mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-24 17:54:47 +01:00 
			
		
		
		
	Compare commits
	
		
			350 Commits
		
	
	
		
			feature/bo
			...
			da81a73b4a
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | da81a73b4a | ||
|  | da59379612 | ||
|  | 3ef2a41518 | ||
|  | aa96f420c6 | ||
|  | 49e9e4ed0e | ||
|  | f7b8163016 | ||
|  | 93769eacd3 | ||
|  | 59b0cc11df | ||
|  | f32c275376 | ||
|  | 5404fc66ab | ||
|  | 1f53458af8 | ||
|  | 434c3e7f1d | ||
|  | 500b119f3d | ||
|  | 4b87259c1b | ||
|  | 503dec34ef | ||
|  | d1e9fe50d2 | ||
|  | d01e5fa838 | ||
|  | a477c25e8c | ||
|  | 1bd20cd9e8 | ||
|  | e49e95b037 | ||
|  | 6f59fed563 | ||
|  | 60b7f6c99d | ||
|  | b92dfcc8d3 | ||
|  | f6fd6dd053 | ||
|  | 79ad567dd5 | ||
|  | fab1efb48c | ||
|  | 660eb76d93 | ||
|  | 461cd045c6 | ||
|  | fee65d7a75 | ||
|  | 31f9971dbf | ||
|  | 62e7bf024a | ||
|  | 95f3d69cf9 | ||
| 89c0519f83 | |||
| 2704b82084 | |||
| cf8632bbac | |||
| d224297972 | |||
|  | a4d11a630f | ||
| 2b4399f8b1 | |||
| f17b8de907 | |||
|  | d87296f3e8 | ||
|  | be94cf1c6f | ||
|  | 7e5bd46dd3 | ||
|  | 228bbb9d81 | ||
| b812a7b4c6 | |||
| 891a366f73 | |||
| 10116b3be8 | |||
| a46a0f0882 | |||
| a26a8a38f4 | |||
| 7435315d50 | |||
| 9b5f741e85 | |||
| 517822fdd2 | |||
| 1b93a9be88 | |||
| 783a66b348 | |||
| 976c3e9b59 | |||
| f8ca971dae | |||
| 21bc8c24df | |||
| 30228214f7 | |||
|  | 2ae980ae43 | ||
|  | 6153dec2e4 | ||
|  | c805f86343 | ||
|  | 04ca065281 | ||
|  | 88d8fa43d7 | ||
|  | 3c49762875 | ||
|  | 436bf1d9d3 | ||
|  | f70df6e195 | ||
|  | fce3852dff | ||
|  | ee1b8bbdbd | ||
|  | 3f1636637d | ||
|  | 2e570f5300 | ||
|  | 9f89486df5 | ||
|  | 22b43b86cb | ||
|  | 3c9012676a | ||
|  | b507fe209c | ||
|  | 6cd2d8fcd5 | ||
|  | b02d022993 | ||
|  | 94581e3c7a | ||
|  | 88b52cc045 | ||
|  | 0a816b5509 | ||
|  | 1c8b807c2e | ||
|  | 66391f84f2 | ||
| 97f7a9ecb3 | |||
|  | 15878f7613 | ||
|  | e0d5e3c6c7 | ||
|  | 6f3455900e | ||
|  | 56827d6ad6 | ||
| 73c0b29535 | |||
| 303b83cdb8 | |||
| 5ef4da3f29 | |||
| 1502860004 | |||
| 585efc6f3f | |||
| 62055e04dd | |||
| e4a641b64e | |||
| 8849f187f1 | |||
|  | db420525b3 | ||
|  | b5659d106e | ||
|  | 4b43307402 | ||
|  | 09af8c25a2 | ||
|  | 9514035b87 | ||
|  | 2da09ae99b | ||
|  | a38fb0e04a | ||
| 7019916294 | |||
|  | 1514b4f137 | ||
| 91cf5ee312 | |||
|  | 0a6e2f42c5 | ||
|  | ab2de131bd | ||
| 5bfa88be85 | |||
|  | 5af8da76d7 | ||
|  | b8b9dc952d | ||
|  | 79a6ed32d8 | ||
|  | caa5f97723 | ||
|  | 4924b3209e | ||
|  | 00f24f8765 | ||
|  | f5b3d582b0 | ||
|  | 981c93d67a | ||
|  | c020b78e02 | ||
| 2a0d75bac2 | |||
|  | f48298ad4e | ||
|  | 645e47c1ba | ||
|  | d1d9827263 | ||
|  | 14643c0aab | ||
|  | b77a9b8947 | ||
|  | 7d077fe493 | ||
|  | 9cd4128833 | ||
|  | c8b17c9526 | ||
|  | 2ae2a81e85 | ||
|  | 69c869d345 | ||
|  | df9b958c40 | ||
|  | 3d3376d1a3 | ||
|  | f2648e94b9 | ||
|  | 21ed6ac0f4 | ||
|  | 7bb8ab7000 | ||
|  | 2c824c2641 | ||
|  | 391fd9cc6a | ||
|  | 51051df62c | ||
|  | 33097681b9 | ||
|  | 07e4900218 | ||
|  | 36ab567d67 | ||
|  | e19171523b | ||
|  | 9626a2c7c0 | ||
|  | e936f5b80b | ||
|  | ffc0639cb9 | ||
|  | c5b43b322c | ||
|  | c9c4576237 | ||
|  | bf4369f72d | ||
|  | 36600899e2 | ||
|  | b9c70d156b | ||
|  | eb89579fe7 | ||
|  | 0cfd13d18b | ||
|  | e6ed516052 | ||
|  | e2a3dae1f2 | ||
|  | 6d0c2de399 | ||
|  | 7786ea9921 | ||
|  | d93eac7b1c | ||
|  | afc316f501 | ||
|  | f14bfd5c1b | ||
|  | c5f1420dea | ||
|  | 018e6da872 | ||
|  | b77bccfac2 | ||
|  | 80359e0d49 | ||
|  | 3d437c5cc4 | ||
|  | 63d9b8e8a3 | ||
|  | d247031c98 | ||
|  | affff3865f | ||
|  | 9c22655b5a | ||
|  | 99d879ea7f | ||
|  | bd56c95a6f | ||
|  | dbd8bb49dc | ||
|  | 3a29af0ce4 | ||
|  | f7b79cdd45 | ||
|  | 075b9d22d0 | ||
|  | b92428f05f | ||
|  | 34b11864b6 | ||
|  | 1dfaa08afb | ||
|  | 9d263d9a7d | ||
|  | 9015c229dc | ||
|  | f44dce390f | ||
|  | bb71e9a96a | ||
|  | a7eabaad56 | ||
|  | eeb4703b84 | ||
|  | a07421b3d3 | ||
|  | cda53b4068 | ||
|  | 6f6844ccf1 | ||
|  | 4c6613d72c | ||
|  | 559257bbe9 | ||
|  | cff1f8d3b8 | ||
|  | f27d2083cd | ||
|  | 36cc9c524f | ||
|  | 2822487450 | ||
|  | e07fafe46a | ||
|  | 063d290bd8 | ||
|  | 4e6194d92a | ||
|  | de30c4e22a | ||
|  | df99f227c1 | ||
|  | 4241c7d4a3 | ||
|  | d536c67b9d | ||
|  | f44f005dad | ||
|  | 26b2caf570 | ||
|  | 7b11075102 | ||
|  | abc658dca5 | ||
|  | 8bb078db25 | ||
|  | b61ba40023 | ||
|  | 452bf2e907 | ||
|  | 2372275b2c | ||
|  | ef736e8aa4 | ||
|  | 5e539e2d54 | ||
|  | 96773f5254 | ||
|  | d80df09f3b | ||
|  | 621e612c30 | ||
|  | 8c3792721b | ||
|  | c95bbd3948 | ||
|  | e28ab7a732 | ||
|  | c797cbe737 | ||
|  | e09dfbf1c2 | ||
|  | 116d90b0ee | ||
|  | b0646ca187 | ||
|  | 14d352ea4f | ||
|  | 1cf9ec1cce | ||
|  | 4895ff260e | ||
|  | 4b994a1bc7 | ||
|  | e506d6d369 | ||
|  | ab56ad8d7a | ||
|  | 470d93006a | ||
|  | 2f3d03f188 | ||
|  | 8db7c23bee | ||
|  | 69dc5172dc | ||
|  | fd72eb6546 | ||
|  | e8c29e2fe5 | ||
|  | b405767569 | ||
|  | fe88a0c12f | ||
|  | e61a9ed2b4 | ||
|  | de8daa3824 | ||
|  | 3a50fb29cb | ||
|  | 6647d2656f | ||
|  | a6f4dbeb6d | ||
|  | 92a282f2d8 | ||
|  | ca2fd9fc7b | ||
|  | 3825329f8e | ||
|  | be1a4f5860 | ||
|  | 5897b93dd4 | ||
|  | af091e0881 | ||
|  | 3c1e5e9517 | ||
|  | 85b2cb7a8a | ||
|  | c7bdf2c0e4 | ||
|  | da9cbfc7cc | ||
|  | 6b9f07c1ed | ||
|  | b8bdc2eefb | ||
|  | 0078826ff1 | ||
|  | e855c41772 | ||
|  | d169c275b6 | ||
|  | a5125e23f4 | ||
|  | 7b83c80757 | ||
|  | e41821e206 | ||
|  | bf91778550 | ||
|  | 5a75ab15a2 | ||
|  | 932c783fbf | ||
|  | 55f9cce577 | ||
|  | b3533ca847 | ||
|  | fd2a637010 | ||
|  | eee27b8b30 | ||
|  | 8522352aa3 | ||
|  | 3beb8f4091 | ||
|  | 12a706e9b1 | ||
|  | 170aa7df01 | ||
|  | e8ad1fef53 | ||
|  | aa9df63a05 | ||
|  | 3953312a93 | ||
|  | 6e62f4f616 | ||
|  | 6a7bdca53b | ||
|  | c7fba9aace | ||
|  | ac6c7cb8d6 | ||
|  | c5924833a1 | ||
|  | ac0a74be0d | ||
|  | 42b0e1125d | ||
|  | 339c4fda79 | ||
|  | 9b85bf9402 | ||
|  | 86b02c3cd8 | ||
|  | 7b3b7093fa | ||
|  | 881b08a465 | ||
|  | 3ee5444c69 | ||
|  | 5e28fe56d2 | ||
|  | 5aabe074fe | ||
|  | dace904c10 | ||
|  | be98d26610 | ||
|  | 5f75735dab | ||
|  | 178376f24b | ||
|  | 6a0eb466ee | ||
|  | 4ea29b8f0f | ||
|  | 778291230a | ||
|  | 026e736dfa | ||
|  | 4275b3f431 | ||
|  | 1b8176e2c0 | ||
|  | cbc053c3db | ||
|  | cdf3f6ef6e | ||
|  | ba7f9d7b70 | ||
|  | 371fd123fb | ||
|  | d6ff644aab | ||
|  | 29586f6b5e | ||
|  | fd057c838f | ||
|  | f51222086c | ||
|  | f73691ec47 | ||
|  | 7ebda3e9ec | ||
|  | b10e1b7bc8 | ||
|  | d7dea44ce7 | ||
|  | 37b6b82869 | ||
|  | 92ad5b8f74 | ||
|  | 8c80f1c168 | ||
|  | 0af7d5a793 | ||
|  | 505fa49983 | ||
|  | 7bcf33def9 | ||
|  | a13820656a | ||
|  | fa71b46a41 | ||
|  | b8b3ae6ac1 | ||
|  | 55c008da21 | ||
|  | 2507606bd0 | ||
|  | 7c2ad4f8c8 | ||
|  | 54c8025aad | ||
|  | 921e23e83c | ||
|  | 6e750ecb0e | ||
|  | b8f1f5d2a3 | ||
|  | 9273f2937c | ||
|  | 1aa28b47ae | ||
|  | 629cb2987a | ||
|  | 03235d6368 | ||
|  | 22064c7e4c | ||
|  | 2de03e5172 | ||
|  | 3af4929dda | ||
|  | 1ba429345b | ||
|  | 88bdd4344b | ||
|  | 4044536eea | ||
|  | 4d8ae6221c | ||
|  | 4e31e4e094 | ||
|  | 0d6674e489 | ||
|  | b145fd4f5b | ||
|  | 8a5b794f25 | ||
|  | 291e80f88a | ||
|  | 1ace5850ae | ||
|  | 283f14b7c1 | ||
|  | 1d6e708083 | ||
|  | 89457e25e3 | ||
|  | 7e3b298d3d | ||
|  | 7ff3e5eed4 | ||
|  | 19eb51cf41 | ||
|  | 470d4dcc6d | ||
|  | ed03bfd555 | ||
|  | 8c0fbcccae | ||
|  | d4866157fe | ||
|  | b6496b6cb5 | ||
|  | 4f5fe57920 | ||
|  | 11fb943b1e | ||
|  | 046a23121e | 
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,3 +1,7 @@ | ||||
| # Doxygen stuff | ||||
| html/* | ||||
| latex/* | ||||
|  | ||||
| # Compiled Object files # | ||||
| ######################### | ||||
| *.slo | ||||
|   | ||||
| @@ -34,7 +34,7 @@ | ||||
| #pragma push_macro("__SYCL_DEVICE_ONLY__") | ||||
| #undef __SYCL_DEVICE_ONLY__ | ||||
| #define EIGEN_DONT_VECTORIZE | ||||
| //#undef EIGEN_USE_SYCL | ||||
| #undef EIGEN_USE_SYCL | ||||
| #define __SYCL__REDEFINE__ | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -66,6 +66,10 @@ if BUILD_FERMION_REPS | ||||
|   extra_sources+=$(ADJ_FERMION_FILES) | ||||
|   extra_sources+=$(TWOIND_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_SP | ||||
|     extra_sources+=$(SP_FERMION_FILES) | ||||
|     extra_sources+=$(SP_TWOIND_FERMION_FILES) | ||||
| endif | ||||
|  | ||||
| lib_LIBRARIES = libGrid.a | ||||
|  | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #define _GRID_FFT_H_ | ||||
|  | ||||
| #ifdef HAVE_FFTW | ||||
| #ifdef USE_MKL | ||||
| #if defined(USE_MKL) || defined(GRID_SYCL) | ||||
| #include <fftw/fftw3.h> | ||||
| #else | ||||
| #include <fftw3.h> | ||||
|   | ||||
| @@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k, | ||||
|  * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and | ||||
|  * type = 1 for the approximation which is infinite at x = 0. */ | ||||
|  | ||||
| zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
| zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
|   INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F, | ||||
|     l, invlambda, xi, xisq, *tv, s, opl; | ||||
|   int m, czero, ts; | ||||
| @@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
|   construct_partfrac(d); | ||||
|   construct_contfrac(d); | ||||
|  | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|   /* Converting everything to ZOLO_PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata) | ||||
| } | ||||
|  | ||||
|  | ||||
| zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
| zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
|   INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq; | ||||
|   int m, czero; | ||||
|   zolotarev_data *zd; | ||||
| @@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -523,17 +523,17 @@ NAMESPACE_END(Grid); | ||||
| #ifdef TEST | ||||
|  | ||||
| #undef ZERO | ||||
| #define ZERO ((PRECISION) 0) | ||||
| #define ZERO ((ZOLO_PRECISION) 0) | ||||
| #undef ONE | ||||
| #define ONE ((PRECISION) 1) | ||||
| #define ONE ((ZOLO_PRECISION) 1) | ||||
| #undef TWO | ||||
| #define TWO ((PRECISION) 2) | ||||
| #define TWO ((ZOLO_PRECISION) 2) | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the factored form */ | ||||
|  | ||||
| static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION R; | ||||
|   ZOLO_PRECISION R; | ||||
|  | ||||
|   if (rdata -> type == 0) { | ||||
|     R = rdata -> A * x; | ||||
| @@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the partial fraction form */ | ||||
|  | ||||
| static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   for (m = 0; m < rdata -> dd; m++) | ||||
|     R += rdata -> alpha[m] / (x * x - rdata -> ap[m]); | ||||
|   if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x); | ||||
| @@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|  * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0, | ||||
|  * but with signalling overflow you will get an error message. */ | ||||
|  | ||||
| static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION R = rdata -> beta[0] * x; | ||||
|   ZOLO_PRECISION R = rdata -> beta[0] * x; | ||||
|   for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R; | ||||
|   return R; | ||||
| }     | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using Cayley form */ | ||||
|  | ||||
| static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION T; | ||||
|   ZOLO_PRECISION T; | ||||
|  | ||||
|   T = rdata -> type == 0 ? ONE : -ONE; | ||||
|   for (m = 0; m < rdata -> n; m++) | ||||
| @@ -607,7 +607,7 @@ int main(int argc, char** argv) { | ||||
|   int m, n, plotpts = 5000, type = 0; | ||||
|   float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr; | ||||
|   zolotarev_data *rdata; | ||||
|   PRECISION y; | ||||
|   ZOLO_PRECISION y; | ||||
|   FILE *plot_function, *plot_error,  | ||||
|     *plot_partfrac, *plot_contfrac, *plot_cayley; | ||||
|  | ||||
| @@ -626,13 +626,13 @@ int main(int argc, char** argv) { | ||||
|   } | ||||
|  | ||||
|   rdata = type == 2  | ||||
|     ? higham((PRECISION) eps, n)  | ||||
|     : zolotarev((PRECISION) eps, n, type); | ||||
|     ? higham((ZOLO_PRECISION) eps, n)  | ||||
|     : zolotarev((ZOLO_PRECISION) eps, n, type); | ||||
|  | ||||
|   printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"  | ||||
| 	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION) | ||||
| 	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION) | ||||
| 	 "\tPRECISION = " STRINGIFY(PRECISION) | ||||
| 	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION) | ||||
| 	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n" | ||||
| 	 "\tDelta = %g (maximum error)\n\n" | ||||
| 	 "\tA = %g (overall factor)\n", | ||||
| @@ -681,15 +681,15 @@ int main(int argc, char** argv) { | ||||
|     x = 2.4 * (float) m / plotpts - 1.2; | ||||
|     if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) { | ||||
|       /* skip x = 0 for type 1, as R(0) is singular */ | ||||
|       y = zolotarev_eval((PRECISION) x, rdata); | ||||
|       y = zolotarev_eval((ZOLO_PRECISION) x, rdata); | ||||
|       fprintf(plot_function, "%g %g\n", x, (float) y); | ||||
|       fprintf(plot_error, "%g %g\n", | ||||
| 	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta)); | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y) | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y) | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y) | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) { | ||||
| 	maxypferr = MAX(maxypferr, fabs(ypferr)); | ||||
|   | ||||
| @@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx); | ||||
| #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> | ||||
|  | ||||
| #ifndef ZOLOTAREV_INTERNAL | ||||
| #ifndef PRECISION | ||||
| #define PRECISION double | ||||
| #ifndef ZOLO_PRECISION | ||||
| #define ZOLO_PRECISION double | ||||
| #endif | ||||
| #define ZPRECISION PRECISION | ||||
| #define ZPRECISION ZOLO_PRECISION | ||||
| #define ZOLOTAREV_DATA zolotarev_data | ||||
| #endif | ||||
|  | ||||
| @@ -77,8 +77,8 @@ typedef struct { | ||||
|  * zolotarev_data structure. The arguments must satisfy the constraints that | ||||
|  * epsilon > 0, n > 0, and type = 0 or 1. */ | ||||
|  | ||||
| ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type); | ||||
| ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type); | ||||
| void zolotarev_free(zolotarev_data *zdata); | ||||
| #endif | ||||
|  | ||||
| @@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata); | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
							
								
								
									
										34
									
								
								Grid/algorithms/blas/BatchedBlas.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/algorithms/blas/BatchedBlas.cc
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| gridblasHandle_t GridBLAS::gridblasHandle; | ||||
| int              GridBLAS::gridblasInit; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
							
								
								
									
										727
									
								
								Grid/algorithms/blas/BatchedBlas.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										727
									
								
								Grid/algorithms/blas/BatchedBlas.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,727 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipblas/hipblas.h> | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| #include <cublas_v2.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| #if 0 | ||||
| #define GRID_ONE_MKL | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| ///////////////////////////////////////////////////////////////////////	   | ||||
| // Need to rearrange lattice data to be in the right format for a | ||||
| // batched multiply. Might as well make these static, dense packed | ||||
| /////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef GRID_HIP | ||||
|   typedef hipblasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| #endif | ||||
|  | ||||
| enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ; | ||||
|  | ||||
| class GridBLAS { | ||||
| public: | ||||
|  | ||||
|    | ||||
|   static gridblasHandle_t gridblasHandle; | ||||
|   static int            gridblasInit; | ||||
|    | ||||
|   static void Init(void) | ||||
|   { | ||||
|     if ( ! gridblasInit ) { | ||||
| #ifdef GRID_CUDA | ||||
|       std::cout << "cublasCreate"<<std::endl; | ||||
|       cublasCreate(&gridblasHandle); | ||||
|       cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|       std::cout << "hipblasCreate"<<std::endl; | ||||
|       hipblasCreate(&gridblasHandle); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       cl::sycl::cpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // Force construct once | ||||
|   GridBLAS() { Init(); }; | ||||
|   ~GridBLAS() { }; | ||||
|    | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // BLAS GEMM conventions: | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // - C = alpha A * B + beta C | ||||
|   // Dimensions: | ||||
|   // - C_m.n | ||||
|   // - A_m.k | ||||
|   // - B_k.n | ||||
|   // - Flops = 8 M N K | ||||
|   // - Bytes = 2*sizeof(word) * (MN+MK+KN) | ||||
|   // M=60, N=12 | ||||
|   // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   void synchronise(void) | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|     gridblasHandle->wait(); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexD> alpha_p(1); | ||||
|     static deviceVector<ComplexD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     RealD t0=usecond(); | ||||
|     //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasZgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Amk[0], lda, | ||||
| 				   (hipblasDoubleComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasDoubleComplex *) &beta_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasZgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuDoubleComplex *) &alpha_p[0], | ||||
| 				  (cuDoubleComplex **)&Amk[0], lda, | ||||
| 				  (cuDoubleComplex **)&Bkn[0], ldb, | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     //    synchronise(); | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<ComplexF> alpha_p(1); | ||||
|     static deviceVector<ComplexF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasCgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasComplex *) &alpha_p[0], | ||||
| 				   (hipblasComplex **)&Amk[0], lda, | ||||
| 				   (hipblasComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasComplex *) &beta_p[0], | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuComplex *) &alpha_p[0], | ||||
| 				  (cuComplex **)&Amk[0], lda, | ||||
| 				  (cuComplex **)&Bkn[0], ldb, | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     ComplexF alphaf(real(alpha),imag(alpha)); | ||||
|     ComplexF betaf(real(beta),imag(beta)); | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexF c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Single precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<RealF> alpha_p(1); | ||||
|     static deviceVector<RealF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasSgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (float *) &alpha_p[0], | ||||
| 				   (float **)&Amk[0], lda, | ||||
| 				   (float **)&Bkn[0], ldb, | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasSgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (float *) &alpha_p[0], | ||||
| 				  (float **)&Amk[0], lda, | ||||
| 				  (float **)&Bkn[0], ldb, | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<RealD> alpha_p(1); | ||||
|     static deviceVector<RealD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasDgemmBatched(gridblasHandle, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   m,n,k, | ||||
| 				   (double *) &alpha_p[0], | ||||
| 				   (double **)&Amk[0], lda, | ||||
| 				   (double **)&Bkn[0], ldb, | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasDgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (double *) &alpha_p[0], | ||||
| 				  (double **)&Amk[0], lda, | ||||
| 				  (double **)&Bkn[0], ldb, | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     /* | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t batchCount64=batchCount; | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator, | ||||
|       onemkl::transpose::N, | ||||
|       onemkl::transpose::N, | ||||
|       &m64,&n64,&k64, | ||||
|       (double *) &alpha_p[0], | ||||
|       (double **)&Amk[0], lda, | ||||
|       (double **)&Bkn[0], ldb, | ||||
|       (double *) &beta_p[0], | ||||
|       (double **)&Cmn[0], ldc, | ||||
|       1,&batchCount64); | ||||
|      */ | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|  | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Strided case used by benchmark, but generally unused in Grid | ||||
|   // Keep a code example in double complex, but don't generate the single and real variants for now | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   void gemmStridedBatched(int m,int n, int k, | ||||
| 			  ComplexD alpha, | ||||
| 			  ComplexD* Amk,  // pointer list to matrices | ||||
| 			  ComplexD* Bkn, | ||||
| 			  ComplexD beta, | ||||
| 			  ComplexD* Cmn, | ||||
| 			  int batchCount) | ||||
|   { | ||||
|     // Use C-row major storage, so transpose calls | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     int sda = m*k; | ||||
|     int sdb = k*n; | ||||
|     int sdc = m*n; | ||||
|     deviceVector<ComplexD> alpha_p(1); | ||||
|     deviceVector<ComplexD> beta_p(1); | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|  | ||||
|     //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgemmStridedBatched(gridblasHandle, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  m,n,k, | ||||
| 					  (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 					  (hipblasDoubleComplex *) Amk, lda, sda, | ||||
| 					  (hipblasDoubleComplex *) Bkn, ldb, sdb, | ||||
| 					  (hipblasDoubleComplex *) &beta_p[0], | ||||
| 					  (hipblasDoubleComplex *) Cmn, ldc, sdc, | ||||
| 					  batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasZgemmStridedBatched(gridblasHandle, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      m,n,k, | ||||
| 			      (cuDoubleComplex *) &alpha_p[0], | ||||
| 			      (cuDoubleComplex *) Amk, lda, sda, | ||||
| 			      (cuDoubleComplex *) Bkn, ldb, sdb, | ||||
| 			      (cuDoubleComplex *) &beta_p[0], | ||||
| 			      (cuDoubleComplex *) Cmn, ldc, sdc, | ||||
| 			      batchCount); | ||||
| #endif | ||||
| #if defined(GRID_SYCL) || defined(GRID_ONE_MKL) | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						m,n,k, | ||||
| 						alpha, | ||||
| 						(const ComplexD *)Amk,lda,sda, | ||||
| 						(const ComplexD *)Bkn,ldb,sdb, | ||||
| 						beta, | ||||
| 						(ComplexD *)Cmn,ldc,sdc, | ||||
| 						batchCount); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|      // Need a default/reference implementation | ||||
|      for (int p = 0; p < batchCount; ++p) { | ||||
|        for (int mm = 0; mm < m; ++mm) { | ||||
| 	 for (int nn = 0; nn < n; ++nn) { | ||||
| 	   ComplexD c_mn(0.0); | ||||
| 	   for (int kk = 0; kk < k; ++kk) | ||||
| 	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb]; | ||||
| 	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc]; | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|     int32_t N_A = M*K*BATCH; | ||||
|     int32_t N_B = K*N*BATCH; | ||||
|     int32_t N_C = M*N*BATCH; | ||||
|     deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); | ||||
|     ComplexD alpha(1.0); | ||||
|     ComplexD beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K*BATCH; | ||||
|     int ncall=10; | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemmStridedBatched(M,N,K, | ||||
| 			 alpha, | ||||
| 			 &A[0], // m x k  | ||||
| 			 &B[0], // k x n | ||||
| 			 beta,  | ||||
| 			 &C[0], // m x n | ||||
| 			 BATCH); | ||||
|     } | ||||
|     synchronise(); | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     flops = 8.0*M*N*K*BATCH*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -176,6 +176,7 @@ template<class T> using cshiftAllocator = std::allocator<T>; | ||||
| template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -348,6 +348,7 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
|   return offbytes; | ||||
| } | ||||
|  | ||||
| #undef NVLINK_GET // Define to use get instead of put DMA | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int dest,int dox, | ||||
| @@ -380,9 +381,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|       list.push_back(rrq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
| #ifdef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   if (dox) { | ||||
|     //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+_processor*32; | ||||
|       ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
| @@ -390,9 +397,12 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|       list.push_back(xrq); | ||||
|       off_node_bytes+=xbytes; | ||||
|     } else { | ||||
| #ifndef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
| #endif | ||||
|        | ||||
|     } | ||||
|   } | ||||
|  | ||||
| @@ -402,6 +412,8 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   acceleratorCopySynchronise(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   | ||||
| @@ -40,6 +40,9 @@ int                 GlobalSharedMemory::_ShmAlloc; | ||||
| uint64_t            GlobalSharedMemory::_ShmAllocBytes; | ||||
|  | ||||
| std::vector<void *> GlobalSharedMemory::WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void * GlobalSharedMemory::HostCommBuf; | ||||
| #endif | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm; | ||||
| int                 GlobalSharedMemory::WorldShmRank; | ||||
| @@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| ///////////////////////////////// | ||||
| // Alloc, free shmem region | ||||
| ///////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|   void *ptr = (void *)host_heap_top; | ||||
|   host_heap_top  += bytes; | ||||
|   host_heap_bytes+= bytes; | ||||
|   if (host_heap_bytes >= host_heap_size) { | ||||
|     std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::HostBufferFreeAll(void) {  | ||||
|   host_heap_top  =(size_t)HostCommBuf; | ||||
|   host_heap_bytes=0; | ||||
| } | ||||
| #endif | ||||
| void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes | ||||
|   void *ptr = (void *)heap_top; | ||||
|   | ||||
| @@ -75,7 +75,9 @@ public: | ||||
|   static int           Hugepages; | ||||
|  | ||||
|   static std::vector<void *> WorldShmCommBufs; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   static void *HostCommBuf; | ||||
| #endif | ||||
|   static Grid_MPI_Comm WorldComm; | ||||
|   static int           WorldRank; | ||||
|   static int           WorldSize; | ||||
| @@ -120,6 +122,13 @@ private: | ||||
|   size_t heap_bytes; | ||||
|   size_t heap_size; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   size_t host_heap_top;  // set in free all | ||||
|   size_t host_heap_bytes;// set in free all | ||||
|   void *HostCommBuf;     // set in SetCommunicator | ||||
|   size_t host_heap_size; // set in SetCommunicator | ||||
| #endif | ||||
|    | ||||
| protected: | ||||
|  | ||||
|   Grid_MPI_Comm    ShmComm; // for barriers | ||||
| @@ -151,7 +160,10 @@ public: | ||||
|   void *ShmBufferTranslate(int rank,void * local_p); | ||||
|   void *ShmBufferMalloc(size_t bytes); | ||||
|   void  ShmBufferFreeAll(void) ; | ||||
|    | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   void *HostBufferMalloc(size_t bytes); | ||||
|   void HostBufferFreeAll(void); | ||||
| #endif   | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Make info on Nodes & ranks and Shared memory available | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -39,10 +39,12 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #include <hip/hip_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| #define GRID_SYCL_LEVEL_ZERO_IPC | ||||
| #include <syscall.h> | ||||
| #define SHM_SOCKETS | ||||
| #endif  | ||||
| #include <syscall.h> | ||||
| #endif | ||||
|  | ||||
| #include <sys/socket.h> | ||||
| #include <sys/un.h> | ||||
| @@ -511,46 +513,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hugetlbfs mapping intended | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL) | ||||
|  | ||||
| //if defined(GRID_SYCL) | ||||
| #if 0 | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the pointer array for shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   MPI_Barrier(WorldShmComm); | ||||
|   WorldShmCommBufs.resize(WorldShmSize); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|  | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|  | ||||
|   std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
| 	    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|  | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|  | ||||
|   assert(WorldShmSize == 1); | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|     WorldShmCommBufs[r] = ShmCommBuf; | ||||
|   } | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
| @@ -574,6 +536,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   HostCommBuf= malloc(bytes); | ||||
| #endif   | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
| @@ -604,8 +569,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; | ||||
|  | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context()); | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|        | ||||
|     ze_ipc_mem_handle_t ihandle; | ||||
|     clone_mem_t handle; | ||||
| @@ -738,7 +703,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #else  | ||||
| #ifdef GRID_MPI3_SHMMMAP | ||||
| @@ -962,6 +926,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   host_heap_size = heap_size; | ||||
|   HostCommBuf= GlobalSharedMemory::HostCommBuf; | ||||
|   HostBufferFreeAll(); | ||||
| #endif   | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // find comm ranks in our SHM group (i.e. which ranks are on our node) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -29,8 +29,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern Vector<std::pair<int,int> > Cshift_table;  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
|   } | ||||
|   acceleratorCopyToDevice((void *)&Cshift_table[0], | ||||
| 			  (void *)&Cshift_table_device[0], | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| @@ -74,7 +93,7 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim | ||||
|   } | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| @@ -225,7 +244,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector< | ||||
|    | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| @@ -297,30 +316,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
|   } | ||||
| } | ||||
|  | ||||
| #if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT) | ||||
|  | ||||
| template <typename T> | ||||
| T iDivUp(T a, T b) // Round a / b to nearest higher integer value | ||||
| { return (a % b != 0) ? (a / b + 1) : (a / b); } | ||||
|  | ||||
| template <typename T> | ||||
| __global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride) | ||||
| { | ||||
|     int idx = blockIdx.x*blockDim.x + threadIdx.x; | ||||
|     if (idx >= e1*e2) return; | ||||
|  | ||||
|     int n, b, o; | ||||
|  | ||||
|     n = idx / e2; | ||||
|     b = idx % e2; | ||||
|     o = n*stride + b; | ||||
|  | ||||
|     vector[2*idx + 0] = lo + o; | ||||
|     vector[2*idx + 1] = ro + o; | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // local to node block strided copies | ||||
| ////////////////////////////////////////////////////// | ||||
| @@ -345,20 +340,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|   int ent=0; | ||||
|  | ||||
|   if(cbmask == 0x3 ){ | ||||
| #if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT) | ||||
|     ent = e1*e2; | ||||
|     dim3 blockSize(acceleratorThreads()); | ||||
|     dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x)); | ||||
|     populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride); | ||||
|     accelerator_barrier(); | ||||
| #else | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|   } else {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| @@ -372,7 +359,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
| @@ -409,19 +396,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|   int ent=0; | ||||
|  | ||||
|   if ( cbmask == 0x3 ) { | ||||
| #if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT) | ||||
|     ent = e1*e2; | ||||
|     dim3 blockSize(acceleratorThreads()); | ||||
|     dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x)); | ||||
|     populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride); | ||||
|     accelerator_barrier(); | ||||
| #else | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
| #endif | ||||
|   } else { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
| @@ -432,7 +411,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|   | ||||
| @@ -52,7 +52,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); | ||||
|  | ||||
|  | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|   if ( !comm_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
| @@ -63,6 +64,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @@ -127,16 +130,20 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|  | ||||
|       tcopy+=usecond(); | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
| @@ -144,26 +151,39 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|        | ||||
|       grid->Barrier(); | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       grid->Barrier(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -190,6 +210,12 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
| @@ -227,7 +253,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     tgather-=usecond(); | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
| @@ -252,7 +280,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| @@ -262,7 +291,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	xbytes+=bytes; | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| @@ -270,9 +301,17 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|  | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -292,6 +331,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
| @@ -315,7 +359,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
| @@ -324,7 +370,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
| @@ -332,7 +380,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       grid->Barrier(); | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| @@ -340,13 +389,24 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       grid->Barrier(); | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -372,6 +432,11 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
| @@ -414,8 +479,10 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
| @@ -440,7 +507,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| @@ -449,18 +517,29 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|   } | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #endif | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
|   | ||||
| @@ -1,4 +1,5 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| Vector<std::pair<int,int> > Cshift_table;  | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice_transpose.h> | ||||
| #include <Grid/lattice/Lattice_local.h> | ||||
| #include <Grid/lattice/Lattice_reduction.h> | ||||
| #include <Grid/lattice/Lattice_crc.h> | ||||
| #include <Grid/lattice/Lattice_peekpoke.h> | ||||
| #include <Grid/lattice/Lattice_reality.h> | ||||
| #include <Grid/lattice/Lattice_real_imag.h> | ||||
| @@ -46,4 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice_unary.h> | ||||
| #include <Grid/lattice/Lattice_transfer.h> | ||||
| #include <Grid/lattice/Lattice_basis.h> | ||||
| #include <Grid/lattice/Lattice_crc.h> | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
|   | ||||
| @@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a)); | ||||
| GridUnopClass(UnaryTrace, trace(a)); | ||||
| GridUnopClass(UnaryTranspose, transpose(a)); | ||||
| GridUnopClass(UnaryTa, Ta(a)); | ||||
| GridUnopClass(UnarySpTa, SpTa(a)); | ||||
| GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a)); | ||||
| GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a)); | ||||
| GridUnopClass(UnaryTimesI, timesI(a)); | ||||
| GridUnopClass(UnaryTimesMinusI, timesMinusI(a)); | ||||
| GridUnopClass(UnaryAbs, abs(a)); | ||||
| @@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot); | ||||
| GRID_DEF_UNOP(trace, UnaryTrace); | ||||
| GRID_DEF_UNOP(transpose, UnaryTranspose); | ||||
| GRID_DEF_UNOP(Ta, UnaryTa); | ||||
| GRID_DEF_UNOP(SpTa, UnarySpTa); | ||||
| GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup); | ||||
| GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup); | ||||
| GRID_DEF_UNOP(timesI, UnaryTimesI); | ||||
| GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI); | ||||
| GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the | ||||
|   | ||||
| @@ -270,5 +270,42 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
| } | ||||
|  | ||||
| /// Trace product | ||||
| template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2) | ||||
|   -> Lattice<decltype(trace(obj()))> | ||||
| { | ||||
|   typedef decltype(trace(obj())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( rhs2 , rhs_2, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss))); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   typedef decltype(trace(obj1())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
| template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   return traceProduct(rhs_1,rhs_2); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
| #if ( (!defined(GRID_CUDA)) ) | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|   | ||||
| @@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1 | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> uint32_t crc(Lattice<vobj> & buf) | ||||
| template<class vobj> uint32_t crc(const Lattice<vobj> & buf) | ||||
| { | ||||
|   autoView( buf_v , buf, CpuRead); | ||||
|   return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites()); | ||||
| } | ||||
|  | ||||
| #define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
| #define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -31,6 +31,7 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #if defined(GRID_SYCL) | ||||
| #include <Grid/lattice/Lattice_reduction_sycl.h> | ||||
| #endif | ||||
| #include <Grid/lattice/Lattice_slicesum_core.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| @@ -280,11 +281,29 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> & | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // Hack | ||||
|     // Fast integer xor checksum. Can also be used in comms now. | ||||
|     autoView(l_v,left,AcceleratorRead); | ||||
|     Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|     uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|     csum=svm_xor(base,words); | ||||
|   } | ||||
|   FlightRecorder::CsumLog(csum); | ||||
| #endif | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   RealD local = real(nrm); | ||||
|   FlightRecorder::NormLog(real(nrm));  | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::ReductionLog(local,real(nrm));  | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
| @@ -448,19 +467,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|   int ostride=grid->_ostride[orthogdim]; | ||||
|    | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
|   //Reduce Data down to lvSum | ||||
|   sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd); | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
| @@ -504,6 +514,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim) | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| { | ||||
|   | ||||
| @@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator & | ||||
|   cudaGetDevice(&device); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   hipGetDevice(&device); | ||||
|   auto r=hipGetDevice(&device); | ||||
| #endif | ||||
|    | ||||
|   Iterator warpSize            = gpu_props[device].warpSize; | ||||
|   | ||||
| @@ -69,29 +69,30 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
| template<class Double> Double svm_reduce(Double *vec,uint64_t L) | ||||
| template<class Word> Word svm_xor(Word *vec,uint64_t L) | ||||
| { | ||||
|   Double sumResult; zeroit(sumResult); | ||||
|   Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator); | ||||
|   Double identity;  zeroit(identity); | ||||
|   Word xorResult; xorResult = 0; | ||||
|   Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator); | ||||
|   Word identity;  identity=0; | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|      auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>()); | ||||
|      auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>()); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{L}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> index, auto &sum) { | ||||
| 	 sum +=vec[index]; | ||||
| 	 sum ^=vec[index]; | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   Double ret = d_sum[0]; | ||||
|   Word ret = d_sum[0]; | ||||
|   free(d_sum,*theGridAccelerator); | ||||
|   std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites) | ||||
| { | ||||
|   | ||||
| @@ -152,6 +152,7 @@ public: | ||||
| #ifdef RNG_FAST_DISCARD | ||||
|   static void Skip(RngEngine &eng,uint64_t site) | ||||
|   { | ||||
| #if 0 | ||||
|     ///////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Skip by 2^40 elements between successive lattice sites | ||||
|     // This goes by 10^12. | ||||
| @@ -179,6 +180,9 @@ public: | ||||
|     assert((skip >> shift)==site); // check for overflow | ||||
|  | ||||
|     eng.discard(skip); | ||||
| #else | ||||
|     eng.discardhi(site); | ||||
| #endif | ||||
|     //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl; | ||||
|   }  | ||||
| #endif | ||||
| @@ -407,7 +411,7 @@ public: | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl; | ||||
|       SeedFixedIntegers(seeds); | ||||
|     } | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds){ | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){ | ||||
|  | ||||
|     // Everyone generates the same seed_seq based on input seeds | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size()); | ||||
| @@ -424,7 +428,6 @@ public: | ||||
|     // MT implementation does not implement fast discard even though | ||||
|     // in principle this is possible | ||||
|     //////////////////////////////////////////////// | ||||
| #if 1 | ||||
|     thread_for( lidx, _grid->lSites(), { | ||||
|  | ||||
| 	int gidx; | ||||
| @@ -445,29 +448,12 @@ public: | ||||
| 	 | ||||
| 	int l_idx=generator_idx(o_idx,i_idx); | ||||
| 	_generators[l_idx] = master_engine; | ||||
| 	Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
|     }); | ||||
| #else | ||||
|     // Everybody loops over global volume. | ||||
|     thread_for( gidx, _grid->_gsites, { | ||||
|  | ||||
| 	// Where is it? | ||||
| 	int rank; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
|  | ||||
| 	Coordinate gcoor; | ||||
| 	_grid->GlobalIndexToGlobalCoor(gidx,gcoor); | ||||
| 	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
| 	 | ||||
| 	// If this is one of mine we take it | ||||
| 	if( rank == _grid->ThisRank() ){ | ||||
| 	  int l_idx=generator_idx(o_idx,i_idx); | ||||
| 	  _generators[l_idx] = master_engine; | ||||
| 	if ( britney ) {  | ||||
| 	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence | ||||
| 	} else { 	 | ||||
| 	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
| 	} | ||||
|     }); | ||||
| #endif | ||||
| #else  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Machine and thread decomposition dependent seeding is efficient | ||||
|   | ||||
							
