1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 13:57:07 +01:00

Compare commits

...

196 Commits

Author SHA1 Message Date
c709883f3f Merge branch 'hotfix/dirac-ITT-fix' 2017-09-05 15:08:16 +01:00
aed5de4d50 Patching macos compile 2017-09-05 15:07:07 +01:00
ba27cc6571 Mac os happiness 2017-09-05 15:00:16 +01:00
d75369cb56 Merge branch 'release/dirac-ITT' 2017-09-05 14:55:54 +01:00
bf973d0d56 SHM complete 2017-09-05 14:30:29 +01:00
837bf8a5be Updating to control the SHM allocation scheme under configure time options 2017-09-05 12:51:02 +01:00
c05b2199f6 Improvements to huge memory 2017-09-04 10:41:21 -04:00
b331be9101 Better reporting 2017-08-31 11:32:57 +01:00
49c20a9fa8 Patch to reporting 2017-08-31 11:32:21 +01:00
7359df3501 Full reporting for benchmark; save robustness factor 2017-08-31 10:42:35 +01:00
5b9267e88d Cleaner comms benchmark treatment for one node runs 2017-08-27 18:24:48 -04:00
15fd4003ef Improving presentation of results 2017-08-27 13:46:02 +01:00
73aeca7dea Merge branch 'feature/multi-communicator' into develop 2017-08-25 21:55:09 +01:00
ad89abb018 Fix 2017-08-25 20:43:37 +01:00
80c5bce5bb Merge branch 'develop' into feature/multi-communicator 2017-08-25 20:21:26 +01:00
f68b5de9c8 No compile fix on Clang 2017-08-25 19:35:21 +01:00
d0f3d525d5 Optimal block size for KNL 2017-08-25 19:33:54 +01:00
3a58217405 Updated 2017-08-25 14:29:53 +01:00
c289699d9a updated from cambridge mpi3 shakeout 2017-08-25 11:41:01 +01:00
c3b1263e75 Benchmark prep 2017-08-25 09:25:54 +01:00
102ea9ae66 CI update 2017-08-24 18:17:09 +01:00
5fa386ddc9 FFT test compile fixed 2017-08-24 10:17:52 +01:00
d9cd4f0273 Staggered multinode block cg debugged. Missing global sum.
Code stalls and resumes on KNL at cambridge. Curious.

CG iterations 23ms each, then 3200 ms pauses. Mean bandwidth reports
as 200MB/s. Comms dominant in the report. However, the time behaviour suggests it
is *bursty*.... Could be swap to disk?
2017-08-23 15:07:18 +01:00
b49bec0cec MAP_HUGETLB portability fix 2017-08-20 03:08:54 +01:00
ae56e556c6 finalise issue on new OPA revert 2017-08-20 02:53:12 +01:00
1cdf999668 Moving multicommunicator into mpi3 also for threading 2017-08-20 02:39:10 +01:00
11062fb686 Comms none fail fix 2017-08-20 01:37:07 +01:00
383ca7d392 Switch off comms for now until feature/multi-communicator is merged 2017-08-20 01:27:48 +01:00
a446d95c33 Trying to pass TeamCity and Travis 2017-08-20 01:10:50 +01:00
be66e7dd95 Merge branch 'develop' into feature/multi-communicator 2017-08-19 23:12:38 +01:00
6d0d064a6c Update TODO 2017-08-19 23:11:30 +01:00
bfef525ed2 New benchmark prep 2017-08-19 23:10:12 +01:00
0b0cf62193 Fix mpi 3 interface change 2017-08-19 13:18:50 -04:00
7d88198387 Merge branch 'develop' into feature/multi-communicator 2017-08-19 13:03:35 -04:00
2f619482b8 Enable blocking stencil send 2017-08-19 12:53:59 -04:00
d6472eda8d Use mmap 2017-08-19 12:53:18 -04:00
9e658de238 Use Vector 2017-08-19 12:52:44 -04:00
bcefdd7c4e Align both allocator calls to 2MB 2017-08-19 12:49:02 -04:00
fd367d8bfd Debugging the PointerCache 2017-08-16 09:42:57 +01:00
8a3fe60a27 Added more asserts at grid creation time 2017-08-08 11:36:20 +01:00
44051aecd1 Checking for integer divisions in cartesian full 2017-08-08 10:31:12 +01:00
06e6f8de00 Check that the reduced dim is an integer 2017-08-08 10:22:12 +01:00
dbe4d7850c Make a test file compatible with all architectures 2017-08-06 10:49:45 +01:00
4fe182e5a7 Added high level HMC support for overriding default SIMD lane decomposition 2017-08-06 10:46:19 +01:00
175f393f9d Binary IO error checking 2017-08-04 12:14:10 +01:00
14d53e1c9e Threaded MPI calls patches 2017-07-29 13:08:10 -04:00
8bd869da37 Correcting a bug in the IO routines 2017-07-27 15:12:50 +01:00
c7036f6717 Adding checks for libm and libstdc++ 2017-07-27 11:15:09 +01:00
c0485d799d Explicit parameter declaration in the WilsonGauge test 2017-07-26 16:26:04 +01:00
7abc5613bd Added smearing to the topological charge observable 2017-07-26 16:21:17 +01:00
237cfd11ab Solving the spurious O2 flags 2017-07-26 12:08:51 +01:00
a4b7dddb67 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-07-26 12:07:38 +01:00
5696781862 Debug error in Tensor mult 2017-07-26 12:07:34 +01:00
c3f0889eda Merge pull request #123 from giltirn/develop
Fix for 'using namespace' in lib/qcd/utils/GaugeFix.h
2017-07-25 11:32:02 -03:00
0f214ad427 Moved FourierAcceleratedGaugeFixer into Grid::QCD namespace and removed 'using namespace' directives from header 2017-07-21 11:13:51 -04:00
fe4912880d Update README.md 2017-07-17 09:53:07 +01:00
f038c6babe Update README.md 2017-07-14 22:59:16 +01:00
169f4b2711 Update README.md 2017-07-14 22:56:06 +01:00
2d8aff36fe Update README.md 2017-07-14 22:52:16 +01:00
659d7d1a40 For test/solver
Fixed
2017-07-12 15:01:48 +01:00
dc6f078246 fixed the header file for mpi3 2017-07-11 14:15:08 +01:00
8a4714a4a6 Update README.md 2017-07-09 00:11:54 +01:00
40e119c61c NUMA improvements worth preserving from AMD EPYC tests 2017-07-08 22:27:11 -04:00
7b0237b081 Update README.md 2017-07-01 10:24:41 +01:00
b68ad0cc0b Update README.md 2017-07-01 10:20:07 +01:00
37263fd9b1 Update README.md 2017-07-01 10:06:24 +01:00
3d09e3e9e0 Update README.md 2017-07-01 10:05:46 +01:00
1354b46338 Update README.md 2017-07-01 10:04:32 +01:00
251a97fe1b Update README.md 2017-07-01 09:55:36 +01:00
e18929eaa0 Update README.md 2017-07-01 09:53:15 +01:00
f3b0a92e71 Update README.md 2017-07-01 09:48:00 +01:00
a0be3f7330 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-06-30 10:53:50 +01:00
b5a6e4f1fd Best option for Xeon cache blocking set 2017-06-30 10:53:22 +01:00
7a788db3dc Guard first touch 2017-06-30 10:49:08 +01:00
f20eceb6cd First touch once per page in a threaded loop 2017-06-30 10:48:27 +01:00
38325ebbc6 Interleave code path; not enabled 2017-06-30 10:23:51 +01:00
b73bd151bb Switch off counters by default 2017-06-30 10:16:35 +01:00
694b305cab Update to reporting 2017-06-30 10:16:13 +01:00
2d3737a133 O3, KNL 2017-06-30 10:15:59 +01:00
ac1f1838bc KNL only 2017-06-30 10:15:32 +01:00
09d09d0fe5 Update README.md 2017-06-29 11:48:11 +01:00
bf630a6821 README file update 2017-06-29 11:42:25 +01:00
8859a151cc Small corrections to the NEON port 2017-06-29 11:30:29 +01:00
688a39cfd9 Merge pull request #114 from nmeyer-ur/feature/arm-neon
ARM neon intrinsics support
Guido: checked and approved
2017-06-29 09:57:17 +01:00
6f5a5cd9b3 Improved threaded comms benchmark 2017-06-28 23:27:02 +01:00
0933aeefd4 corrected Grid_neon.h 2017-06-28 20:22:22 +02:00
322f61acee Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2017-06-28 15:30:35 +01:00
08e04b9676 Better benchmarks 2017-06-28 15:30:06 +01:00
feaa2ac947 Merge branch 'feature/scalar-hmc-update' into develop 2017-06-28 12:46:18 +01:00
07de925127 minor scalar action fixes 2017-06-28 12:45:44 +01:00
a9c816a268 moved file to correct folder 2017-06-27 21:39:15 +02:00
e43a8b6b8a removed comments 2017-06-27 20:58:48 +02:00
bf729766dd removed collision with QPX implementation 2017-06-27 20:32:24 +02:00
dafb351d38 Merge pull request #120 from paboyle/feature/scalar-hmc-update
Scalar HMC update. 
I agree with the changes.
2017-06-27 16:23:14 +01:00
0b707b861c Merge branch 'develop' into feature/scalar-hmc-update 2017-06-27 14:40:05 +01:00
15e87a4607 HDF5 IO fix 2017-06-27 14:39:27 +01:00
7d7220cbd7 scalar: lambda/4! convention 2017-06-27 14:38:45 +01:00
54e94360ad Experimental: Multiple communicators to see if we can avoid thread locks in --enable-comms=mpit 2017-06-24 23:10:24 +01:00
0af740dc15 minor scalar HMC code improvement 2017-06-24 23:04:05 +01:00
d2e8372df3 SU(N) algebra fix (was not working) 2017-06-24 23:03:39 +01:00
869b99ec1e Threaded calls to multiple communicators 2017-06-24 10:55:54 +01:00
4372d04ad4 Merge pull request #118 from Lanny91/hotfix/bgq
Hotfix/bgq
2017-06-23 16:59:27 +01:00
56abbdf4c2 AVX512 integer reduce fix (for non-intel compiler) 2017-06-23 11:09:14 +02:00
af71c63f4c AVX2 fix 2017-06-23 11:03:12 +02:00
0440d4ce66 Merge branch 'develop' of https://github.com/paboyle/Grid into hotfix/bgq 2017-06-22 17:09:42 +02:00
b22eab8c8b Merge commit 'a7d56523abee6c9030fdd9303c79954897b1086f' into feature/hadrons 2017-06-21 18:32:48 +01:00
a7d56523ab Merge branch 'feature/lanczos-simplify' into develop 2017-06-21 14:03:20 +01:00
1e8a2e1621 various compatibility fixes after merge 2017-06-20 17:24:55 +01:00
7587df831a Merge branch 'develop' into feature/hadrons
# Conflicts:
#	lib/qcd/action/scalar/ScalarImpl.h
2017-06-20 15:50:39 +01:00
81b18f843a Merge branch 'feature/scalar_adjointFT' into feature/hadrons
# Conflicts:
#	lib/qcd/action/scalar/ScalarImpl.h
2017-06-16 17:59:55 +01:00
a833f88c32 Added missing SIMD integer reduction implementation for AVX, AVX-512, SSE4, IMCI 2017-06-16 15:58:47 +01:00
07b2c1b253 Placeholder precision change functions to allow Grid to compile with QPX (warning: no actual functionality) 2017-06-16 15:04:26 +01:00
735cbdb983 QPX Integer reduction (+ integer reduction test) 2017-06-14 10:55:10 +01:00
2ad54c5a02 QPX exchange support 2017-06-14 10:53:39 +01:00
3d04dc33c6 ARM neon intrinsics support 2017-06-13 13:26:59 +02:00
2490816297 Hadrons: rare kaon program removed 2017-06-07 20:11:02 -05:00
5f55bca378 Hadrons: Quark module renamed MFermion::GaugeProp 2017-06-07 20:10:48 -05:00
f6aa82b7f2 Merge branch 'develop' into feature/hadrons 2017-06-06 11:46:33 -05:00
22749699a3 Fixes after merge and point sink module 2017-06-06 11:45:30 -05:00
0503c028be Merge branch 'feature/qed-fvol' into feature/hadrons (non-trivial conflicts on scalar Impl)
# Conflicts:
#	configure.ac
#	lib/qcd/action/scalar/Scalar.h
2017-06-05 16:37:47 -05:00
22f4feee7b Merge branch 'develop' into feature/scalar_adjointFT 2017-05-17 13:27:13 +02:00
3f858d6755 Scalar: phi^2 observable 2017-05-17 13:25:14 +02:00
35fa3d1dfd Merge branch 'master' into feature/scalar_adjointFT 2017-05-12 10:41:39 +01:00
c4435e6beb Merge branch 'release/v0.7.0' 2017-05-12 01:15:59 +01:00
d1ece74137 HMC scalar test: magnetisation measurement 2017-05-11 11:40:44 +01:00
43c817cc67 Scalar action: const fix 2017-05-11 00:07:17 +01:00
51bf1501fc Merge branch 'release/v0.7.0' 2017-05-06 18:42:50 +01:00
741bc836f6 Exposing support for Ncolours and Ndimensions and JSON input file for the ScalarAction 2017-05-05 17:36:43 +01:00
8546d01a4c Merge branch 'develop' into feature/scalar_adjointFT 2017-05-05 15:47:33 +01:00
1407418755 Old qed-fvol program build disabled 2017-04-13 15:32:30 +01:00
a6a0da873f Merge branch 'feature/hadrons' into feature/qed-fvol 2017-04-13 15:31:06 +01:00
7b03d8d087 Fixing the remaining merge conflicts 2017-04-05 16:17:46 +01:00
4b759b8f2a Merge branch 'feature/hmc_generalise' into feature/scalar_adjointFT 2017-04-05 14:50:28 +01:00
038b6ee9cd Fixing JSON compilation error 2017-03-16 01:09:24 +09:00
38806343a8 Improving efficiency of the force term 2017-03-15 15:16:16 +09:00
831ca4e3bf Added Scalar action for fields in the adjoint representation 2017-03-14 14:55:18 +09:00
eedcaf6470 Merge branch 'feature/hadrons' into feature/qed-fvol 2017-02-01 15:53:10 -08:00
b39f0d1fb6 Hadrons: default I/O to HDF5 if possible, XML otherwise 2017-01-27 18:12:35 -08:00
9f1267dfe6 Merge branch 'feature/qed-fvol' of github.com:paboyle/Grid into feature/qed-fvol 2017-01-27 17:06:34 -08:00
2e90285232 Merge pull request #80 from jch1g10/feature/qed-fvol
ChargedProp: remove ScalarField fs
2017-01-27 17:06:13 -08:00
e254de982e Merge branch 'feature/qed-fvol' of github.com:paboyle/Grid into feature/qed-fvol 2017-01-27 17:02:35 -08:00
28d99b5297 Merge branch 'develop' into feature/qed-fvol 2017-01-27 16:59:53 -08:00
ee93f0218b ChargedProp: remove ScalarField fs 2017-01-27 12:22:48 +00:00
161ed102a5 Merge pull request #79 from jch1g10/feature/qed-fvol
Fixed bug in ChargedProp
2017-01-26 19:49:14 -08:00
f65a585236 ChargedProp: Switch to HDF5 output 2017-01-26 15:02:30 +00:00
ae99e99da2 Fixed bug in ChargedProp 2017-01-23 17:27:50 +00:00
f3ca29af6c Merge branch 'feature/hadrons' into feature/qed-fvol 2017-01-21 13:41:05 -08:00
37988221a8 Merge branch 'feature/serialisation-hdf5' into feature/qed-fvol 2017-01-20 14:04:20 -08:00
7a327a3f28 Merge branch 'develop' into feature/qed-fvol 2017-01-19 14:22:36 -08:00
92f8950a56 Charged scalar prop: cleaning and output 2017-01-13 13:30:56 +00:00
65987a8a58 First implementation of the scalar QED propagator, runs but absolutely not checked 2017-01-12 20:44:23 +00:00
889d828bc2 Code cleaning 2017-01-12 18:17:44 +00:00
ad98b6193d creating the necessary caches for the FFT EM scalar propagator 2017-01-11 18:40:43 +00:00
fc760016b3 More uniform cache name for scalar momentum propagators 2017-01-11 18:39:58 +00:00
2da86f7dae Merge branch 'feature/hadrons' into feature/qed-fvol 2017-01-11 18:38:05 +00:00
97843e2b58 Hadrons: free scalar buffer fix and output 2017-01-05 14:58:55 +00:00
82b3f54697 scalar free propagator fix 2017-01-05 14:58:07 +00:00
673994b281 Hadrons: modules for scalar propagators 2016-12-29 22:44:58 +01:00
bbc0eff078 Hadrons: scalar sources 2016-12-29 22:44:22 +01:00
4c60e31070 Hadrons: code cleaning 2016-12-29 22:44:08 +01:00
afbf7d4c37 QED Gimpl moved in Photon.h 2016-12-29 22:43:38 +01:00
8c3cc32364 Scalar action 2016-12-29 22:42:58 +01:00
4c3fd9fa3f stochastic QED field module in Hadrons 2016-12-22 00:29:41 +01:00
17b3a10d46 stochastic QED: function to cache 1/sqrt(khat^2) 2016-12-22 00:29:19 +01:00
149a46b92c Merge branch 'feature/hadrons' into feature/qed-fvol 2016-12-22 00:26:43 +01:00
db9c28a773 qed-fvol: Photon parameter name fix 2016-12-20 12:41:39 +01:00
9ac3ac41df serialisable Photon parameters 2016-12-20 12:41:01 +01:00
2af9ab9034 old Makefile cleaning 2016-12-20 12:40:26 +01:00
6f1ea96293 Merge branch 'develop' into feature/qed-fvol 2016-12-20 12:33:02 +01:00
2e3c5890b6 qed-fvol: build fix 2016-12-15 20:06:46 +00:00
bc6678732f Merge branch 'feature/hadrons' into feature/qed-fvol
# Conflicts:
#	Makefile.am
#	configure.ac
#	lib/qcd/action/gauge/Photon.h
2016-12-15 19:53:00 +00:00
b10ae00c8a Merge commit '6ad73145bc9754a5f26093eee5a34473ba0cff82' into feature/qed-fvol 2016-12-15 19:48:58 +00:00
6ad73145bc Calculate Wilson loop average over multiple configurations. 2016-11-30 15:17:22 +00:00
f7293f2ddb Merge pull request #69 from jch1g10/feature/qed-fvol 2016-11-26 07:04:04 +09:00
6b8ee7bae0 Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-11-15 13:08:08 +00:00
739c2308b5 Set imaginary part of stochastic QED field to zero using real() instead of conjugate(). 2016-11-15 13:07:52 +00:00
a71b69389b QedFVol: calculate square Wilson loops up to 10x10 2016-11-14 18:23:04 +00:00
d49e502f53 Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-11-14 18:00:33 +00:00
92ec3404f8 Set imaginary part of stochastic QED field to zero after FFT into position space 2016-11-14 17:59:02 +00:00
f4ebea3381 QedFVol: add functions for computing spatial and timelike Wilson loops 2016-11-14 17:51:53 +00:00
cf167d0cd1 QedFVol: implement exponentiation of photon field 2016-11-14 17:02:29 +00:00
c363bdd784 Merge branch 'release/v0.6.0' 2016-11-09 12:43:14 +00:00
c30d96ea50 QedFVol: x86intrin.h namespace fix 2016-11-09 11:06:20 +00:00
7ffe17ada1 Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-11-08 14:52:43 +00:00
330a9b3f4c Merge pull request #65 from jch1g10/feature/qed-fvol 2016-11-01 19:53:25 +00:00
28ff66a381 Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-11-01 16:07:46 +00:00
78c7bcee36 QedFVol: Change variables of type "double" to type "Real". 2016-11-01 16:06:05 +00:00
00a7b95631 Merge remote-tracking branch 'gh-james/feature/qed-fvol' into feature/qed-fvol 2016-10-31 18:46:23 +00:00
94d8321d01 Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-10-31 18:41:30 +00:00
ac24cc9f99 Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-10-29 11:05:26 +01:00
3ab4c8c0bb QedFVol: calculate plaquette and 2x2 Wilson loop of stochastic QED field 2016-10-25 13:32:02 +01:00
26d124283e Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-10-21 15:23:31 +01:00
0d889b7041 QedFVol: first attempt at generating a QED field 2016-10-21 15:21:32 +01:00
ab31ad006a Merge branch 'feature/feynman-rules' into feature/qed-fvol 2016-10-21 14:42:18 +01:00
6e4a06e180 qed-fvol: initial commit 2016-10-20 15:04:00 +01:00
446c768cd3 Merge branch 'hotfix/v0.5.1'
Double precision compile fix
2016-07-01 16:33:59 +01:00
113 changed files with 5495 additions and 1814 deletions

View File

@ -9,68 +9,6 @@ matrix:
- os: osx
osx_image: xcode8.3
compiler: clang
- compiler: gcc
dist: trusty
sudo: required
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-4.9
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: VERSION=-4.9
- compiler: gcc
dist: trusty
sudo: required
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-5
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: VERSION=-5
- compiler: clang
dist: trusty
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-4.8
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: CLANG_LINK=http://llvm.org/releases/3.8.0/clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
- compiler: clang
dist: trusty
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-4.8
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: CLANG_LINK=http://llvm.org/releases/3.7.0/clang+llvm-3.7.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
before_install:
- export GRIDDIR=`pwd`
@ -106,9 +44,3 @@ script:
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check
- echo make clean
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto ; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then make -j4; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi

281
README.md
View File

@ -1,27 +1,44 @@
# Grid
<table>
<tr>
<td>Last stable release</td>
<td><a href="https://travis-ci.org/paboyle/Grid">
<img src="https://travis-ci.org/paboyle/Grid.svg?branch=master"></a>
</td>
</tr>
<tr>
<td>Development branch</td>
<td><a href="https://travis-ci.org/paboyle/Grid">
<img src="https://travis-ci.org/paboyle/Grid.svg?branch=develop"></a>
</td>
</tr>
</table>
# Grid [![Teamcity status](http://ci.cliath.ph.ed.ac.uk/app/rest/builds/aggregated/strob:(buildType:(affectedProject(id:Grid)),branch:name:develop)/statusIcon.svg)](http://ci.cliath.ph.ed.ac.uk/project.html?projectId=Grid&tab=projectOverview) [![Travis status](https://travis-ci.org/paboyle/Grid.svg?branch=develop)](https://travis-ci.org/paboyle/Grid)
**Data parallel C++ mathematical object library.**
License: GPL v2.
Last update Nov 2016.
Last update June 2017.
_Please do not send pull requests to the `master` branch which is reserved for releases._
### Description
This library provides data parallel C++ container classes with internal memory layout
that is transformed to map efficiently to SIMD architectures. CSHIFT facilities
are provided, similar to HPF and cmfortran, and user control is given over the mapping of
array indices to both MPI tasks and SIMD processing elements.
* Identically shaped arrays then be processed with perfect data parallelisation.
* Such identically shaped arrays are called conformable arrays.
The transformation is based on the observation that Cartesian array processing involves
identical processing to be performed on different regions of the Cartesian array.
The library will both geometrically decompose into MPI tasks and across SIMD lanes.
Local vector loops are parallelised with OpenMP pragmas.
Data parallel array operations can then be specified with a SINGLE data parallel paradigm, but
optimally use MPI, OpenMP and SIMD parallelism under the hood. This is a significant simplification
for most programmers.
The layout transformations are parametrised by the SIMD vector length. This adapts according to the architecture.
Presently SSE4, ARM NEON (128 bits) AVX, AVX2, QPX (256 bits), IMCI and AVX512 (512 bits) targets are supported.
These are presented as `vRealF`, `vRealD`, `vComplexF`, and `vComplexD` internal vector data types.
The corresponding scalar types are named `RealF`, `RealD`, `ComplexF` and `ComplexD`.
MPI, OpenMP, and SIMD parallelism are present in the library.
Please see [this paper](https://arxiv.org/abs/1512.03487) for more detail.
### Compilers
Intel ICPC v16.0.3 and later
@ -56,35 +73,25 @@ When you file an issue, please go though the following checklist:
6. Attach the output of `make V=1`.
7. Describe the issue and any previous attempt to solve it. If relevant, show how to reproduce the issue using a minimal working example.
### Required libraries
Grid requires:
[GMP](https://gmplib.org/),
### Description
This library provides data parallel C++ container classes with internal memory layout
that is transformed to map efficiently to SIMD architectures. CSHIFT facilities
are provided, similar to HPF and cmfortran, and user control is given over the mapping of
array indices to both MPI tasks and SIMD processing elements.
[MPFR](http://www.mpfr.org/)
* Identically shaped arrays then be processed with perfect data parallelisation.
* Such identically shaped arrays are called conformable arrays.
Bootstrapping grid downloads and uses for internal dense matrix (non-QCD operations) the Eigen library.
The transformation is based on the observation that Cartesian array processing involves
identical processing to be performed on different regions of the Cartesian array.
Grid optionally uses:
The library will both geometrically decompose into MPI tasks and across SIMD lanes.
Local vector loops are parallelised with OpenMP pragmas.
[HDF5](https://support.hdfgroup.org/HDF5/)
Data parallel array operations can then be specified with a SINGLE data parallel paradigm, but
optimally use MPI, OpenMP and SIMD parallelism under the hood. This is a significant simplification
for most programmers.
[LIME](http://usqcd-software.github.io/c-lime/) for ILDG and SciDAC file format support.
The layout transformations are parametrised by the SIMD vector length. This adapts according to the architecture.
