mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-26 17:49:33 +00:00 
			
		
		
		
	Compare commits
	
		
			632 Commits
		
	
	
		
			feature/di
			...
			5c3ace7c3e
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 5c3ace7c3e | ||
|  | aa148455b7 | ||
|  | 98cf247f33 | ||
|  | 0cf16522d1 | ||
|  | 7b7c75f9e5 | ||
|  | aefd255a3c | ||
|  | 1c5aa939fd | ||
|  | 3a0ff17be0 | ||
|  | 47829ae5cc | ||
|  | bfa7b69aff | ||
|  | 2aaa959b5f | ||
|  | ce2970b93a | ||
|  | 7b76970d10 | ||
|  | 9fd41882d2 | ||
|  | ff2ea5de18 | ||
|  | 5147a42818 | ||
|  | 57552d8ca3 | ||
|  | 13713b2a76 | ||
|  | 36a14e4ee3 | ||
|  | b4cc788b8c | ||
|  | 0f0e7512f3 | ||
|  | 1196b1a161 | ||
|  | 2c8c3be9ee | ||
|  | 5b79d51c22 | ||
|  | da890dc293 | ||
|  | 93d0a1e73a | ||
|  | f0a8c7d045 | ||
|  | db8793777c | ||
|  | c745484e65 | ||
|  | da59379612 | ||
|  | 3ef2a41518 | ||
|  | aa96f420c6 | ||
|  | 49e9e4ed0e | ||
|  | f7b8163016 | ||
|  | 93769eacd3 | ||
|  | 59b0cc11df | ||
|  | f32c275376 | ||
|  | 5404fc66ab | ||
|  | 1f53458af8 | ||
|  | 434c3e7f1d | ||
|  | 500b119f3d | ||
|  | 4b87259c1b | ||
|  | 503dec34ef | ||
|  | d1e9fe50d2 | ||
|  | d01e5fa838 | ||
|  | a477c25e8c | ||
|  | 1bd20cd9e8 | ||
|  | e49e95b037 | ||
|  | 6f59fed563 | ||
|  | 60b7f6c99d | ||
|  | b92dfcc8d3 | ||
|  | f6fd6dd053 | ||
|  | 79ad567dd5 | ||
|  | fab1efb48c | ||
|  | 660eb76d93 | ||
|  | 62e7bf024a | ||
|  | 95f3d69cf9 | ||
| 89c0519f83 | |||
| 2704b82084 | |||
| cf8632bbac | |||
| d224297972 | |||
|  | a4d11a630f | ||
| 2b4399f8b1 | |||
| f17b8de907 | |||
|  | cc04dc42dc | ||
|  | 070b61f08f | ||
|  | 7e5bd46dd3 | ||
|  | 228bbb9d81 | ||
| b812a7b4c6 | |||
| 891a366f73 | |||
| 10116b3be8 | |||
| a46a0f0882 | |||
| a26a8a38f4 | |||
| 7435315d50 | |||
| 9b5f741e85 | |||
| 517822fdd2 | |||
| 1b93a9be88 | |||
| 783a66b348 | |||
| 976c3e9b59 | |||
| f8ca971dae | |||
| 21bc8c24df | |||
| 30228214f7 | |||
|  | 2ae980ae43 | ||
|  | 6153dec2e4 | ||
|  | c805f86343 | ||
|  | 04ca065281 | ||
|  | 88d8fa43d7 | ||
|  | 3c49762875 | ||
|  | 436bf1d9d3 | ||
|  | f70df6e195 | ||
|  | fce3852dff | ||
|  | ee1b8bbdbd | ||
|  | 3f1636637d | ||
|  | 2e570f5300 | ||
|  | 9f89486df5 | ||
|  | 22b43b86cb | ||
|  | 3c9012676a | ||
|  | ee3b3c4c56 | ||
|  | 462d706a63 | ||
|  | ee0d460c8e | ||
|  | cd15abe9d1 | ||
|  | 9f40467e24 | ||
|  | d0b6593823 | ||
|  | 79fc821d8d | ||
|  | d7fdb9a7e6 | ||
|  | b74de51c18 | ||
|  | b507fe209c | ||
|  | 6cd2d8fcd5 | ||
|  | b02d022993 | ||
|  | 94581e3c7a | ||
|  | 88b52cc045 | ||
|  | 0a816b5509 | ||
|  | 1c8b807c2e | ||
|  | 44b466e072 | ||
|  | 5e5b471bb2 | ||
|  | 9c2565f64e | ||
|  | e1d0a7cec3 | ||
|  | b19ae8f465 | ||
|  | cdff2c8e18 | ||
|  | 66391f84f2 | ||
| 97f7a9ecb3 | |||
|  | 15878f7613 | ||
|  | e0d5e3c6c7 | ||
|  | 6f3455900e | ||
|  | 56827d6ad6 | ||
| 73c0b29535 | |||
| 303b83cdb8 | |||
| 5ef4da3f29 | |||
| 1502860004 | |||
| 585efc6f3f | |||
| 62055e04dd | |||
| e4a641b64e | |||
| 8849f187f1 | |||
|  | db420525b3 | ||
|  | b5659d106e | ||
|  | 4b43307402 | ||
|  | 09af8c25a2 | ||
|  | 9514035b87 | ||
|  | 2da09ae99b | ||
|  | a38fb0e04a | ||
| 7019916294 | |||
|  | 1514b4f137 | ||
| 91cf5ee312 | |||
|  | 0a6e2f42c5 | ||
|  | ab2de131bd | ||
| 5bfa88be85 | |||
|  | 5af8da76d7 | ||
|  | b8b9dc952d | ||
|  | 79a6ed32d8 | ||
|  | caa5f97723 | ||
|  | 4924b3209e | ||
|  | eb702f581b | ||
|  | 3d13fd56c5 | ||
|  | 6f51b49ef8 | ||
|  | addc638856 | ||
|  | 00f24f8765 | ||
|  | f5b3d582b0 | ||
|  | 981c93d67a | ||
|  | c020b78e02 | ||
|  | 42ae36bc28 | ||
|  | c69f73ff9f | ||
|  | ca5ae8a2e6 | ||
|  | d967eb53de | ||
|  | 839f9f1bbe | ||
|  | b754a152c6 | ||
|  | e07cb2b9de | ||
|  | a1f8bbb078 | ||
|  | 7909683f3b | ||
|  | 25f71913b7 | ||
|  | 34ddd2b7b1 | ||
|  | d5fd90b2f3 | ||
|  | b7c7000d0d | ||
|  | 551f6c4edd | ||
|  | defd814750 | ||
|  | 3d517bbd2a | ||
|  | 78ab955fec | ||
|  | dd13937bb6 | ||
|  | 66a1b63aa9 | ||
|  | 22c611bd1a | ||
|  | c9bb1bf8ea | ||
| 2a0d75bac2 | |||
|  | 9e489887cf | ||
|  | 9feb801bb9 | ||
|  | c00b495933 | ||
|  | d22eebe553 | ||
|  | 8bcbd82680 | ||
|  | dfa617c439 | ||
|  | 48d1f0df89 | ||
|  | b75cb7a12c | ||
|  | 332563e037 | ||
|  | 0cce97a4fe | ||
|  | 95a8e4be64 | ||
|  | abcd6b8cb6 | ||
|  | e8f21c9b6d | ||
|  | f48298ad4e | ||
|  | 645e47c1ba | ||
|  | d1d9827263 | ||
|  | e054078b11 | ||
|  | 14643c0aab | ||
|  | b77a9b8947 | ||
|  | 6835a7f208 | ||
|  | f59993b979 | ||
|  | 2290b8f680 | ||
|  | 2c54be651c | ||
|  | e859a199df | ||
|  | 0a3682ad0b | ||
|  | 59abaeb5cd | ||
|  | 3e448435d3 | ||
|  | a294bc3c5b | ||
|  | b302ad3d49 | ||
|  | 82fc4b1e94 | ||
|  | b4f1740380 | ||
|  | 031f85247c | ||
|  | 639cc6f73a | ||
|  | 09946cf1ba | ||
|  | f4fa95e7cb | ||
|  | 100e29e35e | ||
|  | 4cbe471a83 | ||
|  | 8bece1f861 | ||
|  | a3ca71ec01 | ||
|  | e0543e8af5 | ||
|  | c1eb80d01a | ||
|  | a26121d97b | ||
|  | 043031a757 | ||
|  | 807aeebe4c | ||
|  | 8aa1a37aad | ||
|  | 7d077fe493 | ||
|  | 9cd4128833 | ||
|  | c8b17c9526 | ||
|  | 2ae2a81e85 | ||
|  | 69c869d345 | ||
|  | df9b958c40 | ||
|  | 3d3376d1a3 | ||
|  | 4efa042f50 | ||
|  | c7cb37e970 | ||
|  | d34b207eab | ||
|  | 0e6fa6f6b8 | ||
|  | 38b87de53f | ||
|  | aa5047a9e4 | ||
|  | 24b6ee0df9 | ||
|  | 1e79cc9cbe | ||
|  | b3925df9c3 | ||
|  | f2648e94b9 | ||
|  | 351795ac3a | ||
|  | 9c9c42d0df | ||
|  | b6ad1bafc7 | ||
|  | a5ca40f446 | ||
|  | 9ab54c5565 | ||
|  | 4341d96bde | ||
|  | 5fac47a26d | ||
|  | e064f17346 | ||
|  | afe10ba2a2 | ||
|  | 7cc3435ba8 | ||
|  | 541772313c | ||
|  | 3747494a09 | ||
|  | f2b98d0dcc | ||
|  | 80471bf762 | ||
|  | a06f63c110 | ||
|  | 0ae4478cd9 | ||
|  | ae4e705e09 | ||
|  | f5dcea9dbf | ||
|  | 21ed6ac0f4 | ||
|  | 7bb8ab7000 | ||
|  | 2c824c2641 | ||
|  | 391fd9cc6a | ||
|  | 2207309f8a | ||
|  | 51051df62c | ||
|  | 33097681b9 | ||
|  | 07e4900218 | ||
|  | 36ab567d67 | ||
|  | e19171523b | ||
|  | 9626a2c7c0 | ||
|  | e936f5b80b | ||
|  | ffc0639cb9 | ||
|  | c5b43b322c | ||
|  | c9c4576237 | ||
|  | bf4369f72d | ||
|  | 36600899e2 | ||
|  | b9c70d156b | ||
|  | eb89579fe7 | ||
|  | 0cfd13d18b | ||
|  | e6ed516052 | ||
|  | e2a3dae1f2 | ||
|  | 2111e7ab5f | ||
|  | d29abfdcaf | ||
|  | a751c42cc5 | ||
|  | 6a3bc9865e | ||
|  | 4d5f7e4377 | ||
|  | 78b117fb78 | ||
|  | ded63a1319 | ||
|  | df3e4d1e9c | ||
|  | b58fd80379 | ||
|  | 7f6e0f57d0 | ||
|  | cae27678d8 | ||
|  | 48ff655bad | ||
|  | 2525ad4623 | ||
|  | e7020017c5 | ||
|  | eacebfad74 | ||
|  | 3bc2da5321 | ||
|  | 2d710d6bfd | ||
|  | 6532b7f32b | ||
|  | 7b41b92d99 | ||
|  | dd557af84b | ||
|  | 59b9d0e030 | ||
|  | b82eee4733 | ||
|  | 6a87487544 | ||
|  | fcf5023845 | ||
|  | c8adad6d8b | ||
|  | 737d3ffb98 | ||
|  | 6d0c2de399 | ||
|  | 7786ea9921 | ||
|  | d93eac7b1c | ||
|  | b01e67bab1 | ||
|  | 8a70314f54 | ||
|  | afc316f501 | ||
|  | f14bfd5c1b | ||
|  | c5f1420dea | ||
|  | 018e6da872 | ||
|  | b77bccfac2 | ||
|  | 36ae6e5aba | ||
|  | 9db585cfeb | ||
|  | c564611ba7 | ||
|  | e187bcb85c | ||
|  | be18ffe3b4 | ||
|  | 0d63dce4e2 | ||
|  | 26b30e1551 | ||
|  | 7fc58ac293 | ||
|  | 3a86cce8c1 | ||
|  | 80359e0d49 | ||
|  | 3d437c5cc4 | ||
|  | 37884d369f | ||
|  | 9246e653cd | ||
|  | 64283c8673 | ||
|  | 755002da9c | ||
|  | 31b8e8b437 | ||
|  | 0ec0de97e6 | ||
|  | 6c3ade5d89 | ||
|  | 980c5f9a34 | ||
|  | 63d9b8e8a3 | ||
|  | d247031c98 | ||
|  | 471ca5f281 | ||
|  | e82ddcff5d | ||
|  | b9dcad89e8 | ||
|  | 993f43ef4a | ||
|  | 2b43308208 | ||
|  | 04a1ac3a76 | ||
|  | 990b8798bd | ||
|  | b334a73a44 | ||
|  | 5d113d1c70 | ||
|  | c14977aeab | ||
|  | 3e94838204 | ||
|  | c0a0b8ca62 | ||
|  | b8a7004365 | ||
|  | affff3865f | ||
|  | 9c22655b5a | ||
|  | 99d879ea7f | ||
|  | bd56c95a6f | ||
|  | 994512048e | ||
|  | dbd8bb49dc | ||
|  | 3a29af0ce4 | ||
|  | f7b79cdd45 | ||
|  | 075b9d22d0 | ||
|  | b92428f05f | ||
|  | 34b11864b6 | ||
|  | 1dfaa08afb | ||
|  | 9d263d9a7d | ||
|  | 9015c229dc | ||
|  | f44dce390f | ||
|  | bb71e9a96a | ||
| 78bae9417c | |||
| dd170ead01 | |||
| 014704856f | |||
|  | a7eabaad56 | ||
|  | eeb4703b84 | ||
|  | a07421b3d3 | ||
|  | cda53b4068 | ||
|  | 6f6844ccf1 | ||
|  | 4c6613d72c | ||
|  | ee92e08edb | ||
|  | c1dcee9328 | ||
|  | 559257bbe9 | ||
|  | 6b150961fe | ||
|  | cff1f8d3b8 | ||
|  | f27d2083cd | ||
|  | 36cc9c524f | ||
|  | 2822487450 | ||
|  | e07fafe46a | ||
|  | 063d290bd8 | ||
|  | 4e6194d92a | ||
|  | de30c4e22a | ||
|  | df99f227c1 | ||
|  | 5bafcaedfa | ||
|  | bfeceae708 | ||
|  | eacb66591f | ||
|  | fadaa85626 | ||
|  | 02a5b0d786 | ||
|  | 0e2141442a | ||
|  | 769eb0eecb | ||
|  | 4241c7d4a3 | ||
|  | d536c67b9d | ||
|  | f44f005dad | ||
|  | 26b2caf570 | ||
|  | 7b11075102 | ||
|  | abc658dca5 | ||
|  | 8bb078db25 | ||
|  | b61ba40023 | ||
|  | 452bf2e907 | ||
|  | 2372275b2c | ||
|  | ef736e8aa4 | ||
|  | 5e539e2d54 | ||
|  | 96773f5254 | ||
|  | d80df09f3b | ||
|  | 621e612c30 | ||
|  | 8c3792721b | ||
|  | c95bbd3948 | ||
|  | e28ab7a732 | ||
|  | c797cbe737 | ||
|  | e09dfbf1c2 | ||
| 85e35c4da1 | |||
|  | d72e914cf0 | ||
|  | 3b5254e2d5 | ||
|  | f1c358b596 | ||
|  | c0ef210265 | ||
|  | e3e1cc1962 | ||
|  | 723eadbb5c | ||
|  | e24637ec1e | ||
|  | 8b01ff4ce7 | ||
|  | 588197c487 | ||
|  | 116d90b0ee | ||
|  | b0646ca187 | ||
|  | 1352bad2e4 | ||
|  | 14d352ea4f | ||
|  | 1cf9ec1cce | ||
|  | 4895ff260e | ||
|  | 4b994a1bc7 | ||
|  | e506d6d369 | ||
|  | ab56ad8d7a | ||
|  | 470d93006a | ||
|  | 2f3d03f188 | ||
|  | 8db7c23bee | ||
|  | 69dc5172dc | ||
|  | fd72eb6546 | ||
|  | ffd7301649 | ||
|  | d2a8494044 | ||
|  | 0982e0d19b | ||
|  | 3badbfc3c1 | ||
|  | 5465961e30 | ||
| 477b794bc5 | |||
|  | e8c29e2fe5 | ||
|  | 4835fd1a87 | ||
|  | 6533c25814 | ||
|  | b405767569 | ||
|  | fe88a0c12f | ||
|  | e61a9ed2b4 | ||
|  | de8daa3824 | ||
|  | 3a50fb29cb | ||
|  | 6647d2656f | ||
|  | a6f4dbeb6d | ||
|  | 92a282f2d8 | ||
|  | ca2fd9fc7b | ||
|  | 3825329f8e | ||
|  | be1a4f5860 | ||
|  | 1b2914ec09 | ||
|  | 519f795066 | ||
|  | 5897b93dd4 | ||
|  | af091e0881 | ||
|  | 3c1e5e9517 | ||
|  | 85b2cb7a8a | ||
|  | c7bdf2c0e4 | ||
|  | 4240ad5ca8 | ||
|  | d418347d86 | ||
|  | 29a4bfe5e5 | ||
|  | 9955bf9daf | ||
|  | da9cbfc7cc | ||
|  | 6b9f07c1ed | ||
|  | b8bdc2eefb | ||
|  | 0078826ff1 | ||
|  | e855c41772 | ||
|  | d169c275b6 | ||
|  | a5125e23f4 | ||
|  | 7b83c80757 | ||
|  | e41821e206 | ||
|  | bf91778550 | ||
|  | 5a75ab15a2 | ||
|  | 932c783fbf | ||
|  | 55f9cce577 | ||
|  | b3533ca847 | ||
|  | fd2a637010 | ||
|  | eee27b8b30 | ||
|  | 8522352aa3 | ||
|  | 3beb8f4091 | ||
|  | 12a706e9b1 | ||
|  | 170aa7df01 | ||
|  | e8ad1fef53 | ||
|  | 876c8f4478 | ||
|  | 9c8750f261 | ||
|  | 91efd08179 | ||
|  | 9953511b65 | ||
|  | 025fa9991a | ||
|  | e8c60c355b | ||
|  | 6c9c7f9d85 | ||
|  | f534523ede | ||
|  | 1b8a834beb | ||
|  | aa9df63a05 | ||
|  | 3953312a93 | ||
|  | 6e62f4f616 | ||
|  | 6a7bdca53b | ||
|  | c7fba9aace | ||
|  | ac6c7cb8d6 | ||
|  | c5924833a1 | ||
|  | ac0a74be0d | ||
|  | 42b0e1125d | ||
|  | 339c4fda79 | ||
|  | 9b85bf9402 | ||
|  | 86b02c3cd8 | ||
|  | 7b3b7093fa | ||
|  | 881b08a465 | ||
|  | 3ee5444c69 | ||
|  | 5e28fe56d2 | ||
|  | 3aa43e6065 | ||
|  | 78ac4044ff | ||
|  | 119c3db47f | ||
|  | 21bbdb8fc2 | ||
|  | 5aabe074fe | ||
|  | 739bd7572c | ||
|  | 074627a5bd | ||
|  | 6a23b2c599 | ||
|  | dace904c10 | ||
|  | be98d26610 | ||
|  | bd891fb3f5 | ||
|  | 3984265851 | ||
|  | 45361d188f | ||
|  | 80c9d77e02 | ||
|  | 3aff64dddb | ||
|  | b4f2ca81ff | ||
|  | d1dea5f840 | ||
|  | 54f8b84d16 | ||
|  | da503fef0e | ||
|  | 4a6802098a | ||
|  | f9b41a84d2 | ||
| 5d7e0d18b9 | |||
| 9e64387933 | |||
| 983b681d46 | |||
| 4072408b6f | |||
| bd76b47fbf | |||
|  | 5f75735dab | ||
|  | 178376f24b | ||
| 18ce23aa75 | |||
|  | 6a0eb466ee | ||
|  | ffa7fe0cc2 | ||
|  | 4ea29b8f0f | ||
|  | 778291230a | ||
|  | 86dac5ff4f | ||
|  | 4a382fad3f | ||
|  | cc753670d9 | ||
|  | cc9d88ea1c | ||
|  | b281b0166e | ||
|  | 6a21f694ff | ||
|  | 026e736dfa | ||
|  | 4275b3f431 | ||
|  | af64c1c6b6 | ||
|  | 866f48391a | ||
|  | a4df527d74 | ||
|  | 5764d21161 | ||
|  | 496d04cd85 | ||
|  | 10e6d7c6ce | ||
|  | c42e25e5b8 | ||
|  | a00ae981e0 | ||
| 39214702f6 | |||
| 3e4614c63a | |||
|  | 1b8176e2c0 | ||
|  | cbc053c3db | ||
|  | cdf3f6ef6e | ||
|  | ba7f9d7b70 | ||
|  | 371fd123fb | ||
|  | d6ff644aab | ||
|  | 29586f6b5e | ||
|  | fd057c838f | ||
|  | f51222086c | ||
|  | f73691ec47 | ||
|  | ccd21f96ff | ||
|  | 4b90cb8888 | ||
|  | 7ebda3e9ec | ||
|  | b10e1b7bc8 | ||
|  | d7dea44ce7 | ||
|  | 37b6b82869 | ||
|  | 92ad5b8f74 | ||
|  | 8c80f1c168 | ||
|  | 0af7d5a793 | ||
|  | 505fa49983 | ||
|  | 7bcf33def9 | ||
|  | a13820656a | ||
|  | fa71b46a41 | ||
|  | b8b3ae6ac1 | ||
|  | 55c008da21 | ||
|  | 2507606bd0 | ||
|  | 7c2ad4f8c8 | ||
|  | 54c8025aad | ||
|  | 921e23e83c | ||
|  | 6e750ecb0e | ||
|  | b8f1f5d2a3 | ||
|  | 9273f2937c | ||
|  | 1aa28b47ae | ||
|  | 629cb2987a | ||
|  | 03235d6368 | ||
|  | 22064c7e4c | ||
|  | 2de03e5172 | ||
|  | 3af4929dda | ||
|  | 1ba429345b | ||
|  | 88bdd4344b | ||
|  | 4044536eea | ||
|  | 4d8ae6221c | ||
|  | 4e31e4e094 | ||
|  | 0d6674e489 | ||
|  | b145fd4f5b | ||
|  | 8a5b794f25 | ||
|  | 291e80f88a | ||
|  | 1ace5850ae | ||
|  | 283f14b7c1 | ||
|  | 1d6e708083 | ||
|  | 89457e25e3 | ||
|  | 7e3b298d3d | ||
|  | 7ff3e5eed4 | ||
|  | 19eb51cf41 | ||
|  | 470d4dcc6d | ||
|  | ed03bfd555 | ||
|  | 8c0fbcccae | ||
|  | d4866157fe | ||
|  | b6496b6cb5 | ||
|  | 4f5fe57920 | ||
|  | 11fb943b1e | ||
|  | 046a23121e | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,54 @@ | ||||
| name: Bug report | ||||
| description: Report a bug. | ||||
| title: "<insert title>" | ||||
| labels: [bug] | ||||
|  | ||||
| body: | ||||
|   - type: markdown | ||||
|     attributes: | ||||
|       value: > | ||||
|         Thank you for taking the time to file a bug report. | ||||
|         Please check that the code is pointing to the HEAD of develop | ||||
|         or any commit in master which is tagged with a version number. | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Describe the issue:" | ||||
|       description: > | ||||
|         Describe the issue and any previous attempt to solve it. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Code example:" | ||||
|       description: > | ||||
|         If relevant, show how to reproduce the issue using a minimal working | ||||
|         example. | ||||
|       placeholder: | | ||||
|         << your code here >> | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: false | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Target platform:" | ||||
|       description: > | ||||
|         Give a description of the target platform (CPU, network, compiler). | ||||
|         Please give the full CPU part description, using for example | ||||
|         `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux) | ||||
|         or `sysctl machdep.cpu.brand_string` (macOS) and the full output | ||||
|         the `--version` option of your compiler. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Configure options:" | ||||
|       description: > | ||||
|         Please give the exact configure command used and attach | ||||
|         `config.log`, `grid.config.summary` and the output of `make V=1`. | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: true | ||||
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,3 +1,7 @@ | ||||
| # Doxygen stuff | ||||
| html/* | ||||
| latex/* | ||||
|  | ||||
| # Compiled Object files # | ||||
| ######################### | ||||
| *.slo | ||||
|   | ||||
| @@ -59,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice.h>       | ||||
| #include <Grid/cshift/Cshift.h>        | ||||
| #include <Grid/stencil/Stencil.h>       | ||||
| #include <Grid/stencil/GeneralLocalStencil.h>       | ||||
| #include <Grid/parallelIO/BinaryIO.h> | ||||
| #include <Grid/algorithms/Algorithms.h>    | ||||
| NAMESPACE_CHECK(GridCore) | ||||
|   | ||||
| @@ -34,7 +34,7 @@ | ||||
| #pragma push_macro("__SYCL_DEVICE_ONLY__") | ||||
| #undef __SYCL_DEVICE_ONLY__ | ||||
| #define EIGEN_DONT_VECTORIZE | ||||
| //#undef EIGEN_USE_SYCL | ||||
| #undef EIGEN_USE_SYCL | ||||
| #define __SYCL__REDEFINE__ | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -66,6 +66,10 @@ if BUILD_FERMION_REPS | ||||
|   extra_sources+=$(ADJ_FERMION_FILES) | ||||
|   extra_sources+=$(TWOIND_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_SP | ||||
|     extra_sources+=$(SP_FERMION_FILES) | ||||
|     extra_sources+=$(SP_TWOIND_FERMION_FILES) | ||||
| endif | ||||
|  | ||||
| lib_LIBRARIES = libGrid.a | ||||
|  | ||||
|   | ||||
| @@ -29,6 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_ALGORITHMS_H | ||||
| #define GRID_ALGORITHMS_H | ||||
|  | ||||
| NAMESPACE_CHECK(blas); | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
|  | ||||
| NAMESPACE_CHECK(algorithms); | ||||
| #include <Grid/algorithms/SparseMatrix.h> | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
| @@ -44,7 +47,10 @@ NAMESPACE_CHECK(SparseMatrix); | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| NAMESPACE_CHECK(approx); | ||||
| #include <Grid/algorithms/iterative/Deflation.h> | ||||
| #include <Grid/algorithms/deflation/Deflation.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSBlockProject.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSDeflation.h> | ||||
| NAMESPACE_CHECK(deflation); | ||||
| #include <Grid/algorithms/iterative/ConjugateGradient.h> | ||||
| NAMESPACE_CHECK(ConjGrad); | ||||
| #include <Grid/algorithms/iterative/BiCGSTAB.h> | ||||
| @@ -67,10 +73,11 @@ NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> | ||||
| #include <Grid/algorithms/iterative/PowerMethod.h> | ||||
|  | ||||
| #include <Grid/algorithms/iterative/AdefGeneric.h> | ||||
| #include <Grid/algorithms/iterative/AdefMrhs.h> | ||||
| NAMESPACE_CHECK(PowerMethod); | ||||
| #include <Grid/algorithms/CoarsenedMatrix.h> | ||||
| NAMESPACE_CHECK(CoarsendMatrix); | ||||
| #include <Grid/algorithms/multigrid/MultiGrid.h> | ||||
| NAMESPACE_CHECK(multigrid); | ||||
| #include <Grid/algorithms/FFT.h> | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #define _GRID_FFT_H_ | ||||
|  | ||||
| #ifdef HAVE_FFTW | ||||
| #ifdef USE_MKL | ||||
| #if defined(USE_MKL) || defined(GRID_SYCL) | ||||
| #include <fftw/fftw3.h> | ||||
| #else | ||||
| #include <fftw3.h> | ||||
|   | ||||
| @@ -145,6 +145,44 @@ public: | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Create a shifted HermOp | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> { | ||||
|   LinearOperatorBase<Field> &_Mat; | ||||
|   RealD _shift; | ||||
| public: | ||||
|   ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.HermOp(in,out); | ||||
|     out = out + _shift*in; | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Wrap an already herm matrix | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| @@ -542,6 +580,7 @@ public: | ||||
|       (*this)(in[i], out[i]); | ||||
|     } | ||||
|   } | ||||
|   virtual ~LinearFunction(){}; | ||||
| }; | ||||
|  | ||||
| template<class Field> class IdentityLinearFunction : public LinearFunction<Field> { | ||||
|   | ||||
| @@ -90,9 +90,8 @@ public: | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     Coeffs.assign(0.,order); | ||||
|     Coeffs[order-1] = 1.; | ||||
|     Coeffs.resize(order,0.0); | ||||
|     Coeffs[order-1] = 1.0; | ||||
|   }; | ||||
|    | ||||
|   // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's. | ||||
|   | ||||
| @@ -40,7 +40,7 @@ public: | ||||
|   RealD norm; | ||||
|   RealD lo,hi; | ||||
|  | ||||
|   MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;}; | ||||
|   MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;}; | ||||
|   RealD approx(RealD x); | ||||
|   void csv(std::ostream &out); | ||||
|   void gnuplot(std::ostream &out); | ||||
|   | ||||
| @@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k, | ||||
|  * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and | ||||
|  * type = 1 for the approximation which is infinite at x = 0. */ | ||||
|  | ||||
| zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
| zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
|   INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F, | ||||
|     l, invlambda, xi, xisq, *tv, s, opl; | ||||
|   int m, czero, ts; | ||||
| @@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
|   construct_partfrac(d); | ||||
|   construct_contfrac(d); | ||||
|  | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|   /* Converting everything to ZOLO_PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata) | ||||
| } | ||||
|  | ||||
|  | ||||
| zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
| zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
|   INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq; | ||||
|   int m, czero; | ||||
|   zolotarev_data *zd; | ||||
| @@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -523,17 +523,17 @@ NAMESPACE_END(Grid); | ||||
| #ifdef TEST | ||||
|  | ||||
| #undef ZERO | ||||
| #define ZERO ((PRECISION) 0) | ||||
| #define ZERO ((ZOLO_PRECISION) 0) | ||||
| #undef ONE | ||||
| #define ONE ((PRECISION) 1) | ||||
| #define ONE ((ZOLO_PRECISION) 1) | ||||
| #undef TWO | ||||
| #define TWO ((PRECISION) 2) | ||||
| #define TWO ((ZOLO_PRECISION) 2) | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the factored form */ | ||||
|  | ||||
| static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION R; | ||||
|   ZOLO_PRECISION R; | ||||
|  | ||||
|   if (rdata -> type == 0) { | ||||
|     R = rdata -> A * x; | ||||
| @@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the partial fraction form */ | ||||
|  | ||||
| static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   for (m = 0; m < rdata -> dd; m++) | ||||
|     R += rdata -> alpha[m] / (x * x - rdata -> ap[m]); | ||||
|   if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x); | ||||
| @@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|  * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0, | ||||
|  * but with signalling overflow you will get an error message. */ | ||||
|  | ||||
| static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION R = rdata -> beta[0] * x; | ||||
|   ZOLO_PRECISION R = rdata -> beta[0] * x; | ||||
|   for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R; | ||||
|   return R; | ||||
| }     | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using Cayley form */ | ||||
|  | ||||
| static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) { | ||||
| static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   PRECISION T; | ||||
|   ZOLO_PRECISION T; | ||||
|  | ||||
|   T = rdata -> type == 0 ? ONE : -ONE; | ||||
|   for (m = 0; m < rdata -> n; m++) | ||||
| @@ -607,7 +607,7 @@ int main(int argc, char** argv) { | ||||
|   int m, n, plotpts = 5000, type = 0; | ||||
|   float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr; | ||||
|   zolotarev_data *rdata; | ||||
|   PRECISION y; | ||||
|   ZOLO_PRECISION y; | ||||
|   FILE *plot_function, *plot_error,  | ||||
|     *plot_partfrac, *plot_contfrac, *plot_cayley; | ||||
|  | ||||
| @@ -626,13 +626,13 @@ int main(int argc, char** argv) { | ||||
|   } | ||||
|  | ||||
|   rdata = type == 2  | ||||
|     ? higham((PRECISION) eps, n)  | ||||
|     : zolotarev((PRECISION) eps, n, type); | ||||
|     ? higham((ZOLO_PRECISION) eps, n)  | ||||
|     : zolotarev((ZOLO_PRECISION) eps, n, type); | ||||
|  | ||||
|   printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"  | ||||
| 	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION) | ||||
| 	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION) | ||||
| 	 "\tPRECISION = " STRINGIFY(PRECISION) | ||||
| 	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION) | ||||
| 	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n" | ||||
| 	 "\tDelta = %g (maximum error)\n\n" | ||||
| 	 "\tA = %g (overall factor)\n", | ||||
| @@ -681,15 +681,15 @@ int main(int argc, char** argv) { | ||||
|     x = 2.4 * (float) m / plotpts - 1.2; | ||||
|     if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) { | ||||
|       /* skip x = 0 for type 1, as R(0) is singular */ | ||||
|       y = zolotarev_eval((PRECISION) x, rdata); | ||||
|       y = zolotarev_eval((ZOLO_PRECISION) x, rdata); | ||||
|       fprintf(plot_function, "%g %g\n", x, (float) y); | ||||
|       fprintf(plot_error, "%g %g\n", | ||||
| 	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta)); | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y) | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y) | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y) | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) { | ||||
| 	maxypferr = MAX(maxypferr, fabs(ypferr)); | ||||
|   | ||||
| @@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx); | ||||
| #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> | ||||
|  | ||||
| #ifndef ZOLOTAREV_INTERNAL | ||||
| #ifndef PRECISION | ||||
| #define PRECISION double | ||||
| #ifndef ZOLO_PRECISION | ||||
| #define ZOLO_PRECISION double | ||||
| #endif | ||||
| #define ZPRECISION PRECISION | ||||
| #define ZPRECISION ZOLO_PRECISION | ||||
| #define ZOLOTAREV_DATA zolotarev_data | ||||
| #endif | ||||
|  | ||||
| @@ -77,8 +77,8 @@ typedef struct { | ||||
|  * zolotarev_data structure. The arguments must satisfy the constraints that | ||||
|  * epsilon > 0, n > 0, and type = 0 or 1. */ | ||||
|  | ||||
| ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type); | ||||
| ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type); | ||||
| void zolotarev_free(zolotarev_data *zdata); | ||||
| #endif | ||||
|  | ||||
| @@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata); | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
							
