tb);
|
||||
// Qlat Tb = 2i Tb^Grid
|
||||
Nb = (2.0)*Ta( ci*Tb * Umu * adj(Cmu));
|
||||
// FIXME -- replace this with LieAlgebraProject
|
||||
#if 0
|
||||
SU3::LieAlgebraProject(Ncb,tmp,b);
|
||||
#else
|
||||
for(int c=0;c<Ngen;c++) {
|
||||
SU3::generator(c, Tc);
|
||||
auto tmp = -trace(ci*Tc*Nb); // Luchang's norm: (2Tc) (2Td) N^db = -2 delta cd N^db // - was important
|
||||
PokeIndex<ColourIndex>(Ncb,tmp,c,b);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
@ -693,15 +865,19 @@ private:
|
||||
const GaugeField& GaugeK,int level)
|
||||
{
|
||||
GridBase* grid = GaugeK.Grid();
|
||||
GaugeField C(grid), SigmaK(grid), iLambda(grid);
|
||||
GaugeField SigmaK(grid), iLambda(grid);
|
||||
GaugeField SigmaKPrimeA(grid);
|
||||
GaugeField SigmaKPrimeB(grid);
|
||||
GaugeLinkField iLambda_mu(grid);
|
||||
GaugeLinkField iQ(grid), e_iQ(grid);
|
||||
GaugeLinkField SigmaKPrime_mu(grid);
|
||||
GaugeLinkField GaugeKmu(grid), Cmu(grid);
|
||||
|
||||
this->StoutSmearing->BaseSmear(C, GaugeK);
|
||||
|
||||
int mmu= (level/2) %Nd;
|
||||
int cb= (level%2);
|
||||
double rho=this->StoutSmearing->SmearRho[1];
|
||||
|
||||
// Can override this to do one direction only.
|
||||
SigmaK = Zero();
|
||||
iLambda = Zero();
|
||||
|
||||
@ -712,18 +888,38 @@ private:
|
||||
// Could get away with computing only one polarisation here
|
||||
// int mu= (smr/2) %Nd;
|
||||
// SigmaKprime_A has only one component
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
#if 0
|
||||
BaseSmear(Cmu, GaugeK,mu,rho);
|
||||
GaugeKmu = peekLorentz(GaugeK, mu);
|
||||
SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
|
||||
iQ = Ta(Cmu * adj(GaugeKmu));
|
||||
this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
|
||||
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
|
||||
pokeLorentz(iLambda, iLambda_mu, mu);
|
||||
BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho); // derivative of SmearBase
|
||||
#else
|
||||
// GaugeField C(grid);
|
||||
// this->StoutSmearing->BaseSmear(C, GaugeK);
|
||||
// for (int mu = 0; mu < Nd; mu++)
|
||||
int mu =mmu;
|
||||
BaseSmear(Cmu, GaugeK,mu,rho);
|
||||
{
|
||||
Cmu = peekLorentz(C, mu);
|
||||
// Cmu = peekLorentz(C, mu);
|
||||
GaugeKmu = peekLorentz(GaugeK, mu);
|
||||
SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
|
||||
iQ = Ta(Cmu * adj(GaugeKmu));
|
||||
this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
|
||||
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
|
||||
pokeLorentz(iLambda, iLambda_mu, mu);
|
||||
std::cout << " mu "<<mu<<" SigmaKPrime_mu"<<norm2(SigmaKPrime_mu)<< " iLambda_mu " <<norm2(iLambda_mu)<<std::endl;
|
||||
}
|
||||
this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK); // derivative of SmearBase
|
||||
|
||||
// GaugeField SigmaKcopy(grid);
|
||||
// SigmaKcopy = SigmaK;
|
||||
BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho); // derivative of SmearBase
|
||||
// this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK); // derivative of SmearBase
|
||||
// SigmaKcopy = SigmaKcopy - SigmaK;
|
||||
// std::cout << " BaseSmearDerivative fast path error" <<norm2(SigmaKcopy)<<std::endl;
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// propagate the rest of the force as identity map, just add back
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
389
Grid/qcd/smearing/HISQSmearing.h
Normal file
389
Grid/qcd/smearing/HISQSmearing.h
Normal file
@ -0,0 +1,389 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/smearing/HISQSmearing.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: D. A. Clarke <clarke.davida@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/*
|
||||
@file HISQSmearing.h
|
||||
@brief Declares classes related to HISQ smearing
|
||||
*/
|
||||
|
||||
|
||||
#pragma once
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// TODO: find a way to fold this into the stencil header. need to access grid to get
|
||||
// Nd, since you don't want to inherit from QCD.h
|
||||
/*! @brief append arbitrary shift path to shifts */
|
||||
template<typename... Args>
|
||||
void appendShift(std::vector<Coordinate>& shifts, int dir, Args... args) {
|
||||
Coordinate shift(Nd,0);
|
||||
generalShift(shift, dir, args...);
|
||||
// push_back creates an element at the end of shifts and
|
||||
// assigns the data in the argument to it.
|
||||
shifts.push_back(shift);
|
||||
}
|
||||
|
||||
|
||||
/*! @brief figure out the stencil index from mu and nu */
|
||||
accelerator_inline int stencilIndex(int mu, int nu) {
|
||||
// Nshifts depends on how you built the stencil
|
||||
int Nshifts = 6;
|
||||
return Nshifts*nu + Nd*Nshifts*mu;
|
||||
}
|
||||
|
||||
|
||||
/*! @brief structure holding the link treatment */
|
||||
struct SmearingParameters{
|
||||
SmearingParameters(){}
|
||||
Real c_1; // 1 link
|
||||
Real c_naik; // Naik term
|
||||
Real c_3; // 3 link
|
||||
Real c_5; // 5 link
|
||||
Real c_7; // 7 link
|
||||
Real c_lp; // 5 link Lepage
|
||||
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
|
||||
: c_1(c1),
|
||||
c_naik(cnaik),
|
||||
c_3(c3),
|
||||
c_5(c5),
|
||||
c_7(c7),
|
||||
c_lp(clp){}
|
||||
};
|
||||
|
||||
|
||||
/*! @brief create fat links from link variables */
|
||||
template<class Gimpl>
|
||||
class Smear_HISQ : public Gimpl {
|
||||
|
||||
private:
|
||||
GridCartesian* const _grid;
|
||||
SmearingParameters _linkTreatment;
|
||||
|
||||
public:
|
||||
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
typedef typename Gimpl::GaugeField GF;
|
||||
typedef typename Gimpl::GaugeLinkField LF;
|
||||
typedef typename Gimpl::ComplexField CF;
|
||||
|
||||
// Don't allow default values here.
|
||||
Smear_HISQ(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
|
||||
: _grid(grid),
|
||||
_linkTreatment(c1,cnaik,c3,c5,c7,clp) {
|
||||
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
|
||||
assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
|
||||
}
|
||||
|
||||
// Allow to pass a pointer to a C-style, double array for MILC convenience
|
||||
Smear_HISQ(GridCartesian* grid, double* coeff)
|
||||
: _grid(grid),
|
||||
_linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) {
|
||||
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
|
||||
assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
|
||||
}
|
||||
|
||||
~Smear_HISQ() {}
|
||||
|
||||
// Intent: OUT--u_smr, u_naik
|
||||
// IN--u_thin
|
||||
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
|
||||
|
||||
SmearingParameters lt = this->_linkTreatment;
|
||||
auto grid = this->_grid;
|
||||
|
||||
// Create a padded cell of extra padding depth=1 and fill the padding.
|
||||
int depth = 1;
|
||||
PaddedCell Ghost(depth,grid);
|
||||
GF Ughost = Ghost.Exchange(u_thin);
|
||||
|
||||
// This is where auxiliary N-link fields and the final smear will be stored.
|
||||
GF Ughost_fat(Ughost.Grid());
|
||||
GF Ughost_3link(Ughost.Grid());
|
||||
GF Ughost_5linkA(Ughost.Grid());
|
||||
GF Ughost_5linkB(Ughost.Grid());
|
||||
|
||||
// mu-nu plane stencil. We allow mu==nu to make indexing the stencil easier,
|
||||
// but these entries will not be used.
|
||||
std::vector<Coordinate> shifts;
|
||||
for(int mu=0;mu<Nd;mu++)
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
appendShift(shifts,mu);
|
||||
appendShift(shifts,nu);
|
||||
appendShift(shifts,shiftSignal::NO_SHIFT);
|
||||
appendShift(shifts,mu,Back(nu));
|
||||
appendShift(shifts,Back(nu));
|
||||
appendShift(shifts,Back(mu));
|
||||
}
|
||||
|
||||
// A GeneralLocalStencil has two indices: a site and stencil index
|
||||
GeneralLocalStencil gStencil(Ughost.Grid(),shifts);
|
||||
|
||||
// This is where contributions from the smearing get added together
|
||||
Ughost_fat=Zero();
|
||||
|
||||
// This loop handles 3-, 5-, and 7-link constructs, minus Lepage and Naik.
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
// TODO: This approach is slightly memory inefficient. It uses 25% extra memory
|
||||
Ughost_3link =Zero();
|
||||
Ughost_5linkA=Zero();
|
||||
Ughost_5linkB=Zero();
|
||||
|
||||
// Create the accessors
|
||||
autoView(U_v , Ughost , AcceleratorRead);
|
||||
autoView(U_fat_v , Ughost_fat , AcceleratorWrite);
|
||||
autoView(U_3link_v , Ughost_3link , AcceleratorWrite);
|
||||
autoView(U_5linkA_v, Ughost_5linkA, AcceleratorWrite);
|
||||
autoView(U_5linkB_v, Ughost_5linkB, AcceleratorWrite);
|
||||
|
||||
// We infer some types that will be needed in the calculation.
|
||||
typedef decltype(gStencil.GetEntry(0,0)) stencilElement;
|
||||
typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix;
|
||||
|
||||
int Nsites = U_v.size();
|
||||
auto gStencil_v = gStencil.View();
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
U3matrix U0, U1, U2, U3, U4, U5, W;
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
if(nu==mu) continue;
|
||||
int s = stencilIndex(mu,nu);
|
||||
|
||||
// The stencil gives us support points in the mu-nu plane that we will use to
|
||||
// grab the links we need.
|
||||
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
|
||||
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
|
||||
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
|
||||
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
|
||||
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
|
||||
SE5 = gStencil_v.GetEntry(s+5,site); int x_m_mu = SE5->_offset;
|
||||
|
||||
// When you're deciding whether to take an adjoint, the question is: how is the
|
||||
// stored link oriented compared to the one you want? If I imagine myself travelling
|
||||
// with the to-be-updated link, I have two possible, alternative 3-link paths I can
|
||||
// take, one starting by going to the left, the other starting by going to the right.
|
||||
U0 = coalescedReadGeneralPermute(U_v[x_p_mu ](nu),SE0->_permute,Nd);
|
||||
U1 = coalescedReadGeneralPermute(U_v[x_p_nu ](mu),SE1->_permute,Nd);
|
||||
U2 = coalescedReadGeneralPermute(U_v[x ](nu),SE2->_permute,Nd);
|
||||
U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
|
||||
U4 = coalescedReadGeneralPermute(U_v[x_m_nu ](mu),SE4->_permute,Nd);
|
||||
U5 = coalescedReadGeneralPermute(U_v[x_m_nu ](nu),SE4->_permute,Nd);
|
||||
|
||||
// "left" "right"
|
||||
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
|
||||
|
||||
// Save 3-link construct for later and add to smeared field.
|
||||
coalescedWrite(U_3link_v[x](nu), W);
|
||||
|
||||
// The index operator (x) returns the coalesced read on GPU. The view [] index returns
|
||||
// a reference to the vector object. The [x](mu) returns a reference to the densely
|
||||
// packed (contiguous in memory) mu-th element of the vector object. On CPU,
|
||||
// coalescedRead/Write is the identity mapping assigning vector object to vector object.
|
||||
// But on GPU it's non-trivial and maps scalar object to vector object and vice versa.
|
||||
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_3*W);
|
||||
}
|
||||
})
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
U3matrix U0, U1, U2, U3, U4, U5, W;
|
||||
int sigmaIndex = 0;
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
if(nu==mu) continue;
|
||||
int s = stencilIndex(mu,nu);
|
||||
for(int rho=0;rho<Nd;rho++) {
|
||||
if (rho == mu || rho == nu) continue;
|
||||
|
||||
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
|
||||
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
|
||||
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
|
||||
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
|
||||
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
|
||||
|
||||
U0 = coalescedReadGeneralPermute( U_v[x_p_mu ](nu ),SE0->_permute,Nd);
|
||||
U1 = coalescedReadGeneralPermute(U_3link_v[x_p_nu ](rho),SE1->_permute,Nd);
|
||||
U2 = coalescedReadGeneralPermute( U_v[x ](nu ),SE2->_permute,Nd);
|
||||
U3 = coalescedReadGeneralPermute( U_v[x_p_mu_m_nu](nu ),SE3->_permute,Nd);
|
||||
U4 = coalescedReadGeneralPermute(U_3link_v[x_m_nu ](rho),SE4->_permute,Nd);
|
||||
U5 = coalescedReadGeneralPermute( U_v[x_m_nu ](nu ),SE4->_permute,Nd);
|
||||
|
||||
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
|
||||
|
||||
if(sigmaIndex<3) {
|
||||
coalescedWrite(U_5linkA_v[x](rho), W);
|
||||
} else {
|
||||
coalescedWrite(U_5linkB_v[x](rho), W);
|
||||
}
|
||||
|
||||
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_5*W);
|
||||
sigmaIndex++;
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
U3matrix U0, U1, U2, U3, U4, U5, W;
|
||||
int sigmaIndex = 0;
|
||||
for(int nu=0;nu<Nd;nu++) {
|
||||
if(nu==mu) continue;
|
||||
int s = stencilIndex(mu,nu);
|
||||
for(int rho=0;rho<Nd;rho++) {
|
||||
if (rho == mu || rho == nu) continue;
|
||||
|
||||
SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu = SE0->_offset;
|
||||
SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu = SE1->_offset;
|
||||
SE2 = gStencil_v.GetEntry(s+2,site); int x = SE2->_offset;
|
||||
SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
|
||||
SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu = SE4->_offset;
|
||||
|
||||
U0 = coalescedReadGeneralPermute(U_v[x_p_mu](nu),SE0->_permute,Nd);
|
||||
if(sigmaIndex<3) {
|
||||
U1 = coalescedReadGeneralPermute(U_5linkB_v[x_p_nu](rho),SE1->_permute,Nd);
|
||||
} else {
|
||||
U1 = coalescedReadGeneralPermute(U_5linkA_v[x_p_nu](rho),SE1->_permute,Nd);
|
||||
}
|
||||
U2 = coalescedReadGeneralPermute(U_v[x](nu),SE2->_permute,Nd);
|
||||
U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
|
||||
if(sigmaIndex<3) {
|
||||
U4 = coalescedReadGeneralPermute(U_5linkB_v[x_m_nu](rho),SE4->_permute,Nd);
|
||||
} else {
|
||||
U4 = coalescedReadGeneralPermute(U_5linkA_v[x_m_nu](rho),SE4->_permute,Nd);
|
||||
}
|
||||
U5 = coalescedReadGeneralPermute(U_v[x_m_nu](nu),SE4->_permute,Nd);
|
||||
|
||||
W = U2*U1*adj(U0) + adj(U5)*U4*U3;
|
||||
|
||||
coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_7*W);
|
||||
sigmaIndex++;
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
} // end mu loop
|
||||
|
||||
// c1, c3, c5, c7 construct contributions
|
||||
u_smr = Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
|
||||
|
||||
// Load up U and V std::vectors to access thin and smeared links.
|
||||
std::vector<LF> U(Nd, grid);
|
||||
std::vector<LF> V(Nd, grid);
|
||||
std::vector<LF> Vnaik(Nd, grid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(u_thin, mu);
|
||||
V[mu] = PeekIndex<LorentzIndex>(u_smr, mu);
|
||||
}
|
||||
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
// Naik
|
||||
Vnaik[mu] = lt.c_naik*Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftIdentityForward(U[mu],mu)));
|
||||
|
||||
// LePage
|
||||
for (int nu_h=1;nu_h<Nd;nu_h++) {
|
||||
int nu=(mu+nu_h)%Nd;
|
||||
// nu, nu, mu, Back(nu), Back(nu)
|
||||
V[mu] = V[mu] + lt.c_lp*Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu],nu)))))
|
||||
// Back(nu), Back(nu), mu, nu, nu
|
||||
+ lt.c_lp*Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[nu],nu,
|
||||
Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftIdentityForward(U[nu],nu)))));
|
||||
}
|
||||
}
|
||||
|
||||
// Put V back into u_smr.