								
								
									
										224
									
								
								Grid/lattice/Lattice_slicesum_core.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										224
									
								
								Grid/lattice/Lattice_slicesum_core.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,224 @@ | ||||
| #pragma once | ||||
|  | ||||
| #if defined(GRID_CUDA) | ||||
|  | ||||
| #include <cub/cub.cuh> | ||||
| #define gpucub cub | ||||
| #define gpuError_t cudaError_t | ||||
| #define gpuSuccess cudaSuccess | ||||
|  | ||||
| #elif defined(GRID_HIP) | ||||
|  | ||||
| #include <hipcub/hipcub.hpp> | ||||
| #define gpucub hipcub | ||||
| #define gpuError_t hipError_t | ||||
| #define gpuSuccess hipSuccess | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
| template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   size_t subvol_size = e1*e2; | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|   vobj zero_init; | ||||
|   zeroit(zero_init); | ||||
|  | ||||
|    | ||||
|   void *temp_storage_array = NULL; | ||||
|   size_t temp_storage_bytes = 0; | ||||
|   vobj *d_out; | ||||
|   int* d_offsets; | ||||
|  | ||||
|   std::vector<int> offsets(rd+1,0); | ||||
|  | ||||
|   for (int i = 0; i < offsets.size(); i++) { | ||||
|     offsets[i] = i*subvol_size; | ||||
|   } | ||||
|    | ||||
|   //Allocate memory for output and offset arrays on device | ||||
|   d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj))); | ||||
|    | ||||
|   d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); | ||||
|    | ||||
|   //copy offsets to device | ||||
|   acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|    | ||||
|    | ||||
|   gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|  | ||||
|   //allocate memory for temp_storage_array   | ||||
|   temp_storage_array = acceleratorAllocDevice(temp_storage_bytes); | ||||
|    | ||||
|   //prepare buffer for reduction | ||||
|   //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream) | ||||
|   //use 2d accelerator_for to avoid launch latencies found when serially looping over rd  | ||||
|   accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{  | ||||
|    | ||||
|     int n = s / e2; | ||||
|     int b = s % e2; | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     int ss= so+n*stride+b; | ||||
|  | ||||
|     coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss])); | ||||
|  | ||||
|   }); | ||||
|    | ||||
|   //issue segmented reductions in computeStream | ||||
|   gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|    | ||||
|   //sync after copy | ||||
|   accelerator_barrier(); | ||||
|   | ||||
|   acceleratorFreeDevice(temp_storage_array); | ||||
|   acceleratorFreeDevice(d_out); | ||||
|   acceleratorFreeDevice(d_offsets); | ||||
|    | ||||
|  | ||||
| } | ||||
| #endif  | ||||
|  | ||||
|  | ||||
| #if defined(GRID_SYCL) | ||||
| template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   size_t subvol_size = e1*e2; | ||||
|  | ||||
|   vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator); | ||||
|   vobj vobj_zero; | ||||
|   zeroit(vobj_zero); | ||||
|   for (int r = 0; r<rd; r++) {  | ||||
|     mysum[r] = vobj_zero;  | ||||
|   } | ||||
|  | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|  | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|  | ||||
|   // autoView(Data_v, Data, AcceleratorRead); | ||||
|  | ||||
|   //prepare reduction buffer  | ||||
|   accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{  | ||||
|    | ||||
|       int n = s / e2; | ||||
|       int b = s % e2; | ||||
|       int so=r*ostride; // base offset for start of plane  | ||||
|       int ss= so+n*stride+b; | ||||
|  | ||||
|       coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss])); | ||||
|  | ||||
|   }); | ||||
|  | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|       theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|           auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>()); | ||||
|           cgh.parallel_for(cl::sycl::range<1>{subvol_size}, | ||||
|           Reduction, | ||||
|           [=](cl::sycl::id<1> item, auto &sum) { | ||||
|               auto s = item[0]; | ||||
|               sum += rb_p[r*subvol_size+s]; | ||||
|           }); | ||||
|       }); | ||||
|        | ||||
|       | ||||
|   } | ||||
|   theGridAccelerator->wait(); | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|     lvSum[r] = mysum[r]; | ||||
|   } | ||||
|   free(mysum,*theGridAccelerator); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   typedef typename vobj::vector_type vector; | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|   const int osites = rd*e1*e2; | ||||
|   commVector<vector>buffer(osites); | ||||
|   vector *dat = (vector *)Data; | ||||
|   vector *buf = &buffer[0]; | ||||
|   Vector<vector> lvSum_small(rd); | ||||
|   vector *lvSum_ptr = (vector *)&lvSum[0]; | ||||
|  | ||||
|   for (int w = 0; w < words; w++) { | ||||
|     accelerator_for(ss,osites,1,{ | ||||
| 	    buf[ss] = dat[ss*words+w]; | ||||
|     }); | ||||
|  | ||||
|     #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|       sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd); | ||||
|     #elif defined(GRID_SYCL) | ||||
|       sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd); | ||||
|     #endif | ||||
|  | ||||
|     for (int r = 0; r < rd; r++) { | ||||
|       lvSum_ptr[w+words*r]=lvSum_small[r]; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|    | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) | ||||
| { | ||||
|   autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case. | ||||
|     if constexpr (sizeof(vobj) <= 256) {  | ||||
|  | ||||
|       #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|         sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|       #elif defined (GRID_SYCL) | ||||
|         sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|       #endif | ||||
|  | ||||
|     } | ||||
|     else { | ||||
|       sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|     } | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int ss= so+n*stride+b; | ||||
|         lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)  | ||||
| { | ||||
|   #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|    | ||||
|   sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #else | ||||
|   sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|  | ||||
|   #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex< | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<int N, class Vec> | ||||
| Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid); | ||||
|   typedef typename Vec::scalar_type scalar; | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<scalar, N> > > Us; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	scalar tmp= Us()()(i,j); | ||||
| 	ComplexD ztmp(real(tmp),imag(tmp)); | ||||
| 	EigenU(i,j)=ztmp; | ||||
|       }} | ||||
|     ComplexD detD  = EigenU.determinant(); | ||||
|     typename Vec::scalar_type det(detD.real(),detD.imag()); | ||||
|     pokeLocalSite(det,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<int N> | ||||
| Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid); | ||||
|    | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Us; | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Ui; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	EigenU(i,j) = Us()()(i,j); | ||||
|       }} | ||||
|     Eigen::MatrixXcd EigenUinv = EigenU.inverse(); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	Ui()()(i,j) = EigenUinv(i,j); | ||||
|       }} | ||||
|     pokeLocalSite(Ui,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -469,15 +469,13 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) | ||||
|   Coordinate fine_rdimensions = fine->_rdimensions; | ||||
|   Coordinate coarse_rdimensions = coarse->_rdimensions; | ||||
|  | ||||
|   vobj zz = Zero(); | ||||
|    | ||||
|   accelerator_for(sc,coarse->oSites(),1,{ | ||||
|  | ||||
|       // One thread per sub block | ||||
|       Coordinate coor_c(_ndimension); | ||||
|       Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate | ||||
|  | ||||
|       vobj cd = zz; | ||||
|       vobj cd = Zero(); | ||||
|        | ||||
|       for(int sb=0;sb<blockVol;sb++){ | ||||
|  | ||||
| @@ -697,8 +695,68 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|   for(int d=0;d<nd;d++){ | ||||
|     assert(Fg->_processors[d]  == Tg->_processors[d]); | ||||
|   } | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|    | ||||
| #if 1 | ||||
|  | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= RegionSize[i]; | ||||
|    | ||||
|   size_t tbytes = 4*nsite*sizeof(int); | ||||
|   int *table = (int*)malloc(tbytes); | ||||
|   | ||||
|   thread_for(idx, nsite, { | ||||
|       Coordinate from_coor, to_coor; | ||||
|       size_t rem = idx; | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i]; | ||||
| 	from_coor[i] = base_i + FromLowerLeft[i]; | ||||
| 	to_coor[i] = base_i + ToLowerLeft[i]; | ||||
|       } | ||||
|        | ||||
|       int foidx = Fg->oIndex(from_coor); | ||||
|       int fiidx = Fg->iIndex(from_coor); | ||||
|       int toidx = Tg->oIndex(to_coor); | ||||
|       int tiidx = Tg->iIndex(to_coor); | ||||
|       int* tt = table + 4*idx; | ||||
|       tt[0] = foidx; | ||||
|       tt[1] = fiidx; | ||||
|       tt[2] = toidx; | ||||
|       tt[3] = tiidx; | ||||
|     }); | ||||
|    | ||||
|   int* table_d = (int*)acceleratorAllocDevice(tbytes); | ||||
|   acceleratorCopyToDevice(table,table_d,tbytes); | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|    | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|       static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|       int* tt = table_d + 4*idx; | ||||
|       int from_oidx = *tt++; | ||||
|       int from_lane = *tt++; | ||||
|       int to_oidx = *tt++; | ||||
|       int to_lane = *tt; | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|    | ||||
|   acceleratorFreeDevice(table_d);     | ||||
|   free(table); | ||||
|    | ||||
|  | ||||
| #else   | ||||
|   Coordinate ldf = Fg->_ldimensions; | ||||
|   Coordinate rdf = Fg->_rdimensions; | ||||
|   Coordinate isf = Fg->_istride; | ||||
| @@ -738,6 +796,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
| #endif | ||||
|     } | ||||
|   }); | ||||
|  | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -830,6 +890,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
| } | ||||
|  | ||||
|  | ||||
| //Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim | ||||
| //The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same | ||||
| template<class vobj> | ||||
| void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
| @@ -851,6 +913,65 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int | ||||
|     } | ||||
|   } | ||||
|  | ||||
| #if 1 | ||||
|   size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog]; | ||||
|   size_t tbytes = 4*nsite*sizeof(int); | ||||
|   int *table = (int*)malloc(tbytes); | ||||
|    | ||||
|   thread_for(idx,nsite,{ | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lcoor[orthog] = slice_lo; | ||||
|     hcoor[orthog] = slice_hi; | ||||
|     size_t rem = idx; | ||||
|     for(int mu=0;mu<nl;mu++){ | ||||
|       if(mu != orthog){ | ||||
| 	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu]; | ||||
| 	lcoor[mu] = hcoor[mu] = xmu; | ||||
|       } | ||||
|     } | ||||
|     int loidx = lg->oIndex(lcoor); | ||||
|     int liidx = lg->iIndex(lcoor); | ||||
|     int hoidx = hg->oIndex(hcoor); | ||||
|     int hiidx = hg->iIndex(hcoor); | ||||
|     int* tt = table + 4*idx; | ||||
|     tt[0] = loidx; | ||||
|     tt[1] = liidx; | ||||
|     tt[2] = hoidx; | ||||
|     tt[3] = hiidx; | ||||
|     }); | ||||
|     | ||||
|   int* table_d = (int*)acceleratorAllocDevice(tbytes); | ||||
|   acceleratorCopyToDevice(table,table_d,tbytes); | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(lowDim_v,lowDim,AcceleratorRead); | ||||
|   autoView(higherDim_v,higherDim,AcceleratorWrite); | ||||
|    | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|       static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|       int* tt = table_d + 4*idx; | ||||
|       int from_oidx = *tt++; | ||||
|       int from_lane = *tt++; | ||||
|       int to_oidx = *tt++; | ||||
|       int to_lane = *tt; | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&lowDim_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&higherDim_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|    | ||||
|   acceleratorFreeDevice(table_d);     | ||||
|   free(table); | ||||
|    | ||||
| #else | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuRead); | ||||
|   autoView(higherDimv,higherDim,CpuWrite); | ||||
| @@ -866,6 +987,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int | ||||
|       pokeLocalSite(s,higherDimv,hcoor); | ||||
|     } | ||||
|   }); | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -45,6 +45,7 @@ public: | ||||
|   }; | ||||
|   // Host only | ||||
|   GridBase * getGrid(void) const { return _grid; }; | ||||
|   vobj* getHostPointer(void) const { return _odata; }; | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -26,14 +26,32 @@ Author: Peter Boyle pboyle@bnl.gov | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include<Grid/cshift/Cshift.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions | ||||
| template<typename vobj> | ||||
| struct CshiftImplBase{ | ||||
|   virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0; | ||||
|   virtual ~CshiftImplBase(){} | ||||
| }; | ||||
| template<typename vobj> | ||||
| struct CshiftImplDefault: public CshiftImplBase<vobj>{ | ||||
|   Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); } | ||||
| }; | ||||
| template<typename Gimpl> | ||||
| struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{ | ||||
|   typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); } | ||||
| };   | ||||
|  | ||||
| class PaddedCell { | ||||
| public: | ||||
|   GridCartesian * unpadded_grid; | ||||
|   int dims; | ||||
|   int depth; | ||||
|   std::vector<GridCartesian *> grids; | ||||
|  | ||||
|   ~PaddedCell() | ||||
|   { | ||||
|     DeleteGrids(); | ||||
| @@ -77,7 +95,7 @@ public: | ||||
|     } | ||||
|   }; | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Extract(Lattice<vobj> &in) | ||||
|   inline Lattice<vobj> Extract(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Lattice<vobj> out(unpadded_grid); | ||||
|  | ||||
| @@ -88,19 +106,19 @@ public: | ||||
|     return out; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Exchange(Lattice<vobj> &in) | ||||
|   inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = Expand(d,tmp); // rvalue && assignment | ||||
|       tmp = Expand(d,tmp,cshift); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   // expand up one dim at a time | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in) | ||||
|   inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
| @@ -112,20 +130,40 @@ public: | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl; | ||||
|  | ||||
|     double tins=0, tshift=0; | ||||
|      | ||||
|     // Middle bit | ||||
|     double t = usecond(); | ||||
|     for(int x=0;x<local[dim];x++){ | ||||
|       InsertSliceLocal(in,padded,x,depth+x,dim); | ||||
|     } | ||||
|     tins += usecond() - t; | ||||
|      | ||||
|     // High bit | ||||
|     shifted = Cshift(in,dim,depth); | ||||
|     t = usecond(); | ||||
|     shifted = cshift.Cshift(in,dim,depth); | ||||
|     tshift += usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     for(int x=0;x<depth;x++){ | ||||
|       InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim); | ||||
|     } | ||||
|     tins += usecond() - t; | ||||
|      | ||||
|     // Low bit | ||||
|     shifted = Cshift(in,dim,-depth); | ||||
|     t = usecond(); | ||||
|     shifted = cshift.Cshift(in,dim,-depth); | ||||
|     tshift += usecond() - t; | ||||
|      | ||||
|     t = usecond(); | ||||
|     for(int x=0;x<depth;x++){ | ||||
|       InsertSliceLocal(shifted,padded,x,x,dim); | ||||
|     } | ||||
|     tins += usecond() - t; | ||||
|  | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl; | ||||
|      | ||||
|     return padded; | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -191,6 +191,41 @@ extern Colours    GridLogColours; | ||||
|  | ||||
| std::string demangle(const char* name) ; | ||||
|  | ||||
| template<typename... Args> | ||||
| inline std::string sjoin(Args&&... args) noexcept { | ||||
|     std::ostringstream msg; | ||||
|     (msg << ... << args); | ||||
|     return msg.str(); | ||||
| } | ||||
|  | ||||
| /*!  @brief make log messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_log(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << GridLogMessage << msg << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make warning messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_warn(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make error messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_error(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make pass messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_pass(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| #define _NBACKTRACE (256) | ||||
| extern void * Grid_backtrace_buffer[_NBACKTRACE]; | ||||
|  | ||||
|   | ||||
| @@ -34,7 +34,7 @@ class GridTracer { | ||||
| }; | ||||
| inline void tracePush(const char *name) { roctxRangePushA(name); } | ||||
| inline void tracePop(const char *name) { roctxRangePop(); } | ||||
| inline int  traceStart(const char *name) { roctxRangeStart(name); } | ||||
| inline int  traceStart(const char *name) { return roctxRangeStart(name); } | ||||
| inline void traceStop(int ID) { roctxRangeStop(ID); } | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -129,6 +129,22 @@ public: | ||||
|   virtual ~Action(){} | ||||
| }; | ||||
|  | ||||
| template <class GaugeField > | ||||
| class EmptyAction : public Action <GaugeField> | ||||
| { | ||||
|   virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions | ||||
|   virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action | ||||
|   virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative | ||||
|  | ||||
|   /////////////////////////////// | ||||
|   // Logging | ||||
|   /////////////////////////////// | ||||
|   virtual std::string action_name()    { return std::string("Level Force Log"); }; | ||||
|   virtual std::string LogParameters()  { return std::string("No parameters");}; | ||||
| }; | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif // ACTION_BASE_H | ||||
|   | ||||
| @@ -124,11 +124,6 @@ public: | ||||
|   RealD                _b; | ||||
|   RealD                _c; | ||||
|  | ||||
|   // possible boost | ||||
|   std::vector<ComplexD> qmu; | ||||
|   void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);}; | ||||
|   void addQmu(const FermionField &in, FermionField &out, int dag); | ||||
|    | ||||
|   // Cayley form Moebius (tanh and zolotarev) | ||||
|   Vector<Coeff_t> omega; | ||||
|   Vector<Coeff_t> bs;    // S dependent coeffs | ||||
|   | ||||
| @@ -60,50 +60,6 @@ public: | ||||
|   //      virtual void   Instantiatable(void)=0; | ||||
|   virtual void   Instantiatable(void) =0; | ||||
|  | ||||
|   void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist) | ||||
|   { | ||||
|     std::cout << "Free Propagator for PartialFraction"<<std::endl; | ||||
|     FermionField in_k(in.Grid()); | ||||
|     FermionField prop_k(in.Grid()); | ||||
|      | ||||
|     FFT theFFT((GridCartesian *) in.Grid()); | ||||
|  | ||||
|     //phase for boundary condition | ||||
|     ComplexField coor(in.Grid()); | ||||
|     ComplexField ph(in.Grid());  ph = Zero(); | ||||
|     FermionField in_buf(in.Grid()); in_buf = Zero(); | ||||
|     typedef typename Simd::scalar_type Scalar; | ||||
|     Scalar ci(0.0,1.0); | ||||
|     assert(twist.size() == Nd);//check that twist is Nd | ||||
|     assert(boundary.size() == Nd);//check that boundary conditions is Nd | ||||
|     int shift = 0; | ||||
|     for(unsigned int nu = 0; nu < Nd; nu++) | ||||
|       { | ||||
| 	// Shift coordinate lattice index by 1 to account for 5th dimension. | ||||
| 	LatticeCoordinate(coor, nu + shift); | ||||
| 	double boundary_phase = ::acos(real(boundary[nu])); | ||||
| 	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift]))); | ||||
| 	//momenta for propagator shifted by twist+boundary | ||||
| 	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI)); | ||||
|       } | ||||
|     in_buf = exp(ci*ph*(-1.0))*in; | ||||
|  | ||||
|     theFFT.FFT_all_dim(in_k,in,FFT::forward); | ||||
|     this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist); | ||||
|     theFFT.FFT_all_dim(out,prop_k,FFT::backward); | ||||
|      | ||||
|     //phase for boundary condition | ||||
|     out = out * exp(ci*ph); | ||||
|   }; | ||||
|  | ||||
|   virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { | ||||
|     std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions | ||||
|     std::vector<Complex> boundary; | ||||
|     for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions | ||||
|     FreePropagator(in,out,mass,boundary,twist); | ||||
|   }; | ||||
|  | ||||
|    | ||||
|   // Efficient support for multigrid coarsening | ||||
|   virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp); | ||||
|   virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out); | ||||
|   | ||||
| @@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi | ||||
| typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF; | ||||
| typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD; | ||||
|  | ||||
| // Sp(2n) | ||||
| typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF; | ||||
| typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD; | ||||
|  | ||||
| typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF; | ||||
| typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD; | ||||
|  | ||||
| typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF; | ||||
| typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD; | ||||
|  | ||||
| // Twisted mass fermion | ||||
| typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2; | ||||
| typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF; | ||||
|   | ||||
| @@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl> | ||||
| public: | ||||
|   INHERIT_IMPL_TYPES(Impl); | ||||
|  | ||||
|   const int part_frac_chroma_convention=0; | ||||
|   const int part_frac_chroma_convention=1; | ||||
|  | ||||
|   void   Meooe_internal(const FermionField &in, FermionField &out,int dag); | ||||
|   void   Mooee_internal(const FermionField &in, FermionField &out,int dag); | ||||
| @@ -83,63 +83,12 @@ public: | ||||
| 			   GridRedBlackCartesian &FourDimRedBlackGrid, | ||||
| 			   RealD _mass,RealD M5,const ImplParams &p= ImplParams()); | ||||
|  | ||||
|   PartialFractionFermion5D(GaugeField &_Umu, | ||||
| 			   GridCartesian         &FiveDimGrid, | ||||
| 			   GridRedBlackCartesian &FiveDimRedBlackGrid, | ||||
| 			   GridCartesian         &FourDimGrid, | ||||
| 			   GridRedBlackCartesian &FourDimRedBlackGrid, | ||||
| 			   RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams()); | ||||
|  | ||||
|   void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist) | ||||
|   { | ||||
|     std::cout << "Free Propagator for PartialFraction"<<std::endl; | ||||
|     FermionField in_k(in.Grid()); | ||||
|     FermionField prop_k(in.Grid()); | ||||
|      | ||||
|     FFT theFFT((GridCartesian *) in.Grid()); | ||||
|  | ||||
|     //phase for boundary condition | ||||
|     ComplexField coor(in.Grid()); | ||||
|     ComplexField ph(in.Grid());  ph = Zero(); | ||||
|     FermionField in_buf(in.Grid()); in_buf = Zero(); | ||||
|     typedef typename Simd::scalar_type Scalar; | ||||
|     Scalar ci(0.0,1.0); | ||||
|     assert(twist.size() == Nd);//check that twist is Nd | ||||
|     assert(boundary.size() == Nd);//check that boundary conditions is Nd | ||||
|     int shift = 0; | ||||
|     for(unsigned int nu = 0; nu < Nd; nu++) | ||||
|       { | ||||
| 	// Shift coordinate lattice index by 1 to account for 5th dimension. | ||||
| 	LatticeCoordinate(coor, nu + shift); | ||||
| 	double boundary_phase = ::acos(real(boundary[nu])); | ||||
| 	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift]))); | ||||
| 	//momenta for propagator shifted by twist+boundary | ||||
| 	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI)); | ||||
|       } | ||||
|     in_buf = exp(ci*ph*(-1.0))*in; | ||||
|  | ||||
|     theFFT.FFT_all_dim(in_k,in,FFT::forward); | ||||
|     this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist); | ||||
|     theFFT.FFT_all_dim(out,prop_k,FFT::backward); | ||||
|      | ||||
|     //phase for boundary condition | ||||
|     out = out * exp(ci*ph); | ||||
|   }; | ||||
|  | ||||
|   virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { | ||||
|     std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions | ||||
|     std::vector<Complex> boundary; | ||||
|     for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions | ||||
|     FreePropagator(in,out,mass,boundary,twist); | ||||
|   }; | ||||
|    | ||||
| protected: | ||||
|  | ||||
|   virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale); | ||||
|   virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata); | ||||
|  | ||||
|   // Part frac | ||||
|   std::vector<RealD> qmu; | ||||
|   RealD mass; | ||||
|   RealD dw_diag; | ||||
|   RealD R; | ||||
|   | ||||
| @@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex,  TwoIndexAntiSymmetricRepresentation, CoeffReal > W | ||||
| typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD;  // Double | ||||
|  | ||||
| //sp 2n | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpFundamentalRepresentation, CoeffReal > SpWilsonImplR;  // Real.. whichever prec | ||||
| typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD;  // Double | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR;  // Real.. whichever prec | ||||
| typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD;  // Double | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR;  // Real.. whichever prec | ||||
| typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD;  // Double | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR;  // Real.. whichever prec    // adj = 2indx symmetric for Sp(2N) | ||||
| typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF;  // Float     // adj = 2indx symmetric for Sp(2N) | ||||
| typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD;  // Double    // adj = 2indx symmetric for Sp(2N) | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -63,6 +63,8 @@ public: | ||||
|   virtual void MooeeDag(const FermionField &in, FermionField &out) ; | ||||
|   virtual void MooeeInv(const FermionField &in, FermionField &out) ; | ||||
|   virtual void MooeeInvDag(const FermionField &in, FermionField &out) ; | ||||
|   virtual void M(const FermionField &in, FermionField &out) ; | ||||
|   virtual void Mdag(const FermionField &in, FermionField &out) ; | ||||
|    | ||||
| private: | ||||
|   RealD mu; // TwistedMass parameter | ||||
|   | ||||
| @@ -49,7 +49,6 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu, | ||||
| 			FourDimRedBlackGrid,_M5,p), | ||||
|   mass_plus(_mass), mass_minus(_mass) | ||||
| {  | ||||
|   // qmu defaults to zero size; | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////////////////// | ||||
| @@ -271,34 +270,6 @@ void CayleyFermion5D<Impl>::MeooeDag5D    (const FermionField &psi, FermionField | ||||
|   M5Ddag(psi,psi,Din,lower,diag,upper); | ||||
| } | ||||
|  | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag) | ||||
| { | ||||
|   if ( qmu.size() ) { | ||||
|  | ||||
|     Gamma::Algebra Gmu [] = { | ||||
|       Gamma::Algebra::GammaX, | ||||
|       Gamma::Algebra::GammaY, | ||||
|       Gamma::Algebra::GammaZ, | ||||
|       Gamma::Algebra::GammaT | ||||
|     }; | ||||
|     std::vector<ComplexD> coeff(Nd); | ||||
|     ComplexD ci(0,1); | ||||
|  | ||||
|     assert(qmu.size()==Nd); | ||||
|  | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|        coeff[mu] = ci*qmu[mu]; | ||||
|        if ( dag ) coeff[mu] = conjugate(coeff[mu]); | ||||
|     } | ||||
|  | ||||
|     chi = chi + Gamma(Gmu[0])*psi*coeff[0]; | ||||
|     for(int mu=1;mu<Nd;mu++){ | ||||
|       chi = chi + Gamma(Gmu[mu])*psi*coeff[mu]; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Impl> | ||||
| void CayleyFermion5D<Impl>::M    (const FermionField &psi, FermionField &chi) | ||||
| { | ||||
| @@ -308,10 +279,6 @@ void CayleyFermion5D<Impl>::M    (const FermionField &psi, FermionField &chi) | ||||
|   Meooe5D(psi,Din); | ||||
|    | ||||
|   this->DW(Din,chi,DaggerNo); | ||||
|  | ||||
|   // add i q_mu gamma_mu here | ||||
|   addQmu(Din,chi,DaggerNo); | ||||
|    | ||||
|   // ((b D_W + D_w hop terms +1) on s-diag | ||||
|   axpby(chi,1.0,1.0,chi,psi);  | ||||
|    | ||||
| @@ -329,9 +296,6 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi) | ||||
|   // Apply Dw | ||||
|   this->DW(psi,Din,DaggerYes);  | ||||
|    | ||||
|   // add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not. | ||||
|   addQmu(psi,Din,DaggerYes); | ||||
|    | ||||
|   MeooeDag5D(Din,chi); | ||||
|    | ||||
|   M5Ddag(psi,chi); | ||||
|   | ||||
| @@ -42,13 +42,13 @@ template<class Impl> | ||||
| void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata) | ||||
| { | ||||
|   // How to check Ls matches?? | ||||
|   std::cout<<GridLogMessage << zdata->n  << " - n"<<std::endl; | ||||
|   std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl; | ||||
|   std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl; | ||||
|   std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl; | ||||
|   std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl; | ||||
|   //      std::cout<<GridLogMessage << Ls << " Ls"<<std::endl; | ||||
|   //      std::cout<<GridLogMessage << zdata->n  << " - n"<<std::endl; | ||||
|   //      std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl; | ||||
|   //      std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl; | ||||
|   //      std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl; | ||||
|   //      std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl; | ||||
|   int Ls = this->Ls; | ||||
|   std::cout<<GridLogMessage << Ls << " Ls"<<std::endl; | ||||
|   assert(zdata->db==Ls);// Beta has Ls coeffs | ||||
|  | ||||
|   R=(1+this->mass)/(1-this->mass); | ||||
| @@ -320,7 +320,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D( | ||||
|       int Ls = this->Ls; | ||||
|       conformable(solution5d.Grid(),this->FermionGrid()); | ||||
|       conformable(exported4d.Grid(),this->GaugeGrid()); | ||||
|       ExtractSlice(exported4d, solution5d, Ls-1, 0); | ||||
|       ExtractSlice(exported4d, solution5d, Ls-1, Ls-1); | ||||
|     } | ||||
|     template<class Impl> | ||||
|     void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d) | ||||
| @@ -330,7 +330,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D( | ||||
|       conformable(input4d.Grid()   ,this->GaugeGrid()); | ||||
|       FermionField tmp(this->FermionGrid()); | ||||
|       tmp=Zero(); | ||||
|       InsertSlice(input4d, tmp, Ls-1, 0); | ||||
|       InsertSlice(input4d, tmp, Ls-1, Ls-1); | ||||
|       tmp=Gamma(Gamma::Algebra::Gamma5)*tmp; | ||||
|       this->Dminus(tmp,imported5d); | ||||
|     } | ||||
|   | ||||
| @@ -255,45 +255,6 @@ void   PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi | ||||
|   } | ||||
| 	 | ||||
|   { | ||||
|     // The 'conventional' Cayley overlap operator is | ||||
|     // | ||||
|     // Dov = (1+m)/2 + (1-m)/2 g5 sgn Hw | ||||
|     // | ||||
|     // | ||||
|     // With massless limit 1/2(1+g5 sgnHw) | ||||
|     // | ||||
|     // Luscher shows quite neatly that 1+g5 sgn Hw has tree level propagator i qslash +O(a^2) | ||||
|     // | ||||
|     // However, the conventional normalisation has both a leading order factor of 2 in Zq | ||||
|     // at tree level AND a mass dependent (1-m) that are convenient to absorb. | ||||
|     // | ||||
|     // In WilsonFermion5DImplementation.h, the tree level propagator for Hw is | ||||
|     // | ||||
|     // num = -i sin kmu gmu | ||||
|     // | ||||
|     // denom ( sqrt(sk^2 + (2shk^2 - 1)^2 | ||||
|     //    b_k = sk2 - M5; | ||||
|     //      | ||||
|     //    w_k = sqrt(sk + b_k*b_k); | ||||
|     // | ||||
|     //    denom= ( w_k + b_k + mass*mass) ; | ||||
|     // | ||||
|     //    denom= one/denom; | ||||
|     //    out = num*denom; | ||||
|     // | ||||
|     // Chroma, and Grid define partial fraction via 4d operator | ||||
|     // | ||||
|     //   Dpf = 2/(1-m) x Dov = (1+m)/(1-m) + g5 sgn Hw | ||||
|     // | ||||
|     // Now since: | ||||
|     // | ||||
|     //      (1+m)/(1-m) = (1-m)/(1-m) + 2m/(1-m) = 1 + 2m/(1-m) | ||||
|     // | ||||
|     // This corresponds to a modified mass parameter | ||||
|     // | ||||
|     // It has an annoying  | ||||
|     // | ||||
|     //  | ||||
|     double R=(1+this->mass)/(1-this->mass); | ||||
|     //R g5 psi[Ls] + p[0] H | ||||
|     ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1); | ||||
| @@ -303,28 +264,6 @@ void   PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi | ||||
|       double pp = p[nblock-1-b]; | ||||
|       axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s); | ||||
|     } | ||||
|  | ||||
|     if ( qmu.size() ) { | ||||
|  | ||||
|       FermionField qslash_psi(psi.Grid()); | ||||
|        | ||||
|       Gamma::Algebra Gmu [] = { | ||||
| 			 Gamma::Algebra::GammaX, | ||||
| 			 Gamma::Algebra::GammaY, | ||||
| 			 Gamma::Algebra::GammaZ, | ||||
| 			 Gamma::Algebra::GammaT | ||||
|       }; | ||||
|       ComplexD ci(0,1); | ||||
|       assert(qmu.size()==Nd); | ||||
|       qslash_psi = Gamma(Gmu[0])*psi; | ||||
|       for(int mu=1;mu<Nd;mu++){ | ||||
| 	qslash_psi = Gamma(Gmu[mu])*psi; | ||||
|       } | ||||
|       //      RealD coeff = 1.0; | ||||
|       qslash_psi = Gamma(Gamma::Algebra::Gamma5)*qslash_psi*ci ; // i g5 qslash -- 1-m factor??? | ||||
|       axpby_ssp(chi,1.0,chi,1.0, qslash_psi,Ls-1,Ls-1); | ||||
|     } | ||||
|      | ||||
|   } | ||||
|  | ||||
| } | ||||
| @@ -472,7 +411,7 @@ void  PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App | ||||
|       int Ls = this->Ls; | ||||
|       conformable(solution5d.Grid(),this->FermionGrid()); | ||||
|       conformable(exported4d.Grid(),this->GaugeGrid()); | ||||
|       ExtractSlice(exported4d, solution5d, Ls-1, 0); | ||||
|       ExtractSlice(exported4d, solution5d, Ls-1, Ls-1); | ||||
|     } | ||||
|     template<class Impl> | ||||
|     void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d) | ||||
| @@ -482,8 +421,7 @@ void  PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App | ||||
|       conformable(input4d.Grid()   ,this->GaugeGrid()); | ||||
|       FermionField tmp(this->FermionGrid()); | ||||
|       tmp=Zero(); | ||||
|       std::cout << " importing to slice " << Ls-1 <<std::endl; | ||||
|       InsertSlice(input4d, tmp, Ls-1, 0); | ||||
|       InsertSlice(input4d, tmp, Ls-1, Ls-1); | ||||
|       tmp=Gamma(Gamma::Algebra::Gamma5)*tmp; | ||||
|       this->Dminus(tmp,imported5d); | ||||
|     } | ||||
| @@ -504,7 +442,7 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu, | ||||
|  | ||||
| { | ||||
|   int Ls = this->Ls; | ||||
|   qmu.resize(0); | ||||
|  | ||||
|   assert((Ls&0x1)==1); // Odd Ls required | ||||
|   int nrational=Ls-1; | ||||
|  | ||||
| @@ -522,22 +460,6 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu, | ||||
|   Approx::zolotarev_free(zdata); | ||||
|  | ||||
| } | ||||
| template<class Impl> | ||||
| PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu, | ||||
| 							 GridCartesian         &FiveDimGrid, | ||||
| 							 GridRedBlackCartesian &FiveDimRedBlackGrid, | ||||
| 							 GridCartesian         &FourDimGrid, | ||||
| 							 GridRedBlackCartesian &FourDimRedBlackGrid, | ||||
| 							 RealD _mass,RealD M5, | ||||
| 							 std::vector<RealD> &_qmu, | ||||
| 							 const ImplParams &p) | ||||
|   : PartialFractionFermion5D<Impl>(_Umu, | ||||
| 			     FiveDimGrid,FiveDimRedBlackGrid, | ||||
| 			     FourDimGrid,FourDimRedBlackGrid, | ||||