Presently SSE4 (128 bit) AVX, AVX2, QPX (256 bit), IMCI, and AVX512 (512 bit) targets are supported (ARM NEON on the way).
[FFTW](http://www.fftw.org) either generic version or via the Intel MKL library.
These are presented as `vRealF`, `vRealD`, `vComplexF`, and `vComplexD` internal vector data types. These may be useful in themselves for other programmers.
The corresponding scalar types are named `RealF`, `RealD`, `ComplexF` and `ComplexD`.
LAPACK either generic version or Intel MKL library.
MPI, OpenMP, and SIMD parallelism are present in the library.
Please see https://arxiv.org/abs/1512.03487 for more detail.
### Quick start
First, start by cloning the repository:
@ -155,7 +162,6 @@ The following options can be use with the `--enable-comms=` option to target dif
| `none` | no communications |
| `mpi[-auto]` | MPI communications |
| `mpi3[-auto]` | MPI communications using MPI 3 shared memory |
| `mpi3l[-auto]` | MPI communications using MPI 3 shared memory and leader model |
| `shmem ` | Cray SHMEM communications |
For the MPI interfaces the optional `-auto` suffix instructs the `configure` scripts to determine all the necessary compilation and linking flags. This is done by extracting the informations from the MPI wrapper specified in the environment variable `MPICXX` (if not specified `configure` will scan though a list of default names). The `-auto` suffix is not supported by the Cray environment wrapper scripts. Use the standard versions instead.
@ -173,7 +179,8 @@ The following options can be use with the `--enable-simd=` option to target diff
| `AVXFMA4` | AVX (256 bit) + FMA4 |
| `AVX2` | AVX 2 (256 bit) |
| `AVX512` | AVX 512 bit |
| `QPX` | QPX (256 bit) |
| `NEONv8` | [ARM NEON](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch07s03.html) (128 bit) |
| `QPX` | IBM QPX (256 bit) |
Alternatively, some CPU codenames can be directly used:
@ -195,21 +202,205 @@ The following configuration is recommended for the Intel Knights Landing platfor
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
--enable-comms=mpi-auto \
--with-gmp=<path> \
--with-mpfr=<path> \
--enable-comms=mpi-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
```
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
where `<path>` is the UNIX prefix where GMP and MPFR are installed. If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
--enable-comms=mpi \
--with-gmp=<path> \
--with-mpfr=<path> \
--enable-mkl \
CXX=CC CC=cc
```
```
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
Knight's Landing with Intel Omnipath adapters with two adapters per node
presently performs better with use of more than one rank per node, using shared memory
for interior communication. This is the mpi3 communications implementation.
We recommend four ranks per node for best performance, but optimum is local volume dependent.
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
--enable-comms=mpi3-auto \
--enable-mkl \
CC=icpc MPICXX=mpiicpc
```
### Build setup for Intel Haswell Xeon platform
The following configuration is recommended for the Intel Haswell platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
--enable-comms=mpi3-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
```
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
```
Since Dual socket nodes are commonplace, we recommend MPI-3 as the default with the use of
one rank per socket. If using the Intel MPI library, threads should be pinned to NUMA domains using
```
export I_MPI_PIN=1
```
This is the default.
### Build setup for Intel Skylake Xeon platform
The following configuration is recommended for the Intel Skylake platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=mpiicpc
```
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
```
Since Dual socket nodes are commonplace, we recommend MPI-3 as the default with the use of
one rank per socket. If using the Intel MPI library, threads should be pinned to NUMA domains using
```
export I_MPI_PIN=1
```
This is the default.
#### Expected Skylake Gold 6148 dual socket (single prec, single node 20+20 cores) performance using NUMA MPI mapping):
mpirun -n 2 benchmarks/Benchmark_dwf --grid 16.16.16.16 --mpi 2.1.1.1 --cacheblocking 2.2.2.2 --dslash-asm --shm 1024 --threads 18
TBA
### Build setup for AMD EPYC / RYZEN
The AMD EPYC is a multichip module comprising 32 cores spread over four distinct chips each with 8 cores.
So, even with a single socket node there is a quad-chip module. Dual socket nodes with 64 cores total
are common. Each chip within the module exposes a separate NUMA domain.
There are four NUMA domains per socket and we recommend one MPI rank per NUMA domain.
MPI-3 is recommended with the use of four ranks per socket,
and 8 threads per rank.
The following configuration is recommended for the AMD EPYC platform.
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
--enable-comms=mpi3 \
CXX=mpicxx
```
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
Using MPICH and g++ v4.9.2, best performance can be obtained using explicit GOMP_CPU_AFFINITY flags for each MPI rank.
This can be done by invoking MPI on a wrapper script omp_bind.sh to handle this.
It is recommended to run 8 MPI ranks on a single dual socket AMD EPYC, with 8 threads per rank using MPI3 and
shared memory to communicate within this node:
mpirun -np 8 ./omp_bind.sh ./Benchmark_dwf --mpi 2.2.2.1 --dslash-unroll --threads 8 --grid 16.16.16.16 --cacheblocking 4.4.4.4
Where omp_bind.sh does the following:
```
#!/bin/bash
numanode=` expr $PMI_RANK % 8 `
basecore=`expr $numanode \* 16`
core0=`expr $basecore + 0 `
core1=`expr $basecore + 2 `
core2=`expr $basecore + 4 `
core3=`expr $basecore + 6 `
core4=`expr $basecore + 8 `
core5=`expr $basecore + 10 `
core6=`expr $basecore + 12 `
core7=`expr $basecore + 14 `
export GOMP_CPU_AFFINITY="$core0 $core1 $core2 $core3 $core4 $core5 $core6 $core7"
echo GOMP_CUP_AFFINITY $GOMP_CPU_AFFINITY
$@
```
Performance:
#### Expected AMD EPYC 7601 dual socket (single prec, single node 32+32 cores) performance using NUMA MPI mapping):
mpirun -np 8 ./omp_bind.sh ./Benchmark_dwf --threads 8 --mpi 2.2.2.1 --dslash-unroll --grid 16.16.16.16 --cacheblocking 4.4.4.4
TBA
### Build setup for BlueGene/Q
To be written...
### Build setup for ARM Neon
To be written...
### Build setup for laptops, other compilers, non-cluster builds
Many versions of g++ and clang++ work with Grid, and involve merely replacing CXX (and MPICXX),
and omit the enable-mkl flag.
Single node builds are enabled with
```
--enable-comms=none
```
FFTW support that is not in the default search path may then enabled with
```
--with-fftw=<installpath>
```
BLAS will not be compiled in by default, and Lanczos will default to Eigen diagonalisation.

16
TODO
View File

@ -2,18 +2,20 @@ TODO:
---------------
Large item work list:
1)- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O
1)- BG/Q port and check
2)- Christoph's local basis expansion Lanczos
3)- BG/Q port and check
4)- Precision conversion and sort out localConvert <-- partial
3)- Precision conversion and sort out localConvert <-- partial
- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
5)- Physical propagator interface
6)- Conserved currents
7)- Multigrid Wilson and DWF, compare to other Multigrid implementations
8)- HDCR resume
4)- Physical propagator interface
5)- Conserved currents
6)- Multigrid Wilson and DWF, compare to other Multigrid implementations
7)- HDCR resume
Recent DONE
-- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O. <--- DONE
-- Lanczos Remove DenseVector, DenseMatrix; Use Eigen instead. <-- DONE
-- GaugeFix into central location <-- DONE
-- Scidac and Ildg metadata handling <-- DONE

797
benchmarks/Benchmark_ITT.cc Normal file
View File

@ -0,0 +1,797 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_memory_bandwidth.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
typedef WilsonFermion5D<DomainWallVec5dImplF> WilsonFermion5DF;
typedef WilsonFermion5D<DomainWallVec5dImplD> WilsonFermion5DD;
std::vector<int> L_list;
std::vector<int> Ls_list;
std::vector<double> mflop_list;
double mflop_ref;
double mflop_ref_err;
int NN_global;
struct time_statistics{
double mean;
double err;
double min;
double max;
void statistics(std::vector<double> v){
double sum = std::accumulate(v.begin(), v.end(), 0.0);
mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
auto result = std::minmax_element(v.begin(), v.end());
min = *result.first;
max = *result.second;
}
};
void comms_header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
<<std::setw(11)<<"bytes"<<"MB/s uni (err/min/max)"<<"\t\t"<<"MB/s bidi (err/min/max)"<<std::endl;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
struct controls {
int Opt;
int CommsOverlap;
Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
// int HugePages;
};
class Benchmark {
public:
static void Decomposition (void ) {
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
std::cout<<GridLogMessage<<"\tMPI tasks : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
std::cout<<GridLogMessage<<"\tvReal : "<<sizeof(vReal )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vReal::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealF : "<<sizeof(vRealF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealD : "<<sizeof(vRealD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplex : "<<sizeof(vComplex )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplex::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexF : "<<sizeof(vComplexF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexD : "<<sizeof(vComplexD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
static void Comms(void)
{
int Nloop=200;
int nmu=0;
int maxlat=32;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
comms_header();
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
Grid.ShmBufferFreeAll();
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
rbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
int ncomm;
double dbytes;
std::vector<double> times(Nloop);
for(int i=0;i<Nloop;i++){
double start=usecond();
dbytes=0;
ncomm=0;
parallel_for(int dir=0;dir<8;dir++){
double tbytes;
int mu =dir % 4;
if (mpi_layout[mu]>1 ) {
int xmit_to_rank;
int recv_from_rank;
if ( dir == mu ) {
int comm_proc=1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
} else {
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank,
bytes,dir);
#ifdef GRID_OMP
#pragma omp atomic
#endif
ncomm++;
#ifdef GRID_OMP
#pragma omp atomic
#endif
dbytes+=tbytes;
}
}
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
// for(int i=0;i<t_time.size();i++){
// std::cout << i<<" "<<t_time[i]<<std::endl;
// }
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double rbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)
<<std::right<< xbytes/timestat.mean<<" "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " "
<<xbytes/timestat.max <<" "<< xbytes/timestat.min
<< "\t\t"<<std::setw(7)<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< bidibytes/timestat.max << " " << bidibytes/timestat.min << std::endl;
}
}
return;
}
static void Memory(void)
{
const int Nvec=8;
typedef Lattice< iVector< vReal,Nvec> > LatticeVec;
typedef iVector<vReal,Nvec> Vec;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vReal::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t NP;
uint64_t NN;
uint64_t lmax=48;
#define NLOOP (100*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=4){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
NP= Grid.RankCount();
NN =Grid.NodeCount();
Vec rn ; random(sRNG,rn);
LatticeVec z(&Grid); z=rn;
LatticeVec x(&Grid); x=rn;
LatticeVec y(&Grid); y=rn;
double a=2.0;
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=a*x-y;
x._odata[0]=z._odata[0]; // force serial dependency to prevent optimise away
y._odata[4]=z._odata[4];
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
}
};
static double DWF5(int Ls,int L)
{
RealD mass=0.1;
RealD M5 =1.8;
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
std::vector<int> mpi = GridDefaultMpi(); assert(mpi.size()==4);
std::vector<int> local({L,L,L,L});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(std::vector<int>({64,64,64,64}),
GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
std::vector<int> internal;
if ( SHM == 1 ) internal = std::vector<int>({1,1,1,1});
else if ( SHM == 2 ) internal = std::vector<int>({2,1,1,1});
else if ( SHM == 4 ) internal = std::vector<int>({2,2,1,1});
else if ( SHM == 8 ) internal = std::vector<int>({2,2,2,1});
else assert(0);
std::vector<int> nodes({mpi[0]/internal[0],mpi[1]/internal[1],mpi[2]/internal[2],mpi[3]/internal[3]});
std::vector<int> latt4({local[0]*nodes[0],local[1]*nodes[1],local[2]*nodes[2],local[3]*nodes[3]});
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark DWF Ls vec on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
std::cout<<GridLogMessage << "* MPI ranks : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Intranode : "<<GridCmdVectorIntToString(internal)<<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<GridCmdVectorIntToString(nodes)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(latt4,GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(sFGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
///////// Source preparation ////////////
LatticeFermion src (sFGrid); random(RNG5,src);
LatticeFermion tmp (sFGrid);
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5);
LatticeFermion src_e (sFrbGrid);
LatticeFermion src_o (sFrbGrid);
LatticeFermion r_e (sFrbGrid);
LatticeFermion r_o (sFrbGrid);
LatticeFermion r_eo (sFGrid);
LatticeFermion err (sFGrid);
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
#if defined(AVX512)
const int num_cases = 6;
std::string fmt("A/S ; A/O ; U/S ; U/O ; G/S ; G/O ");
#else
const int num_cases = 4;
std::string fmt("U/S ; U/O ; G/S ; G/O ");
#endif
controls Cases [] = {
#ifdef AVX512
{ QCD::WilsonKernelsStatic::OptInlineAsm , QCD::WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptInlineAsm , QCD::WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential },
#endif
{ QCD::WilsonKernelsStatic::OptHandUnroll, QCD::WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptHandUnroll, QCD::WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptGeneric , QCD::WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptGeneric , QCD::WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential }
};
for(int c=0;c<num_cases;c++) {
QCD::WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
QCD::WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 100;
uint64_t ncall = 1000;
double t0=usecond();
sFGrid->Barrier();
for(int i=0;i<nwarm;i++){
sDw.DhopEO(src_o,r_e,DaggerNo);
}
sFGrid->Barrier();
double t1=usecond();
sDw.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
sDw.DhopEO(src_o,r_e,DaggerNo);
t1=usecond();
t_time[i] = t1-t0;
}
sFGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"sDeo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"sDeo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"sDeo mflop/s per node "<< mflops/NN<<std::endl;
sDw.Report();
}
double robust = mflops_worst/mflops_best;;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " sDeo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " sDeo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<std::setprecision(3)<< L<<"^4 x "<<Ls<< " Performance Robustness = "<< robust <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
return mflops_best;
}
static double DWF(int Ls,int L, double & robust)
{
RealD mass=0.1;
RealD M5 =1.8;
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
std::vector<int> mpi = GridDefaultMpi(); assert(mpi.size()==4);
std::vector<int> local({L,L,L,L});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(std::vector<int>({64,64,64,64}),
GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
std::vector<int> internal;
if ( SHM == 1 ) internal = std::vector<int>({1,1,1,1});
else if ( SHM == 2 ) internal = std::vector<int>({2,1,1,1});
else if ( SHM == 4 ) internal = std::vector<int>({2,2,1,1});
else if ( SHM == 8 ) internal = std::vector<int>({2,2,2,1});
else assert(0);
std::vector<int> nodes({mpi[0]/internal[0],mpi[1]/internal[1],mpi[2]/internal[2],mpi[3]/internal[3]});
std::vector<int> latt4({local[0]*nodes[0],local[1]*nodes[1],local[2]*nodes[2],local[3]*nodes[3]});
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
std::cout<<GridLogMessage << "* MPI ranks : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Intranode : "<<GridCmdVectorIntToString(internal)<<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<GridCmdVectorIntToString(nodes)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
///////// Source preparation ////////////
LatticeFermion src (FGrid); random(RNG5,src);
LatticeFermion ref (FGrid);
LatticeFermion tmp (FGrid);
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
{
LatticeGaugeField Umu5d(FGrid);
std::vector<LatticeColourMatrix> U(4,FGrid);
for(int ss=0;ss<Umu._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
Umu5d._odata[Ls*ss+s] = Umu._odata[ss];
}
}
ref = zero;
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu5d,mu);
}
for(int mu=0;mu<Nd;mu++){
tmp = U[mu]*Cshift(src,mu+1,1);
ref=ref + tmp - Gamma(Gmu[mu])*tmp;
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
ref=ref + tmp + Gamma(Gmu[mu])*tmp;
}
ref = -0.5*ref;
}
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
LatticeFermion err (FGrid);
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
#if defined(AVX512)
const int num_cases = 6;
std::string fmt("A/S ; A/O ; U/S ; U/O ; G/S ; G/O ");
#else
const int num_cases = 4;
std::string fmt("U/S ; U/O ; G/S ; G/O ");
#endif
controls Cases [] = {
#ifdef AVX512
{ QCD::WilsonKernelsStatic::OptInlineAsm , QCD::WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptInlineAsm , QCD::WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential },
#endif
{ QCD::WilsonKernelsStatic::OptHandUnroll, QCD::WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptHandUnroll, QCD::WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptGeneric , QCD::WilsonKernelsStatic::CommsThenCompute ,CartesianCommunicator::CommunicatorPolicySequential },
{ QCD::WilsonKernelsStatic::OptGeneric , QCD::WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicySequential }
};
for(int c=0;c<num_cases;c++) {
QCD::WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
QCD::WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 200;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Dw.DhopEO(src_o,r_e,DaggerNo);
}
FGrid->Barrier();
double t1=usecond();
// uint64_t ncall = (uint64_t) 2.5*1000.0*1000.0*nwarm/(t1-t0);
// if (ncall < 500) ncall = 500;
uint64_t ncall = 1000;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
Dw.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dw.DhopEO(src_o,r_e,DaggerNo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
Dw.Report();
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);
setCheckerboard(r_eo,r_o);
setCheckerboard(r_eo,r_e);
err = r_eo-ref;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert((norm2(err)<1.0e-4));
}
robust = mflops_worst/mflops_best;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << std::fixed<<std::setprecision(3)<< L<<"^4 x "<<Ls<< " Performance Robustness = "<< robust <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
return mflops_best;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
#ifdef KNL
LebesgueOrder::Block = std::vector<int>({8,2,2,2});
#else
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
#endif
Benchmark::Decomposition();
int do_memory=1;
int do_comms =1;
int do_su3 =0;
int do_wilson=1;
int do_dwf =1;
if ( do_su3 ) {
// empty for now
}
int sel=2;
std::vector<int> L_list({8,12,16,24});
//int sel=1;
// std::vector<int> L_list({8,12});
std::vector<double> robust_list;
std::vector<double> wilson;
std::vector<double> dwf4;
std::vector<double> dwf5;
if ( do_wilson ) {
int Ls=1;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Wilson dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double robust;
wilson.push_back(Benchmark::DWF(1,L_list[l],robust));
}
}
int Ls=16;
if ( do_dwf ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double robust;
double result = Benchmark::DWF(Ls,L_list[l],robust) ;
dwf4.push_back(result);
robust_list.push_back(robust);
}
}
if ( do_dwf ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
dwf5.push_back(Benchmark::DWF5(Ls,L_list[l]));
}
}
if ( do_dwf ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t DWF4 \t DWF5 " <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t "<<dwf4[l]<<" \t "<<dwf5[l] <<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
int NN=NN_global;
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Memory();
}
if ( do_comms && (NN>1) ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Comms();
}
if ( do_dwf ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4 \t\t DWF5 " <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<<" \t "<<dwf5[l] /NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << dwf4[sel]/NN << " Mflop/s per node"<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << " Comparison point robustness: " << robust_list[sel] <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
Grid_finalize();
}

View File

@ -68,7 +68,7 @@ int main (int argc, char ** argv)
int Nloop=100;
int nmu=0;
int maxlat=24;
int maxlat=32;
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
std::cout << GridLogMessage << "Number of iterations to average: "<< Nloop << std::endl;
@ -80,7 +80,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
header();
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
@ -92,11 +92,16 @@ int main (int argc, char ** argv)
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<Vector<HalfSpinColourVectorD> > xbuf(8);
std::vector<Vector<HalfSpinColourVectorD> > rbuf(8);
int ncomm;
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
for(int mu=0;mu<8;mu++){
xbuf[mu].resize(lat*lat*lat*Ls);
rbuf[mu].resize(lat*lat*lat*Ls);
// std::cout << " buffers " << std::hex << (uint64_t)&xbuf[mu][0] <<" " << (uint64_t)&rbuf[mu][0] <<std::endl;
}
for(int i=0;i<Nloop;i++){
double start=usecond();
@ -112,7 +117,6 @@ int main (int argc, char ** argv)
int comm_proc=1;
int xmit_to_rank;
int recv_from_rank;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
@ -163,7 +167,7 @@ int main (int argc, char ** argv)
header();
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat,lat,lat,lat});
@ -172,9 +176,14 @@ int main (int argc, char ** argv)
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<Vector<HalfSpinColourVectorD> > xbuf(8);
std::vector<Vector<HalfSpinColourVectorD> > rbuf(8);
for(int mu=0;mu<8;mu++){
xbuf[mu].resize(lat*lat*lat*Ls);
rbuf[mu].resize(lat*lat*lat*Ls);
// std::cout << " buffers " << std::hex << (uint64_t)&xbuf[mu][0] <<" " << (uint64_t)&rbuf[mu][0] <<std::endl;
}
int ncomm;
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
@ -249,7 +258,7 @@ int main (int argc, char ** argv)
header();
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
@ -299,7 +308,7 @@ int main (int argc, char ** argv)
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
bytes,mu);
comm_proc = mpi_layout[mu]-1;
@ -310,11 +319,11 @@ int main (int argc, char ** argv)
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
bytes,mu+4);
}
}
Grid.StencilSendToRecvFromComplete(requests);
Grid.StencilSendToRecvFromComplete(requests,0);
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
@ -346,7 +355,7 @@ int main (int argc, char ** argv)
header();
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
@ -393,8 +402,8 @@ int main (int argc, char ** argv)
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
Grid.StencilSendToRecvFromComplete(requests);
bytes,mu);
Grid.StencilSendToRecvFromComplete(requests,mu);
requests.resize(0);
comm_proc = mpi_layout[mu]-1;
@ -406,8 +415,8 @@ int main (int argc, char ** argv)
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
Grid.StencilSendToRecvFromComplete(requests);
bytes,mu+4);
Grid.StencilSendToRecvFromComplete(requests,mu+4);
requests.resize(0);
}
@ -436,5 +445,97 @@ int main (int argc, char ** argv)
}
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
header();
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
Grid.ShmBufferFreeAll();
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
rbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
int ncomm;
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
double dbytes;
for(int i=0;i<Nloop;i++){
double start=usecond();
std::vector<CartesianCommunicator::CommsRequest_t> requests;
dbytes=0;
ncomm=0;
parallel_for(int dir=0;dir<8;dir++){
double tbytes;
int mu =dir % 4;
if (mpi_layout[mu]>1 ) {
ncomm++;
int xmit_to_rank;
int recv_from_rank;
if ( dir == mu ) {
int comm_proc=1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
} else {
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes,dir);
#pragma omp atomic
dbytes+=tbytes;
}
}
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double rbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)
<<std::right<< xbytes/timestat.mean<<" "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " "
<<xbytes/timestat.max <<" "<< xbytes/timestat.min
<< "\t\t"<<std::setw(7)<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< bidibytes/timestat.max << " " << bidibytes/timestat.min << std::endl;
}
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= All done; Bye Bye"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
Grid_finalize();
}

View File

@ -165,7 +165,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
int ncall =500;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
@ -302,6 +302,7 @@ int main (int argc, char ** argv)
std::cout<< "sD ERR \n " << err <<std::endl;
}
assert(sum < 1.0e-4);
if(1){
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
@ -381,8 +382,23 @@ int main (int argc, char ** argv)
}
assert(error<1.0e-4);
}
if(0){
std::cout << "Single cache warm call to sDw.Dhop " <<std::endl;
for(int i=0;i< PerformanceCounter::NumTypes(); i++ ){
sDw.Dhop(ssrc,sresult,0);
PerformanceCounter Counter(i);
Counter.Start();
sDw.Dhop(ssrc,sresult,0);
Counter.Stop();
Counter.Report();
}
}
}
if (1)
{ // Naive wilson dag implementation
ref = zero;
@ -487,9 +503,9 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "norm diff even "<< norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "norm diff odd "<< norm2(src_o)<<std::endl;
//assert(norm2(src_e)<1.0e-4);
//assert(norm2(src_o)<1.0e-4);
assert(norm2(src_e)<1.0e-4);
assert(norm2(src_o)<1.0e-4);
Grid_finalize();
exit(0);
}

View File

@ -55,21 +55,21 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t lmax=64;
#define NLOOP (100*lmax*lmax*lmax*lmax/vol)
for(int lat=4;lat<=lmax;lat+=4){
uint64_t lmax=96;
#define NLOOP (10*lmax*lmax*lmax*lmax/vol)
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
uint64_t Nloop=NLOOP;
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
double a=2.0;
@ -83,7 +83,7 @@ int main (int argc, char ** argv)
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3*vol*Nvec*sizeof(Real);
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
}
@ -94,17 +94,17 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=4;lat<=lmax;lat+=4){
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
double a=2.0;
uint64_t Nloop=NLOOP;
@ -119,7 +119,7 @@ int main (int argc, char ** argv)
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3*vol*Nvec*sizeof(Real);
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
}
@ -129,20 +129,20 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
for(int lat=4;lat<=lmax;lat+=4){
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
uint64_t Nloop=NLOOP;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
RealD a=2.0;
@ -154,7 +154,7 @@ int main (int argc, char ** argv)
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double bytes=2*vol*Nvec*sizeof(Real);
double bytes=2.0*vol*Nvec*sizeof(Real);
double flops=vol*Nvec*1;// mul
std::cout<<GridLogMessage <<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
@ -166,17 +166,17 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=4;lat<=lmax;lat+=4){
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
uint64_t Nloop=NLOOP;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
RealD a=2.0;
Real nn;
double start=usecond();
@ -187,7 +187,7 @@ int main (int argc, char ** argv)
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double bytes=vol*Nvec*sizeof(Real);
double bytes=1.0*vol*Nvec*sizeof(Real);
double flops=vol*Nvec*2;// mul,add
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<< "\t\t"<<(stop-start)/1000./1000.<< "\t\t " <<std::endl;

View File

@ -37,12 +37,12 @@ int main (int argc, char ** argv)
Grid_init(&argc,&argv);
#define LMAX (64)
int Nloop=20;
int64_t Nloop=20;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
int threads = GridThread::GetThreads();
int64_t threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
@ -54,16 +54,16 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
LatticeColourMatrix y(&Grid);// random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
x=x*y;
}
double stop=usecond();
@ -86,17 +86,17 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
LatticeColourMatrix y(&Grid); //random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
z=x*y;
}
double stop=usecond();
@ -117,17 +117,17 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
LatticeColourMatrix y(&Grid); //random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
mult(z,x,y);
}
double stop=usecond();
@ -148,17 +148,17 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
LatticeColourMatrix y(&Grid); //random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
mac(z,x,y);
}
double stop=usecond();

View File

@ -13,6 +13,10 @@ m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
################ Get git info
#AC_REVISION([m4_esyscmd_s([./scripts/configure.commit])])
################ Set flags
# do not move!
CXXFLAGS="-O3 $CXXFLAGS"
############### Checks for programs
AC_PROG_CXX
AC_PROG_RANLIB
@ -27,7 +31,6 @@ AX_GXX_VERSION
AC_DEFINE_UNQUOTED([GXX_VERSION],["$GXX_VERSION"],
[version of g++ that will compile the code])
CXXFLAGS="-g $CXXFLAGS"
############### Checks for typedefs, structures, and compiler characteristics
@ -51,9 +54,14 @@ AC_CHECK_HEADERS(malloc/malloc.h)
AC_CHECK_HEADERS(malloc.h)
AC_CHECK_HEADERS(endian.h)
AC_CHECK_HEADERS(execinfo.h)
AC_CHECK_HEADERS(numaif.h)
AC_CHECK_DECLS([ntohll],[], [], [[#include <arpa/inet.h>]])
AC_CHECK_DECLS([be64toh],[], [], [[#include <arpa/inet.h>]])
############## Standard libraries
AC_CHECK_LIB([m],[cos])
AC_CHECK_LIB([stdc++],[abort])
############### GMP and MPFR
AC_ARG_WITH([gmp],
[AS_HELP_STRING([--with-gmp=prefix],
@ -186,9 +194,14 @@ Info at: http://usqcd.jlab.org/usqcd-docs/c-lime/)])
AC_SEARCH_LIBS([crc32], [z],
[AC_DEFINE([HAVE_ZLIB], [1], [Define to 1 if you have the `LIBZ' library])]
[have_zlib=true],
[have_zlib=true] [LIBS="${LIBS} -lz"],
[AC_MSG_ERROR(zlib library was not found in your system.)])