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
PokeIndex<LorentzIndex>(u_smr , V[mu] , mu);
|
||||
PokeIndex<LorentzIndex>(u_naik, Vnaik[mu], mu);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Intent: OUT--u_proj
|
||||
// IN--u_mu
|
||||
void projectU3(GF& u_proj, GF& u_mu) const {
|
||||
|
||||
auto grid = this->_grid;
|
||||
|
||||
LF V(grid), Q(grid), sqrtQinv(grid), id_3(grid), diff(grid);
|
||||
CF c0(grid), c1(grid), c2(grid), g0(grid), g1(grid), g2(grid), S(grid), R(grid), theta(grid),
|
||||
u(grid), v(grid), w(grid), den(grid), f0(grid), f1(grid), f2(grid);
|
||||
|
||||
// Follow MILC 10.1103/PhysRevD.82.074501, eqs (B2-B3) and (C1-C8)
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
V = PeekIndex<LorentzIndex>(u_mu, mu);
|
||||
Q = adj(V)*V;
|
||||
c0 = real(trace(Q));
|
||||
c1 = (1/2.)*real(trace(Q*Q));
|
||||
c2 = (1/3.)*real(trace(Q*Q*Q));
|
||||
S = (1/3.)*c1-(1/18.)*c0*c0;
|
||||
if (norm2(S)<1e-28) {
|
||||
g0 = (1/3.)*c0; g1 = g0; g2 = g1;
|
||||
} else {
|
||||
R = (1/2.)*c2-(1/3. )*c0*c1+(1/27.)*c0*c0*c0;
|
||||
theta = acos(R*pow(S,-1.5));
|
||||
g0 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta-2*M_PI/3.);
|
||||
g1 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta );
|
||||
g2 = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta+2*M_PI/3.);
|
||||
}
|
||||
// if (fabs(Q.determinant()/(g0*g1*g2)-1.0) > 1e-5) { SVD }
|
||||
u = sqrt(g0) + sqrt(g1) + sqrt(g2);
|
||||
v = sqrt(g0*g1) + sqrt(g0*g2) + sqrt(g1*g2);
|
||||
w = sqrt(g0*g1*g2);
|
||||
den = w*(u*v-w);
|
||||
f0 = (-w*(u*u+v)+u*v*v)/den;
|
||||
f1 = (-w-u*u*u+2.*u*v)/den;
|
||||
f2 = u/den;
|
||||
id_3 = 1.;
|
||||
|
||||
sqrtQinv = f0*id_3 + f1*Q + f2*Q*Q;
|
||||
|
||||
PokeIndex<LorentzIndex>(u_proj, V*sqrtQinv, mu);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// void derivative(const GaugeField& Gauge) const {
|
||||
// };
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -5,4 +5,5 @@
|
||||
#include <Grid/qcd/smearing/StoutSmearing.h>
|
||||
#include <Grid/qcd/smearing/GaugeConfiguration.h>
|
||||
#include <Grid/qcd/smearing/WilsonFlow.h>
|
||||
#include <Grid/qcd/smearing/HISQSmearing.h>
|
||||
|
||||
|
@ -69,7 +69,7 @@ public:
|
||||
/*! Construct stout smearing object from explicitly specified rho matrix */
|
||||
Smear_Stout(const std::vector<double>& rho_)
|
||||
: OwnedBase{new Smear_APE<Gimpl>(rho_)}, SmearBase{OwnedBase.get()} {
|
||||
std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl
|
||||
std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl;
|
||||
assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3");
|
||||
}
|
||||
|
||||
|
@ -37,13 +37,14 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Make these members of an Impl class for BC's.
|
||||
|
||||
namespace PeriodicBC {
|
||||
|
||||
//Out(x) = Link(x)*field(x+mu)
|
||||
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
|
||||
int mu,
|
||||
const Lattice<covariant> &field)
|
||||
{
|
||||
return Link*Cshift(field,mu,1);// moves towards negative mu
|
||||
}
|
||||
//Out(x) = Link^dag(x-mu)*field(x-mu)
|
||||
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
|
||||
int mu,
|
||||
const Lattice<covariant> &field)
|
||||
@ -52,19 +53,19 @@ namespace PeriodicBC {
|
||||
tmp = adj(Link)*field;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
|
||||
//Out(x) = Link^dag(x-mu)
|
||||
template<class gauge> Lattice<gauge>
|
||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
return Cshift(adj(Link), mu, -1);
|
||||
}
|
||||
|
||||
//Out(x) = Link(x)
|
||||
template<class gauge> Lattice<gauge>
|
||||
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
return Link;
|
||||
}
|
||||
|
||||
//Link(x) = Link(x+mu)
|
||||
template<class gauge> Lattice<gauge>
|
||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
|
528
Grid/qcd/utils/GaugeGroup.h
Normal file
528
Grid/qcd/utils/GaugeGroup.h
Normal file
@ -0,0 +1,528 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/GaugeGroup.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_UTIL_GAUGEGROUP_H
|
||||
#define QCD_UTIL_GAUGEGROUP_H
|
||||
|
||||
// Important detail: nvcc requires all template parameters to have names.
|
||||
// This is the only reason why the second template parameter has a name.
|
||||
#define ONLY_IF_SU \
|
||||
typename dummy_name = group_name, \
|
||||
typename named_dummy = std::enable_if_t < \
|
||||
std::is_same<dummy_name, group_name>::value && \
|
||||
is_su<dummy_name>::value >
|
||||
|
||||
#define ONLY_IF_Sp \
|
||||
typename dummy_name = group_name, \
|
||||
typename named_dummy = std::enable_if_t < \
|
||||
std::is_same<dummy_name, group_name>::value && \
|
||||
is_sp<dummy_name>::value >
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
namespace GroupName {
|
||||
class SU {};
|
||||
class Sp {};
|
||||
} // namespace GroupName
|
||||
|
||||
template <typename group_name>
|
||||
struct is_su {
|
||||
static const bool value = false;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct is_su<GroupName::SU> {
|
||||
static const bool value = true;
|
||||
};
|
||||
|
||||
template <typename group_name>
|
||||
struct is_sp {
|
||||
static const bool value = false;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct is_sp<GroupName::Sp> {
|
||||
static const bool value = true;
|
||||
};
|
||||
|
||||
template <typename group_name>
|
||||
constexpr int compute_adjoint_dimension(int ncolour);
|
||||
|
||||
template <>
|
||||
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
|
||||
return ncolour * ncolour - 1;
|
||||
}
|
||||
|
||||
template <>
|
||||
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
|
||||
return ncolour / 2 * (ncolour + 1);
|
||||
}
|
||||
|
||||
template <int ncolour, class group_name>
|
||||
class GaugeGroup {
|
||||
public:
|
||||
static const int Dimension = ncolour;
|
||||
static const int AdjointDimension =
|
||||
compute_adjoint_dimension<group_name>(ncolour);
|
||||
static const int AlgebraDimension =
|
||||
compute_adjoint_dimension<group_name>(ncolour);
|
||||
|
||||
template <typename vtype>
|
||||
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
|
||||
template <typename vtype>
|
||||
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
template <typename vtype>
|
||||
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
||||
template <typename vtype>
|
||||
using iSUnAlgebraMatrix =
|
||||
iScalar<iScalar<iMatrix<vtype, AdjointDimension> > >;
|
||||
static int su2subgroups(void) { return su2subgroups(group_name()); }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
|
||||
// SU<2>::LatticeMatrix etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef iGroupMatrix<Complex> Matrix;
|
||||
typedef iGroupMatrix<ComplexF> MatrixF;
|
||||
typedef iGroupMatrix<ComplexD> MatrixD;
|
||||
|
||||
typedef iGroupMatrix<vComplex> vMatrix;
|
||||
typedef iGroupMatrix<vComplexF> vMatrixF;
|
||||
typedef iGroupMatrix<vComplexD> vMatrixD;
|
||||
|
||||
// For the projectors to the algebra
|
||||
// these should be real...
|
||||
// keeping complex for consistency with the SIMD vector types
|
||||
typedef iAlgebraVector<Complex> AlgebraVector;
|
||||
typedef iAlgebraVector<ComplexF> AlgebraVectorF;
|
||||
typedef iAlgebraVector<ComplexD> AlgebraVectorD;
|
||||
|
||||
typedef iAlgebraVector<vComplex> vAlgebraVector;
|
||||
typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
|
||||
typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
|
||||
|
||||
typedef Lattice<vMatrix> LatticeMatrix;
|
||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||
typedef Lattice<vMatrixD> LatticeMatrixD;
|
||||
|
||||
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
|
||||
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
|
||||
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
|
||||
|
||||
typedef iSUnAlgebraMatrix<vComplex> vAlgebraMatrix;
|
||||
typedef iSUnAlgebraMatrix<vComplexF> vAlgebraMatrixF;
|
||||
typedef iSUnAlgebraMatrix<vComplexD> vAlgebraMatrixD;
|
||||
|
||||
typedef Lattice<vAlgebraMatrix> LatticeAlgebraMatrix;
|
||||
typedef Lattice<vAlgebraMatrixF> LatticeAlgebraMatrixF;
|
||||
typedef Lattice<vAlgebraMatrixD> LatticeAlgebraMatrixD;
|
||||
|
||||
|
||||
typedef iSU2Matrix<Complex> SU2Matrix;
|
||||
typedef iSU2Matrix<ComplexF> SU2MatrixF;
|
||||
typedef iSU2Matrix<ComplexD> SU2MatrixD;
|
||||
|
||||
typedef iSU2Matrix<vComplex> vSU2Matrix;
|
||||
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
|
||||
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
|
||||
|
||||
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
|
||||
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
||||
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
||||
|
||||
// Private implementation details are specified in the following files:
|
||||
// Grid/qcd/utils/SUn.impl
|
||||
// Grid/qcd/utils/SUn.impl
|
||||
// The public part of the interface follows below and refers to these
|
||||
// private member functions.
|
||||
|
||||
#include <Grid/qcd/utils/SUn.impl.h>
|
||||
#include <Grid/qcd/utils/Sp2n.impl.h>
|
||||
|
||||
public:
|
||||
template <class cplx>
|
||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
|
||||
return generator(lieIndex, ta, group_name());
|
||||
}
|
||||
|
||||
static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
||||
return su2SubGroupIndex(i1, i2, su2_index, group_name());
|
||||
}
|
||||
|
||||
static void testGenerators(void) { testGenerators(group_name()); }
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < AlgebraDimension; gen++) {
|
||||
Matrix ta;
|
||||
generator(gen, ta);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << ta << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename LatticeMatrixType>
|
||||
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
|
||||
double scale = 1.0) {
|
||||
GridBase *grid = out.Grid();
|
||||
|
||||
typedef typename LatticeMatrixType::vector_type vector_type;
|
||||
|
||||
typedef iSinglet<vector_type> vTComplexType;
|
||||
|
||||
typedef Lattice<vTComplexType> LatticeComplexType;
|
||||
typedef typename GridTypeMapper<
|
||||
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
|
||||
|
||||
LatticeComplexType ca(grid);
|
||||
LatticeMatrixType lie(grid);
|
||||
LatticeMatrixType la(grid);
|
||||
ComplexD ci(0.0, scale);
|
||||
MatrixType ta;
|
||||
|
||||
lie = Zero();
|
||||
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
random(pRNG, ca);
|
||||
|
||||
ca = (ca + conjugate(ca)) * 0.5;
|
||||
ca = ca - 0.5;
|
||||
|
||||
generator(a, ta);
|
||||
|
||||
la = ci * ca * ta;
|
||||
|
||||
lie = lie + la; // e^{i la ta}
|
||||
}
|
||||
taExp(lie, out);
|
||||
}
|
||||
|
||||
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
|
||||
LatticeMatrix &out,
|
||||
Real scale = 1.0) {
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeReal ca(grid);
|
||||
LatticeMatrix la(grid);
|
||||
Complex ci(0.0, scale);
|
||||
Matrix ta;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
gaussian(pRNG, ca);
|
||||
generator(a, ta);
|
||||
la = toComplex(ca) * ta;
|
||||
out += la;
|
||||
}
|
||||
out *= ci;
|
||||
}
|
||||
|
||||
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
|
||||
LatticeMatrix &out,
|
||||
Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeMatrix la(grid);
|
||||
Matrix ta;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
generator(a, ta);
|
||||
la = peekColour(h, a) * timesI(ta) * scale;
|
||||
out += la;
|
||||
}
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
|
||||
// ) inverse operation: FundamentalLieAlgebraMatrix
|
||||
static void projectOnAlgebra(LatticeAlgebraVector &h_out,
|
||||
const LatticeMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
Matrix Ta;
|
||||
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
generator(a, Ta);
|
||||
pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class vtype>
|
||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
|
||||
return ProjectOnGeneralGroup(r, group_name());
|
||||
}
|
||||
|
||||
template <class vtype, int N>
|
||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
|
||||
return ProjectOnGeneralGroup(r, group_name());
|
||||
}
|
||||
|
||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
|
||||
return ProjectOnGeneralGroup(arg, group_name());
|
||||
}
|
||||
|
||||
template <int N,class vComplex_t> // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
|
||||
static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
auto Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
Umu = ProjectOnGeneralGroup(Umu);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <int N,class vComplex_t>
|
||||
static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
|
||||
return ProjectOnGeneralGroup(Umu, group_name());
|
||||
}
|
||||
|
||||
template <int N,class vComplex_t> // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
|
||||
static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
|
||||
Umu = ProjectOnGeneralGroup(Umu);
|
||||
auto det = Determinant(Umu);
|
||||
|
||||
det = conjugate(det);
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
|
||||
element = element * det;
|
||||
PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
|
||||
}
|
||||
}
|
||||
|
||||
template <int N,class vComplex_t> // reunitarise, resimplectify... previously ProjectSUn
|
||||
static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
|
||||
// Reunitarise
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
auto Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
ProjectOnSpecialGroup(Umu);
|
||||
PokeIndex<LorentzIndex>(U, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename GaugeField>
|
||||
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
LatticeMatrixType tmp(out.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// LieRandomize(pRNG, Umu, 1.0);
|
||||
// PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
gaussian(pRNG,Umu);
|
||||
tmp = Ta(Umu);
|
||||
taExp(tmp,Umu);
|
||||
ProjectOnSpecialGroup(Umu);
|
||||
// ProjectSUn(Umu);
|
||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
}
|
||||
}
|
||||
template <typename GaugeField>
|
||||
static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
LieRandomize(pRNG, Umu, 0.01);
|
||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename GaugeField>
|
||||
static void ColdConfiguration(GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
Umu = 1.0;
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
ColdConfiguration(out);
|
||||
}
|
||||
|
||||
template <typename LatticeMatrixType>
|
||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
|
||||
taProj(in, out, group_name());
|
||||
}
|
||||
|
||||
template <typename LatticeMatrixType>
|
||||
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
|
||||
typedef typename LatticeMatrixType::scalar_type ComplexType;
|
||||
|
||||
LatticeMatrixType xn(x.Grid());
|
||||
RealD nfac = 1.0;
|
||||
|
||||
xn = x;
|
||||
ex = xn + ComplexType(1.0); // 1+x
|
||||
|
||||
// Do a 12th order exponentiation
|
||||
for (int i = 2; i <= 12; ++i) {
|
||||
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
|
||||
xn = xn * x; // x2, x3,x4....
|
||||
ex = ex + xn * nfac; // x2/2!, x3/3!....
|
||||
}
|
||||
}
|
||||
|
||||
// Ta are hermitian (?)
|
||||
// Anti herm is i Ta basis
|
||||
static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in, int b)
|
||||
{
|
||||
conformable(in, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeComplex tmp(grid);
|
||||
Matrix ta;
|
||||
// Using Luchang's projection convention
|
||||
// 2 Tr{Ta Tb} A_b= 2/2 delta ab A_b = A_a
|
||||
autoView(out_v,out,AcceleratorWrite);
|
||||
autoView(in_v,in,AcceleratorRead);
|
||||
int N = ncolour;
|
||||
int NNm1 = N * (N - 1);
|
||||
int hNNm1= NNm1/2;
|
||||
RealD sqrt_2 = sqrt(2.0);
|
||||
Complex ci(0.0,1.0);
|
||||
for(int su2Index=0;su2Index<hNNm1;su2Index++){
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
int ax = su2Index*2;
|
||||
int ay = su2Index*2+1;
|
||||
accelerator_for(ss,grid->oSites(),1,{
|
||||
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
|
||||
// trace( Ta x Ci in)
|
||||
// Bet I need to move to real part with mult by -i
|
||||
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
|
||||
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
|
||||
});
|
||||
}
|
||||
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
int a = NNm1+diagIndex;
|
||||
RealD scale = 1.0/sqrt(2.0*k*(k+1));
|
||||
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
|
||||
auto tmp = in_v[ss]()()(0,0);
|
||||
for(int i=1;i<k;i++){
|
||||
tmp=tmp+in_v[ss]()()(i,i);
|
||||
}
|
||||
tmp = tmp - in_v[ss]()()(k,k)*k;
|
||||
out_v[ss]()()(a,b) =imag(tmp) * scale;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
template <int ncolour>
|
||||
using SU = GaugeGroup<ncolour, GroupName::SU>;
|
||||
|
||||
template <int ncolour>
|
||||
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
|
||||
|
||||
typedef SU<2> SU2;
|
||||
typedef SU<3> SU3;
|
||||
typedef SU<4> SU4;
|
||||
typedef SU<5> SU5;
|
||||
|
||||
typedef SU<Nc> FundamentalMatrices;
|
||||
|
||||
typedef Sp<2> Sp2;
|
||||
typedef Sp<4> Sp4;
|
||||
typedef Sp<6> Sp6;
|
||||
typedef Sp<8> Sp8;
|
||||
|
||||
template <int N,class vComplex_t>
|
||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
|
||||
{
|
||||
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
|
||||
}
|
||||
|
||||
template <int N,class vComplex_t>
|
||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
|
||||
{
|
||||
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
|
||||
}
|
||||
|
||||
template <int N,class vComplex_t>
|
||||
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
|
||||
{
|
||||
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
|
||||
}
|
||||
|
||||
template <int N,class vComplex_t>
|
||||
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
|
||||
{
|
||||
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
|
||||
}
|
||||
|
||||
// Explicit specialisation for SU(3).