| 			     _mass,M5,p) | ||||
| { | ||||
|   qmu=_qmu; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -280,20 +280,16 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo, | ||||
|  | ||||
|   if( interior && exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,1); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1);    return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptInlineAsm  ) {  ASM_CALL(DhopSiteAsm);     return;} | ||||
| #endif | ||||
|   } else if( interior ) { | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,1); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1);    return;} | ||||
| #endif | ||||
|   } else if( exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,1); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1);    return;} | ||||
| #endif | ||||
|   } | ||||
|   assert(0 && " Kernel optimisation case not covered "); | ||||
| } | ||||
| @@ -322,19 +318,13 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo, | ||||
|    | ||||
|   if( interior && exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,0); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0);    return;} | ||||
| #endif | ||||
|   } else if( interior ) { | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,0); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0);    return;} | ||||
| #endif | ||||
|   } else if( exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,0); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0);    return;} | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -462,6 +462,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField | ||||
|     autoView(st_v , st,AcceleratorRead); | ||||
|  | ||||
|    if( interior && exterior ) { | ||||
|      acceleratorFenceComputeStream(); | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSite); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite);    return;} | ||||
| #ifndef GRID_CUDA | ||||
| @@ -495,6 +496,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField | ||||
|     autoView(st_v ,st,AcceleratorRead); | ||||
|  | ||||
|    if( interior && exterior ) { | ||||
|      acceleratorFenceComputeStream(); | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteDag); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag);    return;} | ||||
| #ifndef GRID_CUDA | ||||
|   | ||||
| @@ -93,5 +93,25 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou | ||||
|   RealD b    = tm /sq; | ||||
|   axpibg5x(out,in,a,b); | ||||
| } | ||||
| template<class Impl> | ||||
| void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) { | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   this->Dhop(in, out, DaggerNo); | ||||
|   FermionField tmp(out.Grid()); | ||||
|   RealD a = 4.0+this->mass; | ||||
|   RealD b = this->mu; | ||||
|   axpibg5x(tmp,in,a,b); | ||||
|   axpy(out, 1.0, tmp, out); | ||||
| } | ||||
| template<class Impl> | ||||
| void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) { | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   this->Dhop(in, out, DaggerYes); | ||||
|   FermionField tmp(out.Grid()); | ||||
|   RealD a = 4.0+this->mass; | ||||
|   RealD b = -this->mu; | ||||
|   axpibg5x(tmp,in,a,b); | ||||
|   axpy(out, 1.0, tmp, out); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonImplD | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonImplF | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF | ||||
| @@ -10,12 +10,18 @@ WILSON_IMPL_LIST=" \ | ||||
| 	   WilsonImplF \ | ||||
| 	   WilsonImplD \ | ||||
| 	   WilsonImplD2 \ | ||||
| 	   SpWilsonImplF \ | ||||
| 	   SpWilsonImplD \ | ||||
| 	   WilsonAdjImplF \ | ||||
| 	   WilsonAdjImplD \ | ||||
| 	   WilsonTwoIndexSymmetricImplF \ | ||||
| 	   WilsonTwoIndexSymmetricImplD \ | ||||
| 	   WilsonTwoIndexAntiSymmetricImplF \ | ||||
| 	   WilsonTwoIndexAntiSymmetricImplD \ | ||||
| 	   SpWilsonTwoIndexAntiSymmetricImplF \ | ||||
| 	   SpWilsonTwoIndexAntiSymmetricImplD \ | ||||
| 	   SpWilsonTwoIndexSymmetricImplF \ | ||||
| 	   SpWilsonTwoIndexSymmetricImplD \ | ||||
| 	   GparityWilsonImplF \ | ||||
| 	   GparityWilsonImplD " | ||||
|  | ||||
|   | ||||
| @@ -39,6 +39,9 @@ NAMESPACE_BEGIN(Grid); | ||||
| typedef WilsonGaugeAction<PeriodicGimplR>          WilsonGaugeActionR; | ||||
| typedef WilsonGaugeAction<PeriodicGimplF>          WilsonGaugeActionF; | ||||
| typedef WilsonGaugeAction<PeriodicGimplD>          WilsonGaugeActionD; | ||||
| typedef WilsonGaugeAction<SpPeriodicGimplR>        SpWilsonGaugeActionR; | ||||
| typedef WilsonGaugeAction<SpPeriodicGimplF>        SpWilsonGaugeActionF; | ||||
| typedef WilsonGaugeAction<SpPeriodicGimplD>        SpWilsonGaugeActionD; | ||||
| typedef PlaqPlusRectangleAction<PeriodicGimplR>    PlaqPlusRectangleActionR; | ||||
| typedef PlaqPlusRectangleAction<PeriodicGimplF>    PlaqPlusRectangleActionF; | ||||
| typedef PlaqPlusRectangleAction<PeriodicGimplD>    PlaqPlusRectangleActionD; | ||||
|   | ||||
| @@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid); | ||||
|   typedef typename Impl::Field Field; | ||||
|  | ||||
| // hardcodes the exponential approximation in the template | ||||
| template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes { | ||||
| template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes { | ||||
| public: | ||||
|   typedef S Simd; | ||||
|   typedef typename Simd::scalar_type scalar_type; | ||||
| @@ -78,8 +78,6 @@ public: | ||||
|   typedef Lattice<SiteLink>    LinkField;  | ||||
|   typedef Lattice<SiteField>   Field; | ||||
|  | ||||
|   typedef SU<Nrepresentation> Group; | ||||
|  | ||||
|   // Guido: we can probably separate the types from the HMC functions | ||||
|   // this will create 2 kind of implementations | ||||
|   // probably confusing the users | ||||
| @@ -119,6 +117,7 @@ public: | ||||
|     // | ||||
|     LinkField Pmu(P.Grid()); | ||||
|     Pmu = Zero(); | ||||
|  | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu); | ||||
|       RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ; | ||||
| @@ -127,7 +126,11 @@ public: | ||||
|     } | ||||
|   } | ||||
|      | ||||
|   static inline Field projectForce(Field &P) { return Ta(P); } | ||||
|   static inline Field projectForce(Field &P) { | ||||
|       Field ret(P.Grid()); | ||||
|       Group::taProj(P, ret); | ||||
|       return ret; | ||||
|     } | ||||
|  | ||||
|   static inline void update_field(Field& P, Field& U, double ep){ | ||||
|     //static std::chrono::duration<double> diff; | ||||
| @@ -137,7 +140,8 @@ public: | ||||
|     autoView(P_v,P,AcceleratorRead); | ||||
|     accelerator_for(ss, P.Grid()->oSites(),1,{ | ||||
|       for (int mu = 0; mu < Nd; mu++) { | ||||
|         U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu)); | ||||
|           U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu); | ||||
|           U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu)); | ||||
|       } | ||||
|     }); | ||||
|    //auto end = std::chrono::high_resolution_clock::now(); | ||||
| @@ -157,7 +161,7 @@ public: | ||||
|   } | ||||
|  | ||||
|   static inline void Project(Field &U) { | ||||
|     ProjectSUn(U); | ||||
|     Group::ProjectOnSpecialGroup(U); | ||||
|   } | ||||
|  | ||||
|   static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) { | ||||
| @@ -171,6 +175,7 @@ public: | ||||
|   static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) { | ||||
|     Group::ColdConfiguration(pRNG, U); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|  | ||||
| @@ -178,10 +183,17 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR; | ||||
| typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF; | ||||
| typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD; | ||||
|  | ||||
| typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR; | ||||
| typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF; | ||||
| typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD; | ||||
|  | ||||
| typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR; | ||||
| typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF; | ||||
| typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD; | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif // GRID_GAUGE_IMPL_TYPES_H | ||||
|   | ||||
| @@ -176,7 +176,7 @@ public: | ||||
|       return PeriodicBC::CshiftLink(Link,mu,shift); | ||||
|   } | ||||
|  | ||||
|   static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; } | ||||
|   static inline void       setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; } | ||||
|   static inline std::vector<int> getDirections(void) { return _conjDirs; } | ||||
|   static inline bool isPeriodicGaugeField(void) { return false; } | ||||
| }; | ||||
| @@ -193,6 +193,11 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre | ||||
| typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float | ||||
| typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double | ||||
|  | ||||
| typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec | ||||
| typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float | ||||
| typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -43,7 +43,7 @@ public: | ||||
| private: | ||||
|   RealD c_plaq; | ||||
|   RealD c_rect; | ||||
|  | ||||
|   typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace; | ||||
| public: | ||||
|   PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){}; | ||||
|  | ||||
| @@ -79,27 +79,18 @@ public: | ||||
|     GridBase *grid = Umu.Grid(); | ||||
|  | ||||
|     std::vector<GaugeLinkField> U (Nd,grid); | ||||
|     std::vector<GaugeLinkField> U2(Nd,grid); | ||||
|  | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       U[mu] = PeekIndex<LorentzIndex>(Umu,mu); | ||||
|       WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu); | ||||
|     } | ||||
|     std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid); | ||||
|     WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace); | ||||
|  | ||||
|     GaugeLinkField dSdU_mu(grid); | ||||
|     GaugeLinkField staple(grid); | ||||
|  | ||||
|     for (int mu=0; mu < Nd; mu++){ | ||||
|  | ||||
|       // Staple in direction mu | ||||
|  | ||||
|       WilsonLoops<Gimpl>::Staple(staple,Umu,mu); | ||||
|  | ||||
|       dSdU_mu = Ta(U[mu]*staple)*factor_p; | ||||
|  | ||||
|       WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu); | ||||
|  | ||||
|       dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r; | ||||
|       dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p; | ||||
|       dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r; | ||||
| 	   | ||||
|       PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu); | ||||
|     } | ||||
|   | ||||
| @@ -225,6 +225,18 @@ template <class RepresentationsPolicy, | ||||
| using GenericHMCRunnerHirep = | ||||
| 				     HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>; | ||||
|  | ||||
| // sp2n | ||||
|  | ||||
| template <template <typename, typename, typename> class Integrator> | ||||
| using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>; | ||||
|  | ||||
| template <class RepresentationsPolicy, | ||||
|           template <typename, typename, typename> class Integrator> | ||||
| using GenericSpHMCRunnerHirep = | ||||
|                      HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>; | ||||
|  | ||||
|  | ||||
|  | ||||
| template <class Implementation, class RepresentationsPolicy,  | ||||
|           template <typename, typename, typename> class Integrator> | ||||
| using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>; | ||||
|   | ||||
| @@ -87,6 +87,8 @@ public: | ||||
|  | ||||
|   const ActionSet<Field, RepresentationPolicy> as; | ||||
|  | ||||
|   ActionSet<Field,RepresentationPolicy> LevelForces; | ||||
|    | ||||
|   //Get a pointer to a shared static instance of the "do-nothing" momentum filter to serve as a default | ||||
|   static MomentumFilterBase<MomentaField> const* getDefaultMomFilter(){  | ||||
|     static MomentumFilterNone<MomentaField> filter; | ||||
| @@ -124,6 +126,9 @@ public: | ||||
|     // input U actually not used in the fundamental case | ||||
|     // Fundamental updates, include smearing | ||||
|  | ||||
|     assert(as.size()==LevelForces.size()); | ||||
|      | ||||
|     Field level_force(U.Grid()); level_force =Zero(); | ||||
|     for (int a = 0; a < as[level].actions.size(); ++a) { | ||||
|  | ||||
|       double start_full = usecond(); | ||||
| @@ -145,6 +150,9 @@ public: | ||||
|  | ||||
|       std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<<  std::endl; | ||||
|  | ||||
|       // track the total | ||||
|       level_force = level_force+force; | ||||
|  | ||||
|       Real force_abs   = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm.  nb. norm2(latt) = \sum_x norm2(latt[x])  | ||||
|       Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;     | ||||
|  | ||||
| @@ -167,6 +175,16 @@ public: | ||||
|  | ||||
|     } | ||||
|  | ||||
|     { | ||||
|       // total force | ||||
|       Real force_abs   = std::sqrt(norm2(level_force)/U.Grid()->gSites()); //average per-site norm.  nb. norm2(latt) = \sum_x norm2(latt[x])  | ||||
|       Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;     | ||||
|  | ||||
|       Real force_max   = std::sqrt(maxLocalNorm2(level_force)); | ||||
|       Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;     | ||||
|       LevelForces[level].actions.at(0)->deriv_log(force_abs,force_max,impulse_abs,impulse_max); | ||||
|     } | ||||
|  | ||||
|     // Force from the other representations | ||||
|     as[level].apply(update_P_hireps, Representations, Mom, U, ep); | ||||
|  | ||||
| @@ -216,6 +234,16 @@ public: | ||||
|  | ||||
|     //Default the momentum filter to "do-nothing" | ||||
|     MomFilter = getDefaultMomFilter(); | ||||
|  | ||||
|     for (int level = 0; level < as.size(); ++level) { | ||||
|       int multiplier = as.at(level).multiplier; | ||||
|       ActionLevel<Field, RepresentationPolicy> * Level = new ActionLevel<Field, RepresentationPolicy>(multiplier); | ||||
|       Level->push_back(new EmptyAction<Field>);  | ||||
|       LevelForces.push_back(*Level); | ||||
|       // does it copy by value or reference?? | ||||
|       // - answer it copies by value, BUT the action level contains a reference that is NOT updated. | ||||
|       // Unsafe code in Guido's area | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   virtual ~Integrator() {} | ||||
| @@ -233,10 +261,14 @@ public: | ||||
|  | ||||
|   void reset_timer(void) | ||||
|   { | ||||
|     assert(as.size()==LevelForces.size()); | ||||
|     for (int level = 0; level < as.size(); ++level) { | ||||
|       for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) { | ||||
|         as[level].actions.at(actionID)->reset_timer(); | ||||
|       } | ||||
|       int actionID=0; | ||||
|       assert(LevelForces.at(level).actions.size()==1); | ||||
|       LevelForces.at(level).actions.at(actionID)->reset_timer(); | ||||
|     } | ||||
|   } | ||||
|   void print_timer(void) | ||||
| @@ -298,6 +330,16 @@ public: | ||||
| 		  <<" calls "     << as[level].actions.at(actionID)->deriv_num | ||||
| 		  << std::endl; | ||||
|       } | ||||
|       int actionID=0; | ||||
|       std::cout << GridLogMessage  | ||||
| 		  << LevelForces[level].actions.at(actionID)->action_name() | ||||
| 		  <<"["<<level<<"]["<< actionID<<"] :\n\t\t " | ||||
| 		  <<" force max " << LevelForces[level].actions.at(actionID)->deriv_max_average() | ||||
| 		  <<" norm "      << LevelForces[level].actions.at(actionID)->deriv_norm_average() | ||||
| 		  <<" Fdt max  "  << LevelForces[level].actions.at(actionID)->Fdt_max_average() | ||||
| 		  <<" Fdt norm "  << LevelForces[level].actions.at(actionID)->Fdt_norm_average() | ||||
| 		  <<" calls "     << LevelForces[level].actions.at(actionID)->deriv_num | ||||
| 		  << std::endl; | ||||
|     } | ||||
|     std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl; | ||||
|   } | ||||
| @@ -319,6 +361,13 @@ public: | ||||
| 	std::cout << as[level].actions.at(actionID)->LogParameters(); | ||||
|       } | ||||
|     } | ||||
|     std::cout << " [Integrator] Total Force loggers: "<< LevelForces.size() <<std::endl; | ||||
|     for (int level = 0; level < LevelForces.size(); ++level) { | ||||
|       std::cout << GridLogMessage << "[Integrator] ---- Level: "<< level << std::endl; | ||||
|       for (int actionID = 0; actionID < LevelForces[level].actions.size(); ++actionID) { | ||||
| 	std::cout << GridLogMessage << "["<< LevelForces[level].actions.at(actionID)->action_name() << "] ID: " << actionID << std::endl; | ||||
|       } | ||||
|     } | ||||
|     std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl; | ||||
|   } | ||||
|  | ||||
| @@ -400,6 +449,7 @@ public: | ||||
|   RealD S(Field& U)  | ||||
|   {  // here also U not used | ||||
|  | ||||
|     assert(as.size()==LevelForces.size()); | ||||
|     std::cout << GridLogIntegrator << "Integrator action\n"; | ||||
|  | ||||
|     RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom | ||||
|   | ||||
| @@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid); | ||||
|  * Empty since HMC updates already the fundamental representation  | ||||
|  */ | ||||
|  | ||||
| template <int ncolour> | ||||
| template <int ncolour, class group_name> | ||||
| class FundamentalRep { | ||||
| public: | ||||
|   static const int Dimension = ncolour; | ||||
| @@ -21,7 +21,7 @@ public: | ||||
|  | ||||
|   // typdef to be used by the Representations class in HMC to get the | ||||
|   // types for the higher representation fields | ||||
|   typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix; | ||||
|   typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix; | ||||
|   typedef LatticeGaugeField LatticeField; | ||||
|    | ||||
|   explicit FundamentalRep(GridBase* grid) {} //do nothing | ||||
| @@ -45,7 +45,8 @@ public: | ||||
|      | ||||
|  | ||||
|    | ||||
| typedef	 FundamentalRep<Nc> FundamentalRepresentation; | ||||
| typedef	 FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation; | ||||
| typedef	 FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation; | ||||
|  | ||||
| NAMESPACE_END(Grid);   | ||||
|  | ||||
|   | ||||
| @@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid); | ||||
|  * in the SUnTwoIndex.h file | ||||
|  */ | ||||
|  | ||||
| template <int ncolour, TwoIndexSymmetry S> | ||||
| template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU> | ||||
| class TwoIndexRep { | ||||
| public: | ||||
|   // typdef to be used by the Representations class in HMC to get the | ||||
|   // types for the higher representation fields | ||||
|   typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix; | ||||
|   typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField; | ||||
|   static const int Dimension = ncolour * (ncolour + S) / 2; | ||||
|   typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix; | ||||
|   typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField; | ||||
|   static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension; | ||||
|   static const bool isFundamental = false; | ||||
|  | ||||
|   LatticeField U; | ||||
| @@ -43,10 +43,10 @@ public: | ||||
|     U = Zero(); | ||||
|     LatticeColourMatrix tmp(Uin.Grid()); | ||||
|  | ||||
|     Vector<typename SU<ncolour>::Matrix> eij(Dimension); | ||||
|     Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension); | ||||
|  | ||||
|     for (int a = 0; a < Dimension; a++) | ||||
|       SU_TwoIndex<ncolour, S>::base(a, eij[a]); | ||||
|       GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]); | ||||
|  | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       auto Uin_mu = peekLorentz(Uin, mu); | ||||
| @@ -71,7 +71,7 @@ public: | ||||
|  | ||||
|       out_mu = Zero(); | ||||
|  | ||||
|       typename SU<ncolour>::LatticeAlgebraVector h(in.Grid()); | ||||
|       typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid()); | ||||
|       projectOnAlgebra(h, in_mu, double(Nc + 2 * S));  // factor T(r)/T(fund) | ||||
|       FundamentalLieAlgebraMatrix(h, out_mu);          // apply scale only once | ||||
|       pokeLorentz(out, out_mu, mu); | ||||
| @@ -80,20 +80,23 @@ public: | ||||
|   } | ||||
|  | ||||
| private: | ||||
|   void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, | ||||
|   void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out, | ||||
|                         const LatticeMatrix &in, Real scale = 1.0) const { | ||||
|     SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale); | ||||
|     GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale); | ||||
|   } | ||||
|  | ||||
|   void FundamentalLieAlgebraMatrix( | ||||
| 				   typename SU<ncolour>::LatticeAlgebraVector &h, | ||||
| 				   typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const { | ||||
|     SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale); | ||||
| 				   typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h, | ||||
| 				   typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const { | ||||
|     GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation; | ||||
| typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation; | ||||
| typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation; | ||||
| typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation; | ||||
|  | ||||
| typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation; | ||||
| typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
|  | ||||
| /*! | ||||
|   @file GaugeConfiguration.h | ||||
|   @brief Declares the GaugeConfiguration class | ||||
| @@ -6,6 +7,15 @@ | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class T> void Dump(const Lattice<T> & lat, | ||||
| 			    std::string s, | ||||
| 			    Coordinate site = Coordinate({0,0,0,0})) | ||||
| { | ||||
|   typename T::scalar_object tmp; | ||||
|   peekSite(tmp,lat,site); | ||||
|   std::cout << " Dump "<<s<<" "<<tmp<<std::endl; | ||||
| } | ||||
| /*! | ||||
|   @brief Smeared configuration masked container | ||||
|   Modified for a multi-subset smearing (aka Luscher Flowed HMC) | ||||
| @@ -28,6 +38,101 @@ private: | ||||
|   typedef typename SU3Adjoint::LatticeAdjMatrix  AdjMatrixField; | ||||
|   typedef typename SU3Adjoint::LatticeAdjVector  AdjVectorField; | ||||
|  | ||||
|   void BaseSmearDerivative(GaugeField& SigmaTerm, | ||||
| 			   const GaugeField& iLambda, | ||||
| 			   const GaugeField& U, | ||||
| 			   int mmu, RealD rho) | ||||
|   { | ||||
|     // Reference | ||||
|     // Morningstar, Peardon, Phys.Rev.D69,054501(2004) | ||||
|     // Equation 75 | ||||
|     // Computing Sigma_mu, derivative of S[fat links] with respect to the thin links | ||||
|     // Output SigmaTerm | ||||
|  | ||||
|     GridBase *grid = U.Grid(); | ||||
|  | ||||
|     WilsonLoops<Gimpl> WL; | ||||
|     GaugeLinkField staple(grid), u_tmp(grid); | ||||
|     GaugeLinkField iLambda_mu(grid), iLambda_nu(grid); | ||||
|     GaugeLinkField U_mu(grid), U_nu(grid); | ||||
|     GaugeLinkField sh_field(grid), temp_Sigma(grid); | ||||
|     Real rho_munu, rho_numu; | ||||
|  | ||||
|     rho_munu = rho; | ||||
|     rho_numu = rho; | ||||
|     for(int mu = 0; mu < Nd; ++mu){ | ||||
|       U_mu       = peekLorentz(      U, mu); | ||||
|       iLambda_mu = peekLorentz(iLambda, mu); | ||||
|  | ||||
|       for(int nu = 0; nu < Nd; ++nu){ | ||||
| 	if(nu==mu) continue; | ||||
|  | ||||
| 	U_nu       = peekLorentz(      U, nu); | ||||
|  | ||||
| 	// Nd(nd-1) = 12 staples normally. | ||||
| 	// We must compute 6 of these | ||||
| 	// in FTHMC case | ||||
| 	if ( (mu==mmu)||(nu==mmu) ) | ||||
| 	  WL.StapleUpper(staple, U, mu, nu); | ||||
| 	 | ||||
| 	if(nu==mmu) { | ||||
| 	  iLambda_nu = peekLorentz(iLambda, nu); | ||||
|  | ||||
| 	  temp_Sigma = -rho_numu*staple*iLambda_nu;  //ok | ||||
| 	  //-r_numu*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)*Lambda_nu(x) | ||||
| 	  Gimpl::AddLink(SigmaTerm, temp_Sigma, mu); | ||||
|  | ||||
| 	  sh_field = Cshift(iLambda_nu, mu, 1);// general also for Gparity? | ||||
|  | ||||
| 	  temp_Sigma = rho_numu*sh_field*staple; //ok | ||||
| 	  //r_numu*Lambda_nu(mu)*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x) | ||||
| 	  Gimpl::AddLink(SigmaTerm, temp_Sigma, mu); | ||||
| 	} | ||||
|  | ||||
| 	if ( mu == mmu ) {  | ||||
| 	  sh_field = Cshift(iLambda_mu, nu, 1); | ||||
|  | ||||
| 	  temp_Sigma = -rho_munu*staple*U_nu*sh_field*adj(U_nu); //ok | ||||
| 	  //-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x) | ||||
| 	  Gimpl::AddLink(SigmaTerm, temp_Sigma, mu); | ||||
| 	} | ||||
|  | ||||
| 	//	staple = Zero(); | ||||
| 	sh_field = Cshift(U_nu, mu, 1); | ||||
|  | ||||
| 	temp_Sigma = Zero(); | ||||
|  | ||||
| 	if ( mu == mmu ) | ||||
| 	  temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu; | ||||
|  | ||||
| 	if ( nu == mmu ) { | ||||
| 	  temp_Sigma += rho_numu*adj(sh_field)*adj(U_mu)*iLambda_nu*U_nu; | ||||
|  | ||||
| 	  u_tmp = adj(U_nu)*iLambda_nu; | ||||
| 	  sh_field = Cshift(u_tmp, mu, 1); | ||||
| 	  temp_Sigma += -rho_numu*sh_field*adj(U_mu)*U_nu; | ||||
| 	} | ||||
| 	 | ||||
| 	sh_field = Cshift(temp_Sigma, nu, -1); | ||||
| 	Gimpl::AddLink(SigmaTerm, sh_field, mu); | ||||
|  | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   void BaseSmear(GaugeLinkField& Cup, const GaugeField& U,int mu,RealD rho) { | ||||
|     GridBase *grid = U.Grid(); | ||||
|     GaugeLinkField tmp_stpl(grid); | ||||
|     WilsonLoops<Gimpl> WL; | ||||
|     Cup = Zero(); | ||||
|     for(int nu=0; nu<Nd; ++nu){ | ||||
|       if (nu != mu) { | ||||
| 	// get the staple in direction mu, nu | ||||
| 	WL.Staple(tmp_stpl, U, mu, nu);  //nb staple conventions of IroIro and Grid differ by a dagger | ||||
| 	Cup += adj(tmp_stpl*rho); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   // Adjoint vector to GaugeField force | ||||
|   void InsertForce(GaugeField &Fdet,AdjVectorField &Fdet_nu,int nu) | ||||
|   { | ||||
| @@ -47,27 +152,54 @@ private: | ||||
|     GaugeLinkField UtaU(PlaqL.Grid()); | ||||
|     GaugeLinkField D(PlaqL.Grid()); | ||||
|     AdjMatrixField Dbc(PlaqL.Grid()); | ||||
|     AdjMatrixField Dbc_opt(PlaqL.Grid()); | ||||
|     LatticeComplex tmp(PlaqL.Grid()); | ||||
|     const int Ngen = SU3Adjoint::Dimension; | ||||
|     Complex ci(0,1); | ||||
|     ColourMatrix   ta,tb,tc; | ||||
|      | ||||
|     RealD t=0; | ||||
|     RealD tp=0; | ||||
|     RealD tta=0; | ||||
|     RealD tpk=0; | ||||
|     t-=usecond(); | ||||
|     for(int a=0;a<Ngen;a++) { | ||||
|       tta-=usecond(); | ||||
|       SU3::generator(a, ta); | ||||
|       ta = 2.0 * ci * ta; | ||||
|       // Qlat Tb = 2i Tb^Grid | ||||
|       UtaU= 2.0*ci*adj(PlaqL)*ta*PlaqR; | ||||
|       UtaU= adj(PlaqL)*ta*PlaqR; // 6ms | ||||
|       tta+=usecond(); | ||||
|       //////////////////////////////////////////// | ||||
|       // Could add this entire C-loop to a projection routine | ||||
|       // for performance. Could also pick checkerboard on UtaU | ||||
|       // and set checkerboard on result for 2x perf | ||||
|       //////////////////////////////////////////// | ||||
|       for(int c=0;c<Ngen;c++) { | ||||
| 	SU3::generator(c, tc); | ||||
| 	D = Ta( (2.0)*ci*tc *UtaU); | ||||
| 	tc = 2.0*ci*tc; | ||||
| 	tp-=usecond();  | ||||
| 	D = Ta( tc *UtaU); // 2ms | ||||
| #if 1 | ||||
| 	SU3::LieAlgebraProject(Dbc_opt,D,c); // 5.5ms | ||||
| #else | ||||
| 	for(int b=0;b<Ngen;b++){ | ||||
| 	  SU3::generator(b, tb); | ||||
| 	  tmp =-trace(ci*tb*D);  | ||||
| 	  PokeIndex<ColourIndex>(Dbc,tmp,b,c);  // Adjoint rep | ||||
| 	} | ||||
| #endif | ||||
| 	tp+=usecond(); | ||||
|       } | ||||
|       tmp = trace(MpInvJx * Dbc); | ||||
|       //      Dump(Dbc_opt,"Dbc_opt"); | ||||
|       //      Dump(Dbc,"Dbc"); | ||||
|       tpk-=usecond(); | ||||
|       tmp = trace(MpInvJx * Dbc_opt); | ||||
|       PokeIndex<ColourIndex>(Fdet2,tmp,a); | ||||
|       tpk+=usecond(); | ||||
|     } | ||||
|     t+=usecond(); | ||||
|     std::cout << GridLogPerformance << " Compute_MpInvJx_dNxxdSy " << t/1e3 << " ms  proj "<<tp/1e3<< " ms" | ||||
| 	      << " ta "<<tta/1e3<<" ms" << " poke "<<tpk/1e3<< " ms"<<std::endl; | ||||
|   } | ||||
|    | ||||
|   void ComputeNxy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR,AdjMatrixField &NxAd) | ||||
| @@ -79,12 +211,17 @@ private: | ||||
|     ColourMatrix   tc; | ||||
|     for(int b=0;b<Ngen;b++) { | ||||
|       SU3::generator(b, tb); | ||||
|       Nx = (2.0)*Ta( adj(PlaqL)*ci*tb * PlaqR ); | ||||
|       tb = 2.0 * ci * tb; | ||||
|       Nx = Ta( adj(PlaqL)*tb * PlaqR ); | ||||
| #if 1 | ||||
|       SU3::LieAlgebraProject(NxAd,Nx,b); | ||||
| #else | ||||
|       for(int c=0;c<Ngen;c++) { | ||||
| 	SU3::generator(c, tc); | ||||
| 	auto tmp =closure( -trace(ci*tc*Nx));  | ||||
| 	PokeIndex<ColourIndex>(NxAd,tmp,c,b);  | ||||
|       } | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|   void ApplyMask(GaugeField &U,int smr) | ||||
| @@ -164,8 +301,7 @@ public: | ||||
|     // Computes ALL the staples -- could compute one only and do it here | ||||
|     RealD time; | ||||
|     time=-usecond(); | ||||
|     this->StoutSmearing->BaseSmear(C, U); | ||||
|     Cmu = peekLorentz(C, mu); | ||||
|     BaseSmear(Cmu, U,mu,rho); | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////// | ||||
|     // Assemble Luscher exp diff map J matrix  | ||||
| @@ -209,6 +345,36 @@ public: | ||||
|     // dJ(x)/dxe | ||||
|     ////////////////////////////////////// | ||||
|     time=-usecond(); | ||||
| #if 1 | ||||
|     std::vector<AdjMatrixField>  dJdX;    dJdX.resize(8,grid); | ||||
|     std::vector<AdjMatrix> TRb_s; TRb_s.resize(8); | ||||
|     AdjMatrixField tbXn(grid); | ||||
|     AdjMatrixField sumXtbX(grid); | ||||
|     AdjMatrixField t2(grid); | ||||
|     AdjMatrixField dt2(grid); | ||||
|     AdjMatrixField t3(grid); | ||||
|     AdjMatrixField dt3(grid); | ||||
|     AdjMatrixField aunit(grid); | ||||
|  | ||||
|     for(int b=0;b<8;b++){ | ||||
|       SU3Adjoint::generator(b, TRb_s[b]); | ||||
|       dJdX[b] = TRb_s[b]; | ||||
|     } | ||||
|     aunit = ComplexD(1.0); | ||||
|     // Could put into an accelerator_for | ||||
|     X  = (-1.0)*ZxAd;  | ||||
|     t2 = X; | ||||
|     for (int j = 12; j > 1; --j) { | ||||
|       t3  = t2*(1.0 / (j + 1))  + aunit; | ||||
|       t2  = X * t3; | ||||
|       for(int b=0;b<8;b++){ | ||||
| 	dJdX[b]= TRb_s[b] * t3 + X * dJdX[b]*(1.0 / (j + 1)); | ||||
|       } | ||||
|     } | ||||
|     for(int b=0;b<8;b++){ | ||||
|       dJdX[b] = -dJdX[b]; | ||||
|     } | ||||
| #else | ||||
|     std::vector<AdjMatrixField>  dJdX;    dJdX.resize(8,grid); | ||||
|     AdjMatrixField tbXn(grid); | ||||
|     AdjMatrixField sumXtbX(grid); | ||||
| @@ -224,7 +390,7 @@ public: | ||||
|       X  = (-1.0)*ZxAd;  | ||||
|       t2 = X; | ||||
|       dt2 = TRb; | ||||
|       for (int j = 20; j > 1; --j) { | ||||
|       for (int j = 12; j > 1; --j) { | ||||
| 	t3  = t2*(1.0 / (j + 1))  + aunit; | ||||
| 	dt3 = dt2*(1.0 / (j + 1)); | ||||
| 	t2 = X * t3; | ||||
| @@ -232,6 +398,7 @@ public: | ||||
|       } | ||||
|       dJdX[b] = -dt2;  | ||||
|     } | ||||
| #endif   | ||||
|     time+=usecond(); | ||||
|     std::cout << GridLogMessage << "dJx took "<<time<< " us"<<std::endl; | ||||
|     ///////////////////////////////////////////////////////////////// | ||||
| @@ -281,8 +448,8 @@ public: | ||||
|      | ||||
|     for(int e =0 ; e<8 ; e++){ | ||||
|       LatticeComplexD tr(grid); | ||||
|       ColourMatrix te; | ||||
|       SU3::generator(e, te); | ||||
|       //      ColourMatrix te; | ||||
|       //      SU3::generator(e, te); | ||||
|       tr = trace(dJdX[e] * nMpInv); | ||||
|       pokeColour(dJdXe_nMpInv,tr,e); | ||||
|     } | ||||
| @@ -493,20 +660,25 @@ public: | ||||
|     ////////////////////////////////////////////////////////////////// | ||||
|     // Assemble the N matrix | ||||
|     ////////////////////////////////////////////////////////////////// | ||||
|     // Computes ALL the staples -- could compute one only here | ||||
|     this->StoutSmearing->BaseSmear(C, U); | ||||
|     Cmu = peekLorentz(C, mu); | ||||
|     double rho=this->StoutSmearing->SmearRho[1]; | ||||
|     BaseSmear(Cmu, U,mu,rho); | ||||
|  | ||||
|     Umu = peekLorentz(U, mu); | ||||
|     Complex ci(0,1); | ||||
|     for(int b=0;b<Ngen;b++) { | ||||
|       SU3::generator(b, Tb); | ||||
|       // Qlat Tb = 2i Tb^Grid | ||||
|       Nb = (2.0)*Ta( ci*Tb * Umu * adj(Cmu)); | ||||
|       // FIXME -- replace this with LieAlgebraProject | ||||
| #if 0 | ||||
|       SU3::LieAlgebraProject(Ncb,tmp,b); | ||||
| #else | ||||
|       for(int c=0;c<Ngen;c++) { | ||||
| 	SU3::generator(c, Tc); | ||||
| 	auto tmp = -trace(ci*Tc*Nb); // Luchang's norm: (2Tc) (2Td) N^db = -2 delta cd N^db // - was important | ||||
| 	PokeIndex<ColourIndex>(Ncb,tmp,c,b);  | ||||
|       } | ||||
| #endif | ||||
|     }       | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////// | ||||
| @@ -693,7 +865,7 @@ private: | ||||
| 					  const GaugeField& GaugeK,int level)  | ||||
|   { | ||||
|     GridBase* grid = GaugeK.Grid(); | ||||
|     GaugeField C(grid), SigmaK(grid), iLambda(grid); | ||||
|     GaugeField SigmaK(grid), iLambda(grid); | ||||
|     GaugeField SigmaKPrimeA(grid); | ||||
|     GaugeField SigmaKPrimeB(grid); | ||||
|     GaugeLinkField iLambda_mu(grid); | ||||
| @@ -701,7 +873,11 @@ private: | ||||
|     GaugeLinkField SigmaKPrime_mu(grid); | ||||
|     GaugeLinkField GaugeKmu(grid), Cmu(grid); | ||||
|  | ||||
|     this->StoutSmearing->BaseSmear(C, GaugeK); | ||||
|     int mmu= (level/2) %Nd; | ||||
|     int cb= (level%2); | ||||
|     double rho=this->StoutSmearing->SmearRho[1]; | ||||
|  | ||||
|     // Can override this to do one direction only. | ||||
|     SigmaK = Zero(); | ||||
|     iLambda = Zero(); | ||||
|  | ||||
| @@ -712,18 +888,38 @@ private: | ||||
|     // Could get away with computing only one polarisation here | ||||
|     // int mu= (smr/2) %Nd; | ||||
|     // SigmaKprime_A has only one component | ||||
|     for (int mu = 0; mu < Nd; mu++) | ||||
|     { | ||||
|       Cmu = peekLorentz(C, mu); | ||||
| #if 0 | ||||
|     BaseSmear(Cmu, GaugeK,mu,rho); | ||||
|     GaugeKmu = peekLorentz(GaugeK, mu); | ||||
|     SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu); | ||||
|     iQ = Ta(Cmu * adj(GaugeKmu)); | ||||
|     this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu); | ||||
|     pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu); | ||||
|     pokeLorentz(iLambda, iLambda_mu, mu); | ||||
|     BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho);  // derivative of SmearBase | ||||
| #else | ||||
|     //    GaugeField C(grid); | ||||
|     //    this->StoutSmearing->BaseSmear(C, GaugeK); | ||||
|     //    for (int mu = 0; mu < Nd; mu++) | ||||
|     int mu =mmu; | ||||
|     BaseSmear(Cmu, GaugeK,mu,rho); | ||||
|     { | ||||
|       // Cmu = peekLorentz(C, mu); | ||||
|       GaugeKmu = peekLorentz(GaugeK, mu); | ||||
|       SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu); | ||||
|       iQ = Ta(Cmu * adj(GaugeKmu)); | ||||
|       this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu); | ||||
|       pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu); | ||||
|       pokeLorentz(iLambda, iLambda_mu, mu); | ||||
|       std::cout << " mu "<<mu<<" SigmaKPrime_mu"<<norm2(SigmaKPrime_mu)<< " iLambda_mu " <<norm2(iLambda_mu)<<std::endl; | ||||
|     } | ||||
|     this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK);  // derivative of SmearBase | ||||
|  | ||||
|     //    GaugeField SigmaKcopy(grid); | ||||
|     //    SigmaKcopy = SigmaK; | ||||
|     BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho);  // derivative of SmearBase | ||||
|     //    this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK);  // derivative of SmearBase | ||||
|     //    SigmaKcopy = SigmaKcopy - SigmaK; | ||||
|     //    std::cout << " BaseSmearDerivative fast path error" <<norm2(SigmaKcopy)<<std::endl; | ||||
| #endif | ||||
|     //////////////////////////////////////////////////////////////////////////////////// | ||||
|     // propagate the rest of the force as identity map, just add back | ||||
|     //////////////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
							