								
								
									
										34
									
								
								Grid/algorithms/blas/BatchedBlas.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/algorithms/blas/BatchedBlas.cc
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| gridblasHandle_t GridBLAS::gridblasHandle; | ||||
| int              GridBLAS::gridblasInit; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
							
								
								
									
										727
									
								
								Grid/algorithms/blas/BatchedBlas.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										727
									
								
								Grid/algorithms/blas/BatchedBlas.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,727 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipblas/hipblas.h> | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| #include <cublas_v2.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| #if 0 | ||||
| #define GRID_ONE_MKL | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////	   | ||||
| // Need to rearrange lattice data to be in the right format for a | ||||
| // batched multiply. Might as well make these static, dense packed | ||||
| /////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef GRID_HIP | ||||
|   typedef hipblasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| #endif | ||||
|  | ||||
| enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ; | ||||
|  | ||||
| class GridBLAS { | ||||
| public: | ||||
|  | ||||
|    | ||||
|   static gridblasHandle_t gridblasHandle; | ||||
|   static int            gridblasInit; | ||||
|    | ||||
|   static void Init(void) | ||||
|   { | ||||
|     if ( ! gridblasInit ) { | ||||
| #ifdef GRID_CUDA | ||||
|       std::cout << "cublasCreate"<<std::endl; | ||||
|       cublasCreate(&gridblasHandle); | ||||
|       cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|       std::cout << "hipblasCreate"<<std::endl; | ||||
|       hipblasCreate(&gridblasHandle); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       cl::sycl::cpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // Force construct once | ||||
|   GridBLAS() { Init(); }; | ||||
|   ~GridBLAS() { }; | ||||
|    | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // BLAS GEMM conventions: | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // - C = alpha A * B + beta C | ||||
|   // Dimensions: | ||||
|   // - C_m.n | ||||
|   // - A_m.k | ||||
|   // - B_k.n | ||||
|   // - Flops = 8 M N K | ||||
|   // - Bytes = 2*sizeof(word) * (MN+MK+KN) | ||||
|   // M=60, N=12 | ||||
|   // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   void synchronise(void) | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|     gridblasHandle->wait(); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexD> alpha_p(1); | ||||
|     static deviceVector<ComplexD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     RealD t0=usecond(); | ||||
|     //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasZgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Amk[0], lda, | ||||
| 				   (hipblasDoubleComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasDoubleComplex *) &beta_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasZgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuDoubleComplex *) &alpha_p[0], | ||||
| 				  (cuDoubleComplex **)&Amk[0], lda, | ||||
| 				  (cuDoubleComplex **)&Bkn[0], ldb, | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     //    synchronise(); | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<ComplexF> alpha_p(1); | ||||
|     static deviceVector<ComplexF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasCgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasComplex *) &alpha_p[0], | ||||
| 				   (hipblasComplex **)&Amk[0], lda, | ||||
| 				   (hipblasComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasComplex *) &beta_p[0], | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuComplex *) &alpha_p[0], | ||||
| 				  (cuComplex **)&Amk[0], lda, | ||||
| 				  (cuComplex **)&Bkn[0], ldb, | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     ComplexF alphaf(real(alpha),imag(alpha)); | ||||
|     ComplexF betaf(real(beta),imag(beta)); | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexF c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Single precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<RealF> alpha_p(1); | ||||
|     static deviceVector<RealF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasSgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (float *) &alpha_p[0], | ||||
| 				   (float **)&Amk[0], lda, | ||||
| 				   (float **)&Bkn[0], ldb, | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasSgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (float *) &alpha_p[0], | ||||
| 				  (float **)&Amk[0], lda, | ||||
| 				  (float **)&Bkn[0], ldb, | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<RealD> alpha_p(1); | ||||
|     static deviceVector<RealD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasDgemmBatched(gridblasHandle, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   m,n,k, | ||||
| 				   (double *) &alpha_p[0], | ||||
| 				   (double **)&Amk[0], lda, | ||||
| 				   (double **)&Bkn[0], ldb, | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasDgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (double *) &alpha_p[0], | ||||
| 				  (double **)&Amk[0], lda, | ||||
| 				  (double **)&Bkn[0], ldb, | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     /* | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t batchCount64=batchCount; | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator, | ||||
|       onemkl::transpose::N, | ||||
|       onemkl::transpose::N, | ||||
|       &m64,&n64,&k64, | ||||
|       (double *) &alpha_p[0], | ||||
|       (double **)&Amk[0], lda, | ||||
|       (double **)&Bkn[0], ldb, | ||||
|       (double *) &beta_p[0], | ||||
|       (double **)&Cmn[0], ldc, | ||||
|       1,&batchCount64); | ||||
|      */ | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|  | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Strided case used by benchmark, but generally unused in Grid | ||||
|   // Keep a code example in double complex, but don't generate the single and real variants for now | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   void gemmStridedBatched(int m,int n, int k, | ||||
| 			  ComplexD alpha, | ||||
| 			  ComplexD* Amk,  // pointer list to matrices | ||||
| 			  ComplexD* Bkn, | ||||
| 			  ComplexD beta, | ||||
| 			  ComplexD* Cmn, | ||||
| 			  int batchCount) | ||||
|   { | ||||
|     // Use C-row major storage, so transpose calls | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     int sda = m*k; | ||||
|     int sdb = k*n; | ||||
|     int sdc = m*n; | ||||
|     deviceVector<ComplexD> alpha_p(1); | ||||
|     deviceVector<ComplexD> beta_p(1); | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgemmStridedBatched(gridblasHandle, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  m,n,k, | ||||
| 					  (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 					  (hipblasDoubleComplex *) Amk, lda, sda, | ||||
| 					  (hipblasDoubleComplex *) Bkn, ldb, sdb, | ||||
| 					  (hipblasDoubleComplex *) &beta_p[0], | ||||
| 					  (hipblasDoubleComplex *) Cmn, ldc, sdc, | ||||
| 					  batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasZgemmStridedBatched(gridblasHandle, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      m,n,k, | ||||
| 			      (cuDoubleComplex *) &alpha_p[0], | ||||
| 			      (cuDoubleComplex *) Amk, lda, sda, | ||||
| 			      (cuDoubleComplex *) Bkn, ldb, sdb, | ||||
| 			      (cuDoubleComplex *) &beta_p[0], | ||||
| 			      (cuDoubleComplex *) Cmn, ldc, sdc, | ||||
| 			      batchCount); | ||||
| #endif | ||||
| #if defined(GRID_SYCL) || defined(GRID_ONE_MKL) | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						m,n,k, | ||||
| 						alpha, | ||||
| 						(const ComplexD *)Amk,lda,sda, | ||||
| 						(const ComplexD *)Bkn,ldb,sdb, | ||||
| 						beta, | ||||
| 						(ComplexD *)Cmn,ldc,sdc, | ||||
| 						batchCount); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|      // Need a default/reference implementation | ||||
|      for (int p = 0; p < batchCount; ++p) { | ||||
|        for (int mm = 0; mm < m; ++mm) { | ||||
| 	 for (int nn = 0; nn < n; ++nn) { | ||||
| 	   ComplexD c_mn(0.0); | ||||
| 	   for (int kk = 0; kk < k; ++kk) | ||||
| 	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb]; | ||||
| 	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc]; | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|     int32_t N_A = M*K*BATCH; | ||||
|     int32_t N_B = K*N*BATCH; | ||||
|     int32_t N_C = M*N*BATCH; | ||||
|     deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); | ||||
|     ComplexD alpha(1.0); | ||||
|     ComplexD beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K*BATCH; | ||||
|     int ncall=10; | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemmStridedBatched(M,N,K, | ||||
| 			 alpha, | ||||
| 			 &A[0], // m x k  | ||||
| 			 &B[0], // k x n | ||||
| 			 beta,  | ||||
| 			 &C[0], // m x n | ||||
| 			 BATCH); | ||||
|     } | ||||
|     synchronise(); | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     flops = 8.0*M*N*K*BATCH*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										513
									
								
								Grid/algorithms/deflation/MultiRHSBlockProject.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										513
									
								
								Grid/algorithms/deflation/MultiRHSBlockProject.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,513 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /*  | ||||
|    MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
| //template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| //inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| //			   const VLattice &fineData, | ||||
| //			   const VLattice &Basis) | ||||
| */ | ||||
|  | ||||
| template<class Field> | ||||
| class MultiRHSBlockProject | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|   typedef Field Fermion; | ||||
|  | ||||
|   int nbasis; | ||||
|   GridBase *coarse_grid; | ||||
|   GridBase *fine_grid; | ||||
|   uint64_t block_vol; | ||||
|   uint64_t fine_vol; | ||||
|   uint64_t coarse_vol; | ||||
|   uint64_t words; | ||||
|  | ||||
|   // Row major layout "C" order: | ||||
|   // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|   // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|   // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Vxb = [v1(x)][..][vn(x)] ... x coarse vol | ||||
|    * | ||||
|    * Fxr = [r1(x)][..][rm(x)] ... x coarse vol | ||||
|    * | ||||
|    * Block project: | ||||
|    * C_br = V^dag F x coarse vol | ||||
|    * | ||||
|    * Block promote: | ||||
|    * F_xr = Vxb Cbr x coarse_vol | ||||
|    */   | ||||
|   deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol  | ||||
|   deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs | ||||
|  | ||||
|   RealD blasNorm2(deviceVector<scalar> &blas) | ||||
|   { | ||||
|     scalar ss(0.0); | ||||
|     std::vector<scalar> tmp(blas.size()); | ||||
|     acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar)); | ||||
|     for(int64_t s=0;s<blas.size();s++){ | ||||
|       ss=ss+tmp[s]*adj(tmp[s]); | ||||
|     } | ||||
|     coarse_grid->GlobalSum(ss); | ||||
|     return real(ss); | ||||
|   } | ||||
|    | ||||
|   MultiRHSBlockProject(){}; | ||||
|  ~MultiRHSBlockProject(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nbasis=0; | ||||
|     coarse_grid=nullptr; | ||||
|     fine_grid=nullptr; | ||||
|     fine_vol=0; | ||||
|     block_vol=0; | ||||
|     coarse_vol=0; | ||||
|     words=0; | ||||
|     BLAS_V.resize(0); | ||||
|     BLAS_F.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid) | ||||
|   { | ||||
|     nbasis=_nbasis; | ||||
|  | ||||
|     fine_grid=_fgrid; | ||||
|     coarse_grid=_cgrid; | ||||
|  | ||||
|     fine_vol   = fine_grid->lSites(); | ||||
|     coarse_vol = coarse_grid->lSites(); | ||||
|     block_vol = fine_vol/coarse_vol; | ||||
|      | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|  | ||||
|     BLAS_V.resize (fine_vol * words * nbasis ); | ||||
|   } | ||||
|   void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename Field::vector_object vobj; | ||||
|     //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar)); | ||||
|  | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( fineData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p  = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       //      std::cout << "sz "<<sz<<std::endl; | ||||
|       //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl; | ||||
|       assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words); | ||||
|       uint64_t lwords= words; // local variable for copy in to GPU | ||||
|       accelerator_for(sf,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  // Fine site to fine coor | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc;// coarse site | ||||
| 	  int sb;// block site | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
|           scalar_object data = extractLane(lane,fineData[sf]); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol | ||||
| 	  // coarse oSite x block vole x lanes | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  //	  assert(site*lwords<sz); | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|       //      std::cout << " BlockProjector imported vector"<<v<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     typedef typename Field::vector_object vobj; | ||||
|  | ||||
|     int nvec = vecs.size(); | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|  | ||||
|     //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|  | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       autoView( fineData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p    = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|       uint64_t lwords = words; | ||||
|       //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl; | ||||
|       //      std::cout << " lwords is "<<lwords << std::endl; | ||||
|       //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl; | ||||
|       // loop over fine sites | ||||
|       accelerator_for(sf,osites,vobj::Nsimd(),{ | ||||
|        | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<vobj::Nsimd();lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc; | ||||
| 	  int sb; | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol 	   | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  scalar_object data = *ptr; | ||||
|  | ||||
| 	  insertLane(lane,fineData[sf],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|  | ||||
|     //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
|            // C_br per site | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	     | ||||
| 	    coarse_scalar_object data = extractLane(lane,coarseData[sc]); | ||||
|  | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
|  | ||||
| 	    *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|     //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|      | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| 	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... }); | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
| 	    coarse_scalar_object data = *ptr; | ||||
| 	    insertLane(lane,coarseData[sc],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   void ImportBasis(std::vector < Field > &vecs) | ||||
|   { | ||||
|     //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl; | ||||
|     ImportFineGridVectors(vecs,BLAS_V); | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl; | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources to same data layout | ||||
|     ///////////////////////////////////////////// | ||||
|     //    std::cout << "BlockProject import fine"<<std::endl; | ||||
|     ImportFineGridVectors(fine,BLAS_F); | ||||
|      | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     //    std::cout << "BlockProject pointers"<<std::endl; | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|  | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     //    std::cout << "BlockProject BLAS"<<std::endl; | ||||
|     int64_t vw = block_vol * words; | ||||
|     ///////////////////////////////////////// | ||||
|     // C_br = V^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nbasis,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Vd, | ||||
| 		     Fd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|     ExportCoarseGridVectors(coarse, BLAS_C); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|  | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ImportCoarseGridVectors(coarse, BLAS_C); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // Block promote: | ||||
|     // F_xr = Vxb Cbr (x coarse_vol) | ||||
|     ///////////////////////////////////////// | ||||
|  | ||||
|     int64_t vw = block_vol * words; | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nbasis, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Vd, | ||||
| 		     Cd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Fd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << " blas call done"<<std::endl; | ||||
|      | ||||
|     ExportFineGridVectors(fine, BLAS_F); | ||||
|     //    std::cout << " exported "<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										233
									
								
								Grid/algorithms/deflation/MultiRHSDeflation.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										233
									