|
||||
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
|
||||
{
|
||||
GridBase *grid = Umu.Grid();
|
||||
const int x = 0;
|
||||
const int y = 1;
|
||||
const int z = 2;
|
||||
// Reunitarise
|
||||
Umu = ProjectOnGroup(Umu);
|
||||
autoView(Umu_v, Umu, CpuWrite);
|
||||
thread_for(ss, grid->oSites(), {
|
||||
auto cm = Umu_v[ss];
|
||||
cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
|
||||
cm()()(0, z) * cm()()(1, y)); // x= yz-zy
|
||||
cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
|
||||
cm()()(0, x) * cm()()(1, z)); // y= zx-xz
|
||||
cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
|
||||
cm()()(0, y) * cm()()(1, x)); // z= xy-yx
|
||||
Umu_v[ss] = cm;
|
||||
});
|
||||
}
|
||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
|
||||
{
|
||||
GridBase *grid = U.Grid();
|
||||
// Reunitarise
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
auto Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
Umu = ProjectOnGroup(Umu);
|
||||
ProjectSU3(Umu);
|
||||
PokeIndex<LorentzIndex>(U, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
371
Grid/qcd/utils/GaugeGroupTwoIndex.h
Normal file
371
Grid/qcd/utils/GaugeGroupTwoIndex.h
Normal file
@ -0,0 +1,371 @@
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// * Two index representation generators
|
||||
//
|
||||
// * Normalisation for the fundamental generators:
|
||||
// trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
//
|
||||
// base for NxN two index (anti-symmetric) matrices
|
||||
// normalized to 1 (d_ij is the kroenecker delta)
|
||||
//
|
||||
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
|
||||
//
|
||||
// Then the generators are written as
|
||||
//
|
||||
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
|
||||
// tr[e^(lk)e^(ij)^dag T_a] ) //
|
||||
//
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Authors: David Preti, Guido Cossu
|
||||
|
||||
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
|
||||
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
|
||||
|
||||
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <class cplx, int nc, TwoIndexSymmetry S>
|
||||
struct baseOffDiagonalSpHelper;
|
||||
|
||||
template <class cplx, int nc>
|
||||
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
|
||||
static const int ngroup = nc / 2;
|
||||
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
|
||||
eij = Zero();
|
||||
RealD tmp;
|
||||
|
||||
if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
|
||||
for (int k = 0; k < j+1; k++) {
|
||||
if (k < j) {
|
||||
tmp = 1 / sqrt(j * (j + 1));
|
||||
eij()()(k, k + ngroup) = tmp;
|
||||
eij()()(k + ngroup, k) = -tmp;
|
||||
}
|
||||
if (k == j) {
|
||||
tmp = -j / sqrt(j * (j + 1));
|
||||
eij()()(k, k + ngroup) = tmp;
|
||||
eij()()(k + ngroup, k) = -tmp;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
else if (i != ngroup + j) {
|
||||
for (int k = 0; k < nc; k++)
|
||||
for (int l = 0; l < nc; l++) {
|
||||
eij()()(l, k) =
|
||||
delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
|
||||
}
|
||||
}
|
||||
RealD nrm = 1. / std::sqrt(2.0);
|
||||
eij = eij * nrm;
|
||||
}
|
||||
};
|
||||
|
||||
template <class cplx, int nc>
|
||||
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
|
||||
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
|
||||
eij = Zero();
|
||||
for (int k = 0; k < nc; k++)
|
||||
for (int l = 0; l < nc; l++)
|
||||
eij()()(l, k) =
|
||||
delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
|
||||
|
||||
RealD nrm = 1. / std::sqrt(2.0);
|
||||
eij = eij * nrm;
|
||||
}
|
||||
};
|
||||
|
||||
} // closing detail namespace
|
||||
|
||||
template <int ncolour, TwoIndexSymmetry S, class group_name>
|
||||
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
|
||||
public:
|
||||
// The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
|
||||
// in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
|
||||
static_assert(std::is_same<group_name, GroupName::SU>::value or
|
||||
std::is_same<group_name, GroupName::Sp>::value,
|
||||
"ngroup is only implemented for SU and Sp currently.");
|
||||
static const int ngroup =
|
||||
std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
|
||||
static const int Dimension =
|
||||
(ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
|
||||
static const int DimensionAS =
|
||||
(ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
|
||||
static const int DimensionS =
|
||||
ncolour * (ncolour + 1) / 2;
|
||||
static const int NumGenerators =
|
||||
GaugeGroup<ncolour, group_name>::AlgebraDimension;
|
||||
|
||||
template <typename vtype>
|
||||
using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
|
||||
typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
|
||||
typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
|
||||
|
||||
typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
|
||||
typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
|
||||
typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
|
||||
|
||||
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
|
||||
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
|
||||
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
|
||||
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
|
||||
LatticeTwoIndexField;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
|
||||
LatticeTwoIndexFieldF;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
|
||||
LatticeTwoIndexFieldD;
|
||||
|
||||
template <typename vtype>
|
||||
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
|
||||
typedef iGroupMatrix<Complex> Matrix;
|
||||
typedef iGroupMatrix<ComplexF> MatrixF;
|
||||
typedef iGroupMatrix<ComplexD> MatrixD;
|
||||
|
||||
private:
|
||||
template <class cplx>
|
||||
static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
|
||||
eij = Zero();
|
||||
eij()()(Index - ncolour * (ncolour - 1) / 2,
|
||||
Index - ncolour * (ncolour - 1) / 2) = 1.0;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
|
||||
eij = Zero();
|
||||
for (int k = 0; k < ncolour; k++)
|
||||
for (int l = 0; l < ncolour; l++)
|
||||
eij()()(l, k) =
|
||||
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
|
||||
|
||||
RealD nrm = 1. / std::sqrt(2.0);
|
||||
eij = eij * nrm;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
|
||||
detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
template <class cplx>
|
||||
static void base(int Index, iGroupMatrix<cplx> &eij) {
|
||||
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
|
||||
assert(Index < Dimension);
|
||||
eij = Zero();
|
||||
// for the linearisation of the 2 indexes
|
||||
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
|
||||
static bool filled = false;
|
||||
if (!filled) {
|
||||
int counter = 0;
|
||||
for (int i = 1; i < ncolour; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (std::is_same<group_name, GroupName::Sp>::value)
|
||||
{
|
||||
if (j==0 && i==ngroup+j && S==-1) {
|
||||
//std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
|
||||
j = j+1;
|
||||
}
|
||||
}
|
||||
a[counter][0] = i;
|
||||
a[counter][1] = j;
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
filled = true;
|
||||
}
|
||||
if (Index < ncolour*ncolour - DimensionS)
|
||||
{
|
||||
baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
|
||||
} else {
|
||||
baseDiagonal(Index, eij);
|
||||
}
|
||||
}
|
||||
|
||||
static void printBase(void) {
|
||||
for (int gen = 0; gen < Dimension; gen++) {
|
||||
Matrix tmp;
|
||||
base(gen, tmp);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << tmp << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
|
||||
Vector<iGroupMatrix<cplx> > ta(NumGenerators);
|
||||
Vector<iGroupMatrix<cplx> > eij(Dimension);
|
||||
iGroupMatrix<cplx> tmp;
|
||||
|
||||
for (int a = 0; a < NumGenerators; a++)
|
||||
GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
|
||||
for (int b = 0; b < Dimension; b++) {
|
||||
Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
|
||||
i2indTa()()(a, b) = iTr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < NumGenerators; gen++) {
|
||||
TIMatrix i2indTa;
|
||||
generator(gen, i2indTa);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << i2indTa << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static void testGenerators(void) {
|
||||
TIMatrix i2indTa, i2indTb;
|
||||
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < NumGenerators; a++) {
|
||||
generator(a, i2indTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(trace(i2indTa)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < NumGenerators; a++) {
|
||||
generator(a, i2indTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < NumGenerators; a++) {
|
||||
for (int b = 0; b < NumGenerators; b++) {
|
||||
generator(a, i2indTa);
|
||||
generator(b, i2indTb);
|
||||
|
||||
// generator returns iTa, so we need a minus sign here
|
||||
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
|
||||
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
|
||||
<< std::endl;
|
||||
if (a == b) {
|
||||
assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
|
||||
} else {
|
||||
assert(real(Tr) < 1e-8);
|
||||
}
|
||||
assert(imag(Tr) < 1e-8);
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
static void TwoIndexLieAlgebraMatrix(
|
||||
const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
|
||||
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeTwoIndexMatrix la(grid);
|
||||
TIMatrix i2indTa;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < NumGenerators; a++) {
|
||||
generator(a, i2indTa);
|
||||
la = peekColour(h, a) * i2indTa;
|
||||
out += la;
|
||||
}
|
||||
out *= scale;
|
||||
}
|
||||
|
||||
// Projects the algebra components
|
||||
// of a lattice matrix ( of dimension ncol*ncol -1 )
|
||||
static void projectOnAlgebra(
|
||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
|
||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
TIMatrix i2indTa;
|
||||
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
|
||||
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
|
||||
for (int a = 0; a < NumGenerators; a++) {
|
||||
generator(a, i2indTa);
|
||||
pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
|
||||
}
|
||||
}
|
||||
|
||||
// a projector that keeps the generators stored to avoid the overhead of
|
||||
// recomputing them
|
||||
static void projector(
|
||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
|
||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
// to store the generators
|
||||
static std::vector<TIMatrix> i2indTa(NumGenerators);
|
||||
h_out = Zero();
|
||||
static bool precalculated = false;
|
||||
if (!precalculated) {
|
||||
precalculated = true;
|
||||
for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
|
||||
}
|
||||
|
||||
Real coefficient =
|
||||
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
|
||||
// of the trace in the two index rep
|
||||
|
||||
for (int a = 0; a < NumGenerators; a++) {
|
||||
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int ncolour, TwoIndexSymmetry S>
|
||||
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
|
||||
|
||||
// Some useful type names
|
||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
|
||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
|
||||
|
||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
|
||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
|
||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
|
||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
|
||||
|
||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
|
||||
|
||||
template <int ncolour, TwoIndexSymmetry S>
|
||||
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
|
||||
|
||||
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
|
||||
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
|
||||
|
||||
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
|
||||
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
|
||||
|
||||
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,932 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/SUn.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_UTIL_SUN_H
|
||||
#define QCD_UTIL_SUN_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<int N, class Vec>
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
||||
typedef typename Vec::scalar_type scalar;
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
scalar tmp= Us()()(i,j);
|
||||
ComplexD ztmp(real(tmp),imag(tmp));
|
||||
EigenU(i,j)=ztmp;
|
||||
}}
|
||||
ComplexD detD = EigenU.determinant();
|
||||
typename Vec::scalar_type det(detD.real(),detD.imag());
|
||||
pokeLocalSite(det,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<int N, class Vec>
|
||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||
{
|
||||
Umu = ProjectOnGroup(Umu);
|
||||
auto det = Determinant(Umu);
|
||||
|
||||
det = conjugate(det);
|
||||
|
||||
for(int i=0;i<N;i++){
|
||||
auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
|
||||
element = element * det;
|
||||
PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
|
||||
}
|
||||
}
|
||||
template<int N,class Vec>
|
||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
|
||||
{
|
||||
GridBase *grid=U.Grid();
|
||||
// Reunitarise
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
auto Umu = PeekIndex<LorentzIndex>(U,mu);
|
||||
Umu = ProjectOnGroup(Umu);
|
||||
ProjectSUn(Umu);
|
||||
PokeIndex<LorentzIndex>(U,Umu,mu);
|
||||
}
|
||||
}
|
||||
|
||||
template <int ncolour>
|
||||
class SU {
|
||||
public:
|
||||
static const int Dimension = ncolour;
|
||||
static const int AdjointDimension = ncolour * ncolour - 1;
|
||||
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
template <typename vtype>
|
||||
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
|
||||
template <typename vtype>
|
||||
using iSUnAlgebraVector =
|
||||
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
|
||||
// SU<2>::LatticeMatrix etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef iSUnMatrix<Complex> Matrix;
|
||||
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||
|
||||
typedef iSUnMatrix<vComplex> vMatrix;
|
||||
typedef iSUnMatrix<vComplexF> vMatrixF;
|
||||
typedef iSUnMatrix<vComplexD> vMatrixD;
|
||||
|
||||
// For the projectors to the algebra
|
||||
// these should be real...
|
||||
// keeping complex for consistency with the SIMD vector types
|
||||
typedef iSUnAlgebraVector<Complex> AlgebraVector;
|
||||
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
|
||||
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
|
||||
|
||||
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
|
||||
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
|
||||
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
|
||||
|
||||
typedef Lattice<vMatrix> LatticeMatrix;
|
||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||
typedef Lattice<vMatrixD> LatticeMatrixD;
|
||||
|
||||
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
|
||||
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
|
||||
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
|
||||
|
||||
typedef iSU2Matrix<Complex> SU2Matrix;
|
||||
typedef iSU2Matrix<ComplexF> SU2MatrixF;
|
||||
typedef iSU2Matrix<ComplexD> SU2MatrixD;
|
||||
|
||||
typedef iSU2Matrix<vComplex> vSU2Matrix;
|
||||
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
|
||||
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
|
||||
|
||||
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
|
||||
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
||||
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
||||
// generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
||||
// delta_{i,i1} delta_{j,i2})
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
||||
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <class cplx>
|
||||
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = ncolour * (ncolour - 1);
|
||||
if (lieIndex >= NNm1) {
|
||||
diagIndex = lieIndex - NNm1;
|
||||
generatorDiagonal(diagIndex, ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex & 0x1; // even or odd
|
||||
su2Index = lieIndex >> 1;
|
||||
if (sigxy)
|
||||
generatorSigmaY(su2Index, ta);
|
||||
else
|
||||
generatorSigmaX(su2Index, ta);
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = 1.0;
|
||||
ta()()(i2, i1) = 1.0;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = i;
|
||||
ta()()(i2, i1) = -i;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
|
||||
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
||||
ta = Zero();
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
||||
ta()()(i, i) = 1.0;
|
||||
}
|
||||
ta()()(k, k) = -k; // indexing starts from 0
|
||||
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
||||
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2 = i1 + 1 + spare;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx>
|
||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index) {
|
||||
GridBase *grid(source.Grid());
|
||||
conformable(subgroup, source);
|
||||
conformable(subgroup, Determinant);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
autoView( subgroup_v , subgroup,AcceleratorWrite);
|
||||
autoView( source_v , source,AcceleratorRead);
|
||||
autoView( Determinant_v , Determinant,AcceleratorWrite);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
|
||||
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
||||
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
||||
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
||||
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
||||
|
||||
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
||||
|
||||
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
||||
|
||||
subgroup_v[ss] = Sigma;
|
||||
|
||||
// this should be purely real
|
||||
Determinant_v[ss] =
|
||||
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set matrix to one and insert a pauli subgroup
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx>
|
||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
|
||||
GridBase *grid(dest.Grid());
|
||||
conformable(subgroup, dest);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
dest = 1.0; // start out with identity
|
||||
autoView( dest_v , dest, AcceleratorWrite);
|
||||
autoView( subgroup_v, subgroup, AcceleratorRead);
|
||||
accelerator_for(ss, grid->oSites(),1,
|
||||
{
|
||||
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
||||
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
||||
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
||||
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Generate e^{ Re Tr Staple Link} dlink
|
||||
//
|
||||
// *** Note Staple should be appropriate linear compbination between all
|
||||
// staples.
|
||||
// *** If already by beta pass coefficient 1.0.
|
||||
// *** This routine applies the additional 1/Nc factor that comes after trace
|
||||
// in action.
|
||||
//
|
||||
///////////////////////////////////////////////
|
||||
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
||||
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||
int su2_subgroup, int nheatbath, LatticeInteger &wheremask)
|
||||
{
|
||||
GridBase *grid = link.Grid();
|
||||
|
||||
const RealD twopi = 2.0 * M_PI;
|
||||
|
||||
LatticeMatrix staple(grid);
|
||||
|
||||
staple = barestaple * (beta / ncolour);
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link * staple;
|
||||
|
||||
// Subgroup manipulation in the lie algebra space
|
||||
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||
LatticeSU2Matrix uinv(grid);
|
||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||
|
||||
// Some handy constant fields
|
||||
LatticeComplex ones(grid);
|
||||
ones = 1.0;
|
||||
LatticeComplex zeros(grid);
|
||||
zeros = Zero();
|
||||
LatticeReal rones(grid);
|
||||
rones = 1.0;
|
||||
LatticeReal rzeros(grid);
|
||||
rzeros = Zero();
|
||||
LatticeComplex udet(grid); // determinant of real(staple)
|
||||
LatticeInteger mask_true(grid);
|
||||
mask_true = 1;
|
||||
LatticeInteger mask_false(grid);
|
||||
mask_false = 0;
|
||||
|
||||
/*
|
||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||
|
||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||
passed to this routine has "beta" already multiplied in
|
||||
|
||||
Action linear in links h and of form:
|
||||
|
||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||
|
||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||
|
||||
beta S = const - beta/Nc Re Tr h Sigma'
|
||||
= const - Re Tr h Sigma
|
||||
|
||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
||||
arbitrary.