								
								
									
										389
									
								
								Grid/qcd/smearing/HISQSmearing.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										389
									
								
								Grid/qcd/smearing/HISQSmearing.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,389 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/qcd/smearing/HISQSmearing.h | ||||
|  | ||||
| Copyright (C) 2023 | ||||
|  | ||||
| Author: D. A. Clarke <clarke.davida@gmail.com>  | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /* | ||||
|     @file HISQSmearing.h | ||||
|     @brief Declares classes related to HISQ smearing  | ||||
| */ | ||||
|  | ||||
|  | ||||
| #pragma once | ||||
| #include <Grid/Grid.h> | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
| #include <Grid/stencil/GeneralLocalStencil.h> | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| // TODO: find a way to fold this into the stencil header. need to access grid to get | ||||
| // Nd, since you don't want to inherit from QCD.h | ||||
| /*!  @brief append arbitrary shift path to shifts */ | ||||
| template<typename... Args> | ||||
| void appendShift(std::vector<Coordinate>& shifts, int dir, Args... args) { | ||||
|     Coordinate shift(Nd,0); | ||||
|     generalShift(shift, dir, args...);  | ||||
|     // push_back creates an element at the end of shifts and | ||||
|     // assigns the data in the argument to it. | ||||
|     shifts.push_back(shift); | ||||
| } | ||||
|  | ||||
|  | ||||
| /*!  @brief figure out the stencil index from mu and nu */ | ||||
| accelerator_inline int stencilIndex(int mu, int nu) { | ||||
|     // Nshifts depends on how you built the stencil | ||||
|     int Nshifts = 6; | ||||
|     return Nshifts*nu + Nd*Nshifts*mu; | ||||
| } | ||||
|  | ||||
|  | ||||
| /*!  @brief structure holding the link treatment */ | ||||
| struct SmearingParameters{ | ||||
|     SmearingParameters(){} | ||||
|     Real c_1;               // 1 link | ||||
|     Real c_naik;            // Naik term | ||||
|     Real c_3;               // 3 link | ||||
|     Real c_5;               // 5 link | ||||
|     Real c_7;               // 7 link | ||||
|     Real c_lp;              // 5 link Lepage | ||||
|     SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)  | ||||
|         : c_1(c1), | ||||
|           c_naik(cnaik), | ||||
|           c_3(c3), | ||||
|           c_5(c5), | ||||
|           c_7(c7), | ||||
|           c_lp(clp){} | ||||
| }; | ||||
|  | ||||
|  | ||||
| /*!  @brief create fat links from link variables */ | ||||
| template<class Gimpl>  | ||||
| class Smear_HISQ : public Gimpl { | ||||
|  | ||||
| private: | ||||
|     GridCartesian* const _grid; | ||||
|     SmearingParameters _linkTreatment; | ||||
|  | ||||
| public: | ||||
|  | ||||
|     INHERIT_GIMPL_TYPES(Gimpl); | ||||
|     typedef typename Gimpl::GaugeField     GF; | ||||
|     typedef typename Gimpl::GaugeLinkField LF; | ||||
|     typedef typename Gimpl::ComplexField   CF; | ||||
|  | ||||
|     // Don't allow default values here. | ||||
|     Smear_HISQ(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)  | ||||
|         : _grid(grid),  | ||||
|           _linkTreatment(c1,cnaik,c3,c5,c7,clp) { | ||||
|         assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3"); | ||||
|         assert(Nd == 4 && "HISQ smearing only defined for Nd==4"); | ||||
|     } | ||||
|  | ||||
|     // Allow to pass a pointer to a C-style, double array for MILC convenience | ||||
|     Smear_HISQ(GridCartesian* grid, double* coeff)  | ||||
|         : _grid(grid),  | ||||
|           _linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) { | ||||
|         assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3"); | ||||
|         assert(Nd == 4 && "HISQ smearing only defined for Nd==4"); | ||||
|     } | ||||
|  | ||||
|     ~Smear_HISQ() {} | ||||
|  | ||||
|     // Intent: OUT--u_smr, u_naik | ||||
|     //          IN--u_thin | ||||
|     void smear(GF& u_smr, GF& u_naik, GF& u_thin) const { | ||||
|  | ||||
|         SmearingParameters lt = this->_linkTreatment; | ||||
|         auto grid = this->_grid; | ||||
|  | ||||
|         // Create a padded cell of extra padding depth=1 and fill the padding. | ||||
|         int depth = 1; | ||||
|         PaddedCell Ghost(depth,grid); | ||||
|         GF Ughost = Ghost.Exchange(u_thin); | ||||
|  | ||||
|         // This is where auxiliary N-link fields and the final smear will be stored.  | ||||
|         GF Ughost_fat(Ughost.Grid()); | ||||
|         GF Ughost_3link(Ughost.Grid()); | ||||
|         GF Ughost_5linkA(Ughost.Grid()); | ||||
|         GF Ughost_5linkB(Ughost.Grid()); | ||||
|  | ||||
|         // mu-nu plane stencil. We allow mu==nu to make indexing the stencil easier, | ||||
|         // but these entries will not be used.  | ||||
|         std::vector<Coordinate> shifts; | ||||
|         for(int mu=0;mu<Nd;mu++) | ||||
|         for(int nu=0;nu<Nd;nu++) { | ||||
|             appendShift(shifts,mu); | ||||
|             appendShift(shifts,nu); | ||||
|             appendShift(shifts,shiftSignal::NO_SHIFT); | ||||
|             appendShift(shifts,mu,Back(nu)); | ||||
|             appendShift(shifts,Back(nu)); | ||||
|             appendShift(shifts,Back(mu)); | ||||
|         } | ||||
|  | ||||
|         // A GeneralLocalStencil has two indices: a site and stencil index  | ||||
|         GeneralLocalStencil gStencil(Ughost.Grid(),shifts); | ||||
|  | ||||
|         // This is where contributions from the smearing get added together | ||||
|         Ughost_fat=Zero(); | ||||
|  | ||||
|         // This loop handles 3-, 5-, and 7-link constructs, minus Lepage and Naik. | ||||
|         for(int mu=0;mu<Nd;mu++) { | ||||
|  | ||||
|             // TODO: This approach is slightly memory inefficient. It uses 25% extra memory  | ||||
|             Ughost_3link =Zero(); | ||||
|             Ughost_5linkA=Zero(); | ||||
|             Ughost_5linkB=Zero(); | ||||
|  | ||||
|             // Create the accessors | ||||
|             autoView(U_v       , Ughost       , AcceleratorRead); | ||||
|             autoView(U_fat_v   , Ughost_fat   , AcceleratorWrite); | ||||
|             autoView(U_3link_v , Ughost_3link , AcceleratorWrite); | ||||
|             autoView(U_5linkA_v, Ughost_5linkA, AcceleratorWrite); | ||||
|             autoView(U_5linkB_v, Ughost_5linkB, AcceleratorWrite); | ||||
|  | ||||
|             // We infer some types that will be needed in the calculation. | ||||
|             typedef decltype(gStencil.GetEntry(0,0)) stencilElement; | ||||
|             typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix; | ||||
|  | ||||
|             int Nsites = U_v.size(); | ||||
|             auto gStencil_v = gStencil.View();  | ||||
|  | ||||
|             accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs | ||||
|                 stencilElement SE0, SE1, SE2, SE3, SE4, SE5; | ||||
|                 U3matrix U0, U1, U2, U3, U4, U5, W; | ||||
|                 for(int nu=0;nu<Nd;nu++) { | ||||
|                     if(nu==mu) continue; | ||||
|                     int s = stencilIndex(mu,nu); | ||||
|  | ||||
|                     // The stencil gives us support points in the mu-nu plane that we will use to | ||||
|                     // grab the links we need. | ||||
|                     SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset; | ||||
|                     SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset; | ||||
|                     SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset; | ||||
|                     SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset; | ||||
|                     SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset; | ||||
|                     SE5 = gStencil_v.GetEntry(s+5,site); int x_m_mu      = SE5->_offset; | ||||
|  | ||||
|                     // When you're deciding whether to take an adjoint, the question is: how is the | ||||
|                     // stored link oriented compared to the one you want? If I imagine myself travelling | ||||
|                     // with the to-be-updated link, I have two possible, alternative 3-link paths I can | ||||
|                     // take, one starting by going to the left, the other starting by going to the right. | ||||
|                     U0 = coalescedReadGeneralPermute(U_v[x_p_mu     ](nu),SE0->_permute,Nd); | ||||
|                     U1 = coalescedReadGeneralPermute(U_v[x_p_nu     ](mu),SE1->_permute,Nd); | ||||
|                     U2 = coalescedReadGeneralPermute(U_v[x          ](nu),SE2->_permute,Nd); | ||||
|                     U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd); | ||||
|                     U4 = coalescedReadGeneralPermute(U_v[x_m_nu     ](mu),SE4->_permute,Nd); | ||||
|                     U5 = coalescedReadGeneralPermute(U_v[x_m_nu     ](nu),SE4->_permute,Nd); | ||||
|  | ||||
|                     //  "left"          "right" | ||||
|                     W = U2*U1*adj(U0) + adj(U5)*U4*U3; | ||||
|  | ||||
|                     // Save 3-link construct for later and add to smeared field. | ||||
|                     coalescedWrite(U_3link_v[x](nu), W); | ||||
|  | ||||
|                     // The index operator (x) returns the coalesced read on GPU. The view [] index returns  | ||||
|                     // a reference to the vector object. The [x](mu) returns a reference to the densely  | ||||
|                     // packed (contiguous in memory) mu-th element of the vector object. On CPU,  | ||||
|                     // coalescedRead/Write is the identity mapping assigning vector object to vector object. | ||||
|                     // But on GPU it's non-trivial and maps scalar object to vector object and vice versa. | ||||
|                     coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_3*W); | ||||
|                 } | ||||
|             }) | ||||
|  | ||||
|             accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link  | ||||
|                 stencilElement SE0, SE1, SE2, SE3, SE4, SE5; | ||||
|                 U3matrix U0, U1, U2, U3, U4, U5, W; | ||||
|                 int sigmaIndex = 0; | ||||
|                 for(int nu=0;nu<Nd;nu++) { | ||||
|                     if(nu==mu) continue; | ||||
|                     int s = stencilIndex(mu,nu); | ||||
|                     for(int rho=0;rho<Nd;rho++) { | ||||
|                         if (rho == mu || rho == nu) continue; | ||||
|  | ||||
|                         SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset; | ||||
|                         SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset; | ||||
|                         SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset; | ||||
|                         SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset; | ||||
|                         SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset; | ||||
|  | ||||
|                         U0 = coalescedReadGeneralPermute(      U_v[x_p_mu     ](nu ),SE0->_permute,Nd); | ||||
|                         U1 = coalescedReadGeneralPermute(U_3link_v[x_p_nu     ](rho),SE1->_permute,Nd); | ||||
|                         U2 = coalescedReadGeneralPermute(      U_v[x          ](nu ),SE2->_permute,Nd); | ||||
|                         U3 = coalescedReadGeneralPermute(      U_v[x_p_mu_m_nu](nu ),SE3->_permute,Nd); | ||||
|                         U4 = coalescedReadGeneralPermute(U_3link_v[x_m_nu     ](rho),SE4->_permute,Nd); | ||||
|                         U5 = coalescedReadGeneralPermute(      U_v[x_m_nu     ](nu ),SE4->_permute,Nd); | ||||
|  | ||||
|                         W  = U2*U1*adj(U0) + adj(U5)*U4*U3; | ||||
|  | ||||
|                         if(sigmaIndex<3) { | ||||
|                             coalescedWrite(U_5linkA_v[x](rho), W); | ||||
|                         } else { | ||||
|                             coalescedWrite(U_5linkB_v[x](rho), W); | ||||
|                         }     | ||||
|  | ||||
|                         coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_5*W); | ||||
|                         sigmaIndex++; | ||||
|                     } | ||||
|                 } | ||||
|             }) | ||||
|  | ||||
|             accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link | ||||
|                 stencilElement SE0, SE1, SE2, SE3, SE4, SE5; | ||||
|                 U3matrix U0, U1, U2, U3, U4, U5, W; | ||||
|                 int sigmaIndex = 0; | ||||
|                 for(int nu=0;nu<Nd;nu++) { | ||||
|                     if(nu==mu) continue; | ||||
|                     int s = stencilIndex(mu,nu); | ||||
|                     for(int rho=0;rho<Nd;rho++) { | ||||
|                         if (rho == mu || rho == nu) continue; | ||||
|  | ||||
|                         SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset; | ||||
|                         SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset; | ||||
|                         SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset; | ||||
|                         SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset; | ||||
|                         SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset; | ||||
|  | ||||
|                         U0 = coalescedReadGeneralPermute(U_v[x_p_mu](nu),SE0->_permute,Nd); | ||||
|                         if(sigmaIndex<3) { | ||||
|                             U1 = coalescedReadGeneralPermute(U_5linkB_v[x_p_nu](rho),SE1->_permute,Nd); | ||||
|                         } else { | ||||
|                             U1 = coalescedReadGeneralPermute(U_5linkA_v[x_p_nu](rho),SE1->_permute,Nd); | ||||
|                         }   | ||||
|                         U2 = coalescedReadGeneralPermute(U_v[x](nu),SE2->_permute,Nd); | ||||
|                         U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd); | ||||
|                         if(sigmaIndex<3) { | ||||
|                             U4 = coalescedReadGeneralPermute(U_5linkB_v[x_m_nu](rho),SE4->_permute,Nd); | ||||
|                         } else { | ||||
|                             U4 = coalescedReadGeneralPermute(U_5linkA_v[x_m_nu](rho),SE4->_permute,Nd); | ||||
|                         }   | ||||
|                         U5 = coalescedReadGeneralPermute(U_v[x_m_nu](nu),SE4->_permute,Nd); | ||||
|  | ||||
|                         W  = U2*U1*adj(U0) + adj(U5)*U4*U3; | ||||
|  | ||||
|                         coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_7*W); | ||||
|                         sigmaIndex++; | ||||
|                     } | ||||
|                 } | ||||
|             }) | ||||
|  | ||||
|         } // end mu loop | ||||
|  | ||||
|         // c1, c3, c5, c7 construct contributions | ||||
|         u_smr = Ghost.Extract(Ughost_fat) + lt.c_1*u_thin; | ||||
|  | ||||
|         // Load up U and V std::vectors to access thin and smeared links. | ||||
|         std::vector<LF> U(Nd, grid); | ||||
|         std::vector<LF> V(Nd, grid); | ||||
|         std::vector<LF> Vnaik(Nd, grid); | ||||
|         for (int mu = 0; mu < Nd; mu++) { | ||||
|             U[mu] = PeekIndex<LorentzIndex>(u_thin, mu); | ||||
|             V[mu] = PeekIndex<LorentzIndex>(u_smr, mu); | ||||
|         } | ||||
|  | ||||
|         for(int mu=0;mu<Nd;mu++) { | ||||
|  | ||||
|             // Naik | ||||
|             Vnaik[mu] = lt.c_naik*Gimpl::CovShiftForward(U[mu],mu, | ||||
|                                     Gimpl::CovShiftForward(U[mu],mu, | ||||
|                                       Gimpl::CovShiftIdentityForward(U[mu],mu))); | ||||
|  | ||||
|             // LePage | ||||
|             for (int nu_h=1;nu_h<Nd;nu_h++) { | ||||
|                 int nu=(mu+nu_h)%Nd; | ||||
|                                 // nu, nu, mu, Back(nu), Back(nu) | ||||
|                 V[mu] = V[mu] + lt.c_lp*Gimpl::CovShiftForward(U[nu],nu, | ||||
|                                           Gimpl::CovShiftForward(U[nu],nu, | ||||
|                                             Gimpl::CovShiftForward(U[mu],mu, | ||||
|                                               Gimpl::CovShiftBackward(U[nu],nu, | ||||
|                                                 Gimpl::CovShiftIdentityBackward(U[nu],nu))))) | ||||
|                                 // Back(nu), Back(nu), mu, nu, nu | ||||
|                               + lt.c_lp*Gimpl::CovShiftBackward(U[nu],nu, | ||||
|                                           Gimpl::CovShiftBackward(U[nu],nu, | ||||
|                                             Gimpl::CovShiftForward(U[mu],mu, | ||||
|                                               Gimpl::CovShiftForward(U[nu],nu, | ||||
|                                                 Gimpl::CovShiftIdentityForward(U[nu],nu))))); | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         // Put V back into u_smr. | ||||
|         for (int mu = 0; mu < Nd; mu++) { | ||||
|             PokeIndex<LorentzIndex>(u_smr , V[mu]    , mu); | ||||
|             PokeIndex<LorentzIndex>(u_naik, Vnaik[mu], mu); | ||||
|         } | ||||
|     }; | ||||
|  | ||||
|  | ||||
|     // Intent: OUT--u_proj | ||||
|     //          IN--u_mu | ||||
|     void projectU3(GF& u_proj, GF& u_mu) const { | ||||
|  | ||||
|         auto grid = this->_grid; | ||||
|  | ||||
|         LF V(grid), Q(grid), sqrtQinv(grid), id_3(grid), diff(grid); | ||||
|         CF c0(grid), c1(grid), c2(grid), g0(grid), g1(grid), g2(grid), S(grid), R(grid), theta(grid),  | ||||
|            u(grid), v(grid), w(grid), den(grid), f0(grid), f1(grid), f2(grid); | ||||
|  | ||||
|         // Follow MILC 10.1103/PhysRevD.82.074501, eqs (B2-B3) and (C1-C8) | ||||
|         for (int mu = 0; mu < Nd; mu++) { | ||||
|             V  = PeekIndex<LorentzIndex>(u_mu, mu); | ||||
|             Q  = adj(V)*V; | ||||
|             c0 =        real(trace(Q)); | ||||
|             c1 = (1/2.)*real(trace(Q*Q)); | ||||
|             c2 = (1/3.)*real(trace(Q*Q*Q)); | ||||
|             S  = (1/3.)*c1-(1/18.)*c0*c0; | ||||
|             if (norm2(S)<1e-28) { | ||||
|                 g0 = (1/3.)*c0; g1 = g0; g2 = g1; | ||||
|             } else { | ||||
|                 R     = (1/2.)*c2-(1/3. )*c0*c1+(1/27.)*c0*c0*c0; | ||||
|                 theta = acos(R*pow(S,-1.5)); | ||||
|                 g0    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta-2*M_PI/3.); | ||||
|                 g1    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta          ); | ||||
|                 g2    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta+2*M_PI/3.); | ||||
|             } | ||||
| //            if (fabs(Q.determinant()/(g0*g1*g2)-1.0) > 1e-5) { SVD } | ||||
|             u     = sqrt(g0) + sqrt(g1) + sqrt(g2); | ||||
|             v     = sqrt(g0*g1) + sqrt(g0*g2) + sqrt(g1*g2); | ||||
|             w     = sqrt(g0*g1*g2); | ||||
|             den   = w*(u*v-w); | ||||
|             f0    = (-w*(u*u+v)+u*v*v)/den; | ||||
|             f1    = (-w-u*u*u+2.*u*v)/den; | ||||
|             f2    = u/den; | ||||
|             id_3  = 1.; | ||||
|  | ||||
|             sqrtQinv = f0*id_3 + f1*Q + f2*Q*Q; | ||||
|  | ||||
|             PokeIndex<LorentzIndex>(u_proj, V*sqrtQinv, mu); | ||||
|         } | ||||
|     }; | ||||
|  | ||||
|  | ||||
| //    void derivative(const GaugeField& Gauge) const { | ||||
| //    }; | ||||
| }; | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -5,4 +5,5 @@ | ||||
| #include <Grid/qcd/smearing/StoutSmearing.h> | ||||
| #include <Grid/qcd/smearing/GaugeConfiguration.h> | ||||
| #include <Grid/qcd/smearing/WilsonFlow.h> | ||||
| #include <Grid/qcd/smearing/HISQSmearing.h> | ||||
|  | ||||
|   | ||||
| @@ -69,7 +69,7 @@ public: | ||||
|   /*! Construct stout smearing object from explicitly specified rho matrix */ | ||||
|   Smear_Stout(const std::vector<double>& rho_) | ||||
|     : OwnedBase{new Smear_APE<Gimpl>(rho_)}, SmearBase{OwnedBase.get()} { | ||||
|     std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl | ||||
|     std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl; | ||||
|     assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3"); | ||||
|     } | ||||
|  | ||||
|   | ||||
| @@ -37,13 +37,14 @@ NAMESPACE_BEGIN(Grid); | ||||
| // Make these members of an Impl class for BC's. | ||||
|  | ||||
| namespace PeriodicBC {  | ||||
|  | ||||
|   //Out(x) = Link(x)*field(x+mu) | ||||
|   template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,  | ||||
| 									   int mu, | ||||
| 									   const Lattice<covariant> &field) | ||||
|   { | ||||
|     return Link*Cshift(field,mu,1);// moves towards negative mu | ||||
|   } | ||||
|   //Out(x) = Link^dag(x-mu)*field(x-mu) | ||||
|   template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,  | ||||
| 									    int mu, | ||||
| 									    const Lattice<covariant> &field) | ||||
| @@ -52,19 +53,19 @@ namespace PeriodicBC { | ||||
|     tmp = adj(Link)*field; | ||||
|     return Cshift(tmp,mu,-1);// moves towards positive mu | ||||
|   } | ||||
|  | ||||
|   //Out(x) = Link^dag(x-mu) | ||||
|   template<class gauge> Lattice<gauge> | ||||
|   CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)  | ||||
|   { | ||||
|     return Cshift(adj(Link), mu, -1); | ||||
|   } | ||||
|  | ||||
|   //Out(x) = Link(x) | ||||
|   template<class gauge> Lattice<gauge> | ||||
|   CovShiftIdentityForward(const Lattice<gauge> &Link, int mu) | ||||
|   { | ||||
|     return Link; | ||||
|   } | ||||
|  | ||||
|   //Link(x) = Link(x+mu) | ||||
|   template<class gauge> Lattice<gauge> | ||||
|   ShiftStaple(const Lattice<gauge> &Link, int mu) | ||||
|   { | ||||
|   | ||||
							