AC_SEARCH_LIBS([move_pages], [numa],
[AC_DEFINE([HAVE_LIBNUMA], [1], [Define to 1 if you have the `LIBNUMA' library])]
[have_libnuma=true] [LIBS="${LIBS} -lnuma"],
[AC_MSG_WARN(libnuma library was not found in your system. Some optimisations will not apply)])
AC_SEARCH_LIBS([H5Fopen], [hdf5_cpp],
[AC_DEFINE([HAVE_HDF5], [1], [Define to 1 if you have the `HDF5' library])]
[have_hdf5=true]
@ -241,6 +254,7 @@ case ${ax_cv_cxx_compiler_vendor} in
SIMD_FLAGS='';;
KNL)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics])
AC_DEFINE([KNL],[1],[Knights landing processor])
SIMD_FLAGS='-march=knl';;
GEN)
AC_DEFINE([GEN],[1],[generic vector code])
@ -248,6 +262,9 @@ case ${ax_cv_cxx_compiler_vendor} in
[generic SIMD vector width (in bytes)])
SIMD_GEN_WIDTH_MSG=" (width= $ac_gen_simd_width)"
SIMD_FLAGS='';;
NEONv8)
AC_DEFINE([NEONV8],[1],[ARMv8 NEON])
SIMD_FLAGS='-march=armv8-a';;
QPX|BGQ)
AC_DEFINE([QPX],[1],[QPX intrinsics for BG/Q])
SIMD_FLAGS='';;
@ -276,6 +293,7 @@ case ${ax_cv_cxx_compiler_vendor} in
SIMD_FLAGS='';;
KNL)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics for Knights Landing])
AC_DEFINE([KNL],[1],[Knights landing processor])
SIMD_FLAGS='-xmic-avx512';;
GEN)
AC_DEFINE([GEN],[1],[generic vector code])
@ -313,8 +331,41 @@ case ${ac_PRECISION} in
double)
AC_DEFINE([GRID_DEFAULT_PRECISION_DOUBLE],[1],[GRID_DEFAULT_PRECISION is DOUBLE] )
;;
*)
AC_MSG_ERROR([${ac_PRECISION} unsupported --enable-precision option]);
;;
esac
###################### Shared memory allocation technique under MPI3
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmget|shmopen|hugetlbfs],
[Select SHM allocation technique])],[ac_SHM=${enable_shm}],[ac_SHM=shmopen])
case ${ac_SHM} in
shmget)
AC_DEFINE([GRID_MPI3_SHMGET],[1],[GRID_MPI3_SHMGET] )
;;
shmopen)
AC_DEFINE([GRID_MPI3_SHMOPEN],[1],[GRID_MPI3_SHMOPEN] )
;;
hugetlbfs)
AC_DEFINE([GRID_MPI3_SHMMMAP],[1],[GRID_MPI3_SHMMMAP] )
;;
*)
AC_MSG_ERROR([${ac_SHM} unsupported --enable-shm option]);
;;
esac
###################### Shared base path for SHMMMAP
AC_ARG_ENABLE([shmpath],[AC_HELP_STRING([--enable-shmpath=path],
[Select SHM mmap base path for hugetlbfs])],
[ac_SHMPATH=${enable_shmpath}],
[ac_SHMPATH=/var/lib/hugetlbfs/pagesize-2MB/])
AC_DEFINE_UNQUOTED([GRID_SHM_PATH],["$ac_SHMPATH"],[Path to a hugetlbfs filesystem for MMAPing])
############### communication type selection
AC_ARG_ENABLE([comms],[AC_HELP_STRING([--enable-comms=none|mpi|mpi-auto|mpi3|mpi3-auto|shmem],
[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none])
@ -324,14 +375,14 @@ case ${ac_COMMS} in
AC_DEFINE([GRID_COMMS_NONE],[1],[GRID_COMMS_NONE] )
comms_type='none'
;;
mpi3l*)
AC_DEFINE([GRID_COMMS_MPI3L],[1],[GRID_COMMS_MPI3L] )
comms_type='mpi3l'
;;
mpi3*)
AC_DEFINE([GRID_COMMS_MPI3],[1],[GRID_COMMS_MPI3] )
comms_type='mpi3'
;;
mpit)
AC_DEFINE([GRID_COMMS_MPIT],[1],[GRID_COMMS_MPIT] )
comms_type='mpit'
;;
mpi*)
AC_DEFINE([GRID_COMMS_MPI],[1],[GRID_COMMS_MPI] )
comms_type='mpi'
@ -359,7 +410,7 @@ esac
AM_CONDITIONAL(BUILD_COMMS_SHMEM, [ test "${comms_type}X" == "shmemX" ])
AM_CONDITIONAL(BUILD_COMMS_MPI, [ test "${comms_type}X" == "mpiX" ])
AM_CONDITIONAL(BUILD_COMMS_MPI3, [ test "${comms_type}X" == "mpi3X" ] )
AM_CONDITIONAL(BUILD_COMMS_MPI3L, [ test "${comms_type}X" == "mpi3lX" ] )
AM_CONDITIONAL(BUILD_COMMS_MPIT, [ test "${comms_type}X" == "mpitX" ] )
AM_CONDITIONAL(BUILD_COMMS_NONE, [ test "${comms_type}X" == "noneX" ])
############### RNG selection
@ -464,6 +515,8 @@ compiler version : ${ax_cv_gxx_version}
SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG}
Threading : ${ac_openmp}
Communications type : ${comms_type}
Shared memory allocator : ${ac_SHM}
Shared memory mmap path : ${ac_SHMPATH}
Default precision : ${ac_PRECISION}
Software FP16 conversion : ${ac_SFW_FP16}
RNG choice : ${ac_RNG}

View File

@ -41,9 +41,10 @@ using namespace Hadrons;
// constructor /////////////////////////////////////////////////////////////////
Environment::Environment(void)
{
nd_ = GridDefaultLatt().size();
dim_ = GridDefaultLatt();
nd_ = dim_.size();
grid4d_.reset(SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(nd_, vComplex::Nsimd()),
dim_, GridDefaultSimd(nd_, vComplex::Nsimd()),
GridDefaultMpi()));
gridRb4d_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_.get()));
auto loc = getGrid()->LocalDimensions();
@ -132,6 +133,16 @@ unsigned int Environment::getNd(void) const
return nd_;
}
std::vector<int> Environment::getDim(void) const
{
return dim_;
}
int Environment::getDim(const unsigned int mu) const
{
return dim_[mu];
}
// random number generator /////////////////////////////////////////////////////
void Environment::setSeed(const std::vector<int> &seed)
{
@ -271,6 +282,21 @@ std::string Environment::getModuleType(const std::string name) const
return getModuleType(getModuleAddress(name));
}
std::string Environment::getModuleNamespace(const unsigned int address) const
{
std::string type = getModuleType(address), ns;
auto pos2 = type.rfind("::");
auto pos1 = type.rfind("::", pos2 - 2);
return type.substr(pos1 + 2, pos2 - pos1 - 2);
}
std::string Environment::getModuleNamespace(const std::string name) const
{
return getModuleNamespace(getModuleAddress(name));
}
bool Environment::hasModule(const unsigned int address) const
{
return (address < module_.size());
@ -492,7 +518,14 @@ std::string Environment::getObjectType(const unsigned int address) const
{
if (hasRegisteredObject(address))
{
return typeName(object_[address].type);
if (object_[address].type)
{
return typeName(object_[address].type);
}
else
{
return "<no type>";
}
}
else if (hasObject(address))
{
@ -532,6 +565,23 @@ Environment::Size Environment::getObjectSize(const std::string name) const
return getObjectSize(getObjectAddress(name));
}
unsigned int Environment::getObjectModule(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].module;
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
unsigned int Environment::getObjectModule(const std::string name) const
{
return getObjectModule(getObjectAddress(name));
}
unsigned int Environment::getObjectLs(const unsigned int address) const
{
if (hasRegisteredObject(address))

View File

@ -106,6 +106,8 @@ public:
void createGrid(const unsigned int Ls);
GridCartesian * getGrid(const unsigned int Ls = 1) const;
GridRedBlackCartesian * getRbGrid(const unsigned int Ls = 1) const;
std::vector<int> getDim(void) const;
int getDim(const unsigned int mu) const;
unsigned int getNd(void) const;
// random number generator
void setSeed(const std::vector<int> &seed);
@ -131,6 +133,8 @@ public:
std::string getModuleName(const unsigned int address) const;
std::string getModuleType(const unsigned int address) const;
std::string getModuleType(const std::string name) const;
std::string getModuleNamespace(const unsigned int address) const;
std::string getModuleNamespace(const std::string name) const;
bool hasModule(const unsigned int address) const;
bool hasModule(const std::string name) const;
Graph<unsigned int> makeModuleGraph(void) const;
@ -171,6 +175,8 @@ public:
std::string getObjectType(const std::string name) const;
Size getObjectSize(const unsigned int address) const;
Size getObjectSize(const std::string name) const;
unsigned int getObjectModule(const unsigned int address) const;
unsigned int getObjectModule(const std::string name) const;
unsigned int getObjectLs(const unsigned int address) const;
unsigned int getObjectLs(const std::string name) const;
bool hasObject(const unsigned int address) const;
@ -181,6 +187,10 @@ public:
bool hasCreatedObject(const std::string name) const;
bool isObject5d(const unsigned int address) const;
bool isObject5d(const std::string name) const;
template <typename T>
bool isObjectOfType(const unsigned int address) const;
template <typename T>
bool isObjectOfType(const std::string name) const;
Environment::Size getTotalSize(void) const;
void addOwnership(const unsigned int owner,
const unsigned int property);
@ -197,6 +207,7 @@ private:
bool dryRun_{false};
unsigned int traj_, locVol_;
// grids
std::vector<int> dim_;
GridPt grid4d_;
std::map<unsigned int, GridPt> grid5d_;
GridRbPt gridRb4d_;
@ -343,7 +354,7 @@ T * Environment::getObject(const unsigned int address) const
else
{
HADRON_ERROR("object with address " + std::to_string(address) +
" does not have type '" + typeid(T).name() +
" does not have type '" + typeName(&typeid(T)) +
"' (has type '" + getObjectType(address) + "')");
}
}
@ -380,6 +391,37 @@ T * Environment::createLattice(const std::string name)
return createLattice<T>(getObjectAddress(name));
}
template <typename T>
bool Environment::isObjectOfType(const unsigned int address) const
{
if (hasRegisteredObject(address))
{
if (auto h = dynamic_cast<Holder<T> *>(object_[address].data.get()))
{
return true;
}
else
{
return false;
}
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address) +
" exists but is not registered");
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
template <typename T>
bool Environment::isObjectOfType(const std::string name) const
{
return isObjectOfType<T>(getObjectAddress(name));
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Environment_hpp_

View File

@ -51,23 +51,43 @@ using Grid::operator<<;
* error with GCC 5 (clang & GCC 6 compile fine without it).
*/
// FIXME: find a way to do that in a more general fashion
#ifndef FIMPL
#define FIMPL WilsonImplR
#endif
#ifndef SIMPL
#define SIMPL ScalarImplCR
#endif
BEGIN_HADRONS_NAMESPACE
// type aliases
#define TYPE_ALIASES(FImpl, suffix)\
#define FERM_TYPE_ALIASES(FImpl, suffix)\
typedef FermionOperator<FImpl> FMat##suffix; \
typedef typename FImpl::FermionField FermionField##suffix; \
typedef typename FImpl::PropagatorField PropagatorField##suffix; \
typedef typename FImpl::SitePropagator SitePropagator##suffix; \
typedef typename FImpl::DoubledGaugeField DoubledGaugeField##suffix;\
typedef std::function<void(FermionField##suffix &, \
typedef std::vector<typename FImpl::SitePropagator::scalar_object> \
SlicedPropagator##suffix;
#define GAUGE_TYPE_ALIASES(FImpl, suffix)\
typedef typename FImpl::DoubledGaugeField DoubledGaugeField##suffix;
#define SCALAR_TYPE_ALIASES(SImpl, suffix)\
typedef typename SImpl::Field ScalarField##suffix;\
typedef typename SImpl::Field PropagatorField##suffix;
#define SOLVER_TYPE_ALIASES(FImpl, suffix)\
typedef std::function<void(FermionField##suffix &,\
const FermionField##suffix &)> SolverFn##suffix;
#define SINK_TYPE_ALIASES(suffix)\
typedef std::function<SlicedPropagator##suffix(const PropagatorField##suffix &)> SinkFn##suffix;
#define FGS_TYPE_ALIASES(FImpl, suffix)\
FERM_TYPE_ALIASES(FImpl, suffix)\
GAUGE_TYPE_ALIASES(FImpl, suffix)\
SOLVER_TYPE_ALIASES(FImpl, suffix)
// logger
class HadronsLogger: public Logger
{

View File

@ -1,31 +1,3 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules.hpp
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
@ -36,13 +8,18 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/Quark.hpp>

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_DWF_hpp_
#define Hadrons_DWF_hpp_
#ifndef Hadrons_MAction_DWF_hpp_
#define Hadrons_MAction_DWF_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -56,7 +56,7 @@ template <typename FImpl>
class TDWF: public Module<DWFPar>
{
public:
TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TDWF(const std::string name);
@ -137,4 +137,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_DWF_hpp_
#endif // Hadrons_MAction_DWF_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Wilson_hpp_
#define Hadrons_Wilson_hpp_
#ifndef Hadrons_MAction_Wilson_hpp_
#define Hadrons_MAction_Wilson_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -54,7 +54,7 @@ template <typename FImpl>
class TWilson: public Module<WilsonPar>
{
public:
TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TWilson(const std::string name);

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Baryon_hpp_
#define Hadrons_Baryon_hpp_
#ifndef Hadrons_MContraction_Baryon_hpp_
#define Hadrons_MContraction_Baryon_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -55,9 +55,9 @@ template <typename FImpl1, typename FImpl2, typename FImpl3>
class TBaryon: public Module<BaryonPar>
{
public:
TYPE_ALIASES(FImpl1, 1);
TYPE_ALIASES(FImpl2, 2);
TYPE_ALIASES(FImpl3, 3);
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
class Result: Serializable
{
public:
@ -121,11 +121,11 @@ void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
// FIXME: do contractions
write(writer, "meson", result);
// write(writer, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Baryon_hpp_
#endif // Hadrons_MContraction_Baryon_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_DiscLoop_hpp_
#define Hadrons_DiscLoop_hpp_
#ifndef Hadrons_MContraction_DiscLoop_hpp_
#define Hadrons_MContraction_DiscLoop_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -52,7 +52,7 @@ public:
template <typename FImpl>
class TDiscLoop: public Module<DiscLoopPar>
{
TYPE_ALIASES(FImpl,);
FERM_TYPE_ALIASES(FImpl,);
class Result: Serializable
{
public:
@ -141,4 +141,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_DiscLoop_hpp_
#endif // Hadrons_MContraction_DiscLoop_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Gamma3pt_hpp_
#define Hadrons_Gamma3pt_hpp_
#ifndef Hadrons_MContraction_Gamma3pt_hpp_
#define Hadrons_MContraction_Gamma3pt_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -72,9 +72,9 @@ public:
template <typename FImpl1, typename FImpl2, typename FImpl3>
class TGamma3pt: public Module<Gamma3ptPar>
{
TYPE_ALIASES(FImpl1, 1);
TYPE_ALIASES(FImpl2, 2);
TYPE_ALIASES(FImpl3, 3);
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
class Result: Serializable
{
public:
@ -167,4 +167,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Gamma3pt_hpp_
#endif // Hadrons_MContraction_Gamma3pt_hpp_

View File

@ -29,8 +29,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Meson_hpp_
#define Hadrons_Meson_hpp_
#ifndef Hadrons_MContraction_Meson_hpp_
#define Hadrons_MContraction_Meson_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -69,7 +69,7 @@ public:
std::string, q1,
std::string, q2,
std::string, gammas,
std::string, mom,
std::string, sink,
std::string, output);
};
@ -77,8 +77,10 @@ template <typename FImpl1, typename FImpl2>
class TMeson: public Module<MesonPar>
{
public:
TYPE_ALIASES(FImpl1, 1);
TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(ScalarImplCR, Scalar);
SINK_TYPE_ALIASES(Scalar);
class Result: Serializable
{
public:
@ -115,7 +117,7 @@ TMeson<FImpl1, FImpl2>::TMeson(const std::string name)
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TMeson<FImpl1, FImpl2>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2};
std::vector<std::string> input = {par().q1, par().q2, par().sink};
return input;
}
@ -154,6 +156,9 @@ void TMeson<FImpl1, FImpl2>::parseGammaString(std::vector<GammaPair> &gammaList)
// execution ///////////////////////////////////////////////////////////////////
#define mesonConnected(q1, q2, gSnk, gSrc) \
(g5*(gSnk))*(q1)*(adj(gSrc)*g5)*adj(q2)
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::execute(void)
{
@ -161,43 +166,72 @@ void TMeson<FImpl1, FImpl2>::execute(void)
<< " quarks '" << par().q1 << "' and '" << par().q2 << "'"
<< std::endl;
CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
CorrWriter writer(par().output);
std::vector<TComplex> buf;
std::vector<Result> result;
std::vector<Real> p;
p = strToVec<Real>(par().mom);
LatticeComplex ph(env().getGrid()), coor(env().getGrid());
Complex i(0.0,1.0);
ph = zero;
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
}
ph = exp((Real)(2*M_PI)*i*ph);
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
c = trace((g5*gSnk)*q1*(adj(gSrc)*g5)*adj(q2))*ph;
sliceSum(c, buf, Tp);
result[i].gamma_snk = gammaList[i].first;
result[i].gamma_src = gammaList[i].second;
result[i].corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
result[i].corr.resize(nt);
}
if (env().template isObjectOfType<SlicedPropagator1>(par().q1) and
env().template isObjectOfType<SlicedPropagator2>(par().q2))
{
SlicedPropagator1 &q1 = *env().template getObject<SlicedPropagator1>(par().q1);
SlicedPropagator2 &q2 = *env().template getObject<SlicedPropagator2>(par().q2);
LOG(Message) << "(propagator already sinked)" << std::endl;
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].corr[t] = TensorRemove(buf[t]);
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(trace(mesonConnected(q1[t], q2[t], gSnk, gSrc)));
}
}
}
else
{
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
LOG(Message) << "(using sink '" << par().sink << "')" << std::endl;
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
std::string ns;
ns = env().getModuleNamespace(env().getObjectModule(par().sink));
if (ns == "MSource")
{
PropagatorField1 &sink =
*env().template getObject<PropagatorField1>(par().sink);
c = trace(mesonConnected(q1, q2, gSnk, gSrc)*sink);
sliceSum(c, buf, Tp);
}
else if (ns == "MSink")
{
SinkFnScalar &sink = *env().template getObject<SinkFnScalar>(par().sink);
c = trace(mesonConnected(q1, q2, gSnk, gSrc));
buf = sink(c);
}
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
}
}
write(writer, "meson", result);
@ -207,4 +241,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Meson_hpp_
#endif // Hadrons_MContraction_Meson_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonian_hpp_
#define Hadrons_WeakHamiltonian_hpp_
#ifndef Hadrons_MContraction_WeakHamiltonian_hpp_
#define Hadrons_MContraction_WeakHamiltonian_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -83,7 +83,7 @@ public:
class T##modname: public Module<WeakHamiltonianPar>\
{\
public:\
TYPE_ALIASES(FIMPL,)\
FERM_TYPE_ALIASES(FIMPL,)\
class Result: Serializable\
{\
public:\
@ -111,4 +111,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonian_hpp_
#endif // Hadrons_MContraction_WeakHamiltonian_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonianEye_hpp_
#define Hadrons_WeakHamiltonianEye_hpp_
#ifndef Hadrons_MContraction_WeakHamiltonianEye_hpp_
#define Hadrons_MContraction_WeakHamiltonianEye_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
@ -55,4 +55,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonianEye_hpp_
#endif // Hadrons_MContraction_WeakHamiltonianEye_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonianNonEye_hpp_
#define Hadrons_WeakHamiltonianNonEye_hpp_
#ifndef Hadrons_MContraction_WeakHamiltonianNonEye_hpp_
#define Hadrons_MContraction_WeakHamiltonianNonEye_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
@ -54,4 +54,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonianNonEye_hpp_
#endif // Hadrons_MContraction_WeakHamiltonianNonEye_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakNeutral4ptDisc_hpp_
#define Hadrons_WeakNeutral4ptDisc_hpp_
#ifndef Hadrons_MContraction_WeakNeutral4ptDisc_hpp_
#define Hadrons_MContraction_WeakNeutral4ptDisc_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
@ -56,4 +56,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakNeutral4ptDisc_hpp_
#endif // Hadrons_MContraction_WeakNeutral4ptDisc_hpp_

View File

@ -1,34 +1,5 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/Quark.hpp
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Quark_hpp_
#define Hadrons_Quark_hpp_
#ifndef Hadrons_MFermion_GaugeProp_hpp_
#define Hadrons_MFermion_GaugeProp_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -37,27 +8,29 @@ See the full license in the file "LICENSE" in the top level distribution directo
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TQuark *
* GaugeProp *
******************************************************************************/
class QuarkPar: Serializable
BEGIN_MODULE_NAMESPACE(MFermion)
class GaugePropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(QuarkPar,
GRID_SERIALIZABLE_CLASS_MEMBERS(GaugePropPar,
std::string, source,
std::string, solver);
};
template <typename FImpl>
class TQuark: public Module<QuarkPar>
class TGaugeProp: public Module<GaugePropPar>
{
public:
TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TQuark(const std::string name);
TGaugeProp(const std::string name);
// destructor
virtual ~TQuark(void) = default;
// dependencies/products
virtual ~TGaugeProp(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
@ -69,20 +42,20 @@ private:
SolverFn *solver_{nullptr};
};
MODULE_REGISTER(Quark, TQuark<FIMPL>);
MODULE_REGISTER_NS(GaugeProp, TGaugeProp<FIMPL>, MFermion);
/******************************************************************************
* TQuark implementation *
* TGaugeProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TQuark<FImpl>::TQuark(const std::string name)
: Module(name)
TGaugeProp<FImpl>::TGaugeProp(const std::string name)
: Module<GaugePropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TQuark<FImpl>::getInput(void)
std::vector<std::string> TGaugeProp<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().source, par().solver};
@ -90,7 +63,7 @@ std::vector<std::string> TQuark<FImpl>::getInput(void)
}
template <typename FImpl>
std::vector<std::string> TQuark<FImpl>::getOutput(void)
std::vector<std::string> TGaugeProp<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName(), getName() + "_5d"};
@ -99,7 +72,7 @@ std::vector<std::string> TQuark<FImpl>::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TQuark<FImpl>::setup(void)
void TGaugeProp<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().solver);
env().template registerLattice<PropagatorField>(getName());
@ -111,13 +84,13 @@ void TQuark<FImpl>::setup(void)
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TQuark<FImpl>::execute(void)
void TGaugeProp<FImpl>::execute(void)
{
LOG(Message) << "Computing quark propagator '" << getName() << "'"
<< std::endl;
<< std::endl;
FermionField source(env().getGrid(Ls_)), sol(env().getGrid(Ls_)),
tmp(env().getGrid());
tmp(env().getGrid());
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