								
								Grid/algorithms/deflation/MultiRHSDeflation.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,233 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /* Need helper object for BLAS accelerated mrhs projection | ||||
|  | ||||
|    i) MultiRHS Deflation | ||||
|  | ||||
|    Import Evecs -> nev x vol x internal  | ||||
|    Import vector of Lattice objects -> nrhs x vol x internal | ||||
|    => Cij (nrhs x Nev) via GEMM. | ||||
|    => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM) | ||||
|    Export | ||||
|  | ||||
|     | ||||
|    ii) MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
|    iii)   Alternate interface:  | ||||
|    Import higher dim Lattice object-> vol x nrhs layout | ||||
|     | ||||
| */ | ||||
| template<class Field> | ||||
| class MultiRHSDeflation | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|  | ||||
|   int nev; | ||||
|   std::vector<RealD> eval; | ||||
|   GridBase *grid; | ||||
|   uint64_t vol; | ||||
|   uint64_t words; | ||||
|    | ||||
|   deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda)) | ||||
|   deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources | ||||
|   deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients  | ||||
|    | ||||
|   MultiRHSDeflation(){}; | ||||
|   ~MultiRHSDeflation(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nev=0; | ||||
|     grid=nullptr; | ||||
|     vol=0; | ||||
|     words=0; | ||||
|     BLAS_E.resize(0); | ||||
|     BLAS_R.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|     BLAS_G.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nev,GridBase *_grid) | ||||
|   { | ||||
|     nev=_nev; | ||||
|     grid=_grid; | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     eval.resize(nev); | ||||
|     BLAS_E.resize (vol * words * nev ); | ||||
|     std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl; | ||||
|   } | ||||
|   void ImportEigenVector(Field &evec,RealD &_eval, int ev) | ||||
|   { | ||||
|     //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl; | ||||
|     assert(ev<eval.size()); | ||||
|     eval[ev] = _eval; | ||||
|  | ||||
|     int64_t offset = ev*vol*words; | ||||
|     autoView(v,evec,AcceleratorRead); | ||||
|     acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol); | ||||
|  | ||||
|   } | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval) | ||||
|   { | ||||
|     ImportEigenBasis(evec,_eval,0,evec.size()); | ||||
|   } | ||||
|   // Could use to import a batch of eigenvectors | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev) | ||||
|   { | ||||
|     assert(_ev0+_nev<=evec.size()); | ||||
|  | ||||
|     Allocate(_nev,evec[0].Grid()); | ||||
|      | ||||
|     // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1 | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl; | ||||
|       ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e); | ||||
|     } | ||||
|   } | ||||
|   void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess) | ||||
|   { | ||||
|     int nrhs = source.size(); | ||||
|     assert(source.size()==guess.size()); | ||||
|     assert(grid == guess[0].Grid()); | ||||
|     conformable(guess[0],source[0]); | ||||
|  | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_R.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_G.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nev * nrhs);// cost free if size doesn't change | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     //    for(int r=0;r<nrhs;r++){ | ||||
|     //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl; | ||||
|     //    } | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,source[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Exe = [e1(x)][..][en(x)] | ||||
|    * | ||||
|    * Rxr = [r1(x)][..][rm(x)] | ||||
|    * | ||||
|    * C_er = E^dag R | ||||
|    * C_er = C_er / lambda_e  | ||||
|    * G_xr = Exe Cer | ||||
|    */ | ||||
|     deviceVector<scalar *> Ed(1); | ||||
|     deviceVector<scalar *> Rd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|     deviceVector<scalar *> Gd(1); | ||||
|  | ||||
|     scalar * Eh = & BLAS_E[0]; | ||||
|     scalar * Rh = & BLAS_R[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|     scalar * Gh = & BLAS_G[0]; | ||||
|  | ||||
|     acceleratorPut(Ed[0],Eh); | ||||
|     acceleratorPut(Rd[0],Rh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|     acceleratorPut(Gd[0],Gh); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // C_er = E^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nev,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Ed, | ||||
| 		     Rd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     assert(BLAS_C.size()==nev*nrhs); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|     grid->GlobalSumVector(&HOST_C[0],nev*nrhs); | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       RealD lam(1.0/eval[e]); | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	int off = e+nev*r; | ||||
| 	HOST_C[off]=HOST_C[off] * lam; | ||||
| 	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl; | ||||
|       } | ||||
|     } | ||||
|     acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|  | ||||
|      | ||||
|     ///////////////////////////////////////// | ||||
|     // Guess G_xr = Exe Cer | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
| 		     vw,nrhs,nev, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Ed, // x . nev | ||||
| 		     Cd, // nev . nrhs | ||||
| 		     ComplexD(0.0), | ||||
| 		     Gd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     /////////////////////////////////////// | ||||
|     // Copy out the multirhs | ||||
|     /////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,guess[r],AcceleratorWrite); | ||||
|       acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|     RealD t1 = usecond(); | ||||
|     std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -33,109 +33,111 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Deflation methods considered | ||||
|    *      -- Solve P A x = P b        [ like Luscher ] | ||||
|    * DEF-1        M P A x = M P b     [i.e. left precon] | ||||
|    * DEF-2        P^T M A x = P^T M b | ||||
|    * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q] | ||||
|    * ADEF-2       Preconditioner = P^T M + Q | ||||
|    * BNN          Preconditioner = P^T M P + Q | ||||
|    * BNN2         Preconditioner = M P + P^TM +Q - M P A M  | ||||
|    *  | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    * Vout = x | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // abstract base | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCG : public LinearFunction<Field> | ||||
| { | ||||
|  public: | ||||
|   int verbose; | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   const int mmax = 5; | ||||
|   GridBase *grid; | ||||
|   GridBase *coarsegrid; | ||||
|  | ||||
|   LinearOperatorBase<Field>   *_Linop | ||||
|   OperatorFunction<Field>     *_Smoother, | ||||
|   LinearFunction<CoarseField> *_CoarseSolver; | ||||
|  | ||||
|   // Need somthing that knows how to get from Coarse to fine and back again | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelFlexiblePcg(RealD tol, | ||||
| 		     Integer maxit, | ||||
| 		     LinearOperatorBase<Field> *Linop, | ||||
| 		     LinearOperatorBase<Field> *SmootherLinop, | ||||
| 		     OperatorFunction<Field>   *Smoother, | ||||
| 		     OperatorFunction<CoarseField>  CoarseLinop | ||||
| 		     ) :  | ||||
|   TwoLevelCG(RealD tol, | ||||
| 	     Integer maxit, | ||||
| 	     LinearOperatorBase<Field>   &FineLinop, | ||||
| 	     LinearFunction<Field>       &Smoother, | ||||
| 	     GridBase *fine) :  | ||||
|       Tolerance(tol),  | ||||
|       MaxIterations(maxit), | ||||
|       _Linop(Linop), | ||||
|       _PreconditionerLinop(PrecLinop), | ||||
|       _Preconditioner(Preconditioner) | ||||
|   {  | ||||
|     verbose=0; | ||||
|       _FineLinop(FineLinop), | ||||
|       _Smoother(Smoother) | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|  | ||||
|   // The Pcg routine is common to all, but the various matrices differ from derived  | ||||
|   // implementation to derived implmentation | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     grid             = src.Grid(); | ||||
|  | ||||
|    | ||||
|   virtual void operator() (const Field &src, Field &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl; | ||||
|     RealD f; | ||||
|     RealD rtzp,rtz,a,d,b; | ||||
|     RealD rptzp; | ||||
|     RealD tn; | ||||
|     RealD guess = norm2(psi); | ||||
|     RealD ssq   = norm2(src); | ||||
|     RealD rsq   = ssq*Tolerance*Tolerance; | ||||
|      | ||||
|  | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     std::vector<Field> p  (mmax,grid); | ||||
|     int mmax = 5; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<Field> mmp(mmax,grid); | ||||
|     std::vector<RealD> pAp(mmax); | ||||
|  | ||||
|     Field x  (grid); x = psi; | ||||
|     Field z  (grid); | ||||
|     Field z(grid); | ||||
|     Field tmp(grid); | ||||
|     Field r  (grid); | ||||
|     Field mu (grid); | ||||
|    | ||||
|     Field  mp (grid); | ||||
|     Field  r  (grid); | ||||
|     Field  mu (grid); | ||||
|      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl; | ||||
|     //Initial residual computation & set up | ||||
|     RealD guess   = norm2(x); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl; | ||||
|     RealD src_nrm = norm2(src); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl; | ||||
|      | ||||
|     if ( src_nrm == 0.0 ) { | ||||
|       std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl; | ||||
|       x=Zero(); | ||||
|     } | ||||
|     RealD tn; | ||||
|      | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     x=src; | ||||
|     Vstart(x,src); | ||||
|  | ||||
|      | ||||
|     // r0 = b -A x0 | ||||
|     HermOp(x,mmp); // Shouldn't this be something else? | ||||
|     _FineLinop.HermOp(x,mmp[0]); | ||||
|     axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0 | ||||
|     { | ||||
|       double n1 = norm2(x); | ||||
|       double n2 = norm2(mmp[0]); | ||||
|       double n3 = norm2(r); | ||||
|       std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl; | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     M1(r,z,tmp,mp,SmootherMirs); | ||||
|     PcgM1(r,z); | ||||
|     rtzp =real(innerProduct(r,z)); | ||||
|  | ||||
|      | ||||
|     /////////////////////////////////////// | ||||
|     // Solve for Mss mu = P A z and set p = z-mu | ||||
|     // Def2: p = 1 - Q Az = Pright z  | ||||
|     // Def2 p = 1 - Q Az = Pright z | ||||
|     // Other algos M2 is trivial | ||||
|     /////////////////////////////////////// | ||||
|     M2(z,p[0]); | ||||
|     PcgM2(z,p[0]); | ||||
|  | ||||
|     RealD ssq =  norm2(src); | ||||
|     RealD rsq =  ssq*Tolerance*Tolerance; | ||||
|  | ||||
|     std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n"; | ||||
|  | ||||
|     Field pp(grid); | ||||
|  | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
| @@ -143,31 +145,46 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       rtz=rtzp; | ||||
|       d= M3(p[peri_k],mp,mmp[peri_k],tmp); | ||||
|       d= PcgM3(p[peri_k],mmp[peri_k]); | ||||
|       a = rtz/d; | ||||
|      | ||||
|       // Memorise this | ||||
|       pAp[peri_k] = d; | ||||
|  | ||||
|        | ||||
|       axpy(x,a,p[peri_k],x); | ||||
|       RealD rn = axpy_norm(r,-a,mmp[peri_k],r); | ||||
|  | ||||
|       // Compute z = M x | ||||
|       M1(r,z,tmp,mp); | ||||
|  | ||||
|       PcgM1(r,z); | ||||
|        | ||||
|       { | ||||
| 	RealD n1,n2; | ||||
| 	n1=norm2(r); | ||||
| 	n2=norm2(z); | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n"; | ||||
|       } | ||||
|       rtzp =real(innerProduct(r,z)); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n"; | ||||
|  | ||||
|       M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|       //    PcgM2(z,p[0]); | ||||
|       PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|        | ||||
|       p[peri_kp]=mu; | ||||
|  | ||||
|       p[peri_kp]=p[peri_k]; | ||||
|  | ||||
|       // Standard search direction  p -> z + b p    ; b =  | ||||
|       // Standard search direction  p -> z + b p     | ||||
|       b = (rtzp)/rtz; | ||||
|  | ||||
|        | ||||
|       int northog; | ||||
|       // k=zero  <=> peri_kp=1;        northog = 1 | ||||
|       // k=1     <=> peri_kp=2;        northog = 2 | ||||
|       // ...               ...                  ... | ||||
|       // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1 | ||||
|       // k=mmax-1<=> peri_kp=0;        northog = 1 | ||||
|  | ||||
|       //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm | ||||
|       northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
|      | ||||
|       std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
|       for(int back=0; back < northog; back++){ | ||||
| 	int peri_back = (k-back)%mmax; | ||||
| 	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp])); | ||||
| @@ -176,75 +193,324 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
|       } | ||||
|  | ||||
|       RealD rrn=sqrt(rn/ssq); | ||||
|       std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl; | ||||
|       RealD rtn=sqrt(rtz/ssq); | ||||
|       RealD rtnp=sqrt(rtzp/ssq); | ||||
|  | ||||
|       std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if ( rn <= rsq ) {  | ||||
|  | ||||
| 	HermOp(x,mmp); // Shouldn't this be something else? | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	 | ||||
| 	_FineLinop.HermOp(x,mmp[0]);			   | ||||
| 	axpy(tmp,-1.0,src,mmp[0]); | ||||
| 	 | ||||
| 	RealD psinorm = sqrt(norm2(x)); | ||||
| 	RealD srcnorm = sqrt(norm2(src)); | ||||
| 	RealD tmpnorm = sqrt(norm2(tmp)); | ||||
| 	RealD true_residual = tmpnorm/srcnorm; | ||||
| 	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl; | ||||
| 	return k; | ||||
| 	RealD  mmpnorm = sqrt(norm2(mmp[0])); | ||||
| 	RealD  xnorm   = sqrt(norm2(x)); | ||||
| 	RealD  srcnorm = sqrt(norm2(src)); | ||||
| 	RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	std::cout<<GridLogMessage | ||||
| 	       <<"HDCG: true residual is "<<true_residual | ||||
| 	       <<" solution "<<xnorm | ||||
| 	       <<" source "<<srcnorm | ||||
| 	       <<" mmp "<<mmpnorm	   | ||||
| 	       <<std::endl; | ||||
|        | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     // Non-convergence | ||||
|     assert(0); | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     RealD  xnorm   = sqrt(norm2(x)); | ||||
|     RealD  srcnorm = sqrt(norm2(src)); | ||||
|     std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|      | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       PcgM1(r,z); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl; | ||||
|       grid->Barrier(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	 | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void M(Field & in,Field & out,Field & tmp) { | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) | ||||
|   { | ||||
|     std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<in.size();rhs++){ | ||||
|       this->PcgM1(in[rhs],out[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void PcgM1(Field & in, Field & out)     =0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     std::cout << "Vstart default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<x.size();rhs++){ | ||||
|       this->Vstart(x[rhs],src[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void Vstart(Field & x,const Field & src)=0; | ||||
|  | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual void M1(Field & in, Field & out) {// the smoother | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| }; | ||||
|    | ||||
| template<class Field, class CoarseField, class Aggregation> | ||||
| class TwoLevelADEF2 : public TwoLevelCG<Field> | ||||
| { | ||||
|  public: | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Need something that knows how to get from Coarse to fine and back again | ||||
|   //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|   //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *coarsegrid; | ||||
|   Aggregation &_Aggregates;                     | ||||
|   LinearFunction<CoarseField> &_CoarseSolver; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPrecise; | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelADEF2(RealD tol, | ||||
| 		Integer maxit, | ||||
| 		LinearOperatorBase<Field>    &FineLinop, | ||||
| 		LinearFunction<Field>        &Smoother, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolver, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolverPrecise, | ||||
| 		Aggregation &Aggregates | ||||
| 		) : | ||||
|       TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid), | ||||
|       _CoarseSolver(CoarseSolver), | ||||
|       _CoarseSolverPrecise(CoarseSolverPrecise), | ||||
|       _Aggregates(Aggregates) | ||||
|   { | ||||
|     coarsegrid = Aggregates.CoarseGrid; | ||||
|   }; | ||||
|  | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("MultiGridPreconditioner "); | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     Field tmp(grid); | ||||
|     Field Min(grid); | ||||
|  | ||||
|     PcgM(in,Min); // Smoother call | ||||
|     Field tmp(this->grid); | ||||
|     Field Min(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|  | ||||
|     HermOp(Min,out); | ||||
|     GridStopWatch SmootherTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     SmootherTimer.Start(); | ||||
|     this->_Smoother(in,Min); | ||||
|     SmootherTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     this->_FineLinop.HermOp(Min,out); | ||||
|     MatrixTimer.Stop(); | ||||
|     axpy(tmp,-1.0,out,in);          // tmp  = in - A Min | ||||
|  | ||||
|     ProjectToSubspace(tmp,PleftProj);      | ||||
|     ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     GridStopWatch ProjTimer; | ||||
|     GridStopWatch CoarseTimer; | ||||
|     GridStopWatch PromTimer; | ||||
|     ProjTimer.Start(); | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,tmp);      | ||||
|     ProjTimer.Stop(); | ||||
|     CoarseTimer.Start(); | ||||
|     this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     CoarseTimer.Stop(); | ||||
|     PromTimer.Start(); | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     PromTimer.Stop(); | ||||
|     std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|     axpy(out,1.0,Min,tmp); // Min+tmp | ||||
|   } | ||||
|  | ||||
|   virtual void M2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|     // Must override for Def2 only | ||||
|     //  case PcgDef2: | ||||
|     //    Pright(in,out); | ||||
|     //    break; | ||||
|   } | ||||
|  | ||||
|   virtual RealD M3(const Field & p, Field & mmp){ | ||||
|     double d,dd; | ||||
|     HermOpAndNorm(p,mmp,d,dd); | ||||
|     return dd; | ||||
|     // Must override for Def1 only | ||||
|     //  case PcgDef1: | ||||
|     //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no | ||||
|     //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes | ||||
|     //    Pleft(mp,mmp); | ||||
|     //    d=real(linop_d->inner(p,mmp)); | ||||
|   } | ||||
|  | ||||
|   virtual void VstartDef2(Field & xconst Field & src){ | ||||
|     //case PcgDef2: | ||||
|     //case PcgAdef2:  | ||||
|     //case PcgAdef2f: | ||||
|     //case PcgV11f: | ||||
|   virtual void Vstart(Field & x,const Field & src) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl; | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
| @@ -256,142 +522,78 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     Field r(grid); | ||||
|     Field mmp(grid); | ||||
|      | ||||
|     HermOp(x,mmp); | ||||
|     axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x | ||||
|     ProjectToSubspace(r,PleftProj);      | ||||
|     ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     PromoteFromSubspace(PleftMss_proj,mmp);   | ||||
|     x=x+mmp; | ||||
|     Field r(this->grid); | ||||
|     Field mmp(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|  | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl; | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,src);      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl; | ||||
|     this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl; | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);   | ||||
|  | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|    | ||||
| template<class Field> | ||||
| class TwoLevelADEF1defl : public TwoLevelCG<Field> | ||||
| { | ||||
| public: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
|    | ||||
|   TwoLevelADEF1defl(RealD tol, | ||||
| 		   Integer maxit, | ||||
| 		   LinearOperatorBase<Field>   &FineLinop, | ||||
| 		   LinearFunction<Field>   &Smoother, | ||||
| 		   std::vector<Field> &_evec, | ||||
| 		   std::vector<RealD> &_eval) :  | ||||
|     TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()), | ||||
|     evec(_evec), | ||||
|     eval(_eval) | ||||
|   {}; | ||||
|  | ||||
|   // Can just inherit existing M2 | ||||
|   // Can just inherit existing M3 | ||||
|  | ||||
|   // Simple vstart - do nothing | ||||
|   virtual void Vstart(Field & x,const Field & src){ | ||||
|     return; | ||||
|     x=src; // Could apply Q | ||||
|   }; | ||||
|  | ||||
|   // Override PcgM1 | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("EvecPreconditioner "); | ||||
|     int N=evec.size(); | ||||
|     Field Pin(this->grid); | ||||
|     Field Qin(this->grid); | ||||
|  | ||||
|     //MP  + Q = M(1-AQ) + Q = M | ||||
|     // // If we are eigenvector deflating in coarse space | ||||
|     // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i| | ||||
|     // // A Q = Sum_i |phi_i> <phi_i| | ||||
|     // // M(1-AQ) = M(1-proj) + Q | ||||
|     Qin.Checkerboard()=in.Checkerboard(); | ||||
|     Qin = Zero(); | ||||
|     Pin = in; | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       auto ip = TensorRemove(innerProduct(tmp,in)); | ||||
|       axpy(Qin, ip / eval[i],tmp,Qin); | ||||
|       axpy(Pin, -ip ,tmp,Pin); | ||||
|     } | ||||
|  | ||||
|     this->_Smoother(Pin,out); | ||||
|  | ||||
|     out = out + Qin; | ||||
|   } | ||||
| }; | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. Override in Def1 | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   virtual void   Vout  (Field & in, Field & out,Field & src){ | ||||
|     out = in; | ||||
|     //case PcgDef1: | ||||
|     //    //Qb + PT x | ||||
|     //    ProjectToSubspace(src,PleftProj);      | ||||
|     //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     //    PromoteFromSubspace(PleftMss_proj,tmp);   | ||||
|     //     | ||||
|     //    Pright(in,out); | ||||
|     //     | ||||
|     //    linop_d->axpy(out,tmp,out,1.0); | ||||
|     //    break; | ||||
|   } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Pright and Pleft are common to all implementations | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   virtual void Pright(Field & in,Field & out){ | ||||
|     // P_R  = [ 1              0 ]  | ||||
|     //        [ -Mss^-1 Msb    0 ]  | ||||
|     Field in_sbar(grid); | ||||
|  | ||||
|     ProjectToSubspace(in,PleftProj);      | ||||
|     PromoteFromSubspace(PleftProj,out);   | ||||
|     axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s  | ||||
|  | ||||
|     HermOp(in_sbar,out); | ||||
|     ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project) | ||||
|  | ||||
|     ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar  | ||||
|     PromoteFromSubspace(PleftMss_proj,out);     //  | ||||
|  | ||||
|     axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar | ||||
|   } | ||||
|   virtual void Pleft (Field & in,Field & out){ | ||||
|     // P_L  = [ 1  -Mbs Mss^-1]  | ||||
|     //        [ 0   0         ]  | ||||
|     Field in_sbar(grid); | ||||
|     Field    tmp2(grid); | ||||
|     Field    Mtmp(grid); | ||||
|  | ||||
|     ProjectToSubspace(in,PleftProj);      | ||||
|     PromoteFromSubspace(PleftProj,out);   | ||||
|     axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s | ||||
|  | ||||
|     ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s | ||||
|     PromoteFromSubspace(PleftMss_proj,out); | ||||
|  | ||||
|     HermOp(out,Mtmp); | ||||
|  | ||||
|     ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1} | ||||
|     PromoteFromSubspace(PleftProj,tmp2); | ||||
|  | ||||
|     axpy(out,-1.0,tmp2,Mtmp); | ||||
|     axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp){ | ||||
|  | ||||
|   }  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){ | ||||
|  | ||||
|   } | ||||
|   virtual void M2(Field & in, Field & out){ | ||||
|  | ||||
|   } | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){ | ||||
|  | ||||
|   } | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){ | ||||
|  | ||||
|   } | ||||
| } | ||||
| /* | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
|   virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
| */ | ||||
| #endif | ||||
|   | ||||
							
								
								
									
										414
									
								
								Grid/algorithms/iterative/AdefMrhs.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										414
									