								
								
									
										528
									
								
								Grid/qcd/utils/GaugeGroup.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										528
									
								
								Grid/qcd/utils/GaugeGroup.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,528 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/qcd/utils/GaugeGroup.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef QCD_UTIL_GAUGEGROUP_H | ||||
| #define QCD_UTIL_GAUGEGROUP_H | ||||
|  | ||||
| // Important detail: nvcc requires all template parameters to have names. | ||||
| // This is the only reason why the second template parameter has a name. | ||||
| #define ONLY_IF_SU                                                       \ | ||||
|   typename dummy_name = group_name,                                      \ | ||||
|            typename named_dummy = std::enable_if_t <                                 \ | ||||
|                           std::is_same<dummy_name, group_name>::value && \ | ||||
|                       is_su<dummy_name>::value > | ||||
|  | ||||
| #define ONLY_IF_Sp                                                       \ | ||||
|   typename dummy_name = group_name,                                      \ | ||||
|            typename named_dummy = std::enable_if_t <                                 \ | ||||
|                           std::is_same<dummy_name, group_name>::value && \ | ||||
|                       is_sp<dummy_name>::value > | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace GroupName { | ||||
| class SU {}; | ||||
| class Sp {}; | ||||
| }  // namespace GroupName | ||||
|  | ||||
| template <typename group_name> | ||||
| struct is_su { | ||||
|   static const bool value = false; | ||||
| }; | ||||
|  | ||||
| template <> | ||||
| struct is_su<GroupName::SU> { | ||||
|   static const bool value = true; | ||||
| }; | ||||
|  | ||||
| template <typename group_name> | ||||
| struct is_sp { | ||||
|   static const bool value = false; | ||||
| }; | ||||
|  | ||||
| template <> | ||||
| struct is_sp<GroupName::Sp> { | ||||
|   static const bool value = true; | ||||
| }; | ||||
|  | ||||
| template <typename group_name> | ||||
| constexpr int compute_adjoint_dimension(int ncolour); | ||||
|  | ||||
| template <> | ||||
| constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) { | ||||
|   return ncolour * ncolour - 1; | ||||
| } | ||||
|  | ||||
| template <> | ||||
| constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) { | ||||
|   return ncolour / 2 * (ncolour + 1); | ||||
| } | ||||
|  | ||||
| template <int ncolour, class group_name> | ||||
| class GaugeGroup { | ||||
|  public: | ||||
|   static const int Dimension = ncolour; | ||||
|   static const int AdjointDimension = | ||||
|       compute_adjoint_dimension<group_name>(ncolour); | ||||
|   static const int AlgebraDimension = | ||||
|       compute_adjoint_dimension<group_name>(ncolour); | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >; | ||||
|   template <typename vtype> | ||||
|   using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >; | ||||
|   template <typename vtype> | ||||
|   using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >; | ||||
|   template <typename vtype> | ||||
|   using iSUnAlgebraMatrix = | ||||
|     iScalar<iScalar<iMatrix<vtype, AdjointDimension> > >; | ||||
|   static int su2subgroups(void) { return su2subgroups(group_name()); } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, | ||||
|   // SU<2>::LatticeMatrix etc... | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   typedef iGroupMatrix<Complex> Matrix; | ||||
|   typedef iGroupMatrix<ComplexF> MatrixF; | ||||
|   typedef iGroupMatrix<ComplexD> MatrixD; | ||||
|  | ||||
|   typedef iGroupMatrix<vComplex> vMatrix; | ||||
|   typedef iGroupMatrix<vComplexF> vMatrixF; | ||||
|   typedef iGroupMatrix<vComplexD> vMatrixD; | ||||
|  | ||||
|   // For the projectors to the algebra | ||||
|   // these should be real... | ||||
|   // keeping complex for consistency with the SIMD vector types | ||||
|   typedef iAlgebraVector<Complex> AlgebraVector; | ||||
|   typedef iAlgebraVector<ComplexF> AlgebraVectorF; | ||||
|   typedef iAlgebraVector<ComplexD> AlgebraVectorD; | ||||
|  | ||||
|   typedef iAlgebraVector<vComplex> vAlgebraVector; | ||||
|   typedef iAlgebraVector<vComplexF> vAlgebraVectorF; | ||||
|   typedef iAlgebraVector<vComplexD> vAlgebraVectorD; | ||||
|  | ||||
|   typedef Lattice<vMatrix> LatticeMatrix; | ||||
|   typedef Lattice<vMatrixF> LatticeMatrixF; | ||||
|   typedef Lattice<vMatrixD> LatticeMatrixD; | ||||
|    | ||||
|   typedef Lattice<vAlgebraVector> LatticeAlgebraVector; | ||||
|   typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF; | ||||
|   typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD; | ||||
|     | ||||
|   typedef iSUnAlgebraMatrix<vComplex>  vAlgebraMatrix; | ||||
|   typedef iSUnAlgebraMatrix<vComplexF> vAlgebraMatrixF; | ||||
|   typedef iSUnAlgebraMatrix<vComplexD> vAlgebraMatrixD; | ||||
|  | ||||
|   typedef Lattice<vAlgebraMatrix>  LatticeAlgebraMatrix; | ||||
|   typedef Lattice<vAlgebraMatrixF> LatticeAlgebraMatrixF; | ||||
|   typedef Lattice<vAlgebraMatrixD> LatticeAlgebraMatrixD; | ||||
|    | ||||
|  | ||||
|   typedef iSU2Matrix<Complex> SU2Matrix; | ||||
|   typedef iSU2Matrix<ComplexF> SU2MatrixF; | ||||
|   typedef iSU2Matrix<ComplexD> SU2MatrixD; | ||||
|  | ||||
|   typedef iSU2Matrix<vComplex> vSU2Matrix; | ||||
|   typedef iSU2Matrix<vComplexF> vSU2MatrixF; | ||||
|   typedef iSU2Matrix<vComplexD> vSU2MatrixD; | ||||
|  | ||||
|   typedef Lattice<vSU2Matrix> LatticeSU2Matrix; | ||||
|   typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF; | ||||
|   typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD; | ||||
|  | ||||
|   // Private implementation details are specified in the following files: | ||||
|   // Grid/qcd/utils/SUn.impl | ||||
|   // Grid/qcd/utils/SUn.impl | ||||
|   // The public part of the interface follows below and refers to these | ||||
|   // private member functions. | ||||
|  | ||||
| #include <Grid/qcd/utils/SUn.impl.h> | ||||
| #include <Grid/qcd/utils/Sp2n.impl.h> | ||||
|  | ||||
|  public: | ||||
|   template <class cplx> | ||||
|   static void generator(int lieIndex, iGroupMatrix<cplx> &ta) { | ||||
|     return generator(lieIndex, ta, group_name()); | ||||
|   } | ||||
|  | ||||
|   static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index) { | ||||
|     return su2SubGroupIndex(i1, i2, su2_index, group_name()); | ||||
|   } | ||||
|  | ||||
|   static void testGenerators(void) { testGenerators(group_name()); } | ||||
|  | ||||
|   static void printGenerators(void) { | ||||
|     for (int gen = 0; gen < AlgebraDimension; gen++) { | ||||
|       Matrix ta; | ||||
|       generator(gen, ta); | ||||
|       std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen | ||||
|                 << std::endl; | ||||
|       std::cout << GridLogMessage << ta << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template <typename LatticeMatrixType> | ||||
|   static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, | ||||
|                            double scale = 1.0) { | ||||
|     GridBase *grid = out.Grid(); | ||||
|  | ||||
|     typedef typename LatticeMatrixType::vector_type vector_type; | ||||
|  | ||||
|     typedef iSinglet<vector_type> vTComplexType; | ||||
|  | ||||
|     typedef Lattice<vTComplexType> LatticeComplexType; | ||||
|     typedef typename GridTypeMapper< | ||||
|         typename LatticeMatrixType::vector_object>::scalar_object MatrixType; | ||||
|  | ||||
|     LatticeComplexType ca(grid); | ||||
|     LatticeMatrixType lie(grid); | ||||
|     LatticeMatrixType la(grid); | ||||
|     ComplexD ci(0.0, scale); | ||||
|     MatrixType ta; | ||||
|  | ||||
|     lie = Zero(); | ||||
|  | ||||
|     for (int a = 0; a < AlgebraDimension; a++) { | ||||
|       random(pRNG, ca); | ||||
|  | ||||
|       ca = (ca + conjugate(ca)) * 0.5; | ||||
|       ca = ca - 0.5; | ||||
|  | ||||
|       generator(a, ta); | ||||
|  | ||||
|       la = ci * ca * ta; | ||||
|  | ||||
|       lie = lie + la;  // e^{i la ta} | ||||
|     } | ||||
|     taExp(lie, out); | ||||
|   } | ||||
|  | ||||
|   static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG, | ||||
|                                                   LatticeMatrix &out, | ||||
|                                                   Real scale = 1.0) { | ||||
|     GridBase *grid = out.Grid(); | ||||
|     LatticeReal ca(grid); | ||||
|     LatticeMatrix la(grid); | ||||
|     Complex ci(0.0, scale); | ||||
|     Matrix ta; | ||||
|  | ||||
|     out = Zero(); | ||||
|     for (int a = 0; a < AlgebraDimension; a++) { | ||||
|       gaussian(pRNG, ca); | ||||
|       generator(a, ta); | ||||
|       la = toComplex(ca) * ta; | ||||
|       out += la; | ||||
|     } | ||||
|     out *= ci; | ||||
|   } | ||||
|  | ||||
|   static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h, | ||||
|                                           LatticeMatrix &out, | ||||
|                                           Real scale = 1.0) { | ||||
|     conformable(h, out); | ||||
|     GridBase *grid = out.Grid(); | ||||
|     LatticeMatrix la(grid); | ||||
|     Matrix ta; | ||||
|  | ||||
|     out = Zero(); | ||||
|     for (int a = 0; a < AlgebraDimension; a++) { | ||||
|       generator(a, ta); | ||||
|       la = peekColour(h, a) * timesI(ta) * scale; | ||||
|       out += la; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 | ||||
|   // ) inverse operation: FundamentalLieAlgebraMatrix | ||||
|   static void projectOnAlgebra(LatticeAlgebraVector &h_out, | ||||
|                                const LatticeMatrix &in, Real scale = 1.0) { | ||||
|     conformable(h_out, in); | ||||
|     h_out = Zero(); | ||||
|     Matrix Ta; | ||||
|  | ||||
|     for (int a = 0; a < AlgebraDimension; a++) { | ||||
|       generator(a, Ta); | ||||
|       pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|     | ||||
|   template <class vtype> | ||||
|   accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) { | ||||
|     return ProjectOnGeneralGroup(r, group_name()); | ||||
|   } | ||||
|  | ||||
|   template <class vtype, int N> | ||||
|   accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) { | ||||
|     return ProjectOnGeneralGroup(r, group_name()); | ||||
|   } | ||||
|  | ||||
|   template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> | ||||
|   accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) { | ||||
|     return ProjectOnGeneralGroup(arg, group_name()); | ||||
|   } | ||||
|  | ||||
|   template <int N,class vComplex_t>                  // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase. | ||||
|   static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) { | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       auto Umu = PeekIndex<LorentzIndex>(U, mu); | ||||
|       Umu = ProjectOnGeneralGroup(Umu); | ||||
|     } | ||||
|   } | ||||
|         | ||||
|  | ||||
|    | ||||
|   template <int N,class vComplex_t> | ||||
|   static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) { | ||||
|     return ProjectOnGeneralGroup(Umu, group_name()); | ||||
|   } | ||||
|  | ||||
|   template <int N,class vComplex_t>       // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant | ||||
|   static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) { | ||||
|        Umu = ProjectOnGeneralGroup(Umu); | ||||
|        auto det = Determinant(Umu); | ||||
|  | ||||
|        det = conjugate(det); | ||||
|  | ||||
|        for (int i = 0; i < N; i++) { | ||||
|            auto element = PeekIndex<ColourIndex>(Umu, N - 1, i); | ||||
|            element = element * det; | ||||
|            PokeIndex<ColourIndex>(Umu, element, Nc - 1, i); | ||||
|        } | ||||
|    } | ||||
|  | ||||
|   template <int N,class vComplex_t>    // reunitarise, resimplectify... previously ProjectSUn | ||||
|     static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) { | ||||
|       // Reunitarise | ||||
|       for (int mu = 0; mu < Nd; mu++) { | ||||
|         auto Umu = PeekIndex<LorentzIndex>(U, mu); | ||||
|         ProjectOnSpecialGroup(Umu); | ||||
|         PokeIndex<LorentzIndex>(U, Umu, mu); | ||||
|       } | ||||
|     } | ||||
|      | ||||
|   template <typename GaugeField> | ||||
|   static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) { | ||||
|     typedef typename GaugeField::vector_type vector_type; | ||||
|     typedef iGroupMatrix<vector_type> vMatrixType; | ||||
|     typedef Lattice<vMatrixType> LatticeMatrixType; | ||||
|  | ||||
|     LatticeMatrixType Umu(out.Grid()); | ||||
|     LatticeMatrixType tmp(out.Grid()); | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       //      LieRandomize(pRNG, Umu, 1.0); | ||||
|       //      PokeIndex<LorentzIndex>(out, Umu, mu); | ||||
|       gaussian(pRNG,Umu); | ||||
|       tmp = Ta(Umu); | ||||
|       taExp(tmp,Umu); | ||||
|       ProjectOnSpecialGroup(Umu); | ||||
|       //      ProjectSUn(Umu); | ||||
|       PokeIndex<LorentzIndex>(out, Umu, mu); | ||||
|     } | ||||
|   } | ||||
|   template <typename GaugeField> | ||||
|   static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) { | ||||
|     typedef typename GaugeField::vector_type vector_type; | ||||
|     typedef iGroupMatrix<vector_type> vMatrixType; | ||||
|     typedef Lattice<vMatrixType> LatticeMatrixType; | ||||
|  | ||||
|     LatticeMatrixType Umu(out.Grid()); | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       LieRandomize(pRNG, Umu, 0.01); | ||||
|       PokeIndex<LorentzIndex>(out, Umu, mu); | ||||
|     } | ||||
|   } | ||||
|      | ||||
|   template <typename GaugeField> | ||||
|   static void ColdConfiguration(GaugeField &out) { | ||||
|     typedef typename GaugeField::vector_type vector_type; | ||||
|     typedef iGroupMatrix<vector_type> vMatrixType; | ||||
|     typedef Lattice<vMatrixType> LatticeMatrixType; | ||||
|  | ||||
|     LatticeMatrixType Umu(out.Grid()); | ||||
|     Umu = 1.0; | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       PokeIndex<LorentzIndex>(out, Umu, mu); | ||||
|     } | ||||
|   } | ||||
|      | ||||
|   template <typename GaugeField> | ||||
|   static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) { | ||||
|     ColdConfiguration(out); | ||||
|   } | ||||
|  | ||||
|   template <typename LatticeMatrixType> | ||||
|   static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) { | ||||
|     taProj(in, out, group_name()); | ||||
|   } | ||||
|      | ||||
|   template <typename LatticeMatrixType> | ||||
|   static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) { | ||||
|     typedef typename LatticeMatrixType::scalar_type ComplexType; | ||||
|  | ||||
|     LatticeMatrixType xn(x.Grid()); | ||||
|     RealD nfac = 1.0; | ||||
|  | ||||
|     xn = x; | ||||
|     ex = xn + ComplexType(1.0);  // 1+x | ||||
|  | ||||
|     // Do a 12th order exponentiation | ||||
|     for (int i = 2; i <= 12; ++i) { | ||||
|       nfac = nfac / RealD(i);  // 1/2, 1/2.3 ... | ||||
|       xn = xn * x;             // x2, x3,x4.... | ||||
|       ex = ex + xn * nfac;     // x2/2!, x3/3!.... | ||||
|     } | ||||
|   } | ||||
|  | ||||
| // Ta are hermitian (?) | ||||
| // Anti herm is i Ta basis | ||||
| static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in, int b) | ||||
| { | ||||
|   conformable(in, out); | ||||
|   GridBase *grid = out.Grid(); | ||||
|   LatticeComplex tmp(grid); | ||||
|   Matrix ta; | ||||
|   // Using Luchang's projection convention | ||||
|   //  2 Tr{Ta Tb} A_b= 2/2 delta ab A_b = A_a | ||||
|   autoView(out_v,out,AcceleratorWrite); | ||||
|   autoView(in_v,in,AcceleratorRead); | ||||
|   int N = ncolour; | ||||
|   int NNm1 = N * (N - 1); | ||||
|   int hNNm1= NNm1/2; | ||||
|   RealD sqrt_2 = sqrt(2.0); | ||||
|   Complex ci(0.0,1.0); | ||||
|   for(int su2Index=0;su2Index<hNNm1;su2Index++){ | ||||
|     int i1, i2; | ||||
|     su2SubGroupIndex(i1, i2, su2Index); | ||||
|     int ax = su2Index*2; | ||||
|     int ay = su2Index*2+1; | ||||
|     accelerator_for(ss,grid->oSites(),1,{ | ||||
| 	// in is traceless ANTI-hermitian whereas Grid generators are Hermitian. | ||||
| 	// trace( Ta x Ci in) | ||||
| 	// Bet I need to move to real part with mult by -i | ||||
| 	out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2))); | ||||
| 	out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1))); | ||||
|       }); | ||||
|   } | ||||
|   for(int diagIndex=0;diagIndex<N-1;diagIndex++){ | ||||
|     int k = diagIndex + 1; // diagIndex starts from 0 | ||||
|     int a = NNm1+diagIndex; | ||||
|     RealD scale = 1.0/sqrt(2.0*k*(k+1)); | ||||
|     accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{ | ||||
| 	auto tmp = in_v[ss]()()(0,0); | ||||
| 	for(int i=1;i<k;i++){ | ||||
| 	  tmp=tmp+in_v[ss]()()(i,i); | ||||
| 	} | ||||
| 	tmp = tmp - in_v[ss]()()(k,k)*k; | ||||
| 	out_v[ss]()()(a,b) =imag(tmp) * scale; | ||||
|       }); | ||||
|     } | ||||
| } | ||||
|  | ||||
|    | ||||
| }; | ||||
|      | ||||
| template <int ncolour> | ||||
| using SU = GaugeGroup<ncolour, GroupName::SU>; | ||||
|  | ||||
| template <int ncolour> | ||||
| using Sp = GaugeGroup<ncolour, GroupName::Sp>; | ||||
|  | ||||
| typedef SU<2> SU2; | ||||
| typedef SU<3> SU3; | ||||
| typedef SU<4> SU4; | ||||
| typedef SU<5> SU5; | ||||
|  | ||||
| typedef SU<Nc> FundamentalMatrices; | ||||
|      | ||||
| typedef Sp<2> Sp2; | ||||
| typedef Sp<4> Sp4; | ||||
| typedef Sp<6> Sp6; | ||||
| typedef Sp<8> Sp8; | ||||
|  | ||||
| template <int N,class vComplex_t> | ||||
| static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) | ||||
| { | ||||
|     GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu); | ||||
| } | ||||
|    | ||||
| template <int N,class vComplex_t> | ||||
| static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U) | ||||
| { | ||||
|     GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U); | ||||
| } | ||||
|      | ||||
| template <int N,class vComplex_t> | ||||
| static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) | ||||
| { | ||||
|     GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu); | ||||
| } | ||||
|      | ||||
| template <int N,class vComplex_t> | ||||
| static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U) | ||||
| { | ||||
|     GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U); | ||||
| } | ||||
|  | ||||
| // Explicit specialisation for SU(3). | ||||
| static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid = Umu.Grid(); | ||||
|   const int x = 0; | ||||
|   const int y = 1; | ||||
|   const int z = 2; | ||||
|   // Reunitarise | ||||
|   Umu = ProjectOnGroup(Umu); | ||||
|   autoView(Umu_v, Umu, CpuWrite); | ||||
|   thread_for(ss, grid->oSites(), { | ||||
|     auto cm = Umu_v[ss]; | ||||
|     cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) - | ||||
|                        cm()()(0, z) * cm()()(1, y));  // x= yz-zy | ||||
|     cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) - | ||||
|                        cm()()(0, x) * cm()()(1, z));  // y= zx-xz | ||||
|     cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) - | ||||
|                        cm()()(0, y) * cm()()(1, x));  // z= xy-yx | ||||
|     Umu_v[ss] = cm; | ||||
|   }); | ||||
| } | ||||
| static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U) | ||||
| { | ||||
|   GridBase *grid = U.Grid(); | ||||
|   // Reunitarise | ||||
|   for (int mu = 0; mu < Nd; mu++) { | ||||
|     auto Umu = PeekIndex<LorentzIndex>(U, mu); | ||||
|     Umu = ProjectOnGroup(Umu); | ||||
|     ProjectSU3(Umu); | ||||
|     PokeIndex<LorentzIndex>(U, Umu, mu); | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
							
								
								
									
										371
									
								
								Grid/qcd/utils/GaugeGroupTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										371
									