PropagatorField &prop = *env().template createLattice<PropagatorField>(propName);
PropagatorField &fullSrc = *env().template getObject<PropagatorField>(par().source);
@ -128,7 +101,7 @@ void TQuark<FImpl>::execute(void)
}
LOG(Message) << "Inverting using solver '" << par().solver
<< "' on source '" << par().source << "'" << std::endl;
<< "' on source '" << par().source << "'" << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < Nc; ++c)
{
@ -170,7 +143,7 @@ void TQuark<FImpl>::execute(void)
if (Ls_ > 1)
{
PropagatorField &p4d =
*env().template getObject<PropagatorField>(getName());
*env().template getObject<PropagatorField>(getName());
axpby_ssp_pminus(sol, 0., sol, 1., sol, 0, 0);
axpby_ssp_pplus(sol, 1., sol, 1., sol, 0, Ls_-1);
@ -180,6 +153,8 @@ void TQuark<FImpl>::execute(void)
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Quark_hpp_
#endif // Hadrons_MFermion_GaugeProp_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Load_hpp_
#define Hadrons_Load_hpp_
#ifndef Hadrons_MGauge_Load_hpp_
#define Hadrons_MGauge_Load_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -70,4 +70,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Load_hpp_
#endif // Hadrons_MGauge_Load_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Random_hpp_
#define Hadrons_Random_hpp_
#ifndef Hadrons_MGauge_Random_hpp_
#define Hadrons_MGauge_Random_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -63,4 +63,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Random_hpp_
#endif // Hadrons_MGauge_Random_hpp_

View File

@ -0,0 +1,88 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/StochEm.cc
Copyright (C) 2015
Copyright (C) 2016
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
/******************************************************************************
* TStochEm implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TStochEm::TStochEm(const std::string name)
: Module<StochEmPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TStochEm::getInput(void)
{
std::vector<std::string> in;
return in;
}
std::vector<std::string> TStochEm::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TStochEm::setup(void)
{
if (!env().hasRegisteredObject("_" + getName() + "_weight"))
{
env().registerLattice<EmComp>("_" + getName() + "_weight");
}
env().registerLattice<EmField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TStochEm::execute(void)
{
PhotonR photon(par().gauge, par().zmScheme);
EmField &a = *env().createLattice<EmField>(getName());
EmComp *w;
if (!env().hasCreatedObject("_" + getName() + "_weight"))
{
LOG(Message) << "Caching stochatic EM potential weight (gauge: "
<< par().gauge << ", zero-mode scheme: "
<< par().zmScheme << ")..." << std::endl;
w = env().createLattice<EmComp>("_" + getName() + "_weight");
photon.StochasticWeight(*w);
}
else
{
w = env().getObject<EmComp>("_" + getName() + "_weight");
}
LOG(Message) << "Generating stochatic EM potential..." << std::endl;
photon.StochasticField(a, *env().get4dRng(), *w);
}

View File

@ -0,0 +1,75 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/StochEm.hpp
Copyright (C) 2015
Copyright (C) 2016
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGauge_StochEm_hpp_
#define Hadrons_MGauge_StochEm_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* StochEm *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
class StochEmPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(StochEmPar,
PhotonR::Gauge, gauge,
PhotonR::ZmScheme, zmScheme);
};
class TStochEm: public Module<StochEmPar>
{
public:
typedef PhotonR::GaugeField EmField;
typedef PhotonR::GaugeLinkField EmComp;
public:
// constructor
TStochEm(const std::string name);
// destructor
virtual ~TStochEm(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(StochEm, TStochEm, MGauge);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_StochEm_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Unit_hpp_
#define Hadrons_Unit_hpp_
#ifndef Hadrons_MGauge_Unit_hpp_
#define Hadrons_MGauge_Unit_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -63,4 +63,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Unit_hpp_
#endif // Hadrons_MGauge_Unit_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_NoiseLoop_hpp_
#define Hadrons_NoiseLoop_hpp_
#ifndef Hadrons_MLoop_NoiseLoop_hpp_
#define Hadrons_MLoop_NoiseLoop_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -65,7 +65,7 @@ template <typename FImpl>
class TNoiseLoop: public Module<NoiseLoopPar>
{
public:
TYPE_ALIASES(FImpl,);
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TNoiseLoop(const std::string name);
@ -129,4 +129,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_NoiseLoop_hpp_
#endif // Hadrons_MLoop_NoiseLoop_hpp_

View File

@ -0,0 +1,226 @@
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TChargedProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TChargedProp::TChargedProp(const std::string name)
: Module<ChargedPropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TChargedProp::getInput(void)
{
std::vector<std::string> in = {par().source, par().emField};
return in;
}
std::vector<std::string> TChargedProp::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TChargedProp::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
phaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
}
GFSrcName_ = "_" + getName() + "_DinvSrc";
if (!env().hasRegisteredObject(freeMomPropName_))
{
env().registerLattice<ScalarField>(freeMomPropName_);
}
if (!env().hasRegisteredObject(phaseName_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(phaseName_[mu]);
}
}
if (!env().hasRegisteredObject(GFSrcName_))
{
env().registerLattice<ScalarField>(GFSrcName_);
}
env().registerLattice<ScalarField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TChargedProp::execute(void)
{
// CACHING ANALYTIC EXPRESSIONS
ScalarField &source = *env().getObject<ScalarField>(par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
// cache free scalar propagator
if (!env().hasCreatedObject(freeMomPropName_))
{
LOG(Message) << "Caching momentum space free scalar propagator"
<< " (mass= " << par().mass << ")..." << std::endl;
freeMomProp_ = env().createLattice<ScalarField>(freeMomPropName_);
SIMPL::MomentumSpacePropagator(*freeMomProp_, par().mass);
}
else
{
freeMomProp_ = env().getObject<ScalarField>(freeMomPropName_);
}
// cache G*F*src
if (!env().hasCreatedObject(GFSrcName_))
{
GFSrc_ = env().createLattice<ScalarField>(GFSrcName_);
fft.FFT_all_dim(*GFSrc_, source, FFT::forward);
*GFSrc_ = (*freeMomProp_)*(*GFSrc_);
}
else
{
GFSrc_ = env().getObject<ScalarField>(GFSrcName_);
}
// cache phases
if (!env().hasCreatedObject(phaseName_[0]))
{
std::vector<int> &l = env().getGrid()->_fdimensions;
LOG(Message) << "Caching shift phases..." << std::endl;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
phase_.push_back(env().createLattice<ScalarField>(phaseName_[mu]));
LatticeCoordinate(*(phase_[mu]), mu);
*(phase_[mu]) = exp(ci*twoPiL*(*(phase_[mu])));
}
}
else
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phase_.push_back(env().getObject<ScalarField>(phaseName_[mu]));
}
}
// PROPAGATOR CALCULATION
LOG(Message) << "Computing charged scalar propagator"
<< " (mass= " << par().mass
<< ", charge= " << par().charge << ")..." << std::endl;
ScalarField &prop = *env().createLattice<ScalarField>(getName());
ScalarField buf(env().getGrid());
ScalarField &GFSrc = *GFSrc_, &G = *freeMomProp_;
double q = par().charge;
// G*F*Src
prop = GFSrc;
// - q*G*momD1*G*F*Src (momD1 = F*D1*Finv)
buf = GFSrc;
momD1(buf, fft);
buf = G*buf;
prop = prop - q*buf;
// + q^2*G*momD1*G*momD1*G*F*Src (here buf = G*momD1*G*F*Src)
momD1(buf, fft);
prop = prop + q*q*G*buf;
// - q^2*G*momD2*G*F*Src (momD2 = F*D2*Finv)
buf = GFSrc;
momD2(buf, fft);
prop = prop - q*q*G*buf;
// final FT
fft.FFT_all_dim(prop, prop, FFT::backward);
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
std::string filename = par().output + "." +
std::to_string(env().getTrajectory());
LOG(Message) << "Saving zero-momentum projection to '"
<< filename << "'..." << std::endl;
CorrWriter writer(filename);
std::vector<TComplex> vecBuf;
std::vector<Complex> result;
sliceSum(prop, vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
write(writer, "charge", q);
write(writer, "prop", result);
}
}
void TChargedProp::momD1(ScalarField &s, FFT &fft)
{
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()),
Amu(env().getGrid());
Complex ci(0.0,1.0);
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result - ci*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + ci*adj(*phase_[mu])*buf;
}
s = result;
}
void TChargedProp::momD2(ScalarField &s, FFT &fft)
{
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()),
Amu(env().getGrid());
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*adj(*phase_[mu])*buf;
}
s = result;
}

View File

@ -0,0 +1,61 @@
#ifndef Hadrons_MScalar_ChargedProp_hpp_
#define Hadrons_MScalar_ChargedProp_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Charged scalar propagator *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MScalar)
class ChargedPropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ChargedPropPar,
std::string, emField,
std::string, source,
double, mass,
double, charge,
std::string, output);
};
class TChargedProp: public Module<ChargedPropPar>
{
public:
SCALAR_TYPE_ALIASES(SIMPL,);
typedef PhotonR::GaugeField EmField;
typedef PhotonR::GaugeLinkField EmComp;
public:
// constructor
TChargedProp(const std::string name);
// destructor
virtual ~TChargedProp(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
void momD1(ScalarField &s, FFT &fft);
void momD2(ScalarField &s, FFT &fft);
private:
std::string freeMomPropName_, GFSrcName_;
std::vector<std::string> phaseName_;
ScalarField *freeMomProp_, *GFSrc_;
std::vector<ScalarField *> phase_;
EmField *A;
};
MODULE_REGISTER_NS(ChargedProp, TChargedProp, MScalar);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MScalar_ChargedProp_hpp_

View File

@ -0,0 +1,79 @@
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TFreeProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TFreeProp::TFreeProp(const std::string name)
: Module<FreePropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TFreeProp::getInput(void)
{
std::vector<std::string> in = {par().source};
return in;
}
std::vector<std::string> TFreeProp::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TFreeProp::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
if (!env().hasRegisteredObject(freeMomPropName_))
{
env().registerLattice<ScalarField>(freeMomPropName_);
}
env().registerLattice<ScalarField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TFreeProp::execute(void)
{
ScalarField &prop = *env().createLattice<ScalarField>(getName());
ScalarField &source = *env().getObject<ScalarField>(par().source);
ScalarField *freeMomProp;
if (!env().hasCreatedObject(freeMomPropName_))
{
LOG(Message) << "Caching momentum space free scalar propagator"
<< " (mass= " << par().mass << ")..." << std::endl;
freeMomProp = env().createLattice<ScalarField>(freeMomPropName_);
SIMPL::MomentumSpacePropagator(*freeMomProp, par().mass);
}
else
{
freeMomProp = env().getObject<ScalarField>(freeMomPropName_);
}
LOG(Message) << "Computing free scalar propagator..." << std::endl;
SIMPL::FreePropagator(source, prop, *freeMomProp);
if (!par().output.empty())
{
TextWriter writer(par().output + "." +
std::to_string(env().getTrajectory()));
std::vector<TComplex> buf;
std::vector<Complex> result;
sliceSum(prop, buf, Tp);
result.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[t] = TensorRemove(buf[t]);
}
write(writer, "prop", result);
}
}

View File

@ -0,0 +1,50 @@
#ifndef Hadrons_MScalar_FreeProp_hpp_
#define Hadrons_MScalar_FreeProp_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* FreeProp *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MScalar)
class FreePropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FreePropPar,
std::string, source,
double, mass,
std::string, output);
};
class TFreeProp: public Module<FreePropPar>
{
public:
SCALAR_TYPE_ALIASES(SIMPL,);
public:
// constructor
TFreeProp(const std::string name);
// destructor
virtual ~TFreeProp(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
std::string freeMomPropName_;
};
MODULE_REGISTER_NS(FreeProp, TFreeProp, MScalar);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MScalar_FreeProp_hpp_

View File

@ -0,0 +1,6 @@
#ifndef Hadrons_Scalar_hpp_
#define Hadrons_Scalar_hpp_
#define FREEMOMPROP(m) "_scalar_mom_prop_" + std::to_string(m)
#endif // Hadrons_Scalar_hpp_

View File

@ -0,0 +1,114 @@
#ifndef Hadrons_MSink_Point_hpp_
#define Hadrons_MSink_Point_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Point *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSink)
class PointPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(PointPar,
std::string, mom);
};
template <typename FImpl>
class TPoint: public Module<PointPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SINK_TYPE_ALIASES();
public:
// constructor
TPoint(const std::string name);
// destructor
virtual ~TPoint(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(Point, TPoint<FIMPL>, MSink);
MODULE_REGISTER_NS(ScalarPoint, TPoint<ScalarImplCR>, MSink);
/******************************************************************************
* TPoint implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TPoint<FImpl>::TPoint(const std::string name)
: Module<PointPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TPoint<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TPoint<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPoint<FImpl>::setup(void)
{
unsigned int size;
size = env().template lattice4dSize<LatticeComplex>();
env().registerObject(getName(), size);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPoint<FImpl>::execute(void)
{
std::vector<Real> p = strToVec<Real>(par().mom);
LatticeComplex ph(env().getGrid()), coor(env().getGrid());
Complex i(0.0,1.0);
LOG(Message) << "Setting up point sink function for momentum ["
<< par().mom << "]" << std::endl;
ph = zero;
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + (p[mu]/env().getGrid()->_fdimensions[mu])*coor;
}
ph = exp((Real)(2*M_PI)*i*ph);
auto sink = [ph](const PropagatorField &field)
{
SlicedPropagator res;
PropagatorField tmp = ph*field;
sliceSum(tmp, res, Tp);
return res;
};
env().setObject(getName(), new SinkFn(sink));
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MSink_Point_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_RBPrecCG_hpp_
#define Hadrons_RBPrecCG_hpp_
#ifndef Hadrons_MSolver_RBPrecCG_hpp_
#define Hadrons_MSolver_RBPrecCG_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -53,7 +53,7 @@ template <typename FImpl>
class TRBPrecCG: public Module<RBPrecCGPar>
{
public:
TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TRBPrecCG(const std::string name);
@ -129,4 +129,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_RBPrecCG_hpp_
#endif // Hadrons_MSolver_RBPrecCG_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Point_hpp_
#define Hadrons_Point_hpp_
#ifndef Hadrons_MSource_Point_hpp_
#define Hadrons_MSource_Point_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -63,7 +63,7 @@ template <typename FImpl>
class TPoint: public Module<PointPar>
{
public:
TYPE_ALIASES(FImpl,);
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TPoint(const std::string name);
@ -78,7 +78,8 @@ public:
virtual void execute(void);
};
MODULE_REGISTER_NS(Point, TPoint<FIMPL>, MSource);
MODULE_REGISTER_NS(Point, TPoint<FIMPL>, MSource);
MODULE_REGISTER_NS(ScalarPoint, TPoint<ScalarImplCR>, MSource);
/******************************************************************************
* TPoint template implementation *
@ -132,4 +133,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Point_hpp_
#endif // Hadrons_MSource_Point_hpp_

View File

@ -28,8 +28,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_SeqGamma_hpp_
#define Hadrons_SeqGamma_hpp_
#ifndef Hadrons_MSource_SeqGamma_hpp_
#define Hadrons_MSource_SeqGamma_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -72,7 +72,7 @@ template <typename FImpl>
class TSeqGamma: public Module<SeqGammaPar>
{
public:
TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TSeqGamma(const std::string name);
@ -161,4 +161,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_SeqGamma_hpp_
#endif // Hadrons_MSource_SeqGamma_hpp_

View File

@ -26,8 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WallSource_hpp_
#define Hadrons_WallSource_hpp_
#ifndef Hadrons_MSource_WallSource_hpp_
#define Hadrons_MSource_WallSource_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -64,7 +64,7 @@ template <typename FImpl>
class TWall: public Module<WallPar>
{
public:
TYPE_ALIASES(FImpl,);
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TWall(const std::string name);
@ -144,4 +144,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WallSource_hpp_
#endif // Hadrons_MSource_WallSource_hpp_

View File

@ -27,8 +27,8 @@ See the full license in the file "LICENSE" in the top level distribution directo
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Z2_hpp_
#define Hadrons_Z2_hpp_
#ifndef Hadrons_MSource_Z2_hpp_
#define Hadrons_MSource_Z2_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -67,7 +67,7 @@ template <typename FImpl>
class TZ2: public Module<Z2Par>
{
public:
TYPE_ALIASES(FImpl,);
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TZ2(const std::string name);
@ -82,7 +82,8 @@ public:
virtual void execute(void);
};
MODULE_REGISTER_NS(Z2, TZ2<FIMPL>, MSource);
MODULE_REGISTER_NS(Z2, TZ2<FIMPL>, MSource);
MODULE_REGISTER_NS(ScalarZ2, TZ2<ScalarImplCR>, MSource);
/******************************************************************************
* TZ2 template implementation *
@ -148,4 +149,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Z2_hpp_
#endif // Hadrons_MSource_Z2_hpp_

View File

@ -1,5 +1,5 @@
#ifndef Hadrons____FILEBASENAME____hpp_
#define Hadrons____FILEBASENAME____hpp_
#ifndef Hadrons____NAMESPACE_______FILEBASENAME____hpp_
#define Hadrons____NAMESPACE_______FILEBASENAME____hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -41,4 +41,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons____FILEBASENAME____hpp_
#endif // Hadrons____NAMESPACE_______FILEBASENAME____hpp_

View File

@ -1,5 +1,5 @@
#ifndef Hadrons____FILEBASENAME____hpp_
#define Hadrons____FILEBASENAME____hpp_
#ifndef Hadrons____NAMESPACE_______FILEBASENAME____hpp_
#define Hadrons____NAMESPACE_______FILEBASENAME____hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -82,4 +82,4 @@ END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons____FILEBASENAME____hpp_
#endif // Hadrons____NAMESPACE_______FILEBASENAME____hpp_

View File

@ -4,7 +4,10 @@ modules_cc =\
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MGauge/Load.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/Unit.cc
Modules/MGauge/StochEm.cc \
Modules/MGauge/Unit.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MScalar/FreeProp.cc
modules_hpp =\
Modules/MAction/DWF.hpp \
@ -17,14 +20,19 @@ modules_hpp =\
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MGauge/Load.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/Unit.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MScalar/FreeProp.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MSink/Point.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MSource/Point.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/Z2.hpp \
Modules/Quark.hpp
Modules/MSource/Z2.hpp

11
extras/qed-fvol/Global.cc Normal file
View File

@ -0,0 +1,11 @@
#include <qed-fvol/Global.hpp>
using namespace Grid;
using namespace QCD;
using namespace QedFVol;
QedFVolLogger QedFVol::QedFVolLogError(1,"Error");
QedFVolLogger QedFVol::QedFVolLogWarning(1,"Warning");
QedFVolLogger QedFVol::QedFVolLogMessage(1,"Message");
QedFVolLogger QedFVol::QedFVolLogIterative(1,"Iterative");
QedFVolLogger QedFVol::QedFVolLogDebug(1,"Debug");

View File

@ -0,0 +1,42 @@
#ifndef QedFVol_Global_hpp_
#define QedFVol_Global_hpp_
#include <Grid/Grid.h>
#define BEGIN_QEDFVOL_NAMESPACE \
namespace Grid {\
using namespace QCD;\
namespace QedFVol {\
using Grid::operator<<;
#define END_QEDFVOL_NAMESPACE }}
/* the 'using Grid::operator<<;' statement prevents a very nasty compilation
* error with GCC (clang compiles fine without it).
*/
BEGIN_QEDFVOL_NAMESPACE
class QedFVolLogger: public Logger
{
public:
QedFVolLogger(int on, std::string nm): Logger("QedFVol", on, nm,
GridLogColours, "BLACK"){};
};
#define LOG(channel) std::cout << QedFVolLog##channel
#define QEDFVOL_ERROR(msg)\
LOG(Error) << msg << " (" << __FUNCTION__ << " at " << __FILE__ << ":"\
<< __LINE__ << ")" << std::endl;\
abort();
#define DEBUG_VAR(var) LOG(Debug) << #var << "= " << (var) << std::endl;
extern QedFVolLogger QedFVolLogError;
extern QedFVolLogger QedFVolLogWarning;
extern QedFVolLogger QedFVolLogMessage;
extern QedFVolLogger QedFVolLogIterative;
extern QedFVolLogger QedFVolLogDebug;
END_QEDFVOL_NAMESPACE
#endif // QedFVol_Global_hpp_

View File

@ -0,0 +1,9 @@
AM_CXXFLAGS += -I$(top_srcdir)/extras
bin_PROGRAMS = qed-fvol
qed_fvol_SOURCES = \
qed-fvol.cc \
Global.cc
qed_fvol_LDADD = -lGrid

View File

@ -0,0 +1,265 @@
#ifndef QEDFVOL_WILSONLOOPS_H
#define QEDFVOL_WILSONLOOPS_H
#include <Global.hpp>
BEGIN_QEDFVOL_NAMESPACE
template <class Gimpl> class NewWilsonLoops : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
//////////////////////////////////////////////////
// directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U,
const int mu, const int nu) {
// Annoyingly, must use either scope resolution to find dependent base
// class,
// or this-> ; there is no "this" in a static method. This forces explicit
// Gimpl scope
// resolution throughout the usage in this file, and rather defeats the
// purpose of deriving
// from Gimpl.