								
								Grid/algorithms/iterative/AdefMrhs.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,414 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/AdefGeneric.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
|   /* | ||||
|    * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv.  | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCGmrhs | ||||
| { | ||||
|  public: | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   GridBase *grid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|  | ||||
|   GridStopWatch ProjectTimer; | ||||
|   GridStopWatch PromoteTimer; | ||||
|   GridStopWatch DeflateTimer; | ||||
|   GridStopWatch CoarseTimer; | ||||
|   GridStopWatch FineTimer; | ||||
|   GridStopWatch SmoothTimer; | ||||
|   GridStopWatch InsertTimer; | ||||
|  | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelCGmrhs(RealD tol, | ||||
| 		 Integer maxit, | ||||
| 		 LinearOperatorBase<Field>   &FineLinop, | ||||
| 		 LinearFunction<Field>       &Smoother, | ||||
| 		 GridBase *fine) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     _FineLinop(FineLinop), | ||||
|     _Smoother(Smoother) | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|    | ||||
|   // Vector case | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|  | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|  | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     ProjectTimer.Reset(); | ||||
|     PromoteTimer.Reset(); | ||||
|     DeflateTimer.Reset(); | ||||
|     CoarseTimer.Reset(); | ||||
|     SmoothTimer.Reset(); | ||||
|     FineTimer.Reset(); | ||||
|     InsertTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch M1Timer; | ||||
|     GridStopWatch M2Timer; | ||||
|     GridStopWatch M3Timer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|  | ||||
|     HDCGTimer.Start(); | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	M3Timer.Start(); | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	M3Timer.Stop(); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|  | ||||
| 	LinalgTimer.Start(); | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
| 	LinalgTimer.Stop(); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       M1Timer.Start(); | ||||
|       PcgM1(r,z); | ||||
|       M1Timer.Stop(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       LinalgTimer.Start(); | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0; | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field> | ||||
| { | ||||
| public: | ||||
|   GridBase *coarsegrid; | ||||
|   GridBase *coarsegridmrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverMrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs; | ||||
|   MultiRHSBlockProject<Field>    &_Projector; | ||||
|   MultiRHSDeflation<CoarseField> &_Deflator; | ||||
|  | ||||
|    | ||||
|   TwoLevelADEF2mrhs(RealD tol, | ||||
| 		    Integer maxit, | ||||
| 		    LinearOperatorBase<Field>    &FineLinop, | ||||
| 		    LinearFunction<Field>        &Smoother, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverMrhs, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs, | ||||
| 		    MultiRHSBlockProject<Field>    &Projector, | ||||
| 		    MultiRHSDeflation<CoarseField> &Deflator, | ||||
| 		    GridBase *_coarsemrhsgrid) : | ||||
|     TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid), | ||||
|     _CoarseSolverMrhs(CoarseSolverMrhs), | ||||
|     _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs), | ||||
|     _Projector(Projector), | ||||
|     _Deflator(Deflator) | ||||
|   { | ||||
|     coarsegrid = Projector.coarse_grid; | ||||
|     coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector | ||||
|   }; | ||||
|  | ||||
|   // Override Vstart | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     int nrhs=x.size(); | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
|     //                               = [1 - Ass_inv A] Guess + Assinv src | ||||
|     //                               = P^T guess + Assinv src  | ||||
|     //                               = Vstart  [Tang notation] | ||||
|     // This gives: | ||||
|     // W^T (src - A x_0) = src_s - A guess_s - r_s | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     this->_Projector.blockProject(src,PleftProj); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|      | ||||
|     this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->_Projector.blockPromote(x,PleftMss_proj); | ||||
|   } | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){ | ||||
|  | ||||
|     int nrhs=in.size(); | ||||
|  | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     std::vector<Field> tmp(nrhs,this->grid); | ||||
|     std::vector<Field> Min(nrhs,this->grid); | ||||
|  | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|  | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|  | ||||
|       this->SmoothTimer.Start(); | ||||
|       this->_Smoother(in[rhs],Min[rhs]); | ||||
|       this->SmoothTimer.Stop(); | ||||
|  | ||||
|       this->FineTimer.Start(); | ||||
|       this->_FineLinop.HermOp(Min[rhs],out[rhs]); | ||||
|  | ||||
|       axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min | ||||
|       this->FineTimer.Stop(); | ||||
|  | ||||
|     } | ||||
|  | ||||
|     this->ProjectTimer.Start(); | ||||
|     this->_Projector.blockProject(tmp,PleftProj); | ||||
|     this->ProjectTimer.Stop(); | ||||
|     this->DeflateTimer.Start(); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     this->DeflateTimer.Stop(); | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|  | ||||
|     this->CoarseTimer.Start(); | ||||
|     this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s | ||||
|     this->CoarseTimer.Stop(); | ||||
|  | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|     this->PromoteTimer.Start(); | ||||
|     this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]   | ||||
|     this->PromoteTimer.Stop(); | ||||
|     this->FineTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp | ||||
|     } | ||||
|     this->FineTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
|    | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -103,7 +103,7 @@ public: | ||||
|     // Check if guess is really REALLY good :) | ||||
|     if (cp <= rsq) { | ||||
|       TrueResidual = std::sqrt(a/ssq); | ||||
|       std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl; | ||||
|       std::cout << GridLogMessage << "ConjugateGradient guess is converged already : cp " << cp <<" rsq "<<rsq <<" ssq "<<ssq<< std::endl; | ||||
|       IterationsToComplete = 0;	 | ||||
|       return; | ||||
|     } | ||||
| @@ -183,13 +183,13 @@ public: | ||||
| 		  << "\tTrue residual " << true_residual | ||||
| 		  << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|         std::cout << GridLogPerformance << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
| 	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl; | ||||
|  | ||||
| @@ -207,7 +207,8 @@ public: | ||||
|  | ||||
|     TrueResidual = sqrt(norm2(p)/ssq); | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl; | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations | ||||
| 	      <<" residual "<< TrueResidual<< std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     IterationsToComplete = k; | ||||
|   | ||||
| @@ -144,7 +144,7 @@ public: | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s | ||||
| 	       <<" target resid "<<rsq[s]<<std::endl; | ||||
| 	       <<" target resid^2 "<<rsq[s]<<std::endl; | ||||
|       ps[s] = src; | ||||
|     } | ||||
|     // r and p for primary | ||||
|   | ||||
| @@ -166,16 +166,16 @@ public: | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       //      ps_d[s] = src_d; | ||||
|       precisionChangeFast(ps_f[s],src_d); | ||||
|       precisionChange(ps_f[s],src_d); | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChangeFast(p_f,p_d); | ||||
|     precisionChange(p_f,p_d); | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChangeFast(tmp_d,mmp_f); | ||||
|     precisionChange(tmp_d,mmp_f); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
| @@ -204,7 +204,7 @@ public: | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|       precisionChangeFast(psi_f[s],psi_d[s]); | ||||
|       precisionChange(psi_f[s],psi_d[s]); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
| @@ -225,7 +225,7 @@ public: | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChangeFast(r_f, r_d); | ||||
|       precisionChange(r_f, r_d); | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
| @@ -243,13 +243,13 @@ public: | ||||
|  | ||||
|       cp=c; | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChangeFast(p_f, p_d); //get back single prec search direction for linop | ||||
|       precisionChange(p_f, p_d); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChangeFast(mmp_d, mmp_f); // From Float to Double | ||||
|       precisionChange(mmp_d, mmp_f); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
| @@ -311,7 +311,7 @@ public: | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	for(int s=0;s<nshift;s++){ | ||||
| 	  precisionChangeFast(psi_d[s],psi_f[s]); | ||||
| 	  precisionChange(psi_d[s],psi_f[s]); | ||||
| 	} | ||||
|  | ||||
| 	 | ||||
|   | ||||
| @@ -211,7 +211,7 @@ public: | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     //    assert(norm2(tmp_d)< 1.0e-4); | ||||
|     assert(norm2(tmp_d)< 1.0); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|   | ||||
							
								
								
									
										1212
									
								
								Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1212
									
								
								Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -79,14 +79,16 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp | ||||
|     RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0); | ||||
|  | ||||
|     std::cout.precision(13); | ||||
|     std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] " | ||||
| 	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<std::endl; | ||||
|  | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|  | ||||
|     std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] " | ||||
| 	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<" target " << eresid*eresid << " conv " <<conv | ||||
| 	     <<std::endl; | ||||
|  | ||||
|     return conv; | ||||
|   } | ||||
| }; | ||||
| @@ -419,14 +421,15 @@ until convergence | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( Nconv < Nstop ) | ||||
|       if ( Nconv < Nstop ) { | ||||
| 	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl; | ||||
|  | ||||
| 	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl; | ||||
|       } | ||||
|       eval=eval2; | ||||
|        | ||||
|       //Keep only converged | ||||
|       eval.resize(Nconv);// Nstop? | ||||
|       evec.resize(Nconv,grid);// Nstop? | ||||
|       eval.resize(Nstop);// was Nconv | ||||
|       evec.resize(Nstop,grid);// was Nconv | ||||
|       basisSortInPlace(evec,eval,reverse); | ||||
|        | ||||
|     } | ||||
| @@ -456,7 +459,7 @@ until convergence | ||||
| 	    std::vector<Field>& evec, | ||||
| 	    Field& w,int Nm,int k) | ||||
|   { | ||||
|     std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl; | ||||
|     std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl; | ||||
|     const RealD tiny = 1.0e-20; | ||||
|     assert( k< Nm ); | ||||
|  | ||||
| @@ -464,7 +467,7 @@ until convergence | ||||
|  | ||||
|     Field& evec_k = evec[k]; | ||||
|  | ||||
|     _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl; | ||||
|     _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl; | ||||
|  | ||||
|     if(k>0) w -= lme[k-1] * evec[k-1]; | ||||
|  | ||||
| @@ -479,18 +482,18 @@ until convergence | ||||
|     lme[k] = beta; | ||||
|  | ||||
|     if ( (k>0) && ( (k % orth_period) == 0 )) { | ||||
|       std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl; | ||||
|       std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl; | ||||
|       orthogonalize(w,evec,k); // orthonormalise | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl; | ||||
|       std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl; | ||||
|     } | ||||
|  | ||||
|     if(k < Nm-1) evec[k+1] = w; | ||||
|  | ||||
|     std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     if ( beta < tiny )  | ||||
|       std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl; | ||||
|  | ||||
|     std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl; | ||||
|     std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,  | ||||
|   | ||||
| @@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Take a matrix and form an NE solver calling a Herm solver | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class NormalEquations { | ||||
| template<class Field> class NormalEquations : public LinearFunction<Field>{ | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
| @@ -60,7 +60,7 @@ public: | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class HPDSolver { | ||||
| template<class Field> class HPDSolver : public LinearFunction<Field> { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
| @@ -78,13 +78,13 @@ public: | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     _Guess(in,out); | ||||
|     _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in | ||||
|     _HermitianSolver(_Matrix,in,out);  //M out = in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> class MdagMSolver { | ||||
| template<class Field> class MdagMSolver : public LinearFunction<Field> { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   | ||||
| @@ -20,7 +20,7 @@ template<class Field> class PowerMethod | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 50;  | ||||
|     const int _MAX_ITER_EST_ = 100;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
|   | ||||
							
								
								
									
										478
									
								
								Grid/algorithms/multigrid/Aggregates.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										478
									
								
								Grid/algorithms/multigrid/Aggregates.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,478 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/Aggregates.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| inline RealD AggregatePowerLaw(RealD x) | ||||
| { | ||||
|   //  return std::pow(x,-4); | ||||
|   //  return std::pow(x,-3); | ||||
|   return std::pow(x,-5); | ||||
| } | ||||
|  | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation { | ||||
| public: | ||||
|   constexpr int Nbasis(void) { return nbasis; }; | ||||
|    | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|  | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) { | ||||
|     int nn=nbasis; | ||||
|     RealD scale; | ||||
|     FineField noise(FineGrid); | ||||
|     for(int b=0;b<nn;b++){ | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|       subspace[b] = noise; | ||||
|     } | ||||
|   } | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<1;i++){ | ||||
|  | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
|  | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min " | ||||
| 	      <<ordermin<<" step "<<orderstep | ||||
| 	      <<" lo"<<filterlo<<std::endl; | ||||
|  | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
|  | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
|  | ||||
|       // Tn=T1 = (xscale M + mscale)in | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
|  | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
|  | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_for(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
|  | ||||
| 	// Possible more fine grained control is needed than a linear sweep, | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // Refine | ||||
|       Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw); | ||||
|       noise = Mn; | ||||
|       PowerLaw(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // normalise | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					       int nn, | ||||
| 					       double hi, | ||||
| 					       int orderfilter | ||||
| 					       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					  double hi | ||||
| 					  ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500) | ||||
|       /*266 | ||||
|       Chebyshev<FineField> Cheb1(3.0,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(1.0,hi,50); | ||||
|       Chebyshev<FineField> Cheb3(0.5,hi,300); | ||||
|       Chebyshev<FineField> Cheb4(0.05,hi,500); | ||||
|       Chebyshev<FineField> Cheb5(0.01,hi,2000); | ||||
|       */ | ||||
|       /* 242 */ | ||||
|       /* | ||||
|       Chebyshev<FineField> Cheb3(0.1,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(0.02,hi,1000); | ||||
|       Chebyshev<FineField> Cheb1(0.003,hi,2000); | ||||
|       8? | ||||
|       */ | ||||
|       /* How many?? | ||||
|       */ | ||||
|       Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine | ||||
|       Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|  | ||||
|       //      Chebyshev<FineField> Cheb2(0.001,hi,1500); | ||||
|       //      Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|       Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|       hermop.Op(subspace[b],tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					double Lo,double tol,int maxit) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl; | ||||
|  | ||||
|     // Filter | ||||
|     // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ] | ||||
|     // | ||||
|     // 1/(x+Lo)  - 1/(x+2 Lo) | ||||
|     double epsilon      = Lo/3; | ||||
|     std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0}); | ||||
|     std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon}); | ||||
|     std::vector<RealD> tols({tol,tol,tol,tol}); | ||||
|     std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl; | ||||
|  | ||||
|     MultiShiftFunction msf(4,0.0,95.0); | ||||
|     std::cout << "msf constructed "<<std::endl; | ||||
|     msf.poles=shifts; | ||||
|     msf.residues=alpha; | ||||
|     msf.tolerances=tols; | ||||
|     msf.norm=0.0; | ||||
|     msf.order=alpha.size(); | ||||
|     ConjugateGradientMultiShift<FineField> MSCG(maxit,msf); | ||||
|      | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       MSCG(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop, | ||||
| 			      double Lo,double tol,int maxit) | ||||
|   { | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       ConjugateGradient<FineField>  CGsloppy(tol,maxit,false); | ||||
|       ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo); | ||||
|       tmp=Zero(); | ||||
|       CGsloppy(hermop,subspace[b],tmp); | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b]=tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop, | ||||
| 				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG, | ||||
| 				  int nrhs) | ||||
|   { | ||||
|     std::vector<FineField> src_mrhs(nrhs,FineGrid); | ||||
|     std::vector<FineField> res_mrhs(nrhs,FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b+=nrhs) | ||||
|     { | ||||
|       tmp = subspace[b]; | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b] =tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	src_mrhs[r] = subspace[b+r]; | ||||
|       } | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	res_mrhs[r] = Zero(); | ||||
|       } | ||||
|       theHDCG(src_mrhs,res_mrhs); | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	tmp = res_mrhs[r]; | ||||
| 	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale; | ||||
| 	subspace[b+r]=tmp; | ||||
|       } | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|    | ||||
|    | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -56,243 +56,6 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner, | ||||
|   blockSum(CoarseInner,fine_inner_msk); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   int base; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|   std::vector<int> points_dagger; | ||||
| 
 | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     base = (_d==5) ? 1:0; | ||||
| 
 | ||||
|     // make coarse grid stencil for 4d , not 5d
 | ||||
|     if ( _d==5 ) _d=4; | ||||
| 
 | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     points_dagger.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|       points_dagger[d   ] = d+_d; | ||||
|       points_dagger[d+_d] = d; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|     points_dagger[2*_d]=2*_d; | ||||
|   } | ||||
| 
 | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
| 
 | ||||
|     // directions faster index = new indexing
 | ||||
|     // 4d (base = 0):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   0  1  2  3  0  1  2  3  0
 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | ||||
|     // 5d (base = 1):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   1  2  3  4  1  2  3  4  0
 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | ||||
| 
 | ||||
|     // displacements faster index = old indexing
 | ||||
|     // 4d (base = 0):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   0  0  1  1  2  2  3  3  0
 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | ||||
|     // 5d (base = 1):
 | ||||
|     // point 0  1  2  3  4  5  6  7  8
 | ||||
|     // dir   1  1  2  2  3  3  4  4  0
 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | ||||
| 
 | ||||
|     if(dir == 0 and disp == 0) | ||||
|       return 8; | ||||
|     else // New indexing
 | ||||
|       return (1 - disp) / 2 * 4 + dir - base; | ||||
|     // else // Old indexing
 | ||||
|     //   return (4 * (dir - base) + 1 - disp) / 2;
 | ||||
|   } | ||||
| }; | ||||
|    | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation   { | ||||
| public: | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
| 
 | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
| 
 | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
| 
 | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) { | ||||
| 
 | ||||
|     RealD scale; | ||||
| 
 | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
| 
 | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
| 
 | ||||
|       for(int i=0;i<1;i++){ | ||||
| 
 | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
| 
 | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
| 
 | ||||
|       } | ||||
| 
 | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
| 
 | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | ||||
|   // and this is the best I found
 | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||
| 
 | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
| 
 | ||||
|     RealD scale; | ||||
| 
 | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
| 
 | ||||
|     // New normalised noise
 | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
| 
 | ||||
|     // Initial matrix element
 | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
| 
 | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter
 | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise
 | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
| 
 | ||||
|     // Generate a full sequence of Chebyshevs
 | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
| 
 | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
| 
 | ||||
|       // Tn=T1 = (xscale M + mscale)in
 | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
| 
 | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
| 
 | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_for(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
| 
 | ||||
| 	// Possible more fine grained control is needed than a linear sweep,
 | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable
 | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
| 
 | ||||
| 	// Cycle pointers to avoid copies
 | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
| 
 | ||||
| }; | ||||
| 
 | ||||
| // Fine Object == (per site) type of fine field
 | ||||
| // nbasis      == number of deflation vectors
 | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
							
								
								
									
										619
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										619
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,619 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No) | ||||
|  | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
| #include <Grid/stencil/GeneralLocalStencil.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|  | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   int hermitian; | ||||
|   GridBase      *       _FineGrid;  | ||||
|   GridCartesian *       _CoarseGrid;  | ||||
|   NonLocalStencilGeometry &geom; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|    | ||||
|   std::vector<CoarseMatrix> _A; | ||||
|   std::vector<CoarseMatrix> _Adag; | ||||
|   std::vector<CoarseVector> MultTemporaries; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|   GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   /*  void ShiftMatrix(RealD shift) | ||||
|   { | ||||
|     int Nd=_FineGrid->Nd();  | ||||
|     Coordinate zero_shift(Nd,0); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       if ( zero_shift==geom.shifts[p] ) { | ||||
| 	_A[p] = _A[p]+shift; | ||||
| 	//	_Adag[p] = _Adag[p]+shift; | ||||
|       } | ||||
|     }     | ||||
|   } | ||||
|   void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe) | ||||
|   { | ||||
|     int nfound=0; | ||||
|     std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int pp=0;pp<CopyMe.geom.npoint;pp++){ | ||||
|  	// Search for the same relative shift | ||||
| 	// Avoids brutal handling of Grid pointers | ||||
| 	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) { | ||||
| 	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]); | ||||
| 	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]); | ||||
| 	  nfound++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     assert(nfound==geom.npoint); | ||||
|     ExchangeCoarseLinks(); | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid) | ||||
|     : geom(_geom), | ||||
|       _FineGrid(FineGrid), | ||||
|       _CoarseGrid(CoarseGrid), | ||||
|       hermitian(1), | ||||
|       Cell(_geom.Depth(),_CoarseGrid), | ||||
|       Stencil(Cell.grids.back(),geom.shifts) | ||||
|   { | ||||
|     { | ||||
|       int npoint = _geom.npoint; | ||||
|     } | ||||
|     _A.resize(geom.npoint,CoarseGrid); | ||||
|     //    _Adag.resize(geom.npoint,CoarseGrid); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     Mult(_A,in,out); | ||||
|   } | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     assert(hermitian); | ||||
|     Mult(_A,in,out); | ||||
|     //    if ( hermitian ) M(in,out); | ||||
|     //    else Mult(_Adag,in,out); | ||||
|   } | ||||
|   void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0; | ||||
|     RealD tmult2=0; | ||||
|  | ||||
|     ttot=-usecond(); | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     CoarseVector tin=in; | ||||
|  | ||||
|     texch-=usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); | ||||
|     texch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|      | ||||
|     int64_t osites=pin.Grid()->oSites(); | ||||
|  | ||||
|     RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint | ||||
|                 + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|        | ||||
|     { | ||||
|       tviews-=usecond(); | ||||
|       autoView( in_v , pin, AcceleratorRead); | ||||
|       autoView( out_v , pout, AcceleratorWriteDiscard); | ||||
|       autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       // Static and prereserve to keep UVM region live and not resized across multiple calls | ||||
|       ttemps-=usecond(); | ||||
|       MultTemporaries.resize(npoint,pin.Grid());        | ||||
|       ttemps+=usecond(); | ||||
|       std::vector<Aview> AcceleratorViewContainer_h; | ||||
|       std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|  | ||||
|       tviews-=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead)); | ||||
| 	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite)); | ||||
|       } | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint); | ||||
|       static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);  | ||||
|        | ||||
|       auto Aview_p = &AcceleratorViewContainer[0]; | ||||
|       auto Vview_p = &AcceleratorVecViewContainer[0]; | ||||
|       tcopy-=usecond(); | ||||
|       acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview)); | ||||
|       acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview)); | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|       tmult-=usecond(); | ||||
|       accelerator_for(spb, osites*nbasis*npoint, Nsimd, { | ||||
| 	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
| 	  int32_t ss   = spb/(nbasis*npoint); | ||||
| 	  int32_t bp   = spb%(nbasis*npoint); | ||||
| 	  int32_t point= bp/nbasis; | ||||
| 	  int32_t b    = bp%nbasis; | ||||
| 	  auto SE  = Stencil_v.GetEntry(point,ss); | ||||
| 	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd); | ||||
| 	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0); | ||||
| 	  for(int bb=1;bb<nbasis;bb++) { | ||||
| 	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb); | ||||
| 	  } | ||||
| 	  coalescedWrite(Vview_p[point][ss](b),res); | ||||
|       }); | ||||
|       tmult2-=usecond(); | ||||
|       accelerator_for(sb, osites*nbasis, Nsimd, { | ||||
| 	  int ss = sb/nbasis; | ||||
| 	  int b  = sb%nbasis; | ||||
| 	  auto res = coalescedRead(Vview_p[0][ss](b)); | ||||
| 	  for(int point=1;point<npoint;point++){ | ||||
| 	    res = res + coalescedRead(Vview_p[point][ss](b)); | ||||
| 	  } | ||||
| 	  coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|       tmult2+=usecond(); | ||||
|       tmult+=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h[p].ViewClose(); | ||||
| 	AcceleratorVecViewContainer_h[p].ViewClose(); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     text-=usecond(); | ||||
|     out = Cell.Extract(pout); | ||||
|     text+=usecond(); | ||||
|     ttot+=usecond(); | ||||
|      | ||||
|     std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl; | ||||
|     //    std::cout << GridLogPerformance<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   void PopulateAdag(void) | ||||
|   { | ||||
|     for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){ | ||||
|       Coordinate bcoor; | ||||
|       CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor); | ||||
|        | ||||
|       for(int p=0;p<geom.npoint;p++){ | ||||
| 	Coordinate scoor = bcoor; | ||||
| 	for(int mu=0;mu<bcoor.size();mu++){ | ||||
| 	  int L = CoarseGrid()->GlobalDimensions()[mu]; | ||||
| 	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic | ||||
| 	} | ||||
| 	// Flip to poke/peekLocalSite and not too bad | ||||
| 	auto link = peekSite(_A[p],scoor); | ||||
| 	int pp = geom.Reverse(p); | ||||
| 	pokeSite(adj(link),_Adag[pp],bcoor); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   //  | ||||
|   // A) Only reduced flops option is to use a padded cell of depth 4 | ||||
|   // and apply MpcDagMpc in the padded cell. | ||||
|   // | ||||
|   // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80. | ||||
|   // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio | ||||
|   // Cost is 81x more, same as stencil size. | ||||
|   // | ||||
|   // But: can eliminate comms and do as local dirichlet. | ||||
|   // | ||||
|   // Local exchange gauge field once. | ||||
|   // Apply to all vectors, local only computation. | ||||
|   // Must exchange ghost subcells in reverse process of PaddedCell to take inner products | ||||
|   // | ||||
|   // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4) | ||||
|   //                     pad by 2, apply Doe | ||||
|   //                     pad by 3, apply Deo | ||||
|   //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector | ||||
|   // | ||||
|   // => almost factor of 10 in setup cost, excluding data rearrangement | ||||
|   // | ||||
|   // Intermediates -- ignore the corner terms, leave approximate and force Hermitian | ||||
|   // Intermediates -- pad by 2 and apply 1+8+24 = 33 times. | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // BFM HDCG style approach: Solve a system of equations to get Aij | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     /* | ||||
|      *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM. | ||||
|      * | ||||
|      *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >  | ||||
|      *                                                 =  \sum_ball e^{iqk.delta} A_ji | ||||
|      * | ||||
|      *     Must invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|      * | ||||
|      *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|      */ | ||||
| #if 0 | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	// Stick a phase on every block | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	tphase-=usecond(); | ||||
| 	CoarseComplexField coor(CoarseGrid()); | ||||
| 	CoarseComplexField pha(CoarseGrid());	pha=Zero(); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  LatticeCoordinate(coor,mu); | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
| 	} | ||||
| 	pha  =exp(pha*ci); | ||||
| 	phaV=Zero(); | ||||
| 	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV); | ||||
| 	tphase+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #else | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     //    for(int s=0;s<Subspace.subspace.size();s++){ | ||||
|       //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl; | ||||
|     //    } | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid()); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     tphase=-usecond(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid()); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci); | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|        | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|      | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	tphaseBZ-=usecond(); | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
| 	tphaseBZ+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl; | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl; | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #endif   | ||||
|   void ExchangeCoarseLinks(void){ | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       _A[p] = Cell.ExchangePeriodic(_A[p]); | ||||
|       //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]); | ||||
|     } | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|  | ||||
|  | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										729
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										729
									