								
								Grid/qcd/utils/GaugeGroupTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,371 @@ | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| // | ||||
| // * Two index representation generators | ||||
| // | ||||
| // * Normalisation for the fundamental generators: | ||||
| //   trace ta tb = 1/2 delta_ab = T_F delta_ab | ||||
| //   T_F = 1/2  for SU(N) groups | ||||
| // | ||||
| // | ||||
| //   base for NxN two index (anti-symmetric) matrices | ||||
| //   normalized to 1 (d_ij is the kroenecker delta) | ||||
| // | ||||
| //   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il) | ||||
| // | ||||
| //   Then the generators are written as | ||||
| // | ||||
| //   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] + | ||||
| //   tr[e^(lk)e^(ij)^dag T_a] )  // | ||||
| // | ||||
| // | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| // Authors: David Preti, Guido Cossu | ||||
|  | ||||
| #ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H | ||||
| #define QCD_UTIL_GAUGEGROUPTWOINDEX_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 }; | ||||
|  | ||||
| constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; } | ||||
|  | ||||
| namespace detail { | ||||
|  | ||||
| template <class cplx, int nc, TwoIndexSymmetry S> | ||||
| struct baseOffDiagonalSpHelper; | ||||
|  | ||||
| template <class cplx, int nc> | ||||
| struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> { | ||||
|   static const int ngroup = nc / 2; | ||||
|   static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) { | ||||
|     eij = Zero(); | ||||
|     RealD tmp; | ||||
|  | ||||
|     if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) { | ||||
|       for (int k = 0; k < j+1; k++) { | ||||
|         if (k < j) { | ||||
|           tmp = 1 / sqrt(j * (j + 1)); | ||||
|           eij()()(k, k + ngroup) = tmp; | ||||
|           eij()()(k + ngroup, k) = -tmp; | ||||
|         } | ||||
|         if (k == j) { | ||||
|           tmp = -j / sqrt(j * (j + 1)); | ||||
|           eij()()(k, k + ngroup) = tmp; | ||||
|           eij()()(k + ngroup, k) = -tmp; | ||||
|         } | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|     else if (i != ngroup + j) { | ||||
|       for (int k = 0; k < nc; k++) | ||||
|         for (int l = 0; l < nc; l++) { | ||||
|           eij()()(l, k) = | ||||
|               delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l); | ||||
|         } | ||||
|     } | ||||
|     RealD nrm = 1. / std::sqrt(2.0); | ||||
|     eij = eij * nrm; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template <class cplx, int nc> | ||||
| struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> { | ||||
|   static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) { | ||||
|     eij = Zero(); | ||||
|     for (int k = 0; k < nc; k++) | ||||
|       for (int l = 0; l < nc; l++) | ||||
|         eij()()(l, k) = | ||||
|             delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l); | ||||
|  | ||||
|     RealD nrm = 1. / std::sqrt(2.0); | ||||
|     eij = eij * nrm; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| }   // closing detail namespace | ||||
|  | ||||
| template <int ncolour, TwoIndexSymmetry S, class group_name> | ||||
| class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> { | ||||
|  public: | ||||
|   // The chosen convention is that we are taking ncolour to be N in SU<N> but 2N | ||||
|   // in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N). | ||||
|   static_assert(std::is_same<group_name, GroupName::SU>::value or | ||||
|                     std::is_same<group_name, GroupName::Sp>::value, | ||||
|                 "ngroup is only implemented for SU and Sp currently."); | ||||
|   static const int ngroup = | ||||
|       std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2; | ||||
|   static const int Dimension = | ||||
|       (ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0); | ||||
|   static const int DimensionAS = | ||||
|       (ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0); | ||||
|   static const int DimensionS = | ||||
|       ncolour * (ncolour + 1) / 2; | ||||
|   static const int NumGenerators = | ||||
|       GaugeGroup<ncolour, group_name>::AlgebraDimension; | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >; | ||||
|  | ||||
|   typedef iGroupTwoIndexMatrix<Complex> TIMatrix; | ||||
|   typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF; | ||||
|   typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD; | ||||
|  | ||||
|   typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix; | ||||
|   typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF; | ||||
|   typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD; | ||||
|  | ||||
|   typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix; | ||||
|   typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF; | ||||
|   typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD; | ||||
|  | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> > | ||||
|       LatticeTwoIndexField; | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > | ||||
|       LatticeTwoIndexFieldF; | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > | ||||
|       LatticeTwoIndexFieldD; | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >; | ||||
|  | ||||
|   typedef iGroupMatrix<Complex> Matrix; | ||||
|   typedef iGroupMatrix<ComplexF> MatrixF; | ||||
|   typedef iGroupMatrix<ComplexD> MatrixD; | ||||
|      | ||||
| private: | ||||
|   template <class cplx> | ||||
|   static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) { | ||||
|     eij = Zero(); | ||||
|     eij()()(Index - ncolour * (ncolour - 1) / 2, | ||||
|             Index - ncolour * (ncolour - 1) / 2) = 1.0; | ||||
|   } | ||||
|      | ||||
|   template <class cplx> | ||||
|   static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) { | ||||
|     eij = Zero(); | ||||
|     for (int k = 0; k < ncolour; k++) | ||||
|       for (int l = 0; l < ncolour; l++) | ||||
|         eij()()(l, k) = | ||||
|             delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l); | ||||
|  | ||||
|     RealD nrm = 1. / std::sqrt(2.0); | ||||
|     eij = eij * nrm; | ||||
|   } | ||||
|      | ||||
|   template <class cplx> | ||||
|   static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) { | ||||
|     detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij); | ||||
|   } | ||||
|  | ||||
| public: | ||||
|      | ||||
|   template <class cplx> | ||||
|   static void base(int Index, iGroupMatrix<cplx> &eij) { | ||||
|   // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R | ||||
|     assert(Index < Dimension); | ||||
|     eij = Zero(); | ||||
|   // for the linearisation of the 2 indexes | ||||
|     static int a[ncolour * (ncolour - 1) / 2][2];  // store the a <-> i,j | ||||
|     static bool filled = false; | ||||
|     if (!filled) { | ||||
|       int counter = 0; | ||||
|       for (int i = 1; i < ncolour; i++) { | ||||
|       for (int j = 0; j < i; j++) { | ||||
|         if (std::is_same<group_name, GroupName::Sp>::value) | ||||
|           { | ||||
|             if (j==0 && i==ngroup+j && S==-1) { | ||||
|             //std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically. | ||||
|               j = j+1; | ||||
|             } | ||||
|           } | ||||
|           a[counter][0] = i; | ||||
|           a[counter][1] = j; | ||||
|           counter++; | ||||
|           } | ||||
|       } | ||||
|       filled = true; | ||||
|     } | ||||
|     if (Index < ncolour*ncolour - DimensionS) | ||||
|     { | ||||
|       baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name()); | ||||
|     } else { | ||||
|       baseDiagonal(Index, eij); | ||||
|     } | ||||
|   } | ||||
|      | ||||
|   static void printBase(void) { | ||||
|     for (int gen = 0; gen < Dimension; gen++) { | ||||
|       Matrix tmp; | ||||
|       base(gen, tmp); | ||||
|       std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen | ||||
|                 << std::endl; | ||||
|       std::cout << GridLogMessage << tmp << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template <class cplx> | ||||
|   static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) { | ||||
|     Vector<iGroupMatrix<cplx> > ta(NumGenerators); | ||||
|     Vector<iGroupMatrix<cplx> > eij(Dimension); | ||||
|     iGroupMatrix<cplx> tmp; | ||||
|  | ||||
|     for (int a = 0; a < NumGenerators; a++) | ||||
|       GaugeGroup<ncolour, group_name>::generator(a, ta[a]); | ||||
|  | ||||
|     for (int a = 0; a < Dimension; a++) base(a, eij[a]); | ||||
|  | ||||
|     for (int a = 0; a < Dimension; a++) { | ||||
|       tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index]; | ||||
|       for (int b = 0; b < Dimension; b++) { | ||||
|         Complex iTr = TensorRemove(timesI(trace(tmp * eij[b]))); | ||||
|         i2indTa()()(a, b) = iTr; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void printGenerators(void) { | ||||
|     for (int gen = 0; gen < NumGenerators; gen++) { | ||||
|       TIMatrix i2indTa; | ||||
|       generator(gen, i2indTa); | ||||
|       std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen | ||||
|                 << std::endl; | ||||
|       std::cout << GridLogMessage << i2indTa << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void testGenerators(void) { | ||||
|     TIMatrix i2indTa, i2indTb; | ||||
|     std::cout << GridLogMessage << "2IndexRep - Checking if traceless" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < NumGenerators; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       std::cout << GridLogMessage << a << std::endl; | ||||
|       assert(norm2(trace(i2indTa)) < 1.0e-6); | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|  | ||||
|     std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < NumGenerators; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       std::cout << GridLogMessage << a << std::endl; | ||||
|       assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6); | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout << GridLogMessage | ||||
|               << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < NumGenerators; a++) { | ||||
|       for (int b = 0; b < NumGenerators; b++) { | ||||
|         generator(a, i2indTa); | ||||
|         generator(b, i2indTb); | ||||
|  | ||||
|         // generator returns iTa, so we need a minus sign here | ||||
|         Complex Tr = -TensorRemove(trace(i2indTa * i2indTb)); | ||||
|         std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr | ||||
|                   << std::endl; | ||||
|         if (a == b) { | ||||
|           assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8); | ||||
|         } else { | ||||
|           assert(real(Tr) < 1e-8); | ||||
|         } | ||||
|         assert(imag(Tr) < 1e-8); | ||||
|       } | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|   } | ||||
|  | ||||
|   static void TwoIndexLieAlgebraMatrix( | ||||
|       const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h, | ||||
|       LatticeTwoIndexMatrix &out, Real scale = 1.0) { | ||||
|     conformable(h, out); | ||||
|     GridBase *grid = out.Grid(); | ||||
|     LatticeTwoIndexMatrix la(grid); | ||||
|     TIMatrix i2indTa; | ||||
|  | ||||
|     out = Zero(); | ||||
|     for (int a = 0; a < NumGenerators; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       la = peekColour(h, a) * i2indTa; | ||||
|       out += la; | ||||
|     } | ||||
|     out *= scale; | ||||
|   } | ||||
|  | ||||
|   // Projects the algebra components | ||||
|   // of a lattice matrix ( of dimension ncol*ncol -1 ) | ||||
|   static void projectOnAlgebra( | ||||
|       typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out, | ||||
|       const LatticeTwoIndexMatrix &in, Real scale = 1.0) { | ||||
|     conformable(h_out, in); | ||||
|     h_out = Zero(); | ||||
|     TIMatrix i2indTa; | ||||
|     Real coefficient = -2.0 / (ncolour + 2 * S) * scale; | ||||
|     // 2/(Nc +/- 2) for the normalization of the trace in the two index rep | ||||
|     for (int a = 0; a < NumGenerators; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // a projector that keeps the generators stored to avoid the overhead of | ||||
|   // recomputing them | ||||
|   static void projector( | ||||
|       typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out, | ||||
|       const LatticeTwoIndexMatrix &in, Real scale = 1.0) { | ||||
|     conformable(h_out, in); | ||||
|     // to store the generators | ||||
|     static std::vector<TIMatrix> i2indTa(NumGenerators); | ||||
|     h_out = Zero(); | ||||
|     static bool precalculated = false; | ||||
|     if (!precalculated) { | ||||
|       precalculated = true; | ||||
|       for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]); | ||||
|     } | ||||
|  | ||||
|     Real coefficient = | ||||
|         -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization | ||||
|     // of the trace in the two index rep | ||||
|  | ||||
|     for (int a = 0; a < NumGenerators; a++) { | ||||
|       auto tmp = real(trace(i2indTa[a] * in)) * coefficient; | ||||
|       pokeColour(h_out, tmp, a); | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template <int ncolour, TwoIndexSymmetry S> | ||||
| using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>; | ||||
|  | ||||
| // Some useful type names | ||||
| typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices; | ||||
| typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices; | ||||
|  | ||||
| typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm; | ||||
| typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm; | ||||
| typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm; | ||||
| typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm; | ||||
|  | ||||
| typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm; | ||||
| typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm; | ||||
| typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm; | ||||
| typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm; | ||||
|  | ||||
| template <int ncolour, TwoIndexSymmetry S> | ||||
| using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>; | ||||
|  | ||||
| typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices; | ||||
| typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices; | ||||
|  | ||||
| typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm; | ||||
| typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm; | ||||
|  | ||||
| typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,932 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/qcd/utils/SUn.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
| #ifndef QCD_UTIL_SUN_H | ||||
| #define QCD_UTIL_SUN_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<int N, class Vec> | ||||
| Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid); | ||||
|   typedef typename Vec::scalar_type scalar; | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<scalar, N> > > Us; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	scalar tmp= Us()()(i,j); | ||||
| 	ComplexD ztmp(real(tmp),imag(tmp)); | ||||
| 	EigenU(i,j)=ztmp; | ||||
|       }} | ||||
|     ComplexD detD  = EigenU.determinant(); | ||||
|     typename Vec::scalar_type det(detD.real(),detD.imag()); | ||||
|     pokeLocalSite(det,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<int N, class Vec> | ||||
| static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu) | ||||
| { | ||||
|   Umu      = ProjectOnGroup(Umu); | ||||
|   auto det = Determinant(Umu); | ||||
|  | ||||
|   det = conjugate(det); | ||||
|  | ||||
|   for(int i=0;i<N;i++){ | ||||
|     auto element = PeekIndex<ColourIndex>(Umu,N-1,i); | ||||
|     element = element * det; | ||||
|     PokeIndex<ColourIndex>(Umu,element,Nc-1,i); | ||||
|   } | ||||
| } | ||||
| template<int N,class Vec> | ||||
| static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U) | ||||
| { | ||||
|   GridBase *grid=U.Grid(); | ||||
|   // Reunitarise | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     auto Umu = PeekIndex<LorentzIndex>(U,mu); | ||||
|     Umu      = ProjectOnGroup(Umu); | ||||
|     ProjectSUn(Umu); | ||||
|     PokeIndex<LorentzIndex>(U,Umu,mu); | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <int ncolour> | ||||
| class SU { | ||||
| public: | ||||
|   static const int Dimension = ncolour; | ||||
|   static const int AdjointDimension = ncolour * ncolour - 1; | ||||
|   static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; } | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >; | ||||
|   template <typename vtype> | ||||
|   using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >; | ||||
|   template <typename vtype> | ||||
|   using iSUnAlgebraVector = | ||||
|     iScalar<iScalar<iVector<vtype, AdjointDimension> > >; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, | ||||
|   // SU<2>::LatticeMatrix etc... | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   typedef iSUnMatrix<Complex> Matrix; | ||||
|   typedef iSUnMatrix<ComplexF> MatrixF; | ||||
|   typedef iSUnMatrix<ComplexD> MatrixD; | ||||
|  | ||||
|   typedef iSUnMatrix<vComplex> vMatrix; | ||||
|   typedef iSUnMatrix<vComplexF> vMatrixF; | ||||
|   typedef iSUnMatrix<vComplexD> vMatrixD; | ||||
|  | ||||
|   // For the projectors to the algebra | ||||
|   // these should be real... | ||||
|   // keeping complex for consistency with the SIMD vector types | ||||
|   typedef iSUnAlgebraVector<Complex> AlgebraVector; | ||||
|   typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF; | ||||
|   typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD; | ||||
|  | ||||
|   typedef iSUnAlgebraVector<vComplex> vAlgebraVector; | ||||
|   typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF; | ||||
|   typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD; | ||||
|  | ||||
|   typedef Lattice<vMatrix> LatticeMatrix; | ||||
|   typedef Lattice<vMatrixF> LatticeMatrixF; | ||||
|   typedef Lattice<vMatrixD> LatticeMatrixD; | ||||
|  | ||||
|   typedef Lattice<vAlgebraVector> LatticeAlgebraVector; | ||||
|   typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF; | ||||
|   typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD; | ||||
|  | ||||
|   typedef iSU2Matrix<Complex> SU2Matrix; | ||||
|   typedef iSU2Matrix<ComplexF> SU2MatrixF; | ||||
|   typedef iSU2Matrix<ComplexD> SU2MatrixD; | ||||
|  | ||||
|   typedef iSU2Matrix<vComplex> vSU2Matrix; | ||||
|   typedef iSU2Matrix<vComplexF> vSU2MatrixF; | ||||
|   typedef iSU2Matrix<vComplexD> vSU2MatrixD; | ||||
|  | ||||
|   typedef Lattice<vSU2Matrix> LatticeSU2Matrix; | ||||
|   typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF; | ||||
|   typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   // There are N^2-1 generators for SU(N). | ||||
|   // | ||||
|   // We take a traceless hermitian generator basis as follows | ||||
|   // | ||||
|   // * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab | ||||
|   //   T_F = 1/2  for SU(N) groups | ||||
|   // | ||||
|   // * Off diagonal | ||||
|   //    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y | ||||
|   // | ||||
|   //    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ] | ||||
|   //      direct count off each row | ||||
|   // | ||||
|   //    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series | ||||
|   // | ||||
|   //      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2 | ||||
|   //      1+ 2+          +   + Nc-1 | ||||
|   // | ||||
|   //    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc | ||||
|   // | ||||
|   //    - We enumerate the row-col pairs. | ||||
|   //    - for each row col pair there is a (sigma_x) and a (sigma_y) like | ||||
|   //    generator | ||||
|   // | ||||
|   // | ||||
|   //   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} + | ||||
|   //   delta_{i,i1} delta_{j,i2}) | ||||
|   //   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1} | ||||
|   //   delta_{j,i2} - i delta_{i,i1} delta_{j,i2}) | ||||
|   // | ||||
|   // * Diagonal; must be traceless and normalised | ||||
|   //   - Sequence is | ||||
|   //   N  (1,-1,0,0...) | ||||
|   //   N  (1, 1,-2,0...) | ||||
|   //   N  (1, 1, 1,-3,0...) | ||||
|   //   N  (1, 1, 1, 1,-4,0...) | ||||
|   // | ||||
|   //   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator | ||||
|   //   NB this gives the famous SU3 result for su2 index 8 | ||||
|   // | ||||
|   //   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3) | ||||
|   // | ||||
|   //   ( 1      ) | ||||
|   //   (    1   ) / sqrt(3) /2  = 1/2 lambda_8 | ||||
|   //   (      -2) | ||||
|   // | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   template <class cplx> | ||||
|   static void generator(int lieIndex, iSUnMatrix<cplx> &ta) { | ||||
|     // map lie index to which type of generator | ||||
|     int diagIndex; | ||||
|     int su2Index; | ||||
|     int sigxy; | ||||
|     int NNm1 = ncolour * (ncolour - 1); | ||||
|     if (lieIndex >= NNm1) { | ||||
|       diagIndex = lieIndex - NNm1; | ||||
|       generatorDiagonal(diagIndex, ta); | ||||
|       return; | ||||
|     } | ||||
|     sigxy = lieIndex & 0x1;  // even or odd | ||||
|     su2Index = lieIndex >> 1; | ||||
|     if (sigxy) | ||||
|       generatorSigmaY(su2Index, ta); | ||||
|     else | ||||
|       generatorSigmaX(su2Index, ta); | ||||
|   } | ||||
|    | ||||
|   template <class cplx> | ||||
|   static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) { | ||||
|     ta = Zero(); | ||||
|     int i1, i2; | ||||
|     su2SubGroupIndex(i1, i2, su2Index); | ||||
|     ta()()(i1, i2) = 1.0; | ||||
|     ta()()(i2, i1) = 1.0; | ||||
|     ta = ta * 0.5; | ||||
|   } | ||||
|    | ||||
|   template <class cplx> | ||||
|   static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) { | ||||
|     ta = Zero(); | ||||
|     cplx i(0.0, 1.0); | ||||
|     int i1, i2; | ||||
|     su2SubGroupIndex(i1, i2, su2Index); | ||||
|     ta()()(i1, i2) = i; | ||||
|     ta()()(i2, i1) = -i; | ||||
|     ta = ta * 0.5; | ||||
|   } | ||||
|  | ||||
|   template <class cplx> | ||||
|   static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) { | ||||
|     // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...) | ||||
|     ta = Zero(); | ||||
|     int k = diagIndex + 1;                  // diagIndex starts from 0 | ||||
|     for (int i = 0; i <= diagIndex; i++) {  // k iterations | ||||
|       ta()()(i, i) = 1.0; | ||||
|     } | ||||
|     ta()()(k, k) = -k;  // indexing starts from 0 | ||||
|     RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1)); | ||||
|     ta = ta * nrm; | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   // Map a su2 subgroup number to the pair of rows that are non zero | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   static void su2SubGroupIndex(int &i1, int &i2, int su2_index) { | ||||
|     assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2)); | ||||
|  | ||||
|     int spare = su2_index; | ||||
|     for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) { | ||||
|       spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms | ||||
|     } | ||||
|     i2 = i1 + 1 + spare; | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Pull out a subgroup and project on to real coeffs x pauli basis | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template <class vcplx> | ||||
|   static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant, | ||||
|                          Lattice<iSU2Matrix<vcplx> > &subgroup, | ||||
|                          const Lattice<iSUnMatrix<vcplx> > &source, | ||||
|                          int su2_index) { | ||||
|     GridBase *grid(source.Grid()); | ||||
|     conformable(subgroup, source); | ||||
|     conformable(subgroup, Determinant); | ||||
|     int i0, i1; | ||||
|     su2SubGroupIndex(i0, i1, su2_index); | ||||
|  | ||||
|     autoView( subgroup_v , subgroup,AcceleratorWrite); | ||||
|     autoView( source_v   , source,AcceleratorRead); | ||||
|     autoView( Determinant_v , Determinant,AcceleratorWrite); | ||||
|     accelerator_for(ss, grid->oSites(), 1, { | ||||
|  | ||||
|       subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0); | ||||
|       subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1); | ||||
|       subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0); | ||||
|       subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1); | ||||
|  | ||||
|       iSU2Matrix<vcplx> Sigma = subgroup_v[ss]; | ||||
|  | ||||
|       Sigma = Sigma - adj(Sigma) + trace(adj(Sigma)); | ||||
|  | ||||
|       subgroup_v[ss] = Sigma; | ||||
|  | ||||
|       // this should be purely real | ||||
|       Determinant_v[ss] = | ||||
| 	Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0); | ||||
|     }); | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Set matrix to one and insert a pauli subgroup | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template <class vcplx> | ||||
|   static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup, | ||||
|                         Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) { | ||||
|     GridBase *grid(dest.Grid()); | ||||
|     conformable(subgroup, dest); | ||||
|     int i0, i1; | ||||
|     su2SubGroupIndex(i0, i1, su2_index); | ||||
|  | ||||
|     dest = 1.0;  // start out with identity | ||||
|     autoView( dest_v , dest, AcceleratorWrite); | ||||
|     autoView( subgroup_v, subgroup, AcceleratorRead); | ||||
|     accelerator_for(ss, grid->oSites(),1, | ||||
|     { | ||||
|       dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0); | ||||
|       dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1); | ||||
|       dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0); | ||||
|       dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1); | ||||
|     }); | ||||
|  | ||||
|   } | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Generate e^{ Re Tr Staple Link} dlink | ||||
|   // | ||||
|   // *** Note Staple should be appropriate linear compbination between all | ||||
|   // staples. | ||||
|   // *** If already by beta pass coefficient 1.0. | ||||
|   // *** This routine applies the additional 1/Nc factor that comes after trace | ||||
|   // in action. | ||||
|   // | ||||
|   /////////////////////////////////////////////// | ||||
|   static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG, | ||||
| 			       RealD beta,  // coeff multiplying staple in action (with no 1/Nc) | ||||
| 			       LatticeMatrix &link, | ||||
| 			       const LatticeMatrix &barestaple,  // multiplied by action coeffs so th | ||||
| 			       int su2_subgroup, int nheatbath, LatticeInteger &wheremask)  | ||||
|   { | ||||
|     GridBase *grid = link.Grid(); | ||||
|  | ||||
|     const RealD twopi = 2.0 * M_PI; | ||||
|  | ||||
|     LatticeMatrix staple(grid); | ||||
|  | ||||
|     staple = barestaple * (beta / ncolour); | ||||
|  | ||||
|     LatticeMatrix V(grid); | ||||
|     V = link * staple; | ||||
|  | ||||
|     // Subgroup manipulation in the lie algebra space | ||||
|     LatticeSU2Matrix u(grid);  // Kennedy pendleton "u" real projected normalised Sigma | ||||
|     LatticeSU2Matrix uinv(grid); | ||||
|     LatticeSU2Matrix ua(grid);  // a in pauli form | ||||
|     LatticeSU2Matrix b(grid);   // rotated matrix after hb | ||||
|  | ||||
|     // Some handy constant fields | ||||
|     LatticeComplex ones(grid); | ||||
|     ones = 1.0; | ||||
|     LatticeComplex zeros(grid); | ||||
|     zeros = Zero(); | ||||
|     LatticeReal rones(grid); | ||||
|     rones = 1.0; | ||||
|     LatticeReal rzeros(grid); | ||||
|     rzeros = Zero(); | ||||
|     LatticeComplex udet(grid);  // determinant of real(staple) | ||||
|     LatticeInteger mask_true(grid); | ||||
|     mask_true = 1; | ||||
|     LatticeInteger mask_false(grid); | ||||
|     mask_false = 0; | ||||
|  | ||||
|     /* | ||||
|       PLB 156 P393 (1985) (Kennedy and Pendleton) | ||||
|  | ||||
|       Note: absorb "beta" into the def of sigma compared to KP paper; staple | ||||
|       passed to this routine has "beta" already multiplied in | ||||
|  | ||||
|       Action linear in links h and of form: | ||||
|  | ||||
|       beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq ) | ||||
|  | ||||
|       Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' " | ||||
|  | ||||
|       beta S = const - beta/Nc Re Tr h Sigma' | ||||
|       = const - Re Tr h Sigma | ||||
|  | ||||
|       Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex | ||||
|       arbitrary. | ||||
|  | ||||
|       Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij | ||||
|       Re Tr h Sigma = 2 h_j Re Sigma_j | ||||
|  | ||||
|       Normalised re Sigma_j = xi u_j | ||||
|  | ||||
|       With u_j a unit vector and U can be in SU(2); | ||||
|  | ||||
|       Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u) | ||||
|  | ||||
|       4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|       u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|  | ||||
|       xi = sqrt(Det)/2; | ||||
|  | ||||
|       Write a= u h in SU(2); a has pauli decomp a_j; | ||||
|  | ||||
|       Note: Product b' xi is unvariant because scaling Sigma leaves | ||||
|       normalised vector "u" fixed; Can rescale Sigma so b' = 1. | ||||
|     */ | ||||
|  | ||||
|     //////////////////////////////////////////////////////// | ||||
|     // Real part of Pauli decomposition | ||||
|     // Note a subgroup can project to zero in cold start | ||||
|     //////////////////////////////////////////////////////// | ||||
|     su2Extract(udet, u, V, su2_subgroup); | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
|     // Normalising this vector if possible; else identity | ||||
|     ////////////////////////////////////////////////////// | ||||
|     LatticeComplex xi(grid); | ||||
|  | ||||
|     LatticeSU2Matrix lident(grid); | ||||
|  | ||||
|     SU2Matrix ident = Complex(1.0); | ||||
|     SU2Matrix pauli1; | ||||
|     SU<2>::generator(0, pauli1); | ||||
|     SU2Matrix pauli2; | ||||
|     SU<2>::generator(1, pauli2); | ||||
|     SU2Matrix pauli3; | ||||
|     SU<2>::generator(2, pauli3); | ||||
|     pauli1 = timesI(pauli1) * 2.0; | ||||
|     pauli2 = timesI(pauli2) * 2.0; | ||||
|     pauli3 = timesI(pauli3) * 2.0; | ||||
|  | ||||
|     LatticeComplex cone(grid); | ||||
|     LatticeReal adet(grid); | ||||
|     adet = abs(toReal(udet)); | ||||
|     lident = Complex(1.0); | ||||
|     cone = Complex(1.0); | ||||
|     Real machine_epsilon = 1.0e-7; | ||||
|     u = where(adet > machine_epsilon, u, lident); | ||||
|     udet = where(adet > machine_epsilon, udet, cone); | ||||
|  | ||||
|     xi = 0.5 * sqrt(udet);  // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|     u = 0.5 * u * | ||||
|       pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|  | ||||
|     // Debug test for sanity | ||||
|     uinv = adj(u); | ||||
|     b = u * uinv - 1.0; | ||||
|     assert(norm2(b) < 1.0e-4); | ||||
|  | ||||
|     /* | ||||
|       Measure: Haar measure dh has d^4a delta(1-|a^2|) | ||||
|       In polars: | ||||
|       da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2) | ||||
|       = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) + | ||||
|       r) ) | ||||
|       = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) ) | ||||
|  | ||||
|       Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta enters | ||||
|       through xi | ||||
|       =  e^{2 xi (h.u)} dh | ||||
|       =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi | ||||
|       h2u2}.e^{2 xi h3u3} dh | ||||
|  | ||||
|       Therefore for each site, take xi for that site | ||||
|       i) generate  |a0|<1 with dist | ||||
|       (1-a0^2)^0.5 e^{2 xi a0 } da0 | ||||
|  | ||||
|       Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc | ||||
|       factor in Chroma ] | ||||
|       A. Generate two uniformly distributed pseudo-random numbers R and R', R'', | ||||
|       R''' in the unit interval; | ||||
|       B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha; | ||||
|       C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ; | ||||
|       D. Set A = XC; | ||||
|       E. Let d  = X'+A; | ||||
|       F. If R'''^2 :> 1 - 0.5 d,  go back to A; | ||||
|       G. Set a0 = 1 - d; | ||||
|  | ||||
|       Note that in step D setting B ~ X - A and using B in place of A in step E will | ||||
|       generate a second independent a 0 value. | ||||
|     */ | ||||
|  | ||||
|     ///////////////////////////////////////////////////////// | ||||
|     // count the number of sites by picking "1"'s out of hat | ||||
|     ///////////////////////////////////////////////////////// | ||||
|     Integer hit = 0; | ||||
|     LatticeReal rtmp(grid); | ||||
|     rtmp = where(wheremask, rones, rzeros); | ||||
|     RealD numSites = sum(rtmp); | ||||
|     RealD numAccepted; | ||||
|     LatticeInteger Accepted(grid); | ||||
|     Accepted = Zero(); | ||||
|     LatticeInteger newlyAccepted(grid); | ||||
|  | ||||
|     std::vector<LatticeReal> xr(4, grid); | ||||
|     std::vector<LatticeReal> a(4, grid); | ||||
|     LatticeReal d(grid); | ||||
|     d = Zero(); | ||||
|     LatticeReal alpha(grid); | ||||
|  | ||||
|     //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl; | ||||
|     xi = 2.0 *xi; | ||||
|     alpha = toReal(xi); | ||||
|  | ||||
|     do { | ||||
|       // A. Generate two uniformly distributed pseudo-random numbers R and R', | ||||
|       // R'', R''' in the unit interval; | ||||
|       random(pRNG, xr[0]); | ||||
|       random(pRNG, xr[1]); | ||||
|       random(pRNG, xr[2]); | ||||
|       random(pRNG, xr[3]); | ||||
|  | ||||
|       // B. Set X = - ln R/alpha, X' = -ln R'/alpha | ||||
|       xr[1] = -log(xr[1]) / alpha; | ||||
|       xr[2] = -log(xr[2]) / alpha; | ||||
|  | ||||
|       // C. Set C = cos^2(2piR'') | ||||
|       xr[3] = cos(xr[3] * twopi); | ||||
|       xr[3] = xr[3] * xr[3]; | ||||
|  | ||||
|       LatticeReal xrsq(grid); | ||||
|  | ||||
|       // D. Set A = XC; | ||||
|       // E. Let d  = X'+A; | ||||
|       xrsq = xr[2] + xr[1] * xr[3]; | ||||
|  | ||||
|       d = where(Accepted, d, xr[2] + xr[1] * xr[3]); | ||||
|  | ||||
|       // F. If R'''^2 :> 1 - 0.5 d,  go back to A; | ||||
|       LatticeReal thresh(grid); | ||||
|       thresh = 1.0 - d * 0.5; | ||||
|       xrsq = xr[0] * xr[0]; | ||||
|       LatticeInteger ione(grid); | ||||
|       ione = 1; | ||||
|       LatticeInteger izero(grid); | ||||
|       izero = Zero(); | ||||
|  | ||||
|       newlyAccepted = where(xrsq < thresh, ione, izero); | ||||
|       Accepted = where(newlyAccepted, newlyAccepted, Accepted); | ||||
|       Accepted = where(wheremask, Accepted, izero); | ||||
|  | ||||
|       // FIXME need an iSum for integer to avoid overload on return type?? | ||||
|       rtmp = where(Accepted, rones, rzeros); | ||||
|       numAccepted = sum(rtmp); | ||||
|  | ||||
|       hit++; | ||||
|  | ||||
|     } while ((numAccepted < numSites) && (hit < nheatbath)); | ||||
|  | ||||
|     // G. Set a0 = 1 - d; | ||||
|     a[0] = Zero(); | ||||
|     a[0] = where(wheremask, 1.0 - d, a[0]); | ||||
|  | ||||
|     ////////////////////////////////////////// | ||||
|     //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5 | ||||
|     ////////////////////////////////////////// | ||||
|  | ||||
|     LatticeReal a123mag(grid); | ||||
|     a123mag = sqrt(abs(1.0 - a[0] * a[0])); | ||||
|  | ||||
|     LatticeReal cos_theta(grid); | ||||
|     LatticeReal sin_theta(grid); | ||||
|     LatticeReal phi(grid); | ||||
|  | ||||
|     random(pRNG, phi); | ||||
|     phi = phi * twopi;  // uniform in [0,2pi] | ||||
|     random(pRNG, cos_theta); | ||||
|     cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1] | ||||
|     sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta)); | ||||
|  | ||||
|     a[1] = a123mag * sin_theta * cos(phi); | ||||
|     a[2] = a123mag * sin_theta * sin(phi); | ||||
|     a[3] = a123mag * cos_theta; | ||||
|  | ||||
|     ua = toComplex(a[0]) * ident  + toComplex(a[1]) * pauli1 + | ||||
|          toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3; | ||||
|  | ||||
|     b = 1.0; | ||||
|     b = where(wheremask, uinv * ua, b); | ||||
|     su2Insert(b, V, su2_subgroup); | ||||
|  | ||||
|     // mask the assignment back based on Accptance | ||||
|     link = where(Accepted, V * link, link); | ||||
|  | ||||
|     ////////////////////////////// | ||||
|     // Debug Checks | ||||
|     // SU2 check | ||||
|     LatticeSU2Matrix check(grid);  // rotated matrix after hb | ||||
|     u = Zero(); | ||||
|     check = ua * adj(ua) - 1.0; | ||||
|     check = where(Accepted, check, u); | ||||
|     assert(norm2(check) < 1.0e-4); | ||||
|  | ||||
|     check = b * adj(b) - 1.0; | ||||
|     check = where(Accepted, check, u); | ||||
|     assert(norm2(check) < 1.0e-4); | ||||
|  | ||||
|     LatticeMatrix Vcheck(grid); | ||||
|     Vcheck = Zero(); | ||||
|     Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck); | ||||
|     //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl; | ||||
|     assert(norm2(Vcheck) < 1.0e-4); | ||||
|  | ||||
|     // Verify the link stays in SU(3) | ||||
|     //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl; | ||||
|     Vcheck = link * adj(link) - 1.0; | ||||
|     assert(norm2(Vcheck) < 1.0e-4); | ||||
|     ///////////////////////////////// | ||||
|   } | ||||
|  | ||||
|   static void printGenerators(void) { | ||||
|     for (int gen = 0; gen < AdjointDimension; gen++) { | ||||
|       Matrix ta; | ||||
|       generator(gen, ta); | ||||
|       std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen | ||||
|                 << std::endl; | ||||
|       std::cout << GridLogMessage << ta << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|   static void testGenerators(void) { | ||||
|     Matrix ta; | ||||
|     Matrix tb; | ||||
|     std::cout << GridLogMessage | ||||
|               << "Fundamental - Checking trace ta tb is 0.5 delta_ab" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       for (int b = 0; b < AdjointDimension; b++) { | ||||
|         generator(a, ta); | ||||
|         generator(b, tb); | ||||
|         Complex tr = TensorRemove(trace(ta * tb)); | ||||
|         std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr | ||||
|                   << std::endl; | ||||
|         if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6); | ||||
|         if (a != b) assert(abs(tr) < 1.0e-6); | ||||
|       } | ||||
|       std::cout << GridLogMessage << std::endl; | ||||
|     } | ||||
|     std::cout << GridLogMessage << "Fundamental - Checking if hermitian" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       generator(a, ta); | ||||
|       std::cout << GridLogMessage << a << std::endl; | ||||
|       assert(norm2(ta - adj(ta)) < 1.0e-6); | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|  | ||||
|     std::cout << GridLogMessage << "Fundamental - Checking if traceless" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       generator(a, ta); | ||||
|       Complex tr = TensorRemove(trace(ta)); | ||||
|       std::cout << GridLogMessage << a << " " << std::endl; | ||||
|       assert(abs(tr) < 1.0e-6); | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|   } | ||||
|  | ||||
|   // reunitarise?? | ||||
|   template <typename LatticeMatrixType> | ||||
|   static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0)  | ||||
|   { | ||||
|     GridBase *grid = out.Grid(); | ||||
|  | ||||
|     typedef typename LatticeMatrixType::vector_type vector_type; | ||||
|  | ||||
|     typedef iSinglet<vector_type> vTComplexType; | ||||
|  | ||||
|     typedef Lattice<vTComplexType> LatticeComplexType; | ||||
|     typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType; | ||||
|  | ||||
|     LatticeComplexType ca(grid); | ||||
|     LatticeMatrixType lie(grid); | ||||
|     LatticeMatrixType la(grid); | ||||
|     ComplexD ci(0.0, scale); | ||||
|     //    ComplexD cone(1.0, 0.0); | ||||
|     MatrixType ta; | ||||
|  | ||||
|     lie = Zero(); | ||||
|  | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       random(pRNG, ca); | ||||
|  | ||||
|       ca = (ca + conjugate(ca)) * 0.5; | ||||
|       ca = ca - 0.5; | ||||
|  | ||||
|       generator(a, ta); | ||||
|  | ||||
|       la = ci * ca * ta; | ||||
|  | ||||
|       lie = lie + la;  // e^{i la ta} | ||||
|  | ||||
|     } | ||||
|     taExp(lie, out); | ||||
|   } | ||||
|  | ||||
|   static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG, | ||||
|                                                   LatticeMatrix &out, | ||||
|                                                   Real scale = 1.0) { | ||||
|     GridBase *grid = out.Grid(); | ||||
|     LatticeReal ca(grid); | ||||
|     LatticeMatrix la(grid); | ||||
|     Complex ci(0.0, scale); | ||||
|     Matrix ta; | ||||
|  | ||||
|     out = Zero(); | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       gaussian(pRNG, ca); | ||||
|       generator(a, ta); | ||||
|       la = toComplex(ca) * ta; | ||||
|       out += la; | ||||
|     } | ||||
|     out *= ci; | ||||
|   } | ||||
|  | ||||
|   static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h, | ||||
|                                           LatticeMatrix &out, | ||||
|                                           Real scale = 1.0) { | ||||
|     conformable(h, out); | ||||
|     GridBase *grid = out.Grid(); | ||||
|     LatticeMatrix la(grid); | ||||
|     Matrix ta; | ||||
|  | ||||
|     out = Zero(); | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       generator(a, ta); | ||||
|       la = peekColour(h, a) * timesI(ta) * scale; | ||||
|       out += la; | ||||
|     } | ||||
|   } | ||||
| /* | ||||
|  * Fundamental rep gauge xform | ||||
|  */ | ||||
|   template<typename Fundamental,typename GaugeMat> | ||||
|   static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){ | ||||
|     GridBase *grid = ferm._grid; | ||||
|     conformable(grid,g._grid); | ||||
|     ferm = g*ferm; | ||||
|   } | ||||
| /* | ||||
|  * Adjoint rep gauge xform | ||||
|  */ | ||||
|  | ||||
|   template<typename Gimpl> | ||||
|   static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){ | ||||
|     GridBase *grid = Umu.Grid(); | ||||
|     conformable(grid,g.Grid()); | ||||
|  | ||||
|     typename Gimpl::GaugeLinkField U(grid); | ||||
|     typename Gimpl::GaugeLinkField ag(grid); ag = adj(g); | ||||
|  | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       U= PeekIndex<LorentzIndex>(Umu,mu); | ||||
|       U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware | ||||
|       PokeIndex<LorentzIndex>(Umu,U,mu); | ||||
|     } | ||||
|   } | ||||
|   template<typename Gimpl> | ||||
|   static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){ | ||||
|     GridBase *grid = g.Grid(); | ||||
|     typename Gimpl::GaugeLinkField ag(grid); ag = adj(g); | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware | ||||
|     } | ||||
|   } | ||||
|   template<typename Gimpl> | ||||
|   static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){ | ||||
|     LieRandomize(pRNG,g,1.0); | ||||
|     GaugeTransform<Gimpl>(Umu,g); | ||||
|   } | ||||
|  | ||||
|   // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 ) | ||||
|   // inverse operation: FundamentalLieAlgebraMatrix | ||||
|   static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) { | ||||
|     conformable(h_out, in); | ||||
|     h_out = Zero(); | ||||
|     Matrix Ta; | ||||
|  | ||||
|     for (int a = 0; a < AdjointDimension; a++) { | ||||
|       generator(a, Ta); | ||||
|       pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template <typename GaugeField> | ||||
|   static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) { | ||||
|     typedef typename GaugeField::vector_type vector_type; | ||||
|     typedef iSUnMatrix<vector_type> vMatrixType; | ||||
|     typedef Lattice<vMatrixType> LatticeMatrixType; | ||||
|  | ||||
|     LatticeMatrixType Umu(out.Grid()); | ||||
|     LatticeMatrixType tmp(out.Grid()); | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       //      LieRandomize(pRNG, Umu, 1.0); | ||||
|       //      PokeIndex<LorentzIndex>(out, Umu, mu); | ||||
|       gaussian(pRNG,Umu); | ||||
|       tmp = Ta(Umu); | ||||
|       taExp(tmp,Umu); | ||||
|       ProjectSUn(Umu); | ||||
|       PokeIndex<LorentzIndex>(out, Umu, mu); | ||||
|     } | ||||
|   } | ||||
|   template<typename GaugeField> | ||||
|   static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){ | ||||
|     typedef typename GaugeField::vector_type vector_type; | ||||
|     typedef iSUnMatrix<vector_type> vMatrixType; | ||||
|     typedef Lattice<vMatrixType> LatticeMatrixType; | ||||
|  | ||||
|     LatticeMatrixType Umu(out.Grid()); | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       LieRandomize(pRNG,Umu,0.01); | ||||
|       PokeIndex<LorentzIndex>(out,Umu,mu); | ||||
|     } | ||||
|   } | ||||
|   template<typename GaugeField> | ||||
|   static void ColdConfiguration(GaugeField &out){ | ||||
|     typedef typename GaugeField::vector_type vector_type; | ||||
|     typedef iSUnMatrix<vector_type> vMatrixType; | ||||
|     typedef Lattice<vMatrixType> LatticeMatrixType; | ||||
|  | ||||
|     LatticeMatrixType Umu(out.Grid()); | ||||
|     Umu=1.0; | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       PokeIndex<LorentzIndex>(out,Umu,mu); | ||||
|     } | ||||
|   } | ||||
|   template<typename GaugeField> | ||||
|   static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){ | ||||
|     ColdConfiguration(out); | ||||
|   } | ||||
|  | ||||
|   template<typename LatticeMatrixType> | ||||
|   static void taProj( const LatticeMatrixType &in,  LatticeMatrixType &out){ | ||||
|     out = Ta(in); | ||||
|   } | ||||
|   template <typename LatticeMatrixType> | ||||
|   static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) { | ||||
|     typedef typename LatticeMatrixType::scalar_type ComplexType; | ||||
|  | ||||
|     LatticeMatrixType xn(x.Grid()); | ||||
|     RealD nfac = 1.0; | ||||
|  | ||||
|     xn = x; | ||||
|     ex = xn + ComplexType(1.0);  // 1+x | ||||
|  | ||||
|     // Do a 12th order exponentiation | ||||
|     for (int i = 2; i <= 12; ++i) { | ||||
|       nfac = nfac / RealD(i);  // 1/2, 1/2.3 ... | ||||
|       xn = xn * x;             // x2, x3,x4.... | ||||
|       ex = ex + xn * nfac;     // x2/2!, x3/3!.... | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<int N> | ||||
| Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid); | ||||
|    | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Us; | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Ui; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	EigenU(i,j) = Us()()(i,j); | ||||
|       }} | ||||
|     Eigen::MatrixXcd EigenUinv = EigenU.inverse(); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	Ui()()(i,j) = EigenUinv(i,j); | ||||
|       }} | ||||
|     pokeLocalSite(Ui,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
| // Explicit specialisation for SU(3). | ||||
| // Explicit specialisation for SU(3). | ||||
| static void | ||||
| ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   const int x=0; | ||||
|   const int y=1; | ||||
|   const int z=2; | ||||
|   // Reunitarise | ||||
|   Umu = ProjectOnGroup(Umu); | ||||
|   autoView(Umu_v,Umu,CpuWrite); | ||||
|   thread_for(ss,grid->oSites(),{ | ||||
|       auto cm = Umu_v[ss]; | ||||
|       cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy | ||||
|       cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz | ||||
|       cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx | ||||
|       Umu_v[ss]=cm; | ||||
|   }); | ||||
| } | ||||
| static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U) | ||||
| { | ||||
|   GridBase *grid=U.Grid(); | ||||
|   // Reunitarise | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     auto Umu = PeekIndex<LorentzIndex>(U,mu); | ||||
|     Umu      = ProjectOnGroup(Umu); | ||||
|     ProjectSU3(Umu); | ||||
|     PokeIndex<LorentzIndex>(U,Umu,mu); | ||||
|   } | ||||
| } | ||||
|  | ||||
| typedef SU<2> SU2; | ||||
| typedef SU<3> SU3; | ||||
| typedef SU<4> SU4; | ||||
| typedef SU<5> SU5; | ||||
|  | ||||
|  | ||||
| typedef SU<Nc> FundamentalMatrices; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
							
								
								
									
										580
									
								
								Grid/qcd/utils/SUn.impl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										580
									