plaq = Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu])));
}
//////////////////////////////////////////////////
// trace of directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceDirPlaquette(LatticeComplex &plaq,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0]._grid);
dirPlaquette(sp, U, mu, nu);
plaq = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of plaquette
//////////////////////////////////////////////////
static void sitePlaquette(LatticeComplex &Plaq,
const std::vector<GaugeMat> &U) {
LatticeComplex sitePlaq(U[0]._grid);
Plaq = zero;
for (int mu = 1; mu < U[0]._grid->_ndimension; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static Real sumPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Plaq(Umu._grid);
sitePlaquette(Plaq, U);
TComplex Tp = sum(Plaq);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static Real avgPlaquette(const GaugeLorentz &Umu) {
int ndim = Umu._grid->_ndimension;
Real sumplaq = sumPlaquette(Umu);
Real vol = Umu._grid->gSites();
Real faces = (1.0 * ndim * (ndim - 1)) / 2.0;
return sumplaq / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// Wilson loop of size (R1, R2), oriented in mu,nu plane
//////////////////////////////////////////////////
static void wilsonLoop(GaugeMat &wl, const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
wl = U[nu];
for(int i = 0; i < Rnu-1; i++){
wl = Gimpl::CovShiftForward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftForward(U[mu], mu, wl);
}
for(int i = 0; i < Rnu; i++){
wl = Gimpl::CovShiftBackward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftBackward(U[mu], mu, wl);
}
}
//////////////////////////////////////////////////
// trace of Wilson Loop oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceWilsonLoop(LatticeComplex &wl,
const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
GaugeMat sp(U[0]._grid);
wilsonLoop(sp, U, Rmu, Rnu, mu, nu);
wl = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of Wilson loop
//////////////////////////////////////////////////
static void siteWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0]._grid);
Wl = zero;
for (int mu = 1; mu < U[0]._grid->_ndimension; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over planes of Wilson loop with length R1
// in the time direction
//////////////////////////////////////////////////
static void siteTimelikeWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0]._grid);
int ndim = U[0]._grid->_ndimension;
Wl = zero;
for (int nu = 0; nu < ndim - 1; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, ndim-1, nu);
Wl = Wl + siteWl;
}
}
//////////////////////////////////////////////////
// sum Wilson loop over all planes orthogonal to the time direction
//////////////////////////////////////////////////
static void siteSpatialWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0]._grid);
Wl = zero;
for (int mu = 1; mu < U[0]._grid->_ndimension - 1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real sumWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu._grid);
siteWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu._grid);
siteTimelikeWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu._grid);
for (int mu = 0; mu < Umu._grid->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu._grid);
siteSpatialWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real avgWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu._grid->_ndimension;
Real sumWl = sumWilsonLoop(Umu, R1, R2);
Real vol = Umu._grid->gSites();
Real faces = 1.0 * ndim * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real avgTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu._grid->_ndimension;
Real sumWl = sumTimelikeWilsonLoop(Umu, R1, R2);
Real vol = Umu._grid->gSites();
Real faces = 1.0 * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real avgSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu._grid->_ndimension;
Real sumWl = sumSpatialWilsonLoop(Umu, R1, R2);
Real vol = Umu._grid->gSites();
Real faces = 1.0 * (ndim - 1) * (ndim - 2);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
};
END_QEDFVOL_NAMESPACE
#endif // QEDFVOL_WILSONLOOPS_H

View File

@ -0,0 +1,88 @@
#include <Global.hpp>
#include <WilsonLoops.h>
using namespace Grid;
using namespace QCD;
using namespace QedFVol;
typedef PeriodicGaugeImpl<QedGimplR> QedPeriodicGimplR;
typedef PhotonR::GaugeField EmField;
typedef PhotonR::GaugeLinkField EmComp;
const int NCONFIGS = 10;
const int NWILSON = 10;
int main(int argc, char *argv[])
{
// parse command line
std::string parameterFileName;
if (argc < 2)
{
std::cerr << "usage: " << argv[0] << " <parameter file> [Grid options]";
std::cerr << std::endl;
std::exit(EXIT_FAILURE);
}
parameterFileName = argv[1];
// initialization
Grid_init(&argc, &argv);
QedFVolLogError.Active(GridLogError.isActive());
QedFVolLogWarning.Active(GridLogWarning.isActive());
QedFVolLogMessage.Active(GridLogMessage.isActive());
QedFVolLogIterative.Active(GridLogIterative.isActive());
QedFVolLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// QED stuff
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(4, vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&grid);
PhotonR photon(PhotonR::Gauge::feynman,
PhotonR::ZmScheme::qedL);
EmField a(&grid);
EmField expA(&grid);
Complex imag_unit(0, 1);
Real wlA;
std::vector<Real> logWlAvg(NWILSON, 0.0), logWlTime(NWILSON, 0.0), logWlSpace(NWILSON, 0.0);
pRNG.SeedRandomDevice();
LOG(Message) << "Wilson loop calculation beginning" << std::endl;
for(int ic = 0; ic < NCONFIGS; ic++){
LOG(Message) << "Configuration " << ic <<std::endl;
photon.StochasticField(a, pRNG);
// Exponentiate photon field
expA = exp(imag_unit*a);
// Calculate Wilson loops
for(int iw=1; iw<=NWILSON; iw++){
wlA = NewWilsonLoops<QedPeriodicGimplR>::avgWilsonLoop(expA, iw, iw) * 3;
logWlAvg[iw-1] -= 2*log(wlA);
wlA = NewWilsonLoops<QedPeriodicGimplR>::avgTimelikeWilsonLoop(expA, iw, iw) * 3;
logWlTime[iw-1] -= 2*log(wlA);
wlA = NewWilsonLoops<QedPeriodicGimplR>::avgSpatialWilsonLoop(expA, iw, iw) * 3;
logWlSpace[iw-1] -= 2*log(wlA);
}
}
LOG(Message) << "Wilson loop calculation completed" << std::endl;
// Calculate Wilson loops
for(int iw=1; iw<=10; iw++){
LOG(Message) << iw << 'x' << iw << " Wilson loop" << std::endl;
LOG(Message) << "-2log(W) average: " << logWlAvg[iw-1]/NCONFIGS << std::endl;
LOG(Message) << "-2log(W) timelike: " << logWlTime[iw-1]/NCONFIGS << std::endl;
LOG(Message) << "-2log(W) spatial: " << logWlSpace[iw-1]/NCONFIGS << std::endl;
}
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}

View File

@ -10,8 +10,8 @@ if BUILD_COMMS_MPI3
extra_sources+=communicator/Communicator_base.cc
endif
if BUILD_COMMS_MPI3L
extra_sources+=communicator/Communicator_mpi3_leader.cc
if BUILD_COMMS_MPIT
extra_sources+=communicator/Communicator_mpit.cc
extra_sources+=communicator/Communicator_base.cc
endif

View File

@ -199,7 +199,12 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
Linop.HermOp(X, AD);
tmp = B - AD;
//std::cout << GridLogMessage << " initial tmp " << norm2(tmp)<< std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
//std::cout << GridLogMessage << " initial Q " << norm2(Q)<< std::endl;
//std::cout << GridLogMessage << " m_rr " << m_rr<<std::endl;
//std::cout << GridLogMessage << " m_C " << m_C<<std::endl;
//std::cout << GridLogMessage << " m_Cinv " << m_Cinv<<std::endl;
D=Q;
std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
@ -221,13 +226,15 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
MatrixTimer.Start();
Linop.HermOp(D, Z);
MatrixTimer.Stop();
//std::cout << GridLogMessage << " norm2 Z " <<norm2(Z)<<std::endl;
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//std::cout << GridLogMessage << " m_DZ " <<m_DZ<<std::endl;
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();

View File

@ -11,7 +11,7 @@ int PointerCache::victim;
void *PointerCache::Insert(void *ptr,size_t bytes) {
if (bytes < 4096 ) return NULL;
if (bytes < 4096 ) return ptr;
#ifdef GRID_OMP
assert(omp_in_parallel()==0);

View File

@ -92,18 +92,34 @@ public:
size_type bytes = __n*sizeof(_Tp);
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,128);
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(128,bytes);
#endif
// if ( ptr != NULL )
// std::cout << "alignedAllocator "<<__n << " cache hit "<< std::hex << ptr <<std::dec <<std::endl;
//////////////////
// Hack 2MB align; could make option probably doesn't need configurability
//////////////////
//define GRID_ALLOC_ALIGN (128)
#define GRID_ALLOC_ALIGN (2*1024*1024)
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
#endif
// std::cout << "alignedAllocator " << std::hex << ptr <<std::dec <<std::endl;
// First touch optimise in threaded loop
uint8_t *cp = (uint8_t *)ptr;
#ifdef GRID_OMP
#pragma omp parallel for
#endif
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
return ptr;
}
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n * sizeof(_Tp);
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
#ifdef HAVE_MM_MALLOC_H
@ -182,10 +198,19 @@ public:
pointer allocate(size_type __n, const void* _p= 0)
{
#ifdef HAVE_MM_MALLOC_H
_Tp * ptr = (_Tp *) _mm_malloc(__n*sizeof(_Tp),128);
_Tp * ptr = (_Tp *) _mm_malloc(__n*sizeof(_Tp),GRID_ALLOC_ALIGN);
#else
_Tp * ptr = (_Tp *) memalign(128,__n*sizeof(_Tp));
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,__n*sizeof(_Tp));
#endif
size_type bytes = __n*sizeof(_Tp);
uint8_t *cp = (uint8_t *)ptr;
if ( ptr ) {
// One touch per 4k page, static OMP loop to catch same loop order
#pragma omp parallel for schedule(static)
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
}
return ptr;
}
void deallocate(pointer __p, size_type) {

View File

@ -185,17 +185,18 @@ public:
////////////////////////////////////////////////////////////////
void show_decomposition(){
std::cout << GridLogMessage << "Full Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "Global Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "Local Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "Reduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "Outer strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "Inner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "iSites : " << _isites << std::endl;
std::cout << GridLogMessage << "oSites : " << _osites << std::endl;
std::cout << GridLogMessage << "lSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "gSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "Nd : " << _ndimension << std::endl;
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
}
////////////////////////////////////////////////////////////////

View File

@ -62,77 +62,81 @@ public:
return shift;
}
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid
) : GridBase(processor_grid)
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
//FIXME check for exact division
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
// Use a reduced simd grid
_ldimensions[d]= _gdimensions[d]/_processors[d]; //local dimensions
_rdimensions[d]= _ldimensions[d]/_simd_layout[d]; //overdecomposition
_lstart[d] = _processor_coor[d]*_ldimensions[d];
_lend[d] = _processor_coor[d]*_ldimensions[d]+_ldimensions[d]-1;
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
_fsites = _gsites = _osites = _isites = 1;
for (int d = 0; d < _ndimension; d++)
{
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
// Use a reduced simd grid
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
_slice_stride[d] = _ostride[d] * _rdimensions[d];
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
};
};
}
#endif

View File

@ -131,21 +131,21 @@ public:
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,0);
}
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim)
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim)
{
///////////////////////
// Grid information
///////////////////////
///////////////////////
// Grid information
///////////////////////
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim]==1);
assert(checker_dim_mask[checker_dim] == 1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size()==_ndimension);
assert(processor_grid.size()==_ndimension);
assert(simd_layout.size()==_ndimension);
assert(checker_dim_mask.size() == _ndimension);
assert(processor_grid.size() == _ndimension);
assert(simd_layout.size() == _ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
@ -153,114 +153,133 @@ public:
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
_checker_dim_mask=checker_dim_mask;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
if (d==_checker_dim) {
_gdimensions[d] = _gdimensions[d]/2; // Remove a checkerboard
}
_ldimensions[d] = _gdimensions[d]/_processors[d];
_lstart[d] = _processor_coor[d]*_ldimensions[d];
_lend[d] = _processor_coor[d]*_ldimensions[d]+_ldimensions[d]-1;
_checker_dim_mask = checker_dim_mask;
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
assert(_rdimensions[d]>0);
for (int d = 0; d < _ndimension; d++)
{
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
if ( _simd_layout[d]>1 ) {
if ( checker_dim_mask[d] ) {
assert( (_rdimensions[d]&0x1) == 0 );
}
}
if (d == _checker_dim)
{
assert((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
}
_ldimensions[d] = _gdimensions[d] / _processors[d];
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
assert(_rdimensions[d] > 0);
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
if (_simd_layout[d] > 1)
{
if (checker_dim_mask[d])
{
assert((_rdimensions[d] & 0x1) == 0);
}
}
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
_slice_stride[d] = _ostride[d] * _rdimensions[d];
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
////////////////////////////////////////////////
// Create a checkerboard lookup table
////////////////////////////////////////////////
int rvol = 1;
for(int d=0;d<_ndimension;d++){
rvol=rvol * _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
rvol = rvol * _rdimensions[d];
}
_checker_board.resize(rvol);
for(int osite=0;osite<_osites;osite++){
_checker_board[osite] = CheckerBoardFromOindex (osite);
for (int osite = 0; osite < _osites; osite++)
{
_checker_board[osite] = CheckerBoardFromOindex(osite);
}
};
protected:
protected:
virtual int oIndex(std::vector<int> &coor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) {
if( d==_checker_dim ) {
idx+=_ostride[d]*((coor[d]/2)%_rdimensions[d]);
} else {
idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
}
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
}
else
{
idx += _ostride[d] * (coor[d] % _rdimensions[d]);
}
}
return idx;
};
virtual int iIndex(std::vector<int> &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) {
if( d==_checker_dim ) {
idx+=_istride[d]*(lcoor[d]/(2*_rdimensions[d]));
} else {
idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
}
}
return idx;
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
}
else
{
idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
}
}
return idx;
}
};
}
#endif

View File

@ -26,6 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/mman.h>
namespace Grid {
@ -33,8 +37,11 @@ namespace Grid {
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////
void * CartesianCommunicator::ShmCommBuf;
uint64_t CartesianCommunicator::MAX_MPI_SHM_BYTES = 128*1024*1024;
CartesianCommunicator::CommunicatorPolicy_t CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
uint64_t CartesianCommunicator::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
CartesianCommunicator::CommunicatorPolicy_t
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
int CartesianCommunicator::nCommThreads = -1;
int CartesianCommunicator::Hugepages = 0;
/////////////////////////////////
// Alloc, free shmem region
@ -89,25 +96,43 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
GlobalSumVector((double *)c,2*N);
}
#if !defined( GRID_COMMS_MPI3) && !defined (GRID_COMMS_MPI3L)
#if !defined( GRID_COMMS_MPI3)
int CartesianCommunicator::NodeCount(void) { return ProcessorCount();};
int CartesianCommunicator::RankCount(void) { return ProcessorCount();};
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes)
#endif
#if !defined( GRID_COMMS_MPI3) && !defined (GRID_COMMS_MPIT)
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes, int dir)
{
std::vector<CommsRequest_t> list;
// Discard the "dir"
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
SendToRecvFromComplete(list);
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes, int dir)
{
// Discard the "dir"
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
#endif
#if !defined( GRID_COMMS_MPI3)
void CartesianCommunicator::StencilBarrier(void){};
commVector<uint8_t> CartesianCommunicator::ShmBufStorageVector;
@ -121,8 +146,25 @@ void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
return NULL;
}
void CartesianCommunicator::ShmInitGeneric(void){
#if 1
int mmap_flag = MAP_SHARED | MAP_ANONYMOUS;
#ifdef MAP_HUGETLB
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
#endif
ShmCommBuf =(void *) mmap(NULL, MAX_MPI_SHM_BYTES, PROT_READ | PROT_WRITE, mmap_flag, -1, 0);
if (ShmCommBuf == (void *)MAP_FAILED) {
perror("mmap failed ");
exit(EXIT_FAILURE);
}
#ifdef MADV_HUGEPAGE
if (!Hugepages ) madvise(ShmCommBuf,MAX_MPI_SHM_BYTES,MADV_HUGEPAGE);
#endif
#else
ShmBufStorageVector.resize(MAX_MPI_SHM_BYTES);
ShmCommBuf=(void *)&ShmBufStorageVector[0];
#endif
bzero(ShmCommBuf,MAX_MPI_SHM_BYTES);
}
#endif

View File

@ -38,7 +38,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_COMMS_MPI3
#include <mpi.h>
#endif
#ifdef GRID_COMMS_MPI3L
#ifdef GRID_COMMS_MPIT
#include <mpi.h>
#endif
#ifdef GRID_COMMS_SHMEM
@ -50,12 +50,24 @@ namespace Grid {
class CartesianCommunicator {
public:
// 65536 ranks per node adequate for now
////////////////////////////////////////////
// Isend/Irecv/Wait, or Sendrecv blocking
////////////////////////////////////////////
enum CommunicatorPolicy_t { CommunicatorPolicyConcurrent, CommunicatorPolicySequential };
static CommunicatorPolicy_t CommunicatorPolicy;
static void SetCommunicatorPolicy(CommunicatorPolicy_t policy ) { CommunicatorPolicy = policy; }
///////////////////////////////////////////
// Up to 65536 ranks per node adequate for now
// 128MB shared memory for comms enought for 48^4 local vol comms
// Give external control (command line override?) of this
static const int MAXLOG2RANKSPERNODE = 16;
static uint64_t MAX_MPI_SHM_BYTES;
///////////////////////////////////////////
static const int MAXLOG2RANKSPERNODE = 16;
static uint64_t MAX_MPI_SHM_BYTES;
static int nCommThreads;
// use explicit huge pages
static int Hugepages;
// Communicator should know nothing of the physics grid, only processor grid.
int _Nprocessors; // How many in all
@ -64,14 +76,18 @@ class CartesianCommunicator {
std::vector<int> _processor_coor; // linear processor coordinate
unsigned long _ndimension;
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPI3L)
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
static MPI_Comm communicator_world;
MPI_Comm communicator;
MPI_Comm communicator;
std::vector<MPI_Comm> communicator_halo;
typedef MPI_Request CommsRequest_t;
#else
typedef int CommsRequest_t;
#endif
////////////////////////////////////////////////////////////////////
// Helper functionality for SHM Windows common to all other impls
////////////////////////////////////////////////////////////////////
@ -117,11 +133,7 @@ class CartesianCommunicator {
/////////////////////////////////
static void * ShmCommBuf;
// Isend/Irecv/Wait, or Sendrecv blocking
enum CommunicatorPolicy_t { CommunicatorPolicyConcurrent, CommunicatorPolicySequential };
static CommunicatorPolicy_t CommunicatorPolicy;
static void SetCommunicatorPolicy(CommunicatorPolicy_t policy ) { CommunicatorPolicy = policy; }
size_t heap_top;
size_t heap_bytes;
@ -211,14 +223,21 @@ class CartesianCommunicator {
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
void StencilBarrier(void);
////////////////////////////////////////////////////////////

View File

@ -37,11 +37,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
//#include <zlib.h>
#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#include <zlib.h>
#ifdef HAVE_NUMAIF_H
#include <numaif.h>
#endif
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -197,7 +198,46 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmCommBuf = 0;
ShmCommBufs.resize(ShmSize);
#if 1
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbf and others map filesystems as mappable huge pages
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_MPI3_SHMMMAP
char shm_name [NAME_MAX];
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",GroupRank,r);
//sprintf(shm_name,"/var/lib/hugetlbfs/group/wheel/pagesize-2MB/" "Grid_mpi3_shm_%d_%d",GroupRank,r);
// printf("Opening file %s \n",shm_name);
int fd=open(shm_name,O_RDWR|O_CREAT,0666);
if ( fd == -1) {
printf("open %s failed\n",shm_name);
perror("open hugetlbfs");
exit(0);
}
int mmap_flag = MAP_SHARED ;
#ifdef MAP_POPULATE
mmap_flag|=MAP_POPULATE;
#endif
#ifdef MAP_HUGETLB
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
#endif
void *ptr = (void *) mmap(NULL, MAX_MPI_SHM_BYTES, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
if ( ptr == (void *)MAP_FAILED ) {
printf("mmap %s failed\n",shm_name);
perror("failed mmap"); assert(0);
}
assert(((uint64_t)ptr&0x3F)==0);
ShmCommBufs[r] =ptr;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
// tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for
// the posix shm virtual file system
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_MPI3_SHMOPEN
char shm_name [NAME_MAX];
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
@ -210,11 +250,39 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
if ( fd < 0 ) { perror("failed shm_open"); assert(0); }
ftruncate(fd, size);
int mmap_flag = MAP_SHARED;
#ifdef MAP_POPULATE
mmap_flag |= MAP_POPULATE;
#endif
#ifdef MAP_HUGETLB
if (Hugepages) mmap_flag |= MAP_HUGETLB;
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
if ( ptr == (void * )MAP_FAILED ) { perror("failed mmap"); assert(0); }
assert(((uint64_t)ptr&0x3F)==0);
ShmCommBufs[r] =ptr;
// Experiments; Experiments; Try to force numa domain on the shm segment if we have numaif.h
#if 0
//#ifdef HAVE_NUMAIF_H
int status;
int flags=MPOL_MF_MOVE;
#ifdef KNL
int nodes=1; // numa domain == MCDRAM
// Find out if in SNC2,SNC4 mode ?
#else
int nodes=r; // numa domain == MPI ID
#endif
unsigned long count=1;
for(uint64_t page=0;page<size;page+=4096){
void *pages = (void *) ( page + (uint64_t)ptr );
uint64_t *cow_it = (uint64_t *)pages; *cow_it = 1;
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
if (ierr && (page==0)) perror("numa relocate command failed");
}
#endif
ShmCommBufs[r] =ptr;
}
}
@ -236,21 +304,32 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmCommBufs[r] =ptr;
}
}
#else
#endif
////////////////////////////////////////////////////////////////////////////////////////////
// SHMGET SHMAT and SHM_HUGETLB flag
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_MPI3_SHMGET
std::vector<int> shmids(ShmSize);
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
key_t key = 0x4545 + r;
if ((shmids[r]= shmget(key,size, SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
key_t key = IPC_PRIVATE;
int flags = IPC_CREAT | SHM_R | SHM_W;
#ifdef SHM_HUGETLB
if (Hugepages) flags|=SHM_HUGETLB;
#endif
if ((shmids[r]= shmget(key,size, flags)) ==-1) {
int errsv = errno;
printf("Errno %d\n",errsv);
printf("key %d\n",key);
printf("size %lld\n",size);
printf("flags %d\n",flags);
perror("shmget");
exit(1);
} else {
printf("shmid: 0x%x\n", shmids[r]);
}
printf("shmid: 0x%x\n", shmids[r]);
}
}
MPI_Barrier(ShmComm);
@ -375,8 +454,14 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
int ierr;
communicator=communicator_world;
_ndimension = processors.size();
communicator_halo.resize (2*_ndimension);
for(int i=0;i<_ndimension*2;i++){
MPI_Comm_dup(communicator,&communicator_halo[i]);
}
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
////////////////////////////////////////////////////////////////
@ -599,13 +684,27 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
}
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
assert(dir < communicator_halo.size());
MPI_Request xrq;
MPI_Request rrq;
@ -624,26 +723,26 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
gfrom = MPI_UNDEFINED;
#endif
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[dir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[dir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list);
this->StencilSendToRecvFromComplete(list,dir);
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}

View File

@ -0,0 +1,286 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/ActionCore.h>
#include <mpi.h>
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Comm CartesianCommunicator::communicator_world;
// Should error check all MPI calls.
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
int provided;
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
if ( provided != MPI_THREAD_MULTIPLE ) {
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute;
}
}
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();
std::vector<int> periodic(_ndimension,1);
_Nprocessors=1;
_processors = processors;
_processor_coor.resize(_ndimension);
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
communicator_halo.resize (2*_ndimension);
for(int i=0;i<_ndimension*2;i++){
MPI_Comm_dup(communicator,&communicator_halo[i]);
}
int Size;
MPI_Comm_size(communicator,&Size);
assert(Size==_Nprocessors);
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
assert(ierr==0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
int myrank = _processor;
int ierr;
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator);
assert(ierr==0);
}
///////////////////////////////////////////////////////
// Should only be used prior to Grid Init finished.
// Check for this?