|
||||
|
||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||
|
||||
Normalised re Sigma_j = xi u_j
|
||||
|
||||
With u_j a unit vector and U can be in SU(2);
|
||||
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||
|
||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
xi = sqrt(Det)/2;
|
||||
|
||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||
|
||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Real part of Pauli decomposition
|
||||
// Note a subgroup can project to zero in cold start
|
||||
////////////////////////////////////////////////////////
|
||||
su2Extract(udet, u, V, su2_subgroup);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Normalising this vector if possible; else identity
|
||||
//////////////////////////////////////////////////////
|
||||
LatticeComplex xi(grid);
|
||||
|
||||
LatticeSU2Matrix lident(grid);
|
||||
|
||||
SU2Matrix ident = Complex(1.0);
|
||||
SU2Matrix pauli1;
|
||||
SU<2>::generator(0, pauli1);
|
||||
SU2Matrix pauli2;
|
||||
SU<2>::generator(1, pauli2);
|
||||
SU2Matrix pauli3;
|
||||
SU<2>::generator(2, pauli3);
|
||||
pauli1 = timesI(pauli1) * 2.0;
|
||||
pauli2 = timesI(pauli2) * 2.0;
|
||||
pauli3 = timesI(pauli3) * 2.0;
|
||||
|
||||
LatticeComplex cone(grid);
|
||||
LatticeReal adet(grid);
|
||||
adet = abs(toReal(udet));
|
||||
lident = Complex(1.0);
|
||||
cone = Complex(1.0);
|
||||
Real machine_epsilon = 1.0e-7;
|
||||
u = where(adet > machine_epsilon, u, lident);
|
||||
udet = where(adet > machine_epsilon, udet, cone);
|
||||
|
||||
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 0.5 * u *
|
||||
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
// Debug test for sanity
|
||||
uinv = adj(u);
|
||||
b = u * uinv - 1.0;
|
||||
assert(norm2(b) < 1.0e-4);
|
||||
|
||||
/*
|
||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||
In polars:
|
||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
||||
r) )
|
||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||
|
||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
|
||||
through xi
|
||||
= e^{2 xi (h.u)} dh
|
||||
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
|
||||
h2u2}.e^{2 xi h3u3} dh
|
||||
|
||||
Therefore for each site, take xi for that site
|
||||
i) generate |a0|<1 with dist
|
||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||
|
||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
|
||||
factor in Chroma ]
|
||||
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
|
||||
R''' in the unit interval;
|
||||
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
|
||||
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
|
||||
D. Set A = XC;
|
||||
E. Let d = X'+A;
|
||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
G. Set a0 = 1 - d;
|
||||
|
||||
Note that in step D setting B ~ X - A and using B in place of A in step E will
|
||||
generate a second independent a 0 value.
|
||||
*/
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// count the number of sites by picking "1"'s out of hat
|
||||
/////////////////////////////////////////////////////////
|
||||
Integer hit = 0;
|
||||
LatticeReal rtmp(grid);
|
||||
rtmp = where(wheremask, rones, rzeros);
|
||||
RealD numSites = sum(rtmp);
|
||||
RealD numAccepted;
|
||||
LatticeInteger Accepted(grid);
|
||||
Accepted = Zero();
|
||||
LatticeInteger newlyAccepted(grid);
|
||||
|
||||
std::vector<LatticeReal> xr(4, grid);
|
||||
std::vector<LatticeReal> a(4, grid);
|
||||
LatticeReal d(grid);
|
||||
d = Zero();
|
||||
LatticeReal alpha(grid);
|
||||
|
||||
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
||||
xi = 2.0 *xi;
|
||||
alpha = toReal(xi);
|
||||
|
||||
do {
|
||||
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
||||
// R'', R''' in the unit interval;
|
||||
random(pRNG, xr[0]);
|
||||
random(pRNG, xr[1]);
|
||||
random(pRNG, xr[2]);
|
||||
random(pRNG, xr[3]);
|
||||
|
||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||
xr[1] = -log(xr[1]) / alpha;
|
||||
xr[2] = -log(xr[2]) / alpha;
|
||||
|
||||
// C. Set C = cos^2(2piR'')
|
||||
xr[3] = cos(xr[3] * twopi);
|
||||
xr[3] = xr[3] * xr[3];
|
||||
|
||||
LatticeReal xrsq(grid);
|
||||
|
||||
// D. Set A = XC;
|
||||
// E. Let d = X'+A;
|
||||
xrsq = xr[2] + xr[1] * xr[3];
|
||||
|
||||
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
||||
|
||||
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
LatticeReal thresh(grid);
|
||||
thresh = 1.0 - d * 0.5;
|
||||
xrsq = xr[0] * xr[0];
|
||||
LatticeInteger ione(grid);
|
||||
ione = 1;
|
||||
LatticeInteger izero(grid);
|
||||
izero = Zero();
|
||||
|
||||
newlyAccepted = where(xrsq < thresh, ione, izero);
|
||||
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
||||
Accepted = where(wheremask, Accepted, izero);
|
||||
|
||||
// FIXME need an iSum for integer to avoid overload on return type??
|
||||
rtmp = where(Accepted, rones, rzeros);
|
||||
numAccepted = sum(rtmp);
|
||||
|
||||
hit++;
|
||||
|
||||
} while ((numAccepted < numSites) && (hit < nheatbath));
|
||||
|
||||
// G. Set a0 = 1 - d;
|
||||
a[0] = Zero();
|
||||
a[0] = where(wheremask, 1.0 - d, a[0]);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||
//////////////////////////////////////////
|
||||
|
||||
LatticeReal a123mag(grid);
|
||||
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
||||
|
||||
LatticeReal cos_theta(grid);
|
||||
LatticeReal sin_theta(grid);
|
||||
LatticeReal phi(grid);
|
||||
|
||||
random(pRNG, phi);
|
||||
phi = phi * twopi; // uniform in [0,2pi]
|
||||
random(pRNG, cos_theta);
|
||||
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
||||
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
||||
|
||||
a[1] = a123mag * sin_theta * cos(phi);
|
||||
a[2] = a123mag * sin_theta * sin(phi);
|
||||
a[3] = a123mag * cos_theta;
|
||||
|
||||
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
||||
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
||||
|
||||
b = 1.0;
|
||||
b = where(wheremask, uinv * ua, b);
|
||||
su2Insert(b, V, su2_subgroup);
|
||||
|
||||
// mask the assignment back based on Accptance
|
||||
link = where(Accepted, V * link, link);
|
||||
|
||||
//////////////////////////////
|
||||
// Debug Checks
|
||||
// SU2 check
|
||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||
u = Zero();
|
||||
check = ua * adj(ua) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
check = b * adj(b) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
LatticeMatrix Vcheck(grid);
|
||||
Vcheck = Zero();
|
||||
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
||||
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
|
||||
// Verify the link stays in SU(3)
|
||||
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
||||
Vcheck = link * adj(link) - 1.0;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
/////////////////////////////////
|
||||
}
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < AdjointDimension; gen++) {
|
||||
Matrix ta;
|
||||
generator(gen, ta);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << ta << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void testGenerators(void) {
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout << GridLogMessage
|
||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
for (int b = 0; b < AdjointDimension; b++) {
|
||||
generator(a, ta);
|
||||
generator(b, tb);
|
||||
Complex tr = TensorRemove(trace(ta * tb));
|
||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||
<< std::endl;
|
||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
Complex tr = TensorRemove(trace(ta));
|
||||
std::cout << GridLogMessage << a << " " << std::endl;
|
||||
assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
// reunitarise??
|
||||
template <typename LatticeMatrixType>
|
||||
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0)
|
||||
{
|
||||
GridBase *grid = out.Grid();
|
||||
|
||||
typedef typename LatticeMatrixType::vector_type vector_type;
|
||||
|
||||
typedef iSinglet<vector_type> vTComplexType;
|
||||
|
||||
typedef Lattice<vTComplexType> LatticeComplexType;
|
||||
typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
|
||||
|
||||
LatticeComplexType ca(grid);
|
||||
LatticeMatrixType lie(grid);
|
||||
LatticeMatrixType la(grid);
|
||||
ComplexD ci(0.0, scale);
|
||||
// ComplexD cone(1.0, 0.0);
|
||||
MatrixType ta;
|
||||
|
||||
lie = Zero();
|
||||
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
random(pRNG, ca);
|
||||
|
||||
ca = (ca + conjugate(ca)) * 0.5;
|
||||
ca = ca - 0.5;
|
||||
|
||||
generator(a, ta);
|
||||
|
||||
la = ci * ca * ta;
|
||||
|
||||
lie = lie + la; // e^{i la ta}
|
||||
|
||||
}
|
||||
taExp(lie, out);
|
||||
}
|
||||
|
||||
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
|
||||
LatticeMatrix &out,
|
||||
Real scale = 1.0) {
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeReal ca(grid);
|
||||
LatticeMatrix la(grid);
|
||||
Complex ci(0.0, scale);
|
||||
Matrix ta;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
gaussian(pRNG, ca);
|
||||
generator(a, ta);
|
||||
la = toComplex(ca) * ta;
|
||||
out += la;
|
||||
}
|
||||
out *= ci;
|
||||
}
|
||||
|
||||
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
|
||||
LatticeMatrix &out,
|
||||
Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeMatrix la(grid);
|
||||
Matrix ta;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
la = peekColour(h, a) * timesI(ta) * scale;
|
||||
out += la;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Fundamental rep gauge xform
|
||||
*/
|
||||
template<typename Fundamental,typename GaugeMat>
|
||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
|
||||
GridBase *grid = ferm._grid;
|
||||
conformable(grid,g._grid);
|
||||
ferm = g*ferm;
|
||||
}
|
||||
/*
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid,g.Grid());
|
||||
|
||||
typename Gimpl::GaugeLinkField U(grid);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||
}
|
||||
}
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = g.Grid();
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
}
|
||||
}
|
||||
template<typename Gimpl>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
LieRandomize(pRNG,g,1.0);
|
||||
GaugeTransform<Gimpl>(Umu,g);
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||
// inverse operation: FundamentalLieAlgebraMatrix
|
||||
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
Matrix Ta;
|
||||
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, Ta);
|
||||
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename GaugeField>
|
||||
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
LatticeMatrixType tmp(out.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// LieRandomize(pRNG, Umu, 1.0);
|
||||
// PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
gaussian(pRNG,Umu);
|
||||
tmp = Ta(Umu);
|
||||
taExp(tmp,Umu);
|
||||
ProjectSUn(Umu);
|
||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LieRandomize(pRNG,Umu,0.01);
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
Umu=1.0;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
ColdConfiguration(out);
|
||||
}
|
||||
|
||||
template<typename LatticeMatrixType>
|
||||
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
|
||||
out = Ta(in);
|
||||
}
|
||||
template <typename LatticeMatrixType>
|
||||
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
|
||||
typedef typename LatticeMatrixType::scalar_type ComplexType;
|
||||
|
||||
LatticeMatrixType xn(x.Grid());
|
||||
RealD nfac = 1.0;
|
||||
|
||||
xn = x;
|
||||
ex = xn + ComplexType(1.0); // 1+x
|
||||
|
||||
// Do a 12th order exponentiation
|
||||
for (int i = 2; i <= 12; ++i) {
|
||||
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
|
||||
xn = xn * x; // x2, x3,x4....
|
||||
ex = ex + xn * nfac; // x2/2!, x3/3!....
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<int N>
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
||||
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
EigenU(i,j) = Us()()(i,j);
|
||||
}}
|
||||
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
Ui()()(i,j) = EigenUinv(i,j);
|
||||
}}
|
||||
pokeLocalSite(Ui,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
// Explicit specialisation for SU(3).
|
||||
// Explicit specialisation for SU(3).
|
||||
static void
|
||||
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
const int x=0;
|
||||
const int y=1;
|
||||
const int z=2;
|
||||
// Reunitarise
|
||||
Umu = ProjectOnGroup(Umu);
|
||||
autoView(Umu_v,Umu,CpuWrite);
|
||||
thread_for(ss,grid->oSites(),{
|
||||
auto cm = Umu_v[ss];
|
||||
cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
|
||||
cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
|
||||
cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
|
||||
Umu_v[ss]=cm;
|
||||
});
|
||||
}
|
||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
|
||||
{
|
||||
GridBase *grid=U.Grid();
|
||||
// Reunitarise
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
auto Umu = PeekIndex<LorentzIndex>(U,mu);
|
||||
Umu = ProjectOnGroup(Umu);
|
||||
ProjectSU3(Umu);
|
||||
PokeIndex<LorentzIndex>(U,Umu,mu);
|
||||
}
|
||||
}
|
||||
|
||||
typedef SU<2> SU2;
|
||||
typedef SU<3> SU3;
|
||||
typedef SU<4> SU4;
|
||||
typedef SU<5> SU5;
|
||||
|
||||
|
||||
typedef SU<Nc> FundamentalMatrices;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
580
Grid/qcd/utils/SUn.impl.h
Normal file
580
Grid/qcd/utils/SUn.impl.h
Normal file
@ -0,0 +1,580 @@
|
||||
// This file is #included into the body of the class template definition of
|
||||
// GaugeGroup. So, image there to be
|
||||
//
|
||||
// template <int ncolour, class group_name>
|
||||
// class GaugeGroup {
|
||||
//
|
||||
// around it.
|
||||
//
|
||||
// Please note that the unconventional file extension makes sure that it
|
||||
// doesn't get found by the scripts/filelist during bootstrapping.
|
||||
|
||||
private:
|
||||
|
||||
template <ONLY_IF_SU>
|
||||
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
||||
// generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
||||
// delta_{i,i1} delta_{j,i2})
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
||||
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = ncolour * (ncolour - 1);
|
||||
if (lieIndex >= NNm1) {
|
||||
diagIndex = lieIndex - NNm1;
|
||||
generatorDiagonal(diagIndex, ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex & 0x1; // even or odd
|
||||
su2Index = lieIndex >> 1;
|
||||
if (sigxy)
|
||||
generatorSigmaY(su2Index, ta);
|
||||
else
|
||||
generatorSigmaX(su2Index, ta);
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = 1.0;
|
||||
ta()()(i2, i1) = 1.0;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = i;
|
||||
ta()()(i2, i1) = -i;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
|
||||
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
||||
ta = Zero();
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
||||
ta()()(i, i) = 1.0;
|
||||
}
|
||||
ta()()(k, k) = -k; // indexing starts from 0
|
||||
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
||||
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2 = i1 + 1 + spare;
|
||||
}
|
||||
|
||||
public:
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx, ONLY_IF_SU>
|
||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
const Lattice<iGroupMatrix<vcplx> > &source,
|
||||
int su2_index) {
|
||||
GridBase *grid(source.Grid());
|
||||
conformable(subgroup, source);
|
||||
conformable(subgroup, Determinant);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
autoView(subgroup_v, subgroup, AcceleratorWrite);
|
||||
autoView(source_v, source, AcceleratorRead);
|
||||
autoView(Determinant_v, Determinant, AcceleratorWrite);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
||||
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
||||
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
||||
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
||||
|
||||
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
||||
|
||||
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
||||
|
||||
subgroup_v[ss] = Sigma;
|
||||
|
||||
// this should be purely real
|
||||
Determinant_v[ss] =
|
||||
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set matrix to one and insert a pauli subgroup
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx, ONLY_IF_SU>
|
||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
|
||||
GridBase *grid(dest.Grid());
|
||||
conformable(subgroup, dest);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
dest = 1.0; // start out with identity
|
||||
autoView(dest_v, dest, AcceleratorWrite);
|
||||
autoView(subgroup_v, subgroup, AcceleratorRead);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
||||
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
||||
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
||||
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
||||
});
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Generate e^{ Re Tr Staple Link} dlink
|
||||
//
|
||||
// *** Note Staple should be appropriate linear compbination between all
|
||||
// staples.
|
||||
// *** If already by beta pass coefficient 1.0.
|
||||
// *** This routine applies the additional 1/Nc factor that comes after trace
|
||||
// in action.
|
||||
//
|
||||
///////////////////////////////////////////////
|
||||
template <ONLY_IF_SU>
|
||||
static void SubGroupHeatBath(
|
||||
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
||||
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
|
||||
GridBase *grid = link.Grid();
|
||||
|
||||
const RealD twopi = 2.0 * M_PI;
|
||||
|
||||
LatticeMatrix staple(grid);
|
||||
|
||||
staple = barestaple * (beta / ncolour);
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link * staple;
|
||||
|
||||
// Subgroup manipulation in the lie algebra space
|
||||
LatticeSU2Matrix u(
|
||||
grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||
LatticeSU2Matrix uinv(grid);
|
||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||
|
||||
// Some handy constant fields
|
||||
LatticeComplex ones(grid);
|
||||
ones = 1.0;
|
||||
LatticeComplex zeros(grid);
|
||||
zeros = Zero();
|
||||
LatticeReal rones(grid);
|
||||
rones = 1.0;
|
||||
LatticeReal rzeros(grid);
|
||||
rzeros = Zero();
|
||||
LatticeComplex udet(grid); // determinant of real(staple)
|
||||
LatticeInteger mask_true(grid);
|
||||
mask_true = 1;
|
||||
LatticeInteger mask_false(grid);
|
||||
mask_false = 0;
|
||||
|
||||
/*
|
||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||
|
||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||
passed to this routine has "beta" already multiplied in
|
||||
|
||||
Action linear in links h and of form:
|
||||
|
||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||
|
||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||
|
||||
beta S = const - beta/Nc Re Tr h Sigma'
|
||||
= const - Re Tr h Sigma
|
||||
|
||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
||||
arbitrary.