								
								Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,729 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|   typedef typename CComplex::scalar_object SComplex; | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp; | ||||
|  | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef iVector<SComplex,nbasis >           calcVector; | ||||
|   typedef iMatrix<SComplex,nbasis >           calcMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   GridCartesian *       _CoarseGridMulti;  | ||||
|   NonLocalStencilGeometry geom; | ||||
|   NonLocalStencilGeometry geom_srhs; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|  | ||||
|   deviceVector<calcVector> BLAS_B; | ||||
|   deviceVector<calcVector> BLAS_C; | ||||
|   std::vector<deviceVector<calcMatrix> > BLAS_A; | ||||
|  | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_AP; | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_BP; | ||||
|   deviceVector<ComplexD *>               BLAS_CP; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   // Can be used to do I/O on the operator matrices externally | ||||
|   void SetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     GridtoBLAS(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void GetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     BLAStoGrid(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void CopyMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       //Unpadded | ||||
|       GridtoBLAS(Aup,BLAS_A[p]); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   void CheckMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     std::cout <<"************* Checking the little direc operator mRHS"<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       //Unpadded | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       auto Ack = Aup; | ||||
|       BLAStoGrid(Ack,BLAS_A[p]); | ||||
|       std::cout << p<<" Ack "<<norm2(Ack)<<std::endl; | ||||
|       std::cout << p<<" Aup "<<norm2(Aup)<<std::endl; | ||||
|     } | ||||
|     std::cout <<"************* "<<std::endl; | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) : | ||||
|     _CoarseGridMulti(CoarseGridMulti), | ||||
|     geom_srhs(_geom), | ||||
|     geom(_CoarseGridMulti,_geom.hops,_geom.skip+1), | ||||
|     Cell(geom.Depth(),_CoarseGridMulti), | ||||
|     Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil | ||||
|   { | ||||
|     int32_t padded_sites   = Cell.grids.back()->lSites(); | ||||
|     int32_t unpadded_sites = CoarseGridMulti->lSites(); | ||||
|      | ||||
|     int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS | ||||
|     int32_t orhs  = nrhs/CComplex::Nsimd(); | ||||
|  | ||||
|     padded_sites   = padded_sites/nrhs; | ||||
|     unpadded_sites = unpadded_sites/nrhs; | ||||
|      | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Device data vector storage | ||||
|     ///////////////////////////////////////////////// | ||||
|     BLAS_A.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements | ||||
|     } | ||||
|      | ||||
|     BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone | ||||
|     BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone | ||||
|     BLAS_AP.resize(geom.npoint); | ||||
|     BLAS_BP.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_AP[p].resize(unpadded_sites); | ||||
|       BLAS_BP[p].resize(unpadded_sites); | ||||
|     } | ||||
|     BLAS_CP.resize(unpadded_sites); | ||||
|  | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Pointers to data | ||||
|     ///////////////////////////////////////////////// | ||||
|  | ||||
|     // Site identity mapping for A | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int ss=0;ss<unpadded_sites;ss++){ | ||||
| 	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss]; | ||||
| 	acceleratorPut(BLAS_AP[p][ss],ptr); | ||||
|       } | ||||
|     } | ||||
|     // Site identity mapping for C | ||||
|     for(int ss=0;ss<unpadded_sites;ss++){ | ||||
|       ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs]; | ||||
|       acceleratorPut(BLAS_CP[ss],ptr); | ||||
|     } | ||||
|  | ||||
|     // Neighbour table is more complicated | ||||
|     int32_t j=0; // Interior point counter (unpadded) | ||||
|     for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded | ||||
|       int ghost_zone=0; | ||||
|       for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	int i=s*orhs*geom.npoint+point; | ||||
| 	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor | ||||
| 	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1 | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if( ghost_zone==0) { | ||||
| 	for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	  int i=s*orhs*geom.npoint+point; | ||||
|  	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite | ||||
| 	  assert(nbr<BLAS_B.size()); | ||||
| 	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr]; | ||||
| 	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume | ||||
| 	} | ||||
| 	j++; | ||||
|       } | ||||
|     } | ||||
|     assert(j==unpadded_sites); | ||||
|   } | ||||
|   template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Fg = from.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   int nd = Fg->_ndimension; | ||||
|  | ||||
|   to.resize(Fg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Fg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|  | ||||
|   autoView(from_v,from,AcceleratorRead); | ||||
|   auto to_v = &to[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate from_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i]; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       scalar_type* to = (scalar_type *)&to_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	to[w] = stmp; | ||||
|       } | ||||
|     }); | ||||
|   }     | ||||
|   template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Tg = grid.Grid(); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int nd = Tg->_ndimension; | ||||
|    | ||||
|   assert(in.size()==Tg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Tg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|  | ||||
|   autoView(to_v,grid,AcceleratorWrite); | ||||
|   auto from_v = &in[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	to_coor[i] = base[i]; | ||||
|       } | ||||
|       int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|       scalar_type* from = (scalar_type *)&from_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp=from[w]; | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|   } | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace, | ||||
| 		       GridBase *CoarseGrid) | ||||
|   { | ||||
| #if 0 | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|  | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	linop.Op(phaV,MphaV); | ||||
|  | ||||
| 	// Fixme, could use batched block projector here | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
|  | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|       for(int k=0;k<npoint;k++){ | ||||
|  | ||||
| 	FT = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|  | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     /* | ||||
| Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us | ||||
| Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us | ||||
| Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us | ||||
| Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us | ||||
| Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us | ||||
| Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us | ||||
| Takes 600s to compute matrix elements, DOMINATED by the block project. | ||||
| Easy to speed up with the batched block project. | ||||
| Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster. | ||||
|  | ||||
| // Block project below taks to 240s | ||||
| Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us | ||||
| Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us | ||||
| Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us | ||||
| //Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed | ||||
| //Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion | ||||
|      */ | ||||
| #else | ||||
|     RealD tproj=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|  | ||||
|     MultiRHSBlockProject<Lattice<Fobj> >    Projector; | ||||
|     Projector.Allocate(nbasis,grid,CoarseGrid); | ||||
|     Projector.ImportBasis(Subspace.subspace); | ||||
|      | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     tphase=-usecond(); | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     // Count use small chunks than npoint == 81 and save memory | ||||
|     int batch = 9; | ||||
|     std::vector<FineField>    _MphaV(batch,grid); | ||||
|     std::vector<CoarseVector> TmpProj(batch,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|  | ||||
|       //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl; | ||||
|       // Fixme : do this in batches | ||||
|       for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint | ||||
|  | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  tphaseBZ-=usecond(); | ||||
| 	  phaV = phaF[p+b]*Subspace.subspace[i]; | ||||
| 	  tphaseBZ+=usecond(); | ||||
|  | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Multiple phased subspace vector by matrix and project to subspace | ||||
| 	  // Remove local bulk phase to leave relative phases | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Memory footprint was an issue | ||||
| 	  tmat-=usecond(); | ||||
| 	  linop.Op(phaV,MphaV); | ||||
| 	  _MphaV[b] = MphaV; | ||||
| 	  tmat+=usecond(); | ||||
| 	}       | ||||
|  | ||||
| 	//	std::cout << GridLogMessage << " Calling block project "<<std::endl; | ||||
| 	tproj-=usecond(); | ||||
| 	Projector.blockProject(_MphaV,TmpProj); | ||||
| 	tproj+=usecond(); | ||||
| 	 | ||||
| 	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl; | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b]; | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|        | ||||
|       // std::cout << GridLogMessage << " Starting FT inv "<<std::endl; | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT = Zero(); | ||||
| 	// 81 kernel calls as many ComputeProj vectors | ||||
| 	// Could fuse with a vector of views, but ugly | ||||
| 	// Could unroll the expression and run fewer kernels -- much more attractive | ||||
| 	// Could also do non blocking. | ||||
| #if 0	 | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #else | ||||
| 	const int radix = 9; | ||||
| 	int ll; | ||||
| 	for(ll=0;ll+radix-1<npoint;ll+=radix){ | ||||
| 	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all. | ||||
| 	  FT = FT  | ||||
| 	    + invMkl(ll+0,k)*ComputeProj[ll+0] | ||||
| 	    + invMkl(ll+1,k)*ComputeProj[ll+1] | ||||
| 	    + invMkl(ll+2,k)*ComputeProj[ll+2] | ||||
| 	    + invMkl(ll+3,k)*ComputeProj[ll+3] | ||||
| 	    + invMkl(ll+4,k)*ComputeProj[ll+4] | ||||
| 	    + invMkl(ll+5,k)*ComputeProj[ll+5] | ||||
| 	    + invMkl(ll+6,k)*ComputeProj[ll+6] | ||||
| 	    + invMkl(ll+7,k)*ComputeProj[ll+7] | ||||
| 	    + invMkl(ll+8,k)*ComputeProj[ll+8]; | ||||
| 	} | ||||
| 	for(int l=ll;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #endif | ||||
|        | ||||
| 	// 1 kernel call -- must be cheaper | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|     //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl; | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
| #endif | ||||
|   } | ||||
|   void Mdag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     this->M(in,out); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl; | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     RealD t_tot; | ||||
|     RealD t_exch; | ||||
|     RealD t_GtoB; | ||||
|     RealD t_BtoG; | ||||
|     RealD t_mult; | ||||
|  | ||||
|     t_tot=-usecond(); | ||||
|     CoarseVector tin=in; | ||||
|     t_exch=-usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input | ||||
|     t_exch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef calcMatrix* Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|  | ||||
|     int64_t nrhs  =pin.Grid()->GlobalDimensions()[0]; | ||||
|     assert(nrhs>=1); | ||||
|  | ||||
|     RealD flops,bytes; | ||||
|     int64_t osites=in.Grid()->oSites(); // unpadded | ||||
|     int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs; | ||||
|      | ||||
|     flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0] | ||||
|           + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|      | ||||
|  | ||||
|     t_GtoB=-usecond(); | ||||
|     GridtoBLAS(pin,BLAS_B); | ||||
|     t_GtoB+=usecond(); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     t_mult=-usecond(); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       RealD c = 1.0; | ||||
|       if (p==0) c = 0.0; | ||||
|       ComplexD beta(c); | ||||
|  | ||||
|       BLAS.gemmBatched(nbasis,nrhs,nbasis, | ||||
| 		       ComplexD(1.0), | ||||
| 		       BLAS_AP[p],  | ||||
| 		       BLAS_BP[p],  | ||||
| 		       ComplexD(c),  | ||||
| 		       BLAS_CP); | ||||
|     } | ||||
|     BLAS.synchronise(); | ||||
|     t_mult+=usecond(); | ||||
|  | ||||
|     t_BtoG=-usecond(); | ||||
|     BLAStoGrid(out,BLAS_C); | ||||
|     t_BtoG+=usecond(); | ||||
|     t_tot+=usecond(); | ||||
|     /* | ||||
|     std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl; | ||||
|     */ | ||||
|     //    std::cout << GridLogMessage<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|   }; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										238
									
								
								Grid/algorithms/multigrid/Geometry.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										238
									
								
								Grid/algorithms/multigrid/Geometry.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,238 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   int base; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|   std::vector<int> points_dagger; | ||||
|  | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     base = (_d==5) ? 1:0; | ||||
|  | ||||
|     // make coarse grid stencil for 4d , not 5d | ||||
|     if ( _d==5 ) _d=4; | ||||
|  | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     points_dagger.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|       points_dagger[d   ] = d+_d; | ||||
|       points_dagger[d+_d] = d; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|     points_dagger[2*_d]=2*_d; | ||||
|   } | ||||
|  | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
|  | ||||
|     // directions faster index = new indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  1  2  3  0  1  2  3  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  2  3  4  1  2  3  4  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|  | ||||
|     // displacements faster index = old indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  0  1  1  2  2  3  3  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  1  2  2  3  3  4  4  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|  | ||||
|     if(dir == 0 and disp == 0) | ||||
|       return 8; | ||||
|     else // New indexing | ||||
|       return (1 - disp) / 2 * 4 + dir - base; | ||||
|     // else // Old indexing | ||||
|     //   return (4 * (dir - base) + 1 - disp) / 2; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Less local equivalent of Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| class NonLocalStencilGeometry { | ||||
| public: | ||||
|   //  int depth; | ||||
|   int skip; | ||||
|   int hops; | ||||
|   int npoint; | ||||
|   std::vector<Coordinate> shifts; | ||||
|   Coordinate stencil_size; | ||||
|   Coordinate stencil_lo; | ||||
|   Coordinate stencil_hi; | ||||
|   GridCartesian *grid; | ||||
|   GridCartesian *Grid() {return grid;}; | ||||
|   int Depth(void){return 1;};   // Ghost zone depth | ||||
|   int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil | ||||
|   int DimSkip(void){return skip;}; | ||||
|  | ||||
|   virtual ~NonLocalStencilGeometry() {}; | ||||
|  | ||||
|   int  Reverse(int point) | ||||
|   { | ||||
|     int Nd = Grid()->Nd(); | ||||
|     Coordinate shft = shifts[point]; | ||||
|     Coordinate rev(Nd); | ||||
|     for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu]; | ||||
|     for(int p=0;p<npoint;p++){ | ||||
|       if(rev==shifts[p]){ | ||||
| 	return p; | ||||
|       } | ||||
|     } | ||||
|     assert(0); | ||||
|     return -1; | ||||
|   } | ||||
|   void BuildShifts(void) | ||||
|   { | ||||
|     this->shifts.resize(0); | ||||
|     int Nd = this->grid->Nd(); | ||||
|  | ||||
|     int dd = this->DimSkip(); | ||||
|     for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){ | ||||
|     for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){ | ||||
|     for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){ | ||||
|     for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){ | ||||
|       Coordinate sft(Nd,0); | ||||
|       sft[dd+0] = s0; | ||||
|       sft[dd+1] = s1; | ||||
|       sft[dd+2] = s2; | ||||
|       sft[dd+3] = s3; | ||||
|       int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3); | ||||
|       if(nhops<=this->hops) this->shifts.push_back(sft); | ||||
|     }}}} | ||||
|     this->npoint = this->shifts.size(); | ||||
|     std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl; | ||||
|   } | ||||
|    | ||||
|   NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip) | ||||
|   { | ||||
|     Coordinate latt = grid->GlobalDimensions(); | ||||
|     stencil_size.resize(grid->Nd()); | ||||
|     stencil_lo.resize(grid->Nd()); | ||||
|     stencil_hi.resize(grid->Nd()); | ||||
|     for(int d=0;d<grid->Nd();d++){ | ||||
|      if ( latt[d] == 1 ) { | ||||
|       stencil_lo[d] = 0; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 1; | ||||
|      } else if ( latt[d] == 2 ) { | ||||
|       stencil_lo[d] = -1; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 2; | ||||
|      } else if ( latt[d] > 2 ) { | ||||
|        stencil_lo[d] = -1; | ||||
|        stencil_hi[d] =  1; | ||||
|        stencil_size[d]= 3; | ||||
|      } | ||||
|     } | ||||
|     this->BuildShifts(); | ||||
|   }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| // Need to worry about red-black now | ||||
| class NonLocalStencilGeometry4D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 0;}; | ||||
|   NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { }; | ||||
|   virtual ~NonLocalStencilGeometry4D() {}; | ||||
| }; | ||||
| class NonLocalStencilGeometry5D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 1; };  | ||||
|   NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { }; | ||||
|   virtual ~NonLocalStencilGeometry5D() {}; | ||||
| }; | ||||
| /* | ||||
|  * Bunch of different options classes | ||||
|  */ | ||||
| class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
							
								
								