///////////////////////////////////////////////////////
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator_world);
assert(ierr==0);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir)
{
int myrank = _processor;
int ierr;
assert(dir < communicator_halo.size());
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
// Give the CPU to MPI immediately; can use threads to overlap optionally
MPI_Request req[2];
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
list.push_back(req[0]);
list.push_back(req[1]);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
int nreq=waitall.size();
MPI_Waitall(nreq, &waitall[0], MPI_STATUSES_IGNORE);
};
double CartesianCommunicator::StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes,int dir)
{
int myrank = _processor;
int ierr;
assert(dir < communicator_halo.size());
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
// Give the CPU to MPI immediately; can use threads to overlap optionally
MPI_Request req[2];
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
return 2.0*bytes;
}
}

View File

@ -42,7 +42,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/cshift/Cshift_mpi.h>
#endif
#ifdef GRID_COMMS_MPI3L
#ifdef GRID_COMMS_MPIT
#include <Grid/cshift/Cshift_mpi.h>
#endif

View File

@ -369,6 +369,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
}
};
/*
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
@ -387,6 +388,7 @@ inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Or
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
*/
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
@ -398,14 +400,15 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
int nl = SliceGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -448,14 +451,14 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
int nl = SliceGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl=1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -498,18 +501,19 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
Lattice<vobj> Lslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
int nl = SliceGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -540,7 +544,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
vector_typeD rtmp = TensorRemove(tmp);
// vector_typeD rtmp = TensorRemove(tmp);
auto rtmp = TensorRemove(tmp);
mat_thread(i,j) += Reduce(rtmp);
}}
}}
@ -549,6 +554,14 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}

View File

@ -95,7 +95,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
////////////////////////////////////////////////////////////
void Grid_quiesce_nodes(void) {
int me = 0;
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPI3L)
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPIT)
MPI_Comm_rank(MPI_COMM_WORLD, &me);
#endif
#ifdef GRID_COMMS_SHMEM

View File

@ -29,7 +29,7 @@
#ifndef GRID_BINARY_IO_H
#define GRID_BINARY_IO_H
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3)
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPIT)
#define USE_MPI_IO
#else
#undef USE_MPI_IO
@ -98,35 +98,39 @@ class BinaryIO {
NerscChecksum(grid,scalardata,nersc_csum);
}
template<class fobj> static inline void NerscChecksum(GridBase *grid,std::vector<fobj> &fbuf,uint32_t &nersc_csum)
template <class fobj>
static inline void NerscChecksum(GridBase *grid, std::vector<fobj> &fbuf, uint32_t &nersc_csum)
{
const uint64_t size32 = sizeof(fobj)/sizeof(uint32_t);
const uint64_t size32 = sizeof(fobj) / sizeof(uint32_t);
uint64_t lsites =grid->lSites();
if (fbuf.size()==1) {
lsites=1;
uint64_t lsites = grid->lSites();
if (fbuf.size() == 1)
{
lsites = 1;
}
#pragma omp parallel
{
uint32_t nersc_csum_thr=0;
#pragma omp parallel
{
uint32_t nersc_csum_thr = 0;
#pragma omp for
for(uint64_t local_site=0;local_site<lsites;local_site++){
uint32_t * site_buf = (uint32_t *)&fbuf[local_site];
for(uint64_t j=0;j<size32;j++){
nersc_csum_thr=nersc_csum_thr+site_buf[j];
}
#pragma omp for
for (uint64_t local_site = 0; local_site < lsites; local_site++)
{
uint32_t *site_buf = (uint32_t *)&fbuf[local_site];
for (uint64_t j = 0; j < size32; j++)
{
nersc_csum_thr = nersc_csum_thr + site_buf[j];
}
}
#pragma omp critical
#pragma omp critical
{
nersc_csum += nersc_csum_thr;
nersc_csum += nersc_csum_thr;
}
}
}
template<class fobj> static inline void ScidacChecksum(GridBase *grid,std::vector<fobj> &fbuf,uint32_t &scidac_csuma,uint32_t &scidac_csumb)
{
const uint64_t size32 = sizeof(fobj)/sizeof(uint32_t);
@ -266,7 +270,7 @@ class BinaryIO {
grid->Barrier();
GridStopWatch timer;
GridStopWatch bstimer;
nersc_csum=0;
scidac_csuma=0;
scidac_csumb=0;
@ -362,18 +366,22 @@ class BinaryIO {
#else
assert(0);
#endif
} else {
std::cout<< GridLogMessage<< "C++ read I/O "<< file<<" : "
<< iodata.size()*sizeof(fobj)<<" bytes"<<std::endl;
std::ifstream fin;
fin.open(file,std::ios::binary|std::ios::in);
if ( control & BINARYIO_MASTER_APPEND ) {
fin.seekg(-sizeof(fobj),fin.end);
} else {
fin.seekg(offset+myrank*lsites*sizeof(fobj));
}
fin.read((char *)&iodata[0],iodata.size()*sizeof(fobj));assert( fin.fail()==0);
fin.close();
} else {
std::cout << GridLogMessage << "C++ read I/O " << file << " : "
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
std::ifstream fin;
fin.open(file, std::ios::binary | std::ios::in);
if (control & BINARYIO_MASTER_APPEND)
{
fin.seekg(-sizeof(fobj), fin.end);
}
else
{
fin.seekg(offset + myrank * lsites * sizeof(fobj));
}
fin.read((char *)&iodata[0], iodata.size() * sizeof(fobj));
assert(fin.fail() == 0);
fin.close();
}
timer.Stop();
@ -405,30 +413,78 @@ class BinaryIO {
timer.Start();
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
#ifdef USE_MPI_IO
std::cout<< GridLogMessage<< "MPI write I/O "<< file<< std::endl;
ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDWR|MPI_MODE_CREATE,MPI_INFO_NULL, &fh); assert(ierr==0);
ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); assert(ierr==0);
ierr=MPI_File_write_all(fh, &iodata[0], 1, localArray, &status); assert(ierr==0);
MPI_File_close(&fh);
MPI_Type_free(&fileArray);
MPI_Type_free(&localArray);
std::cout << GridLogMessage << "MPI write I/O " << file << std::endl;
ierr = MPI_File_open(grid->communicator, (char *)file.c_str(), MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
std::cout << GridLogMessage << "Checking for errors" << std::endl;
if (ierr != MPI_SUCCESS)
{
char error_string[BUFSIZ];
int length_of_error_string, error_class;
MPI_Error_class(ierr, &error_class);
MPI_Error_string(error_class, error_string, &length_of_error_string);
fprintf(stderr, "%3d: %s\n", myrank, error_string);
MPI_Error_string(ierr, error_string, &length_of_error_string);
fprintf(stderr, "%3d: %s\n", myrank, error_string);
MPI_Abort(MPI_COMM_WORLD, 1); //assert(ierr == 0);
}
std::cout << GridLogDebug << "MPI read I/O set view " << file << std::endl;
ierr = MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);
assert(ierr == 0);
std::cout << GridLogDebug << "MPI read I/O write all " << file << std::endl;
ierr = MPI_File_write_all(fh, &iodata[0], 1, localArray, &status);
assert(ierr == 0);
MPI_File_close(&fh);
MPI_Type_free(&fileArray);
MPI_Type_free(&localArray);
#else
assert(0);
#endif
} else {
std::ofstream fout; fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
std::cout<< GridLogMessage<< "C++ write I/O "<< file<<" : "
<< iodata.size()*sizeof(fobj)<<" bytes"<<std::endl;
if ( control & BINARYIO_MASTER_APPEND ) {
std::ofstream fout;
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
try {
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
} catch (const std::fstream::failure& exc) {
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
#ifdef USE_MPI_IO
MPI_Abort(MPI_COMM_WORLD,1);
#else
exit(1);
#endif
}
std::cout << GridLogMessage<< "C++ write I/O "<< file<<" : "
<< iodata.size()*sizeof(fobj)<<" bytes"<<std::endl;
if ( control & BINARYIO_MASTER_APPEND ) {
fout.seekp(0,fout.end);
} else {
fout.seekp(offset+myrank*lsites*sizeof(fobj));
}
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));assert( fout.fail()==0);
try {
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
}
catch (const std::fstream::failure& exc) {
std::cout << "Exception in writing file " << file << std::endl;
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
#ifdef USE_MPI_IO
MPI_Abort(MPI_COMM_WORLD,1);
#else
exit(1);
#endif
}
fout.close();
}
timer.Stop();
}
}
timer.Stop();
}
std::cout<<GridLogMessage<<"IOobject: ";
if ( control & BINARYIO_READ) std::cout << " read ";
@ -442,11 +498,14 @@ class BinaryIO {
//////////////////////////////////////////////////////////////////////////////
// Safety check
//////////////////////////////////////////////////////////////////////////////
grid->Barrier();
grid->GlobalSum(nersc_csum);
grid->GlobalXOR(scidac_csuma);
grid->GlobalXOR(scidac_csumb);
grid->Barrier();
// if the data size is 1 we do not want to sum over the MPI ranks
if (iodata.size() != 1){
grid->Barrier();
grid->GlobalSum(nersc_csum);
grid->GlobalXOR(scidac_csuma);
grid->GlobalXOR(scidac_csumb);
grid->Barrier();
}
}
/////////////////////////////////////////////////////////////////////////////
@ -546,9 +605,9 @@ class BinaryIO {
int gsites = grid->gSites();
int lsites = grid->lSites();
uint32_t nersc_csum_tmp;
uint32_t scidac_csuma_tmp;
uint32_t scidac_csumb_tmp;
uint32_t nersc_csum_tmp = 0;
uint32_t scidac_csuma_tmp = 0;
uint32_t scidac_csumb_tmp = 0;
GridStopWatch timer;

View File

@ -40,7 +40,7 @@ const PerformanceCounter::PerformanceCounterConfig PerformanceCounter::Performan
{ PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES , "CPUCYCLES.........." , INSTRUCTIONS},
{ PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS , "INSTRUCTIONS......." , CPUCYCLES },
// 4
#ifdef AVX512
#ifdef KNL
{ PERF_TYPE_RAW, RawConfig(0x40,0x04), "ALL_LOADS..........", CPUCYCLES },
{ PERF_TYPE_RAW, RawConfig(0x01,0x04), "L1_MISS_LOADS......", L1D_READ_ACCESS },
{ PERF_TYPE_RAW, RawConfig(0x40,0x04), "ALL_LOADS..........", L1D_READ_ACCESS },

View File

@ -414,7 +414,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
for(int i=0; i < Ls; i++){
as[i] = 1.0;
omega[i] = gamma[i]*zolo_hi; //NB reciprocal relative to Chroma NEF code
// assert(fabs(omega[i])>0.0);
assert(omega[i]!=Coeff_t(0.0));
bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc);
}
@ -429,7 +429,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
for(int i=0;i<Ls;i++){
bee[i]=as[i]*(bs[i]*(4.0-this->M5) +1.0);
// assert(fabs(bee[i])>0.0);
assert(bee[i]!=Coeff_t(0.0));
cee[i]=as[i]*(1.0-cs[i]*(4.0-this->M5));
beo[i]=as[i]*bs[i];
ceo[i]=-as[i]*cs[i];
@ -455,11 +455,17 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
dee[i] = bee[i];
if ( i < Ls-1 ) {
assert(bee[i]!=Coeff_t(0.0));
assert(bee[0]!=Coeff_t(0.0));
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) leem[i]*= aee[j]/bee[j+1];
for(int j=0;j<i;j++) {
assert(bee[j+1]!=Coeff_t(0.0));
leem[i]*= aee[j]/bee[j+1];
}
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
@ -478,7 +484,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
{
Coeff_t delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) {
// assert(fabs(bee[j])>0.0);
assert(bee[j] != Coeff_t(0.0));
delta_d *= cee[j]/bee[j];
}
dee[Ls-1] += delta_d;

View File

@ -237,4 +237,11 @@ typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplD> ImprovedStaggeredFermion
}}
////////////////////
// Scalar QED actions
// TODO: this needs to move to another header after rename to Fermion.h
////////////////////
#include <Grid/qcd/action/scalar/Scalar.h>
#include <Grid/qcd/action/gauge/Photon.h>
#endif

View File

@ -230,8 +230,15 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOr
{
Compressor compressor;
int LLs = in._grid->_rdimensions[0];
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
st.HaloExchange(in,compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
if (dag == DaggerYes) {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
@ -244,12 +251,15 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOr
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out);
}
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=1;
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
@ -261,6 +271,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=1;
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
@ -272,6 +283,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=2;
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);
@ -280,6 +292,54 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Report(void)
{
std::vector<int> latt = GridDefaultLatt();
RealD volume = Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _FourDimGrid->_Nprocessors;
RealD NN = _FourDimGrid->NodeCount();
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Number of DhopEO Calls : "
<< DhopCalls << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D TotalTime /Calls : "
<< DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D CommTime /Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
// Average the compute time
_FourDimGrid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void)
{
DhopCalls = 0;
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
/////////////////////////////////////////////////////////////////////////
// Implement the general interface. Here we use SAME mass on all slices

View File

@ -55,6 +55,16 @@ namespace QCD {
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////

View File

@ -238,7 +238,33 @@ template<typename HCS,typename HS,typename S> using WilsonCompressor = WilsonCom
template<class vobj,class cobj>
class WilsonStencil : public CartesianStencil<vobj,cobj> {
public:
double timer0;
double timer1;
double timer2;
double timer3;
double timer4;
double timer5;
double timer6;
uint64_t callsi;
void ZeroCountersi(void)
{
timer0=0;
timer1=0;
timer2=0;
timer3=0;
timer4=0;
timer5=0;
timer6=0;
callsi=0;
}
void Reporti(int calls)
{
if ( timer0 ) std::cout << GridLogMessage << " timer0 (HaloGatherOpt) " <<timer0/calls <<std::endl;
if ( timer1 ) std::cout << GridLogMessage << " timer1 (Communicate) " <<timer1/calls <<std::endl;
if ( timer2 ) std::cout << GridLogMessage << " timer2 (CommsMerge ) " <<timer2/calls <<std::endl;
if ( timer3 ) std::cout << GridLogMessage << " timer3 (commsMergeShm) " <<timer3/calls <<std::endl;
if ( timer4 ) std::cout << GridLogMessage << " timer4 " <<timer4 <<std::endl;
}
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
std::vector<int> same_node;
@ -252,6 +278,7 @@ public:
: CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances) ,
same_node(npoints)
{
ZeroCountersi();
surface_list.resize(0);
};
@ -261,7 +288,6 @@ public:
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
same_node[point] = this->SameNode(point);
// std::cout << " dir " <<point<<" same_node " <<same_node[point]<<std::endl;
}
for(int site = 0 ;site< vol4;site++){
@ -282,17 +308,28 @@ public:
{
std::vector<std::vector<CommsRequest_t> > reqs;
this->HaloExchangeOptGather(source,compress);
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
double t1=usecond();
// Asynchronous MPI calls multidirectional, Isend etc...
// this->CommunicateBegin(reqs);
// this->CommunicateComplete(reqs);
// Non-overlapped directions within a thread. Asynchronous calls except MPI3, threaded up to comm threads ways.
this->Communicate();
double t2=usecond(); timer1 += t2-t1;
this->CommsMerge(compress);
double t3=usecond(); timer2 += t3-t2;
this->CommsMergeSHM(compress);
double t4=usecond(); timer3 += t4-t3;
}
template <class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress)
{
this->Prepare();
double t0=usecond();
this->HaloGatherOpt(source,compress);
double t1=usecond();
timer0 += t1-t0;
callsi++;
}
template <class compressor>
@ -304,7 +341,9 @@ public:
typedef typename compressor::SiteHalfSpinor SiteHalfSpinor;
typedef typename compressor::SiteHalfCommSpinor SiteHalfCommSpinor;
this->mpi3synctime_g-=usecond();
this->_grid->StencilBarrier();
this->mpi3synctime_g+=usecond();
assert(source._grid==this->_grid);
this->halogtime-=usecond();
@ -323,7 +362,6 @@ public:
int dag = compress.dag;
int face_idx=0;
if ( dag ) {
// std::cout << " Optimised Dagger compress " <<std::endl;
assert(same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));

View File

@ -123,22 +123,24 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
int vol4;
vol4=FourDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol4);
vol4=FourDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
<<" " << StencilEven.surface_list.size()<<std::endl;
// std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
// <<" " << StencilEven.surface_list.size()<<std::endl;
}
template<class Impl>
void WilsonFermion5D<Impl>::Report(void)
{
std::vector<int> latt = GridDefaultLatt();
RealD volume = Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _FourDimGrid->_Nprocessors;
RealD NN = _FourDimGrid->NodeCount();
RealD NP = _FourDimGrid->_Nprocessors;
RealD NN = _FourDimGrid->NodeCount();
RealD volume = Ls;
std::vector<int> latt = _FourDimGrid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
@ -184,6 +186,11 @@ void WilsonFermion5D<Impl>::Report(void)
std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
}
if ( DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion5D Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion5D StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
}
}
template<class Impl>
@ -203,6 +210,9 @@ void WilsonFermion5D<Impl>::ZeroCounters(void) {
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
Stencil.ZeroCountersi();
StencilEven.ZeroCountersi();
StencilOdd.ZeroCountersi();
}
@ -379,7 +389,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
{
#ifdef GRID_OMP
// assert((dag==DaggerNo) ||(dag==DaggerYes));
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
Compressor compressor(dag);
@ -388,46 +397,70 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
DhopFaceTime-=usecond();
st.HaloExchangeOptGather(in,compressor);
DhopFaceTime+=usecond();
std::vector<std::vector<CommsRequest_t> > reqs;
// Rely on async comms; start comms before merge of local data
DhopCommTime-=usecond();
st.CommunicateBegin(reqs);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
DhopFaceTime+=usecond();
// Perhaps use omp task and region
#pragma omp parallel
double ctime=0;
double ptime=0;
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Ugly explicit thread mapping introduced for OPA reasons.
//////////////////////////////////////////////////////////////////////////////////////////////////////
#pragma omp parallel reduction(max:ctime) reduction(max:ptime)
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int me = omp_get_thread_num();
int myoff, mywork;
GridThread::GetWork(len,me-1,mywork,myoff,nthreads-1);
int sF = LLs * myoff;
if ( me == 0 ) {
st.CommunicateComplete(reqs);
DhopCommTime+=usecond();
} else {
// Interior links in stencil
if ( me==1 ) DhopComputeTime-=usecond();
if (dag == DaggerYes) Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,myoff,LLs,mywork,in,out,1,0);
else Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,myoff,LLs,mywork,in,out,1,0);
if ( me==1 ) DhopComputeTime+=usecond();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
double start = usecond();
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = U._grid->oSites();
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
if (dag == DaggerYes) {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
int sF = LLs * sU;
Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,1,0);
}
} else {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
int sF = LLs * sU;
Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,1,0);
}
}
ptime = usecond() - start;
}
{
double start = usecond();
st.CommunicateThreaded();
ctime = usecond() - start;
}
}
DhopCommTime += ctime;
DhopComputeTime+=ptime;
// First to enter, last to leave timing
st.CollateThreads();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
// Load imbalance alert. Should use dynamic schedule OMP for loop
// Perhaps create a list of only those sites with face work, and
// load balance process the list.
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
@ -448,11 +481,9 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
#else
assert(0);
#endif
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,

View File

@ -0,0 +1,286 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/Photon.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PHOTON_ACTION_H
#define QCD_PHOTON_ACTION_H
namespace Grid{
namespace QCD{
template <class S>
class QedGimpl
{
public:
typedef S Simd;
template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
template <typename vtype>
using iImplGaugeField = iVector<iScalar<iScalar<vtype>>, Nd>;
typedef iImplGaugeLink<Simd> SiteLink;
typedef iImplGaugeField<Simd> SiteField;
typedef SiteField SiteComplex;
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef Field ComplexField;
};
typedef QedGimpl<vComplex> QedGimplR;
template<class Gimpl>
class Photon
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2);
public:
Photon(Gauge gauge, ZmScheme zmScheme);
virtual ~Photon(void) = default;
void FreePropagator(const GaugeField &in, GaugeField &out);
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
void StochasticWeight(GaugeLinkField &weight);
void StochasticField(GaugeField &out, GridParallelRNG &rng);
void StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight);
private:
void invKHatSquared(GaugeLinkField &out);
void zmSub(GaugeLinkField &out);
private:
Gauge gauge_;
ZmScheme zmScheme_;
};
typedef Photon<QedGimplR> PhotonR;
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme)
: gauge_(gauge), zmScheme_(zmScheme)
{}
template<class Gimpl>
void Photon<Gimpl>::FreePropagator (const GaugeField &in,GaugeField &out)
{
FFT theFFT(in._grid);
GaugeField in_k(in._grid);
GaugeField prop_k(in._grid);
theFFT.FFT_all_dim(in_k,in,FFT::forward);
MomentumSpacePropagator(prop_k,in_k);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
template<class Gimpl>
void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out)
{
GridBase *grid = out._grid;
GaugeLinkField kmu(grid), one(grid);
const unsigned int nd = grid->_ndimension;
std::vector<int> &l = grid->_fdimensions;
std::vector<int> zm(nd,0);
TComplex Tone = Complex(1.0,0.0);
TComplex Tzero= Complex(0.0,0.0);
one = Complex(1.0,0.0);
out = zero;
for(int mu = 0; mu < nd; mu++)
{
Real twoPiL = M_PI*2./l[mu];
LatticeCoordinate(kmu,mu);
kmu = 2.*sin(.5*twoPiL*kmu);
out = out + kmu*kmu;
}
pokeSite(Tone, out, zm);
out = one/out;
pokeSite(Tzero, out, zm);
}
template<class Gimpl>
void Photon<Gimpl>::zmSub(GaugeLinkField &out)
{
GridBase *grid = out._grid;
const unsigned int nd = grid->_ndimension;
switch (zmScheme_)
{
case ZmScheme::qedTL:
{
std::vector<int> zm(nd,0);
TComplex Tzero = Complex(0.0,0.0);
pokeSite(Tzero, out, zm);
break;
}
case ZmScheme::qedL:
{
LatticeInteger spNrm(grid), coor(grid);
GaugeLinkField z(grid);
spNrm = zero;
for(int d = 0; d < grid->_ndimension - 1; d++)
{
LatticeCoordinate(coor,d);
spNrm = spNrm + coor*coor;
}
out = where(spNrm == Integer(0), 0.*out, out);
break;
}
default:
break;
}
}
template<class Gimpl>
void Photon<Gimpl>::MomentumSpacePropagator(const GaugeField &in,
GaugeField &out)
{
GridBase *grid = out._grid;
LatticeComplex k2Inv(grid);
invKHatSquared(k2Inv);
zmSub(k2Inv);
out = in*k2Inv;
}
template<class Gimpl>
void Photon<Gimpl>::StochasticWeight(GaugeLinkField &weight)
{
auto *grid = dynamic_cast<GridCartesian *>(weight._grid);
const unsigned int nd = grid->_ndimension;
std::vector<int> latt_size = grid->_fdimensions;
Integer vol = 1;
for(int d = 0; d < nd; d++)
{
vol = vol * latt_size[d];
}
invKHatSquared(weight);
weight = sqrt(vol*real(weight));
zmSub(weight);
}
template<class Gimpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
{
auto *grid = dynamic_cast<GridCartesian *>(out._grid);
GaugeLinkField weight(grid);
StochasticWeight(weight);
StochasticField(out, rng, weight);
}
template<class Gimpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight)
{
auto *grid = dynamic_cast<GridCartesian *>(out._grid);
const unsigned int nd = grid->_ndimension;
GaugeLinkField r(grid);
GaugeField aTilde(grid);
FFT fft(grid);
for(int mu = 0; mu < nd; mu++)
{
gaussian(rng, r);
r = weight*r;
pokeLorentz(aTilde, r, mu);
}
fft.FFT_all_dim(out, aTilde, FFT::backward);
out = real(out);
}
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out,
// const GaugeField &in)
// {
//
// FeynmanGaugeMomentumSpacePropagator_TL(out,in);
//
// GridBase *grid = out._grid;
// LatticeInteger coor(grid);
// GaugeField zz(grid); zz=zero;
//
// // xyzt
// for(int d = 0; d < grid->_ndimension-1;d++){
// LatticeCoordinate(coor,d);
// out = where(coor==Integer(0),zz,out);
// }
// }
//
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out,
// const GaugeField &in)
// {
//
// // what type LatticeComplex
// GridBase *grid = out._grid;
// int nd = grid->_ndimension;
//
// typedef typename GaugeField::vector_type vector_type;
// typedef typename GaugeField::scalar_type ScalComplex;
// typedef Lattice<iSinglet<vector_type> > LatComplex;
//
// std::vector<int> latt_size = grid->_fdimensions;
//
// LatComplex denom(grid); denom= zero;
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
// LatComplex kmu(grid);
//
// ScalComplex ci(0.0,1.0);
// // momphase = n * 2pi / L
// for(int mu=0;mu<Nd;mu++) {
//
// LatticeCoordinate(kmu,mu);
//
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
//
// kmu = TwoPiL * kmu ;
//
// denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
// }
// std::vector<int> zero_mode(nd,0);
// TComplexD Tone = ComplexD(1.0,0.0);
// TComplexD Tzero= ComplexD(0.0,0.0);
//
// pokeSite(Tone,denom,zero_mode);
//
// denom= one/denom;
//
// pokeSite(Tzero,denom,zero_mode);
//
// out = zero;
// out = in*denom;
// };
}}
#endif

View File

@ -31,6 +31,7 @@ directory
#include <Grid/qcd/action/scalar/ScalarImpl.h>
#include <Grid/qcd/action/scalar/ScalarAction.h>
#include <Grid/qcd/action/scalar/ScalarInteractionAction.h>
namespace Grid {
namespace QCD {
@ -39,6 +40,10 @@ namespace QCD {
typedef ScalarAction<ScalarImplF> ScalarActionF;
typedef ScalarAction<ScalarImplD> ScalarActionD;
template <int Colours, int Dimensions> using ScalarAdjActionR = ScalarInteractionAction<ScalarNxNAdjImplR<Colours>, Dimensions>;
template <int Colours, int Dimensions> using ScalarAdjActionF = ScalarInteractionAction<ScalarNxNAdjImplF<Colours>, Dimensions>;
template <int Colours, int Dimensions> using ScalarAdjActionD = ScalarInteractionAction<ScalarNxNAdjImplD<Colours>, Dimensions>;
}
}

View File

@ -6,10 +6,10 @@
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -35,50 +35,49 @@ directory
namespace Grid {
// FIXME drop the QCD namespace everywhere here
template <class Impl>
class ScalarAction : public QCD::Action<typename Impl::Field> {
public:
template <class Impl>
class ScalarAction : public QCD::Action<typename Impl::Field> {
public:
INHERIT_FIELD_TYPES(Impl);
private:
private:
RealD mass_square;
RealD lambda;
public:
ScalarAction(RealD ms, RealD l) : mass_square(ms), lambda(l){};
virtual std::string LogParameters(){