|
||||
|
||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||
|
||||
Normalised re Sigma_j = xi u_j
|
||||
|
||||
With u_j a unit vector and U can be in SU(2);
|
||||
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||
|
||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
xi = sqrt(Det)/2;
|
||||
|
||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||
|
||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Real part of Pauli decomposition
|
||||
// Note a subgroup can project to zero in cold start
|
||||
////////////////////////////////////////////////////////
|
||||
su2Extract(udet, u, V, su2_subgroup);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Normalising this vector if possible; else identity
|
||||
//////////////////////////////////////////////////////
|
||||
LatticeComplex xi(grid);
|
||||
|
||||
LatticeSU2Matrix lident(grid);
|
||||
|
||||
SU2Matrix ident = Complex(1.0);
|
||||
SU2Matrix pauli1;
|
||||
GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
|
||||
SU2Matrix pauli2;
|
||||
GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
|
||||
SU2Matrix pauli3;
|
||||
GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
|
||||
pauli1 = timesI(pauli1) * 2.0;
|
||||
pauli2 = timesI(pauli2) * 2.0;
|
||||
pauli3 = timesI(pauli3) * 2.0;
|
||||
|
||||
LatticeComplex cone(grid);
|
||||
LatticeReal adet(grid);
|
||||
adet = abs(toReal(udet));
|
||||
lident = Complex(1.0);
|
||||
cone = Complex(1.0);
|
||||
Real machine_epsilon = 1.0e-7;
|
||||
u = where(adet > machine_epsilon, u, lident);
|
||||
udet = where(adet > machine_epsilon, udet, cone);
|
||||
|
||||
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 0.5 * u * pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
// Debug test for sanity
|
||||
uinv = adj(u);
|
||||
b = u * uinv - 1.0;
|
||||
assert(norm2(b) < 1.0e-4);
|
||||
|
||||
/*
|
||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||
In polars:
|
||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
||||
r) )
|
||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||
|
||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta
|
||||
enters through xi = e^{2 xi (h.u)} dh = e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
|
||||
xi h2u2}.e^{2 xi h3u3} dh
|
||||
|
||||
Therefore for each site, take xi for that site
|
||||
i) generate |a0|<1 with dist
|
||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||
|
||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm];
|
||||
hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
|
||||
pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
|
||||
-(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
|
||||
another uniform random number in [0,1] ; D. Set A = XC; E. Let d = X'+A;
|
||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
G. Set a0 = 1 - d;
|
||||
|
||||
Note that in step D setting B ~ X - A and using B in place of A in step E
|
||||
will generate a second independent a 0 value.
|
||||
*/
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// count the number of sites by picking "1"'s out of hat
|
||||
/////////////////////////////////////////////////////////
|
||||
Integer hit = 0;
|
||||
LatticeReal rtmp(grid);
|
||||
rtmp = where(wheremask, rones, rzeros);
|
||||
RealD numSites = sum(rtmp);
|
||||
RealD numAccepted;
|
||||
LatticeInteger Accepted(grid);
|
||||
Accepted = Zero();
|
||||
LatticeInteger newlyAccepted(grid);
|
||||
|
||||
std::vector<LatticeReal> xr(4, grid);
|
||||
std::vector<LatticeReal> a(4, grid);
|
||||
LatticeReal d(grid);
|
||||
d = Zero();
|
||||
LatticeReal alpha(grid);
|
||||
|
||||
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
||||
xi = 2.0 * xi;
|
||||
alpha = toReal(xi);
|
||||
|
||||
do {
|
||||
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
||||
// R'', R''' in the unit interval;
|
||||
random(pRNG, xr[0]);
|
||||
random(pRNG, xr[1]);
|
||||
random(pRNG, xr[2]);
|
||||
random(pRNG, xr[3]);
|
||||
|
||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||
xr[1] = -log(xr[1]) / alpha;
|
||||
xr[2] = -log(xr[2]) / alpha;
|
||||
|
||||
// C. Set C = cos^2(2piR'')
|
||||
xr[3] = cos(xr[3] * twopi);
|
||||
xr[3] = xr[3] * xr[3];
|
||||
|
||||
LatticeReal xrsq(grid);
|
||||
|
||||
// D. Set A = XC;
|
||||
// E. Let d = X'+A;
|
||||
xrsq = xr[2] + xr[1] * xr[3];
|
||||
|
||||
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
||||
|
||||
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
LatticeReal thresh(grid);
|
||||
thresh = 1.0 - d * 0.5;
|
||||
xrsq = xr[0] * xr[0];
|
||||
LatticeInteger ione(grid);
|
||||
ione = 1;
|
||||
LatticeInteger izero(grid);
|
||||
izero = Zero();
|
||||
|
||||
newlyAccepted = where(xrsq < thresh, ione, izero);
|
||||
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
||||
Accepted = where(wheremask, Accepted, izero);
|
||||
|
||||
// FIXME need an iSum for integer to avoid overload on return type??
|
||||
rtmp = where(Accepted, rones, rzeros);
|
||||
numAccepted = sum(rtmp);
|
||||
|
||||
hit++;
|
||||
|
||||
} while ((numAccepted < numSites) && (hit < nheatbath));
|
||||
|
||||
// G. Set a0 = 1 - d;
|
||||
a[0] = Zero();
|
||||
a[0] = where(wheremask, 1.0 - d, a[0]);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||
//////////////////////////////////////////
|
||||
|
||||
LatticeReal a123mag(grid);
|
||||
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
||||
|
||||
LatticeReal cos_theta(grid);
|
||||
LatticeReal sin_theta(grid);
|
||||
LatticeReal phi(grid);
|
||||
|
||||
random(pRNG, phi);
|
||||
phi = phi * twopi; // uniform in [0,2pi]
|
||||
random(pRNG, cos_theta);
|
||||
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
||||
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
||||
|
||||
a[1] = a123mag * sin_theta * cos(phi);
|
||||
a[2] = a123mag * sin_theta * sin(phi);
|
||||
a[3] = a123mag * cos_theta;
|
||||
|
||||
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
||||
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
||||
|
||||
b = 1.0;
|
||||
b = where(wheremask, uinv * ua, b);
|
||||
su2Insert(b, V, su2_subgroup);
|
||||
|
||||
// mask the assignment back based on Accptance
|
||||
link = where(Accepted, V * link, link);
|
||||
|
||||
//////////////////////////////
|
||||
// Debug Checks
|
||||
// SU2 check
|
||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||
u = Zero();
|
||||
check = ua * adj(ua) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
check = b * adj(b) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
LatticeMatrix Vcheck(grid);
|
||||
Vcheck = Zero();
|
||||
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
||||
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
|
||||
// Verify the link stays in SU(3)
|
||||
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
||||
Vcheck = link * adj(link) - 1.0;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
/////////////////////////////////
|
||||
}
|
||||
|
||||
template <ONLY_IF_SU>
|
||||
static void testGenerators(GroupName::SU) {
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout << GridLogMessage
|
||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
for (int b = 0; b < AdjointDimension; b++) {
|
||||
generator(a, ta);
|
||||
generator(b, tb);
|
||||
Complex tr = TensorRemove(trace(ta * tb));
|
||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||
<< std::endl;
|
||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
Complex tr = TensorRemove(trace(ta));
|
||||
std::cout << GridLogMessage << a << " " << std::endl;
|
||||
assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template <int N, class vtype>
|
||||
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
|
||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
|
||||
return ProjectOnGroup(Umu);
|
||||
}
|
||||
|
||||
template <class vtype>
|
||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
|
||||
return ProjectOnGroup(r);
|
||||
}
|
||||
|
||||
template <class vtype, int N>
|
||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
|
||||
return ProjectOnGroup(r);
|
||||
}
|
||||
|
||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
|
||||
return ProjectOnGroup(arg);
|
||||
}
|
||||
|
||||
template <typename LatticeMatrixType>
|
||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
|
||||
out = Ta(in);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fundamental rep gauge xform
|
||||
*/
|
||||
template<typename Fundamental,typename GaugeMat>
|
||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
|
||||
GridBase *grid = ferm._grid;
|
||||
conformable(grid,g._grid);
|
||||
ferm = g*ferm;
|
||||
}
|
||||
/*
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid,g.Grid());
|
||||
|
||||
typename Gimpl::GaugeLinkField U(grid);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||
}
|
||||
}
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = g.Grid();
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
}
|
||||
}
|
||||
template<typename Gimpl>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
LieRandomize(pRNG,g,1.0);
|
||||
GaugeTransform<Gimpl>(Umu,g);
|
||||
}
|
||||
|
@ -51,6 +51,10 @@ public:
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
|
||||
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
|
||||
typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > > LatticeAdjVector;
|
||||
|
||||
template <class cplx>
|
||||
@ -58,8 +62,8 @@ public:
|
||||
// returns i(T_Adj)^index necessary for the projectors
|
||||
// see definitions above
|
||||
iAdjTa = Zero();
|
||||
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
|
||||
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
|
||||
iSUnMatrix<cplx> tmp;
|
||||
|
||||
// FIXME not very efficient to get all the generators everytime
|
||||
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
|
||||
@ -67,8 +71,7 @@ public:
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
|
||||
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
|
||||
2.0 * tmp * ta[b]; // 2.0 from the normalization
|
||||
iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b]; // 2.0 from the normalization
|
||||
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
||||
//iAdjTa()()(b, a) = iTr;
|
||||
iAdjTa()()(a, b) = iTr;
|
||||
@ -134,8 +137,7 @@ public:
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
generator(a, iTa);
|
||||
LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,273 +0,0 @@
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// * Two index representation generators
|
||||
//
|
||||
// * Normalisation for the fundamental generators:
|
||||
// trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
//
|
||||
// base for NxN two index (anti-symmetric) matrices
|
||||
// normalized to 1 (d_ij is the kroenecker delta)
|
||||
//
|
||||
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
|
||||
//
|
||||
// Then the generators are written as
|
||||
//
|
||||
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
|
||||
// tr[e^(lk)e^(ij)^dag T_a] ) //
|
||||
//
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Authors: David Preti, Guido Cossu
|
||||
|
||||
#ifndef QCD_UTIL_SUN2INDEX_H
|
||||
#define QCD_UTIL_SUN2INDEX_H
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
|
||||
|
||||
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
|
||||
|
||||
template <int ncolour, TwoIndexSymmetry S>
|
||||
class SU_TwoIndex : public SU<ncolour> {
|
||||
public:
|
||||
static const int Dimension = ncolour * (ncolour + S) / 2;
|
||||
static const int NumGenerators = SU<ncolour>::AdjointDimension;
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
|
||||
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
|
||||
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
|
||||
|
||||
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
|
||||
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
|
||||
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
|
||||
|
||||
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
|
||||
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
|
||||
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
|
||||
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
|
||||
LatticeTwoIndexField;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
|
||||
LatticeTwoIndexFieldF;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
|
||||
LatticeTwoIndexFieldD;
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
|
||||
typedef iSUnMatrix<Complex> Matrix;
|
||||
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||
|
||||
template <class cplx>
|
||||
static void base(int Index, iSUnMatrix<cplx> &eij) {
|
||||
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
|
||||
assert(Index < NumGenerators);
|
||||
eij = Zero();
|
||||
|
||||
// for the linearisation of the 2 indexes
|
||||
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
|
||||
static bool filled = false;
|
||||
if (!filled) {
|
||||
int counter = 0;
|
||||
for (int i = 1; i < ncolour; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
a[counter][0] = i;
|
||||
a[counter][1] = j;
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
filled = true;
|
||||
}
|
||||
|
||||
if (Index < ncolour * (ncolour - 1) / 2) {
|
||||
baseOffDiagonal(a[Index][0], a[Index][1], eij);
|
||||
} else {
|
||||
baseDiagonal(Index, eij);
|
||||
}
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
|
||||
eij = Zero();
|
||||
eij()()(Index - ncolour * (ncolour - 1) / 2,
|
||||
Index - ncolour * (ncolour - 1) / 2) = 1.0;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
|
||||
eij = Zero();
|
||||
for (int k = 0; k < ncolour; k++)
|
||||
for (int l = 0; l < ncolour; l++)
|
||||
eij()()(l, k) = delta(i, k) * delta(j, l) +
|
||||
S * delta(j, k) * delta(i, l);
|
||||
|
||||
RealD nrm = 1. / std::sqrt(2.0);
|
||||
eij = eij * nrm;
|
||||
}
|
||||
|
||||
static void printBase(void) {
|
||||
for (int gen = 0; gen < Dimension; gen++) {
|
||||
Matrix tmp;
|
||||
base(gen, tmp);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << tmp << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
|
||||
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
|
||||
ncolour * ncolour - 1);
|
||||
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
|
||||
i2indTa = Zero();
|
||||
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++)
|
||||
SU<ncolour>::generator(a, ta[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
|
||||
for (int b = 0; b < Dimension; b++) {
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
|
||||
tmp * eij[b];
|
||||
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
||||
i2indTa()()(a, b) = iTr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
|
||||
TIMatrix i2indTa;
|
||||
generator(gen, i2indTa);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << i2indTa << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static void testGenerators(void) {
|
||||
TIMatrix i2indTa, i2indTb;
|
||||
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(trace(i2indTa)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
for (int b = 0; b < ncolour * ncolour - 1; b++) {
|
||||
generator(a, i2indTa);
|
||||
generator(b, i2indTb);
|
||||
|
||||
// generator returns iTa, so we need a minus sign here
|
||||
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
|
||||
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
static void TwoIndexLieAlgebraMatrix(
|
||||
const typename SU<ncolour>::LatticeAlgebraVector &h,
|
||||
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeTwoIndexMatrix la(grid);
|
||||
TIMatrix i2indTa;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
la = peekColour(h, a) * i2indTa;
|
||||
out += la;
|
||||
}
|
||||
out *= scale;
|
||||
}
|
||||
|
||||
// Projects the algebra components
|
||||
// of a lattice matrix ( of dimension ncol*ncol -1 )
|
||||
static void projectOnAlgebra(
|
||||
typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
TIMatrix i2indTa;
|
||||
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
|
||||
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
auto tmp = real(trace(i2indTa * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
|
||||
// a projector that keeps the generators stored to avoid the overhead of
|
||||
// recomputing them
|
||||
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
// to store the generators
|
||||
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
|
||||
h_out = Zero();
|
||||
static bool precalculated = false;
|
||||
if (!precalculated) {
|
||||
precalculated = true;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
|
||||
}
|
||||
|
||||
Real coefficient =
|
||||
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
|
||||
// of the trace in the two index rep
|
||||
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Some useful type names
|
||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
|
||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
|
||||
|
||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
|
||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
|
||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
|
||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
|
||||
|
||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
317
Grid/qcd/utils/Sp2n.impl.h
Normal file
317
Grid/qcd/utils/Sp2n.impl.h
Normal file
@ -0,0 +1,317 @@
|
||||
// This file is #included into the body of the class template definition of
|
||||
// GaugeGroup. So, image there to be
|
||||
//
|
||||
// template <int ncolour, class group_name>
|
||||
// class GaugeGroup {
|
||||
//
|
||||
// around it.
|
||||
//
|
||||
// Please note that the unconventional file extension makes sure that it
|
||||
// doesn't get found by the scripts/filelist during bootstrapping.