								
								Grid/qcd/utils/SUn.impl.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,580 @@ | ||||
| // This file is #included into the body of the class template definition of | ||||
| // GaugeGroup. So, image there to be | ||||
| // | ||||
| // template <int ncolour, class group_name> | ||||
| // class GaugeGroup { | ||||
| // | ||||
| // around it. | ||||
| // | ||||
| // Please note that the unconventional file extension makes sure that it | ||||
| // doesn't get found by the scripts/filelist during bootstrapping. | ||||
|  | ||||
| private: | ||||
|  | ||||
| template <ONLY_IF_SU> | ||||
| static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; } | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| // There are N^2-1 generators for SU(N). | ||||
| // | ||||
| // We take a traceless hermitian generator basis as follows | ||||
| // | ||||
| // * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab | ||||
| //   T_F = 1/2  for SU(N) groups | ||||
| // | ||||
| // * Off diagonal | ||||
| //    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y | ||||
| // | ||||
| //    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ] | ||||
| //      direct count off each row | ||||
| // | ||||
| //    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series | ||||
| // | ||||
| //      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2 | ||||
| //      1+ 2+          +   + Nc-1 | ||||
| // | ||||
| //    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc | ||||
| // | ||||
| //    - We enumerate the row-col pairs. | ||||
| //    - for each row col pair there is a (sigma_x) and a (sigma_y) like | ||||
| //    generator | ||||
| // | ||||
| // | ||||
| //   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} + | ||||
| //   delta_{i,i1} delta_{j,i2}) | ||||
| //   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1} | ||||
| //   delta_{j,i2} - i delta_{i,i1} delta_{j,i2}) | ||||
| // | ||||
| // * Diagonal; must be traceless and normalised | ||||
| //   - Sequence is | ||||
| //   N  (1,-1,0,0...) | ||||
| //   N  (1, 1,-2,0...) | ||||
| //   N  (1, 1, 1,-3,0...) | ||||
| //   N  (1, 1, 1, 1,-4,0...) | ||||
| // | ||||
| //   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator | ||||
| //   NB this gives the famous SU3 result for su2 index 8 | ||||
| // | ||||
| //   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3) | ||||
| // | ||||
| //   ( 1      ) | ||||
| //   (    1   ) / sqrt(3) /2  = 1/2 lambda_8 | ||||
| //   (      -2) | ||||
| // | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| template <class cplx, ONLY_IF_SU> | ||||
| static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) { | ||||
|   // map lie index to which type of generator | ||||
|   int diagIndex; | ||||
|   int su2Index; | ||||
|   int sigxy; | ||||
|   int NNm1 = ncolour * (ncolour - 1); | ||||
|   if (lieIndex >= NNm1) { | ||||
|     diagIndex = lieIndex - NNm1; | ||||
|     generatorDiagonal(diagIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   sigxy = lieIndex & 0x1;  // even or odd | ||||
|   su2Index = lieIndex >> 1; | ||||
|   if (sigxy) | ||||
|     generatorSigmaY(su2Index, ta); | ||||
|   else | ||||
|     generatorSigmaX(su2Index, ta); | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_SU> | ||||
| static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) { | ||||
|   ta = Zero(); | ||||
|   int i1, i2; | ||||
|   su2SubGroupIndex(i1, i2, su2Index); | ||||
|   ta()()(i1, i2) = 1.0; | ||||
|   ta()()(i2, i1) = 1.0; | ||||
|   ta = ta * 0.5; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_SU> | ||||
| static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) { | ||||
|   ta = Zero(); | ||||
|   cplx i(0.0, 1.0); | ||||
|   int i1, i2; | ||||
|   su2SubGroupIndex(i1, i2, su2Index); | ||||
|   ta()()(i1, i2) = i; | ||||
|   ta()()(i2, i1) = -i; | ||||
|   ta = ta * 0.5; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_SU> | ||||
| static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...) | ||||
|   ta = Zero(); | ||||
|   int k = diagIndex + 1;                  // diagIndex starts from 0 | ||||
|   for (int i = 0; i <= diagIndex; i++) {  // k iterations | ||||
|     ta()()(i, i) = 1.0; | ||||
|   } | ||||
|   ta()()(k, k) = -k;  // indexing starts from 0 | ||||
|   RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1)); | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| // Map a su2 subgroup number to the pair of rows that are non zero | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) { | ||||
|   assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2)); | ||||
|  | ||||
|   int spare = su2_index; | ||||
|   for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) { | ||||
|     spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms | ||||
|   } | ||||
|   i2 = i1 + 1 + spare; | ||||
| } | ||||
|  | ||||
| public: | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Pull out a subgroup and project on to real coeffs x pauli basis | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vcplx, ONLY_IF_SU> | ||||
| static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant, | ||||
|                        Lattice<iSU2Matrix<vcplx> > &subgroup, | ||||
|                        const Lattice<iGroupMatrix<vcplx> > &source, | ||||
|                        int su2_index) { | ||||
|   GridBase *grid(source.Grid()); | ||||
|   conformable(subgroup, source); | ||||
|   conformable(subgroup, Determinant); | ||||
|   int i0, i1; | ||||
|   su2SubGroupIndex(i0, i1, su2_index); | ||||
|  | ||||
|   autoView(subgroup_v, subgroup, AcceleratorWrite); | ||||
|   autoView(source_v, source, AcceleratorRead); | ||||
|   autoView(Determinant_v, Determinant, AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(), 1, { | ||||
|     subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0); | ||||
|     subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1); | ||||
|     subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0); | ||||
|     subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1); | ||||
|  | ||||
|     iSU2Matrix<vcplx> Sigma = subgroup_v[ss]; | ||||
|  | ||||
|     Sigma = Sigma - adj(Sigma) + trace(adj(Sigma)); | ||||
|  | ||||
|     subgroup_v[ss] = Sigma; | ||||
|  | ||||
|     // this should be purely real | ||||
|     Determinant_v[ss] = | ||||
|         Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0); | ||||
|   }); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Set matrix to one and insert a pauli subgroup | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vcplx, ONLY_IF_SU> | ||||
| static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup, | ||||
|                       Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) { | ||||
|   GridBase *grid(dest.Grid()); | ||||
|   conformable(subgroup, dest); | ||||
|   int i0, i1; | ||||
|   su2SubGroupIndex(i0, i1, su2_index); | ||||
|  | ||||
|   dest = 1.0;  // start out with identity | ||||
|   autoView(dest_v, dest, AcceleratorWrite); | ||||
|   autoView(subgroup_v, subgroup, AcceleratorRead); | ||||
|   accelerator_for(ss, grid->oSites(), 1, { | ||||
|     dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0); | ||||
|     dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1); | ||||
|     dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0); | ||||
|     dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1); | ||||
|   }); | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////// | ||||
| // Generate e^{ Re Tr Staple Link} dlink | ||||
| // | ||||
| // *** Note Staple should be appropriate linear compbination between all | ||||
| // staples. | ||||
| // *** If already by beta pass coefficient 1.0. | ||||
| // *** This routine applies the additional 1/Nc factor that comes after trace | ||||
| // in action. | ||||
| // | ||||
| /////////////////////////////////////////////// | ||||
| template <ONLY_IF_SU> | ||||
| static void SubGroupHeatBath( | ||||
|     GridSerialRNG &sRNG, GridParallelRNG &pRNG, | ||||
|     RealD beta,  // coeff multiplying staple in action (with no 1/Nc) | ||||
|     LatticeMatrix &link, | ||||
|     const LatticeMatrix &barestaple,  // multiplied by action coeffs so th | ||||
|     int su2_subgroup, int nheatbath, LatticeInteger &wheremask) { | ||||
|   GridBase *grid = link.Grid(); | ||||
|  | ||||
|   const RealD twopi = 2.0 * M_PI; | ||||
|  | ||||
|   LatticeMatrix staple(grid); | ||||
|  | ||||
|   staple = barestaple * (beta / ncolour); | ||||
|  | ||||
|   LatticeMatrix V(grid); | ||||
|   V = link * staple; | ||||
|  | ||||
|   // Subgroup manipulation in the lie algebra space | ||||
|   LatticeSU2Matrix u( | ||||
|       grid);  // Kennedy pendleton "u" real projected normalised Sigma | ||||
|   LatticeSU2Matrix uinv(grid); | ||||
|   LatticeSU2Matrix ua(grid);  // a in pauli form | ||||
|   LatticeSU2Matrix b(grid);   // rotated matrix after hb | ||||
|  | ||||
|   // Some handy constant fields | ||||
|   LatticeComplex ones(grid); | ||||
|   ones = 1.0; | ||||
|   LatticeComplex zeros(grid); | ||||
|   zeros = Zero(); | ||||
|   LatticeReal rones(grid); | ||||
|   rones = 1.0; | ||||
|   LatticeReal rzeros(grid); | ||||
|   rzeros = Zero(); | ||||
|   LatticeComplex udet(grid);  // determinant of real(staple) | ||||
|   LatticeInteger mask_true(grid); | ||||
|   mask_true = 1; | ||||
|   LatticeInteger mask_false(grid); | ||||
|   mask_false = 0; | ||||
|  | ||||
|   /* | ||||
|     PLB 156 P393 (1985) (Kennedy and Pendleton) | ||||
|  | ||||
|     Note: absorb "beta" into the def of sigma compared to KP paper; staple | ||||
|     passed to this routine has "beta" already multiplied in | ||||
|  | ||||
|     Action linear in links h and of form: | ||||
|  | ||||
|     beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq ) | ||||
|  | ||||
|     Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' " | ||||
|  | ||||
|     beta S = const - beta/Nc Re Tr h Sigma' | ||||
|     = const - Re Tr h Sigma | ||||
|  | ||||
|     Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex | ||||
|     arbitrary. | ||||
|  | ||||
|     Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij | ||||
|     Re Tr h Sigma = 2 h_j Re Sigma_j | ||||
|  | ||||
|     Normalised re Sigma_j = xi u_j | ||||
|  | ||||
|     With u_j a unit vector and U can be in SU(2); | ||||
|  | ||||
|     Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u) | ||||
|  | ||||
|     4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|     u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|  | ||||
|     xi = sqrt(Det)/2; | ||||
|  | ||||
|     Write a= u h in SU(2); a has pauli decomp a_j; | ||||
|  | ||||
|     Note: Product b' xi is unvariant because scaling Sigma leaves | ||||
|     normalised vector "u" fixed; Can rescale Sigma so b' = 1. | ||||
|   */ | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Real part of Pauli decomposition | ||||
|   // Note a subgroup can project to zero in cold start | ||||
|   //////////////////////////////////////////////////////// | ||||
|   su2Extract(udet, u, V, su2_subgroup); | ||||
|  | ||||
|   ////////////////////////////////////////////////////// | ||||
|   // Normalising this vector if possible; else identity | ||||
|   ////////////////////////////////////////////////////// | ||||
|   LatticeComplex xi(grid); | ||||
|  | ||||
|   LatticeSU2Matrix lident(grid); | ||||
|  | ||||
|   SU2Matrix ident = Complex(1.0); | ||||
|   SU2Matrix pauli1; | ||||
|   GaugeGroup<2, GroupName::SU>::generator(0, pauli1); | ||||
|   SU2Matrix pauli2; | ||||
|   GaugeGroup<2, GroupName::SU>::generator(1, pauli2); | ||||
|   SU2Matrix pauli3; | ||||
|   GaugeGroup<2, GroupName::SU>::generator(2, pauli3); | ||||
|   pauli1 = timesI(pauli1) * 2.0; | ||||
|   pauli2 = timesI(pauli2) * 2.0; | ||||
|   pauli3 = timesI(pauli3) * 2.0; | ||||
|  | ||||
|   LatticeComplex cone(grid); | ||||
|   LatticeReal adet(grid); | ||||
|   adet = abs(toReal(udet)); | ||||
|   lident = Complex(1.0); | ||||
|   cone = Complex(1.0); | ||||
|   Real machine_epsilon = 1.0e-7; | ||||
|   u = where(adet > machine_epsilon, u, lident); | ||||
|   udet = where(adet > machine_epsilon, udet, cone); | ||||
|  | ||||
|   xi = 0.5 * sqrt(udet);        // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|   u = 0.5 * u * pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag] | ||||
|  | ||||
|   // Debug test for sanity | ||||
|   uinv = adj(u); | ||||
|   b = u * uinv - 1.0; | ||||
|   assert(norm2(b) < 1.0e-4); | ||||
|  | ||||
|   /* | ||||
|     Measure: Haar measure dh has d^4a delta(1-|a^2|) | ||||
|     In polars: | ||||
|     da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2) | ||||
|     = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) + | ||||
|     r) ) | ||||
|     = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) ) | ||||
|  | ||||
|     Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta | ||||
|     enters through xi =  e^{2 xi (h.u)} dh =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 | ||||
|     xi h2u2}.e^{2 xi h3u3} dh | ||||
|  | ||||
|     Therefore for each site, take xi for that site | ||||
|     i) generate  |a0|<1 with dist | ||||
|     (1-a0^2)^0.5 e^{2 xi a0 } da0 | ||||
|  | ||||
|     Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm]; | ||||
|     hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed | ||||
|     pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X = | ||||
|     -(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R" | ||||
|     another uniform random number in [0,1] ; D. Set A = XC; E. Let d  = X'+A; | ||||
|     F. If R'''^2 :> 1 - 0.5 d,  go back to A; | ||||
|     G. Set a0 = 1 - d; | ||||
|  | ||||
|     Note that in step D setting B ~ X - A and using B in place of A in step E | ||||
|     will generate a second independent a 0 value. | ||||
|   */ | ||||
|  | ||||
|   ///////////////////////////////////////////////////////// | ||||
|   // count the number of sites by picking "1"'s out of hat | ||||
|   ///////////////////////////////////////////////////////// | ||||
|   Integer hit = 0; | ||||
|   LatticeReal rtmp(grid); | ||||
|   rtmp = where(wheremask, rones, rzeros); | ||||
|   RealD numSites = sum(rtmp); | ||||
|   RealD numAccepted; | ||||
|   LatticeInteger Accepted(grid); | ||||
|   Accepted = Zero(); | ||||
|   LatticeInteger newlyAccepted(grid); | ||||
|  | ||||
|   std::vector<LatticeReal> xr(4, grid); | ||||
|   std::vector<LatticeReal> a(4, grid); | ||||
|   LatticeReal d(grid); | ||||
|   d = Zero(); | ||||
|   LatticeReal alpha(grid); | ||||
|  | ||||
|   //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl; | ||||
|   xi = 2.0 * xi; | ||||
|   alpha = toReal(xi); | ||||
|  | ||||
|   do { | ||||
|     // A. Generate two uniformly distributed pseudo-random numbers R and R', | ||||
|     // R'', R''' in the unit interval; | ||||
|     random(pRNG, xr[0]); | ||||
|     random(pRNG, xr[1]); | ||||
|     random(pRNG, xr[2]); | ||||
|     random(pRNG, xr[3]); | ||||
|  | ||||
|     // B. Set X = - ln R/alpha, X' = -ln R'/alpha | ||||
|     xr[1] = -log(xr[1]) / alpha; | ||||
|     xr[2] = -log(xr[2]) / alpha; | ||||
|  | ||||
|     // C. Set C = cos^2(2piR'') | ||||
|     xr[3] = cos(xr[3] * twopi); | ||||
|     xr[3] = xr[3] * xr[3]; | ||||
|  | ||||
|     LatticeReal xrsq(grid); | ||||
|  | ||||
|     // D. Set A = XC; | ||||
|     // E. Let d  = X'+A; | ||||
|     xrsq = xr[2] + xr[1] * xr[3]; | ||||
|  | ||||
|     d = where(Accepted, d, xr[2] + xr[1] * xr[3]); | ||||
|  | ||||
|     // F. If R'''^2 :> 1 - 0.5 d,  go back to A; | ||||
|     LatticeReal thresh(grid); | ||||
|     thresh = 1.0 - d * 0.5; | ||||
|     xrsq = xr[0] * xr[0]; | ||||
|     LatticeInteger ione(grid); | ||||
|     ione = 1; | ||||
|     LatticeInteger izero(grid); | ||||
|     izero = Zero(); | ||||
|  | ||||
|     newlyAccepted = where(xrsq < thresh, ione, izero); | ||||
|     Accepted = where(newlyAccepted, newlyAccepted, Accepted); | ||||
|     Accepted = where(wheremask, Accepted, izero); | ||||
|  | ||||
|     // FIXME need an iSum for integer to avoid overload on return type?? | ||||
|     rtmp = where(Accepted, rones, rzeros); | ||||
|     numAccepted = sum(rtmp); | ||||
|  | ||||
|     hit++; | ||||
|  | ||||
|   } while ((numAccepted < numSites) && (hit < nheatbath)); | ||||
|  | ||||
|   // G. Set a0 = 1 - d; | ||||
|   a[0] = Zero(); | ||||
|   a[0] = where(wheremask, 1.0 - d, a[0]); | ||||
|  | ||||
|   ////////////////////////////////////////// | ||||
|   //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5 | ||||
|   ////////////////////////////////////////// | ||||
|  | ||||
|   LatticeReal a123mag(grid); | ||||
|   a123mag = sqrt(abs(1.0 - a[0] * a[0])); | ||||
|  | ||||
|   LatticeReal cos_theta(grid); | ||||
|   LatticeReal sin_theta(grid); | ||||
|   LatticeReal phi(grid); | ||||
|  | ||||
|   random(pRNG, phi); | ||||
|   phi = phi * twopi;  // uniform in [0,2pi] | ||||
|   random(pRNG, cos_theta); | ||||
|   cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1] | ||||
|   sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta)); | ||||
|  | ||||
|   a[1] = a123mag * sin_theta * cos(phi); | ||||
|   a[2] = a123mag * sin_theta * sin(phi); | ||||
|   a[3] = a123mag * cos_theta; | ||||
|  | ||||
|   ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 + | ||||
|        toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3; | ||||
|  | ||||
|   b = 1.0; | ||||
|   b = where(wheremask, uinv * ua, b); | ||||
|   su2Insert(b, V, su2_subgroup); | ||||
|  | ||||
|   // mask the assignment back based on Accptance | ||||
|   link = where(Accepted, V * link, link); | ||||
|  | ||||
|   ////////////////////////////// | ||||
|   // Debug Checks | ||||
|   // SU2 check | ||||
|   LatticeSU2Matrix check(grid);  // rotated matrix after hb | ||||
|   u = Zero(); | ||||
|   check = ua * adj(ua) - 1.0; | ||||
|   check = where(Accepted, check, u); | ||||
|   assert(norm2(check) < 1.0e-4); | ||||
|  | ||||
|   check = b * adj(b) - 1.0; | ||||
|   check = where(Accepted, check, u); | ||||
|   assert(norm2(check) < 1.0e-4); | ||||
|  | ||||
|   LatticeMatrix Vcheck(grid); | ||||
|   Vcheck = Zero(); | ||||
|   Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck); | ||||
|   //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl; | ||||
|   assert(norm2(Vcheck) < 1.0e-4); | ||||
|  | ||||
|   // Verify the link stays in SU(3) | ||||
|   //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl; | ||||
|   Vcheck = link * adj(link) - 1.0; | ||||
|   assert(norm2(Vcheck) < 1.0e-4); | ||||
|   ///////////////////////////////// | ||||
| } | ||||
|  | ||||
| template <ONLY_IF_SU> | ||||
| static void testGenerators(GroupName::SU) { | ||||
|   Matrix ta; | ||||
|   Matrix tb; | ||||
|   std::cout << GridLogMessage | ||||
|             << "Fundamental - Checking trace ta tb is 0.5 delta_ab" | ||||
|             << std::endl; | ||||
|   for (int a = 0; a < AdjointDimension; a++) { | ||||
|     for (int b = 0; b < AdjointDimension; b++) { | ||||
|       generator(a, ta); | ||||
|       generator(b, tb); | ||||
|       Complex tr = TensorRemove(trace(ta * tb)); | ||||
|       std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr | ||||
|                 << std::endl; | ||||
|       if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6); | ||||
|       if (a != b) assert(abs(tr) < 1.0e-6); | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|   } | ||||
|   std::cout << GridLogMessage << "Fundamental - Checking if hermitian" | ||||
|             << std::endl; | ||||
|   for (int a = 0; a < AdjointDimension; a++) { | ||||
|     generator(a, ta); | ||||
|     std::cout << GridLogMessage << a << std::endl; | ||||
|     assert(norm2(ta - adj(ta)) < 1.0e-6); | ||||
|   } | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
|  | ||||
|   std::cout << GridLogMessage << "Fundamental - Checking if traceless" | ||||
|             << std::endl; | ||||
|   for (int a = 0; a < AdjointDimension; a++) { | ||||
|     generator(a, ta); | ||||
|     Complex tr = TensorRemove(trace(ta)); | ||||
|     std::cout << GridLogMessage << a << " " << std::endl; | ||||
|     assert(abs(tr) < 1.0e-6); | ||||
|   } | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
| } | ||||
|  | ||||
|  | ||||
| template <int N, class vtype> | ||||
| static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > | ||||
| ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) { | ||||
|   return ProjectOnGroup(Umu); | ||||
| } | ||||
|  | ||||
| template <class vtype> | ||||
| accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) { | ||||
|   return ProjectOnGroup(r); | ||||
| } | ||||
|  | ||||
| template <class vtype, int N> | ||||
| accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) { | ||||
|   return ProjectOnGroup(r); | ||||
| } | ||||
|  | ||||
| template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> | ||||
| accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) { | ||||
|   return ProjectOnGroup(arg); | ||||
| } | ||||
|  | ||||
| template <typename LatticeMatrixType> | ||||
| static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) { | ||||
|   out = Ta(in); | ||||
| } | ||||
|  | ||||
| /* | ||||
|  * Fundamental rep gauge xform | ||||
|  */ | ||||
| template<typename Fundamental,typename GaugeMat> | ||||
| static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){ | ||||
|   GridBase *grid = ferm._grid; | ||||
|   conformable(grid,g._grid); | ||||
|   ferm = g*ferm; | ||||
| } | ||||
| /* | ||||
|  * Adjoint rep gauge xform | ||||
|  */ | ||||
|  | ||||
| template<typename Gimpl> | ||||
| static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){ | ||||
|   GridBase *grid = Umu.Grid(); | ||||
|   conformable(grid,g.Grid()); | ||||
|  | ||||
|   typename Gimpl::GaugeLinkField U(grid); | ||||
|   typename Gimpl::GaugeLinkField ag(grid); ag = adj(g); | ||||
|  | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     U= PeekIndex<LorentzIndex>(Umu,mu); | ||||
|     U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware | ||||
|     PokeIndex<LorentzIndex>(Umu,U,mu); | ||||
|   } | ||||
| } | ||||
| template<typename Gimpl> | ||||
| static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){ | ||||
|   GridBase *grid = g.Grid(); | ||||
|   typename Gimpl::GaugeLinkField ag(grid); ag = adj(g); | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware | ||||
|   } | ||||
| } | ||||
| template<typename Gimpl> | ||||
| static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){ | ||||
|   LieRandomize(pRNG,g,1.0); | ||||
|   GaugeTransform<Gimpl>(Umu,g); | ||||
| } | ||||
|  | ||||
| @@ -51,6 +51,10 @@ public: | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF; | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD; | ||||
|  | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >; | ||||
|  | ||||
|   typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > >  LatticeAdjVector; | ||||
|  | ||||
|   template <class cplx> | ||||
| @@ -58,8 +62,8 @@ public: | ||||
|     // returns i(T_Adj)^index necessary for the projectors | ||||
|     // see definitions above | ||||
|     iAdjTa = Zero(); | ||||
|     Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1); | ||||
|     typename SU<ncolour>::template iSUnMatrix<cplx> tmp; | ||||
|     Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1); | ||||
|     iSUnMatrix<cplx> tmp; | ||||
|  | ||||
|     // FIXME not very efficient to get all the generators everytime | ||||
|     for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]); | ||||
| @@ -67,8 +71,7 @@ public: | ||||
|     for (int a = 0; a < Dimension; a++) { | ||||
|       tmp = ta[a] * ta[Index] - ta[Index] * ta[a]; | ||||
|       for (int b = 0; b < (ncolour * ncolour - 1); b++) { | ||||
|         typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 = | ||||
| 	  2.0 * tmp * ta[b];  // 2.0 from the normalization | ||||
|         iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b];  // 2.0 from the normalization | ||||
|         Complex iTr = TensorRemove(timesI(trace(tmp1))); | ||||
|         //iAdjTa()()(b, a) = iTr; | ||||
|         iAdjTa()()(a, b) = iTr; | ||||
| @@ -134,8 +137,7 @@ public: | ||||
|  | ||||
|     for (int a = 0; a < Dimension; a++) { | ||||
|       generator(a, iTa); | ||||
|       LatticeComplex tmp = real(trace(iTa * in)) * coefficient; | ||||
|       pokeColour(h_out, tmp, a); | ||||
|       pokeColour(h_out, real(trace(iTa * in)) * coefficient, a); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -1,273 +0,0 @@ | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| // | ||||
| // * Two index representation generators | ||||
| // | ||||
| // * Normalisation for the fundamental generators: | ||||
| //   trace ta tb = 1/2 delta_ab = T_F delta_ab | ||||
| //   T_F = 1/2  for SU(N) groups | ||||
| // | ||||
| // | ||||
| //   base for NxN two index (anti-symmetric) matrices | ||||
| //   normalized to 1 (d_ij is the kroenecker delta) | ||||
| // | ||||
| //   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il) | ||||
| // | ||||
| //   Then the generators are written as | ||||
| // | ||||
| //   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] + | ||||
| //   tr[e^(lk)e^(ij)^dag T_a] )  // | ||||
| //    | ||||
| // | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| // Authors: David Preti, Guido Cossu | ||||
|  | ||||
| #ifndef QCD_UTIL_SUN2INDEX_H | ||||
| #define QCD_UTIL_SUN2INDEX_H | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 }; | ||||
|  | ||||
| inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; } | ||||
|  | ||||
| template <int ncolour, TwoIndexSymmetry S> | ||||
| class SU_TwoIndex : public SU<ncolour> { | ||||
| public: | ||||
|   static const int Dimension = ncolour * (ncolour + S) / 2; | ||||
|   static const int NumGenerators = SU<ncolour>::AdjointDimension; | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >; | ||||
|  | ||||
|   typedef iSUnTwoIndexMatrix<Complex> TIMatrix; | ||||
|   typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF; | ||||
|   typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD; | ||||
|  | ||||
|   typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix; | ||||
|   typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF; | ||||
|   typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD; | ||||
|  | ||||
|   typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix; | ||||
|   typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF; | ||||
|   typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD; | ||||
|  | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> > | ||||
|   LatticeTwoIndexField; | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > | ||||
|   LatticeTwoIndexFieldF; | ||||
|   typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > | ||||
|   LatticeTwoIndexFieldD; | ||||
|  | ||||
|   template <typename vtype> | ||||
|   using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >; | ||||
|  | ||||
|   typedef iSUnMatrix<Complex> Matrix; | ||||
|   typedef iSUnMatrix<ComplexF> MatrixF; | ||||
|   typedef iSUnMatrix<ComplexD> MatrixD; | ||||
|  | ||||
|   template <class cplx> | ||||
|   static void base(int Index, iSUnMatrix<cplx> &eij) { | ||||
|     // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R | ||||
|     assert(Index < NumGenerators); | ||||
|     eij = Zero(); | ||||
|  | ||||
|     // for the linearisation of the 2 indexes  | ||||
|     static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j | ||||
|     static bool filled = false; | ||||
|     if (!filled) { | ||||
|       int counter = 0; | ||||
|       for (int i = 1; i < ncolour; i++) { | ||||
|         for (int j = 0; j < i; j++) { | ||||
|           a[counter][0] = i; | ||||
|           a[counter][1] = j; | ||||
|           counter++; | ||||
|         } | ||||
|       } | ||||
|       filled = true; | ||||
|     } | ||||
|  | ||||
|     if (Index < ncolour * (ncolour - 1) / 2) { | ||||
|       baseOffDiagonal(a[Index][0], a[Index][1], eij); | ||||
|     } else { | ||||
|       baseDiagonal(Index, eij); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template <class cplx> | ||||
|   static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) { | ||||
|     eij = Zero(); | ||||
|     eij()()(Index - ncolour * (ncolour - 1) / 2, | ||||
|             Index - ncolour * (ncolour - 1) / 2) = 1.0; | ||||
|   } | ||||
|  | ||||
|   template <class cplx> | ||||
|   static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) { | ||||
|     eij = Zero(); | ||||
|     for (int k = 0; k < ncolour; k++) | ||||
|       for (int l = 0; l < ncolour; l++) | ||||
|         eij()()(l, k) = delta(i, k) * delta(j, l) + | ||||
| 	  S * delta(j, k) * delta(i, l); | ||||
|  | ||||
|     RealD nrm = 1. / std::sqrt(2.0); | ||||
|     eij = eij * nrm; | ||||
|   } | ||||
|  | ||||
|   static void printBase(void) { | ||||
|     for (int gen = 0; gen < Dimension; gen++) { | ||||
|       Matrix tmp; | ||||
|       base(gen, tmp); | ||||
|       std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen | ||||
|                 << std::endl; | ||||
|       std::cout << GridLogMessage << tmp << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   template <class cplx> | ||||
|   static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) { | ||||
|     Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta( | ||||
| 								ncolour * ncolour - 1); | ||||
|     Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension); | ||||
|     typename SU<ncolour>::template iSUnMatrix<cplx> tmp; | ||||
|     i2indTa = Zero(); | ||||
|      | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) | ||||
|       SU<ncolour>::generator(a, ta[a]); | ||||
|      | ||||
|     for (int a = 0; a < Dimension; a++) base(a, eij[a]); | ||||
|  | ||||
|     for (int a = 0; a < Dimension; a++) { | ||||
|       tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index]; | ||||
|       for (int b = 0; b < Dimension; b++) { | ||||
|         typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 = | ||||
| 	  tmp * eij[b];  | ||||
|         Complex iTr = TensorRemove(timesI(trace(tmp1))); | ||||
|         i2indTa()()(a, b) = iTr; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void printGenerators(void) { | ||||
|     for (int gen = 0; gen < ncolour * ncolour - 1; gen++) { | ||||
|       TIMatrix i2indTa; | ||||
|       generator(gen, i2indTa); | ||||
|       std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen | ||||
|                 << std::endl; | ||||
|       std::cout << GridLogMessage << i2indTa << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void testGenerators(void) { | ||||
|     TIMatrix i2indTa, i2indTb; | ||||
|     std::cout << GridLogMessage << "2IndexRep - Checking if traceless" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       std::cout << GridLogMessage << a << std::endl; | ||||
|       assert(norm2(trace(i2indTa)) < 1.0e-6); | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|  | ||||
|     std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       std::cout << GridLogMessage << a << std::endl; | ||||
|       assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6); | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout << GridLogMessage | ||||
|               << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2" | ||||
|               << std::endl; | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) { | ||||
|       for (int b = 0; b < ncolour * ncolour - 1; b++) { | ||||
|         generator(a, i2indTa); | ||||
|         generator(b, i2indTb); | ||||
|  | ||||
|         // generator returns iTa, so we need a minus sign here | ||||
|         Complex Tr = -TensorRemove(trace(i2indTa * i2indTb)); | ||||
|         std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr | ||||
|                   << std::endl; | ||||
|       } | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|   } | ||||
|  | ||||
|   static void TwoIndexLieAlgebraMatrix( | ||||
| 				       const typename SU<ncolour>::LatticeAlgebraVector &h, | ||||
| 				       LatticeTwoIndexMatrix &out, Real scale = 1.0) { | ||||
|     conformable(h, out); | ||||
|     GridBase *grid = out.Grid(); | ||||
|     LatticeTwoIndexMatrix la(grid); | ||||
|     TIMatrix i2indTa; | ||||
|  | ||||
|     out = Zero(); | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       la = peekColour(h, a) * i2indTa; | ||||
|       out += la; | ||||
|     } | ||||
|     out *= scale; | ||||
|   } | ||||
|  | ||||
|   // Projects the algebra components  | ||||
|   // of a lattice matrix ( of dimension ncol*ncol -1 ) | ||||
|   static void projectOnAlgebra( | ||||
| 			       typename SU<ncolour>::LatticeAlgebraVector &h_out, | ||||
| 			       const LatticeTwoIndexMatrix &in, Real scale = 1.0) { | ||||
|     conformable(h_out, in); | ||||
|     h_out = Zero(); | ||||
|     TIMatrix i2indTa; | ||||
|     Real coefficient = -2.0 / (ncolour + 2 * S) * scale; | ||||
|     // 2/(Nc +/- 2) for the normalization of the trace in the two index rep | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) { | ||||
|       generator(a, i2indTa); | ||||
|       auto tmp = real(trace(i2indTa * in)) * coefficient; | ||||
|       pokeColour(h_out, tmp, a); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // a projector that keeps the generators stored to avoid the overhead of | ||||
|   // recomputing them | ||||
|   static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, | ||||
|                         const LatticeTwoIndexMatrix &in, Real scale = 1.0) { | ||||
|     conformable(h_out, in); | ||||
|     // to store the generators | ||||
|     static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);  | ||||
|     h_out = Zero(); | ||||
|     static bool precalculated = false; | ||||
|     if (!precalculated) { | ||||
|       precalculated = true; | ||||
|       for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]); | ||||
|     } | ||||
|  | ||||
|     Real coefficient = | ||||
|       -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization | ||||
|     // of the trace in the two index rep | ||||
|  | ||||
|     for (int a = 0; a < ncolour * ncolour - 1; a++) { | ||||
|       auto tmp = real(trace(i2indTa[a] * in)) * coefficient; | ||||
|       pokeColour(h_out, tmp, a); | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| // Some useful type names | ||||
| typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices; | ||||
| typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices; | ||||
|  | ||||
| typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm; | ||||
| typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm; | ||||
| typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm; | ||||
| typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm; | ||||
|  | ||||
| typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm; | ||||
| typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm; | ||||
| typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm; | ||||
| typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
							
								
								
									
										317
									
								
								Grid/qcd/utils/Sp2n.impl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										317
									