public:
ScalarAction(RealD ms, RealD l) : mass_square(ms), lambda(l) {}
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
return sstream.str();
}
virtual std::string action_name(){return "ScalarAction";}
virtual void refresh(const Field &U,
GridParallelRNG &pRNG){}; // noop as no pseudoferms
virtual std::string action_name() {return "ScalarAction";}
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {} // noop as no pseudoferms
virtual RealD S(const Field &p) {
return (mass_square * 0.5 + QCD::Nd) * ScalarObs<Impl>::sumphisquared(p) +
(lambda / 24.) * ScalarObs<Impl>::sumphifourth(p) +
ScalarObs<Impl>::sumphider(p);
(lambda / 24.) * ScalarObs<Impl>::sumphifourth(p) +
ScalarObs<Impl>::sumphider(p);
};
virtual void deriv(const Field &p,
Field &force) {
Field &force) {
Field tmp(p._grid);
Field p2(p._grid);
ScalarObs<Impl>::phisquared(p2, p);
tmp = -(Cshift(p, 0, -1) + Cshift(p, 0, 1));
for (int mu = 1; mu < QCD::Nd; mu++) tmp -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
force=+(mass_square + 2. * QCD::Nd) * p + (lambda / 6.) * p2 * p + tmp;
};
};
} // Grid
force =+(mass_square + 2. * QCD::Nd) * p + (lambda / 6.) * p2 * p + tmp;
}
};
} // namespace Grid
#endif // SCALAR_ACTION_H

View File

@ -5,99 +5,158 @@
namespace Grid {
//namespace QCD {
template <class S>
class ScalarImplTypes {
public:
template <class S>
class ScalarImplTypes {
public:
typedef S Simd;
template <typename vtype>
using iImplField = iScalar<iScalar<iScalar<vtype> > >;
typedef iImplField<Simd> SiteField;
template <typename vtype> using iImplScalar= iScalar<iScalar<iScalar<vtype > > >;
typedef iImplScalar<Simd> ComplexField;
typedef SiteField SitePropagator;
typedef SiteField SiteComplex;
typedef Lattice<SiteField> Field;
typedef Field ComplexField;
typedef Field FermionField;
typedef Field PropagatorField;
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG){
gaussian(pRNG, P);
}
static inline Field projectForce(Field& P){return P;}
static inline void update_field(Field& P, Field& U, double ep){
static inline void update_field(Field& P, Field& U, double ep) {
U += P*ep;
}
static inline RealD FieldSquareNorm(Field& U){
static inline RealD FieldSquareNorm(Field& U) {
return (- sum(trace(U*U))/2.0);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
gaussian(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
gaussian(pRNG, U);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = 1.0;
}
static void MomentumSpacePropagator(Field &out, RealD m)
{
GridBase *grid = out._grid;
Field kmu(grid), one(grid);
const unsigned int nd = grid->_ndimension;
std::vector<int> &l = grid->_fdimensions;
one = Complex(1.0,0.0);
out = m*m;
for(int mu = 0; mu < nd; mu++)
{
Real twoPiL = M_PI*2./l[mu];
LatticeCoordinate(kmu,mu);
kmu = 2.*sin(.5*twoPiL*kmu);
out = out + kmu*kmu;
}
out = one/out;
}
static void FreePropagator(const Field &in, Field &out,
const Field &momKernel)
{
FFT fft((GridCartesian *)in._grid);
Field inFT(in._grid);
fft.FFT_all_dim(inFT, in, FFT::forward);
inFT = inFT*momKernel;
fft.FFT_all_dim(out, inFT, FFT::backward);
}
static void FreePropagator(const Field &in, Field &out, RealD m)
{
Field momKernel(in._grid);
MomentumSpacePropagator(momKernel, m);
FreePropagator(in, out, momKernel);
}
};
template <class S, unsigned int N>
class ScalarMatrixImplTypes {
class ScalarAdjMatrixImplTypes {
public:
typedef S Simd;
typedef QCD::SU<N> Group;
template <typename vtype> using iImplField = iScalar<iScalar<iMatrix<vtype, N> > >;
template <typename vtype>
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
template <typename vtype>
using iImplComplex = iScalar<iScalar<iScalar<vtype>>>;
typedef iImplField<Simd> SiteField;
typedef Lattice<SiteField> Field;
typedef iImplField<Simd> SiteField;
typedef SiteField SitePropagator;
typedef iImplComplex<Simd> SiteComplex;
typedef Lattice<SiteField> Field;
typedef Lattice<SiteComplex> ComplexField;
typedef Field FermionField;
typedef Field PropagatorField;
template <typename vtype> using iImplScalar= iScalar<iScalar<iScalar<vtype > > >;
typedef iImplScalar<Simd> ComplexField;
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG){
gaussian(pRNG, P);
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
}
static inline Field projectForce(Field& P){return P;}
static inline void update_field(Field& P, Field& U, double ep){
static inline Field projectForce(Field& P) {return P;}
static inline void update_field(Field& P, Field& U, double ep) {
U += P*ep;
}
static inline RealD FieldSquareNorm(Field& U){
return (TensorRemove(- sum(trace(U*U))*0.5).real());
static inline RealD FieldSquareNorm(Field& U) {
return (TensorRemove(sum(trace(U*U))).real());
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
gaussian(pRNG, U);
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
gaussian(pRNG, U);
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U, 0.01);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = 1.0;
U = zero;
}
};
typedef ScalarImplTypes<vReal> ScalarImplR;
typedef ScalarImplTypes<vRealF> ScalarImplF;
typedef ScalarImplTypes<vRealD> ScalarImplD;
typedef ScalarImplTypes<vComplex> ScalarImplCR;
typedef ScalarImplTypes<vComplexF> ScalarImplCF;
typedef ScalarImplTypes<vComplexD> ScalarImplCD;
// Hardcoding here the size of the matrices
typedef ScalarAdjMatrixImplTypes<vComplex, QCD::Nc> ScalarAdjImplR;
typedef ScalarAdjMatrixImplTypes<vComplexF, QCD::Nc> ScalarAdjImplF;
typedef ScalarAdjMatrixImplTypes<vComplexD, QCD::Nc> ScalarAdjImplD;
template <int Colours > using ScalarNxNAdjImplR = ScalarAdjMatrixImplTypes<vComplex, Colours >;
template <int Colours > using ScalarNxNAdjImplF = ScalarAdjMatrixImplTypes<vComplexF, Colours >;
template <int Colours > using ScalarNxNAdjImplD = ScalarAdjMatrixImplTypes<vComplexD, Colours >;
//}
}
//}
}
#endif

View File

@ -6,10 +6,7 @@
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido,cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,55 +27,122 @@ directory
*************************************************************************************/
/* END LEGAL */
#ifndef SCALAR_ACTION_H
#define SCALAR_ACTION_H
#ifndef SCALAR_INT_ACTION_H
#define SCALAR_INT_ACTION_H
// Note: this action can completely absorb the ScalarAction for real float fields
// use the scalarObjs to generalise the structure
namespace Grid {
// FIXME drop the QCD namespace everywhere here
template <class Impl>
template <class Impl, int Ndim >
class ScalarInteractionAction : public QCD::Action<typename Impl::Field> {
public:
INHERIT_FIELD_TYPES(Impl);
private:
RealD mass_square;
RealD lambda;
public:
ScalarAction(RealD ms, RealD l) : mass_square(ms), lambda(l){};
virtual std::string LogParameters(){
typedef typename Field::vector_object vobj;
typedef CartesianStencil<vobj,vobj> Stencil;
SimpleCompressor<vobj> compressor;
int npoint = 2*Ndim;
std::vector<int> directions;// = {0,1,2,3,0,1,2,3}; // forcing 4 dimensions
std::vector<int> displacements;// = {1,1,1,1, -1,-1,-1,-1};
public:
ScalarInteractionAction(RealD ms, RealD l) : mass_square(ms), lambda(l), displacements(2*Ndim,0), directions(2*Ndim,0){
for (int mu = 0 ; mu < Ndim; mu++){
directions[mu] = mu; directions[mu+Ndim] = mu;
displacements[mu] = 1; displacements[mu+Ndim] = -1;
}
}
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
return sstream.str();
}
virtual std::string action_name(){return "ScalarAction";}
virtual void refresh(const Field &U,
GridParallelRNG &pRNG){}; // noop as no pseudoferms
virtual std::string action_name() {return "ScalarAction";}
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {}
virtual RealD S(const Field &p) {
return (mass_square * 0.5 + QCD::Nd) * ScalarObs<Impl>::sumphisquared(p) +
(lambda / 24.) * ScalarObs<Impl>::sumphifourth(p) +
ScalarObs<Impl>::sumphider(p);
assert(p._grid->Nd() == Ndim);
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor);
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
phisquared = p*p;
action = (2.0*Ndim + mass_square)*phisquared - lambda/24.*phisquared*phisquared;
for (int mu = 0; mu < Ndim; mu++) {
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
int permute_type;
StencilEntry *SE;
vobj temp2;
const vobj *temp, *t_p;
SE = phiStencil.GetEntry(permute_type, mu, i);
t_p = &p._odata[i];
if ( SE->_is_local ) {
temp = &p._odata[SE->_offset];
if ( SE->_permute ) {
permute(temp2, *temp, permute_type);
action._odata[i] -= temp2*(*t_p) + (*t_p)*temp2;
} else {
action._odata[i] -= (*temp)*(*t_p) + (*t_p)*(*temp);
}
} else {
action._odata[i] -= phiStencil.CommBuf()[SE->_offset]*(*t_p) + (*t_p)*phiStencil.CommBuf()[SE->_offset];
}
}
// action -= pshift*p + p*pshift;
}
// NB the trace in the algebra is normalised to 1/2
// minus sign coming from the antihermitian fields
return -(TensorRemove(sum(trace(action)))).real();
};
virtual void deriv(const Field &p,
Field &force) {
Field tmp(p._grid);
Field p2(p._grid);
ScalarObs<Impl>::phisquared(p2, p);
tmp = -(Cshift(p, 0, -1) + Cshift(p, 0, 1));
for (int mu = 1; mu < QCD::Nd; mu++) tmp -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
virtual void deriv(const Field &p, Field &force) {
assert(p._grid->Nd() == Ndim);
force = (2.0*Ndim + mass_square)*p - lambda/12.*p*p*p;
// move this outside
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor);
force=+(mass_square + 2. * QCD::Nd) * p + (lambda / 6.) * p2 * p + tmp;
};
//for (int mu = 0; mu < QCD::Nd; mu++) force -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
for (int point = 0; point < npoint; point++) {
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
const vobj *temp;
vobj temp2;
int permute_type;
StencilEntry *SE;
SE = phiStencil.GetEntry(permute_type, point, i);
if ( SE->_is_local ) {
temp = &p._odata[SE->_offset];
if ( SE->_permute ) {
permute(temp2, *temp, permute_type);
force._odata[i] -= temp2;
} else {
force._odata[i] -= *temp;
}
} else {
force._odata[i] -= phiStencil.CommBuf()[SE->_offset];
}
}
}
}
};
} // Grid
} // namespace Grid
#endif // SCALAR_ACTION_H
#endif // SCALAR_INT_ACTION_H

View File

@ -207,6 +207,12 @@ using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator,
typedef HMCWrapperTemplate<ScalarImplR, MinimumNorm2, ScalarFields>
ScalarGenericHMCRunner;
typedef HMCWrapperTemplate<ScalarAdjImplR, MinimumNorm2, ScalarMatrixFields>
ScalarAdjGenericHMCRunner;
template <int Colours>
using ScalarNxNAdjGenericHMCRunner = HMCWrapperTemplate < ScalarNxNAdjImplR<Colours>, MinimumNorm2, ScalarNxNMatrixFields<Colours> >;
} // namespace QCD
} // namespace Grid

View File

@ -76,7 +76,7 @@ struct HMCparameters: Serializable {
template < class ReaderClass >
void initialize(Reader<ReaderClass> &TheReader){
std::cout << "Reading HMC\n";
std::cout << GridLogMessage << "Reading HMC\n";
read(TheReader, "HMC", *this);
}

View File

@ -165,7 +165,7 @@ class HMCResourceManager {
// Grids
//////////////////////////////////////////////////////////////
void AddGrid(std::string s, GridModule& M) {
void AddGrid(const std::string s, GridModule& M) {
// Check for name clashes
auto search = Grids.find(s);
if (search != Grids.end()) {
@ -174,14 +174,24 @@ class HMCResourceManager {
exit(1);
}
Grids[s] = std::move(M);
std::cout << GridLogMessage << "::::::::::::::::::::::::::::::::::::::::" <<std::endl;
std::cout << GridLogMessage << "HMCResourceManager:" << std::endl;
std::cout << GridLogMessage << "Created grid set with name '" << s << "' and decomposition for the full cartesian " << std::endl;
Grids[s].show_full_decomposition();
std::cout << GridLogMessage << "::::::::::::::::::::::::::::::::::::::::" <<std::endl;
}
// Add a named grid set, 4d shortcut
void AddFourDimGrid(std::string s) {
void AddFourDimGrid(const std::string s) {
GridFourDimModule<vComplex> Mod;
AddGrid(s, Mod);
}
// Add a named grid set, 4d shortcut + tweak simd lanes
void AddFourDimGrid(const std::string s, const std::vector<int> simd_decomposition) {
GridFourDimModule<vComplex> Mod(simd_decomposition);
AddGrid(s, Mod);
}
GridCartesian* GetCartesian(std::string s = "") {
@ -253,6 +263,7 @@ class HMCResourceManager {
template<class T, class... Types>
void AddObservable(Types&&... Args){
ObservablesList.push_back(std::unique_ptr<T>(new T(std::forward<Types>(Args)...)));
ObservablesList.back()->print_parameters();
}
std::vector<HmcObservable<typename ImplementationPolicy::Field>* > GetObservables(){
@ -297,4 +308,4 @@ private:
}
}
#endif // HMC_RESOURCE_MANAGER_H
#endif // HMC_RESOURCE_MANAGER_H

View File

@ -33,28 +33,29 @@ directory
namespace Grid {
// Resources
// Modules for grids
// Modules for grids
// Introduce another namespace HMCModules?
class GridModuleParameters: Serializable{
class GridModuleParameters: Serializable{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GridModuleParameters,
std::string, lattice,
std::string, mpi);
std::vector<int> getLattice(){return strToVec<int>(lattice);}
std::vector<int> getMpi() {return strToVec<int>(mpi);}
std::vector<int> getLattice() const {return strToVec<int>(lattice);}
std::vector<int> getMpi() const {return strToVec<int>(mpi);}
void check(){
if (getLattice().size() != getMpi().size()) {
std::cout << GridLogError
void check() const {
if (getLattice().size() != getMpi().size() ) {
std::cout << GridLogError
<< "Error in GridModuleParameters: lattice and mpi dimensions "
"do not match"
<< std::endl;
exit(1);
}
}
}
template <class ReaderClass>
GridModuleParameters(Reader<ReaderClass>& Reader, std::string n = "LatticeGrid"):name(n) {
@ -75,51 +76,94 @@ private:
// Lower level class
class GridModule {
public:
GridCartesian* get_full() {
GridCartesian* get_full() {
std::cout << GridLogDebug << "Getting cartesian in module"<< std::endl;
return grid_.get(); }
GridRedBlackCartesian* get_rb() {
GridRedBlackCartesian* get_rb() {
std::cout << GridLogDebug << "Getting rb-cartesian in module"<< std::endl;
return rbgrid_.get(); }
void set_full(GridCartesian* grid) { grid_.reset(grid); }
void set_rb(GridRedBlackCartesian* rbgrid) { rbgrid_.reset(rbgrid); }
void show_full_decomposition(){ grid_->show_decomposition(); }
void show_rb_decomposition(){ rbgrid_->show_decomposition(); }
protected:
std::unique_ptr<GridCartesian> grid_;
std::unique_ptr<GridRedBlackCartesian> rbgrid_;
};
////////////////////////////////////
// Classes for the user
////////////////////////////////////
// Note: the space time grid should be out of the QCD namespace
template< class vector_type>
class GridFourDimModule : public GridModule {
public:
GridFourDimModule() {
template <class vector_type>
class GridFourDimModule : public GridModule
{
public:
GridFourDimModule()
{
using namespace QCD;
set_full(SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(4, vector_type::Nsimd()),
GridDefaultLatt(),
GridDefaultSimd(4, vector_type::Nsimd()),
GridDefaultMpi()));
set_rb(SpaceTimeGrid::makeFourDimRedBlackGrid(grid_.get()));
}
GridFourDimModule(GridModuleParameters Params) {
GridFourDimModule(const std::vector<int> tweak_simd)
{
using namespace QCD;
if (tweak_simd.size() != 4)
{
std::cout << GridLogError
<< "Error in GridFourDimModule: SIMD size different from 4"
<< std::endl;
exit(1);
}
// Checks that the product agrees with the expectation
int simd_sum = 1;
for (auto &n : tweak_simd)
simd_sum *= n;
std::cout << GridLogDebug << "TweakSIMD: " << tweak_simd << " Sum: " << simd_sum << std::endl;
if (simd_sum == vector_type::Nsimd())
{
set_full(SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(),
tweak_simd,
GridDefaultMpi()));
set_rb(SpaceTimeGrid::makeFourDimRedBlackGrid(grid_.get()));
}
else
{
std::cout << GridLogError
<< "Error in GridFourDimModule: SIMD lanes must sum to "
<< vector_type::Nsimd()
<< std::endl;
}
}
GridFourDimModule(const GridModuleParameters Params)
{
using namespace QCD;
Params.check();
std::vector<int> lattice_v = Params.getLattice();
std::vector<int> mpi_v = Params.getMpi();
if (lattice_v.size() == 4) {
if (lattice_v.size() == 4)
{
set_full(SpaceTimeGrid::makeFourDimGrid(
lattice_v, GridDefaultSimd(4, vector_type::Nsimd()),
lattice_v,
GridDefaultSimd(4, vector_type::Nsimd()),
mpi_v));
set_rb(SpaceTimeGrid::makeFourDimRedBlackGrid(grid_.get()));
} else {
std::cout << GridLogError
<< "Error in GridFourDimModule: lattice dimension different from 4"
<< std::endl;
}
else
{
std::cout << GridLogError
<< "Error in GridFourDimModule: lattice dimension different from 4"
<< std::endl;
exit(1);
}
}

View File

@ -84,8 +84,6 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
typedef ObservableModule<PlaquetteLogger<Impl>, NoParameters> ObsBase;
using ObsBase::ObsBase; // for constructors
// acquire resource
virtual void initialize(){
this->ObservablePtr.reset(new PlaquetteLogger<Impl>());
@ -94,23 +92,22 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
PlaquetteMod(): ObsBase(NoParameters()){}
};
template < class Impl >
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, NoParameters>{
typedef ObservableModule<TopologicalCharge<Impl>, NoParameters> ObsBase;
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters>{
typedef ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters> ObsBase;
using ObsBase::ObsBase; // for constructors
// acquire resource
virtual void initialize(){
this->ObservablePtr.reset(new TopologicalCharge<Impl>());
this->ObservablePtr.reset(new TopologicalCharge<Impl>(this->Par_));
}
public:
TopologicalChargeMod(): ObsBase(NoParameters()){}
TopologicalChargeMod(TopologyObsParameters Par): ObsBase(Par){}
TopologicalChargeMod(): ObsBase(){}
};
}// QCD temporarily here

View File

@ -33,9 +33,45 @@ directory
namespace Grid {
namespace QCD {
struct TopologySmearingParameters : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
int, steps,
float, step_size,
int, meas_interval,
float, maxTau);
TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
template < class ReaderClass >
TopologySmearingParameters(Reader<ReaderClass>& Reader){
read(Reader, "Smearing", *this);
}
};
struct TopologyObsParameters : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologyObsParameters,
int, interval,
bool, do_smearing,
TopologySmearingParameters, Smearing);
TopologyObsParameters(int interval = 1, bool smearing = false):
interval(interval), Smearing(smearing){}
template <class ReaderClass >
TopologyObsParameters(Reader<ReaderClass>& Reader){
read(Reader, "TopologyMeasurement", *this);
}
};
// this is only defined for a gauge theory
template <class Impl>
class TopologicalCharge : public HmcObservable<typename Impl::Field> {
TopologyObsParameters Pars;
public:
// here forces the Impl to be of gauge fields
// if not the compiler will complain
@ -44,20 +80,39 @@ class TopologicalCharge : public HmcObservable<typename Impl::Field> {
// necessary for HmcObservable compatibility
typedef typename Impl::Field Field;
TopologicalCharge(int interval = 1, bool do_smearing = false):
Pars(interval, do_smearing){}
TopologicalCharge(TopologyObsParameters P):Pars(P){
std::cout << GridLogDebug << "Creating TopologicalCharge " << std::endl;
}
void TrajectoryComplete(int traj,
Field &U,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
Real q = WilsonLoops<Impl>::TopologicalCharge(U);
if (traj%Pars.interval == 0){
// Smearing
Field Usmear = U;
int def_prec = std::cout.precision();
if (Pars.do_smearing){
// using wilson flow by default here
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
Real T0 = WF.energyDensityPlaquette(Usmear);
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
}
int def_prec = std::cout.precision();
Real q = WilsonLoops<Impl>::TopologicalCharge(Usmear);
std::cout << GridLogMessage
<< std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "Topological Charge: [ " << traj << " ] "<< q << std::endl;
std::cout << GridLogMessage
<< std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "Topological Charge: [ " << traj << " ] "<< q << std::endl;
std::cout.precision(def_prec);
std::cout.precision(def_prec);
}
}
};

View File

@ -62,7 +62,10 @@ class Representations {
typedef Representations<FundamentalRepresentation> NoHirep;
typedef Representations<EmptyRep<typename ScalarImplR::Field> > ScalarFields;
//typedef Representations<EmptyRep<typename ScalarMatrixImplR::Field> > ScalarMatrixFields;
typedef Representations<EmptyRep<typename ScalarAdjImplR::Field> > ScalarMatrixFields;
template < int Colours>
using ScalarNxNMatrixFields = Representations<EmptyRep<typename ScalarNxNAdjImplR<Colours>::Field> >;
// Helper classes to access the elements
// Strips the first N parameters from the tuple

View File

@ -108,7 +108,7 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
}
std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U._grid);
GaugeField Zprime(U._grid);
GaugeField tmp(U._grid), Uprime(U._grid);
@ -138,10 +138,10 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
// adjust integration step
taus += epsilon;
std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
@ -166,7 +166,6 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
out = in;
for (unsigned int step = 1; step <= Nstep; step++) {
auto start = std::chrono::high_resolution_clock::now();
std::cout << GridLogMessage << "Evolution time :"<< tau(step) << std::endl;
evolve_step(out);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
@ -191,7 +190,7 @@ void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, Re
unsigned int step = 0;
do{
step++;
std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " "

View File

@ -26,12 +26,14 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
//#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
#ifndef GRID_QCD_GAUGE_FIX_H
#define GRID_QCD_GAUGE_FIX_H
namespace Grid {
namespace QCD {
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
@ -186,3 +188,6 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
}
};
}
}
#endif

View File

@ -716,8 +716,7 @@ template<typename GaugeField,typename GaugeMat>
for (int a = 0; a < AdjointDimension; a++) {
generator(a, Ta);
auto tmp = - 2.0 * (trace(timesI(Ta) * in)) * scale;// 2.0 for the normalization of the trace in the fundamental rep
pokeColour(h_out, tmp, a);
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}

View File

@ -65,10 +65,12 @@ Hdf5Reader::Hdf5Reader(const std::string &fileName)
Hdf5Type<unsigned int>::type());
}
void Hdf5Reader::push(const std::string &s)
bool Hdf5Reader::push(const std::string &s)
{
group_ = group_.openGroup(s);
path_.push_back(s);
return true;
}
void Hdf5Reader::pop(void)

View File

@ -54,7 +54,7 @@ namespace Grid
public:
Hdf5Reader(const std::string &fileName);
virtual ~Hdf5Reader(void) = default;
void push(const std::string &s);
bool push(const std::string &s);
void pop(void);
template <typename U>
void readDefault(const std::string &s, U &output);

View File

@ -701,9 +701,28 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, __m256i>::operator()(__m256i in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
__m128i ret;
#if defined (AVX2)
// AVX2 horizontal adds within upper and lower halves of register; use
// SSE to add upper and lower halves for result.
__m256i v1, v2;
__m128i u1, u2;
v1 = _mm256_hadd_epi32(in, in);
v2 = _mm256_hadd_epi32(v1, v1);
u1 = _mm256_castsi256_si128(v2); // upper half
u2 = _mm256_extracti128_si256(v2, 1); // lower half
ret = _mm_add_epi32(u1, u2);
#else
// No AVX horizontal add; extract upper and lower halves of register & use
// SSE intrinsics.
__m128i u1, u2, u3;
u1 = _mm256_extractf128_si256(in, 0); // upper half
u2 = _mm256_extractf128_si256(in, 1); // lower half
u3 = _mm_add_epi32(u1, u2);
u1 = _mm_hadd_epi32(u3, u3);
ret = _mm_hadd_epi32(u1, u1);
#endif
return _mm_cvtsi128_si32(ret);
}
}

View File

@ -543,6 +543,24 @@ namespace Optimization {
u512d conv; conv.v = v1;
return conv.f[0];
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, __m512i>::operator()(__m512i in){
// No full vector reduce, use AVX to add upper and lower halves of register
// and perform AVX reduction.
__m256i v1, v2, v3;
__m128i u1, u2, ret;
v1 = _mm512_castsi512_si256(in); // upper half
v2 = _mm512_extracti32x8_epi32(in, 1); // lower half
v3 = _mm256_add_epi32(v1, v2);
v1 = _mm256_hadd_epi32(v3, v3);
v2 = _mm256_hadd_epi32(v1, v1);
u1 = _mm256_castsi256_si128(v2) // upper half
u2 = _mm256_extracti128_si256(v2, 1); // lower half
ret = _mm_add_epi32(u1, u2);
return _mm_cvtsi128_si32(ret);
}
#else
//Complex float Reduce
template<>
@ -570,9 +588,7 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, __m512i>::operator()(__m512i in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
return _mm512_reduce_add_epi32(in);
}
#endif

View File

@ -401,9 +401,7 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, __m512i>::operator()(__m512i in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
return _mm512_reduce_add_epi32(in);
}

View File

@ -1,13 +1,14 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_neon.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Nils Meyer <nils.meyer@ur.de>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -26,19 +27,25 @@ Author: neo <cossu@post.kek.jp>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//----------------------------------------------------------------------
/*! @file Grid_sse4.h
@brief Optimization libraries for NEON (ARM) instructions set ARMv8
Experimental - Using intrinsics - DEVELOPING!
/*
ARMv8 NEON intrinsics layer by
Nils Meyer <nils.meyer@ur.de>,
University of Regensburg, Germany
SFB/TRR55
*/
// Time-stamp: <2015-07-10 17:45:09 neo>
//----------------------------------------------------------------------
#ifndef GEN_SIMD_WIDTH
#define GEN_SIMD_WIDTH 16u
#endif
#include "Grid_generic_types.h"
#include <arm_neon.h>
// ARMv8 supports double precision
namespace Grid {
namespace Optimization {
template<class vtype>
@ -46,16 +53,20 @@ namespace Optimization {
float32x4_t f;
vtype v;
};
union u128f {
float32x4_t v;
float f[4];
};
union u128d {
float64x2_t v;
double f[4];
double f[2];
};
// half precision
union u128h {
float16x8_t v;
uint16_t f[8];
};
struct Vsplat{
//Complex float
inline float32x4_t operator()(float a, float b){
@ -64,31 +75,31 @@ namespace Optimization {
}
// Real float
inline float32x4_t operator()(float a){
return vld1q_dup_f32(&a);
return vdupq_n_f32(a);
}
//Complex double
inline float32x4_t operator()(double a, double b){
float tmp[4]={(float)a,(float)b,(float)a,(float)b};
return vld1q_f32(tmp);
inline float64x2_t operator()(double a, double b){
double tmp[2]={a,b};
return vld1q_f64(tmp);
}
//Real double
inline float32x4_t operator()(double a){
return vld1q_dup_f32(&a);
//Real double // N:tbc
inline float64x2_t operator()(double a){
return vdupq_n_f64(a);
}
//Integer
//Integer // N:tbc
inline uint32x4_t operator()(Integer a){
return vld1q_dup_u32(&a);
return vdupq_n_u32(a);
}
};
struct Vstore{
//Float
//Float
inline void operator()(float32x4_t a, float* F){
vst1q_f32(F, a);
}
//Double
inline void operator()(float32x4_t a, double* D){
vst1q_f32((float*)D, a);
inline void operator()(float64x2_t a, double* D){
vst1q_f64(D, a);
}
//Integer
inline void operator()(uint32x4_t a, Integer* I){
@ -97,54 +108,54 @@ namespace Optimization {
};
struct Vstream{
//Float
struct Vstream{ // N:equivalents to _mm_stream_p* in NEON?