|
||||
|
||||
private:
|
||||
template <ONLY_IF_Sp>
|
||||
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
|
||||
|
||||
// Sp(2N) has N(2N+1) = 2N^2+N generators
|
||||
//
|
||||
// normalise the generators such that
|
||||
// Trace ( Ta Tb) = 1/2 delta_ab
|
||||
//
|
||||
// N generators in the cartan, 2N^2 off
|
||||
// off diagonal:
|
||||
// there are 6 types named a,b,c,d and w,z
|
||||
// abcd are N(N-1)/2 each while wz are N each
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
|
||||
// map lie index into type of generators: diagonal, abcd type, wz type
|
||||
|
||||
const int nsp = ncolour/2;
|
||||
int diagIndex;
|
||||
int aIndex, bIndex, cIndex, dIndex;
|
||||
int wIndex, zIndex; // a,b,c,d are N(N-1)/2 and w,z are N
|
||||
const int mod = nsp * (nsp - 1) * 0.5;
|
||||
const int offdiag =
|
||||
2 * nsp * nsp; // number of generators not in the cartan subalgebra
|
||||
const int wmod = 4 * mod;
|
||||
const int zmod = wmod + nsp;
|
||||
if (lieIndex >= offdiag) {
|
||||
diagIndex = lieIndex - offdiag; // 0, ... ,N-1
|
||||
// std::cout << GridLogMessage << "diag type " << std::endl;
|
||||
generatorDiagtype(diagIndex, ta);
|
||||
return;
|
||||
}
|
||||
if ((lieIndex >= wmod) && (lieIndex < zmod)) {
|
||||
// std::cout << GridLogMessage << "w type " << std::endl;
|
||||
wIndex = lieIndex - wmod; // 0, ... ,N-1
|
||||
generatorWtype(wIndex, ta);
|
||||
return;
|
||||
}
|
||||
if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
|
||||
// std::cout << GridLogMessage << "z type " << std::endl;
|
||||
// std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
|
||||
// std::cout << GridLogMessage << "z mod " << zmod << std::endl;
|
||||
zIndex = lieIndex - zmod; // 0, ... ,N-1
|
||||
generatorZtype(zIndex, ta);
|
||||
return;
|
||||
}
|
||||
if (lieIndex < mod) { // atype 0, ... , N(N-1)/2=mod
|
||||
// std::cout << GridLogMessage << "a type " << std::endl;
|
||||
aIndex = lieIndex;
|
||||
// std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
|
||||
generatorAtype(aIndex, ta);
|
||||
return;
|
||||
}
|
||||
if ((lieIndex >= mod) && lieIndex < 2 * mod) { // btype mod, ... , 2mod-1
|
||||
// std::cout << GridLogMessage << "b type " << std::endl;
|
||||
bIndex = lieIndex - mod;
|
||||
generatorBtype(bIndex, ta);
|
||||
return;
|
||||
}
|
||||
if ((lieIndex >= 2 * mod) &&
|
||||
lieIndex < 3 * mod) { // ctype 2mod, ... , 3mod-1
|
||||
// std::cout << GridLogMessage << "c type " << std::endl;
|
||||
cIndex = lieIndex - 2 * mod;
|
||||
generatorCtype(cIndex, ta);
|
||||
return;
|
||||
}
|
||||
if ((lieIndex >= 3 * mod) &&
|
||||
lieIndex < wmod) { // ctype 3mod, ... , 4mod-1 = wmod-1
|
||||
// std::cout << GridLogMessage << "d type " << std::endl;
|
||||
dIndex = lieIndex - 3 * mod;
|
||||
generatorDtype(dIndex, ta);
|
||||
return;
|
||||
}
|
||||
|
||||
} // end of generator
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
|
||||
|
||||
const int nsp=ncolour/2;
|
||||
ta = Zero();
|
||||
RealD nrm = 1.0 / 2;
|
||||
|
||||
ta()()(diagIndex, diagIndex) = nrm;
|
||||
ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
|
||||
// with i<j and i=0,...,N-2
|
||||
// follows that j=i+1, ... , N
|
||||
int i1, i2;
|
||||
const int nsp=ncolour/2;
|
||||
ta = Zero();
|
||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
||||
|
||||
su2SubGroupIndex(i1, i2, aIndex);
|
||||
ta()()(i1, i2) = 1;
|
||||
ta()()(i2, i1) = 1;
|
||||
ta()()(i1 + nsp, i2 + nsp) = -1;
|
||||
ta()()(i2 + nsp, i1 + nsp) = -1;
|
||||
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
|
||||
// with i<j and i=0,...,N-2
|
||||
// follows that j=i+1, ... , N-1
|
||||
|
||||
const int nsp=ncolour/2;
|
||||
int i1, i2;
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
||||
su2SubGroupIndex(i1, i2, bIndex);
|
||||
|
||||
ta()()(i1, i2) = i;
|
||||
ta()()(i2, i1) = -i;
|
||||
ta()()(i1 + nsp, i2 + nsp) = i;
|
||||
ta()()(i2 + nsp, i1 + nsp) = -i;
|
||||
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
|
||||
|
||||
const int nsp=ncolour/2;
|
||||
int i1, i2;
|
||||
ta = Zero();
|
||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
||||
su2SubGroupIndex(i1, i2, cIndex);
|
||||
|
||||
ta()()(i1, i2 + nsp) = 1;
|
||||
ta()()(i2, i1 + nsp) = 1;
|
||||
ta()()(i1 + nsp, i2) = 1;
|
||||
ta()()(i2 + nsp, i1) = 1;
|
||||
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i / 2 sqrt(2)
|
||||
|
||||
const int nsp=ncolour/2;
|
||||
int i1, i2;
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
||||
su2SubGroupIndex(i1, i2, dIndex);
|
||||
|
||||
ta()()(i1, i2 + nsp) = i;
|
||||
ta()()(i2, i1 + nsp) = i;
|
||||
ta()()(i1 + nsp, i2) = -i;
|
||||
ta()()(i2 + nsp, i1) = -i;
|
||||
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,i+N) = ta(i+N,i) = 1/2
|
||||
|
||||
const int nsp=ncolour/2;
|
||||
ta = Zero();
|
||||
RealD nrm = 1.0 / 2; // check
|
||||
|
||||
ta()()(wIndex, wIndex + nsp) = 1;
|
||||
ta()()(wIndex + nsp, wIndex) = 1;
|
||||
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_Sp>
|
||||
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
|
||||
// ta(i,i+N) = - ta(i+N,i) = i/2
|
||||
|
||||
const int nsp=ncolour/2;
|
||||
ta = Zero();
|
||||
RealD nrm = 1.0 / 2; // check
|
||||
cplx i(0.0, 1.0);
|
||||
ta()()(zIndex, zIndex + nsp) = i;
|
||||
ta()()(zIndex + nsp, zIndex) = -i;
|
||||
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <ONLY_IF_Sp>
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
|
||||
const int nsp=ncolour/2;
|
||||
assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
|
||||
spare = spare - (nsp - 1 - i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2 = i1 + 1 + spare;
|
||||
}
|
||||
|
||||
static void testGenerators(GroupName::Sp) {
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout << GridLogMessage
|
||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab "
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
for (int b = 0; b < AlgebraDimension; b++) {
|
||||
generator(a, ta);
|
||||
generator(b, tb);
|
||||
Complex tr = TensorRemove(trace(ta * tb));
|
||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||
<< std::endl;
|
||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
generator(a, ta);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AlgebraDimension; a++) {
|
||||
generator(a, ta);
|
||||
Complex tr = TensorRemove(trace(ta));
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
}
|
||||
|
||||
template <int N>
|
||||
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
|
||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
|
||||
return ProjectOnSpGroup(Umu);
|
||||
}
|
||||
|
||||
template <class vtype>
|
||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
|
||||
return ProjectOnSpGroup(r);
|
||||
}
|
||||
|
||||
template <class vtype, int N>
|
||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
|
||||
return ProjectOnSpGroup(r);
|
||||
}
|
||||
|
||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
|
||||
return ProjectOnSpGroup(arg);
|
||||
}
|
||||
|
||||
template <typename LatticeMatrixType>
|
||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
|
||||
out = SpTa(in);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
template <ONLY_IF_Sp>
|
||||
static void Omega(LatticeColourMatrixD &in) {
|
||||
const int nsp=ncolour/2;
|
||||
LatticeColourMatrixD OmegaLatt(in.Grid());
|
||||
LatticeColourMatrixD identity(in.Grid());
|
||||
ColourMatrix Omega;
|
||||
|
||||
OmegaLatt = Zero();
|
||||
Omega = Zero();
|
||||
identity = 1.;
|
||||
|
||||
for (int i = 0; i < nsp; i++) {
|
||||
Omega()()(i, nsp + i) = 1.;
|
||||
Omega()()(nsp + i, i) = -1;
|
||||
}
|
||||
OmegaLatt = OmegaLatt + (identity * Omega);
|
||||
in = OmegaLatt;
|
||||
}
|
||||
|
||||
template <ONLY_IF_Sp, class vtype, int N>
|
||||
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
|
||||
const int nsp=ncolour/2;
|
||||
|
||||
iScalar<iScalar<iMatrix<vtype, N> > > Omega;
|
||||
Omega = Zero();
|
||||
|
||||
for (int i = 0; i < nsp; i++) {
|
||||
Omega()()(i, nsp + i) = 1.;
|
||||
Omega()()(nsp + i, i) = -1;
|
||||
}
|
||||
|
||||
in = Omega;
|
||||
}
|
@ -8,9 +8,9 @@
|
||||
#include <Grid/qcd/utils/ScalarObjs.h>
|
||||
|
||||
// Include representations
|
||||
#include <Grid/qcd/utils/SUn.h>
|
||||
#include <Grid/qcd/utils/GaugeGroup.h>
|
||||
#include <Grid/qcd/utils/SUnAdjoint.h>
|
||||
#include <Grid/qcd/utils/SUnTwoIndex.h>
|
||||
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
|
||||
|
||||
// All-to-all contraction kernels that touch the
|
||||
// internal lattice structure
|
||||
|
@ -290,7 +290,7 @@ public:
|
||||
}
|
||||
*/
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
// the sum over all nu-oriented staples for nu != mu on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
|
||||
@ -300,6 +300,10 @@ public:
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
Staple(staple, U, mu);
|
||||
}
|
||||
|
||||
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
|
||||
staple = Zero();
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
@ -335,6 +339,203 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
/////////////
|
||||
//Staples for each direction mu, summed over nu != mu
|
||||
//staple: output staples for each mu (Nd)
|
||||
//U: link array (Nd)
|
||||
/////////////
|
||||
static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
|
||||
assert(staple.size() == Nd); assert(U.size() == Nd);
|
||||
for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
|
||||
}
|
||||
|
||||
|
||||
//A workspace class allowing reuse of the stencil
|
||||
class WilsonLoopPaddedStencilWorkspace{
|
||||
std::unique_ptr<GeneralLocalStencil> stencil;
|
||||
size_t nshift;
|
||||
|
||||
void generateStencil(GridBase* padded_grid){
|
||||
double t0 = usecond();
|
||||
|
||||
//Generate shift arrays
|
||||
std::vector<Coordinate> shifts = this->getShifts();
|
||||
nshift = shifts.size();
|
||||
|
||||
double t1 = usecond();
|
||||
//Generate local stencil
|
||||
stencil.reset(new GeneralLocalStencil(padded_grid,shifts));
|
||||
double t2 = usecond();
|
||||
std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;
|
||||
}
|
||||
public:
|
||||
//Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly
|
||||
const GeneralLocalStencil & getStencil(const PaddedCell &pcell){
|
||||
assert(pcell.depth >= this->paddingDepth());
|
||||
if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back());
|
||||
return *stencil;
|
||||
}
|
||||
size_t Nshift() const{ return nshift; }
|
||||
|
||||
virtual std::vector<Coordinate> getShifts() const = 0;
|
||||
virtual int paddingDepth() const = 0; //padding depth required
|
||||
|
||||
virtual ~WilsonLoopPaddedStencilWorkspace(){}
|
||||
};
|
||||
|
||||
//This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces
|
||||
class WilsonLoopPaddedWorkspace{
|
||||
std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk;
|
||||
std::unique_ptr<PaddedCell> pcell;
|
||||
|
||||
void generatePcell(GridBase* unpadded_grid){
|
||||
assert(stencil_wk.size());
|
||||
int max_depth = 0;
|
||||
for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth());
|
||||
|
||||
pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid)));
|
||||
}
|
||||
|
||||
public:
|
||||
//Add a stencil definition. This should be done before the first call to retrieve a stencil object.
|
||||
//Takes ownership of the pointer
|
||||
void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){
|
||||
assert(!pcell);
|
||||
stencil_wk.push_back(stencil);
|
||||
}
|
||||
|
||||
const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){
|
||||
if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
|
||||
return stencil_wk[stencil_idx]->getStencil(*pcell);
|
||||
}
|
||||
const PaddedCell & getPaddedCell(GridBase* unpadded_grid){
|
||||
if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
|
||||
return *pcell;
|
||||
}
|
||||
|
||||
~WilsonLoopPaddedWorkspace(){
|
||||
for(auto &s : stencil_wk) delete s;
|
||||
}
|
||||
};
|
||||
|
||||
//A workspace class allowing reuse of the stencil
|
||||
class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
|
||||
public:
|
||||
std::vector<Coordinate> getShifts() const override{
|
||||
std::vector<Coordinate> shifts;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int nu=0;nu<Nd;nu++){
|
||||
if(nu != mu){
|
||||
Coordinate shift_0(Nd,0);
|
||||
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
|
||||
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
|
||||
Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
|
||||
Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
|
||||
|
||||
//U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
|
||||
shifts.push_back(shift_0);
|
||||
shifts.push_back(shift_nu);
|
||||
shifts.push_back(shift_mu);
|
||||
|
||||
//U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
|
||||
shifts.push_back(shift_mnu);
|
||||
shifts.push_back(shift_mnu);
|
||||
shifts.push_back(shift_mnu_pmu);
|
||||
}
|
||||
}
|
||||
}
|
||||
return shifts;
|
||||
}
|
||||
|
||||
int paddingDepth() const override{ return 1; }
|
||||
};
|
||||
|
||||
//Padded cell implementation of the staple method for all mu, summed over nu != mu
|
||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
||||
//Cell: the padded cell class
|
||||
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
|
||||
StaplePaddedAllWorkspace wk;
|
||||
StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
|
||||
}
|
||||
|
||||
//Padded cell implementation of the staple method for all mu, summed over nu != mu
|
||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
||||
//Cell: the padded cell class
|
||||
//gStencil: the precomputed generalized local stencil for the staple
|
||||
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil)
|
||||
{
|
||||
double t0 = usecond();
|
||||
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
|
||||
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
|
||||
assert(Cell.depth >= 1);
|
||||
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
|
||||
|
||||
int shift_mu_off = gStencil._npoints/Nd;
|
||||
|
||||
//Open views to padded gauge links and keep open over mu loop
|
||||
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
|
||||
size_t vsize = Nd*sizeof(GaugeViewType);
|
||||
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
|
||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
|
||||
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
|
||||
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
|
||||
|
||||
GaugeMat gStaple(ggrid);
|
||||
|
||||
int outer_off = 0;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
{ //view scope
|
||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
||||
auto gStencil_v = gStencil.View();
|
||||
|
||||
accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
|
||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
||||
stencil_ss = Zero();
|
||||
int off = outer_off;
|
||||
|
||||
for(int nu=0;nu<Nd;nu++){
|
||||
if(nu != mu){
|
||||
GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss);
|
||||
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(off++,ss);
|
||||
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(off++,ss);
|
||||
auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
|
||||
stencil_ss = stencil_ss + U2 * U1 * U0;
|
||||
|
||||
e = gStencil_v.GetEntry(off++,ss);
|
||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(off++,ss);
|
||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(off++,ss);
|
||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
|
||||
stencil_ss = stencil_ss + U2 * U1 * U0;
|
||||
}
|
||||
}
|
||||
|
||||
coalescedWrite(gStaple_v[ss],stencil_ss);
|
||||
}
|
||||
);
|
||||
} //ensure views are all closed!
|
||||
|
||||
staple[mu] = Cell.Extract(gStaple);
|
||||
outer_off += shift_mu_off;
|
||||
}//mu loop
|
||||
|
||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
|
||||
free(Ug_dirs_v_host);
|
||||
acceleratorFreeDevice(Ug_dirs_v);
|
||||
|
||||
double t1=usecond();
|
||||
|
||||
std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site in direction mu,nu, upper part
|
||||
//////////////////////////////////////////////////
|
||||
@ -707,18 +908,14 @@ public:
|
||||
// the sum over all staples on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
|
||||
U2 = U * Cshift(U, mu, 1);
|
||||
U2 = U * Gimpl::CshiftLink(U, mu, 1);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Hop by two optimisation strategy does not work nicely with Gparity. (could
|
||||
// do,
|
||||
// but need to track two deep where cross boundary and apply a conjugation).
|
||||
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
|
||||
// so .