								
								Grid/qcd/utils/Sp2n.impl.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,317 @@ | ||||
| // This file is #included into the body of the class template definition of | ||||
| // GaugeGroup. So, image there to be | ||||
| // | ||||
| // template <int ncolour, class group_name> | ||||
| // class GaugeGroup { | ||||
| // | ||||
| // around it. | ||||
| // | ||||
| // Please note that the unconventional file extension makes sure that it | ||||
| // doesn't get found by the scripts/filelist during bootstrapping. | ||||
|  | ||||
| private: | ||||
| template <ONLY_IF_Sp> | ||||
| static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; } | ||||
|  | ||||
| // Sp(2N) has N(2N+1) = 2N^2+N generators | ||||
| // | ||||
| // normalise the generators such that | ||||
| // Trace ( Ta Tb) = 1/2 delta_ab | ||||
| // | ||||
| // N generators in the cartan, 2N^2 off | ||||
| // off diagonal: | ||||
| //     there are 6 types named a,b,c,d and w,z | ||||
| //     abcd are N(N-1)/2 each while wz are N each | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) { | ||||
|   // map lie index into type of generators: diagonal, abcd type, wz type | ||||
|  | ||||
|   const int nsp = ncolour/2; | ||||
|   int diagIndex; | ||||
|   int aIndex, bIndex, cIndex, dIndex; | ||||
|   int wIndex, zIndex;  // a,b,c,d are N(N-1)/2 and w,z are N | ||||
|   const int mod = nsp * (nsp - 1) * 0.5; | ||||
|   const int offdiag = | ||||
|       2 * nsp * nsp;  // number of generators not in the cartan subalgebra | ||||
|   const int wmod = 4 * mod; | ||||
|   const int zmod = wmod + nsp; | ||||
|   if (lieIndex >= offdiag) { | ||||
|     diagIndex = lieIndex - offdiag;  // 0, ... ,N-1 | ||||
|     // std::cout << GridLogMessage << "diag type " << std::endl; | ||||
|     generatorDiagtype(diagIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   if ((lieIndex >= wmod) && (lieIndex < zmod)) { | ||||
|     // std::cout << GridLogMessage << "w type " << std::endl; | ||||
|     wIndex = lieIndex - wmod;  // 0, ... ,N-1 | ||||
|     generatorWtype(wIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   if ((lieIndex >= zmod) && (lieIndex < offdiag)) { | ||||
|     // std::cout << GridLogMessage << "z type " << std::endl; | ||||
|     // std::cout << GridLogMessage << "lie index " << lieIndex << std::endl; | ||||
|     // std::cout << GridLogMessage << "z mod " << zmod << std::endl; | ||||
|     zIndex = lieIndex - zmod;  // 0, ... ,N-1 | ||||
|     generatorZtype(zIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   if (lieIndex < mod) {  // atype 0, ... , N(N-1)/2=mod | ||||
|     // std::cout << GridLogMessage << "a type " << std::endl; | ||||
|     aIndex = lieIndex; | ||||
|     // std::cout << GridLogMessage << "a indx " << aIndex << std::endl; | ||||
|     generatorAtype(aIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   if ((lieIndex >= mod) && lieIndex < 2 * mod) {  // btype mod, ... , 2mod-1 | ||||
|     // std::cout << GridLogMessage << "b type " << std::endl; | ||||
|     bIndex = lieIndex - mod; | ||||
|     generatorBtype(bIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   if ((lieIndex >= 2 * mod) && | ||||
|       lieIndex < 3 * mod) {  // ctype 2mod, ... , 3mod-1 | ||||
|     // std::cout << GridLogMessage << "c type " << std::endl; | ||||
|     cIndex = lieIndex - 2 * mod; | ||||
|     generatorCtype(cIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|   if ((lieIndex >= 3 * mod) && | ||||
|       lieIndex < wmod) {  // ctype 3mod, ... , 4mod-1 = wmod-1 | ||||
|     // std::cout << GridLogMessage << "d type " << std::endl; | ||||
|     dIndex = lieIndex - 3 * mod; | ||||
|     generatorDtype(dIndex, ta); | ||||
|     return; | ||||
|   } | ||||
|  | ||||
| }  // end of generator | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra | ||||
|  | ||||
|   const int nsp=ncolour/2; | ||||
|   ta = Zero(); | ||||
|   RealD nrm = 1.0 / 2; | ||||
|  | ||||
|   ta()()(diagIndex, diagIndex) = nrm; | ||||
|   ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2) | ||||
|   // with i<j and i=0,...,N-2 | ||||
|   // follows that j=i+1, ... , N | ||||
|   int i1, i2; | ||||
|   const int nsp=ncolour/2; | ||||
|   ta = Zero(); | ||||
|   RealD nrm = 1 / (2 * std::sqrt(2)); | ||||
|  | ||||
|   su2SubGroupIndex(i1, i2, aIndex); | ||||
|   ta()()(i1, i2) = 1; | ||||
|   ta()()(i2, i1) = 1; | ||||
|   ta()()(i1 + nsp, i2 + nsp) = -1; | ||||
|   ta()()(i2 + nsp, i1 + nsp) = -1; | ||||
|  | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2) | ||||
|   // with i<j and i=0,...,N-2 | ||||
|   // follows that j=i+1, ... , N-1 | ||||
|  | ||||
|   const int nsp=ncolour/2; | ||||
|   int i1, i2; | ||||
|   ta = Zero(); | ||||
|   cplx i(0.0, 1.0); | ||||
|   RealD nrm = 1 / (2 * std::sqrt(2)); | ||||
|   su2SubGroupIndex(i1, i2, bIndex); | ||||
|  | ||||
|   ta()()(i1, i2) = i; | ||||
|   ta()()(i2, i1) = -i; | ||||
|   ta()()(i1 + nsp, i2 + nsp) = i; | ||||
|   ta()()(i2 + nsp, i1 + nsp) = -i; | ||||
|  | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2) | ||||
|  | ||||
|   const int nsp=ncolour/2; | ||||
|   int i1, i2; | ||||
|   ta = Zero(); | ||||
|   RealD nrm = 1 / (2 * std::sqrt(2)); | ||||
|   su2SubGroupIndex(i1, i2, cIndex); | ||||
|  | ||||
|   ta()()(i1, i2 + nsp) = 1; | ||||
|   ta()()(i2, i1 + nsp) = 1; | ||||
|   ta()()(i1 + nsp, i2) = 1; | ||||
|   ta()()(i2 + nsp, i1) = 1; | ||||
|  | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i /  2 sqrt(2) | ||||
|  | ||||
|   const int nsp=ncolour/2; | ||||
|   int i1, i2; | ||||
|   ta = Zero(); | ||||
|   cplx i(0.0, 1.0); | ||||
|   RealD nrm = 1 / (2 * std::sqrt(2)); | ||||
|   su2SubGroupIndex(i1, i2, dIndex); | ||||
|  | ||||
|   ta()()(i1, i2 + nsp) = i; | ||||
|   ta()()(i2, i1 + nsp) = i; | ||||
|   ta()()(i1 + nsp, i2) = -i; | ||||
|   ta()()(i2 + nsp, i1) = -i; | ||||
|  | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,i+N) =  ta(i+N,i) = 1/2 | ||||
|  | ||||
|   const int nsp=ncolour/2; | ||||
|   ta = Zero(); | ||||
|   RealD nrm = 1.0 / 2;  // check | ||||
|  | ||||
|   ta()()(wIndex, wIndex + nsp) = 1; | ||||
|   ta()()(wIndex + nsp, wIndex) = 1; | ||||
|  | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| template <class cplx, ONLY_IF_Sp> | ||||
| static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) { | ||||
|   // ta(i,i+N) = - ta(i+N,i) = i/2 | ||||
|  | ||||
|   const int nsp=ncolour/2; | ||||
|   ta = Zero(); | ||||
|   RealD nrm = 1.0 / 2;  // check | ||||
|   cplx i(0.0, 1.0); | ||||
|   ta()()(zIndex, zIndex + nsp) = i; | ||||
|   ta()()(zIndex + nsp, zIndex) = -i; | ||||
|  | ||||
|   ta = ta * nrm; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| // Map a su2 subgroup number to the pair of rows that are non zero | ||||
| //////////////////////////////////////////////////////////////////////// | ||||
| template <ONLY_IF_Sp> | ||||
| static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) { | ||||
|   const int nsp=ncolour/2; | ||||
|   assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2)); | ||||
|  | ||||
|   int spare = su2_index; | ||||
|   for (i1 = 0; spare >= (nsp - 1 - i1); i1++) { | ||||
|     spare = spare - (nsp - 1 - i1);  // remove the Nc-1-i1 terms | ||||
|   } | ||||
|   i2 = i1 + 1 + spare; | ||||
| } | ||||
|  | ||||
| static void testGenerators(GroupName::Sp) { | ||||
|   Matrix ta; | ||||
|   Matrix tb; | ||||
|   std::cout << GridLogMessage | ||||
|             << "Fundamental - Checking trace ta tb is 0.5 delta_ab " | ||||
|             << std::endl; | ||||
|   for (int a = 0; a < AlgebraDimension; a++) { | ||||
|     for (int b = 0; b < AlgebraDimension; b++) { | ||||
|       generator(a, ta); | ||||
|       generator(b, tb); | ||||
|       Complex tr = TensorRemove(trace(ta * tb)); | ||||
|       std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr | ||||
|                 << std::endl; | ||||
|       if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6); | ||||
|       if (a != b) assert(abs(tr) < 1.0e-6); | ||||
|     } | ||||
|   } | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
|   std::cout << GridLogMessage << "Fundamental - Checking if hermitian" | ||||
|             << std::endl; | ||||
|   for (int a = 0; a < AlgebraDimension; a++) { | ||||
|     generator(a, ta); | ||||
|     std::cout << GridLogMessage << a << std::endl; | ||||
|     assert(norm2(ta - adj(ta)) < 1.0e-6); | ||||
|   } | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
|   std::cout << GridLogMessage << "Fundamental - Checking if traceless" | ||||
|             << std::endl; | ||||
|   for (int a = 0; a < AlgebraDimension; a++) { | ||||
|     generator(a, ta); | ||||
|     Complex tr = TensorRemove(trace(ta)); | ||||
|     std::cout << GridLogMessage << a << std::endl; | ||||
|     assert(abs(tr) < 1.0e-6); | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <int N> | ||||
| static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > | ||||
| ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) { | ||||
|   return ProjectOnSpGroup(Umu); | ||||
| } | ||||
|  | ||||
| template <class vtype> | ||||
| accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) { | ||||
|   return ProjectOnSpGroup(r); | ||||
| } | ||||
|  | ||||
| template <class vtype, int N> | ||||
| accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) { | ||||
|   return ProjectOnSpGroup(r); | ||||
| } | ||||
|  | ||||
| template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> | ||||
| accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) { | ||||
|   return ProjectOnSpGroup(arg); | ||||
| } | ||||
|  | ||||
| template <typename LatticeMatrixType>    | ||||
| static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) { | ||||
|   out = SpTa(in); | ||||
| } | ||||
|  | ||||
| public: | ||||
|  | ||||
| template <ONLY_IF_Sp> | ||||
| static void Omega(LatticeColourMatrixD &in) { | ||||
|   const int nsp=ncolour/2; | ||||
|   LatticeColourMatrixD OmegaLatt(in.Grid()); | ||||
|   LatticeColourMatrixD identity(in.Grid()); | ||||
|   ColourMatrix Omega; | ||||
|  | ||||
|   OmegaLatt = Zero(); | ||||
|   Omega = Zero(); | ||||
|   identity = 1.; | ||||
|  | ||||
|   for (int i = 0; i < nsp; i++) { | ||||
|     Omega()()(i, nsp + i) = 1.; | ||||
|     Omega()()(nsp + i, i) = -1; | ||||
|   } | ||||
|   OmegaLatt = OmegaLatt + (identity * Omega); | ||||
|   in = OmegaLatt; | ||||
| } | ||||
|  | ||||
| template <ONLY_IF_Sp, class vtype, int N> | ||||
| static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) { | ||||
|   const int nsp=ncolour/2; | ||||
|      | ||||
|   iScalar<iScalar<iMatrix<vtype, N> > > Omega; | ||||
|   Omega = Zero(); | ||||
|  | ||||
|   for (int i = 0; i < nsp; i++) { | ||||
|     Omega()()(i, nsp + i) = 1.; | ||||
|     Omega()()(nsp + i, i) = -1; | ||||
|   } | ||||
|      | ||||
|   in = Omega; | ||||
| } | ||||
| @@ -8,9 +8,9 @@ | ||||
| #include <Grid/qcd/utils/ScalarObjs.h> | ||||
|  | ||||
| // Include representations | ||||
| #include <Grid/qcd/utils/SUn.h> | ||||
| #include <Grid/qcd/utils/GaugeGroup.h> | ||||
| #include <Grid/qcd/utils/SUnAdjoint.h> | ||||
| #include <Grid/qcd/utils/SUnTwoIndex.h> | ||||
| #include <Grid/qcd/utils/GaugeGroupTwoIndex.h> | ||||
|  | ||||
| // All-to-all contraction kernels that touch the  | ||||
| // internal lattice structure | ||||
|   | ||||
| @@ -290,7 +290,7 @@ public: | ||||
|   } | ||||
| */ | ||||
|   ////////////////////////////////////////////////// | ||||
|   // the sum over all staples on each site | ||||
|   // the sum over all nu-oriented staples for nu != mu on each site | ||||
|   ////////////////////////////////////////////////// | ||||
|   static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) { | ||||
|  | ||||
| @@ -300,6 +300,10 @@ public: | ||||
|     for (int d = 0; d < Nd; d++) { | ||||
|       U[d] = PeekIndex<LorentzIndex>(Umu, d); | ||||
|     } | ||||
|     Staple(staple, U, mu); | ||||
|   } | ||||
|  | ||||
|   static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) { | ||||
|     staple = Zero(); | ||||
|  | ||||
|     for (int nu = 0; nu < Nd; nu++) { | ||||
| @@ -335,6 +339,203 @@ public: | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   ///////////// | ||||
|   //Staples for each direction mu, summed over nu != mu | ||||
|   //staple: output staples for each mu (Nd) | ||||
|   //U: link array (Nd) | ||||
|   ///////////// | ||||
|   static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) { | ||||
|     assert(staple.size() == Nd); assert(U.size() == Nd); | ||||
|     for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   //A workspace class allowing reuse of the stencil | ||||
|   class WilsonLoopPaddedStencilWorkspace{ | ||||
|     std::unique_ptr<GeneralLocalStencil> stencil; | ||||
|     size_t nshift; | ||||
|  | ||||
|     void generateStencil(GridBase* padded_grid){ | ||||
|       double t0 = usecond(); | ||||
|        | ||||
|       //Generate shift arrays | ||||
|       std::vector<Coordinate> shifts = this->getShifts(); | ||||
|       nshift = shifts.size(); | ||||
|        | ||||
|       double t1 = usecond(); | ||||
|       //Generate local stencil | ||||
|       stencil.reset(new GeneralLocalStencil(padded_grid,shifts)); | ||||
|       double t2 = usecond(); | ||||
|       std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;    | ||||
|     } | ||||
|   public: | ||||
|     //Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly | ||||
|     const GeneralLocalStencil & getStencil(const PaddedCell &pcell){ | ||||
|       assert(pcell.depth >= this->paddingDepth()); | ||||
|       if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back()); | ||||
|       return *stencil; | ||||
|     } | ||||
|     size_t Nshift() const{ return nshift; } | ||||
|      | ||||
|     virtual std::vector<Coordinate> getShifts() const = 0; | ||||
|     virtual int paddingDepth() const = 0; //padding depth required | ||||
|      | ||||
|     virtual ~WilsonLoopPaddedStencilWorkspace(){} | ||||
|   }; | ||||
|  | ||||
|   //This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces | ||||
|   class WilsonLoopPaddedWorkspace{ | ||||
|     std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk; | ||||
|     std::unique_ptr<PaddedCell> pcell; | ||||
|  | ||||
|     void generatePcell(GridBase* unpadded_grid){ | ||||
|       assert(stencil_wk.size()); | ||||
|       int max_depth = 0; | ||||
|       for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth()); | ||||
|        | ||||
|       pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid))); | ||||
|     } | ||||
|      | ||||
|   public: | ||||
|     //Add a stencil definition. This should be done before the first call to retrieve a stencil object. | ||||
|     //Takes ownership of the pointer | ||||
|     void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){ | ||||
|       assert(!pcell); | ||||
|       stencil_wk.push_back(stencil); | ||||
|     } | ||||
|  | ||||
|     const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){ | ||||
|       if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid); | ||||
|       return stencil_wk[stencil_idx]->getStencil(*pcell); | ||||
|     }       | ||||
|     const PaddedCell & getPaddedCell(GridBase* unpadded_grid){ | ||||
|       if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid); | ||||
|       return *pcell; | ||||
|     } | ||||
|      | ||||
|     ~WilsonLoopPaddedWorkspace(){ | ||||
|       for(auto &s : stencil_wk) delete s; | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   //A workspace class allowing reuse of the stencil | ||||
|   class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{ | ||||
|   public: | ||||
|     std::vector<Coordinate> getShifts() const override{ | ||||
|       std::vector<Coordinate> shifts; | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	for(int nu=0;nu<Nd;nu++){ | ||||
| 	  if(nu != mu){ | ||||
| 	    Coordinate shift_0(Nd,0); | ||||
| 	    Coordinate shift_mu(Nd,0); shift_mu[mu]=1; | ||||
| 	    Coordinate shift_nu(Nd,0); shift_nu[nu]=1; | ||||
| 	    Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1; | ||||
| 	    Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1; | ||||
|        | ||||
| 	    //U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x) | ||||
| 	    shifts.push_back(shift_0); | ||||
| 	    shifts.push_back(shift_nu); | ||||
| 	    shifts.push_back(shift_mu); | ||||
|        | ||||
| 	    //U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu) | ||||
| 	    shifts.push_back(shift_mnu); | ||||
| 	    shifts.push_back(shift_mnu); | ||||
| 	    shifts.push_back(shift_mnu_pmu); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       return shifts; | ||||
|     } | ||||
|  | ||||
|     int paddingDepth() const override{ return 1; } | ||||
|   };  | ||||
|  | ||||
|   //Padded cell implementation of the staple method for all mu, summed over nu != mu | ||||
|   //staple: output staple for each mu, summed over nu != mu (Nd) | ||||
|   //U_padded: the gauge link fields padded out using the PaddedCell class | ||||
|   //Cell: the padded cell class | ||||
|   static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) { | ||||
|     StaplePaddedAllWorkspace wk; | ||||
|     StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell)); | ||||
|   } | ||||
|    | ||||
|   //Padded cell implementation of the staple method for all mu, summed over nu != mu | ||||
|   //staple: output staple for each mu, summed over nu != mu (Nd) | ||||
|   //U_padded: the gauge link fields padded out using the PaddedCell class | ||||
|   //Cell: the padded cell class | ||||
|   //gStencil: the precomputed generalized local stencil for the staple | ||||
|   static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) | ||||
|   { | ||||
|     double t0 = usecond(); | ||||
|     assert(U_padded.size() == Nd); assert(staple.size() == Nd); | ||||
|     assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back()); | ||||
|     assert(Cell.depth >= 1); | ||||
|     GridBase *ggrid = U_padded[0].Grid(); //padded cell grid | ||||
|  | ||||
|     int shift_mu_off = gStencil._npoints/Nd; | ||||
|      | ||||
|     //Open views to padded gauge links and keep open over mu loop | ||||
|     typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType; | ||||
|     size_t vsize = Nd*sizeof(GaugeViewType); | ||||
|     GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize); | ||||
|     for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead); | ||||
|     GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize); | ||||
|     acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize); | ||||
|      | ||||
|     GaugeMat gStaple(ggrid); | ||||
|  | ||||
|     int outer_off = 0; | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       { //view scope | ||||
| 	autoView( gStaple_v , gStaple, AcceleratorWrite); | ||||
| 	auto gStencil_v = gStencil.View(); | ||||
| 	 | ||||
| 	accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), { | ||||
| 	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss; | ||||
| 	    stencil_ss = Zero(); | ||||
| 	    int off = outer_off; | ||||
| 	     | ||||
| 	    for(int nu=0;nu<Nd;nu++){ | ||||
| 	      if(nu != mu){	   | ||||
| 		GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss); | ||||
| 		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(off++,ss); | ||||
| 		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(off++,ss); | ||||
| 		auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
|        | ||||
| 		stencil_ss = stencil_ss + U2 * U1 * U0; | ||||
|  | ||||
| 		e = gStencil_v.GetEntry(off++,ss); | ||||
| 		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(off++,ss); | ||||
| 		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(off++,ss); | ||||
| 		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
|  | ||||
| 		stencil_ss = stencil_ss + U2 * U1 * U0; | ||||
| 	      } | ||||
| 	    } | ||||
| 		 | ||||
| 	    coalescedWrite(gStaple_v[ss],stencil_ss); | ||||
| 	  } | ||||
| 	  ); | ||||
|       } //ensure views are all closed! | ||||
|        | ||||
|       staple[mu] = Cell.Extract(gStaple); | ||||
|       outer_off += shift_mu_off; | ||||
|     }//mu loop | ||||
|  | ||||
|     for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose(); | ||||
|     free(Ug_dirs_v_host); | ||||
|     acceleratorFreeDevice(Ug_dirs_v); | ||||
|      | ||||
|     double t1=usecond(); | ||||
|      | ||||
|     std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;    | ||||
|   } | ||||
|  | ||||
|     | ||||
|   ////////////////////////////////////////////////// | ||||
|   // the sum over all staples on each site in direction mu,nu, upper part | ||||
|   ////////////////////////////////////////////////// | ||||
| @@ -707,18 +908,14 @@ public: | ||||
|   // the sum over all staples on each site | ||||
|   ////////////////////////////////////////////////// | ||||
|   static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) { | ||||
|     U2 = U * Cshift(U, mu, 1); | ||||
|     U2 = U * Gimpl::CshiftLink(U, mu, 1); | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Hop by two optimisation strategy does not work nicely with Gparity. (could | ||||
|   // do, | ||||
|   // but need to track two deep where cross boundary and apply a conjugation). | ||||
|   // Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do | ||||
|   // so . | ||||
|   // Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2' | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2, | ||||
|                                   std::vector<GaugeMat> &U, int mu) { | ||||
|   static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2, | ||||
|                                   const std::vector<GaugeMat> &U, int mu) { | ||||
|  | ||||
|     Stap = Zero(); | ||||
|  | ||||
| @@ -732,9 +929,9 @@ public: | ||||
|  | ||||
|         // Up staple    ___ ___ | ||||
|         //             |       | | ||||
|         tmp = Cshift(adj(U[nu]), nu, -1); | ||||
|         tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1); | ||||
|         tmp = adj(U2[mu]) * tmp; | ||||
|         tmp = Cshift(tmp, mu, -2); | ||||
|         tmp = Gimpl::CshiftLink(tmp, mu, -2); | ||||
|  | ||||
|         Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp); | ||||
|  | ||||
| @@ -742,14 +939,14 @@ public: | ||||
|         //             |___ ___| | ||||
|         // | ||||
|         tmp = adj(U2[mu]) * U[nu]; | ||||
|         Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2)); | ||||
|         Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2)); | ||||
|  | ||||
|         //              ___ ___ | ||||
|         //             |    ___| | ||||
|         //             |___ ___| | ||||
|         // | ||||
|  | ||||
|         Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1); | ||||
|         Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1); | ||||
|  | ||||
|         //              ___ ___ | ||||
|         //             |___    | | ||||
| @@ -758,7 +955,7 @@ public: | ||||
|  | ||||
|         //  tmp= Staple2x1* Cshift(U[mu],mu,-2); | ||||
|         //  Stap+= Cshift(tmp,mu,1) ; | ||||
|         Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1); | ||||
|         Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1); | ||||
|         ; | ||||
|  | ||||
|         //       -- | ||||
| @@ -766,10 +963,10 @@ public: | ||||
|         // | ||||
|         //      |  | | ||||
|  | ||||
|         tmp = Cshift(adj(U2[nu]), nu, -2); | ||||
|         tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2); | ||||
|         tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp); | ||||
|         tmp = U2[nu] * Cshift(tmp, nu, 2); | ||||
|         Stap += Cshift(tmp, mu, 1); | ||||
|         tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2); | ||||
|         Stap += Gimpl::CshiftLink(tmp, mu, 1); | ||||
|  | ||||
|         //      |  | | ||||
|         // | ||||
| @@ -778,25 +975,12 @@ public: | ||||
|  | ||||
|         tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]); | ||||
|         tmp = adj(U2[nu]) * tmp; | ||||
|         tmp = Cshift(tmp, nu, -2); | ||||
|         Stap += Cshift(tmp, mu, 1); | ||||
|         tmp = Gimpl::CshiftLink(tmp, nu, -2); | ||||
|         Stap += Gimpl::CshiftLink(tmp, mu, 1); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) { | ||||
|     RectStapleUnoptimised(Stap, Umu, mu); | ||||
|   } | ||||
|   static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap, | ||||
|                          std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U, | ||||
|                          int mu) { | ||||
|     if (Gimpl::isPeriodicGaugeField()) { | ||||
|       RectStapleOptimised(Stap, U2, U, mu); | ||||
|     } else { | ||||
|       RectStapleUnoptimised(Stap, Umu, mu); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu, | ||||
|                                     int mu) { | ||||
|     GridBase *grid = Umu.Grid(); | ||||
| @@ -895,6 +1079,288 @@ public: | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) { | ||||
|     RectStapleUnoptimised(Stap, Umu, mu); | ||||
|   } | ||||
|   static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap, | ||||
|                          std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U, | ||||
|                          int mu) { | ||||
|     RectStapleOptimised(Stap, U2, U, mu); | ||||
|   } | ||||
|   ////////////////////////////////////////////////////// | ||||
|   //Compute the rectangular staples for all orientations | ||||
|   //Stap : Array of staples (Nd) | ||||
|   //U: Gauge links in each direction (Nd) | ||||
|   ///////////////////////////////////////////////////// | ||||
|   static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){ | ||||
|     assert(Stap.size() == Nd); assert(U.size() == Nd); | ||||
|     std::vector<GaugeMat> U2(Nd,U[0].Grid()); | ||||
|     for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu); | ||||
|     for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu); | ||||
|   } | ||||
|  | ||||
|   //A workspace class allowing reuse of the stencil | ||||
|   class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{ | ||||
|   public: | ||||
|     std::vector<Coordinate> getShifts() const override{ | ||||
|       std::vector<Coordinate> shifts; | ||||
|       for (int mu = 0; mu < Nd; mu++){ | ||||
| 	for (int nu = 0; nu < Nd; nu++) { | ||||
| 	  if (nu != mu) { | ||||
| 	    auto genShift = [&](int mushift,int nushift){ | ||||
| 	      Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out; | ||||
| 	    }; | ||||
|  | ||||
| 	    //tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x) | ||||
| 	    shifts.push_back(genShift(0,0)); | ||||
| 	    shifts.push_back(genShift(0,+1)); | ||||
| 	    shifts.push_back(genShift(+1,+1)); | ||||
| 	    shifts.push_back(genShift(+2,0)); | ||||
| 	    shifts.push_back(genShift(+1,0)); | ||||
|  | ||||
| 	    //tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu) | ||||
| 	    shifts.push_back(genShift(0,-1)); | ||||
| 	    shifts.push_back(genShift(0,-1)); | ||||
| 	    shifts.push_back(genShift(+1,-1)); | ||||
| 	    shifts.push_back(genShift(+2,-1)); | ||||
| 	    shifts.push_back(genShift(+1,0)); | ||||
|  | ||||
| 	    //tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu) | ||||
| 	    shifts.push_back(genShift(-1,0)); | ||||
| 	    shifts.push_back(genShift(-1,-1)); | ||||
| 	    shifts.push_back(genShift(-1,-1)); | ||||
| 	    shifts.push_back(genShift(0,-1)); | ||||
| 	    shifts.push_back(genShift(+1,-1)); | ||||
|  | ||||
| 	    //tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu) | ||||
| 	    shifts.push_back(genShift(-1,0)); | ||||
| 	    shifts.push_back(genShift(-1,0)); | ||||
| 	    shifts.push_back(genShift(-1,+1)); | ||||
| 	    shifts.push_back(genShift(0,+1)); | ||||
| 	    shifts.push_back(genShift(+1,0)); | ||||
|  | ||||
| 	    //tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x) | ||||
| 	    shifts.push_back(genShift(0,0)); | ||||
| 	    shifts.push_back(genShift(0,+1)); | ||||
| 	    shifts.push_back(genShift(0,+2)); | ||||
| 	    shifts.push_back(genShift(+1,+1)); | ||||
| 	    shifts.push_back(genShift(+1,0)); | ||||
|  | ||||
| 	    //tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu) | ||||
| 	    shifts.push_back(genShift(0,-1)); | ||||
| 	    shifts.push_back(genShift(0,-2)); | ||||
| 	    shifts.push_back(genShift(0,-2)); | ||||
| 	    shifts.push_back(genShift(+1,-2)); | ||||
| 	    shifts.push_back(genShift(+1,-1)); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       return shifts; | ||||
|     } | ||||
|  | ||||
|     int paddingDepth() const override{ return 2; } | ||||
|   };  | ||||
|  | ||||
|   //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu | ||||
|   //staple: output staple for each mu, summed over nu != mu (Nd) | ||||
|   //U_padded: the gauge link fields padded out using the PaddedCell class | ||||
|   //Cell: the padded cell class | ||||
|   static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) { | ||||
|     RectStaplePaddedAllWorkspace wk; | ||||
|     RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell)); | ||||
|   } | ||||
|    | ||||
|   //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu | ||||
|   //staple: output staple for each mu, summed over nu != mu (Nd) | ||||
|   //U_padded: the gauge link fields padded out using the PaddedCell class | ||||
|   //Cell: the padded cell class | ||||
|   //gStencil: the stencil | ||||
|   static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) { | ||||
|     double t0 = usecond(); | ||||
|     assert(U_padded.size() == Nd); assert(staple.size() == Nd); | ||||
|     assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back()); | ||||
|     assert(Cell.depth >= 2); | ||||
|     GridBase *ggrid = U_padded[0].Grid(); //padded cell grid | ||||
|  | ||||
|     size_t nshift = gStencil._npoints; | ||||
|     int mu_off_delta = nshift / Nd; | ||||
|      | ||||
|     //Open views to padded gauge links and keep open over mu loop | ||||
|     typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType; | ||||
|     size_t vsize = Nd*sizeof(GaugeViewType); | ||||
|     GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize); | ||||
|     for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead); | ||||
|     GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize); | ||||
|     acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize); | ||||
|  | ||||
|     GaugeMat gStaple(ggrid); //temp staple object on padded grid | ||||
|  | ||||
|     int offset = 0; | ||||
|     for(int mu=0; mu<Nd; mu++){ | ||||
|  | ||||
|       { //view scope | ||||
| 	autoView( gStaple_v , gStaple, AcceleratorWrite); | ||||
| 	auto gStencil_v = gStencil.View(); | ||||
|  | ||||
| 	accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), { | ||||
| 	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss; | ||||
| 	    stencil_ss = Zero(); | ||||
| 	    int s=offset; | ||||
| 	    for(int nu=0;nu<Nd;nu++){ | ||||
| 	      if(nu != mu){ | ||||
| 		//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x) | ||||
| 		GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss); | ||||
| 		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd); | ||||
| 	     | ||||
| 		stencil_ss = stencil_ss + U4*U3*U2*U1*U0; | ||||
|  | ||||
| 		//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu) | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd); | ||||
|  | ||||
| 		stencil_ss = stencil_ss + U4*U3*U2*U1*U0; | ||||
|  | ||||
| 		//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu) | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
|  | ||||
| 		stencil_ss = stencil_ss + U4*U3*U2*U1*U0; | ||||
|  | ||||
| 		//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu) | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
|  | ||||
| 		stencil_ss = stencil_ss + U4*U3*U2*U1*U0; | ||||
|  | ||||
| 		//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x) | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
|  | ||||
| 		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;    | ||||
|  | ||||
| 		//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu) | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
| 		e = gStencil_v.GetEntry(s++,ss); | ||||
| 		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd)); | ||||
|  | ||||
| 		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;    | ||||
|  | ||||
| 	      } | ||||
| 	    } | ||||
| 	    coalescedWrite(gStaple_v[ss],stencil_ss); | ||||
| 	  } | ||||
| 	  ); | ||||
| 	offset += mu_off_delta; | ||||
|       }//kernel/view scope | ||||
|  | ||||
|       staple[mu] = Cell.Extract(gStaple);     | ||||
|     }//mu loop | ||||
|    | ||||
|     for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose(); | ||||
|     free(Ug_dirs_v_host); | ||||
|     acceleratorFreeDevice(Ug_dirs_v); | ||||
|      | ||||
|     double t1 = usecond(); | ||||
|      | ||||
|     std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;    | ||||
|   } | ||||
|  | ||||
|   //A workspace for reusing the PaddedCell and GeneralLocalStencil objects | ||||
|   class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{ | ||||
|   public: | ||||
|     StapleAndRectStapleAllWorkspace(){ | ||||
|       this->addStencil(new StaplePaddedAllWorkspace); | ||||
|       this->addStencil(new RectStaplePaddedAllWorkspace); | ||||
|     } | ||||
|   };      | ||||
|      | ||||
|   ////////////////////////////////////////////////////// | ||||
|   //Compute the 1x1 and 1x2 staples for all orientations | ||||
|   //Stap : Array of staples (Nd) | ||||
|   //RectStap: Array of rectangular staples (Nd) | ||||
|   //U: Gauge links in each direction (Nd) | ||||
|   ///////////////////////////////////////////////////// | ||||
|   static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){ | ||||
|     StapleAndRectStapleAllWorkspace wk; | ||||
|     StapleAndRectStapleAll(Stap,RectStap,U,wk); | ||||
|   } | ||||
|    | ||||
|   ////////////////////////////////////////////////////// | ||||
|   //Compute the 1x1 and 1x2 staples for all orientations | ||||
|   //Stap : Array of staples (Nd) | ||||
|   //RectStap: Array of rectangular staples (Nd) | ||||
|   //U: Gauge links in each direction (Nd) | ||||
|   //wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse | ||||
|   ///////////////////////////////////////////////////// | ||||
|   static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){ | ||||
| #if 0 | ||||
|     StapleAll(Stap, U); | ||||
|     RectStapleAll(RectStap, U); | ||||
| #else | ||||
|     double t0 = usecond(); | ||||
|  | ||||
|     GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid()); | ||||
|     const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid); | ||||
|          | ||||
|     CshiftImplGauge<Gimpl> cshift_impl; | ||||
|     std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back()); | ||||
|     for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl); | ||||
|     double t1 = usecond(); | ||||
|     StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) ); | ||||
|     double t2 = usecond(); | ||||
|     RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid)); | ||||
|     double t3 = usecond(); | ||||
|     std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl; | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////// | ||||
|   // Wilson loop of size (R1, R2), oriented in mu,nu plane | ||||
|   ////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -1133,4 +1133,13 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
| template<> struct sycl::is_device_copyable<Grid::vComplexF> : public std::true_type {}; | ||||
| template<> struct sycl::is_device_copyable<Grid::vComplexD> : public std::true_type {}; | ||||
| template<> struct sycl::is_device_copyable<Grid::vRealF   > : public std::true_type {}; | ||||
| template<> struct sycl::is_device_copyable<Grid::vRealD   > : public std::true_type {}; | ||||
| template<> struct sycl::is_device_copyable<Grid::vInteger > : public std::true_type {}; | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -218,6 +218,10 @@ public: | ||||
|     // ------------------------------------------------- | ||||
|     // misc | ||||
|     // ------------------------------------------------- | ||||
|     void discardhi(uint64_t z) { | ||||
|       _s[3] += z; | ||||
|       encrypt_counter(); | ||||
|     } | ||||
|      | ||||
|     // req: 26.5.1.4 Random number engine requirements, p.908 table 117, row 9 | ||||
|     // Advances e’s state ei to ei+z by any means equivalent to z | ||||
|   | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user