//Float // N:generic
inline void operator()(float * a, float32x4_t b){
memcpy(a,&b,4*sizeof(float));
}
//Double
inline void operator()(double * a, float32x4_t b){
//Double // N:generic
inline void operator()(double * a, float64x2_t b){
memcpy(a,&b,2*sizeof(double));
}
};
// Nils: Vset untested; not used currently in Grid at all;
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
struct Vset{
// Complex float
// Complex float // N:ok
inline float32x4_t operator()(Grid::ComplexF *a){
float32x4_t foo;
return foo;
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
return vld1q_f32(tmp);
}
// Complex double
inline float32x4_t operator()(Grid::ComplexD *a){
float32x4_t foo;
return foo;
// Complex double // N:ok
inline float64x2_t operator()(Grid::ComplexD *a){
double tmp[2]={a[0].imag(),a[0].real()};
return vld1q_f64(tmp);
}
// Real float
// Real float // N:ok
inline float32x4_t operator()(float *a){
float32x4_t foo;
return foo;
float tmp[4]={a[3],a[2],a[1],a[0]};
return vld1q_f32(tmp);
}
// Real double
inline float32x4_t operator()(double *a){
float32x4_t foo;
return foo;
// Real double // N:ok
inline float64x2_t operator()(double *a){
double tmp[2]={a[1],a[0]};
return vld1q_f64(tmp);
}
// Integer
// Integer // N:ok
inline uint32x4_t operator()(Integer *a){
uint32x4_t foo;
return foo;
return vld1q_dup_u32(a);
}
};
// N:leaving as is
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
@ -184,26 +195,98 @@ namespace Optimization {
}
};
struct MultRealPart{
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
float32x4_t re = vtrn1q_f32(a, a);
return vmulq_f32(re, b);
}
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
float64x2_t re = vzip1q_f64(a, a);
return vmulq_f64(re, b);
}
};
struct MaddRealPart{
inline float32x4_t operator()(float32x4_t a, float32x4_t b, float32x4_t c){
float32x4_t re = vtrn1q_f32(a, a);
return vfmaq_f32(c, re, b);
}
inline float64x2_t operator()(float64x2_t a, float64x2_t b, float64x2_t c){
float64x2_t re = vzip1q_f64(a, a);
return vfmaq_f64(c, re, b);
}
};
struct Div{
// Real float
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
return vdivq_f32(a, b);
}
// Real double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
return vdivq_f64(a, b);
}
};
struct MultComplex{
// Complex float
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
float32x4_t foo;
return foo;
float32x4_t r0, r1, r2, r3, r4;
// a = ar ai Ar Ai
// b = br bi Br Bi
// collect real/imag part, negate bi and Bi
r0 = vtrn1q_f32(b, b); // br br Br Br
r1 = vnegq_f32(b); // -br -bi -Br -Bi
r2 = vtrn2q_f32(b, r1); // bi -bi Bi -Bi
// the fun part
r3 = vmulq_f32(r2, a); // bi*ar -bi*ai ...
r4 = vrev64q_f32(r3); // -bi*ai bi*ar ...
// fma(a,b,c) = a+b*c
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
// no fma, use mul and add
//float32x4_t r5;
//r5 = vmulq_f32(r0, a);
//return vaddq_f32(r4, r5);
}
// Complex double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
float32x4_t foo;
return foo;
float64x2_t r0, r1, r2, r3, r4;
// b = br bi
// collect real/imag part, negate bi
r0 = vtrn1q_f64(b, b); // br br
r1 = vnegq_f64(b); // -br -bi
r2 = vtrn2q_f64(b, r1); // bi -bi
// the fun part
r3 = vmulq_f64(r2, a); // bi*ar -bi*ai
r4 = vextq_f64(r3,r3,1); // -bi*ai bi*ar
// fma(a,b,c) = a+b*c
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
// no fma, use mul and add
//float64x2_t r5;
//r5 = vmulq_f64(r0, a);
//return vaddq_f64(r4, r5);
}
};
struct Mult{
// Real float
inline float32x4_t mac(float32x4_t a, float32x4_t b, float32x4_t c){
return vaddq_f32(vmulq_f32(b,c),a);
//return vaddq_f32(vmulq_f32(b,c),a);
return vfmaq_f32(a, b, c);
}
inline float64x2_t mac(float64x2_t a, float64x2_t b, float64x2_t c){
return vaddq_f64(vmulq_f64(b,c),a);
//return vaddq_f64(vmulq_f64(b,c),a);
return vfmaq_f64(a, b, c);
}
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
return vmulq_f32(a,b);
@ -221,89 +304,275 @@ namespace Optimization {
struct Conj{
// Complex single
inline float32x4_t operator()(float32x4_t in){
return in;
// ar ai br bi -> ar -ai br -bi
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
return vtrn1q_f32(in, r1); // ar -ai br -bi
}
// Complex double
//inline float32x4_t operator()(float32x4_t in){
// return 0;
//}
inline float64x2_t operator()(float64x2_t in){
float64x2_t r0, r1;
r0 = vextq_f64(in, in, 1); // ai ar
r1 = vnegq_f64(r0); // -ai -ar
return vextq_f64(r0, r1, 1); // ar -ai
}
// do not define for integer input
};
struct TimesMinusI{
//Complex single
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
return in;
// ar ai br bi -> ai -ar ai -br
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(in); // ai ar bi br
return vtrn1q_f32(r1, r0); // ar -ai br -bi
}
//Complex double
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
// return in;
//}
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
// a ib -> b -ia
float64x2_t tmp;
tmp = vnegq_f64(in);
return vextq_f64(in, tmp, 1);
}
};
struct TimesI{
//Complex single
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
//need shuffle
return in;
// ar ai br bi -> -ai ar -bi br
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
return vtrn1q_f32(r1, in); // -ai ar -bi br
}
//Complex double
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
// return 0;
//}
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
// a ib -> -b ia
float64x2_t tmp;
tmp = vnegq_f64(in);
return vextq_f64(tmp, in, 1);
}
};
struct Permute{
static inline float32x4_t Permute0(float32x4_t in){ // N:ok
// AB CD -> CD AB
return vextq_f32(in, in, 2);
};
static inline float32x4_t Permute1(float32x4_t in){ // N:ok
// AB CD -> BA DC
return vrev64q_f32(in);
};
static inline float32x4_t Permute2(float32x4_t in){ // N:not used by Boyle
return in;
};
static inline float32x4_t Permute3(float32x4_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute0(float64x2_t in){ // N:ok
// AB -> BA
return vextq_f64(in, in, 1);
};
static inline float64x2_t Permute1(float64x2_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute2(float64x2_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute3(float64x2_t in){ // N:not used by Boyle
return in;
};
};
struct Rotate{
static inline float32x4_t rotate(float32x4_t in,int n){ // N:ok
switch(n){
case 0: // AB CD -> AB CD
return tRotate<0>(in);
break;
case 1: // AB CD -> BC DA
return tRotate<1>(in);
break;
case 2: // AB CD -> CD AB
return tRotate<2>(in);
break;
case 3: // AB CD -> DA BC
return tRotate<3>(in);
break;
default: assert(0);
}
}
static inline float64x2_t rotate(float64x2_t in,int n){ // N:ok
switch(n){
case 0: // AB -> AB
return tRotate<0>(in);
break;
case 1: // AB -> BA
return tRotate<1>(in);
break;
default: assert(0);
}
}
// working, but no restriction on n
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
// restriction on n
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
};
struct PrecisionChange {
static inline float16x8_t StoH (const float32x4_t &a,const float32x4_t &b) {
float16x4_t h = vcvt_f16_f32(a);
return vcvt_high_f16_f32(h, b);
}
static inline void HtoS (float16x8_t h,float32x4_t &sa,float32x4_t &sb) {
sb = vcvt_high_f32_f16(h);
// there is no direct conversion from lower float32x4_t to float64x2_t
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// workaround for clang
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
sa = vcvt_high_f32_f16(h1);
}
static inline float32x4_t DtoS (float64x2_t a,float64x2_t b) {
float32x2_t s = vcvt_f32_f64(a);
return vcvt_high_f32_f64(s, b);
}
static inline void StoD (float32x4_t s,float64x2_t &a,float64x2_t &b) {
b = vcvt_high_f64_f32(s);
// there is no direct conversion from lower float32x4_t to float64x2_t
float32x4_t s1 = vextq_f32(s, s, 2);
a = vcvt_high_f64_f32(s1);
}
static inline float16x8_t DtoH (float64x2_t a,float64x2_t b,float64x2_t c,float64x2_t d) {
float32x4_t s1 = DtoS(a, b);
float32x4_t s2 = DtoS(c, d);
return StoH(s1, s2);
}
static inline void HtoD (float16x8_t h,float64x2_t &a,float64x2_t &b,float64x2_t &c,float64x2_t &d) {
float32x4_t s1, s2;
HtoS(h, s1, s2);
StoD(s1, a, b);
StoD(s2, c, d);
}
};
//////////////////////////////////////////////
// Exchange support
struct Exchange{
static inline void Exchange0(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
// in1: ABCD -> out1: ABEF
// in2: EFGH -> out2: CDGH
// z: CDAB
float32x4_t z = vextq_f32(in1, in1, 2);
// out1: ABEF
out1 = vextq_f32(z, in2, 2);
// z: GHEF
z = vextq_f32(in2, in2, 2);
// out2: CDGH
out2 = vextq_f32(in1, z, 2);
};
static inline void Exchange1(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
// in1: ABCD -> out1: AECG
// in2: EFGH -> out2: BFDH
out1 = vtrn1q_f32(in1, in2);
out2 = vtrn2q_f32(in1, in2);
};
static inline void Exchange2(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
assert(0);
return;
};
static inline void Exchange3(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
assert(0);
return;
};
// double precision
static inline void Exchange0(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
// in1: AB -> out1: AC
// in2: CD -> out2: BD
out1 = vzip1q_f64(in1, in2);
out2 = vzip2q_f64(in1, in2);
};
static inline void Exchange1(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
static inline void Exchange2(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
static inline void Exchange3(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
};
//////////////////////////////////////////////
// Some Template specialization
template < typename vtype >
void permute(vtype &a, vtype b, int perm) {
};
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, float32x4_t>::operator()(float32x4_t in){
return 0;
float32x4_t v1; // two complex
v1 = Optimization::Permute::Permute0(in);
v1 = vaddq_f32(v1,in);
u128f conv; conv.v=v1;
return Grid::ComplexF(conv.f[0],conv.f[1]);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, float32x4_t>::operator()(float32x4_t in){
float32x2_t high = vget_high_f32(in);
float32x2_t low = vget_low_f32(in);
float32x2_t tmp = vadd_f32(low, high);
float32x2_t sum = vpadd_f32(tmp, tmp);
return vget_lane_f32(sum,0);
return vaddvq_f32(in);
}
//Complex double Reduce
template<>
template<> // N:by Boyle
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
return 0;
u128d conv; conv.v = in;
return Grid::ComplexD(conv.f[0],conv.f[1]);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, float64x2_t>::operator()(float64x2_t in){
float64x2_t sum = vpaddq_f64(in, in);
return vgetq_lane_f64(sum,0);
return vaddvq_f64(in);
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, uint32x4_t>::operator()(uint32x4_t in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
}
}
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
namespace Grid {
// Here assign types
// typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef float16x8_t SIMD_Htype; // Half precision type
typedef float32x4_t SIMD_Ftype; // Single precision type
typedef float64x2_t SIMD_Dtype; // Double precision type
typedef uint32x4_t SIMD_Itype; // Integer type
@ -312,13 +581,6 @@ namespace Grid {
inline void prefetch_HINT_T0(const char *ptr){};
// Gpermute function
template < typename VectorSIMD >
inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) {
Optimization::permute(y.v,b.v,perm);
}
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
@ -326,16 +588,19 @@ namespace Grid {
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}
}

View File

@ -374,6 +374,84 @@ namespace Optimization {
// Complex float
FLOAT_WRAP_2(operator(), inline)
};
#define USE_FP16
struct PrecisionChange {
static inline vech StoH (const vector4float &a, const vector4float &b) {
vech ret;
std::cout << GridLogError << "QPX single to half precision conversion not yet supported." << std::endl;
assert(0);
return ret;
}
static inline void HtoS (vech h, vector4float &sa, vector4float &sb) {
std::cout << GridLogError << "QPX half to single precision conversion not yet supported." << std::endl;
assert(0);
}
static inline vector4float DtoS (vector4double a, vector4double b) {
vector4float ret;
std::cout << GridLogError << "QPX double to single precision conversion not yet supported." << std::endl;
assert(0);
return ret;
}
static inline void StoD (vector4float s, vector4double &a, vector4double &b) {
std::cout << GridLogError << "QPX single to double precision conversion not yet supported." << std::endl;
assert(0);
}
static inline vech DtoH (vector4double a, vector4double b,
vector4double c, vector4double d) {
vech ret;
std::cout << GridLogError << "QPX double to half precision conversion not yet supported." << std::endl;
assert(0);
return ret;
}
static inline void HtoD (vech h, vector4double &a, vector4double &b,
vector4double &c, vector4double &d) {
std::cout << GridLogError << "QPX half to double precision conversion not yet supported." << std::endl;
assert(0);
}
};
//////////////////////////////////////////////
// Exchange support
#define FLOAT_WRAP_EXCHANGE(fn) \
static inline void fn(vector4float &out1, vector4float &out2, \
vector4float in1, vector4float in2) \
{ \
vector4double out1d, out2d, in1d, in2d; \
in1d = Vset()(in1); \
in2d = Vset()(in2); \
fn(out1d, out2d, in1d, in2d); \
Vstore()(out1d, out1); \
Vstore()(out2d, out2); \
}
struct Exchange{
// double precision
static inline void Exchange0(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
out1 = vec_perm(in1, in2, vec_gpci(0145));
out2 = vec_perm(in1, in2, vec_gpci(02367));
}
static inline void Exchange1(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
out1 = vec_perm(in1, in2, vec_gpci(0426));
out2 = vec_perm(in1, in2, vec_gpci(01537));
}
static inline void Exchange2(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
assert(0);
}
static inline void Exchange3(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
assert(0);
}
// single precision
FLOAT_WRAP_EXCHANGE(Exchange0);
FLOAT_WRAP_EXCHANGE(Exchange1);
FLOAT_WRAP_EXCHANGE(Exchange2);
FLOAT_WRAP_EXCHANGE(Exchange3);
};
struct Permute{
//Complex double
@ -497,15 +575,19 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, int>::operator()(int in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
inline Integer Reduce<Integer, veci>::operator()(veci in){
Integer a = 0;
for (unsigned int i = 0; i < W<Integer>::r; ++i)
{
a += in.v[i];
}
return a;
}
}
////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::vech SIMD_Htype; // Half precision type
typedef Optimization::vector4float SIMD_Ftype; // Single precision type
typedef vector4double SIMD_Dtype; // Double precision type
typedef Optimization::veci SIMD_Itype; // Integer type

View File

@ -570,9 +570,9 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, __m128i>::operator()(__m128i in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
__m128i v1 = _mm_hadd_epi32(in, in);
__m128i v2 = _mm_hadd_epi32(v1, v1);
return _mm_cvtsi128_si32(v2);
}
}

View File

@ -53,7 +53,7 @@ directory
#if defined IMCI
#include "Grid_imci.h"
#endif
#ifdef NEONv8
#ifdef NEONV8
#include "Grid_neon.h"
#endif
#if defined QPX

View File

@ -32,8 +32,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid {
int LebesgueOrder::UseLebesgueOrder;
#ifdef KNL
std::vector<int> LebesgueOrder::Block({8,2,2,2});
#else
std::vector<int> LebesgueOrder::Block({2,2,2,2});
#endif
LebesgueOrder::IndexInteger LebesgueOrder::alignup(IndexInteger n){
n--; // 1000 0011 --> 1000 0010
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
@ -51,8 +54,31 @@ LebesgueOrder::LebesgueOrder(GridBase *_grid)
if ( Block[0]==0) ZGraph();
else if ( Block[1]==0) NoBlocking();
else CartesianBlocking();
}
if (0) {
std::cout << "Thread Interleaving"<<std::endl;
ThreadInterleave();
}
}
void LebesgueOrder::ThreadInterleave(void)
{
std::vector<IndexInteger> reorder = _LebesgueReorder;
std::vector<IndexInteger> throrder;
int vol = _LebesgueReorder.size();
int threads = GridThread::GetThreads();
int blockbits=3;
int blocklen = 8;
int msk = 0x7;
for(int t=0;t<threads;t++){
for(int ss=0;ss<vol;ss++){
if ( ( ss >> blockbits) % threads == t ) {
throrder.push_back(reorder[ss]);
}
}
}
_LebesgueReorder = throrder;
}
void LebesgueOrder::NoBlocking(void)
{
std::cout<<GridLogDebug<<"Lexicographic : no cache blocking"<<std::endl;

View File

@ -70,6 +70,8 @@ namespace Grid {
std::vector<IndexInteger> & xi,
std::vector<IndexInteger> &dims);
void ThreadInterleave(void);
private:
std::vector<IndexInteger> _LebesgueReorder;

View File

@ -176,6 +176,9 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
// Timing info; ugly; possibly temporary
/////////////////////////////////////////
double commtime;
double mpi3synctime;
double mpi3synctime_g;
double shmmergetime;
double gathertime;
double gathermtime;
double halogtime;
@ -185,6 +188,10 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
double splicetime;
double nosplicetime;
double calls;
std::vector<double> comm_bytes_thr;
std::vector<double> comm_time_thr;
std::vector<double> comm_enter_thr;
std::vector<double> comm_leave_thr;
////////////////////////////////////////
// Stencil query
@ -248,35 +255,120 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
//////////////////////////////////////////
// Comms packet queue for asynch thread
//////////////////////////////////////////
void CommunicateThreaded()
{
#ifdef GRID_OMP
// must be called in parallel region
int mythread = omp_get_thread_num();
int nthreads = CartesianCommunicator::nCommThreads;
#else
int mythread = 0;
int nthreads = 1;
#endif
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
comm_enter_thr[mythread] = usecond();
for (int i = mythread; i < Packets.size(); i += nthreads) {
uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comm_bytes_thr[mythread] += bytes;
}
comm_leave_thr[mythread]= usecond();
comm_time_thr[mythread] += comm_leave_thr[mythread] - comm_enter_thr[mythread];
}
}
void CollateThreads(void)
{
int nthreads = CartesianCommunicator::nCommThreads;
double first=0.0;
double last =0.0;
for(int t=0;t<nthreads;t++) {
double t0 = comm_enter_thr[t];
double t1 = comm_leave_thr[t];
comms_bytes+=comm_bytes_thr[t];
comm_enter_thr[t] = 0.0;
comm_leave_thr[t] = 0.0;
comm_time_thr[t] = 0.0;
comm_bytes_thr[t]=0;
if ( first == 0.0 ) first = t0; // first is t0
if ( (t0 > 0.0) && ( t0 < first ) ) first = t0; // min time seen
if ( t1 > last ) last = t1; // max time seen
}
commtime+= last-first;
}
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
reqs.resize(Packets.size());
commtime-=usecond();
for(int i=0;i<Packets.size();i++){
comms_bytes+=_grid->StencilSendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes);
Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
}
}
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromComplete(reqs[i]);
_grid->StencilSendToRecvFromComplete(reqs[i],i);
}
commtime+=usecond();
}
void Communicate(void)
{
#ifdef GRID_OMP
#pragma omp parallel
{
// must be called in parallel region
int mythread = omp_get_thread_num();
int maxthreads= omp_get_max_threads();
int nthreads = CartesianCommunicator::nCommThreads;
assert(nthreads <= maxthreads);
if (nthreads == -1) nthreads = 1;
#else
int mythread = 0;
int nthreads = 1;
#endif
if (mythread < nthreads) {
for (int i = mythread; i < Packets.size(); i += nthreads) {
double start = usecond();
comm_bytes_thr[mythread] += _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
comm_time_thr[mythread] += usecond() - start;
}
}
#ifdef GRID_OMP
}
#endif
}
template<class compressor> void HaloExchange(const Lattice<vobj> &source,compressor &compress)
{
std::vector<std::vector<CommsRequest_t> > reqs;
Prepare();
HaloGather(source,compress);
CommunicateBegin(reqs);
CommunicateComplete(reqs);
// Concurrent
//CommunicateBegin(reqs);
//CommunicateComplete(reqs);
// Sequential, possibly threaded
Communicate();
CommsMergeSHM(compress);
CommsMerge(compress);
}
@ -285,7 +377,7 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
{
int dimension = _directions[point];
int displacement = _distances[point];
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
@ -337,7 +429,9 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
mpi3synctime_g-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime_g+=usecond();
// conformable(source._grid,_grid);
assert(source._grid==_grid);
@ -397,8 +491,12 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
CommsMerge(decompress,Mergers,Decompressions);
}
template<class decompressor> void CommsMergeSHM(decompressor decompress) {
mpi3synctime-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime+=usecond();
shmmergetime-=usecond();
CommsMerge(decompress,MergersSHM,DecompressionsSHM);
shmmergetime+=usecond();
}
template<class decompressor>
@ -442,7 +540,12 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances)
: _permute_type(npoints), _comm_buf_size(npoints)
: _permute_type(npoints),
_comm_buf_size(npoints),
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
comm_leave_thr(npoints),
comm_time_thr(npoints)
{
face_table_computed=0;
_npoints = npoints;
@ -996,6 +1099,15 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
void ZeroCounters(void) {
gathertime = 0.;
commtime = 0.;
mpi3synctime=0.;
mpi3synctime_g=0.;
shmmergetime=0.;
for(int i=0;i<_npoints;i++){
comm_time_thr[i]=0;
comm_bytes_thr[i]=0;
comm_enter_thr[i]=0;
comm_leave_thr[i]=0;
}
halogtime = 0.;
mergetime = 0.;
decompresstime = 0.;
@ -1011,6 +1123,18 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
#define PRINTIT(A) AVERAGE(A); std::cout << GridLogMessage << " Stencil " << #A << " "<< A/calls<<std::endl;
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
double t = 0;
// if comm_time_thr is set they were all done in parallel so take the max
// but add up the bytes
int threaded = 0 ;
for (int i = 0; i < 8; ++i) {
if ( comm_time_thr[i]>0.0 ) {
threaded = 1;
comms_bytes += comm_bytes_thr[i];
if (t < comm_time_thr[i]) t = comm_time_thr[i];
}
}
if (threaded) commtime += t;
_grid->GlobalSum(commtime); commtime/=NP;
if ( calls > 0. ) {
@ -1026,6 +1150,9 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
std::cout << GridLogMessage << " Stencil " << comms_bytes/commtime/1000. << " GB/s per rank"<<std::endl;
std::cout << GridLogMessage << " Stencil " << comms_bytes/commtime/1000.*NP/NN << " GB/s per node"<<std::endl;
}
PRINTIT(mpi3synctime);
PRINTIT(mpi3synctime_g);
PRINTIT(shmmergetime);
PRINTIT(splicetime);
PRINTIT(nosplicetime);
}

View File

@ -98,7 +98,9 @@ template<class rtype,class vtype,class mtype,int N>
strong_inline void mult(iVector<rtype,N> * __restrict__ ret,
const iVector<vtype,N> * __restrict__ rhs,
const iScalar<mtype> * __restrict__ lhs){
mult(ret,lhs,rhs);
for(int c1=0;c1<N;c1++){
mult(&ret->_internal[c1],&rhs->_internal[c1],&lhs->_internal);
}
}

View File

@ -219,9 +219,15 @@ void Grid_init(int *argc,char ***argv)
int MB;
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--shm");
GridCmdOptionInt(arg,MB);
CartesianCommunicator::MAX_MPI_SHM_BYTES = MB*1024*1024;
uint64_t MB64 = MB;
CartesianCommunicator::MAX_MPI_SHM_BYTES = MB64*1024LL*1024LL;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--shm-hugepages") ){
CartesianCommunicator::Hugepages = 1;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--debug-signals") ){
Grid_debug_handler_init();
}
@ -304,6 +310,7 @@ void Grid_init(int *argc,char ***argv)
std::cout<<GridLogMessage<<" --threads n : default number of OMP threads"<<std::endl;
std::cout<<GridLogMessage<<" --grid n.n.n.n : default Grid size"<<std::endl;
std::cout<<GridLogMessage<<" --shm M : allocate M megabytes of shared memory for comms"<<std::endl;
std::cout<<GridLogMessage<<" --shm-hugepages : use explicit huge pages in mmap call "<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"Verbose and debug:"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
@ -317,7 +324,7 @@ void Grid_init(int *argc,char ***argv)
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --comms-concurrent : Asynchronous MPI calls; several dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-sequential : Synchronous MPI calls; one dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl;
std::cout<<GridLogMessage<<" --dslash-unroll : Wilson kernel for Nc=3"<<std::endl;
@ -356,10 +363,15 @@ void Grid_init(int *argc,char ***argv)
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-sequential") ){
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--lebesgue") ){
LebesgueOrder::UseLebesgueOrder=1;
}
CartesianCommunicator::nCommThreads = -1;
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-threads") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--comms-threads");
GridCmdOptionInt(arg,CartesianCommunicator::nCommThreads);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--cacheblocking") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--cacheblocking");
GridCmdOptionIntVector(arg,LebesgueOrder::Block);
@ -374,10 +386,13 @@ void Grid_init(int *argc,char ***argv)
Grid_default_latt,
Grid_default_mpi);
std::cout << GridLogDebug << "Requesting "<< CartesianCommunicator::MAX_MPI_SHM_BYTES <<" byte stencil comms buffers "<<std::endl;
std::cout << GridLogMessage << "Requesting "<< CartesianCommunicator::MAX_MPI_SHM_BYTES <<" byte stencil comms buffers "<<std::endl;
if ( CartesianCommunicator::Hugepages) {
std::cout << GridLogMessage << "Mapped stencil comms buffers as MAP_HUGETLB "<<std::endl;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--decomposition") ){
std::cout<<GridLogMessage<<"Grid Decomposition\n";
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
std::cout<<GridLogMessage<<"\tMPI tasks : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
std::cout<<GridLogMessage<<"\tvRealF : "<<sizeof(vRealF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
@ -393,7 +408,7 @@ void Grid_init(int *argc,char ***argv)
void Grid_finalize(void)
{
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3)
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
MPI_Finalize();
Grid_unquiesce_nodes();
#endif

Some files were not shown because too many files have changed in this diff Show More