|
||||
// Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
|
||||
std::vector<GaugeMat> &U, int mu) {
|
||||
static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
|
||||
const std::vector<GaugeMat> &U, int mu) {
|
||||
|
||||
Stap = Zero();
|
||||
|
||||
@ -732,9 +929,9 @@ public:
|
||||
|
||||
// Up staple ___ ___
|
||||
// | |
|
||||
tmp = Cshift(adj(U[nu]), nu, -1);
|
||||
tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1);
|
||||
tmp = adj(U2[mu]) * tmp;
|
||||
tmp = Cshift(tmp, mu, -2);
|
||||
tmp = Gimpl::CshiftLink(tmp, mu, -2);
|
||||
|
||||
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
|
||||
|
||||
@ -742,14 +939,14 @@ public:
|
||||
// |___ ___|
|
||||
//
|
||||
tmp = adj(U2[mu]) * U[nu];
|
||||
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
|
||||
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2));
|
||||
|
||||
// ___ ___
|
||||
// | ___|
|
||||
// |___ ___|
|
||||
//
|
||||
|
||||
Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
|
||||
Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
|
||||
|
||||
// ___ ___
|
||||
// |___ |
|
||||
@ -758,7 +955,7 @@ public:
|
||||
|
||||
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
|
||||
// Stap+= Cshift(tmp,mu,1) ;
|
||||
Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
|
||||
Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1);
|
||||
;
|
||||
|
||||
// --
|
||||
@ -766,10 +963,10 @@ public:
|
||||
//
|
||||
// | |
|
||||
|
||||
tmp = Cshift(adj(U2[nu]), nu, -2);
|
||||
tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2);
|
||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
|
||||
tmp = U2[nu] * Cshift(tmp, nu, 2);
|
||||
Stap += Cshift(tmp, mu, 1);
|
||||
tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2);
|
||||
Stap += Gimpl::CshiftLink(tmp, mu, 1);
|
||||
|
||||
// | |
|
||||
//
|
||||
@ -778,25 +975,12 @@ public:
|
||||
|
||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
|
||||
tmp = adj(U2[nu]) * tmp;
|
||||
tmp = Cshift(tmp, nu, -2);
|
||||
Stap += Cshift(tmp, mu, 1);
|
||||
tmp = Gimpl::CshiftLink(tmp, nu, -2);
|
||||
Stap += Gimpl::CshiftLink(tmp, mu, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
|
||||
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
|
||||
int mu) {
|
||||
if (Gimpl::isPeriodicGaugeField()) {
|
||||
RectStapleOptimised(Stap, U2, U, mu);
|
||||
} else {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
|
||||
int mu) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
@ -895,6 +1079,288 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
|
||||
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
|
||||
int mu) {
|
||||
RectStapleOptimised(Stap, U2, U, mu);
|
||||
}
|
||||
//////////////////////////////////////////////////////
|
||||
//Compute the rectangular staples for all orientations
|
||||
//Stap : Array of staples (Nd)
|
||||
//U: Gauge links in each direction (Nd)
|
||||
/////////////////////////////////////////////////////
|
||||
static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
|
||||
assert(Stap.size() == Nd); assert(U.size() == Nd);
|
||||
std::vector<GaugeMat> U2(Nd,U[0].Grid());
|
||||
for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
|
||||
for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
|
||||
}
|
||||
|
||||
//A workspace class allowing reuse of the stencil
|
||||
class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
|
||||
public:
|
||||
std::vector<Coordinate> getShifts() const override{
|
||||
std::vector<Coordinate> shifts;
|
||||
for (int mu = 0; mu < Nd; mu++){
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
if (nu != mu) {
|
||||
auto genShift = [&](int mushift,int nushift){
|
||||
Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
|
||||
};
|
||||
|
||||
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
|
||||
shifts.push_back(genShift(0,0));
|
||||
shifts.push_back(genShift(0,+1));
|
||||
shifts.push_back(genShift(+1,+1));
|
||||
shifts.push_back(genShift(+2,0));
|
||||
shifts.push_back(genShift(+1,0));
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
|
||||
shifts.push_back(genShift(0,-1));
|
||||
shifts.push_back(genShift(0,-1));
|
||||
shifts.push_back(genShift(+1,-1));
|
||||
shifts.push_back(genShift(+2,-1));
|
||||
shifts.push_back(genShift(+1,0));
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
|
||||
shifts.push_back(genShift(-1,0));
|
||||
shifts.push_back(genShift(-1,-1));
|
||||
shifts.push_back(genShift(-1,-1));
|
||||
shifts.push_back(genShift(0,-1));
|
||||
shifts.push_back(genShift(+1,-1));
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
|
||||
shifts.push_back(genShift(-1,0));
|
||||
shifts.push_back(genShift(-1,0));
|
||||
shifts.push_back(genShift(-1,+1));
|
||||
shifts.push_back(genShift(0,+1));
|
||||
shifts.push_back(genShift(+1,0));
|
||||
|
||||
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
|
||||
shifts.push_back(genShift(0,0));
|
||||
shifts.push_back(genShift(0,+1));
|
||||
shifts.push_back(genShift(0,+2));
|
||||
shifts.push_back(genShift(+1,+1));
|
||||
shifts.push_back(genShift(+1,0));
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
|
||||
shifts.push_back(genShift(0,-1));
|
||||
shifts.push_back(genShift(0,-2));
|
||||
shifts.push_back(genShift(0,-2));
|
||||
shifts.push_back(genShift(+1,-2));
|
||||
shifts.push_back(genShift(+1,-1));
|
||||
}
|
||||
}
|
||||
}
|
||||
return shifts;
|
||||
}
|
||||
|
||||
int paddingDepth() const override{ return 2; }
|
||||
};
|
||||
|
||||
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
|
||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
||||
//Cell: the padded cell class
|
||||
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
|
||||
RectStaplePaddedAllWorkspace wk;
|
||||
RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
|
||||
}
|
||||
|
||||
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
|
||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
||||
//Cell: the padded cell class
|
||||
//gStencil: the stencil
|
||||
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
|
||||
double t0 = usecond();
|
||||
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
|
||||
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
|
||||
assert(Cell.depth >= 2);
|
||||
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
|
||||
|
||||
size_t nshift = gStencil._npoints;
|
||||
int mu_off_delta = nshift / Nd;
|
||||
|
||||
//Open views to padded gauge links and keep open over mu loop
|
||||
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
|
||||
size_t vsize = Nd*sizeof(GaugeViewType);
|
||||
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
|
||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
|
||||
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
|
||||
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
|
||||
|
||||
GaugeMat gStaple(ggrid); //temp staple object on padded grid
|
||||
|
||||
int offset = 0;
|
||||
for(int mu=0; mu<Nd; mu++){
|
||||
|
||||
{ //view scope
|
||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
||||
auto gStencil_v = gStencil.View();
|
||||
|
||||
accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
|
||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
||||
stencil_ss = Zero();
|
||||
int s=offset;
|
||||
for(int nu=0;nu<Nd;nu++){
|
||||
if(nu != mu){
|
||||
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
|
||||
GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
|
||||
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
||||
|
||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
||||
|
||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
|
||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
|
||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
||||
|
||||
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
|
||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
||||
|
||||
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
e = gStencil_v.GetEntry(s++,ss);
|
||||
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
||||
|
||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
||||
|
||||
}
|
||||
}
|
||||
coalescedWrite(gStaple_v[ss],stencil_ss);
|
||||
}
|
||||
);
|
||||
offset += mu_off_delta;
|
||||
}//kernel/view scope
|
||||
|
||||
staple[mu] = Cell.Extract(gStaple);
|
||||
}//mu loop
|
||||
|
||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
|
||||
free(Ug_dirs_v_host);
|
||||
acceleratorFreeDevice(Ug_dirs_v);
|
||||
|
||||
double t1 = usecond();
|
||||
|
||||
std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;
|
||||
}
|
||||
|
||||
//A workspace for reusing the PaddedCell and GeneralLocalStencil objects
|
||||
class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{
|
||||
public:
|
||||
StapleAndRectStapleAllWorkspace(){
|
||||
this->addStencil(new StaplePaddedAllWorkspace);
|
||||
this->addStencil(new RectStaplePaddedAllWorkspace);
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
//Compute the 1x1 and 1x2 staples for all orientations
|
||||
//Stap : Array of staples (Nd)
|
||||
//RectStap: Array of rectangular staples (Nd)
|
||||
//U: Gauge links in each direction (Nd)
|
||||
/////////////////////////////////////////////////////
|
||||
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
|
||||
StapleAndRectStapleAllWorkspace wk;
|
||||
StapleAndRectStapleAll(Stap,RectStap,U,wk);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
//Compute the 1x1 and 1x2 staples for all orientations
|
||||
//Stap : Array of staples (Nd)
|
||||
//RectStap: Array of rectangular staples (Nd)
|
||||
//U: Gauge links in each direction (Nd)
|
||||
//wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse
|
||||
/////////////////////////////////////////////////////
|
||||
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){
|
||||
#if 0
|
||||
StapleAll(Stap, U);
|
||||
RectStapleAll(RectStap, U);
|
||||
#else
|
||||
double t0 = usecond();
|
||||
|
||||
GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid());
|
||||
const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid);
|
||||
|
||||
CshiftImplGauge<Gimpl> cshift_impl;
|
||||
std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
|
||||
for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
|
||||
double t1 = usecond();
|
||||
StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) );
|
||||
double t2 = usecond();
|
||||
RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid));
|
||||
double t3 = usecond();
|
||||
std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// Wilson loop of size (R1, R2), oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
|
@ -1133,4 +1133,13 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
template<> struct sycl::is_device_copyable<Grid::vComplexF> : public std::true_type {};
|
||||
template<> struct sycl::is_device_copyable<Grid::vComplexD> : public std::true_type {};
|
||||
template<> struct sycl::is_device_copyable<Grid::vRealF > : public std::true_type {};
|
||||
template<> struct sycl::is_device_copyable<Grid::vRealD > : public std::true_type {};
|
||||
template<> struct sycl::is_device_copyable<Grid::vInteger > : public std::true_type {};
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -218,6 +218,10 @@ public:
|
||||
// -------------------------------------------------
|
||||
// misc
|
||||
// -------------------------------------------------
|
||||
void discardhi(uint64_t z) {
|
||||
_s[3] += z;
|
||||
encrypt_counter();
|
||||
}
|
||||
|
||||
// req: 26.5.1.4 Random number engine requirements, p.908 table 117, row 9
|
||||
// Advances e’s state ei to ei+z by any means equivalent to z
|
||||
@ -387,4 +391,4 @@ private:
|
||||
#undef MIXK
|
||||
#undef MIX2
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -43,7 +43,7 @@ class GeneralLocalStencilView {
|
||||
int _npoints; // Move to template param?
|
||||
GeneralStencilEntry* _entries_p;
|
||||
|
||||
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) {
|
||||
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) const {
|
||||
return & this->_entries_p[point+this->_npoints*osite];
|
||||
}
|
||||
|
||||
@ -79,63 +79,113 @@ public:
|
||||
this->_entries.resize(npoints* osites);
|
||||
this->_entries_p = &_entries[0];
|
||||
|
||||
thread_for(site, osites, {
|
||||
Coordinate Coor;
|
||||
Coordinate NbrCoor;
|
||||
|
||||
Coordinate Coor;
|
||||
Coordinate NbrCoor;
|
||||
for(Integer site=0;site<osites;site++){
|
||||
for(Integer ii=0;ii<npoints;ii++){
|
||||
Integer lex = site*npoints+ii;
|
||||
GeneralStencilEntry SE;
|
||||
////////////////////////////////////////////////
|
||||
// Outer index of neighbour Offset calculation
|
||||
////////////////////////////////////////////////
|
||||
grid->oCoorFromOindex(Coor,site);
|
||||
for(int d=0;d<Coor.size();d++){
|
||||
int rd = grid->_rdimensions[d];
|
||||
NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
|
||||
for(Integer ii=0;ii<npoints;ii++){
|
||||
Integer lex = site*npoints+ii;
|
||||
GeneralStencilEntry SE;
|
||||
////////////////////////////////////////////////
|
||||
// Outer index of neighbour Offset calculation
|
||||
////////////////////////////////////////////////
|
||||
grid->oCoorFromOindex(Coor,site);
|
||||
for(int d=0;d<Coor.size();d++){
|
||||
int rd = grid->_rdimensions[d];
|
||||
NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
|
||||
}
|
||||
SE._offset = grid->oIndexReduced(NbrCoor);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Inner index permute calculation
|
||||
// Simpler version using icoor calculation
|
||||
////////////////////////////////////////////////
|
||||
SE._permute =0;
|
||||
for(int d=0;d<Coor.size();d++){
|
||||
|
||||
int fd = grid->_fdimensions[d];
|
||||
int rd = grid->_rdimensions[d];
|
||||
int ly = grid->_simd_layout[d];
|
||||
|
||||
assert((ly==1)||(ly==2));
|
||||
|
||||
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
|
||||
int x = Coor[d]; // x in [0... rd-1] as an oSite
|
||||
|
||||
int permute_dim = grid->PermuteDim(d);
|
||||
int permute_slice=0;
|
||||
if(permute_dim){
|
||||
int num = shift%rd; // Slice within dest osite cell of slice zero
|
||||
int wrap = shift/rd; // Number of osite local volume cells crossed through
|
||||
// x+num < rd dictates whether we are in same permute state as slice 0
|
||||
if ( x< rd-num ) permute_slice=wrap;
|
||||
else permute_slice=(wrap+1)%ly;
|
||||
}
|
||||
if ( permute_slice ) {
|
||||
int ptype =grid->PermuteType(d);
|
||||
uint8_t mask =0x1<<ptype;
|
||||
SE._permute |= mask;
|
||||
}
|
||||
}
|
||||
////////////////////////////////////////////////
|
||||
// Store in look up table
|
||||
////////////////////////////////////////////////
|
||||
this->_entries[lex] = SE;
|
||||
}
|
||||
SE._offset = grid->oIndexReduced(NbrCoor);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Inner index permute calculation
|
||||
// Simpler version using icoor calculation
|
||||
////////////////////////////////////////////////
|
||||
SE._permute =0;
|
||||
for(int d=0;d<Coor.size();d++){
|
||||
|
||||
int fd = grid->_fdimensions[d];
|
||||
int rd = grid->_rdimensions[d];
|
||||
int ly = grid->_simd_layout[d];
|
||||
|
||||
assert((ly==1)||(ly==2));
|
||||
|
||||
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
|
||||
int x = Coor[d]; // x in [0... rd-1] as an oSite
|
||||
|
||||
int permute_dim = grid->PermuteDim(d);
|
||||
int permute_slice=0;
|
||||
if(permute_dim){
|
||||
int num = shift%rd; // Slice within dest osite cell of slice zero
|
||||
int wrap = shift/rd; // Number of osite local volume cells crossed through
|
||||
// x+num < rd dictates whether we are in same permute state as slice 0
|
||||
if ( x< rd-num ) permute_slice=wrap;
|
||||
else permute_slice=(wrap+1)%ly;
|
||||
}
|
||||
if ( permute_slice ) {
|
||||
int ptype =grid->PermuteType(d);
|
||||
uint8_t mask =0x1<<ptype;
|
||||
SE._permute |= mask;
|
||||
}
|
||||
}
|
||||
////////////////////////////////////////////////
|
||||
// Store in look up table
|
||||
////////////////////////////////////////////////
|
||||
this->_entries[lex] = SE;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Some machinery to streamline making a stencil
|
||||
////////////////////////////////////////////////
|
||||
|
||||
class shiftSignal {
|
||||
public:
|
||||
enum {
|
||||
BACKWARD_CONST = 16,
|
||||
NO_SHIFT = -1
|
||||
};
|
||||
};
|
||||
|
||||
// TODO: put a check somewhere that BACKWARD_CONST > Nd!
|
||||
|
||||
/*! @brief signals that you want to go backwards in direction dir */
|
||||
inline int Back(const int dir) {
|
||||
// generalShift will use BACKWARD_CONST to determine whether we step forward or
|
||||
// backward. Trick inspired by SIMULATeQCD.
|
||||
return dir + shiftSignal::BACKWARD_CONST;
|
||||
}
|
||||
|
||||
/*! @brief shift one unit in direction dir */
|
||||
template<typename... Args>
|
||||
void generalShift(Coordinate& shift, int dir) {
|
||||
if (dir >= shiftSignal::BACKWARD_CONST) {
|
||||
dir -= shiftSignal::BACKWARD_CONST;
|
||||
shift[dir]+=-1;
|
||||
} else if (dir == shiftSignal::NO_SHIFT) {
|
||||
; // do nothing
|
||||
} else {
|
||||
shift[dir]+=1;
|
||||
}
|
||||
}
|
||||
|
||||
/*! @brief follow a path of directions, shifting one unit in each direction */
|
||||
template<typename... Args>
|
||||
void generalShift(Coordinate& shift, int dir, Args... args) {
|
||||
if (dir >= shiftSignal::BACKWARD_CONST) {
|
||||
dir -= shiftSignal::BACKWARD_CONST;
|
||||
shift[dir]+=-1;
|
||||
} else if (dir == shiftSignal::NO_SHIFT) {
|
||||
; // do nothing
|
||||
} else {
|
||||
shift[dir]+=1;
|
||||
}
|
||||
generalShift(shift, args...);
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -32,6 +32,7 @@
|
||||
|
||||
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
|
||||
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Must not lose sight that goal is to be able to construct really efficient
|
||||
@ -69,57 +70,6 @@ struct DefaultImplParams {
|
||||
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
|
||||
int off,std::vector<std::pair<int,int> > & table);
|
||||
|
||||
/*
|
||||
template<class vobj,class cobj,class compressor>
|
||||
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so) __attribute__((noinline));
|
||||
|
||||
template<class vobj,class cobj,class compressor>
|
||||
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)
|
||||
{
|
||||
int num=table.size();
|
||||
std::pair<int,int> *table_v = & table[0];
|
||||
|
||||
auto rhs_v = rhs.View(AcceleratorRead);
|
||||
accelerator_forNB( i,num, vobj::Nsimd(), {
|
||||
compress.Compress(buffer[off+table_v[i].first],rhs_v[so+table_v[i].second]);
|
||||
});
|
||||
rhs_v.ViewClose();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gather for when there *is* need to SIMD split with compression
|
||||
///////////////////////////////////////////////////////////////////
|
||||
template<class cobj,class vobj,class compressor>
|
||||
void Gather_plane_exchange_table(const Lattice<vobj> &rhs,
|
||||
commVector<cobj *> pointers,
|
||||
int dimension,int plane,
|
||||
int cbmask,compressor &compress,int type) __attribute__((noinline));
|
||||
|
||||
template<class cobj,class vobj,class compressor>
|
||||
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
|
||||
const Lattice<vobj> &rhs,
|
||||
std::vector<cobj *> &pointers,int dimension,int plane,int cbmask,
|
||||
compressor &compress,int type)
|
||||
{
|
||||
assert( (table.size()&0x1)==0);
|
||||
int num=table.size()/2;
|
||||
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
|
||||
|
||||
auto rhs_v = rhs.View(AcceleratorRead);
|
||||
auto rhs_p = &rhs_v[0];
|
||||
auto p0=&pointers[0][0];
|
||||
auto p1=&pointers[1][0];
|
||||
auto tp=&table[0];
|
||||
accelerator_forNB(j, num, vobj::Nsimd(), {
|
||||
compress.CompressExchange(p0,p1, rhs_p, j,
|
||||
so+tp[2*j ].second,
|
||||
so+tp[2*j+1].second,
|
||||
type);
|
||||
});
|
||||
rhs_v.ViewClose();
|
||||
}
|
||||
*/
|
||||
|
||||
void DslashResetCounts(void);
|
||||
void DslashGetCounts(uint64_t &dirichlet,uint64_t &partial,uint64_t &full);
|
||||
void DslashLogFull(void);
|
||||
@ -257,6 +207,10 @@ public:
|
||||
struct Packet {
|
||||
void * send_buf;
|
||||
void * recv_buf;
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void * host_send_buf; // Allocate this if not MPI_CUDA_AWARE
|
||||
void * host_recv_buf; // Allocate this if not MPI_CUDA_AWARE
|
||||
#endif
|
||||
Integer to_rank;
|
||||
Integer from_rank;
|
||||
Integer do_send;
|
||||
@ -323,7 +277,7 @@ public:
|
||||
Vector<int> surface_list;
|
||||
|
||||
stencilVector<StencilEntry> _entries; // Resident in managed memory
|
||||
commVector<StencilEntry> _entries_device; // Resident in managed memory
|
||||
commVector<StencilEntry> _entries_device; // Resident in device memory
|
||||
std::vector<Packet> Packets;
|
||||
std::vector<Merge> Mergers;
|
||||
std::vector<Merge> MergersSHM;
|
||||
@ -407,33 +361,16 @@ public:
|
||||
// Use OpenMP Tasks for cleaner ???