									
										34
									
								
								Grid/algorithms/multigrid/MultiGrid.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/algorithms/multigrid/MultiGrid.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
|     Source file: Grid/algorithms/multigrid/MultiGrid.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/algorithms/multigrid/Aggregates.h> | ||||
| #include <Grid/algorithms/multigrid/Geometry.h> | ||||
| #include <Grid/algorithms/multigrid/CoarsenedMatrix.h> | ||||
| #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h> | ||||
| #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h> | ||||
| @@ -175,8 +175,56 @@ template<class T> using cshiftAllocator = std::allocator<T>; | ||||
|  | ||||
| template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >; | ||||
| template<class T> using commVector    = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector  = std::vector<T,cshiftAllocator<T> >; | ||||
|  | ||||
| /* | ||||
| template<class T> class vecView | ||||
| { | ||||
|  protected: | ||||
|   T * data; | ||||
|   uint64_t size; | ||||
|   ViewMode mode; | ||||
|   void * cpu_ptr; | ||||
|  public: | ||||
|   accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; | ||||
|   vecView(std::vector<T> &refer_to_me,ViewMode _mode) | ||||
|   { | ||||
|     cpu_ptr = &refer_to_me[0]; | ||||
|     size = refer_to_me.size(); | ||||
|     mode = _mode; | ||||
|     data =(T *) MemoryManager::ViewOpen(cpu_ptr, | ||||
| 					size*sizeof(T), | ||||
| 					mode, | ||||
| 					AdviseDefault); | ||||
|   } | ||||
|   void ViewClose(void) | ||||
|   { // Inform the manager | ||||
|     MemoryManager::ViewClose(this->cpu_ptr,this->mode);     | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode) | ||||
| { | ||||
|   vecView<T> ret(vec,_mode); // does the open | ||||
|   return ret;                // must be closed | ||||
| } | ||||
|  | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class VectorViewCloser | ||||
| { | ||||
|   View v;  // Take a copy of view and call view close when I go out of scope automatically | ||||
|  public: | ||||
|   VectorViewCloser(View &_v) : v(_v) {}; | ||||
|   ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);} | ||||
| }; | ||||
|  | ||||
| #define autoVecView(v_v,v,mode)					\ | ||||
|   auto v_v = VectorView(v,mode);				\ | ||||
|   ViewCloser<decltype(v_v)> _autoView##v_v(v_v); | ||||
| */ | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -209,9 +209,9 @@ private: | ||||
|   static void     CpuViewClose(uint64_t Ptr); | ||||
|   static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
| #endif | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|  | ||||
|  public: | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|   static void Print(void); | ||||
|   static void PrintAll(void); | ||||
|   static void PrintState( void* CpuPtr); | ||||
|   | ||||
| @@ -8,7 +8,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| static char print_buffer [ MAXLINE ]; | ||||
|  | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer; | ||||
| //#define dprintf(...)  | ||||
|  | ||||
|  | ||||
| @@ -111,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
| @@ -141,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n", | ||||
|   mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n", | ||||
| 	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, | ||||
| 	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);  | ||||
|   if (AccCache.accLock!=0) return; | ||||
| @@ -155,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
|     AccCache.AccPtr=(uint64_t)NULL; | ||||
|     AccCache.state=CpuDirty; // CPU primary now | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|     dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   //  uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   DeviceEvictions++; | ||||
| @@ -169,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| @@ -184,7 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
| @@ -474,6 +474,7 @@ void  MemoryManager::Print(void) | ||||
|   std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl; | ||||
|   std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   acceleratorMem(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
| } | ||||
| void  MemoryManager::PrintAll(void) | ||||
| @@ -519,7 +520,6 @@ void MemoryManager::Audit(std::string s) | ||||
|   uint64_t LruBytes1=0; | ||||
|   uint64_t LruBytes2=0; | ||||
|   uint64_t LruCnt=0; | ||||
|   uint64_t LockedBytes=0; | ||||
|    | ||||
|   std::cout << " Memory Manager::Audit() from "<<s<<std::endl; | ||||
|   for(auto it=LRU.begin();it!=LRU.end();it++){ | ||||
|   | ||||
| @@ -70,8 +70,8 @@ public: | ||||
|   Coordinate _istride;    // Inner stride i.e. within simd lane | ||||
|   int _osites;                  // _isites*_osites = product(dimensions). | ||||
|   int _isites; | ||||
|   int _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int _gsites; | ||||
|   int64_t _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int64_t _gsites; | ||||
|   Coordinate _slice_block;// subslice information | ||||
|   Coordinate _slice_stride; | ||||
|   Coordinate _slice_nblock; | ||||
| @@ -183,7 +183,7 @@ public: | ||||
|   inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites | ||||
|   inline int oSites(void) const { return _osites; }; | ||||
|   inline int lSites(void) const { return _isites*_osites; };  | ||||
|   inline int gSites(void) const { return _isites*_osites*_Nprocessors; };  | ||||
|   inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };  | ||||
|   inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
| @@ -214,7 +214,7 @@ public: | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Global addressing | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){ | ||||
|   void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){ | ||||
|     assert(gidx< gSites()); | ||||
|     Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|   } | ||||
| @@ -222,7 +222,7 @@ public: | ||||
|     assert(lidx<lSites()); | ||||
|     Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|   } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){ | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){ | ||||
|     gidx=0; | ||||
|     int mult=1; | ||||
|     for(int mu=0;mu<_ndimension;mu++) { | ||||
|   | ||||
| @@ -138,6 +138,14 @@ public: | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Face exchange, buffer swap in translational invariant way | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void CommsComplete(std::vector<CommsRequest_t> &list); | ||||
|   void SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 			   void *xmit, | ||||
| 			   int dest, | ||||
| 			   void *recv, | ||||
| 			   int from, | ||||
| 			   int bytes,int dir); | ||||
|    | ||||
|   void SendToRecvFrom(void *xmit, | ||||
| 		      int xmit_to_rank, | ||||
| 		      void *recv, | ||||
|   | ||||
| @@ -306,6 +306,44 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N) | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| { | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|  | ||||
|   int tag; | ||||
|  | ||||
|   tag= dir+from*32; | ||||
|   int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq); | ||||
|   assert(ierr==0); | ||||
|   list.push_back(rrq); | ||||
|    | ||||
|   tag= dir+_processor*32; | ||||
|   ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq); | ||||
|   assert(ierr==0); | ||||
|   list.push_back(xrq); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
| } | ||||
|  | ||||
| // Basic Halo comms primitive | ||||
| void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int dest, | ||||
| @@ -348,6 +386,7 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
|   return offbytes; | ||||
| } | ||||
|  | ||||
| #undef NVLINK_GET // Define to use get instead of put DMA | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int dest,int dox, | ||||
| @@ -380,9 +419,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|       list.push_back(rrq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
| #ifdef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   if (dox) { | ||||
|     //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+_processor*32; | ||||
|       ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
| @@ -390,9 +435,12 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|       list.push_back(xrq); | ||||
|       off_node_bytes+=xbytes; | ||||
|     } else { | ||||
| #ifndef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
| #endif | ||||
|        | ||||
|     } | ||||
|   } | ||||
|  | ||||
| @@ -402,6 +450,8 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   acceleratorCopySynchronise(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   | ||||
| @@ -91,6 +91,17 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);} | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   bcopy(in,out,bytes*words); | ||||
| @@ -128,7 +139,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
| 							 int recv_from_rank,int dor, | ||||
| 							 int xbytes,int rbytes, int dir) | ||||
| { | ||||
|   return 2.0*bytes; | ||||
|   return xbytes+rbytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir) | ||||
| { | ||||
|   | ||||
| @@ -40,6 +40,9 @@ int                 GlobalSharedMemory::_ShmAlloc; | ||||
| uint64_t            GlobalSharedMemory::_ShmAllocBytes; | ||||
|  | ||||
| std::vector<void *> GlobalSharedMemory::WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void * GlobalSharedMemory::HostCommBuf; | ||||
| #endif | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm; | ||||
| int                 GlobalSharedMemory::WorldShmRank; | ||||
| @@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| ///////////////////////////////// | ||||
| // Alloc, free shmem region | ||||
| ///////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|   void *ptr = (void *)host_heap_top; | ||||
|   host_heap_top  += bytes; | ||||
|   host_heap_bytes+= bytes; | ||||
|   if (host_heap_bytes >= host_heap_size) { | ||||
|     std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::HostBufferFreeAll(void) {  | ||||
|   host_heap_top  =(size_t)HostCommBuf; | ||||
|   host_heap_bytes=0; | ||||
| } | ||||
| #endif | ||||
| void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes | ||||
|   void *ptr = (void *)heap_top; | ||||
| @@ -91,6 +114,59 @@ void *SharedMemory::ShmBufferSelf(void) | ||||
|   //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl; | ||||
|   return ShmCommBufs[ShmRank]; | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Allow user to configure through environment variable | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str()); | ||||
|   if ( str ) { | ||||
|     std::vector<int> IntShmDims; | ||||
|     GridCmdOptionIntVector(std::string(str),IntShmDims); | ||||
|     assert(IntShmDims.size() == WorldDims.size()); | ||||
|     long ShmSize = 1; | ||||
|     for (int dim=0;dim<WorldDims.size();dim++) { | ||||
|       ShmSize *= (ShmDims[dim] = IntShmDims[dim]); | ||||
|       assert(divides(ShmDims[dim],WorldDims[dim])); | ||||
|     } | ||||
|     assert(ShmSize == WorldShmSize); | ||||
|     return; | ||||
|   } | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
|   AutoShmSize*=prime; | ||||
|   ShmDims[dim]*=prime; | ||||
|   last_dim = dim; | ||||
|   break; | ||||
|       } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
|   | ||||
| @@ -75,7 +75,9 @@ public: | ||||
|   static int           Hugepages; | ||||
|  | ||||
|   static std::vector<void *> WorldShmCommBufs; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   static void *HostCommBuf; | ||||
| #endif | ||||
|   static Grid_MPI_Comm WorldComm; | ||||
|   static int           WorldRank; | ||||
|   static int           WorldSize; | ||||
| @@ -120,6 +122,13 @@ private: | ||||
|   size_t heap_bytes; | ||||
|   size_t heap_size; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   size_t host_heap_top;  // set in free all | ||||
|   size_t host_heap_bytes;// set in free all | ||||
|   void *HostCommBuf;     // set in SetCommunicator | ||||
|   size_t host_heap_size; // set in SetCommunicator | ||||
| #endif | ||||
|    | ||||
| protected: | ||||
|  | ||||
|   Grid_MPI_Comm    ShmComm; // for barriers | ||||
| @@ -151,7 +160,10 @@ public: | ||||
|   void *ShmBufferTranslate(int rank,void * local_p); | ||||
|   void *ShmBufferMalloc(size_t bytes); | ||||
|   void  ShmBufferFreeAll(void) ; | ||||
|    | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   void *HostBufferMalloc(size_t bytes); | ||||
|   void HostBufferFreeAll(void); | ||||
| #endif   | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Make info on Nodes & ranks and Shared memory available | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -27,9 +27,10 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #define Mheader "SharedMemoryMpi: " | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
| #include <pwd.h> | ||||
| #include <syscall.h> | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| #include <cuda_runtime_api.h> | ||||
| @@ -38,12 +39,121 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #include <hip/hip_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| #define GRID_SYCL_LEVEL_ZERO_IPC | ||||
| #define SHM_SOCKETS | ||||
| #endif  | ||||
| #include <syscall.h> | ||||
| #endif | ||||
|  | ||||
| #include <sys/socket.h> | ||||
| #include <sys/un.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| #ifdef SHM_SOCKETS | ||||
|  | ||||
| /* | ||||
|  * Barbaric extra intranode communication route in case we need sockets to pass FDs | ||||
|  * Forced by level_zero not being nicely designed | ||||
|  */ | ||||
| static int sock; | ||||
| static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d"; | ||||
| static char sock_path[256]; | ||||
| class UnixSockets { | ||||
| public: | ||||
|   static void Open(int rank) | ||||
|   { | ||||
|     int errnum; | ||||
|  | ||||
|     sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0); | ||||
|  | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
|     snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank); | ||||
|     unlink(sa_un.sun_path); | ||||
|     if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) { | ||||
|       perror("bind failure"); | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static int RecvFileDescriptor(void) | ||||
|   { | ||||
|     int n; | ||||
|     int fd; | ||||
|     char buf[1]; | ||||
|     struct iovec iov; | ||||
|     struct msghdr msg; | ||||
|     struct cmsghdr *cmsg; | ||||
|     char cms[CMSG_SPACE(sizeof(int))]; | ||||
|  | ||||
|     iov.iov_base = buf; | ||||
|     iov.iov_len = 1; | ||||
|  | ||||
|     memset(&msg, 0, sizeof msg); | ||||
|     msg.msg_name = 0; | ||||
|     msg.msg_namelen = 0; | ||||
|     msg.msg_iov = &iov; | ||||
|     msg.msg_iovlen = 1; | ||||
|  | ||||
|     msg.msg_control = (caddr_t)cms; | ||||
|     msg.msg_controllen = sizeof cms; | ||||
|  | ||||
|     if((n=recvmsg(sock, &msg, 0)) < 0) { | ||||
|       perror("recvmsg failed"); | ||||
|       return -1; | ||||
|     } | ||||
|     if(n == 0){ | ||||
|       perror("recvmsg returned 0"); | ||||
|       return -1; | ||||
|     } | ||||
|     cmsg = CMSG_FIRSTHDR(&msg); | ||||
|  | ||||
|     memmove(&fd, CMSG_DATA(cmsg), sizeof(int)); | ||||
|  | ||||
|     return fd; | ||||
|   } | ||||
|  | ||||
|   static void SendFileDescriptor(int fildes,int xmit_to_rank) | ||||
|   { | ||||
|     struct msghdr msg; | ||||
|     struct iovec iov; | ||||
|     struct cmsghdr *cmsg = NULL; | ||||
|     char ctrl[CMSG_SPACE(sizeof(int))]; | ||||
|     char data = ' '; | ||||
|  | ||||
|     memset(&msg, 0, sizeof(struct msghdr)); | ||||
|     memset(ctrl, 0, CMSG_SPACE(sizeof(int))); | ||||
|     iov.iov_base = &data; | ||||
|     iov.iov_len = sizeof(data); | ||||
|      | ||||
|     sprintf(sock_path,sock_path_fmt,xmit_to_rank); | ||||
|      | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
|     snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank); | ||||
|  | ||||
|     msg.msg_name = (void *)&sa_un; | ||||
|     msg.msg_namelen = sizeof(sa_un); | ||||
|     msg.msg_iov = &iov; | ||||
|     msg.msg_iovlen = 1; | ||||
|     msg.msg_controllen =  CMSG_SPACE(sizeof(int)); | ||||
|     msg.msg_control = ctrl; | ||||
|  | ||||
|     cmsg = CMSG_FIRSTHDR(&msg); | ||||
|     cmsg->cmsg_level = SOL_SOCKET; | ||||
|     cmsg->cmsg_type = SCM_RIGHTS; | ||||
|     cmsg->cmsg_len = CMSG_LEN(sizeof(int)); | ||||
|  | ||||
|     *((int *) CMSG_DATA(cmsg)) = fildes; | ||||
|  | ||||
|     sendmsg(sock, &msg, 0); | ||||
|   }; | ||||
| }; | ||||
| #endif | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| #define header "SharedMemoryMpi: " | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| { | ||||
| @@ -66,8 +176,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   MPI_Comm_size(WorldShmComm     ,&WorldShmSize); | ||||
|  | ||||
|   if ( WorldRank == 0) { | ||||
|     std::cout << header " World communicator of size " <<WorldSize << std::endl;   | ||||
|     std::cout << header " Node  communicator of size " <<WorldShmSize << std::endl; | ||||
|     std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;   | ||||
|     std::cout << Mheader " Node  communicator of size " <<WorldShmSize << std::endl; | ||||
|   } | ||||
|   // WorldShmComm, WorldShmSize, WorldShmRank | ||||
|  | ||||
| @@ -170,59 +280,7 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M | ||||
|   if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM); | ||||
|   else                          OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM); | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Allow user to configure through environment variable | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str()); | ||||
|   if ( str ) { | ||||
|     std::vector<int> IntShmDims; | ||||
|     GridCmdOptionIntVector(std::string(str),IntShmDims); | ||||
|     assert(IntShmDims.size() == WorldDims.size()); | ||||
|     long ShmSize = 1; | ||||
|     for (int dim=0;dim<WorldDims.size();dim++) { | ||||
|       ShmSize *= (ShmDims[dim] = IntShmDims[dim]); | ||||
|       assert(divides(ShmDims[dim],WorldDims[dim])); | ||||
|     } | ||||
|     assert(ShmSize == WorldShmSize); | ||||
|     return; | ||||
|   } | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
| 	AutoShmSize*=prime; | ||||
| 	ShmDims[dim]*=prime; | ||||
| 	last_dim = dim; | ||||
| 	break; | ||||
|       } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
| @@ -396,7 +454,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
| #ifdef GRID_MPI3_SHMGET | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
| @@ -456,46 +514,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| // Hugetlbfs mapping intended | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL) | ||||
|  | ||||
| //if defined(GRID_SYCL) | ||||
| #if 0 | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the pointer array for shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   MPI_Barrier(WorldShmComm); | ||||
|   WorldShmCommBufs.resize(WorldShmSize); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|  | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|  | ||||
|   std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
| 	    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|  | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|  | ||||
|   assert(WorldShmSize == 1); | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|     WorldShmCommBufs[r] = ShmCommBuf; | ||||
|   } | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)   | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
| @@ -518,13 +536,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   HostCommBuf= malloc(bytes); | ||||
| #endif   | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
|     std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
| 	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
| @@ -532,8 +553,13 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef SHM_SOCKETS | ||||
|   UnixSockets::Open(WorldShmRank); | ||||
| #endif | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|  | ||||
|     MPI_Barrier(WorldShmComm); | ||||
|  | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|     ////////////////////////////////////////////////// | ||||
|     // If it is me, pass around the IPC access key | ||||
| @@ -541,24 +567,32 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     void * thisBuf = ShmCommBuf; | ||||
|     if(!Stencil_force_mpi) { | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     typedef struct { int fd; pid_t pid ; } clone_mem_t; | ||||
|     typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; | ||||
|  | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context()); | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|        | ||||
|     ze_ipc_mem_handle_t ihandle; | ||||
|     clone_mem_t handle; | ||||
|  | ||||
|      | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle); | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
|       } | ||||
|       memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int)); | ||||
|       handle.pid = getpid(); | ||||
|       memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle)); | ||||
| #ifdef SHM_SOCKETS | ||||
|       for(int rr=0;rr<WorldShmSize;rr++){ | ||||
| 	if(rr!=r){ | ||||
| 	  UnixSockets::SendFileDescriptor(handle.fd,rr); | ||||
| 	} | ||||
|       } | ||||
| #endif | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| @@ -586,6 +620,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     // Share this IPC handle across the Shm Comm | ||||
|     ////////////////////////////////////////////////// | ||||
|     {  | ||||
|       MPI_Barrier(WorldShmComm); | ||||
|       int ierr=MPI_Bcast(&handle, | ||||
| 			 sizeof(handle), | ||||
| 			 MPI_BYTE, | ||||
| @@ -601,6 +636,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     if ( r!=WorldShmRank ) { | ||||
|       thisBuf = nullptr; | ||||
|       int myfd; | ||||
| #ifdef SHM_SOCKETS | ||||
|       myfd=UnixSockets::RecvFileDescriptor(); | ||||
| #else | ||||
|       std::cout<<"mapping seeking remote pid/fd " | ||||
| 	       <<handle.pid<<"/" | ||||
| 	       <<handle.fd<<std::endl; | ||||
| @@ -608,16 +647,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|       int pidfd = syscall(SYS_pidfd_open,handle.pid,0); | ||||
|       std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n"; | ||||
|       //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0); | ||||
|       int myfd  = syscall(438,pidfd,handle.fd,0); | ||||
|  | ||||
|       std::cout<<"Using IpcHandle myfd "<<myfd<<"\n"; | ||||
|        | ||||
|       myfd  = syscall(438,pidfd,handle.fd,0); | ||||
|       int err_t = errno; | ||||
|       if (myfd < 0) { | ||||
|         fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr); | ||||
| 	perror("pidfd_getfd failed "); | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|       std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n"; | ||||
|       memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle)); | ||||
|       memcpy((void *)&ihandle,(void *)&myfd,sizeof(int)); | ||||
|  | ||||
|       auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf); | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cout << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl; | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;  | ||||
| 	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl; | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;  | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl; | ||||
| @@ -652,18 +697,18 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #else | ||||
|     WorldShmCommBufs[r] = ShmCommBuf; | ||||
| #endif | ||||
|     MPI_Barrier(WorldShmComm); | ||||
|   } | ||||
|  | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #else  | ||||
| #ifdef GRID_MPI3_SHMMMAP | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -700,7 +745,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|     //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|   } | ||||
|   _ShmAlloc=1; | ||||
|   _ShmAllocBytes  = bytes; | ||||
| @@ -710,7 +755,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_MPI3_SHM_NONE | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -757,7 +802,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| {  | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0);  | ||||
|   MPI_Barrier(WorldShmComm); | ||||
| @@ -881,6 +926,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   host_heap_size = heap_size; | ||||
|   HostCommBuf= GlobalSharedMemory::HostCommBuf; | ||||
|   HostBufferFreeAll(); | ||||
| #endif   | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // find comm ranks in our SHM group (i.e. which ranks are on our node) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -29,8 +29,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern Vector<std::pair<int,int> > Cshift_table;  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
|   } | ||||
|   acceleratorCopyToDevice((void *)&Cshift_table[0], | ||||
| 			  (void *)&Cshift_table_device[0], | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| @@ -74,8 +93,8 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim | ||||
|   } | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
| @@ -225,7 +244,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector< | ||||
|    | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| @@ -297,30 +316,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
|   } | ||||
| } | ||||
|  | ||||
| #if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT) | ||||
|  | ||||
| template <typename T> | ||||
| T iDivUp(T a, T b) // Round a / b to nearest higher integer value | ||||
| { return (a % b != 0) ? (a / b + 1) : (a / b); } | ||||
|  | ||||
| template <typename T> | ||||
| __global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride) | ||||
| { | ||||
|     int idx = blockIdx.x*blockDim.x + threadIdx.x; | ||||
|     if (idx >= e1*e2) return; | ||||
|  | ||||
|     int n, b, o; | ||||
|  | ||||
|     n = idx / e2; | ||||
|     b = idx % e2; | ||||
|     o = n*stride + b; | ||||
|  | ||||
|     vector[2*idx + 0] = lo + o; | ||||
|     vector[2*idx + 1] = ro + o; | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // local to node block strided copies | ||||
| ////////////////////////////////////////////////////// | ||||
| @@ -345,20 +340,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|   int ent=0; | ||||
|  | ||||
|   if(cbmask == 0x3 ){ | ||||
| #if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT) | ||||
|     ent = e1*e2; | ||||
|     dim3 blockSize(acceleratorThreads()); | ||||
|     dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x)); | ||||
|     populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride); | ||||
|     accelerator_barrier(); | ||||
| #else | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|   } else {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| @@ -372,7 +359,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
| @@ -409,19 +396,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|   int ent=0; | ||||
|  | ||||
|   if ( cbmask == 0x3 ) { | ||||
| #if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT) | ||||
|     ent = e1*e2; | ||||
|     dim3 blockSize(acceleratorThreads()); | ||||
|     dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x)); | ||||
|     populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride); | ||||
|     accelerator_barrier(); | ||||
| #else | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
| #endif | ||||
|   } else { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
| @@ -432,7 +411,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = &Cshift_table[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|   | ||||
| @@ -52,7 +52,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); | ||||
|  | ||||
|  | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|   if ( !comm_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
| @@ -63,6 +64,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @@ -127,16 +130,20 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|  | ||||
|       tcopy+=usecond(); | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
| @@ -144,26 +151,39 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|       grid->Barrier(); | ||||
|        | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       grid->Barrier(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -190,6 +210,12 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
| @@ -227,7 +253,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     tgather-=usecond(); | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
| @@ -252,7 +280,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| @@ -262,7 +291,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	xbytes+=bytes; | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| @@ -270,9 +301,17 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|  | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -292,6 +331,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
| @@ -315,7 +359,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
| @@ -324,7 +370,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
| @@ -332,7 +380,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       grid->Barrier(); | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| @@ -340,13 +389,24 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       grid->Barrier(); | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -372,6 +432,11 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
| @@ -414,8 +479,10 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
| @@ -440,7 +507,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| @@ -449,17 +517,28 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|   } | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #endif | ||||
| NAMESPACE_END(Grid);  | ||||
|   | ||||
| @@ -1,4 +1,5 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| Vector<std::pair<int,int> > Cshift_table;  | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice_transpose.h> | ||||
| #include <Grid/lattice/Lattice_local.h> | ||||
| #include <Grid/lattice/Lattice_reduction.h> | ||||
| #include <Grid/lattice/Lattice_crc.h> | ||||
| #include <Grid/lattice/Lattice_peekpoke.h> | ||||
| #include <Grid/lattice/Lattice_reality.h> | ||||
| #include <Grid/lattice/Lattice_real_imag.h> | ||||
| @@ -46,4 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice_unary.h> | ||||
| #include <Grid/lattice/Lattice_transfer.h> | ||||
| #include <Grid/lattice/Lattice_basis.h> | ||||
| #include <Grid/lattice/Lattice_crc.h> | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
|   | ||||
| @@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a)); | ||||
| GridUnopClass(UnaryTrace, trace(a)); | ||||
| GridUnopClass(UnaryTranspose, transpose(a)); | ||||
| GridUnopClass(UnaryTa, Ta(a)); | ||||
| GridUnopClass(UnarySpTa, SpTa(a)); | ||||
| GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a)); | ||||
| GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a)); | ||||
| GridUnopClass(UnaryTimesI, timesI(a)); | ||||
| GridUnopClass(UnaryTimesMinusI, timesMinusI(a)); | ||||
| GridUnopClass(UnaryAbs, abs(a)); | ||||
| @@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot); | ||||
| GRID_DEF_UNOP(trace, UnaryTrace); | ||||
| GRID_DEF_UNOP(transpose, UnaryTranspose); | ||||
| GRID_DEF_UNOP(Ta, UnaryTa); | ||||
| GRID_DEF_UNOP(SpTa, UnarySpTa); | ||||
| GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup); | ||||
| GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup); | ||||
| GRID_DEF_UNOP(timesI, UnaryTimesI); | ||||
| GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI); | ||||
| GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the | ||||
|   | ||||
| @@ -270,5 +270,42 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
| } | ||||
|  | ||||
| /// Trace product | ||||
| template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2) | ||||
|   -> Lattice<decltype(trace(obj()))> | ||||
| { | ||||
|   typedef decltype(trace(obj())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( rhs2 , rhs_2, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss))); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   typedef decltype(trace(obj1())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
| template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   return traceProduct(rhs_1,rhs_2); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -234,9 +234,12 @@ public: | ||||
|   } | ||||
|  | ||||
|   template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     auto me  = View(CpuWrite); | ||||
|     thread_for(ss,me.size(),{ | ||||
| 	me[ss]= r; | ||||
|     vobj vtmp; | ||||
|     vtmp = r; | ||||
|     auto me  = View(AcceleratorWrite); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
| 	auto stmp=coalescedRead(vtmp); | ||||
| 	coalescedWrite(me[ss],stmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
| @@ -360,7 +363,7 @@ public: | ||||
|  | ||||
| template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){ | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   for(int g=0;g<o.Grid()->_gsites;g++){ | ||||
|   for(int64_t g=0;g<o.Grid()->_gsites;g++){ | ||||
|  | ||||
|     Coordinate gcoor; | ||||
|     o.Grid()->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|   | ||||
| @@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
| #if ( (!defined(GRID_CUDA)) ) | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1) | ||||
| template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1) | ||||
| { | ||||
|   auto ff = localNorm2(f); | ||||
|   if ( mu==-1 ) mu = f.Grid()->Nd()-1; | ||||
| @@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1 | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> uint32_t crc(Lattice<vobj> & buf) | ||||
| template<class vobj> uint32_t crc(const Lattice<vobj> & buf) | ||||
| { | ||||
|   autoView( buf_v , buf, CpuRead); | ||||
|   return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites()); | ||||
| } | ||||
|  | ||||
| #define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
| #define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -31,6 +31,7 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #if defined(GRID_SYCL) | ||||
| #include <Grid/lattice/Lattice_reduction_sycl.h> | ||||
| #endif | ||||
| #include <Grid/lattice/Lattice_slicesum_core.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| @@ -203,6 +204,27 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){ | ||||
|   return real(nrm);  | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1> | ||||
| inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1,class T2> | ||||
| inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1,class T2,class T3> | ||||
| inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| //The global maximum of the site norm2 | ||||
| template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg) | ||||
| { | ||||
| @@ -280,11 +302,29 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> & | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // Hack | ||||
|     // Fast integer xor checksum. Can also be used in comms now. | ||||
|     autoView(l_v,left,AcceleratorRead); | ||||
|     Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|     uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|     csum=svm_xor(base,words); | ||||
|   } | ||||
|   FlightRecorder::CsumLog(csum); | ||||
| #endif | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   RealD local = real(nrm); | ||||
|   FlightRecorder::NormLog(real(nrm));  | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::ReductionLog(local,real(nrm));  | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
| @@ -448,19 +488,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|  | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
|   int ostride=grid->_ostride[orthogdim]; | ||||
|    | ||||
|   //Reduce Data down to lvSum | ||||
|   sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd); | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
| @@ -504,6 +535,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim) | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| { | ||||
|   | ||||
| @@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator & | ||||
|   cudaGetDevice(&device); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   hipGetDevice(&device); | ||||
|   auto r=hipGetDevice(&device); | ||||
| #endif | ||||
|    | ||||
|   Iterator warpSize            = gpu_props[device].warpSize; | ||||
|   | ||||
| @@ -69,29 +69,30 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
| template<class Double> Double svm_reduce(Double *vec,uint64_t L) | ||||
| template<class Word> Word svm_xor(Word *vec,uint64_t L) | ||||
| { | ||||
|   Double sumResult; zeroit(sumResult); | ||||
|   Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator); | ||||
|   Double identity;  zeroit(identity); | ||||
|   Word xorResult; xorResult = 0; | ||||
|   Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator); | ||||
|   Word identity;  identity=0; | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|      auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>()); | ||||
|      auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>()); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{L}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> index, auto &sum) { | ||||
| 	 sum +=vec[index]; | ||||
| 	 sum ^=vec[index]; | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   Double ret = d_sum[0]; | ||||
|   Word ret = d_sum[0]; | ||||
|   free(d_sum,*theGridAccelerator); | ||||
|   std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites) | ||||
| { | ||||
|   | ||||
| @@ -152,6 +152,7 @@ public: | ||||
| #ifdef RNG_FAST_DISCARD | ||||
|   static void Skip(RngEngine &eng,uint64_t site) | ||||
|   { | ||||
| #if 0 | ||||
|     ///////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Skip by 2^40 elements between successive lattice sites | ||||
|     // This goes by 10^12. | ||||
| @@ -162,9 +163,9 @@ public: | ||||
|     // tens of seconds per trajectory so this is clean in all reasonable cases, | ||||
|     // and margin of safety is orders of magnitude. | ||||
|     // We could hack Sitmo to skip in the higher order words of state if necessary | ||||
|       // | ||||
|       // Replace with 2^30 ; avoid problem on large volumes | ||||
|       // | ||||
|     // | ||||
|     // Replace with 2^30 ; avoid problem on large volumes | ||||
|     // | ||||
|     ///////////////////////////////////////////////////////////////////////////////////// | ||||
|     //      uint64_t skip = site+1;  //   Old init Skipped then drew.  Checked compat with faster init | ||||
|     const int shift = 30; | ||||
| @@ -179,6 +180,9 @@ public: | ||||
|     assert((skip >> shift)==site); // check for overflow | ||||
|  | ||||
|     eng.discard(skip); | ||||
| #else | ||||
|     eng.discardhi(site); | ||||
| #endif | ||||
|     //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl; | ||||
|   }  | ||||
| #endif | ||||
| @@ -361,9 +365,14 @@ public: | ||||
|     _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1}); | ||||
|     _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() ); | ||||
|   } | ||||
|  | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){ | ||||
|  | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist) | ||||
|   { | ||||
|     if ( l.Grid()->_isCheckerBoarded ) { | ||||
|       Lattice<vobj> tmp(_grid); | ||||
|       fill(tmp,dist); | ||||
|       pickCheckerboard(l.Checkerboard(),l,tmp); | ||||
|       return; | ||||
|     } | ||||
|     typedef typename vobj::scalar_object scalar_object; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
| @@ -407,7 +416,7 @@ public: | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl; | ||||
|       SeedFixedIntegers(seeds); | ||||
|     } | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds){ | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){ | ||||
|  | ||||
|     // Everyone generates the same seed_seq based on input seeds | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size()); | ||||
| @@ -424,10 +433,9 @@ public: | ||||
|     // MT implementation does not implement fast discard even though | ||||
|     // in principle this is possible | ||||
|     //////////////////////////////////////////////// | ||||
| #if 1 | ||||
|     thread_for( lidx, _grid->lSites(), { | ||||
|  | ||||
| 	int gidx; | ||||
| 	int64_t gidx; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
| 	int rank; | ||||
| @@ -445,29 +453,12 @@ public: | ||||
| 	 | ||||
| 	int l_idx=generator_idx(o_idx,i_idx); | ||||
| 	_generators[l_idx] = master_engine; | ||||
| 	Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
|     }); | ||||
| #else | ||||
|     // Everybody loops over global volume. | ||||
|     thread_for( gidx, _grid->_gsites, { | ||||
|  | ||||
| 	// Where is it? | ||||
| 	int rank; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
|  | ||||
| 	Coordinate gcoor; | ||||
| 	_grid->GlobalIndexToGlobalCoor(gidx,gcoor); | ||||
| 	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
| 	 | ||||
| 	// If this is one of mine we take it | ||||
| 	if( rank == _grid->ThisRank() ){ | ||||
| 	  int l_idx=generator_idx(o_idx,i_idx); | ||||
| 	  _generators[l_idx] = master_engine; | ||||
| 	if ( britney ) {  | ||||
| 	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence | ||||
| 	} else { 	 | ||||
| 	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
| 	} | ||||
|     }); | ||||
| #endif | ||||
| #else  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Machine and thread decomposition dependent seeding is efficient | ||||
|   | ||||
							
								
								
									
										213
									
								
								Grid/lattice/Lattice_slicesum_core.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										213
									