|
||||
// must be called *inside* parallel region
|
||||
//////////////////////////////////////////
|
||||
/*
|
||||
void CommunicateThreaded()
|
||||
{
|
||||
#ifdef GRID_OMP
|
||||
int mythread = omp_get_thread_num();
|
||||
int nthreads = CartesianCommunicator::nCommThreads;
|
||||
#else
|
||||
int mythread = 0;
|
||||
int nthreads = 1;
|
||||
#endif
|
||||
if (nthreads == -1) nthreads = 1;
|
||||
if (mythread < nthreads) {
|
||||
for (int i = mythread; i < Packets.size(); i += nthreads) {
|
||||
uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
|
||||
Packets[i].to_rank,
|
||||
Packets[i].recv_buf,
|
||||
Packets[i].from_rank,
|
||||
Packets[i].bytes,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Non blocking send and receive. Necessarily parallel.
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
|
||||
{
|
||||
// All GPU kernel tasks must complete
|
||||
// accelerator_barrier(); // All kernels should ALREADY be complete
|
||||
// _grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
|
||||
// But the HaloGather had a barrier too.
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
for(int i=0;i<Packets.size();i++){
|
||||
_grid->StencilSendToRecvFromBegin(MpiReqs,
|
||||
Packets[i].send_buf,
|
||||
@ -442,16 +379,54 @@ public:
|
||||
Packets[i].from_rank,Packets[i].do_recv,
|
||||
Packets[i].xbytes,Packets[i].rbytes,i);
|
||||
}
|
||||
#else
|
||||
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
|
||||
for(int i=0;i<Packets.size();i++){
|
||||
// Introduce a host buffer with a cheap slab allocator and zero cost wipe all
|
||||
Packets[i].host_send_buf = _grid->HostBufferMalloc(Packets[i].xbytes);
|
||||
Packets[i].host_recv_buf = _grid->HostBufferMalloc(Packets[i].rbytes);
|
||||
if ( Packets[i].do_send ) {
|
||||
acceleratorCopyFromDevice(Packets[i].send_buf, Packets[i].host_send_buf,Packets[i].xbytes);
|
||||
}
|
||||
_grid->StencilSendToRecvFromBegin(MpiReqs,
|
||||
Packets[i].host_send_buf,
|
||||
Packets[i].to_rank,Packets[i].do_send,
|
||||
Packets[i].host_recv_buf,
|
||||
Packets[i].from_rank,Packets[i].do_recv,
|
||||
Packets[i].xbytes,Packets[i].rbytes,i);
|
||||
}
|
||||
#endif
|
||||
// Get comms started then run checksums
|
||||
// Having this PRIOR to the dslash seems to make Sunspot work... (!)
|
||||
for(int i=0;i<Packets.size();i++){
|
||||
if ( Packets[i].do_send )
|
||||
FlightRecorder::xmitLog(Packets[i].send_buf,Packets[i].xbytes);
|
||||
}
|
||||
}
|
||||
|
||||
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
|
||||
{
|
||||
_grid->StencilSendToRecvFromComplete(MpiReqs,0);
|
||||
_grid->StencilSendToRecvFromComplete(MpiReqs,0); // MPI is done
|
||||
if ( this->partialDirichlet ) DslashLogPartial();
|
||||
else if ( this->fullDirichlet ) DslashLogDirichlet();
|
||||
else DslashLogFull();
|
||||
acceleratorCopySynchronise();
|
||||
// acceleratorCopySynchronise() is in the StencilSendToRecvFromComplete
|
||||
// accelerator_barrier();
|
||||
_grid->StencilBarrier();
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
|
||||
for(int i=0;i<Packets.size();i++){
|
||||
if ( Packets[i].do_recv ) {
|
||||
acceleratorCopyToDevice(Packets[i].host_recv_buf, Packets[i].recv_buf,Packets[i].rbytes);
|
||||
}
|
||||
}
|
||||
_grid->HostBufferFreeAll();
|
||||
#endif
|
||||
// run any checksums
|
||||
for(int i=0;i<Packets.size();i++){
|
||||
if ( Packets[i].do_recv )
|
||||
FlightRecorder::recvLog(Packets[i].recv_buf,Packets[i].rbytes,Packets[i].from_rank);
|
||||
}
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Blocking send and receive. Either sequential or parallel.
|
||||
@ -527,6 +502,7 @@ public:
|
||||
template<class compressor>
|
||||
void HaloGather(const Lattice<vobj> &source,compressor &compress)
|
||||
{
|
||||
// accelerator_barrier();
|
||||
_grid->StencilBarrier();// Synch shared memory on a single nodes
|
||||
|
||||
assert(source.Grid()==_grid);
|
||||
@ -539,10 +515,9 @@ public:
|
||||
compress.Point(point);
|
||||
HaloGatherDir(source,compress,point,face_idx);
|
||||
}
|
||||
accelerator_barrier();
|
||||
accelerator_barrier(); // All my local gathers are complete
|
||||
face_table_computed=1;
|
||||
assert(u_comm_offset==_unified_buffer_size);
|
||||
|
||||
}
|
||||
|
||||
/////////////////////////
|
||||
@ -578,6 +553,7 @@ public:
|
||||
accelerator_forNB(j, words, cobj::Nsimd(), {
|
||||
coalescedWrite(to[j] ,coalescedRead(from [j]));
|
||||
});
|
||||
acceleratorFenceComputeStream();
|
||||
}
|
||||
}
|
||||
|
||||
@ -668,6 +644,7 @@ public:
|
||||
for(int i=0;i<dd.size();i++){
|
||||
decompressor::DecompressFace(decompress,dd[i]);
|
||||
}
|
||||
acceleratorFenceComputeStream(); // dependent kernels
|
||||
}
|
||||
////////////////////////////////////////
|
||||
// Set up routines
|
||||
@ -705,7 +682,7 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << GridLogDebug << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
|
||||
//std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
|
||||
}
|
||||
/// Introduce a block structure and switch off comms on boundaries
|
||||
void DirichletBlock(const Coordinate &dirichlet_block)
|
||||
@ -760,7 +737,8 @@ public:
|
||||
int checkerboard,
|
||||
const std::vector<int> &directions,
|
||||
const std::vector<int> &distances,
|
||||
Parameters p=Parameters())
|
||||
Parameters p=Parameters(),
|
||||
bool preserve_shm=false)
|
||||
{
|
||||
face_table_computed=0;
|
||||
_grid = grid;
|
||||
@ -854,7 +832,9 @@ public:
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
_grid->ShmBufferFreeAll();
|
||||
// Allow for multiple stencils to exist simultaneously
|
||||
if (!preserve_shm)
|
||||
_grid->ShmBufferFreeAll();
|
||||
|
||||
int maxl=2;
|
||||
u_simd_send_buf.resize(maxl);
|
||||
@ -1220,7 +1200,6 @@ public:
|
||||
///////////////////////////////////////////////////////////
|
||||
int do_send = (comms_send|comms_partial_send) && (!shm_send );
|
||||
int do_recv = (comms_send|comms_partial_send) && (!shm_recv );
|
||||
|
||||
AddPacket((void *)&send_buf[comm_off],
|
||||
(void *)&recv_buf[comm_off],
|
||||
xmit_to_rank, do_send,
|
||||
|
@ -73,6 +73,16 @@ vobj coalescedReadPermute(const vobj & __restrict__ vec,int ptype,int doperm,int
|
||||
return vec;
|
||||
}
|
||||
}
|
||||
//'perm_mask' acts as a bitmask
|
||||
template<class vobj> accelerator_inline
|
||||
vobj coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=0)
|
||||
{
|
||||
auto obj = vec, tmp = vec;
|
||||
for (int d=0;d<nd;d++)
|
||||
if (perm_mask & (0x1 << d)) { permute(obj,tmp,d); tmp=obj;}
|
||||
return obj;
|
||||
}
|
||||
|
||||
template<class vobj> accelerator_inline
|
||||
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
|
||||
{
|
||||
@ -83,7 +93,7 @@ void coalescedWriteNonTemporal(vobj & __restrict__ vec,const vobj & __restrict__
|
||||
{
|
||||
vstream(vec, extracted);
|
||||
}
|
||||
#else
|
||||
#else //==GRID_SIMT
|
||||
|
||||
|
||||
//#ifndef GRID_SYCL
|
||||
@ -166,6 +176,14 @@ typename vobj::scalar_object coalescedReadPermute(const vobj & __restrict__ vec,
|
||||
return extractLane(plane,vec);
|
||||
}
|
||||
template<class vobj> accelerator_inline
|
||||
typename vobj::scalar_object coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=acceleratorSIMTlane(vobj::Nsimd()))
|
||||
{
|
||||
int plane = lane;
|
||||
for (int d=0;d<nd;d++)
|
||||
plane = (perm_mask & (0x1 << d)) ? plane ^ (vobj::Nsimd() >> (d + 1)) : plane;
|
||||
return extractLane(plane,vec);
|
||||
}
|
||||
template<class vobj> accelerator_inline
|
||||
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
|
||||
{
|
||||
insertLane(lane,vec,extracted);
|
||||
|
@ -66,13 +66,61 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
|
||||
{
|
||||
iScalar<vtype> ret;
|
||||
ret._internal = SpTa(r._internal);
|
||||
return ret;
|
||||
}
|
||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
|
||||
{
|
||||
iVector<vtype,N> ret;
|
||||
for(int i=0;i<N;i++){
|
||||
ret._internal[i] = SpTa(r._internal[i]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
|
||||
{
|
||||
// Generalises Ta to Sp2n
|
||||
// Applies the following projections
|
||||
// P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
|
||||
// where the ordering matters
|
||||
// P_{traceless} subtracts the trace
|
||||
// P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
|
||||
// P_{antihermitian} does in-adj(in) / 2
|
||||
iMatrix<vtype,N> ret(arg);
|
||||
double factor = (1.0/(double)N);
|
||||
vtype nrm;
|
||||
nrm = 0.5;
|
||||
|
||||
ret = arg - (trace(arg)*factor);
|
||||
|
||||
for(int c1=0;c1<N/2;c1++)
|
||||
{
|
||||
for(int c2=0;c2<N/2;c2++)
|
||||
{
|
||||
ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
|
||||
ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
|
||||
}
|
||||
for(int c2=N/2;c2<N;c2++)
|
||||
{
|
||||
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]); // reconstructs lower blocks
|
||||
ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]); // from upper blocks
|
||||
}
|
||||
}
|
||||
|
||||
ret = (ret - adj(ret))*0.5;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// ProjectOnGroup function for scalar, vector, matrix
|
||||
// Projects on orthogonal, unitary group
|
||||
///////////////////////////////////////////////
|
||||
|
||||
|
||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
|
||||
{
|
||||
iScalar<vtype> ret;
|
||||
@ -90,10 +138,12 @@ template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(c
|
||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
||||
{
|
||||
typedef typename iMatrix<vtype,N>::scalar_type scalar;
|
||||
// need a check for the group type?
|
||||
iMatrix<vtype,N> ret(arg);
|
||||
vtype nrm;
|
||||
vtype inner;
|
||||
scalar one(1.0);
|
||||
for(int c1=0;c1<N;c1++){
|
||||
|
||||
// Normalises row c1
|
||||
@ -102,7 +152,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
||||
|
||||
nrm = sqrt(inner);
|
||||
nrm = 1.0/nrm;
|
||||
nrm = one/nrm;
|
||||
for(int c2=0;c2<N;c2++)
|
||||
ret._internal[c1][c2]*= nrm;
|
||||
|
||||
@ -127,7 +177,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
||||
|
||||
nrm = sqrt(inner);
|
||||
nrm = 1.0/nrm;
|
||||
nrm = one/nrm;
|
||||
for(int c2=0;c2<N;c2++)
|
||||
ret._internal[c1][c2]*= nrm;
|
||||
}
|
||||
@ -135,6 +185,85 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
||||
return ret;
|
||||
}
|
||||
|
||||
// re-do for sp2n
|
||||
|
||||
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
|
||||
// It is defined in gauge impl types
|
||||
|
||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
|
||||
{
|
||||
iScalar<vtype> ret;
|
||||
ret._internal = ProjectOnSpGroup(r._internal);
|
||||
return ret;
|
||||
}
|
||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
|
||||
{
|
||||
iVector<vtype,N> ret;
|
||||
for(int i=0;i<N;i++){
|
||||
ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
// int N is 2n in Sp(2n)
|
||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
|
||||
{
|
||||
// need a check for the group type?
|
||||
iMatrix<vtype,N> ret(arg);
|
||||
vtype nrm;
|
||||
vtype inner;
|
||||
|
||||
for(int c1=0;c1<N/2;c1++)
|
||||
{
|
||||
|
||||
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
|
||||
{
|
||||
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
|
||||
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
|
||||
zeroit(pr);
|
||||
zeroit(prn);
|
||||
|
||||
for(int c=0; c<N; c++)
|
||||
{
|
||||
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
|
||||
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
|
||||
}
|
||||
|
||||
|
||||
for(int c=0; c<N; c++)
|
||||
{
|
||||
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
|
||||
}
|
||||
}
|
||||
|
||||
zeroit(inner);
|
||||
for(int c2=0;c2<N;c2++)
|
||||
{
|
||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
||||
}
|
||||
|
||||
nrm = sqrt(inner);
|
||||
nrm = 1.0/nrm;
|
||||
for(int c2=0;c2<N;c2++)
|
||||
{
|
||||
ret._internal[c1][c2]*= nrm;
|
||||
}
|
||||
|
||||
for(int c2=0;c2<N/2;c2++)
|
||||
{
|
||||
ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]); // down right in the new matrix = (up-left)* of the old matrix
|
||||
}
|
||||
|
||||
for(int c2=N/2;c2<N;c2++)
|
||||
{
|
||||
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);; // down left in the new matrix = -(up-right)* of the old
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -53,7 +53,6 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Specialisation: Cayley-Hamilton exponential for SU(3)
|
||||
#if 0
|
||||
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
|
||||
|
@ -69,6 +69,35 @@ accelerator_inline auto trace(const iVector<vtype,N> &arg) -> iVector<decltype(t
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
////////////////////////////
|
||||
// Fast path traceProduct
|
||||
////////////////////////////
|
||||
template<class S1 , class S2, IfNotGridTensor<S1> = 0, IfNotGridTensor<S2> = 0>
|
||||
accelerator_inline auto traceProduct( const S1 &arg1,const S2 &arg2)
|
||||
-> decltype(arg1*arg2)
|
||||
{
|
||||
return arg1*arg2;
|
||||
}
|
||||
|
||||
template<class vtype,class rtype,int N >
|
||||
accelerator_inline auto traceProduct(const iMatrix<vtype,N> &arg1,const iMatrix<rtype,N> &arg2) -> iScalar<decltype(trace(arg1._internal[0][0]*arg2._internal[0][0]))>
|
||||
{
|
||||
iScalar<decltype( trace(arg1._internal[0][0]*arg2._internal[0][0] )) > ret;
|
||||
zeroit(ret._internal);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
ret._internal=ret._internal+traceProduct(arg1._internal[i][j],arg2._internal[j][i]);
|
||||
}}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype,class rtype >
|
||||
accelerator_inline auto traceProduct(const iScalar<vtype> &arg1,const iScalar<rtype> &arg2) -> iScalar<decltype(trace(arg1._internal*arg2._internal))>
|
||||
{
|
||||
iScalar<decltype(trace(arg1._internal*arg2._internal))> ret;
|
||||
ret._internal=traceProduct(arg1._internal,arg2._internal);
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user