								
								Grid/lattice/Lattice_slicesum_core.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,213 @@ | ||||
| #pragma once | ||||
| #include <type_traits> | ||||
| #if defined(GRID_CUDA) | ||||
|  | ||||
| #include <cub/cub.cuh> | ||||
| #define gpucub cub | ||||
| #define gpuError_t cudaError_t | ||||
| #define gpuSuccess cudaSuccess | ||||
|  | ||||
| #elif defined(GRID_HIP) | ||||
|  | ||||
| #include <hipcub/hipcub.hpp> | ||||
| #define gpucub hipcub | ||||
| #define gpuError_t hipError_t | ||||
| #define gpuSuccess hipSuccess | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
| template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   size_t subvol_size = e1*e2; | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|   vobj zero_init; | ||||
|   zeroit(zero_init); | ||||
|  | ||||
|    | ||||
|   void *temp_storage_array = NULL; | ||||
|   size_t temp_storage_bytes = 0; | ||||
|   vobj *d_out; | ||||
|   int* d_offsets; | ||||
|  | ||||
|   std::vector<int> offsets(rd+1,0); | ||||
|  | ||||
|   for (int i = 0; i < offsets.size(); i++) { | ||||
|     offsets[i] = i*subvol_size; | ||||
|   } | ||||
|    | ||||
|   //Allocate memory for output and offset arrays on device | ||||
|   d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj))); | ||||
|    | ||||
|   d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); | ||||
|    | ||||
|   //copy offsets to device | ||||
|   acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|    | ||||
|    | ||||
|   gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|  | ||||
|   //allocate memory for temp_storage_array   | ||||
|   temp_storage_array = acceleratorAllocDevice(temp_storage_bytes); | ||||
|    | ||||
|   //prepare buffer for reduction | ||||
|   //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream) | ||||
|   //use 2d accelerator_for to avoid launch latencies found when serially looping over rd  | ||||
|   accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{  | ||||
|    | ||||
|     int n = s / e2; | ||||
|     int b = s % e2; | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     int ss= so+n*stride+b; | ||||
|  | ||||
|     coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss])); | ||||
|  | ||||
|   }); | ||||
|    | ||||
|   //issue segmented reductions in computeStream | ||||
|   gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|    | ||||
|   //sync after copy | ||||
|   accelerator_barrier(); | ||||
|   | ||||
|   acceleratorFreeDevice(temp_storage_array); | ||||
|   acceleratorFreeDevice(d_out); | ||||
|   acceleratorFreeDevice(d_offsets); | ||||
|    | ||||
|  | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   typedef typename vobj::vector_type vector; | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|   const int osites = rd*e1*e2; | ||||
|   commVector<vector>buffer(osites); | ||||
|   vector *dat = (vector *)Data; | ||||
|   vector *buf = &buffer[0]; | ||||
|   Vector<vector> lvSum_small(rd); | ||||
|   vector *lvSum_ptr = (vector *)&lvSum[0]; | ||||
|  | ||||
|   for (int w = 0; w < words; w++) { | ||||
|     accelerator_for(ss,osites,1,{ | ||||
| 	    buf[ss] = dat[ss*words+w]; | ||||
|     }); | ||||
|  | ||||
|     sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd); | ||||
|        | ||||
|     for (int r = 0; r < rd; r++) { | ||||
|       lvSum_ptr[w+words*r]=lvSum_small[r]; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|    | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) | ||||
| { | ||||
|   autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case. | ||||
|     if constexpr (sizeof(vobj) <= 256) {  | ||||
|       sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|     } | ||||
|     else { | ||||
|       sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|     } | ||||
| } | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #if defined(GRID_SYCL) | ||||
| template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   size_t subvol_size = e1*e2; | ||||
|  | ||||
|   vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator); | ||||
|   vobj vobj_zero; | ||||
|   zeroit(vobj_zero); | ||||
|      | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|  | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|  | ||||
|   autoView(Data_v, Data, AcceleratorRead); | ||||
|  | ||||
|   //prepare reduction buffer  | ||||
|   accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{  | ||||
|    | ||||
|       int n = s / e2; | ||||
|       int b = s % e2; | ||||
|       int so=r*ostride; // base offset for start of plane  | ||||
|       int ss= so+n*stride+b; | ||||
|  | ||||
|       coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss])); | ||||
|  | ||||
|   }); | ||||
|  | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|       mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable | ||||
|       theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|           auto Reduction = cl::sycl::reduction(mysum,std::plus<>()); | ||||
|           cgh.parallel_for(cl::sycl::range<1>{subvol_size}, | ||||
|           Reduction, | ||||
|           [=](cl::sycl::id<1> item, auto &sum) { | ||||
|               auto s = item[0]; | ||||
|               sum += rb_p[r*subvol_size+s]; | ||||
|           }); | ||||
|       }); | ||||
|       theGridAccelerator->wait(); | ||||
|       lvSum[r] = mysum[0]; | ||||
|   } | ||||
|    | ||||
|   free(mysum,*theGridAccelerator); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int ss= so+n*stride+b; | ||||
|         lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)  | ||||
| { | ||||
|   #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|    | ||||
|   sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #elif defined(GRID_SYCL) | ||||
|    | ||||
|   sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #else | ||||
|   sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|  | ||||
|   #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex< | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<int N, class Vec> | ||||
| Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid); | ||||
|   typedef typename Vec::scalar_type scalar; | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<scalar, N> > > Us; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	scalar tmp= Us()()(i,j); | ||||
| 	ComplexD ztmp(real(tmp),imag(tmp)); | ||||
| 	EigenU(i,j)=ztmp; | ||||
|       }} | ||||
|     ComplexD detD  = EigenU.determinant(); | ||||
|     typename Vec::scalar_type det(detD.real(),detD.imag()); | ||||
|     pokeLocalSite(det,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<int N> | ||||
| Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid); | ||||
|    | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Us; | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Ui; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	EigenU(i,j) = Us()()(i,j); | ||||
|       }} | ||||
|     Eigen::MatrixXcd EigenUinv = EigenU.inverse(); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	Ui()()(i,j) = EigenUinv(i,j); | ||||
|       }} | ||||
|     pokeLocalSite(Ui,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -276,18 +276,33 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|  | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( ip_         , ip,         AcceleratorWrite); | ||||
|   RealD t_IP=0; | ||||
|   RealD t_co=0; | ||||
|   RealD t_za=0; | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     t_IP-=usecond(); | ||||
|     blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine> | ||||
|     t_IP+=usecond(); | ||||
|     t_co-=usecond(); | ||||
|     accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
| 	convertType(coarseData_[sc](v),ip_[sc]); | ||||
|     }); | ||||
|     t_co+=usecond(); | ||||
|  | ||||
|     // improve numerical stability of projection | ||||
|     // |fine> = |fine> - <basis|fine> |basis> | ||||
|     ip=-ip; | ||||
|     t_za-=usecond(); | ||||
|     blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);  | ||||
|     t_za+=usecond(); | ||||
|   } | ||||
|   //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl; | ||||
| } | ||||
| // This only minimises data motion from CPU to GPU | ||||
| // there is chance of better implementation that does a vxk loop of inner products to data share | ||||
| // at the GPU thread level | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData, | ||||
|                                const std::vector<Lattice<vobj>> &fineData, | ||||
| @@ -393,8 +408,15 @@ template<class vobj,class CComplex> | ||||
|   Lattice<dotp> coarse_inner(coarse); | ||||
|  | ||||
|   // Precision promotion | ||||
|   RealD t; | ||||
|   t=-usecond(); | ||||
|   fine_inner = localInnerProductD<vobj>(fineX,fineY); | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl; | ||||
|    | ||||
|   t=-usecond(); | ||||
|   blockSum(coarse_inner,fine_inner); | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl; | ||||
|   t=-usecond(); | ||||
|   { | ||||
|     autoView( CoarseInner_  , CoarseInner,AcceleratorWrite); | ||||
|     autoView( coarse_inner_ , coarse_inner,AcceleratorRead); | ||||
| @@ -402,6 +424,7 @@ template<class vobj,class CComplex> | ||||
|       convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss])); | ||||
|     }); | ||||
|   } | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl; | ||||
|   | ||||
| } | ||||
|  | ||||
| @@ -444,6 +467,9 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX) | ||||
| template<class vobj> | ||||
| inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)  | ||||
| { | ||||
|   const int maxsubsec=256; | ||||
|   typedef iVector<vobj,maxsubsec> vSubsec; | ||||
|  | ||||
|   GridBase * fine  = fineData.Grid(); | ||||
|   GridBase * coarse= coarseData.Grid(); | ||||
|  | ||||
| @@ -463,37 +489,62 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( fineData_   , fineData, AcceleratorRead); | ||||
|  | ||||
|   auto coarseData_p = &coarseData_[0]; | ||||
|   auto fineData_p = &fineData_[0]; | ||||
|   auto coarseData_p  = &coarseData_[0]; | ||||
|   auto fineData_p    = &fineData_[0]; | ||||
|    | ||||
|   Coordinate fine_rdimensions = fine->_rdimensions; | ||||
|   Coordinate coarse_rdimensions = coarse->_rdimensions; | ||||
|  | ||||
|   vobj zz = Zero(); | ||||
|    | ||||
|   accelerator_for(sc,coarse->oSites(),1,{ | ||||
|  | ||||
|   // Somewhat lazy calculation | ||||
|   // Find the biggest power of two subsection divisor less than or equal to maxsubsec | ||||
|   int subsec=maxsubsec; | ||||
|   int subvol; | ||||
|   subvol=blockVol/subsec; | ||||
|   while(subvol*subsec!=blockVol){ | ||||
|     subsec = subsec/2; | ||||
|     subvol=blockVol/subsec; | ||||
|   }; | ||||
|  | ||||
|   Lattice<vSubsec> coarseTmp(coarse); | ||||
|   autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard); | ||||
|   auto coarseTmp_p= &coarseTmp_[0]; | ||||
|    | ||||
|   // Sum within subsecs in a first kernel | ||||
|   accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{ | ||||
|  | ||||
|       int sc=sce/subsec; | ||||
|       int e=sce%subsec; | ||||
|        | ||||
|       // One thread per sub block | ||||
|       Coordinate coor_c(_ndimension); | ||||
|       Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate | ||||
|  | ||||
|       vobj cd = zz; | ||||
|        | ||||
|       for(int sb=0;sb<blockVol;sb++){ | ||||
|  | ||||
|       auto cd = coalescedRead(zz); | ||||
|       for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){ | ||||
| 	int sf; | ||||
| 	Coordinate coor_b(_ndimension); | ||||
| 	Coordinate coor_f(_ndimension); | ||||
| 	Lexicographic::CoorFromIndex(coor_b,sb,block_r);               // Block sub coordinate | ||||
| 	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d]; | ||||
| 	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	cd=cd+fineData_p[sf]; | ||||
| 	 | ||||
| 	cd=cd+coalescedRead(fineData_p[sf]); | ||||
|       } | ||||
|  | ||||
|       coarseData_p[sc] = cd; | ||||
|       coalescedWrite(coarseTmp_[sc](e),cd); | ||||
|  | ||||
|     }); | ||||
|    // Sum across subsecs in a second kernel | ||||
|    accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{ | ||||
|       auto cd = coalescedRead(coarseTmp_p[sc](0)); | ||||
|       for(int e=1;e<subsec;e++){ | ||||
| 	cd=cd+coalescedRead(coarseTmp_p[sc](e)); | ||||
|       } | ||||
|       coalescedWrite(coarseData_p[sc],cd); | ||||
|    }); | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| @@ -550,7 +601,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > | ||||
|   blockOrthonormalize(ip,Basis); | ||||
| } | ||||
|  | ||||
| #if 0 | ||||
| #ifdef GRID_ACCELERATED | ||||
| // TODO: CPU optimized version here | ||||
| template<class vobj,class CComplex,int nbasis> | ||||
| inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| @@ -576,26 +627,37 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|   autoView( fineData_   , fineData, AcceleratorWrite); | ||||
|   autoView( coarseData_ , coarseData, AcceleratorRead); | ||||
|  | ||||
|   typedef LatticeView<vobj> Vview; | ||||
|   std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead)); | ||||
|   } | ||||
|   static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);  | ||||
|   acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview)); | ||||
|   auto Basis_p = &AcceleratorVecViewContainer[0]; | ||||
|   // Loop with a cache friendly loop ordering | ||||
|   accelerator_for(sf,fine->oSites(),1,{ | ||||
|   Coordinate frdimensions=fine->_rdimensions; | ||||
|   Coordinate crdimensions=coarse->_rdimensions; | ||||
|   accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{ | ||||
|     int sc; | ||||
|     Coordinate coor_c(_ndimension); | ||||
|     Coordinate coor_f(_ndimension); | ||||
|  | ||||
|     Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions); | ||||
|     Lexicographic::CoorFromIndex(coor_f,sf,frdimensions); | ||||
|     for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d]; | ||||
|     Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions); | ||||
|     Lexicographic::IndexFromCoor(coor_c,sc,crdimensions); | ||||
|  | ||||
|     for(int i=0;i<nbasis;i++) { | ||||
|       /*      auto basis_ = Basis[i],  );*/ | ||||
|       if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]); | ||||
|       else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]); | ||||
|     } | ||||
|     auto sum= coarseData_(sc)(0) *Basis_p[0](sf); | ||||
|     for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf); | ||||
|     coalescedWrite(fineData_[sf],sum); | ||||
|   }); | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     AcceleratorVecViewContainer_h[v].ViewClose(); | ||||
|   } | ||||
|   return; | ||||
|    | ||||
| } | ||||
| #else | ||||
| // CPU version | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| 			 Lattice<vobj>   &fineData, | ||||
| @@ -682,7 +744,11 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
| @@ -698,43 +764,186 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|     assert(Fg->_processors[d]  == Tg->_processors[d]); | ||||
|   } | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|   Coordinate ldf = Fg->_ldimensions; | ||||
|   Coordinate rdf = Fg->_rdimensions; | ||||
|   Coordinate isf = Fg->_istride; | ||||
|   Coordinate osf = Fg->_ostride; | ||||
|   Coordinate rdt = Tg->_rdimensions; | ||||
|   Coordinate ist = Tg->_istride; | ||||
|   Coordinate ost = Tg->_ostride; | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|  | ||||
|   autoView( t_v , To, AcceleratorWrite); | ||||
|   autoView( f_v , From, AcceleratorRead); | ||||
|   accelerator_for(idx,Fg->lSites(),1,{ | ||||
|     sobj s; | ||||
|     Coordinate Fcoor(nd); | ||||
|     Coordinate Tcoor(nd); | ||||
|     Lexicographic::CoorFromIndex(Fcoor,idx,ldf); | ||||
|     int in_region=1; | ||||
|     for(int d=0;d<nd;d++){ | ||||
|       if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){  | ||||
| 	in_region=0; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= RegionSize[i]; | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor, to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,RegionSize); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i] + FromLowerLeft[i]; | ||||
| 	to_coor[i] = base[i] + ToLowerLeft[i]; | ||||
|       } | ||||
|       Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d]; | ||||
|     } | ||||
|     if (in_region) { | ||||
|       Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); | ||||
|       Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); | ||||
|       Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); | ||||
|       Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); | ||||
|       vector_type * fp = (vector_type *)&f_v[odx_f]; | ||||
|       vector_type * tp = (vector_type *)&t_v[odx_t]; | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	tp[w].putlane(fp[w].getlane(idx_f),idx_t); | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nF+1 == nT); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   Coordinate RegionSize = Fg->_ldimensions; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor(nF), to_coor(nT); | ||||
|       Lexicographic::CoorFromIndex(from_coor,idx,RegionSize); | ||||
|       int j=0; | ||||
|       for(int i=0;i<nT;i++){ | ||||
| 	if ( i!=orthog ) {  | ||||
| 	  to_coor[i] = from_coor[j]; | ||||
| 	  j++; | ||||
| 	} else { | ||||
| 	  to_coor[i] = slice; | ||||
| 	} | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nT+1 == nF); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   Coordinate RegionSize = Tg->_ldimensions; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor(nF), to_coor(nT); | ||||
|       Lexicographic::CoorFromIndex(to_coor,idx,RegionSize); | ||||
|       int j=0; | ||||
|       for(int i=0;i<nF;i++){ | ||||
| 	if ( i!=orthog ) {  | ||||
| 	  from_coor[i] = to_coor[j]; | ||||
| 	  j++; | ||||
| 	} else { | ||||
| 	  from_coor[i] = slice; | ||||
| 	} | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog) | ||||
| @@ -824,7 +1033,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| //Can I implement with local copyregion?? | ||||
| template<class vobj> | ||||
| void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
| @@ -841,65 +1050,22 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int | ||||
|  | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d!=orthog ) { | ||||
|     assert(lg->_processors[d]  == hg->_processors[d]); | ||||
|     assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|   } | ||||
|   } | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuRead); | ||||
|   autoView(higherDimv,higherDim,CpuWrite); | ||||
|   thread_for(idx,lg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     if( lcoor[orthog] == slice_lo ) {  | ||||
|       hcoor=lcoor; | ||||
|       hcoor[orthog] = slice_hi; | ||||
|       peekLocalSite(s,lowDimv,lcoor); | ||||
|       pokeLocalSite(s,higherDimv,hcoor); | ||||
|       assert(lg->_processors[d]  == hg->_processors[d]); | ||||
|       assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|     } | ||||
|   }); | ||||
|   } | ||||
|   Coordinate sz = lg->_ldimensions; | ||||
|   sz[orthog]=1; | ||||
|   Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo; | ||||
|   Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi; | ||||
|   localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|   GridBase *lg = lowDim.Grid(); | ||||
|   GridBase *hg = higherDim.Grid(); | ||||
|   int nl = lg->_ndimension; | ||||
|   int nh = hg->_ndimension; | ||||
|  | ||||
|   assert(nl == nh); | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|  | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d!=orthog ) { | ||||
|     assert(lg->_processors[d]  == hg->_processors[d]); | ||||
|     assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|   } | ||||
|   } | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuWrite); | ||||
|   autoView(higherDimv,higherDim,CpuRead); | ||||
|   thread_for(idx,lg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     if( lcoor[orthog] == slice_lo ) {  | ||||
|       hcoor=lcoor; | ||||
|       hcoor[orthog] = slice_hi; | ||||
|       peekLocalSite(s,higherDimv,hcoor); | ||||
|       pokeLocalSite(s,lowDimv,lcoor); | ||||
|     } | ||||
|   }); | ||||
|   InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog); | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -925,7 +1091,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) | ||||
|  | ||||
|   Coordinate fcoor(nd); | ||||
|   Coordinate ccoor(nd); | ||||
|   for(int g=0;g<fg->gSites();g++){ | ||||
|   for(int64_t g=0;g<fg->gSites();g++){ | ||||
|  | ||||
|     fg->GlobalIndexToGlobalCoor(g,fcoor); | ||||
|     for(int d=0;d<nd;d++){ | ||||
| @@ -1611,5 +1777,35 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Faster but less accurate blockProject | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| 			     const             Lattice<vobj>   &fineData, | ||||
| 			     const VLattice &Basis) | ||||
| { | ||||
|   GridBase * fine  = fineData.Grid(); | ||||
|   GridBase * coarse= coarseData.Grid(); | ||||
|  | ||||
|   Lattice<iScalar<CComplex> > ip(coarse); | ||||
|  | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( ip_         , ip,         AcceleratorWrite); | ||||
|   RealD t_IP=0; | ||||
|   RealD t_co=0; | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     t_IP-=usecond(); | ||||
|     blockInnerProductD(ip,Basis[v],fineData);  | ||||
|     t_IP+=usecond(); | ||||
|     t_co-=usecond(); | ||||
|     accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
| 	convertType(coarseData_[sc](v),ip_[sc]); | ||||
|       }); | ||||
|     t_co+=usecond(); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -45,6 +45,7 @@ public: | ||||
|   }; | ||||
|   // Host only | ||||
|   GridBase * getGrid(void) const { return _grid; }; | ||||
|   vobj* getHostPointer(void) const { return _odata; }; | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
							
								
								
									
										571
									
								
								Grid/lattice/PaddedCell.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										571
									
								
								Grid/lattice/PaddedCell.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,571 @@ | ||||
| /************************************************************************************* | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/PaddedCell.h | ||||
|  | ||||
|     Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle pboyle@bnl.gov | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include<Grid/cshift/Cshift.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions | ||||
| template<typename vobj> | ||||
| struct CshiftImplBase{ | ||||
|   virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0; | ||||
|   virtual ~CshiftImplBase(){} | ||||
| }; | ||||
| template<typename vobj> | ||||
| struct CshiftImplDefault: public CshiftImplBase<vobj>{ | ||||
|   Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); } | ||||
| }; | ||||
| template<typename Gimpl> | ||||
| struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{ | ||||
|   typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); } | ||||
| };   | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * | ||||
|  * TODO:  | ||||
|  *  -- address elementsof vobj via thread block in Scatter/Gather | ||||
|  *  -- overlap comms with motion in Face_exchange | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, | ||||
| 					      Lattice<vobj> &lat, | ||||
| 					      int x, | ||||
| 					      int dim, | ||||
| 					      int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|   int rNsimda= Nsimd/simd[dim]; // should be equal | ||||
|   assert(rNsimda==rNsimd); | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   // FIXME -- can put internal indices into thread loop | ||||
|   auto buf_p = & buf[0]; | ||||
|   autoView(lat_v, lat, AcceleratorWrite); | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
|  | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Transfer into lattice - will coalesce | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(blane,buf_p[ss+offset]); | ||||
| 	//	insertLane(lane,lat_v[osite],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * from = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * to   = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], blane); | ||||
| 	  putlane(to[w], stmp, lane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf, | ||||
| 					     const Lattice<vobj> &lat, | ||||
| 					     int x, | ||||
| 					     int dim, | ||||
| 					     int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   autoView(lat_v, lat, AcceleratorRead); | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|    | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   //For CPU perhaps just run a loop over Nsimd | ||||
|   auto buf_p = & buf[0]; | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// osite | ||||
| 	//////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
|  | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Take out of lattice | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(lane,lat_v[osite]); | ||||
| 	//	insertLane(blane,buf_p[ss+offset],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * to    = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * from  = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], lane); | ||||
| 	  putlane(to[w], stmp, blane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| class PaddedCell { | ||||
| public: | ||||
|   GridCartesian * unpadded_grid; | ||||
|   int dims; | ||||
|   int depth; | ||||
|   std::vector<GridCartesian *> grids; | ||||
|  | ||||
|   ~PaddedCell() | ||||
|   { | ||||
|     DeleteGrids(); | ||||
|   } | ||||
|   PaddedCell(int _depth,GridCartesian *_grid) | ||||
|   { | ||||
|     unpadded_grid = _grid; | ||||
|     depth=_depth; | ||||
|     dims=_grid->Nd(); | ||||
|     AllocateGrids(); | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate procs     =unpadded_grid->ProcessorGrid(); | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if ( procs[d] > 1 ) assert(local[d]>=depth); | ||||
|     } | ||||
|   } | ||||
|   void DeleteGrids(void) | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     for(int d=0;d<grids.size();d++){ | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	delete grids[d]; | ||||
|       } | ||||
|     } | ||||
|     grids.resize(0); | ||||
|   }; | ||||
|   void AllocateGrids(void) | ||||
|   { | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate simd      =unpadded_grid->_simd_layout; | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     Coordinate plocal    =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate global(dims); | ||||
|     GridCartesian *old_grid = unpadded_grid; | ||||
|     // expand up one dim at a time | ||||
|     for(int d=0;d<dims;d++){ | ||||
|  | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	plocal[d] += 2*depth;  | ||||
|        | ||||
| 	for(int d=0;d<dims;d++){ | ||||
| 	  global[d] = plocal[d]*processors[d]; | ||||
| 	} | ||||
|  | ||||
| 	old_grid = new GridCartesian(global,simd,processors); | ||||
|       } | ||||
|       grids.push_back(old_grid); | ||||
|     } | ||||
|   }; | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Extract(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|  | ||||
|     Lattice<vobj> out(unpadded_grid); | ||||
|  | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     // depends on the MPI spread       | ||||
|     Coordinate fll(dims,depth); | ||||
|     Coordinate tll(dims,0); // depends on the MPI spread | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if( processors[d]==1 ) fll[d]=0; | ||||
|     } | ||||
|     localCopyRegion(in,out,fll,tll,local); | ||||
|     return out; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = Expand(d,tmp,cshift); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = ExpandPeriodic(d,tmp); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   // expand up one dim at a time | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|  | ||||
|       // replace with a copy and maybe grid swizzle | ||||
|       // return in;?? | ||||
|       double t = usecond(); | ||||
|       padded = in; | ||||
|       tins += usecond() - t; | ||||
|        | ||||
|     } else { | ||||
|  | ||||
|       ////////////////////////////////////////////// | ||||
|       // Replace sequence with | ||||
|       // --------------------- | ||||
|       // (i) Gather high face(s); start comms | ||||
|       // (ii) Gather low  face(s); start comms | ||||
|       // (iii) Copy middle bit with localCopyRegion | ||||
|       // (iv) Complete high face(s), insert slice(s) | ||||
|       // (iv) Complete low  face(s), insert slice(s) | ||||
|       ////////////////////////////////////////////// | ||||
|       // Middle bit | ||||
|       double t = usecond(); | ||||
|       for(int x=0;x<local[dim];x++){ | ||||
| 	InsertSliceLocal(in,padded,x,depth+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // High bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,depth); | ||||
|       tshift += usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // Low bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,-depth); | ||||
|       tshift += usecond() - t; | ||||
|      | ||||
|       t = usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,x,x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|  | ||||
|     } | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl; | ||||
|      | ||||
|     return padded; | ||||
|   } | ||||
|  | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     //    Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl; | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|       padded=in; // slightly different interface could avoid a copy operation | ||||
|     } else { | ||||
|       Face_exchange(in,padded,dim,depth); | ||||
|       return padded; | ||||
|     } | ||||
|     return padded; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void Face_exchange(const Lattice<vobj> &from, | ||||
| 		     Lattice<vobj> &to, | ||||
| 		     int dimension,int depth) const | ||||
|   { | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     RealD t_gather=0.0; | ||||
|     RealD t_scatter=0.0; | ||||
|     RealD t_comms=0.0; | ||||
|     RealD t_copy=0.0; | ||||
|      | ||||
|     //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl; | ||||
|     //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension); | ||||
|     GridBase *grid=from.Grid(); | ||||
|     GridBase *new_grid=to.Grid(); | ||||
|  | ||||
|     Coordinate lds = from.Grid()->_ldimensions; | ||||
|     Coordinate nlds=   to.Grid()->_ldimensions; | ||||
|     Coordinate simd= from.Grid()->_simd_layout; | ||||
|     int ld    = lds[dimension]; | ||||
|     int nld   = to.Grid()->_ldimensions[dimension]; | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|  | ||||
|     assert(depth<=lds[dimension]); // A must be on neighbouring node | ||||
|     assert(depth>0);   // A caller bug if zero | ||||
|     assert(ld+2*depth==nld); | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Face size and byte calculations | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int buffer_size = 1; | ||||
|     for(int d=0;d<lds.size();d++){ | ||||
|       if ( d!= dimension) buffer_size=buffer_size*lds[d]; | ||||
|     } | ||||
|     buffer_size = buffer_size  / Nsimd; | ||||
|     int rNsimd = Nsimd / simd[dimension]; | ||||
|     assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); | ||||
|  | ||||
|     static cshiftVector<vobj> send_buf;  | ||||
|     static cshiftVector<vobj> recv_buf; | ||||
|     send_buf.resize(buffer_size*2*depth);     | ||||
|     recv_buf.resize(buffer_size*2*depth); | ||||
|  | ||||
|     std::vector<CommsRequest_t> fwd_req;    | ||||
|     std::vector<CommsRequest_t> bwd_req;    | ||||
|  | ||||
|     int words = buffer_size; | ||||
|     int bytes = words * sizeof(vobj); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Communication coords | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int comm_proc = 1; | ||||
|     int xmit_to_rank; | ||||
|     int recv_from_rank; | ||||
|     grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Gather all surface terms up to depth "d" | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     RealD t; | ||||
|     RealD t_tot=-usecond(); | ||||
|     int plane=0; | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+0; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+=usecond()-t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&send_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
|       t_comms+=usecond()-t; | ||||
|      } | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+1; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+= usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
|       t_comms+=usecond()-t; | ||||
|     } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Copy interior -- overlap this with comms | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int Nd = new_grid->Nd(); | ||||
|     Coordinate LL(Nd,0); | ||||
|     Coordinate sz = grid->_ldimensions; | ||||
|     Coordinate toLL(Nd,0); | ||||
|     toLL[dimension]=depth; | ||||
|     t=usecond(); | ||||
|     localCopyRegion(from,to,LL,toLL,sz); | ||||
|     t_copy= usecond() - t; | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Scatter all faces | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     plane=0; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(fwd_req); | ||||
|     t_comms+= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(bwd_req); | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter+= usecond() - t; | ||||
|     t_tot+=usecond(); | ||||
|  | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl; | ||||
|   } | ||||
|    | ||||
| }; | ||||
|   | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -179,11 +179,11 @@ extern GridLogger GridLogSolver; | ||||
| extern GridLogger GridLogError; | ||||
| extern GridLogger GridLogWarning; | ||||
| extern GridLogger GridLogMessage; | ||||
| extern GridLogger GridLogDebug  ; | ||||
| extern GridLogger GridLogDebug; | ||||
| extern GridLogger GridLogPerformance; | ||||
| extern GridLogger GridLogDslash; | ||||
| extern GridLogger GridLogIterative  ; | ||||
| extern GridLogger GridLogIntegrator  ; | ||||
| extern GridLogger GridLogIterative; | ||||
| extern GridLogger GridLogIntegrator; | ||||
| extern GridLogger GridLogHMC; | ||||
| extern GridLogger GridLogMemory; | ||||
| extern GridLogger GridLogTracing; | ||||
| @@ -191,6 +191,41 @@ extern Colours    GridLogColours; | ||||
|  | ||||
| std::string demangle(const char* name) ; | ||||
|  | ||||
| template<typename... Args> | ||||
| inline std::string sjoin(Args&&... args) noexcept { | ||||
|     std::ostringstream msg; | ||||
|     (msg << ... << args); | ||||
|     return msg.str(); | ||||
| } | ||||
|  | ||||
| /*!  @brief make log messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_log(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << GridLogMessage << msg << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make warning messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_warn(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make error messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_error(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make pass messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_pass(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| #define _NBACKTRACE (256) | ||||
| extern void * Grid_backtrace_buffer[_NBACKTRACE]; | ||||
|  | ||||
|   | ||||
| @@ -165,7 +165,7 @@ class BinaryIO { | ||||
| 	 * FIXME -- 128^3 x 256 x 16 will overflow. | ||||
| 	 */ | ||||
| 	 | ||||
| 	int global_site; | ||||
| 	int64_t global_site; | ||||
|  | ||||
| 	Lexicographic::CoorFromIndex(coor,local_site,local_vol); | ||||
|  | ||||
| @@ -175,8 +175,8 @@ class BinaryIO { | ||||
|  | ||||
| 	Lexicographic::IndexFromCoor(coor,global_site,global_vol); | ||||
|  | ||||
| 	uint32_t gsite29   = global_site%29; | ||||
| 	uint32_t gsite31   = global_site%31; | ||||
| 	uint64_t gsite29   = global_site%29; | ||||
| 	uint64_t gsite31   = global_site%31; | ||||
| 	 | ||||
| 	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj)); | ||||
| 	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl; | ||||
| @@ -545,7 +545,9 @@ class BinaryIO { | ||||
| 				       const std::string &format, | ||||
| 				       uint32_t &nersc_csum, | ||||
| 				       uint32_t &scidac_csuma, | ||||
| 				       uint32_t &scidac_csumb) | ||||
| 				       uint32_t &scidac_csumb, | ||||
| 				       int control=BINARYIO_LEXICOGRAPHIC | ||||
| 				       ) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename vobj::Realified::scalar_type word;    word w=0; | ||||
| @@ -556,7 +558,7 @@ class BinaryIO { | ||||
|     std::vector<sobj> scalardata(lsites);  | ||||
|     std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here | ||||
|      | ||||
|     IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC, | ||||
|     IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control, | ||||
| 	     nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     GridStopWatch timer;  | ||||
| @@ -582,7 +584,8 @@ class BinaryIO { | ||||
| 					  const std::string &format, | ||||
| 					  uint32_t &nersc_csum, | ||||
| 					  uint32_t &scidac_csuma, | ||||
| 					  uint32_t &scidac_csumb) | ||||
| 					  uint32_t &scidac_csumb, | ||||
| 					  int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename vobj::Realified::scalar_type word;    word w=0; | ||||
| @@ -607,7 +610,7 @@ class BinaryIO { | ||||
|     while (attemptsLeft >= 0) | ||||
|     { | ||||
|       grid->Barrier(); | ||||
|       IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC, | ||||
|       IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control, | ||||
| 	             nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       if (checkWrite) | ||||
|       { | ||||
| @@ -617,7 +620,7 @@ class BinaryIO { | ||||
|  | ||||
|         std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl; | ||||
|         grid->Barrier(); | ||||
|         IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC, | ||||
|         IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control, | ||||
| 	               cknersc_csum,ckscidac_csuma,ckscidac_csumb); | ||||
|         if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb)) | ||||
|         { | ||||
|   | ||||
| @@ -162,8 +162,14 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field, | ||||
|  { | ||||
|    uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16); | ||||
|    uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16); | ||||
|    if ( scidac_csuma !=scidac_checksuma) return 0; | ||||
|    if ( scidac_csumb !=scidac_checksumb) return 0; | ||||
|    std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl; | ||||
|    std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl; | ||||
|    if ( scidac_csuma !=scidac_checksuma) { | ||||
|      return 0; | ||||
|    }; | ||||
|    if ( scidac_csumb !=scidac_checksumb) { | ||||
|      return 0; | ||||
|    }; | ||||
|    return 1; | ||||
|  } | ||||
|  | ||||
| @@ -206,7 +212,7 @@ class GridLimeReader : public BinaryIO { | ||||
|   // Read a generic lattice field and verify checksum | ||||
|   //////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name) | ||||
|   void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     scidacChecksum scidacChecksum_; | ||||
| @@ -238,7 +244,7 @@ class GridLimeReader : public BinaryIO { | ||||
| 	uint64_t offset= ftello(File); | ||||
| 	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl; | ||||
| 	BinarySimpleMunger<sobj,sobj> munge; | ||||
| 	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb); | ||||
| 	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control); | ||||
| 	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl; | ||||
| 	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl; | ||||
| 	///////////////////////////////////////////// | ||||
| @@ -408,7 +414,7 @@ class GridLimeWriter : public BinaryIO | ||||
|   // in communicator used by the field.Grid() | ||||
|   //////////////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name) | ||||
|   void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   { | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     // NB: FILE and iostream are jointly writing disjoint sequences in the | ||||
| @@ -459,7 +465,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     /////////////////////////////////////////// | ||||
|     std::string format = getFormatString<vobj>(); | ||||
|     BinarySimpleMunger<sobj,sobj> munge; | ||||
|     BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb); | ||||
|     BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control); | ||||
|  | ||||
|     /////////////////////////////////////////// | ||||
|     // Wind forward and close the record | ||||
| @@ -512,7 +518,8 @@ class ScidacWriter : public GridLimeWriter { | ||||
|   //////////////////////////////////////////////// | ||||
|   template <class vobj, class userRecord> | ||||
|   void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord, | ||||
|                               const unsigned int recordScientificPrec = 0)  | ||||
|                               const unsigned int recordScientificPrec = 0, | ||||
| 			      int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   { | ||||
|     GridBase * grid = field.Grid(); | ||||
|  | ||||
| @@ -534,7 +541,7 @@ class ScidacWriter : public GridLimeWriter { | ||||
|       writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML)); | ||||
|     } | ||||
|     // Collective call | ||||
|     writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum | ||||
|     writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -553,7 +560,8 @@ class ScidacReader : public GridLimeReader { | ||||
|   // Write generic lattice field in scidac format | ||||
|   //////////////////////////////////////////////// | ||||
|   template <class vobj, class userRecord> | ||||
|   void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)  | ||||
|   void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord, | ||||
| 			     int control=BINARYIO_LEXICOGRAPHIC)  | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     GridBase * grid = field.Grid(); | ||||
| @@ -571,7 +579,7 @@ class ScidacReader : public GridLimeReader { | ||||
|     readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message  | ||||
|     readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML)); | ||||
|     readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML)); | ||||
|     readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); | ||||
|     readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); | ||||
|   } | ||||
|   void skipPastBinaryRecord(void) { | ||||
|     std::string rec_name(ILDG_BINARY_DATA); | ||||
|   | ||||
| @@ -34,7 +34,7 @@ class GridTracer { | ||||
| }; | ||||
| inline void tracePush(const char *name) { roctxRangePushA(name); } | ||||
| inline void tracePop(const char *name) { roctxRangePop(); } | ||||
| inline int  traceStart(const char *name) { roctxRangeStart(name); } | ||||
| inline int  traceStart(const char *name) { return roctxRangeStart(name); } | ||||
| inline void traceStop(int ID) { roctxRangeStop(ID); } | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -104,6 +104,7 @@ template<typename vtype> using iSpinMatrix                = iScalar<iMatrix<iSca | ||||
| template<typename vtype> using iColourMatrix              = iScalar<iScalar<iMatrix<vtype, Nc> > > ; | ||||
| template<typename vtype> using iSpinColourMatrix          = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >; | ||||
| template<typename vtype> using iLorentzColourMatrix       = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ; | ||||
| template<typename vtype> using iLorentzComplex            = iVector<iScalar<iScalar<vtype> >, Nd > ; | ||||
| template<typename vtype> using iDoubleStoredColourMatrix  = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ; | ||||
| template<typename vtype> using iSpinVector                = iScalar<iVector<iScalar<vtype>, Ns> >; | ||||
| template<typename vtype> using iColourVector              = iScalar<iScalar<iVector<vtype, Nc> > >; | ||||
| @@ -178,6 +179,15 @@ typedef iLorentzColourMatrix<vComplexF>  vLorentzColourMatrixF; | ||||
| typedef iLorentzColourMatrix<vComplexD>  vLorentzColourMatrixD; | ||||
| typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2; | ||||
|  | ||||
| // LorentzComplex | ||||
| typedef iLorentzComplex<Complex  > LorentzComplex; | ||||
| typedef iLorentzComplex<ComplexF > LorentzComplexF; | ||||
| typedef iLorentzComplex<ComplexD > LorentzComplexD; | ||||
|  | ||||
| typedef iLorentzComplex<vComplex > vLorentzComplex; | ||||
| typedef iLorentzComplex<vComplexF> vLorentzComplexF; | ||||
| typedef iLorentzComplex<vComplexD> vLorentzComplexD; | ||||
|  | ||||
| // DoubleStored gauge field | ||||
| typedef iDoubleStoredColourMatrix<Complex  > DoubleStoredColourMatrix; | ||||
| typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF; | ||||
| @@ -307,6 +317,10 @@ typedef Lattice<vLorentzColourMatrixF>  LatticeLorentzColourMatrixF; | ||||
| typedef Lattice<vLorentzColourMatrixD>  LatticeLorentzColourMatrixD; | ||||
| typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2; | ||||
|  | ||||
| typedef Lattice<vLorentzComplex>  LatticeLorentzComplex; | ||||
| typedef Lattice<vLorentzComplexF> LatticeLorentzComplexF; | ||||
| typedef Lattice<vLorentzComplexD> LatticeLorentzComplexD; | ||||
|  | ||||
| // DoubleStored gauge field | ||||
| typedef Lattice<vDoubleStoredColourMatrix>   LatticeDoubleStoredColourMatrix; | ||||
| typedef Lattice<vDoubleStoredColourMatrixF>  LatticeDoubleStoredColourMatrixF; | ||||
|   | ||||
| @@ -34,10 +34,24 @@ directory | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /////////////////////////////////// | ||||
| // Smart configuration base class | ||||
| /////////////////////////////////// | ||||
| template< class Field > | ||||
| class ConfigurationBase | ||||
| { | ||||
| public: | ||||
|   ConfigurationBase() {} | ||||
|   virtual ~ConfigurationBase() {} | ||||
|   virtual void set_Field(Field& U) =0; | ||||
|   virtual void smeared_force(Field&) = 0; | ||||
|   virtual Field& get_SmearedU() =0; | ||||
|   virtual Field &get_U(bool smeared = false) = 0; | ||||
| }; | ||||
|  | ||||
| template <class GaugeField > | ||||
| class Action  | ||||
| { | ||||
|  | ||||
| public: | ||||
|   bool is_smeared = false; | ||||
|   RealD deriv_norm_sum; | ||||
| @@ -77,16 +91,60 @@ public: | ||||
|   void refresh_timer_stop(void)  { refresh_us+=usecond(); } | ||||
|   void S_timer_start(void)       { S_us-=usecond(); } | ||||
|   void S_timer_stop(void)        { S_us+=usecond(); } | ||||
|   ///////////////////////////// | ||||
|   // Heatbath? | ||||
|   ///////////////////////////// | ||||
|   virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions | ||||
|   virtual RealD S(const GaugeField& U) = 0;                             // evaluate the action | ||||
|   virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ;  // if the refresh computes the action, can cache it. Alternately refreshAndAction() ? | ||||
|   virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0;        // evaluate the action derivative | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   // virtual smeared interface through configuration container | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) | ||||
|   { | ||||
|     refresh(U.get_U(is_smeared),sRNG,pRNG); | ||||
|   } | ||||
|   virtual RealD S(ConfigurationBase<GaugeField>& U) | ||||
|   { | ||||
|     return S(U.get_U(is_smeared)); | ||||
|   } | ||||
|   virtual RealD Sinitial(ConfigurationBase<GaugeField>& U)  | ||||
|   { | ||||
|     return Sinitial(U.get_U(is_smeared)); | ||||
|   } | ||||
|   virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU) | ||||
|   { | ||||
|     deriv(U.get_U(is_smeared),dSdU);  | ||||
|     if ( is_smeared ) { | ||||
|       U.smeared_force(dSdU); | ||||
|     } | ||||
|   } | ||||
|   /////////////////////////////// | ||||
|   // Logging | ||||
|   /////////////////////////////// | ||||
|   virtual std::string action_name()    = 0;                             // return the action name | ||||
|   virtual std::string LogParameters()  = 0;                             // prints action parameters | ||||
|   virtual ~Action(){} | ||||
| }; | ||||
|  | ||||
| template <class GaugeField > | ||||
| class EmptyAction : public Action <GaugeField> | ||||
| { | ||||
|   virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions | ||||
|   virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action | ||||
|   virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative | ||||
|  | ||||
|   /////////////////////////////// | ||||
|   // Logging | ||||
|   /////////////////////////////// | ||||
|   virtual std::string action_name()    { return std::string("Level Force Log"); }; | ||||
|   virtual std::string LogParameters()  { return std::string("No parameters");}; | ||||
| }; | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif // ACTION_BASE_H | ||||
|   | ||||
| @@ -30,6 +30,8 @@ directory | ||||
| #ifndef QCD_ACTION_CORE | ||||
| #define QCD_ACTION_CORE | ||||
|  | ||||
| #include <Grid/qcd/action/gauge/GaugeImplementations.h> | ||||
|  | ||||
| #include <Grid/qcd/action/ActionBase.h> | ||||
| NAMESPACE_CHECK(ActionBase); | ||||
| #include <Grid/qcd/action/ActionSet.h> | ||||
|   | ||||
| @@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi | ||||
| typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF; | ||||
| typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD; | ||||
|  | ||||
| // Sp(2n) | ||||
| typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF; | ||||
| typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD; | ||||
|  | ||||
| typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF; | ||||
| typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD; | ||||
|  | ||||
| typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF; | ||||
| typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD; | ||||
|  | ||||
| // Twisted mass fermion | ||||
| typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2; | ||||
| typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF; | ||||
|   | ||||
| @@ -507,6 +507,7 @@ public: | ||||
|     } | ||||
|     this->face_table_computed=1; | ||||
|     assert(this->u_comm_offset==this->_unified_buffer_size); | ||||
|     accelerator_barrier(); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   | ||||
| @@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex,  TwoIndexAntiSymmetricRepresentation, CoeffReal > W | ||||
| typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD;  // Double | ||||
|  | ||||
| //sp 2n | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpFundamentalRepresentation, CoeffReal > SpWilsonImplR;  // Real.. whichever prec | ||||
| typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD;  // Double | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR;  // Real.. whichever prec | ||||
| typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD;  // Double | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR;  // Real.. whichever prec | ||||
| typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF;  // Float | ||||
| typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD;  // Double | ||||
|  | ||||
| typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR;  // Real.. whichever prec    // adj = 2indx symmetric for Sp(2N) | ||||
| typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF;  // Float     // adj = 2indx symmetric for Sp(2N) | ||||
| typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD;  // Double    // adj = 2indx symmetric for Sp(2N) | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -63,7 +63,9 @@ public: | ||||
|   virtual void MooeeDag(const FermionField &in, FermionField &out) ; | ||||
|   virtual void MooeeInv(const FermionField &in, FermionField &out) ; | ||||
|   virtual void MooeeInvDag(const FermionField &in, FermionField &out) ; | ||||
|  | ||||
|   virtual void M(const FermionField &in, FermionField &out) ; | ||||
|   virtual void Mdag(const FermionField &in, FermionField &out) ; | ||||
|    | ||||
| private: | ||||
|   RealD mu; // TwistedMass parameter | ||||
|  | ||||
|   | ||||
| @@ -280,20 +280,16 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo, | ||||
|  | ||||
|   if( interior && exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,1); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1);    return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptInlineAsm  ) {  ASM_CALL(DhopSiteAsm);     return;} | ||||
| #endif | ||||
|   } else if( interior ) { | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,1); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1);    return;} | ||||
| #endif | ||||
|   } else if( exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,1); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1);    return;} | ||||
| #endif | ||||
|   } | ||||
|   assert(0 && " Kernel optimisation case not covered "); | ||||
| } | ||||
| @@ -322,19 +318,13 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo, | ||||
|    | ||||
|   if( interior && exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,0); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0);    return;} | ||||
| #endif | ||||
|   } else if( interior ) { | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,0); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0);    return;} | ||||
| #endif | ||||
|   } else if( exterior ) {  | ||||
|     if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,0); return;} | ||||
| #ifndef GRID_CUDA | ||||
|     if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0);    return;} | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -332,8 +332,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg | ||||
|   ///////////////////////////// | ||||
|   { | ||||
|     GRID_TRACE("Gather"); | ||||
|     st.HaloExchangeOptGather(in,compressor); | ||||
|     accelerator_barrier(); | ||||
|     st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine | ||||
|   } | ||||
|    | ||||
|   std::vector<std::vector<CommsRequest_t> > requests; | ||||
|   | ||||
| @@ -423,14 +423,14 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S | ||||
| #define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier(); | ||||
|  | ||||
| #define KERNEL_CALL_EXT(A)						\ | ||||
|   const uint64_t    NN = Nsite*Ls;					\ | ||||
|   const uint64_t    sz = st.surface_list.size();			\ | ||||
|   auto ptr = &st.surface_list[0];					\ | ||||
|   accelerator_forNB( ss, sz, Simd::Nsimd(), {				\ | ||||
|       int sF = ptr[ss];							\ | ||||
|       int sU = ss/Ls;							\ | ||||
|       int sU = sF/Ls;							\ | ||||
|       WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v);		\ | ||||
|     });									 | ||||
|     });									\ | ||||
|   accelerator_barrier(); | ||||
|  | ||||
| #define ASM_CALL(A)							\ | ||||
|   thread_for( sss, Nsite, {						\ | ||||
| @@ -462,6 +462,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField | ||||
|     autoView(st_v , st,AcceleratorRead); | ||||
|  | ||||
|    if( interior && exterior ) { | ||||
|      acceleratorFenceComputeStream(); | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSite); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite);    return;} | ||||
| #ifndef GRID_CUDA | ||||
| @@ -474,9 +475,10 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField | ||||
|      if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteInt);    return;} | ||||
| #endif | ||||
|    } else if( exterior ) { | ||||
|      // dependent on result of merge | ||||
|      acceleratorFenceComputeStream(); | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteExt); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteExt);    return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt);    return;} | ||||
| #ifndef GRID_CUDA | ||||
|      if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteExt);    return;} | ||||
| #endif | ||||
| @@ -494,6 +496,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField | ||||
|     autoView(st_v ,st,AcceleratorRead); | ||||
|  | ||||
|    if( interior && exterior ) { | ||||
|      acceleratorFenceComputeStream(); | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteDag); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag);    return;} | ||||
| #ifndef GRID_CUDA | ||||
| @@ -506,9 +509,10 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField | ||||
|      if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteDagInt);     return;} | ||||
| #endif | ||||
|    } else if( exterior ) { | ||||
|      // Dependent on result of merge | ||||
|      acceleratorFenceComputeStream(); | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteDagExt); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt);    return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;} | ||||
|      if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteDagExt);    return;} | ||||
| #ifndef GRID_CUDA | ||||
|      if (Opt == WilsonKernelsStatic::OptInlineAsm  ) {  ASM_CALL(AsmDhopSiteDagExt);     return;} | ||||
| #endif | ||||
|   | ||||
| @@ -93,5 +93,25 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou | ||||
|   RealD b    = tm /sq; | ||||
|   axpibg5x(out,in,a,b); | ||||
| } | ||||
| template<class Impl> | ||||
| void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) { | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   this->Dhop(in, out, DaggerNo); | ||||
|   FermionField tmp(out.Grid()); | ||||
|   RealD a = 4.0+this->mass; | ||||
|   RealD b = this->mu; | ||||
|   axpibg5x(tmp,in,a,b); | ||||
|   axpy(out, 1.0, tmp, out); | ||||
| } | ||||
| template<class Impl> | ||||
| void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) { | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   this->Dhop(in, out, DaggerYes); | ||||
|   FermionField tmp(out.Grid()); | ||||
|   RealD a = 4.0+this->mass; | ||||
|   RealD b = -this->mu; | ||||
|   axpibg5x(tmp,in,a,b); | ||||
|   axpy(out, 1.0, tmp, out); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonImplD | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonImplF | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| #define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonCloverFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonFermionInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonKernelsInstantiation.cc.master | ||||
| @@ -0,0 +1 @@ | ||||
| ../WilsonTMFermionInstantiation.cc.master | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user